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The theoretical basis of the TIGER code for calculgting the thermo-

dynamic state in 8 nonideal heterogeneous mixture was formulated by

Dr. S. R. Brinkley, Jr. The original version of the code was developed

and documented from July 1966 to November 1868 at Stanford Research
Institute by W, H, Zwisler, W, E, Wiebenson, and L. B, Seely for Bellistic

Research Laboratories under Contract No., DA-04-200-AMC-3226(X) monitored
by Dr. §. M. Taylor.

Development of the code after 1968 was supported by Lawrence Livermore

Laboratory under Contract AT(04-3) -115, Agreement No. 89, P.0, No. 5411209,

with Mr, M, Finger and Dr. E, Lee 83 Technical Monitors, New routines

were also added to the code as a result of work performed for Picatinny 3
Arsengl under Contract DAAA21-71-C-0454 monitored by Mr. J. Hershkowitz

i
and work performed for Naval Ordnance Laboratory under Contract N60S21-72- ;
C~0013 monitored by Dr, §. J. Jacobs,

An1:

The present documentation of TIGER

was written for Lawrence Livermore Laboratory, for Naval Ordnance Labora-
tory, and for Picatinny Arsenal under the contracts cited above to

provide an up to date version of the code,
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GENERAL ABSTRACT

TIGER is a digital computer program written in FORTRAN IV for calcu-
lating the thermodynamic state attained in a heterogeneous system of known
atomic composition containing gases, liquids, and solids with arbitsary
equations of state. As curreuntly arranged, the program is modular,
includes 52 routines, and can be applied to systems containing up to 30
gaseous and 10 condensed constituents composed of up to 10 chemical
elements. The memory required to perform a calculation depends on the
computey, For example, on the CDC 6400 computer, 40K words are required.
The input instructions sre written in a quasi-free-field format to

simplify the input of data into the computer.

The TIGER documentation consists of four volumes. Volume I presents
the theoretical basis of the code and its application to the calculation
of the detonation parameters of condensed explosives, The equations used
by Brinkley to calculate the tnermodynamic state in a nonideal hetero-

geneous system in chemical equilibrium are derived and exteanded to treat

systems in partial equilibrium. A brief discussion ¢f the Chapman-Jouguet
? . (CJ) theory of detonation is followed by an account of the methods used
- to calculate conditions in the CJ wave and the properties of the detona-
tion products along Hugoniot curves and isentropes. Volume II presents

a summary of the formulas and relationships used in TIGER. Volume III

% : presents the FORTRAN code and flow charts needed to understand the pro-
gram in detail, and Volume IV is a .ser's guide that explains how to

prepare input cards and interpret the output of a calculation.
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YVOLUME I

THEOLETICAL AND MATHEMATICAL FORMULATIONS
FOR THE TIGER COMPUTER PROGRAM

by

M, Cowperthwaite and W, H, Zwisler
Stanford Research Institute
Menlo Park, California
January 1973
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VOLUME I

ABSTRACT

Volume 1 contains the theoretical basis of the TIGER code and its

application to the calculation of the properties of detonating condensed

explosives, The equations used by Brinkley to calculate the thermodynamic

state in a nonideal heterogeneous system of known atomic composition in
chemical equilibrium are derived and extended io treat such systems in

partial equilibrium. A brief discussion of the Chapman-Jouguet (CJ)

theory of detonation is followed by an account of the methods used to
compute conditions in the CJ wave and the properties of the detonatieon

products along Hugoniot curves and isentropes, The presentation in this

volume will be of interest primarily to the reader concerned with under-

standing the theoretical background of the code rather than to the user

of the program,
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i-A. INTRODUCTION

TIGER is a digital computer code written in FORTRAN IV for caleu-
lating the thermodynamic state of 8 nonideal heteérogeneous system of
known composition, It was developed at Stanford Research Institute
specifically for detonation calculations after experisnce with the RUBY
code at Lawrence Livermore Laboratory and the BKW code at Los Alamos
Scientific Laboratory had led tou the conclusion that a more versatile
code was required to perform routine and research calculstions on con-
densed explosives, While RUBY is limited by its inability to treat
certein explosive compositions, both RUBY and BKW are restricted by the
inflexibility of their interlocking subroutines which, for example, pre-

vent use of a new equaticn of state in a calculation without complete

reprogramming.

The TIGER code .:as construcied to aveid the problems associated with
interdependent subroutines., The program was written in modular form so
that the thermodynamics used to calculate the state, the hydrodynamics
used to calculate detonation parameters, and the eguations of state used
to describe the properties of the system are treated separately in dif-
ferent parts of the code. Becsuse of this separation, TIGER can be best
described as a general code for calculating the thermodynamic properties

f a nonideal hetercogeneous mixture, described by an arbitrary equation
of state, with the capability of calculating detonation parameters pro-
vided by the hydrodynamic option. Whereas the hydrodynamic problems are
computaiionally trivial and are solved in the executive part of the pro-
gram, the thewmodynamic problems are complex and are solved in the sub-

routines THERMZ and ECOMPY, which constitute the largest part of the

I-A-}

o —— e —— AR

D T

poa—

bl Ldsse s




ML, ), A8 2 1 478 LS S B

L R e X e A & g e

. g
;
: — program, The gaseous and condensed equation of siste subroutines are =

R : named STATE G and STATE C., They are called on by THERMG and ECOMPG in a

thermodynamic calculation whenever equation of state data are required,
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1-B., THEORETICAL BASIS OF TIGER
FOR EQUILIBRIUM CALCULATIONS

1. Introduction

This section of the TIGER documentation presents the theoretical
besis of the methods developed by R, S, Brinkley, Jr. toc calculate the
thermodynamic properties of a nonideal heterogeneous system of known atomic
composition containing gaseous, liquid, snd =olid phases. The thermodynamics
is formulated with an arbitrary equation of state to make TIGER applicable
to & wide variety of problems, and the most suitable equation of state
available should be used to perform the calculations in a particular

application,

The heterogenecous system is5 assumed to be in mechanical and thermal
equilibrium, but not necessarily in chemical equilibrium. Since pressure
and temperature are well defined in this case, the thermodynamic state
of the mixture can be defined by the values of the state variables,
pressure p, temperature T, volume V, entropy S, internal energy E, and
by the mole numbers of the constituents, Other thermodynamic variables
such as the enthalpy H and the Gibbs free energy G, can then be calculated
with thermodynamic identities, The problem addressed by Tiger is that of
computing the thermodynamic state when the gross composition and a com-
plete equation of state of the mixture are known, An assumption about
the attaiument of chemical equilibrium and the specification of two
independent state variables are required to solve this problem. Section
I-B presents methods used to calculate the thermodynamic state when the
composition is assumed to be in &8 state of chemical equilibrium and the
pair of variables can be chosen from the following set: Lp, D, (p,h),
(p,s), (v,7), (v,e), (p,V), and (v,s)], where h, s, v, and e denote the

specific values of the enthalpy, entropy, volume, and internal energy.

I-B~1
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Section I-C presents the extension of these methods to nonmequilibrium
systems that are partially frozen and partially in chemical equilibrium,
and Section I-D presents the method used to calculate the thermodynamic

state in systems that are completely frozen in metastable equilibrium,

Assumptions about the composition are required to calculate the
thermodynamic state when kinetic processes are not treated explicitly.
The assumptions used in TIGER are related implicitly to rate processes
and cover a wide spectrum of chemical kinetics. As a consequence, the
results based on them provide a means of modeling chemical Kinetic
processes with the TIGER code. When the system is assumed to be in
chemical equilibrium, the composition is unknown and must be determined
in the calculations of the thermodynamic state, The equilibrium compo-
sition is calculated with the equilibrium ronditions and the stoichio-
metric conditions that express the conservation of mass for the system
in terms of its molecular and atomic composition., When the system is
assunmed to be frozen, the composition must be chosen to satisfy the
stoichiometric conditions; when it is assumed to be in partial equili-
brium, the frozen composition is chosen and the remainder is calculated
with the equilibrium andé stoichiometric conditions as in the previous

case.

2. Description of the Compnsition iv Terms of Components

It is convenient for computational purposes to formulate a general
method for describing the composition of a heterogeneous system in terms
of its gross composition, The possible species that make up the system
are restricted to a set chosen on the basis of chesical intuition and from
the results of previous calculations, We will consider the set of t
possible species, s gaseous and (t -~ s) condensed, formed from ¢
different chemical elements, These .upecies will be distinguished with a

constituent index 1 and the elements with an atomic irdex k., Thus,

I-B-2
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the gaseous constituents are labelled with i =1, ..., 5, the condensed
constituents with 1 = s + 1, ,,,, t, and the elements with k =1, ..., c.
Condensed species are assumed to be present as pure phases to exclude the
cousideration of solid and liquid solutions. The initial composition in

& mass of mixture M, is described by parvameters specifying the gross
composition of the system, The final composition obtained by computing
the theimodynamic state of the system is defined by the mole numbers

ni(i =1, ..., 8} of the gaseous constituents and by ihe mole numbers

n: (i=s+1, ..., t) of the condensed species. The phase rule imposes

a restriction on the number of the variables n: that may be nonzero.

-

When all the n: are zero, the system is homogeneous and consists of a

gaseous phase only.

The parameters used to describe the gross composition of the mixture
are related to the mole numbers of the constituents by the law of con-
servation of mass, and such a relationship is used in the computation of
the mole numbers ni and n: to ensure that mass is conserved in our
closed system. Since iterative procedures are in general necessary to
compute the composition, it is important to express the conservation of
mass relationship in terms of the most suitable representation of the
gross composition for performirg the iterations, It has been found from
experience that calculation of ni and n: usually proceeds most readily

when the gross composition is expressed in terms of the most abundant

species in the system,

Let Mk aud Qk denote the mass and number of gram atoms of element
K present in a mass My of our mixture. Then My and the ¢ values

of Qk are related by the equatiom

Q N (1-B-1)

I-B-3
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expressing the conservstion of mass, The gross composition of the system
can be described by using the ¢ values of Qk as extensive variables
or the ¢ -1 values of their ratios as intensive variables., For two
mixtures with the same gross composition, the Qk's are proportional to
each other and the preportionality constant is the ratio of the masses

of the two systems. Although the Qk’s are the natural parameters for
describing the gross composition of the mixture, they are usually unsuit-
able for computing ni and ni* hecause the elements are present in
small quantities in many systems of interest, It is therefore convenient
to formulate a general method for describing the gross composition of the
mixture so that the conservation of mass can he expressed in terms of

the most abundant species in the system.

The gross compasition of the mixture will be expressed in terms of
its constituents, aud the constituents sufficient for its description
will be called the components of the system. An analytic criterion will
be fcrmulated for selecting a set of components, The criterion is bssed
on the assumption that the number of components is equal to the number

of elements ¢, The components will be distinguished with an index
and lsbelled accordingly with 3 =1,

srey €

Since the species are labelled as constituents with 1= 1,2, ...1,
and as components with 3 = 1,2, ..., ¢, the index i = i*(3) is
th
introduced to show that the species labelled as the ) component is

th
also labelled as the i = i*x(3) constituent,

It is convenient *v rewrite molecular formulae so that each species
in the system can be represented as a vector, The meclecular formule of

the constituent labelled i is thus written as

k
Y = X R 4 o0 X (1-B-2)
a o

R
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k
where X denotes the element labelled Lk, and e%k denotes the number
of atoms of element X opresent in a molecule of species i, A vector
representation of each specics is then readily obtained by defining the

formula vector of the constituent labelled i as,

AR Bkt ek A Sainth S i 2t ST IR A st e, B8

i ., = (o ea i o= 1, ..., ¢t I-B-32]
3 ¥y "N ) ( ’
': é Consider, for example, a system containing nitrogen, oxygen, carbon,
Fx g
3 ¥
. & and hydrogen, labelled with k = 1, 2, 3, and 4 as X® =N, X° = O,
; é x* =C, and X' = H. Suppose that carbon dioxide is labelled with i = 3 ;
z and water with 1 = 4, Then writing Eq. (I-B-2) for these species gives !
% M
3 3 Cop, = Y = Ng0zCy Hy
with ;
%, = 0 i
b %z = 2 f
: &G; = 1 ;
and f
|
: H0 = Y' = Na0,C.Hs
with i
i %, = 0 ;
3 e = 1 ?
&. = 0 !
H
5. %e = 2 :
'é
i
i
and Eq. (I-B-3) gives their corresponding vector representations as g
] v = (0,2,1,00 and y, = (0,1,0,2). ]
b h 2
i k
. A necessary and sufficient condition for the selection of a proper ?
3
set of components is that the formula vectors of the constituents sclected i

iagaie

I-B-5
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&5 components be linearly independent, This condition implies that the

determinant {ai | of the formula vectors of these constituents is

» k
nonzero. Let qJ(Jzenote the number of moles of the Jth component in
mass Mo, of the hypothetical system consisting of components only, Then
the condition for the hypothetical system of components to have the same
gross compogsition as the system of interest follows from the law of

conservation of mass as

[
Q k = 1,2, ..., c (1-B-4)

N =

551 % (kY k
The guantities qJ(J =1,2, ..., ¢) are called the stoichiometric con-
stants of the system for a particular choice of components, They provide
an alternative specification of the gross composition of the system to

that provided by the Qk'

A choice of components iz generally anot unique, The eclements always

e

constitute a proper set of components. And in the case that they are

chosen &s components, Eq. (I-B-4) becomes

nMo

. 53qu = Qk (1-B-5)

RSP - NS )

3

where GJk is the Kronecker delta having the property that agk =1

e st

when 3 = k, and °3k =0 when 3 # k. However, if the elements are
present in sasll quantities, as is usually the case, it is more convenient E %

to choose components from the more abundant species in the system,

I SR RS

We are now in a position to formulate the procedure used to describe

§ the composition of the system in terms of components., The procedure is ; %
% based on the fact that the formuls vector of the 1th constituent can v

; be expressed as & linear combination of the formula vectors of the

y components as follows:

:

A

& 1-B-6

t

v e o e e b A —————— et




e vtsan p

£ i et

c
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Y, Jgi Bisyi*(g) (i1 =1,2, s t) (1-B

If the dissociated elements are taken to be the components, then Eq. (I-B-6)
reduces to Eq. (I-B-3) and ﬂis = aia. The expressions in Eq. (I-B-B) sare
the vector representations of the chemical reactions producing the con-

stituents from the components; the corresponding expressions in terms of

molecular formulae can be written formally as

i *
Y= % M9 Gi=1,2, ..., ¥ (1-B-7)
3= T4

The expressions in Eq. (I-B-6) contain an identity for each constituent
selected as a component, Although the expressions in Eq. (I-B-7) can
alwvays be written by inspection, using the customary rules for balancing
chemical equations, it is convenient to develop a method for constructing
the Bi; matrix that can be used in the computer., The coefficients in

the 313 matrix will be calculated using the coefficients a&k of tne

formula vectors of the constituents,

The combination of Eys. (I-B-3) and (I-B-6) leads to the following

matrix equation

(@) = (513) (a“U) "/ (1-8-8)

where n&‘(J)k is the matrix formed from the formula vectors of the

components. Since a&*(J)k is by definition nonsingular, Eq. (I-B-8)

can be inverted to give the equation

(g = (e (3'5(3) (1-8-9)

where (E&J) denotes the inverse matrix {& )

1
. ti I-B-9
1%(3) Equation ( )

1-B-7

]
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can be rewritten in terms of the coefficients as

~C

By = 13 %%, ({1-8~10)

Since the matrix (cik) is knowm, Bq. (I-B-9) can be used to construct
the matrix (313) if a procedure is formuiated for constructing the
matrix (& ). The matrix (& i R -
(a&J) r (aij) s comstruc y selecting an appro

priate set of linearly independent formula vectors snd inverting the
corresponding (ai x( J)k) matrix. The (akJ) matrix is constructed from
the (n&k? matrix with 2 method suitable for electronic computers. The
selection of components and the computation of the (5&3) matrix are

carried out concurrently.

