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ABSTRACT 

A constructive result is given for identifying a complete "pairing" 

(one-one matching)  of edges  from two spanning trees such that each pair gives 

rise to an admissible exchange relative to the first  tree.     The result is 

considerable stronger than the standard result concerning the existence of ad- 

missible exhanges in spanning trees, and finds application in establishing the 

validity of "swapping" algorithms for problems in undirected graphs. 
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Spannlnc trees appear  in numerous guises and applications  throughout graph 

theory,  ranging from the minimum spanning tree problem  [1,  8,  9,   10,  13]  to the 

network "basis structures" of linear programming whose exploitation has resulted 

in efficient algorithms for minimum    cost flow problems   [2,  3,  7,  12].    Spanning 

trees have also recently been shown to have relevance for solving traveling 

slaesman problems  [5,6]. 

Uses of spanning trees are frequently based on "swaps" involving the deletion 

of an "in-tree" edge and the addition of an "out-of-tree" edge, such that the 

result Is also a spanning tree.    This type of swap, which we will call an admissible 

exchange,  corresponds precisely to a linear programming basis exchange step 

(i.e.,   "pivot operation")   in a network.    Thus,  it is well known (and immediately 

apparent),  for example,   that given any two distinct spanning trees,  T and T', 

one can always select any edge of T that is not in T',  and thereupon Tind some edge 

of T*  not in T, so that swapping these edges (deleting the first and adding the 

seocnd) will give an admissible exchange relative to T. 

The purpose of  this note is to establish a considerably stronger result, 

concerning the ability to "pair" all edges of T - T' with all edges of T* -    T 

(treating these trees as edge sets)  so that each pair gives an admissible ex- 

change relative to T.    Furthermore, we will provide a constructive procedure in 

the proof of this result for identifying precisely such a pairing. 

Letting T'(e)  denote the unique edge-simple path in T*   joining the endpolnts 

of the edge e (or alternatively,   the collection of edges on this path) we make 

the following preliminary observation. 
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Lemma;  Let e ,  ..e-be any k edges of T - T" . Then the union of T* (e.),.. .T1 (e. ) 

contains at least k distinct edges of T' - T. 

Proof:  The union of T'Ce.), i » l,...,k is a forest in T'.  The endpoints of each 

edge e  lie in exactly one tree of this forest. Now add the edges e.t...e, to 

this forest and delete all edges of T' - T. The result is a subgraph of T.  If 

the forest contains fewer than k edges of T' - T to be deleted, then a cycle is 

Introduced in at least one tree of this forest by adding e.,...,e. .  Since T has 

no cycles, this is impossible, completing the proof. 

Note that the sets T'(e ) in the foregoing lemma can be also replaced with 

the sets T*(e.) = T^e.) - T.  Utilizing this lemma, we now establish the following 
1      1 

result. 

Theorem;  There is a one-one pairing (matching) of the edges of T - T' with the 

edges of T' - T so that each pair gives rise to an admissible exchange in T. 

Proof:  We establish the theorem by a constructive process that generates the 

desired pairing.* Assune that the edges in a subset E of T - T' have been paired 

with the edges in a subset E* of T' - T.  Select any edge e c(T - T^-E. Let 

U = 0, and for i > 1 define V. = the union of T*(e ) with all sets T*(e) such 
o — 1 o' 

that e e U ., and define U « {e e E;  e pairs with some e' e V }.  As long as 

V £ E' we have |u | = |V | >_  |U J + 1, where the inequality follows from the 

definition of V. in terms of U 1 and the lemma.  Thus there must be a finite 

least k such that V. (^ E*.  Identify any e' E V -E', and for each i < k identify 

e such that e. e U u {e } and e'   e  T*(e ), and identify e*  such that e' 

currently pairs with e .  It follows that the pairing (e , ej), (e. , e'),.,., 

(e. .,6'), with all other pairs in E and E' unchanged, creates a 1-1 correspondence 

of the edges in E u {e } and E' u (eM. i 

*We are indebted to Hal Gabow for pointing out that a nonconstructive proof 
of the theorem can be based on applying Hall's theorem for distinct set representa- 
tives to the foregoing lemma (see, e.g.,[4a]p.53). 
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The ability to Identify and construct the one-one matching of  the theorem 

In the manner lad^cated Is a useful tool for characterizing various types of 

optlmality criteria involving spanning trees.    If, for example, one seeks to 

minimize F(T), where T is a spanning tree,  then the theorem establishes the 

validity of an algorithm that utilized sequential admissible exchanges, all of 

which are "improving," provided the difference F(T) - FCT')  can be expressed in 

terms of an appropriate function of the edges of T - T' and of T' - T. We shall 

not attempt to fully specify the conditions of an "appropriate function," which 

can be of a highly complex character, but note that the objective function eval- 

uation for feasible linear programming bases falls in the proper category.    As 

demonstrated in [4],   the theorem is also useful for establishing optlmality con- 

ditions in certain problems where not all improving moves can be restricted to 

single admissible exchanges. 
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