The rows of the (o%k? matriz are added to an initially mull ¢ x ¢
matrix one at a time. After esch such addition the ruws are tested for
linear independence. Linearly independent rows define components and *ve
retaired, linearly dependent rows are re)ected, and the process is continued
until a ¢ x ¢ matrix is obtained. The test for linear independence is
made by beginning the reduction of the matrix to triangular form (by opera-
tions on rows) with the first such addition and by continuing it with each
subsequent addition. After triangularizing, a row is linearly independent
if it contains & nonzero element on the diagonal or to the right of the
diagonal. The nonzero element is placed on the diagonal, if necessary.
by rearrangement of columns, The ¢ x ¢ matrix is used to comstruct

the (E;J) matrix by back substitution.

Th and matrices for a system containin
e (ai*(d)m v o, (Bu) y g
C,H, 0, and N (with C, CO,, Hy, and N; considered as components) are
given below to exemplify the method used in the TIGER code to describe

the composition of a thermodynamic system:

I-B-6

e o i Bk A L o] o) ek D

b A



ot &f&ﬁﬁﬁs

» oo (< T = T o R w o 0O O o o 68 o o O ©
M ,
i [ ] o N o O WNOS O M N O e OO N e o O
| g
]
!
; EH2 O O & © MHZ - T - T - B S N - B < . B S
!
m O m - e DD O ™ - - T - T~ T - T - B -~
i i
%
3] - %
-~y
] . - M W w e NO™M WD W o~ 0D O
~ml —t
L4
i *
4 342 m zanw...a
-] v 8 A& £ 3 v 88 22 2 & o & =z

SLNANOINCD SLNANLILSNOOD




;
§
£
?
¥
g
!
E
§

COMPONENTS

C cop, Hy; N,

8, 3 0= 1 2 3 a4
i
c 1 1 o o0 o
o 2 i 1 0 o
co, 3 6o 1 o o
@ Hy 4 e o 1 o
S H0 5 O L
£ Ng 6 0o ¢ o0 1
§ 0, 7 -1 1 o0 0
o s -+ 3 o o
o 9 -+ 3 3 o
B 10 6 9o 3 o0

3. Thermodynamic Description of Nonideal Heterogeneous Systems

Section 1-B-3 presents the thermodynamic description of nonideal
heterogeneous systems used in the TIGER code. Systems in mechanical and
theimal equilibrium, with condensed phases considered as pure substances
to exclude solid and liquid solutions, are treated under the assumption
that an equation of state exists for each phase. The equations of state
are restricted ouly by thermodynsmic identities and stability conditiouns.
This description is convenient to use in calculations of the thermodynamic
state of such systems at one of the following points, (p,T), (p,h), (p,s),
(v,T), (v,e), (v,p) or (v,s), when the composition is in chemical equilib-
rium, in partial equilibrium, or completely frozen in metastable equi -
librium. In the treatment of partial equilibrium, part of the composition

is prescribed to be frozen and the remsinder is assumed to be in chemical

I8-10



egquilibrium, Caiculation ~i the state at a point involves calculating
the composition and evaluating the other state varimbles with thermo-
dynamic identities. As stated in Section (-B-2, the composition is
restricted a priori to s gaseous species with mole numbers

ni{i = 1,2, ..., 8),t - 5 condensed species with mole numbers

n: (i =s+1, ..., 7, =nd must satisfy the stoichiometric conditions

expressing the law of conservation of mass for thbe system,

Calculation of the state is essiest when the composition if completely
frozen because the mole numbers can be chosen to satisfy the stoichiometric
conditions., The calculations are more complicated for the equilibrium
¢as39s because the composition must satisfy the equilibrium conditions as
well as the stoichiometric conditions. Since calculation of the equilib-
rium composition is based & priori on the assumption that some of the con-
densed species are present gnd the remainder are absent, the results of
the cslculation must be used to test if this assumption sstisfies the
equilibrium conditions for condensed species. To satisfy these equi-
librium counditions, the mole number of a species i assumed to be
present must satisfy the condition n: 2 0, and the chemical potential
of a species assumed to be sabsent must exceed its chemical potential in

the gaseous phase,

a. The Stoichiometric Conditions

The stoichiometric conditions expressing the conservation of
mass for the system will be formulated by expressing the formuls vectors
of the comstituents in terms of the Zormular vectors of the compounents,

A set of components is first chosen, snd the corresponding stoichiometric
counstants are evaluated. The system is th m transformed into a system
containing only these components by expressing the constituteuts as

linear combinations of them. T%. stoichiometric conditions are then

{1-B-11
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obtained by equating the mole numbers of the components in the transformed
system to their stoichiometric constants. Following this procedure with

the notation introduced previously in Section I-B-2 gives the stoichio-

meirie conditions as

s *

t
by + k = = 1-B-11
152 Bi;“i 1=5+4; ﬁigni 9, 3 =12, » © (1-8-11)

It is convenient to introduce the index i‘(m), with m=1,2, ..., t - 8,
so that the condensed species labeled as m is also labeled as the

t
i =i'tm) h constituent, It is also convenient to denote the mole numbers

of the condensed species by Nn so that

*
= = » ewry ¥ = -
ni'(nﬁ N‘ m = 1,2, s {1-B~12)

The condensed constituents assuned to be prusent and in equilibrium with
the gasecus phase will always be chosen as components as in the original
version of the TIGER code formulated by R. §. Brinkley, Jr. It is
necessary to set i*(3) = §‘{m), and nitub =N for m=3=1,2, ..., p
to make the i' map compatible with the 1i* map introduced previously

for mapping components into constituents, The condensed species sssumed

to be frozen and not in chemical equilibrium with the gaseous phase will

be labeled with m =p +1, .,., p’, and the remainder that are assumed

to be absent (but to satisfy the equilibrium conditions) will be labeled

with m=p’ +1, ..., t - 5. Thus the mole numbers of the condensed

species are subject to the following restrictions: Nm =N 20 for

m= 3=1,2, ..., Pi Nm 20 for m=p+1, ..., p’; and Nm =0 for

m = p' +1, +.., t -8, The summation term over the conceunsed species

in 2q, (I-B-~11) can therefore be rewritten as

+

- @

* b3 N + § N =1, ..., 1-B-13
i=5+1 ﬁijni = amJ m  m=ph ﬁi'(m); m 2 ’ e }

I-B~-12
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It is convenient for comparative purposes to wriile an egquation
similear to (I-B-13) for the gaseous summation term in Eq. (I-B-11),
although the gaseous species will not be treated with this equation iv
the code, Assume thet s’ of the gaseous species are in equilibrium
while the remaining s - s’ ave frozen, and introduce the index 1(g)
with g=1, ..., 8 to indicate that the gaseous species labeled as g
is also labeled as the 1 = f(gbth constituent. The gaseous species
assumed to be components will be labeled with g =1, ..., ¢ ~ p, those
assumed to be in equilibrium with g=c¢ ~p + 1, ..., s', and those

[

assumed to be frozen with g =s" + 1, ..., s. As in the treatment of

A
the condensed specles, it is necessary to set i(g) = i*{g + p} for
A
g=1, ..., ¢ ~p to make the i map compatible with the i* map for
identifying componeunts as constituents. With this notation the summation

term over the gsseous species in Eq. (I-8-11) can be rewritten as

5 c-p s’ s
= = T z
i‘—’-lﬁijni g=1 6g+p,3nf(g) * g-zzc-wxsf(g)Jn{(g)+Fsilﬁt(g)snf(g)
with {1-B~14)
3 =1, ..., ¢

Since m=1, .,., p and m=p’  +1, ..., t - s ere used to label the

codensed species assumed to be in chemical equilibrium, and m=p + i, ..., p'

are used to label the condensed species assumed to be frozen, the coadition
for all the condensed species to be in equilibrium is p' = p, eaund the
conditions for them all to be frozen are p =0 and p' =t ~ s, Similarly,

since g=1, ..., s’ are ugsed to label the gaseous species in chemical

[

equilibrium and g=s8’ +1, ..,, s are used to label the frozen species,

the condition for all the gaseous species to be in equilibrium is s = s’,

and the condition for them all to be frozen is s’ = 0, Thus p = p’ and

s = s’ when the composition of the heterogeneous system is in complete

I-B~-13
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equilibrium, and p=s’ =0 and p’ =1t - s when it is completely
frozen, When t = s, no condensed species are present and the system is

a homogeneous gas phase, Furthermore, when t = s = s', the composition

of the gaseous mixture is in chemical equilibrium, and when t - s = g' =0,

it is completely frozen.

Iin calculations of the thermodynamic state, the mole numbers of
the equilibrium species are calculated using the stoichiometric conditions
and the equilibrium conditions, The ¢ ~ p gaseous components are chosen
first from the gaseous constituents assumed to be in equilibrium; they must
include frozen species when s’ < ¢ - p, and must be chosen from the
frezen species when s’ = 0, It is convenient for computational purposes
to combine Eqs. (I-B-11) and {(1-B-13) and rewrite the stoichiometric

conditions as

4

g N + % +X = =1,2 I1-B-15
mép"'l il(m)j m i=lﬂi3nj I“J qJ J 1y e P ( )

g’ 2 ( )

;. N + < = = + 1, ... 1-B~16
nEp+1°1 /() m iﬁxsigni qg I=@ ! r ©

These equations are generalizations of the stoichivmetric conditions
formulated by Brinkley for the case of equilibrium, and thus they reduce

to the stoichiometric conditions presented in the original documentation

of the TIGER code when p = p' and the first summation term vanishes,

For the homogeneous system when p' =p =90, Eq. (I-B-15) vanishes and

Eq. (IC~16) reduces to the stoichiometric conditions for the gaseous

phase.

Let n dcnote the total number of moles ol gas in our mixture

nf mass M, so that

s
n = I =n {I-B-17)

I-B-14
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It is useful for computstional purposes to have snother expression for
n and such a relationship can be obtained by combining Eqs. (i-B-i6)
and (I-B-17). Thus, summing Eq. (I-B-16) over 3 and subtrecting the
result from Eq. (I-B~17) leads to the equation

’

m=p+1pi'(nDNm

-]

8
no=oq RO AL (1-B~18)

where and are defined by th ti
Qg: ﬁi’ ﬂi(mo y e equations,

C

= = I1-B-19

a, 3=pr1 93 ( )
C

B, = ngﬂ By, (1-8-20)
g

It is aizo useful to define the reference mass My of the

mixture in teyrms of the components as
c
Mo = Z qM (1-B-22)
th
where MJ is the molecular mass of the component, and to normalize

the system by choosing My as 100 grams, Then the mass balance equation

for the normalized system is
[
100 = L (100 q /Mo)M (1-B~23)
J=1 J J

and the corresponding stoichiometric coefficients are

q; = 100 qJ/Mc (1-B-24)

I-B~15
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Thus, the equations for the normalized system are obtained from those for

the reference system of mass M; by replacing qJ by 100 qJ/Mo.

If we consider the decomposition products of TNT, C,H;0:N,,
as an example and choose €, CO, Hy, and N; as components accorcing

to the reaction
CqHsOsNa -~C + 6 CO + 5/2 Hy + 3/2 Ny

then the normalized stoichiometric coefficients are q; = 100/M, qéo =

600/, qé = 250/M, and qb; = 150/, where M = 228.18 is the
e -]
ralecular weight of INT,

b. Eguations of State

The gas phase is treated with an equation of state of the form,

P = P(P;Tnnl P seey nS) (1'3‘25)

expressing the pressure as an explicit function of the gas density p,
the temperature, and the mole numbers of the gaseous constituents., It is

convenient to introduce the variable 3 through the identity

A

L. . e

=

Mg Mg (1-B-26)

s0 that l/ﬁ is the volume of gas per unit mass of mixture, and Q= ﬁ

when Mg = My and no condensed species are present. Equation (I-B-25)

is then written more explicitly as
aRT
p = - A T,ny, ..., ns) (1-B-27)

with ¢ au imperfection term that approaches 1 as the gascous mixture

becomes ideal.

I1-B-16
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th )
The chemical potential pi of the 1 gaseous comstituent

is written as

3

/BT = .Pim +g,+T + i=1, ..., 8 (1-B-28)

c+y

th
where pi (T) is the chermical potential of the i gaseous con-
stituent in its standard state at unit pressure, and 51’ r , and

C+1
I; gre defined by the equations

(1-B-29)

Fag)
-

]
I8
-
o

r = fn (RTAM,) (1-B-30)

-
]

A
Py, - - ap
A Jo[:_hgﬁz)- 1, 95 (1-B-31)

with the integration performed along an isotherm. The imperfection term
I} can be considered as the logarithm of An activity coefficient and can

be written in terms of @ as

P - dd
T = | ®+n— -1 - (1-B-32)

i vy L Bt?. _l [+

1
The -hermodynamic identity
e}
o .

2 - = ey 1-B-33
a zn T \RT ) X 1= s ( )

is used to introduce the molsr enthalpy Hi and the redured molar enthalpy

th
% of the i  gaseous constituent in its standard state.
1

The condensed species are treated with equations of state of

the form

I-B-17

-~ .




ok ol

o *® *
E V1 = Vi r,m i=s8+1, ..., t (I1-B-34a)
i -
n‘; = H (T.p) (1-B-34b)

3
where V1 and BI denote the molar volume and molar enthalpy of the

th
i condensed constituent. It is convenient to lahel these molar quanti-

j ties with the index m introduced earlier for condensed species, so that

v‘;,(m) = v:‘ m=1, ..., t -8 (1-B-352) g

ﬂ i

: u* = H* ~35b e
i’(ﬂ) m {1-B ) ;

and 1i'(m) = i*(3) for m= 3 =1,2, ..., p. Use will be made of the
s derivatives

? 8 V;
‘g q‘ (T ;P) = a zn T , (I "8‘368) ‘
: P i
x ? fin v §
'!‘ P = | 2. (1-B-36b) :
By (T-P \3 tnp / i
¢ and §
: * $
: (Za ) = c* (1-B-378) 3
: \or pes :
P :
. :

(i'-'ﬂ = v Qa-d (1-B-37b)
ap T m m

The derivative ag is related to the coefficient of thermal expausion

*
at constant pressure and Bm to the coefficient of compression at

Py Py

th
constant temperature of the m condensed specles; C;m is the

corresponding constant pressure molsr heat capacity.

The chemical potentials of the condensed species, in contrast

to the chemical potentials of the gaseous species, are functions only of

I-B-18
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temperature and pressuire and will be written as either

A
By = pi(T,p) i=sg+1l, ..., 1t (1 -B~38)
or
* = *{T = . - -B~-39
By pm( » m=1, ..., t -8 {(1-B-39)

with 1(m) = 1*(3) and Qi = for m=j =1, ..., p. The

'
chiemical potentials of these ;:lcies in the gaseous phase are deroted by

“1 with L1 =s +1, ..., t. It is important to note that the index i

on the gaseous potential By has the range { =1, ..., t and covers

all the constituents, even though the species labeled with i =s + 1, ...,
are assumed & priori to he condensed constituents, It is convenient for

computational purposes to define the reduced molar volume w; and the

reduced molir enthalpy x; of the condensed species with the thermodynamic

identities=
* o3
2 ____pm(p.'r) = _p\m z o (1-B-40)
P apl RrT RT n
d

an K (p, 1)) H .
T e = - — = - I""B"4
1 ®T RT Xn ( D

Equations (I-B-26), (I-B-40), and (I-B-41) are used to obtain
a convenient expression for the specific vclume of the mixture, The
volume V of the mixture is written as the sum of the volumes of the

phases as

p ’

vV = B vt e Bonwr (1-B-42)
%o b JTe 33 m=p+;y mm

by remembering that m =3 for m=1, ..., p. 1he equation for the

specific volume is obtained as

s

A RT /g |4 \
v = /D+— 1 IN®W + -~ N {I-5-43)
P Mop \J=1 33  msph m"r;/

by dividing Eq. (1-B-42) by Mg.

t




4, Caiculation of the Equilibrium Composition

a, Equilibrium Conditions and Iteration Parameters

It is convenient to consider the case of complete equilibrium

when p=p’, s =s’, and the mixture contains no frozen constituents. 1

Then equilibs "um conditions must be formulated for the s gaseous consti-

tuents, for the p condensed constituents assumed to be present, and for

: the remaining t - (s + p) condensed constituents assumed to be absent. 3

% Use will be made of ithe fact that the chemicel potentials of the species
in equilibrium sstisfy the same equations as their formula vectors.
Equation (I-B-6) is thus used to express the formula vectors of the con-
stituents as linear combinations of the formula vectors of the components.

The equations for the formuls vectors are written as

-p <€ ;
= - kN = seny L -44
"1 358 i T sxenBiYiny te b (1-8-4%

s on Mam

! because the p condensed constituents assumed to be present must be chosen

as components, Replacin b .
po placing yi#(J) y px*(;)

sccount of Eqs, (I-8-38) and (1-B-39) leads to the equation

in Eq. (I-B-44) and taking

e b

T
]

P TR g I
i 351313 3 J=priPigiix(y) i=1, ..., t (I-B-45)

A rorra B st

Equation (I1-B-45) expresses the chemical potential of -ach constituent in
the gaseous phase in terms of the chemical potentials of the condeunsed

and gaseous components, Thus for i =1, ..., 5 it is an expression for
the gasecus constituents, but for i = s + 1, .,., t it is an expression

for the gaseous species assumed a priori to be condensed constituents.

f Equation (I-B-45) contains ¢ identities for the values of

i = i*(J) labelling the constituents chosen as components. Introducing

g

I1-B-20 §

Ve,

-
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3' =1, ..., ¢ as a dummy component index so that B =8 , , and

i*(3 3 39
setting 1 = i*(3‘) 1in Eq. (1-B-45) gives these identities as

- - '*
B pi‘(;) FJ J

1, ..., P (1 -B-46a)

p+1, ..., ¢ (I-B-46b)

[ =]
Ll

By T Bisep

Whereas Eq. (1-B-46a8) is the condition for a condensed constituent that

is present to be in equilibrium with the gasecus phase, Eq, {(I-B~46b) is

an identity specifying the gaseous constituents chosen as components. We
must now consider the condensed constituents assumed to be absent with
i€s+1, ..., t and { =i*(m), m=p+ 1, ..., t - s. The equilibrium
condition for each of these species is that its chemical potential in the
condensed phase must be greater thaa its chemical potential in the gaseous
phase. Gibbs' conditions for chemical equilibrium in the heterogeneous

mixture can thus be written as

P c
= *
By 351513“3 * J=§+1513“i*(3) i=1, ..., s (1-8-47a)
= ¥ =1, ... 1-B-47b
“1*(3) pJ J ' + P ( )
- E * ., § <
B (m) 3=1Bi ’(m)J“J 3=p+1Bi '(m),)“i“(.)) B
for m=p+1, ..., t - s (1-B-47c)

Thus the gasecous constituents in an equilibrium mixture must satisfy Egq,
(1-B-473) , the condensed constituents assumed a8 priori to be present must
satisfy Eq. (I-B~47b), and those assumed to be absent must satisfy

Eq. (I-B-47¢).
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When & complete equation of state of the mixture is known,

Eqs. (I1-B-47) and the stoichiometric conditions obtsined by setting p =

3
P H

p’ in Egs. (I-B-15) and (1-B-16) are sufficient for cslculating the :
equilibrium composition at any one of the following specified points

(pt T)! ‘P, h)i (Pn 3): (V, T), (\', e): (v, D), or (V, 5}). Since 'J,i
is known as a function of the ni's. the s - ¢ + p independent equilib-
rium conditions together with the ¢ stoichiometric conditions constitute

a set 0f 8 + p equations for czliculating the s + p unknown mole numbers

T S o B e R

ni(i +1, ..., 8) =and NJ(J =1, ..., P). The computed compositions must
be checked, however, to test the validity of the a priori assumptions that
had to be made about the presence (NJ 20 for 3=1, ..., p) and the
ahsence (Nn =0 for m=p+1, ..., t -s8) of condensed constituents,
The assumptions sre valid when the calculated composition satisfies the
condition NJ 2 0 and Eq. (1-B-47c), and they are invalid when the calcu-
lated composition does not satisfy these conditions. In the latter case,
the assumptions must be changed and the composition must be recalculated

until NJ 20 and Eq. (I-B-47¢c) is satislied,

The equations used in the TICER code to compute the equilibrium

composition will now be derived. The first step is to obtain an expression
for the equilibrium conditions of the gaseous speéies in terms of their

mole numbers. Thus substituting By and given by Eq. (1-B-28)

ix(3)
into Eq. {I-B~47a) and meking use of Eq. (I-. 29} leads to the following

equation for 51 = fIn ni(i =1, ..., 8),

- ‘, .. _ g * [ o4 _ -4
/ ' ' 51 & ri * J;:.piJPJmT ¥ JgpﬂvﬂunJ * (ﬁt nrcﬂ (1-8-48)
vhere
= AT - T ° /RT (1-8-49) i
1 S sEpaBiatie(y)
and
________ YT 51"‘(3) + rit(,]) JEp+l, ..., ¢ {i-B-30)
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Equation (I-B-48) reduces to Egq. (I-B-50) for the guseous constituents
g =9, and Bi=1 for

*(J l)J = 533: i
i= 153N =p+1, ..., ¢). The next step is to express the inequali-

chosen as components because 3&

ties of Eq. (f-B-47c) in terms of the mole aumbers of the gsseous species.

The combination of Bq. (1-B-28) and {I-B-47¢) leads to the expression

* * C
- + + = r o+ - <0
gn J=Iﬁi '(m).}p.) sz‘ﬂﬁi (w3 3 ﬁi'(m) ci1
(I-B-51)
for m=p+1, ..., t -8
wvhere
* *
= W/RT - £ S T [-B-52
£y Mo J‘—‘p‘ﬂ.ﬂi ‘(m) J“i*(a) { )

It is now convenient to simplify Egs. (1-B-48) and (I-B-51) by introducirg

the parameters

1t

*
ﬂJ = meT J 1, ey p (1-3-53)
and

= g -1 (1-B-54)

Bi s+l
For notational convenience, the index Jj used for the ~ parameters will
be extended from ¢ to ¢ + 2 so that Eq. (I1-B-48) can be written as
cI1l

= - - - ' i=1, ... 1-B-55
Ei &y ri * 351 813,“3 t ! S ( )

and Eq. (I-B-51) can be written as

c+i

*
~ + r < 0 m=p+1, ..

- + 7 ., t - I1-B-56
€ J=1 Bi '(m).]r.] c+1 ' ' s ( }

Other egquations needed to compute the equilibrium composition are the

stoichiometric conditions

1-B--23
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E + = = ces -5
158" TN T J =1, s P (1-B-57)
EaB n = q J=p+1, ..., ¢ {1-B~58)
i=n™¥i3 i J

obtained by setting p = p’ in Eqs. (I1-B-15) and (I-B-16).

Equations {I-B-53), (XI-B-535}, {(1-B-57), and (I-B-58) can be used
to compute the eyuilibrium composition with a set of condensed components
specified & priori by the assumption about the presence of condensed con-
stituents, and then Eq. (I-B-56) can be used to test whe:ther this assumption

is valid. 1t is coonvenient to define '-gc+z by the equation

Terz LnT {1 -B-59)
For fixed values of 'cﬂ and rc+a' Eqs. (f-B~53), (I-B-55), {1-B-57),
and (I-B-58) coustitute (c + p + 8) equations for the (c + p + g)
unknown qugntities "‘,J(J =1, suey €, NJ(; =1, ..., p), and ni(i =1,
.++s 8). Equations (I-B-53), (I-B-55), and (I-B-58) can be used to
determine the ¢ + s values of FJ and ni, however, because NJ
appears only in Eq. (I-B-57). Solving the former equations thus determines
the composition of the gas phase at fixed temperature and density,
provided that the condensed species assumed to be present satisfy
the inequalities NJ 20( =1, ..., p). And solving the latter equation
for the NJ‘s with the calculated gaseous composition determines the
composition of the condensed phases. According to Brinkley, this method
of treating the equilibrium problem in terms of gaseous and condensed

comoonents is consistent with the Gibbs Phase Rule.

An iterative procedure is required for the simultaneous solution of

the equilibrium and stoichiometric conditions because Eq. (I-B-58)

I-8-24
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is linear in the mole numbers of the gasecous species, but Eq. (I-B-55) is

trauscendental in these mole numbers and their logarithms, The r perameters

are considered as independent variebles in Brinkley's iterstive procedure
for solving the equilibrium problem at a specified point, (! should be g
remerbered that the index ) originally introduced for components has the
range ) =1, ..., € + 2 when used for the ~ parameters, That the
j rJ(J =1, ..., ¢+ 2) parameters can be chosen as independent variables
follows from the equations presented earlier in this volume. Specifically,
7 Eq. (I-B-55) can be rewritten as
i
% £+ r; = 6 (.o, rc+2) (1-B-60) j
g. with ]
g c+y
a Gi = -g ng 313-»3 {(1-B-61)

because g, defined by Eq. (I-B-49) is a function of temperature only,

and InT = rc*z' Equation (I-B-60) can then be regarded as an exprecssion

n1 = “1('1’ e *c+2) (1-B-62)

s moe Wtk N a0 deris

N

defining the mole numbers of the gaseous species as implicit functions of

A
the *J because £ = in r and I" is an explicit function of p, T,
i i

and n ,
i

LhES W W) Seagrain

Fi ri(nl, ceea M T T‘c+a) (I-B~-€3)

It

B, S, P S

it follows from Eq. (I-B-62) that Eq, (I-B-57) can be regarded as an

expression

at i

NJ = NJ("’I, ooy "c+2 (I1-B-64)
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defining the mole numbers of the condeused species as implicit functioms

of the *3 parameters.

Brinkley's spproach to the equilibrium problem was to construct

a set of ¢ + 2 equations

Pl ceenn ) =0 3= 1, vaay €+ 2 (1-B-65)
so that the set of WJ satisfying these equations defines the equilibrium
composition. This set of iJ that satisfies Egs. (I-B-65) will be called
the set of equilibrium values of “J. It is convenient to write the itera-
tive egquations used to solve (I-B-65) for the equilibrium values of u

with the Newton-Raphson technique 83

°x* —--aFJ [ N 1y (1-B-66)
k:l a'k \ 'ttt C+2} " 3 PR TC+2
i+l i i th
where L4~ = ﬂk - and r} is the 1 ay roximation to the equi-

librium value of vk. It should be noted that the index k introduced
originally for atoms is also being used as a dummy index for the iteration
parameters in order to simplify the notation in the remainder of the
documentation., The partial derivatives aFJ/ank must be known as explicit
functions of the = parameters in order to generate a solution to Egs.
{(1-B-65) with ({-B~66). This being the case, an initial spproximation to
the solution (rt, cves - ) is used to generate a second approximate

c+2

solution (*:, . r2+2) with (I-B-66), and the procedur. is continued

until preassigned conditions for convergence to the solution are satisfied.
The conditions used to test for convergence in the present version of tho

P <
v ol ] 2 2 -
od F - F c - < F < and F =
code are ng J/p €1 sEon J/( P €2, ch1 €a, o3 €4
where €;, €2, €, ond ¢ are preassigned small numbers. The Eqs.

(I-B-53) and (I-B-58) were chosen to define ¢ of the expressions in

{I-B-653) as

1-B-26
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. .
= pJ/RT - *J = 0 - JF1l, <. B {1-B-67)
5
= ay -k o8 =0 3=l e (1-5-6%)
and the remaining two equations

Fc+z =0
(1-8-69)

7 = 0

cta

were used to define the counstraints imposed by specifying the two indepen-

dent state variables at the thermodynamic pc;nt of interest., The differ~

ent expressions for F and ¥ for the seven different point
o ct+@

calculations considered earlier will be presented later, A double
iterative scheme is required to solve Egs. (I1-B-67) and (I-B-68) for the
equilibrium values of ﬁs because Eg. (I-B-60) must be solved for ni

in order to evaluate the FJ‘s and the partial derivatives

3 g i
ar = - 121513 an % JEptl, ..., 0 (1-8-70)
X x

obtained from the stoichiometric conditions expressed by (I-B~68).

The equilibrium values of *J are determined in an ocuter
iteration vith Eqs. (I-B-67) to (I1-B-69), using values of n calculated

in an inner iteration with Eq. (I-B-60) and the Newton-Raphson technique,

The equations in (I-B-60) were rewritten as
w p = -& - « _— = ¢
Y ' &) &5 IREALE ' Tesd)
(I-B-71)
i =1, ..., s
to determine the mole numbers correspounding

and solved for Ei = In ni

il M e e P AT b e o ol i,
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tc a fixed set of the YJ parameters in the inner iteration, The itera-

tive equations used to solve (I-B-71) were written similarly to those used

to solve (I-B-65) as

oW
s i k . ) K . .
= T SE— {gi, e §:)A£r = “1(51, cens 5:} i=1, ..., 8 (I-B-72)
r :
with
aw al'
i . . 8 _ ( i
aﬁr ir an / r
(1-B~-73)
al . = A
i rs M [2°p g0
3 = J.RTS )
Lnr 5 anianr p
k+1 k k th
= = I d 1} Y .
o S ir an Er ek approximation to £

When the equilibrium composition of the gaseous phase has been
determined, the mole numbers of the condensed phases are calculated with
Eq. (I-B-57), and Eq, (I-B-56) is used to test the validity of the a priori
assumption sabout the coudensed phases that is required to perform the
equilibrium calculation, When the eguilibrium composition of the mixturc
is known, the thermodynamic state at s specificd point is computed with

thermodynamic identities.

b, State Equations

The equations will now be presented for computinrg the thermo-
dynamic state in the seven differcnt point calculations after the equi-
librium composition has been determined, The pressure p , the specific
volume v , the specific enthalpy h , the specific Gibbs free energy
€ , the specific internal energy e , the specific entropy s , and

their derivatives

i-B-28
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will all be regarded as implicit functions of the iteration parameters
(*1, ooy ﬁc+ ). The partial derivatives of these varisbles with respect
2

to tJ that are used in the iterations will be presented later,

The equation for the pressure is written as

A
nRT,
p = _H-;E - TR ~";C+a) (I-B-74)
with @ regarded as an impliicit function of the iteration parameters

instead of an explicit function ®=&p, T, n., ..., ns) specified by

1’
the equation of state of the gaseous mixture. The equation for the
specific volume of the equilibrium mixture is obtained by setting p = p'

in Eq., (1-B~42) as

A 4 *
Vi, s L) /B + 1/M6( L B V) (1-B-75)

The specific enthalpy h of the mixture is given by the expression,

P * 5 A
Moh = ZNH + 1;51“1}*01 + pMo/f + RT(€ - n) (1-B~76)

=1 33

with the imperfection term ¢ defined by the following integral along

an isotherm

€ = J E%B {P ap“ %B (I-B-77)

¢
Another expression for h(r “en with =y - T °

P ( 1! ’ ﬂ‘c+a) ai ,C+2 Xi J:pi-lei‘]xi*(‘])
is obtained as

o S

q H + RT

A
Moh L N K +1°3 1%(3) 1glﬁi.c+=ni * Wo/p ¥ RT(¢ - ) (1-B-78)

+
N It B BN J=

'U Mo

by multiplying Eq. (1-B-58) by n° and adding the resulting expression

ix(3)
to Eq. (I-B-76), The frozen heat capacity of the mixture is given by

I1-B-29
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the equation

p & c s

c,= INC + I qc° + ¥ (e R(g - -79
£ 7 3555 T e e TR BT TR - W (1-8-79)

wherc C:i = dHZ/dT is the molar constant pressure hest capacity of the .
th %
i gaseous constituent in its standard staie, '

C
sc® = ¢¢ - T c® ' 1-B-80
ip pi " 3=p+185 Cpix () ¢ ) 4
and §
’ a'p d :
¢« = J R‘—l’-;s’t i —E (1-B-81)

The quantity Rq; is the contribution to the constant volume heat capacity

of a mixture of weight M; resulting from gas phase imperfections.

S e o e T gt

: Summing the Gibbs free energy of the condenscd and gaseous phascs

gives the equation for the specific Gibbs free energy of the mixture as

= EN*+§" (I-B-82) f
Yog = =oM% Tam L :

An alternative expression for g in terms of the cstoichiometric constant

qJ is obtained as

Say e S Th, gt~ = JRSE S
= 2 + = SIS T T - = -B-

Mg : M T a7 s MM J=1BiJ’LJ pﬂ‘ala ix(J)
by multiplying Eq. (I-B-57) by H: and Eq. (I-D-58) by Pi*(g) and ;
adding the resulting expression to Eq, (I-B-82). Combining Gibbs' con~ !
dition for chemical equilibrium Eq, (I-B-47a) with Eq. (I-B-83) gives .
the free energy of the equilibrium mixture as i
Tat € (I-B-R4) :

M = k) + Y -

lo& PERLS BRSSP L R Y
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since the bracketed term in Eq., (I-B-83) vanishes, Combining Eq. (I-B-84)
with Eqs., (I-B-28), (I1-B-50), and (I-B-53) gives the equation for

- seas ™ in t ~ a
gl~,, " Teen) in temms of s

<
/RT = © + - ° R 1-B-85)
Mg 3= qr ‘;):+ q.7 + 3=§+1q3ﬂi*(3)/ ) {

The specific internal energy of the mixture is calculated with

the thermodynamic identity

e("*, ceas nc+a) = h - pv {1 -B~86)

and specific entropy is calculated with the iden*ity

={n ceasg ) = (h - /T (1-B-87)

¢. State Conditions

The state conditions expressed in Eq. (I-B-69) by F = F =0
c+1 c+a
define which one of the seven pairs of state variables (po,To), (Po,ho),
(po,s0), (pPo,vo), (ve,T3), (vs,en), or (vp,8) is specified at the
thermodynamic point of interest. The case when the pressure py is
specified will be considered before the case when the specific volume

vo 1s specified, :

When the pressure of the system is specified as py, Fc+x is

defined by the equation

Fc+1 = inpg, -Inp = O (1--B-88)

and p 1is calculated with the gas phase equation of state, At (py,To)

points, the condition rc+2 = constant is used to specific that T =T,

1-B-31




and consequently the equation F ve = 0 is not required, The iteration
«

procedure used (o cgzleulute the equilibrium composition is simplificd

becausc the rank of ihe Newton-Raphson matrix is reduced to ¢ + 1 and
ivl i

the condition = - =0 is i d at h i ti . At b
e~ Neaz mposed at each iteration {po ,bg)

and (py,sy) points, Fc+2 is defined, respectively, by the equations,

7
b
&

o
L

c+a Mo{h; -~ N)/RT = O (I-B-89)

and

1

P

csd Mo(so ~(h - /TR = O {I~-8-90)

where h is evaluated with Eq, (I-B-78) and p = py,. and g is evaluated

with Tq, (I-B-85). At {(pg,vo) points Fc+2 is defined by the equation

Y 1 s e

Fc+e = poMg(vg - VI/RT = O {I-B-91)

and v is evalumted with Eq. (I-B-75).

CVTIES PPN AN et SO | MR WIS, BRI

When the specific volume v- is specified and the pressure is

not, then Fc+1 is defined by the eguation

TPV R U S

E‘cﬂ = pMg{vp - VRT = 0 (1-8-92) ;

and v is evaluated with Eq. (I-B-75). At a (v5,Ts) point, the tem-

perature T, 1is specified in the same way as for the (pgy,1,) point,

At (vo,e5) and (vy,sp) peints, Foro is defined respectively by the :
§

equations ;
:

FC+2 = Mgleg - h + pve)/RT = O (1-B-93)

and ,%;
fé

F = Mg(so - (h - g)/T)B = O (1-B-94) :

c+2 4

3

where h is evaluated with Eq, (I-B-78) and g 1is evaluated with E
‘ Eq. (1-B-85). i
kY

;

¢
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d. Partial Derivatives with Respect to th- Iteration Parameters

It is convenient for notational purpeses to expand the expressions
(I-B~65) in a linear Taylor series about an aporoximation (ri, ooy r§+2)

to the solution (r&, veesy ™) and write
c+a

“Fo° s FO 1 2 (1-B-95)
KR gk ok g 3= Re e €t T
with DJk = - BFJ/Bﬂk, Ak = nk - ni, and the superscript °© used to
denote that the quantity so designated is evaluated st the approximation
to the state of the system. The equations for the partial derivatives
of the state variables, obtasined in the expressions for DJk by differ-

entianting FJ partially with respect to 'k according to the chain rule,

will be presented before the expressions for DJk'

(1) Partial Derivatives of the Mole Numbers

Equations for the partial derivatives of the mole numbers
with respect to the iteration parameters are derived with Eq. (I-B-29)
and (I-B-535). Differentiating Eqs. (1-B-29) and (I-B-55) with respect to

v, gives the equations

%
or, %,
gr— = ni‘é—'— (1-B-96)
k T
and
al' a
¥4 Tip Timw  AiM ee
. T T3 o T o rhoom . ogh Bdk (x-8-97)
% P97y k rom A d 39

L3
with k =1, ..., ¢ + 2, the partial derivatives Bp/brk and BT/aqk
given by the equations
A
- 1{/ -8 )

crik ek (1-B-98)

a

0/
ap.aﬁk

T 6c+=,k

L}

B‘T/b“k

1-B-33
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d
an 51":*5 defined by the equation

.74 dg i
- Bi,c+z ar =T aT
Cc+2,

{1-8-99)

since g, is a function of temperature only., It follows from Eq. (I-B-33)

that Bi. cen be expressed in terms of the reduced enthalpies of the
]

gaseous species In their standard states as

- C
= X - X -B~100
ﬂi,c-ra Xy J=p+s Bisxi*(.}) a )
1 - = d = in Eq. -
Setting Bnr/a % anEr/B'hk an yir ari/anr n Eq. (I-B-97) and :‘
rearranging terms leads to the following equations with 1 =1, ..., s: ‘
i
= =
-5 r I
— -— = k=1, ... -B~10 ;
=‘_(ﬁir + yirnr) 3'k Bik , © (I-B~101) ;
|
~ ar
<8 % +9y un) ES: = B -2 (1-B~102)
r= ir irr 3~ 1,041 @ Ao P
c+1
s o8 ari ari :
- - = - -B-103 H
r=i (oir 7irnr) E"-c_m Bi,c+a T A alnT (1-8-103) '

where the derivatives of the activity coefficient ri are given according
to Eq. (I-B-31) by the equations,

A

= { =
anr ~Jo RTp anianr

= T IR I IR S 7 A 1

£
i —“-% -B-10
§ ——“\ ar (1-B-105)
L
£
¥
B and
¥
£
% 1-B-34
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i . f 3P ap -
d 8T Jo RTP LT a'!'au1 - ani] 25 (1-8-106)

Although the integral expression for BI"i/B nT is given here, this

derivative can be veadily obtained by differentiating the explicit

expression for ri directly.

The relationships in Egs. (I~B-101) to (I-B-103) constitute
c+ 2 sets of s simultaneous linear equations for 351767,k and can be
solved for these derivatives when the mole numbers associated with a set
(n‘, cens '!'Tc+2) of the iteration parameters have been calculated with
Eq. (1-8-71) in the inner iteration. The corresponding derivatives of the

gaseous mole numbers can then be calculated with Eq., (I1-B-96).

The Eqs, (I-B-101) to (I-B~103) become simplified for an
ideal gas mixture with I"t =0,41=1, ..., s. In this case, the matrix
of Egs. (I-B-101) to (I-B-103) reduces to the unit matrix, and the

equations have the solution

351 i=1, ..., s
— = _ R

ﬁ k"lo ...,c+2 (I‘B 107)
Br,k ik

The abbreviation

agi 1 bni i=1, ..., 8
Cix T W T a k=1, ., e42 (1-8-108)
1 I

is introduced for convenience in writing other derivatives ~f the state
with respect to the iteration parameters. Differentiation of Eq. (I1-B-57)

gives the partial derivatives of the mole numbers of the condensed species

N as
J
o) s
= - Zﬂ C n 3=Y, ..., P, {1-B-109)
ar’k 1=1713 ik 1 k=1, ..., c+ 2
I1-B-35
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snd differentiation of Eq. {(1-B-18) with p =1p

of the total number of gaseous moles n as

on

——— T 25 n k=1
ark 1=131 ,cﬂcik i !

with Bi,cﬂ. defined by Eq. (I-B-54).

'4

gives the derivatives

A R {1-B-110)

{2) Partisl Derivatives of the Pressure

It is convenient to derive equstions for these pertial

derivatives with Eq, {I1-B-74) tor the pressure

fap = Lu§+£nn+ncﬂ

rewritten as

(1-B-111)

Differentiation of Eq. {(I-B-111) with respect to nk then leads to the

following equations
o fn p = o In Q+ 1 ?_l}__
oy 4% B dny
g np -
om an

'c+l e+l

k=1,

o fnp -
an n

c+2

where ® is considered to be s functiom of

ﬂ’.' 2840y Tc+2.

{(1-B-112)

ss ey L]

(1-8-113)

(1-B-1149)

Differentiating

® by the chain rule and making use of Eqs. (I-B-98) and (I-B-108) lesds

to the following expressions for the partial derivatives of @

3 in® s3d 4@

= k =1
ank 121 3 In n, Cik !
3 n @ 3 in @ d o d
an = 1§:aznn Cienn "3 in
c+1l i
I1-B-36
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{(1-B-115)

(1-B-116)
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(1-B-117)

c _d4dn ¢*+ 3 in @
t,eta dfafPp 207

Equations {I-B-112) to {(I-B-114) for the partisl derivatives of the pres-

sure are evaluated with the aid of Eq, {i-B-110) for the derivatives of

n and Egs, (I-B-115) to (I-5-117) for the derivatives of @, ;

(3} Partizl Derivatives for the Condensed Phases

The thermodynamic properties of a condensed phase are assumed

to be explicit functions of temperature and pressure specified by its

complete cquation of ztate. They can therefore be regarded as implilit

functions of the iteration parameters because of the implicit dependeunce

e e, Ay RS 2 HACA,

of the pressure on these parameters., The partial derivatives of the

thermodynamic properties of a condensed phase with respect to nk are

derived becsuse they are required tc calculate the partial derivatives

of the mixture,

The partial derivatives of the molar volume V* and the

»
molar enthalpy HJ of the J condensed component are expressed in
terms of the identities contained in Eqs, (I-B-36), (I-B-37), end (I-B-40)
with 3 =1, ..., p as

3 fap

-—-—V (p,T) = pgre* k=1,2, ..., €+ 1 (1-B-118)
RT & P.T) 33 9, ¢
:f; aﬂa VT, D) = o + g o %__f:_‘}.l (1-B-119)
e 3 3 ) 37309 ..
angd
1 o t *x o tnp
—_—— p,T) = Ga-a) — k=1, ..., ¢ +1 (1-B-120)
RT a“k 4’; a) ¥,
c*
%,E _a_:a__ B, = . gla - d g fop (1-B-121)
> nc-t-a
I-B-37
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The partisl derivatives of the reduced chemicsl potential p;/sr of the
th
3 condensed component are oxpressed in terms of the identities in Egs.

(1-8-40) and (1-B-41) with 3 e 1, ,.,, ¢ as

*
[ (PIT)
%J—n— = ﬂ: Ba:n k=1,2, ..., ¢c+1 {1-B-122)
%
= - ¥+ (I-B-123)
aﬂc+3 RT 3 3 aﬂc‘fs

In a point cslculation with the pressure specified to be

Yo, the properties of the cundensed phases can be evaluated in each itera-

tion with pg instesd of with the current value of the pressure cslculated
with the gaseous equation of state. In this case, the properties of the Q
condensed phases can be regarded as a function of temperature only, and
the equations for the partial derivaiives of V';, H: , and p:/n'r are :
obtained by setting & &n p/ Bnk =0(k=1, ..., ¢+ 2} 1in Egs. (I-B-118)
to (1-B-123). ;

(4) Partial Derivatives of the Specific Volume of the Mixture

The partial derivatives of the specific volume with respect
to the iteration parameters can be written as 4
L
N w*
Bodv | P I ,yPy B 3 k=1 c 1-B-124
RT dn, f:”:ar& 3=2 3 BT 3n, e ¢ ) i
and 3
aN av* :
Blo v _ P __3 , Py B __ 3 E%
m— X 7. ] + L N = - {(1-B-125)
T = RT RT
RT om_. 3| Ty en IR I RT ¥
iﬁ.
an av*
Mo ov _ P e __J Py B __3 [-B-126 1
RT orm = d‘a an J=1 ) RT 31 RT, ¢ ) i
Cc+3 c+a C+3

I-B-38
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These c uations can be rewritten with Egqs, (I~-B-118) and {I-B~119} as

aN .
_..__wo 8v ~P J o in p P
v = - — T — re kK =1 2 e - 7
RT o» J¥1 ] on M o 351 Jﬂ;@; 1 2y s € {I-B~127)
k Kk k
lﬂo Bv P ‘J a in P P «
=AY + z, ¥ O "% (1-B-128)
BT %en = 3 ¥ B35 3Py BT |
and §
&N
) o In )
RT 3"av ) 351:: = P LN gt gf ¥ o'd’ + 1% (-B-129)
‘Tt 3 Tera ctg S+ I3 I 333

The Eqs. (I-B~127) to (I-B~129) are used to evaluate the
derivatives of F and F
c+1 c

YR

at & point where the specific volume of
the mixture is specified te be vy,

353 Hha #10 TRy

(5) Partiasl Derivatives of the Specific Enthalpy of the Mixture
The identity

(e o

: ar
: 3¢ _ i
on, = P —— (1-8-130)

together with Egs. (I-B-120) and (I-B-121) for the derivatives of H* |
Eq. (I-B~110) for the derivatives of n , and Eq. (1-B-79) for the frozen

heat capacity, are used to express the partial derivatives of the specific
enthalpy as

o .
dh - in _ Mgpv o L
E% - = Jér X: S;A - aar £ Jé: NJ°§¢§ * R: 32 .
% 3 X
al’,

=S/ + - —-—-—1—-) C n (1-B-131)

i=s \31,c+1 ﬂi,c+3 dinT ik i
for k=1,2, ..., ¢ and

I-B-39
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L1 J 3 ncﬂ ﬂcﬂ S T;cﬂ
f-31-132)
ar, ¢
"YS(B + 8 - o Yep €0 ln @
i= 1,041 i,0+2 @ In T/ i,ct1 i RIp atacT
and
Mo 3 p X emp o Mopv 3 In p
RT3 sm X WL T A T
c+@ I T Mo b S > 133 Motz
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The equations for the derivatives Bh/ank at a point where the pressure is
specified to be pg can be obtained by setting 3 Ia p/amk =06 (k =1,
ceay ©+ 2) in Egs, (I-B-131) to (I-B-132) because in this case H: is
a function of temperature only.
(6) Partial Derivatives of the Specific Free Energy of the
Mixture
The derivatives @ (Nog/RT)/’)"_\k are reacily obtained by
differentiating Eq. (I-B-835) as
2 e q for K=1, 2, ..., ¢ (1-B-134)
a"),k RT K
and
° l—'ﬁ% = % q (1-B-135)
M ar 3=ph 3
]
L
d 3
an €
0 Mog ° 0 §
= - ¥ 1-B-136 :
an RT s=pr LX) ¢ ) 3
c+3 3
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(7} Partial Derivatives of the Specific Energy and Specific
Entropy of the Mixture

e ¢ AR Al Wt ] R bt A iR

The equations for the derivatives Befﬁfk and Bs/Bﬁk
are obtained by differentisting the tdentity for e Egq. (I-B-86) and

the identity for s Eq. (I1-B-87) and substituting the equations for the

resulting derivatives that have s8lready been presented, i

(8) Equations for the DJk Derivetives

The partisl derivatives of the state variables with respect
1o the iteration parameters preseuted in the previous paragraphs can now
be used to formulate the equations for the DJk derivatives. The equa-
tions for the condensed components (3 =1, ..., p}) will be presented
first, then the 2quations obtained from the stoichiometric conditions
(=p+1, ..., ¢), and then those obtained from the state conditions

(J=c+1l,c+ 2.

The equations for D

3k with 3 =1, ..., p are obtained

&s

DJk = 631('7"*" k=1, ..., c + 2 (I-B-137)

by differentiating Eq. (1-B-67) partially with respect to " Combining
Eq. (I-B-137) with Egqs. (I-B-122) and (I-B-123) gives the equations

P

{ * 3 In :
‘; D = 8, -0 ar»p K=1,2, ..., ¢ + 1 (1-B-138)
> *
j and é
; in g
: D = ¥ -0 ginp (1-8-139) b
H J,c+= 3 3 on 2
: Cta 5
g which reduce to the equations 3
3
§ DJk = bgk =1,2, ..., c+1 (I-R-140) 3
;
{ and g
?
5 1-B-41
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= -B-14
S e X; (1-B-141)

SN SR

for the point calculations when the pressure of the system is specified

to be p-.

The equations for DJk with 3=p+1, ..., ¢ are

obtained as

on,

13

s
b = T 8. T k=p+1, ..., c+ 2 {I-B-142)
k =
h] 154 Piy ank

by differentiating Eq. (I-B-68), and they are rewritten as

— "s

D - k = + 1, ... + 2 1-B~143
Jk 15, Bijcikni P s C {I-B )

with the Egq. (Y-B-108).

The equations used in the seven different point calculations
for DJk with 3 =c¢ + 1, ¢+ 2 are obtained by differentiating the
state conditions., The case when the pressure of the system is specified
to be p; will again be considered before the case when the specific

volume is specified to be vg,

At points where p = pp, the equations for Dc+ K are
1,
obteined as
T
- Qinp K=1,2. ..,c+2 (I-B-144)
c+1,k Bﬂk

by differentiating Eq. (I-B-88) partially with respect to "’ and the

derivatives are evaluated with Eqs. (I-B-112) to (I-B-114). At (ps,To)

points, the D 42 .k derivatives are not required because the condition
c+z,

faS =0 i 1 . Th uations D a btained at
cto s employed e eq ons for cta K re obtained a {po + o)

points as
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My ‘8h - -
c+a,k RT \B"'y)c k=1, 2, 0eep el (1-8-145)
and
= % [( 3h - B -
Dc+=,c+e RT aﬂc»a)c’ + (ho h)_j (1-8-146)

by differentiating Eq. (I-B-89); at (pp,sq) points as

U = !_Q, /-ét-l—- - .....a_ M = _
Yera,k T RT \ank o on RI k=1,2, ..., ¢+1 (I-B-147)
and
= & r é.t.‘. - 1 - 3 M _
f Pera,cea RT L(Br )o o R RT (1-B-148)
.i ct2 c+2

by differentiating Eq. (I-B-90); and at (py,vy) points as

' - BolMo (3v ) . .

’ Peva k RT (anklo k=1,2, ...,c+1 (1-B~149)
and

- Bglo /3y ] .

DC+2 ,C+a RT L'\B‘rc+=)° * (v v)_] (1-B~153)

by differentiating Eq. {(I-B-91), The (Bh/aﬂk)o and (av/ank)o deriva-
tives are evaluated with the equations obtained by setting (3 In p/ank) =0
in Eqs. (I-B-131) to (1-B-133) and in Eqs., (I-B~127) to (I-B-129), and

the a()lgg/'!{'l‘)/ank derivatives are evaluated with Eqs. (I-B-134) to

{1-B~136).
At points where v = vy and the pressure is not specified,
the equations for D ok are obtained as
H
. PMo [av d In pJ B .
Dc+1,k = T —_—aﬂk (vg v) 3 k=1, ..., c+1 (1-B-151)
I1-B-43
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c-b-l ’ C+3 J (I "B "1 52}

«+2

by differentiating Eq, (I-B-92), and the derivatives are evaluated with

Egs. (I-B-112) to (I-B-114) and Egs. (I1-B-127) to (I-B-129). At (vy,To)

points, the Dc+a K derivatives are not required because the condition
¥
!)C+2 = 0 is employed. The Dc+z,k are obtained at (vg,e;) points as
My Toh 3 in p]

D = jropeny - - = s e + -

c+2,k RT ga e PYo ar k=1, » € 1 (1-8-153)
and

) d fnp =
] = b - + - + : _1
c+2,c+3 RT [an Yo n (eg ~ b + vvp) ] (1-B~154)
‘c+a C+2

by differentiating Eq. (I-B-93), and st (v,,s;) points as

Modh | 3 Mog

D = = -
c+2,k RT 3n, an RT k=1, c+1 (1 -B~155)
and
= XN (ah 8 Mog) .
c+z,ct2 or h a, RT/ (I1-B-156)
c+2 ‘c+2

by differentiating Eq. (I1-B-94),

e. The Equilibrium Partial Derivatives

Equations will be derived for s complete set of equilibrium

first-order partial derivatives of the system so that ithe equations for

I-B-44
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any other equilibrium partial derivative can be obtained with thermodynamic
identities.

A convenient set of complete derivatives for use in hydrodynamic
calculations consists of the eguilibrium specific heat cap&city at constant

volume -

.5_2) - (.gr_h) _v(-gg) (1-B-157)

and the following derivatives of the equilibrium {(e-p-v) equation of

state

a = i@%p - %(%’SJ) -1 = f_%(gr;) -1 (1-B-158)
1 cv oT
g = ;(._ - ( = T(S;)v (1-B-159)

The adisbatic exponent , used in hydrodynamic calculations is related

to O and B by the identities

d In p . o 1 (1-B-160)
Ln v B

It is convenient to rewrite the Egs. (I-B-157) to(I-B-159) and change the

independent variables to and 7 with the identities
C+y Cc+2

3 2] o)
(S?)T = ('a"{c:)" / (a“cju)ﬂ (1-B-161)
C+a ci+2

, v v -1
T(%f) - (ana ) '(anaﬂ) (ana ) (Fﬂ'a_) (1-B-162)

v c+3 n ¢+l n c+a n cHl v
C+1 c+3 Cc+l c+3
I-B~45
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so that the gquantities Cv, @, and B cac be evaluated with the partial

derivatives presented in Section d, Care must be taken however to remem-

ber that (3/a~ ) and (3/3r ) are equilibrium partial deriva-
C+l CTee y

r
P
tives related to N the frozen o+l derivatives B/Bnk k=1, ..., ¢+ 2)

by the equations

0, m Wk LK 1,

. _§ ] _ ;

(3/8 c+1)r kgt(afbﬂk)(aﬂk/a b+1)n + a/aﬂc+1 (1-B-163) ;

: ‘c+2 c+2 %
é c :
] /3 ) = E (B/Bf&?(ér /Bn ) + d/dr (I1-B-164) i
: c+z’ k=1 2y c+z ]
E C+l c+1 :

and that the equilibrium derivatives of the iteration parsmeters rk(k =

LAl Y

..., €} are required for their evaluation. The derivatives (bnk/ch+1)T ?
c+2

v

denote the rates of change of the "« parameters with respect to

- when =+ is kept constant and the system remsins in chemical
c+1 crz
equilibrium. Similarly, the (ank/anc+a) derivatives denote the
T, 5
rates of change of the ﬂk perameters c+l with respect to ”c+a i
when ”c+1 is kept constant and the system remains in chemical equilibrium,

The equations for Cv’ a, and B are rewritien as

McC .
_ /b Mcpv T 73 £
R () (ke ] (-a-160

« 3, EEIECEYIHCED ] aee

v T Mo
and ;
B “opv [ LT (——S;~—lv (I1-B-167) N
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and the identities (I-B-161) und (I-B-162) are used to express the partial

derivatives appearing in these equations in terms of n and n as
Chy C+2
ilopy . (2dnp / Mop _ 3v_ i
%p( (Bn ) ( RT 3n ) {1-B-1868)
ch 1 o+ n
' c+
3 oy _ (% tnpy 73 in p\ Mop _ dv i
T( o )V i (a"‘c+z / \an_ ./ ( RT on_, ) ( RT ar (1-5-169)
e Te+a Ne+z
and
lrony _ (Mg dh (Mgp _ dv §
P \av) - (RT an ) \RT an ) (1-B~170)
T ct1 1 c+1’ n
ct2 c+a

Mgs3h\ _ /No _ 3h \ _ 3h Mop BV -
—E\B‘T) RT on iV RT B-' ) ( RT a'n /( RT a,n ) (1-B-171)
v ‘cta n, ﬂ vy

c+1 c+y c+a

The application of Eqs. (1-B~163) and (1-B-164) to the pressure, the specific
volume, and the enthalpy then gives the equations relating the equilibrium
partial derivatives to the frozen derivatives presented in Section d.

The eguetions for the derivatives of the pressure sre written as

(a In p) .S Mnp + o° o Inp ( 7y, ) (1-B-172)
! on = on
c+1 Neta c+l e+l ﬂc+3
and
1
d fnp _dfup  _cdin Ory _
(———-ma?_‘ ) =522 G --—-—-E (an ) (1-B-173)
c+2 qc+1 c+3
4
1-B-47




with the frozen derivatives of the pressure given by the Eqs. (I1-B~112)

to (I-B-114). The equations for the derivatives of the specific volume

of the mixture and written as

Mop /__Bv _Mop  ov ~cMop 3vy Oy o
RT (Bﬂ ) RT dr -+ k=, RT aﬂk (aﬂ ) {I-B~174)
c+y
‘c+a c+:
and
Mop /_ OV _ Mop _dv _cMgp dv/ Ak on
RT \3n___/, RT 3~ = k&L RT ar (—‘— (1-B-175)
‘c+a ! c+2 % cra’

C+1 'c"‘l

with the frozen derivatives given by the &gqs. (1-B-127) to (I-B-129),
and those for the specific enthalpy as

Mg oh . oM 3h o/ DMy -
o BT 3r__ k=1 RT 3n_ (an (1-8-176)
e+ Tetg e+l ‘c+1 Ne+a
and
My Mo _dn | ccMp 3dhg Oy -
RT \o~ ) RT 2r ¥ k& RT e \37 ) (2-8-177)
€*3 Neay ¢z k " evs Nety

with the frozen derivatives given by Eqs. (I-B-131) to {(I-B-133). The

equations for the equilibrium derivatives of the iteration parameters

- = 0. -
k(k 1, vies ©), (Brk/ IC*I)C+2' and (Brk/a.t+a)c+1 are obtained
for 3 =1, ..., ¢ by differentiating Eqs. (I-B-67) and (I-B-68) and

setting BFJ/ank

- DJk as

~€ - —
= an(ank/arcﬂ) = D (1-B-178)

c+
Y“c+ JsCH+1

and
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€ _ -
- 5 an(aﬁk/a c+a)-cﬂ = DJ.%_‘ (1-B-179)

i t D
éxpressions for 1k

given by Eqs. (1-B-138) ani (I1-8-139), and expressions for Djk for the

for the condensed components ) =1, ..., p are

gaseous components 3 = p + 1, ..., ¢ are given by Eq. (I-B-143),
Equations (I-B-178) and (I-B~179) are solved for tlke equilibrium deriva-
tives with the values of DJk obtained by solving Eq. (I-B-95) for the
equilibrium composition with the Newton-Raphson method,

Equations (I-B-165) to (I-B-179) are used to evaluate the complete
set of derivatives (Cv’ o, B) at a point where the system has attained

cherical equilibrium without a condensed component changing phase.

f. Phase Change of a Condensed Component

The foregoing treatment of condensed species cannot be used to
solve the equilibrium problem when the condensed species are considered
capable of existing in different phases. The treatment must be extended
to determine when a condensed species is present as a single phase or as
an equilibrium mixture of the phases., The important practicsl case of
melting when the phases are solid and liquid is presented to illustrate

the basic method used to solve this type of problem.

Gibbs' conditions for equilibrium used previously to test the
& priori sssumption made about the presence of condensed constituents
must now be used to determine the relative stabilities of the liquid and
solid phases of a condensed component. Let F;J and p;J denote the
chemical potentials of the solid and liquid phases of the Jth condensed
component , N;J and N:J - ¢note their respective mole numbers, T§ =

T;(p) denote the Clausius-Clapeyron equations for the variation of

melting points with pressure, and fz denote the fraction o?

I-B-49
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liquid present at the melting point. Gibbs' conditions for equilibriue

of the solid snd ligquid phases csn then be writtea for 3 =1, ..., p es

* (p,T<T < * (p,T <T* 1-B-180
p'J(P 3) ph(p 3) < )
. pLJ(P.T > 'r:) < sz(p.‘l‘ > 'r’;) (1-B-181)
* =75 = * = -~182
}LSJ(P,T J) ﬂzj(?sT T:) (1-B~182)

with 3 =1, ..., p. EBquation (I-B-180) gives the stability condition for
the solid, Eq. (I-B~181) the stability condition for the liquid, and

Eq. (I-B-1832) the stability condition for a mixture of solid and liquid
at a melting point. In an equilibrium mixture the Jth condensed
component will exist as & solid with f.& =0 when Eq, (I-B-180) is
satisfied, as & liquid with l,!. = 1 when Eq. (I-B~18l) is satisfied,

and as a mixture of solid and liquid with 0 < !z < 1 when Eq. (I-B-182)

is satisfied.

The Eqs, (I1-B-180) to (I-B-182) apply to all condensed components,
3 but at this stage melting of only oue of them, the Jth , Will be considered.
1 It is then convenient to write the foliowing equations for the properties

] of the Jth condensed component constituent. ‘

= - 1 -1
| d; ’z“;,; + (1 z)d;g (I -B-1a3)
: 5; = fz’;J + (1 - fzm;:; (1-B-184)
: @‘; = fz"i; + (1 ~ f")ca;J (1-B-185)
& 3

* * *

B f.n B

| = -.-.%-—’:&). - 33 1-B-186 i

T T + (1 11') - ( )

T ’3
I-B-50
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. - s -
xJ = :zx“ + (1 fl)"‘s,) (1-B-187)

c* fzc*z c*
2 L I S - (1-B-188)
R R R

* . x_ % -
B L (1-B-189)

Equations (I-B-183) to (I-B-189) are used with those aslready presented for
the mixture to calculate the equilibrium thermciynamic state at s specified
point when the 3P condensed component can occur as & liquid, s solid, or
a mixture of liquid and solid at the melting point. As in the previous
treatment of the equilibrium problem with condensed species, the validity
of the calculated state is determined by its compatibility with the
assumptions required to perform the calculations. It should be remem-
bered, however, that the question whether a coundensed species is present

as a liquid or a solid is not a problem in & (p,T) celculation because
the phase is determined by the specified values of p and T and the
Clausius-Clapeyron equation. In the particular c¢ase when the free ener-
gies of the solid and liquid are found to be equal, the (p,T) calculation

is performed at the solid phase boundary with fz =0,

Consider the other six point calculations when the phase assump-
tion is fixed by the values of T and p, say (Ts,p), chosen
to start the iterative procedure to determine the thermodynamic state.
Only the csase when the choice of the solid as 8 component is valid and
N* 2 0 will be considered. Suppose further that Ap:(To,po) >0 so

$]

that the calculation is performed with Iz = 0, and let Tc and pc
denote the values of temperature and pressure resulting frem the calcu-
lation. Since the point calculation wes performed with fl = 0, it is

necessary to check that the calculated state is compatible with this

phase assumption, The calculated state is an equilibrium state when

I-B-51
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either Ky (T P, ) > 0 snd the solit is more stable than the ligquid, or

(T .pb} = o snd the solid is in equilibrium with the liquid at the
solid phase boundary. But it is not an equilibrium state when 593(Tc.pc) <0
and the liquid is more stable than the solid, for then the phase assumption
and the calculated astate are incompatible. When AP:{Tc’pE) < 0, values
of T, sand p; are chosen so that Apg(To,po) < 0 and the point calcu-

iation is performed again with fl = 1. Row with :z: z 0, the cslculaied

state is an equilibrium state when pr(Tc.pc) < 0 and the liquid is
more stable than the solid or is in equilibrium with the solid at the
liquid phase boundary, but not when AP;(Tc,pc) > O and the solid is
more stable than the liquid. When Ay;(Tc,pé) > 0, it follows that
Ap; = 0 at the point of interest, snd the thermodynsmic state must be

in the mixed phase region with fz in the range O < ft <1,

*
When AFJ = 0, the value of !l in the mixed phase region must
be determined to perform a point calculation except at a (p,T) point
where T‘ T‘(p& and the value of ft can be choseu at will. Since

A“ <0 in the first calculation with f and Ap; >0 1in the

-

second calculation with fz 1, it is convenient to use the equilibrium

*
condition APJ = 0 to determine the equilibrium value of fz. Since fz
lies in the range O < f, <1, a bounded linesr approximation is used in

the iteration scheme to determine the value of ft that satisfies the

equation Ap; =0

The order of the procedure must obviously be changed when the
JtR condensed component is first assumed to be present as a liquid and
not as a solid, The development of a general procedure for solving the

equilibrium problem when more than one of the condensed species can melt

will be based on the treatment for one species presented in this section.
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g. DPetermination of s Mixed Phase Line

The routine for performing mixed phase line calculetions is
* *
called MIXXED. The mixed phese line TJ = TJ(p) of a condensed species

in the (p-T) plene is determined by solving the following equation
Ty (T.p) ny (T,p) (1-B-190)
53 P - zJ P

expressing the equilibrium condition for the soiid and liguid pheses, f
values of temperature are specified, then Eg. (I-B-190) is solved with a
Newton-Raphsor iteration scheme to determine the corresponding values of
pressure., Similarly, if velues of pressure are specified, Eq. {(I-B-190)

is solved to determine the corresponding values of temperature.

The thermodynamic stete in a mixture containing 2 melting com-
ponent can be calculated readily when the mixed phase line of this compo-
nent has been determined. The calculation is performed at a (p, T} pcint
on the mixed phase line with a specified value of ft' However, calcu-
lations of only two of these equilibrium states, namely, those with
fi =0 and tz = 1, have been programmed into the code. These values
of fz were chosen purposely to define the phase boundaries and the

mixed phagse region of the thermodynamic system in the pressure-volume

{(p-v) plane,

I-B-53
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h, Phase Changes of Coundeused Species

The treatmeni of melting developed for oue species was extended
to t - 3 species to obtain & more r-alistic treatment of thermodyusmic
systeas contsining sultiple condensed phsses., The equilibrium conditions
expressed by Egs. {(I-B-180) to (I-B-182} must now be used to test the
phase assumptions for t - s species rather than for one. A calculated
state 1s en equilibrium state when it satisfies the phase assumptions
required to meke the calculation. As discussed in I-B-4f, however, there
is no problem in (p,T) calculations becsuse the phases sre determined
by the specified values of p and T and by the Clausius-Clapeyron
equations for the species.

Consider the other six point calculations when the phase assump-
tions are fixed by the values of T, and p; chosen to start the itera-
tive procedure to determine the thermodynemic state. It is convenient to
label those species set as solids with m =1, ..., 2 and those set as
liquids with m=a +1, ..., 8’ € ¢t ~ S, 80 that the point calculation
is performed with f =0 for m=1, ..., a andwith I =1 for ?

m=a+1, ..., a', It follows from Section I-B-4f that a calculated

state is a&n equilibrium state when it satisfies the conditions 5“;(Tc'pc) 2
0 for m=1, ..., 8, and Ap:(Tc,pc) <0 for m=a+1, ..., a’,

When any one of these conditions is not satisfied, the calculated state

is not an equilibrium state and it is necessary to chonse new values of

T, and pg, say (To',pp’), aud repest the point calculation with the
new phase assumptions determined by the Clausius-Clapeyron equations,

The values of To’ and p,’ are based on the results of the last calcu-
lation and on the fact that the phase line of each species with an iuncor-
rect phase sssumption intersects the line segment joining (po,To) and

(pc,T )} in the (p ~T) pleane. These points of intersection are first
C
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determined, and the values of T.' and p,? are ciosen to change the
phase assumption of the particular species whose intercection point lies
closest to (ps,Tys). Thus the phase assumption of only one species is
changed by this procedure, and (pg,To)} lies on one side of its phase
line and (pp’,To’) 1lies on the other. Calculation e¢f the state now
gives new values of Tc and pc. say (T'c ,pc'). and the procedure

is continued until the calculated state agrees with the phase assumptions
used to perform the calculation. If the phase gssumptions for a particu-
lar species, say with m = b, are found to be incorrect in two successive
point calculations, the state must lie in the mixed phase region of this

species with 0 < ¢ 1, In this case, the phases of the other con-

g <
densed species are fixed, and the thermodynamic state in the mixed phase
region is cslculated using the method presented previously in Section

i-B-4f.

i. The Eguilibrium Partial Derivatives in a Mixed Phase Region

This section will be completed at a later date.
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I-C. THEORETICAL BASIS FOR NONEQUILIBRIUM CALCULATIONS
IN PARTIALLY FROZEN SYSTEMS
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1. Introduction

S B Y
-

The theoretical basis for making nonequilibrium calculations is an

W P
w—-

extension of that developed by R, §. Brinkley, Jr. for meking equilibrium
calculations.* Methods are presented here for calculating the thermodynamic
state of a nonideal heterogeneous system in partial equilibrium when the
pair of state variables can be chosen from the following set: [(p,T),
(p,0), (p,s), (v,), (v,e), (p,v), and (v,s)]. The nonequilibrium states
considered are those in mechanical and thermal equilibrium, with part of
the composition frozen and part of it in chemical equilibrium, Frozen
species are defined as species with mole numbers that ;re fixed and do

not change in calculations of the thermodynamic state., But frozen con-
densed species are allowed to change phase according to their equations

of state as in equilibrium calculations. 1In calculating the thermodynamic
state of such a system, the mole numbers of the frozen species must be
specified, and the mole numbers of the other species must be calculated
using the equilibrium conditions and the stoichiometric condiitious glven
in Section I-B of the TIGER documentation. It is important to note
however that the choice of the frozen composition may not be compatible
with the total stoichiometry of the system. The frozen species should

be chosen so that the mass balance equation for the system can be satis-
fied. 1In other words, it is necessary to ensure that there is a feasible
solution to the mass balance equations for the nonfrozen species. This

problem was treated in a way similar to that used for the linear programming

*
Presentcd earlier in Section [-B-4,

I1-C-1
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problem, and s routine called FEASIB was written to determine the choice
of frozen constituents compatible with the total stoichiometrv of the

system.

It is important to remember that the description of the composition

presented in Sections I-B-2 and I-B-3a applies equally well to nonequi~

ot P R

librium system as to equilibrium system because it was formulated with

the conservation of mass, which is valid for all thermodynamic systems.

In fact, it was for this reason that the notation for labelling frozen

[P

constituents was introduced in Section I-B rather than in I-C. The dis-
cussion of equations of state presented in I-B-3b is also valid for our
system in partial equilibrium because the pressure and temperature are

well defined by the essumptions of mechanical and thermal equilibrium.

For convenience in presentation, the treatmeunt given in this section
of systems in partial equilibrium will parallel that given in section
I-B for systems in chemical equilibrium, Consequently, equations that
are the same &85 those in Section I-B will be repeated in special cases

only.

2, Calculations with a Partially Frozen Composition

a. Equilibrium Conditions and Iteration Parameters

When the system is assumed to be in partial equilibrium, the
frozen composition is chosen and the remaindexr is calculated with the
equilibrium and stoichiometric conditions, These conditions will be
expressed in terms of the notation for frozen constituents introduced
in Section I-B-3a. The condensed constituents assumed to be present and
in equilibrium with the gaseous phase are lsbelled with 3 =1, 2, ..., p.

These constituents will always be chosen as components. The condensed con-

stituents assumed to be frozen and not in chemical equilibrium are labelled
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with m=p + 1, ..., pi and the remainder that are assumed to be

absent (but to satisfy the equilibrium conditions) with p'+ 1, ..., t - s.
The gaseous species assumed to be components and in equilibrium with the
rest of the system are labelled with g=1, ..., ¢ - p, the remaining
equilibrium species are labelled with g=c¢c -p + 1, ..., s'. and those

assumed to be frozem with g = s’ + 1, ..., 8.

The stoichiometric conditions for the mixture are written with
the 1'(m) subscript introduced on page 1-B-12, and with terms summed

from p+ 1 to p’ to account for frozen condensed species as

4
B s
e N + = =1, 2, ..., -1
m=p+181'(m)3 m 151313“1 8, 9, J ' P (X-C-1
El N §,9 1 (1-C~2)
+ = = + LR ) -
m=p+1™1i'(m)ym izl 13“1 qJ J P . , €

The conditions for the chemical potentials of gaseous constituents are

written as

p c
= * < = ’ .
Mo TR T Pl BT e ® (1-C-3)
and
£ -
Y = ) + esay -4
mt F BByt a=p+1’f(gn"f‘(a) g=s +1 5 (1-c-4)

The first of these expressions is used to obtain equilibrium conditions,
and the seuond is included to account for the fact that s - s’ gaseous
species are frozen and are not in chemical equilibrium with the remainder
of the system. Remembering that Eq. (1-C~-3) contains c¢-p identities
for the constituents chosen as components, the equations for the chemical
potentials of the species in our pertially frozen mixture can be written

g=s1, ..., s’ (1-C-5a)

Mo J'EIBI(K)J“J * J=§*1ﬂf(g) )

1-C-3
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P';(z) * ngsf(g)ap; +J=§p+18;(g)3“f(.]) g=s8"+1, ..., 8 (1-C-5b)
pI(J) = p: J=1, ..., P (1-C-5¢c)
B fmy 5?2131'(::) *y J=§p+1ai R by BEPrL Pl (o5
Wiy T 3§1 T ;=§+1‘1’(m};“ﬁ3) <y m=pi+l, ., t-s (I1C-5e)

The gaseous constituents in equilibrium must satisfy (I-C-58), and those
that are not in equilibrium must satisfy (I-C-5b). The condensed con-
stituents assumed a priori to be present and in equilibrium must satisfv

(I1-3¢), the frozen condensed species must satisfy (I-C-5d), and those i

assumed to be absesi must satisfy (1-C-5e). Equations (I-C-1), (I-C-2),
and (I-C~5) are sufficient for calculating the equilibrium composition
in the mixture at one of our specified state points when the mole numbers

of the frozen species (Nm z0, m=p+1, ..., p’ 8nd n g=s’ +1,

e’ ,
..., 8) have been properly mssigned and a complete esquation of state of :

the mixture is known,

Since By is known as & function of the nifs, the s’ - ¢ + P
independent equilibrium conditions together with the ¢ stoichiometric

conditions constitute a set of s’ + p equations for calculating the

s’ + p unknown equilibrium mole numbers. With regard to the previous
treatment, note that the number of equilibrium conditions and the number

of unknown mole numbers for the gaseous species are both reduced by

s -s’ by the inclusion of s - s’ frozen species. Here again, the
computed equilibrium composition must be checked to test the validity

of the a2 prior{ assumptions made about the presence (NJ 20,3=1, ..., »

and the absence (Nm =0, m=p+1, ..., t -8) of condensed constituents,

1C-4
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The assumptions are valid when the computed equilibrium composition is

found to satisfy the condition NJ 2 0 and that expressed by Eq. (1-C-be).

Most of the equations for calculating the equilibrium gsseous
composition (Section 1-B-4a) can be used for our system in partial equi-
librium when the constituent indices are changed to account for the
presence of frozen species. [t is necessary to change the index 1 with
values i =1, ,,., s to #(g, with g=1, ..., s’, and to change
the values of m to range from m=p + 1, ..., t -s to m=7p’ +1,
vsoe3 t =~ s, There is no need to change the 3 index, however, because

it refers to components.

Thus the equatio:s for Ei(g) = In nf(g) (g =1, ..., 8s) are
obtained by substituting i(g) for 1 in Eqs., (I-B-48), (1-B-49),
(1-B-55), (1-B~60), and (I-B-6l1). The expressions for g; are obtained
by substituting p’ for p in Eqs. (I-B-51), (I-B-52), arz (I-B-56),
The equations (I-B~50), (I-B-53), (I-B-54), and {I-B-59) used to define

nJ, ﬂ;’c+1, and ﬁc+2 remain the same, Similarly, the equations for

nf(g) and I}(g) are obtained by changing i to f(g) in Eqs, (I-B-62)

and (I1-B-63), but Eq. (I-B-64) for NJ is unchanged.

The equetion modifications required to make the iterative pro-

cedures for calculating the equilibrium composition applicable to a

system in partial equilibrium will now be discussed. Recall that Brinkley's

approach to the equilibrium problem was to construct a set of ¢ + 2

equations

FJ(?I' see 3 TC+2) = 0 (I"C-G)

so that the set of 'J satisfying these equation defines the equilibrium

composition., The definitions of FJ for the system in partial equilibrium

are as follows:

1-C-5
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*
F = /RT -~ n = 0 =1, ..., (1<-7)
3 ¥y 3 3= P
!
53 2 8 N 4 8)
F = - n + = = 1, ... - -
10 % Tan 131 mepelti(m) ) m 3= r o
F = 0
Cc+l
(1-C-9)
F = 0
c+3

These equaticns differ from those used for the system in chemical equi-
librium only by the summation term for the frozen ccndensed species in
Eq. (I-C-8)., The iterative equations for FJ are the same as those
presented in (I-B-66), but the following equations for their derivatives,

corresponding to those given in (I1-B-70),

352 5 aﬁf(g)
T 1P E T ITRTL e e (1€-10)

must be modified with the conditioms,

%

__fﬁsl = 0 g=s"+1, ..., 5 (I<C-1D
M

it o OAEY" 1 s g WY o

to ensure that the concentrations of the frozen gaseous species do not
change when the composition of the part of the systenm in equilibrium is

calculated, The equations for 'f(g)’ corresponding to those pre-ented

for ¥,  in (I-B-71) to (1-B-73), are as follows: %
Wa /EA e E ‘ ) = - E‘ - r ‘
T@\Si) 7 Sash it o :
+ G{(g)(*n. cer N = O (1C-12) g

g=1, ..., s’ %

;

s’ MAk K K K
2T £ (Eiu)’ Ei(s))aef(r) - wt(g)(fiu)' ‘:f(s')) 5
- (l‘) + N

‘ (a-c '3 :

g=1, ..., s :

1 -C-6 |

&

3
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(I1<C-19)
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b. State Equations

The state eguations are used to calculate the thermodynamic
state of our system in partial equilibrium when its equilibrium composi-
tion has been determined. Only the equations differing from those

presented in Section I-B-4b will be given,

The equation for the specific volume of the mixture is written

as
1
- 1 1/ B * B :)
Wy s g, ) 5 M—G(JE.INJVJ s NV (1-C-15)

and the corresponding equation for the specific enthalpy a:c

[

* 4 8
NH + ¥ NHfF+ In
33 m=p+l m m i=1

h =
Mo J

It [

H + /0 + RT(€ - n) (1~C~16)

1 i

with the imperfection term defined by Eq. (I-B-77). The alternsative

expression for h(r, ..., - ) is
Cc+2
P p’ < / P
TNHY+ E oxE*+ T o - T Nm)
JFl 3 ) msprlmm J=§+1 i*(J)\qJ m=p+IBil(m)J
(IC-17

4

Moh =

s A
+ RT 15131,c+2“i + pMg/p + RT(€ - n)

and the equation for the frozen heat capacity of the mixture is

1 RTAGU W ALkl e Berbird Sl reB
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¢}
n

¢ P
LNC* + T Nc*t + T ¢° (—‘-5: Nm)
f IFY 3 p3 | m=p+lmopm | y=p+l pit(P\ Y, m=p+1§i(m)a
(1-C-18)
<3
§(Ac)n +R(e - n)

Equations (I-B-82) through (I-B-85) for the specific free energy must be
altered because part of the composition is frozen., Summing the Gibbs'
free energy of the condensed and gaseous phases of the mixture gives the
specific free energy of the mixture as
P g' 8
= INu+ T Nur+ T 1c-19
Ho& R T L ( )
Following a procedure with Eq. {I-C-19) similer to that presented for
Eq. (I-B-82) gives the following expressions for the free energy
Mo g + % W B’ N [ - * % 8 )
- ] + PN -
€ B L e L g R N P N R

(1-C-20)
s

- B + . £
> g=§'+1“f(g9(“t(g) 7P J=§+1ﬁf(g>a“i*(a>)

C
= v °
M~ g/RT gqu y + J'-"ﬁi'lq,](r'c'l‘l + pi()) /RT)

’

. c+1 c
( B*/RT ~ % - o _
+ m=p+1nm\ L T JE}, ‘o J"TJ J=§+1ﬁi( )31 (9) /’RT) (I-C-21)

s C'!:l [ o N
g5 1" \Pe® " 5B T 35nPlee ixn T

The last two summation terms in Egqs, (I-€C-20) and (I-C-21) ere for the

frozen species, and they disappear if the system is allowed to come to

equilibrium.

IC-8
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¢, State Conditions

The state conditions expressed in (I-C-9) by F = F =0
c+l c+2

define which one of the seven pairs of state varisbles {(po,Ty). (po.he),
{(Po.So), (Po,v), (va.To), {(va,es), or {vy,ss) is specified in the
thermodynamic calculstion. The equations used to define Fc and

+1

Fc+2 for these seven different point calculations are obviocusly the same
a3 those already presented in Section I-B~4c of the TIGER documentation

and will therefore not be given here.

d. Partial Derivatives with Respect to the Iteration Parameters

Partisl derivatives with respect to the iteration parameters

are required to evaluate the derivatives FJ/ank = ~-D X in the equation
3
o =) o
D° & = F -
g 16k J (1-C-22)

which are used to solve the set F1 =0{(3 =1, ..., ¢+ 2) with the

Newton~-Raphson technique in the TIGER code.

{1) Partial Derivatives of the Mole Numbers

The equations for these partiasl derivatives are derived

from the relationships

= ) , i
Ef(g) = A ") g=1, ..., s (1-Cc-23)

c3l
= - -, .+ % n =1, ..., s' (1-C-29
4o S " T T 5P, 8
by the procedure given in Section 1-B-4d-1 of the TIGER documentation.
They are therefore essentially the same as the equations given in [-B-4d-1
A
and can be readily obtained from them by changing i to 1i(g), with

'
g=1, ..., s’, and r to f(r), with r=1, ..., s’

’ where necessary,

ML SRR

T P T v




and including the additional conditions for the frozen species, [t is

necessary to change the 1 index in Eqs., ({-B-96), ([-B-97)y, ({-8-99)

O A T N g

through (I-B-103) , (1-1-107), end {I-HB-108)}, the v index in Egs.
(1-B~101} through Eq, {1-B~103), and to add the following equations for

frozen species,

an
——££§l = 0 g=s'+1, ..., s (1-C-25)
B*;k
I

g=s8 +1, ..., 8
c = 0 I-C-26
f(o .k k=1, ..., c+ 2 ( )
aN ‘

=p+1, ...
-2 . 9 BERT e P g2
¥n, k=1, ..., c+ 2

a
It should be noted that although the subscript i{(g) could be used in
{I-B-110), there is no need to change the notation because the summation i

is taken over all the gaseous species. ?

{2) Partial Derivatives of the Pressure

ey

The equations (I-B-111) through (1-B-117) for the pressure

derivatives derived previously for systems in chemical esquilibrium are

also used for systems in partial equilibrium.

{3) Partial Derivatives for the Condensed Phases

The partial derivatives of the molar volume, molar enthalpy,

and chemical potential of the condensed species in a partially frozen
system are obtained by adding the derivatives of the frozen species to
those given for the equilibrium species in (I-B-118) tlirough (I-B-123).

The equations for the frozen species are generated from Eyg. (I1-B-~118)

through Eq. (¥~B~123) by changing 3(3 =1, ..., p} to m(m=p+ 1,

... p). The equations for V* are given as an example.
m

I1-C-10




| - S - 3 Inp k=1,2, ..., ¢+ 1 oa

"7 e v (p.T) 5:@“ = me el (1-C-28)

P 3 - - & inp - ‘ _

RTr‘uz Vo(p.T) = ot + gl o 2 ta=p+1, ..., p (1cC-29
-+

{4) Partial Derivatives of the Specific Volume of the Mixture

The derivatives of the specific velume are obtained by
differentiating Eq. (I1-C-15) with respect to the iteration parameters. E

They differ from the derivatives for the equilibrium mixture by a sum-

I 2

matlici: term over the condensed frozen species as shown, for example, in

the following equations corresponding to Eqs. {I-B-127) through (1-B-129).

FRIPOE ISR

aN ‘
Boav _ P s 3, 23np/ R R m) .
= o R4 :p; éﬂk * - ngn.]p;gu; + mzpﬂn mg::p‘ (1-C~30)
k ®
By 3 p ¥ 3 4 B ’ P |
v 3 n p :
= L o + (_n o + Nﬂ'p"‘m)——-g- (1-c-31) ]
RT 3n_ ., 351 33 . &, \Fl 33y weptlam RTH §
:
ax ‘
po 3v B J ,drup/ B R m) :
RT anc+ 2 321 (D: aﬂc+2 * aﬁ'c+2 \J=1NJB§¢; * m=§+1Nm3:nw* .
(1-C-32)
4
] g B pMo
RE3 0 O * m=5+1Nm ﬂw; * E?;
3 § {5) Partial Derivatives of the Specific Enthalpy of the Mixture

Y

Here again, the partial derivatives of the specific enthalpy
of the partially frozen mixture differ from those for the equilibrium mix-

ture by summation terms for the frozen species. The equations are readily

I€-11
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obtained by adding - 3 In p/dr;k\ ?i a“‘ca:) to Eq, (1-B-131), by

adding - 3 In p/3n +!\n"§+1nmw to Eq. (I1-B-132) and by sdding

- & In p/an ma‘d‘n) to Eq, (I-B~133).

+2\ m—gﬂ,

(6) Partisl Derivatives of the Specific Free Energy of the

Mixture

The derivatives amag/ar)/ark are obtained by differen~
tiating (1-C-21) as

ar
B Mog P o/dinp \ S e
n_RT = G aepermh an, % B * g—§l+1 1@\ an - Bik)
(1-c-33)
k=1, ..., ¢
4
3  Mog & ¥ A in p _ 3
ar RT  y=pt1Yy " m=E+IKm dn (a; 81'(m)0+1 Y
c+l ‘c+l 1-c-39
g f(g) -8 )
g—s ‘¥l f(g)\an +1 £ ctl
8  Mgg _ _ c ‘ d inp W <
a.-c+2 RT ..§+1 1x1*(3) * m=p+l m‘\ anc+2 0; xm * 3= ;S+151(m) Jxl*(_))j
(1-C-35)
8 f(g) 0 g o
Y g=s'n f(g)\a» T X 7 J=B+15!‘(g)3xi*(a)>

+2

e. The Nonequilibrium Partial Derivatives

The identities for the complate set of partial derivatives
(Cv' a, [ given in Section I-B-4e of the TIGER documentation apply

to any system whose thermodynamic state can be described by two

I1C-12
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independent variables, Consequently the equations given in I-B-4e in
terms of the iterstion parameters can be used to evaluste these deriva-
tives for the system in partial equilibrium when care is taken to account
for the fact that part of the composition is frozen. This fact is

sutomatically taken account of in TIGER, however, because the derivatives

(Bnk/aﬂc+2)n aad (Bnk/anc+1)" used in the evaluation are them-
selves evalusted with the values oi Cik calculated for the equiliprium
species and with the wvalues of Cik = 0 for the frozen species,

f. Phase Changes

The treatment of phase changes for systems in partial equili-

brium is exactly the same as that presemted for equilibrium systems in

Sections 1-B-~4f through I1-B-4h of the TIGER documentstion,

IC-13
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1-. THEORETICAL BASIS FOR NONEQUILIBRIUM CALCULATIONS

IN COMPLETELY FROZEN SYSTEMS

RPN

(ST

1. Introduction

The wethod for computing the thermodynamic state of a nonideal
heterogeneous system with a frozen composition will be considered as s
lipiting case of the method described in Section I-C for computing the
state in systems with a partially fio zen composition. Here again the
nonequilibrium states are considered to be in mechanical and thermal
equilibrium snd the condensed species are allowed to change phase as in
equilibrium calculations, but the mole numbers of gll the species ure
fixed, In any one of the seven point calculations for determining the
thermodynamic state, the composition is chosen to satisfy the stoichio-
metric conditions, and the calculation is performed with the concentrations

of the species fixed.

2, Calculations with a Completely Frozen Composition

The completely frozen system is described in terms of the indices
introduced to lsbel species in Section I-B-3 of the TIGER documentation
by the conditions p = s’ =0 and p' =t - s. Consequently, the equa-
tions used to perform point calculations for completely frozen systems
are readily obtsined by setting p=s’ =0 and p’ =t - s in the
equations presented in Section I-C-2 for the partially frozen system.
For this reason they will not be given here. The equations for Cv' [+
gnd B eare the same as those presented in Section I-B-4e of the docu-
mentation for equilibrium systems. 1In this case, however, the deriva-
tives are evaluated with ¢ =0 for i =1, ..., s and k=1, ...,

ik
¢ + 2 because all the species are frozen,

1-D-1
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I-E. INCORPORATION OF AN EQUATION OF STATE
INTO TIGER

1. Gaseous Eguation of State

The incorporation of a nonideal gaseous equation of state into TIGER
to perform the calculations discussed in the previous sections is by no
means a trivial task., It is necessary to use the imperfection term &
to derive expressions for the thermodynamic quentities required to per-
form the calculations. These quantities include the frozen partial
derivatives of @, 8 in ¥ tn T, 3 fn ¢35 in 5, and a in 4’/8!11; the
imperiection integrals ¢ and (é; and the activity coefficients r; and
their frozen partial derivatives. Equations for these qugntities are
derived with the Becker, Kistiakowsky, Wilson (BXW) relationship to
demonstrate the incorporatior of a nonideal equation of state into the
code, The corresponding expressions for the JCZ22 and JCZ3 equations of
state developed by Jacobs, Cowperthwaite, and Zwisler are well documented
in the final report, "Improvement and Modification to TIGER Code” written

under Contract N60921-72-C-0013, and will therefore not be presen* 1 here.

The form of the Becker equation of state proposed by Halford,
2
Kistiakowsky, and Wilsonxand modified by Fickett and Cowan has become
known a3 the BEKW equation of state., It is written here in terms of the

A A
universal constants @, a, and 8§ as

nRT VM,

p = A
P = ) = 1 +AxeBx (I-E-1)
x = KAMaAT + %

and

I-E-1
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L ﬂik‘ {(1-E-2)

o -

»

where X is a scale factor introduced for coaputationsl convenience,

L)
xki denctes the covolume constart of the ith gaseous constituent, and
K denotes the covolume of the mixture., Differentiating Eq. (I-E-1)

leads to the following equations for the frozen derivatives of & ,

A
3 in® of din® 3 inp
8 duT B (T +8) d in x T AinT ! (a-£-3
A ing d fn @ d En p
> in p dnx  dmp (1-£-9
2k
n fn @ n idind Binp_l (1-B-5)
an - k d in x én
i i
with \ A
din® _ Q-+ xi‘: (1-5-6)
d In x -
1 + x

Let eg denote the internal energy of the gas mixture contained
in a unit mases of mixture, and let Ez denote the molar internal energy
of the ith con.tituent in its standard state taken as the hypothetical
ideal gas at unit pressure. Then the imperfection integral ¢ for the

gas mixturd can be written as

A
€ = ::—f;(e -e°g) = &lpi[l-mjg (1-E-7)

BT Jo inTd p

with

5
% nE° (1-E-8)

1-E-2




and the integration performed along an isotherm with the composition {ixed

»
as that of the mixture.

Performing the integration in Eq. (I-E-7) with Eqs. (I-E-1) to (I-E-3)

gives the imperfection integral ¢ for the BKW equation of state as

‘ =

T

A @ A
oI Y )
+6LQQ e (1-E-9)

and the corresponding imperfection integral z{ is obtained by differ-

entisting (Eq. I-E-9) partially with respect to T as

e = (o - —— (1 + &+ & -‘fxeax (1-E-10)
T é L - é 4
T + i+

The expression for the activity coefficient is derived with the following

equation introduced earlier

I3 A
- (¥ 2 _ 790 -
I; = JOLE%E Bni 1 6 {I-E-11)

Performing the integration in Eq. (1-E-il) with Eqs. (I-E-1), {I-E-~2),
and (I-E-5) guves the activity coefficient I; for the BKW equation of
state as

.3
A ek A
' = ) (eBx - 1) + ! xPBx (I-E-12)
1 B k

And differentiation of Eq. (i-E-12) gives the corresponding equations for

the partial derivatives of I} needed for tne equilibrium calculation as

¥ See Ref. 3 tor s careful discussion of nonideal mixtures and the
stendard state,




(I1-E-13)

k
L g ﬁx)]xeéx (1-E-14)

-
>
9
-
+

Rt o

3 in
and i
ar x(k + k) ok,
—J. = [ i i + 11 &—!xe X 4I.£ 15)
3o, k K* J b

The thermodynamic identities

B e ey e 0 A O N s T et s A X S IO,

ar
P i _ p3 inp
i 3inp RIS on_ 1 (1-E-16)
i 3¢ _ p [ 8 inp
: 3 inp ?}'5 LS (1-E-17)
and
e _;_iri__ (1-E-18)
Bn1 e inT T

are useful f(r checking the expressions derived for I} and € with a

A
particular p=9p(p, T, nq, ..., ns) equation of state.

2. Coundensed Equations of State

Since routines for condensed equations of state are still being

developed, this section will be completed at a later date.

1-E-4
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I-F. ONE-DIMENSIONAL DETONATION

1
; 7} 1. Chapmen-Jouguet Theory of Detonation
? a. Brief History
é' f The one-dimensional model of a detonation wave was formulated
'} 3 by D, Chapman} and independently by E, Jouguetf at the turn of the century.
; Its purpose was to account for wave propagation in combustible gases at
;§ speeds of the order of 2000 meters per second. Since experiments had
%_ E shown the propagation to be supersonic, the front of the detonation wave ‘

was assumed to be 8 reactive shock discontinuity. The exothermic process
in the discoatinuity was viewed as maintaining the velo¢ity of the wave,

and 8 thermodynamic-hydrodynamic theory based on this sssumption was

developed to calculate thaet velocity. The theory combines the energy

yield of the combustion reaction with the conservation laws of mass,

momentum  and energy. These well established laws, together with the i

R B S

equation of stote and the Chapmsn-Jouguet hypothesis, define the problem ;

gt

oy

and allow completion of the calculations,.

Calculated velocities in gaseous explosiveéaare in good agrze-
ment with experiment, which is partly to be explained by the fact that
; the perfect ras< equation of state can be validly spplied. Successful
- calcuiations of detomatiou velocity in gases led Schmldtﬁto apply the
Chapman-Jouguet theory to condensed explosives. Here, however, an

* gequation of state at several hundred kilobars is required, but in general

nwo satisfactory equations are available in this pressure range.

oyt




b. Rankine-Hugoniot Relationships

The Rankine-Hugonict relationships express the continuity of
mass, momentum, and energy across & shock discontinuity. Since the rela-
tionships sre well knovn? they will be presented without derivation, Let
D, u, and p = 1/v denote shock velocity, particle velocity, and
density, and let the subscripts O and 1 denote values at the bottom
snd top of thy shock discontinuity, Then the Rankine-Hugoniot relation-
ships for a shock propagating at velocity D in & stationery material

{ug = 0O) can be written as

poD = py(D - ) (1-F-1)
m - P = oDy {(1-F-2)
Pru; = pob(ey =~ e + 1 u)) (1-F-3)

Equation (I-F-1) expresses the conservation of mass, Eq. (I-F-2) expresses
the balance of momentum, and Eq. (I-F-3) expresses the first law of
thermodynamics under the assumption that the shock process is adiabatic,
Noreover, since the shock process is irreversible, the second law of
thermodynemics is expressed by the following inequality for the specific
entropy, si{e;.0) > sples,Pp). Combination of Eqs. (I-F-1) and (I-F-2)

gives the equation

Pr - B = (B/vg)*(ve - vp) (1-F-4)

for a straight line in the (p - v) plane thet passes through the initial
conditions {ps;,vs) and is called the Rayleigh line. Combination of

Eqs. (I-F-1), (I1-F-2) and (1-F-3; gives the equation

e —e = §(pp + m)(vy -~ vy) {(1¥-5)

I-F-2
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which relates the thermodynamic veriables across the shock and is called
the Hugoninot equation, An initial condition (e5,pn,vs), &n {e«p-v)
equstion of state of shocked material, and the Hugoniot eguation define

a curve in the (p-v) plene called the Hugoniot curve centered at (po,vo).

The compressive portion of the Hugoniot curve specifies the locus of states
attainable from an initial state (es,pPs,vs) by shocks with different
velocities. For a nounreactive shock, the Hugoniot curve passes through

its center point (pg,vs), but this is not so for a reactive shock

because of the energy change in the reaction process. In calculating
Hugoniot curves with Eq. (I-F-~5), the hest of reaction is automstically
sccounted for by the difference in the specific internal emergies of the

standsrd states of the reactants and the products of combustion.

For exothermic waves, the compressive part of the Hugoniot
curve is called the detonation branch of the Hugoniot, and the expansive
part is called the deflagration branch. Since a shocked state must satis-
fy Eqs. (I-F-4) and (I-F-5), the intersection of the Hugoniot curve cen-
tered at (pp,ve) 4and the Rayleigh line of slope -—(D/vo)a passing

through (pg,vo) defines the thermodynamic state (e;,p;,vy) behind

either a nonreactive or resctive shock discontinuity traveling with con

] stant velocity D in siationary meterial with pressure py and specific

volume vq,.

o B o

Since the slope of the Rayleigh line must be positive to satisfy
the conservation of mass, and momentum hcwever, the detonation branch of
the Hugoniot curve is terminated at the point where e; = es and vy =
Vo, and the deflagration braunch of the Hugoniot curve is terminated at
the point where h; = hp and p; = ps. These termination points are for
obvious reasons called the constant volume explosion point, end the con-
stant pressure combustion point, end will be denoted by the superscripts i

e and c¢. The pressure at the constant volume exglosion point can then

]

I-F-3
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be written formelly as pe = p{eg,Vp), =und the volume at the constant

pressure combustion peoint as V. © vihy ,pp) .

c¢. Chapman-Jouguet Hypothesis

Since the states on & Hugoniut curve centered st (po,vo)
represent the locus of states connected to an initial state {ey,po,Ve)
by shocks traveling at different veiocities, an sdditional conditiom is
needed to determine a unique detonation velocity. In other words, the
three conservation laws, together with a complete eguation of state for
detonation products in chemical equilibrium, sre insufficient to calcu-
late the variables D, u;, py, Py, ®;, which cheracterize the detonation
process. Since there are five unknowns, but only four equations to
calculate them, aa additional equstion is needed to complete the theory.

The fifth equation, known as the Chapman-Jouguet condition
D = w + ¢ {(1-F-6)

where c¢; 1is the velocity of sound in the detonation products at the top
of the shock discontinuity, follows directly from the Chapman-Jouguet
hypothesis that the head of a rarefaction wave at the shock discontinuity

travels at the same speed as the shock itself,

It tollows from the Chapman-Jouguet condition that the stable
detonation wave is represented in the (p-v) plane by the Rayleigh line
(see Figure I-1) through (po,ve) that has a point of tangency with the
Hugoniot curve. This point of tangency defines *le compressed state at
the front of the detonation wave and is called the Chapman-Jouguet point,
It is of interest to derive these properties of the Chapman-Jouguet
detonation. Subjecting the differential forms of the (e-p-v) eguation
of state and the Hugoniot Eq. (I-F-53) to the condition that de 1is a
perfect differeniial gives the following egquaticn for the slone of a

Hugoniot curve centered at (py,ve):

I-F-4
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dp nefav)p + 3py + po)

& T T Gesm - M - v (x-F-m

Equation (I-F-7) gives (de/dp) - B(vo - v;) # 0 =as m necessary condi-
tion for the slope of the Hugoniot curve to be finite. Elimipation of

(6e/?:v)p and (p; + pp) from Eq. (I-F-7) with the identity

"23 = _’éﬂ) = % (1-F-8)
\W/ T TG T T Geam
and the eguations for the Reyleigh line written as
(pp -p) = {®-w)/m} (v -w)
gives the equation
v (cz/vﬂa(ae/ap)v - [ - w)/v7? v - W)
av - (ae/Bp)v - ¥(vg - v} (1-£-9

Since (Be/Bp)v - 3{vg - v;) # 0, combining Eq. (I-F-9) with the

Chapman-Jouguet condition Eq. (I-F-6), and Eq. (I-F-8) gives the

equation
d _ _ray | (2@ -
dv \"1) - \av)s (1-F-10)

Thus, the Rayleigh line through (py,vo) that satisfies the Chapman-
Jouguet condition is tamgent to the Hugoniot curve centered at (po, Vo)
and is tangent also to the isentrope passing through the Chanpman-Jouguet
point. In other words, the Hugoniot curve has = first-order point of
contact with the isentrope passing through the Chapman-Jouguet point.
It follows from the tangency condition that the Chapman-Jouguet detona-

tion wave propagates with a minimum velocity. The Chapman-Jouguet

1-F-6
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hypothesis teads to the conclusion that ali unsupported reactive shook

discontinuities satisfying the conservation laws of mass, momentum, and

energy are unstable with respect to the disceontinuity propagsting at the

lowest velocity.

2, States Attainable from the Chspman-Jouguet Statfe

Other processes resulting from the interaction of 8 detonation
wave with its surroundings are important for understanding the behavior
of explosives. A particular interest in states attained by the reflection
of a shock on the oue hand, and ¢f & rarefaction wave on the other hand,
into a detonation leads, respectively, to the counstruction of the Hugoniot
curve of detonation products centered at the Chapman-~Jouguet point and to
the isentrope of detonation products through the Chapman-Jouguet point,
This Hugoniot curve centered at the Ciapman-Jouguet point specifies the
maximum pressure in detonations rcflected from metals with increasing
shoek impedance; the isentrope specifies the succession of states

attained in detonation products expanding into the atmosphere.

3. Equilibrium Chapman-Jouguet Cslculations with sn Arbitrary
Equation of Stste

Our treatment of CJ states will be based on more general
expressions of the jump conditions tham those given in Section I-D-lb.
Let w denote the mass velocity with respect to the reactive shock
discontinuity, and let the subscripts o s8nd 3 again denote conditions
at the bottor and the top of this discontinuity. Then the Rankine-
Hugoniot jump conditions expressing the balance of mass, momentum, and

energy across the discontinuity can be writtea as:

vy = fPovw (I-F-11)
PL o+ ;yWi? = py + Pows® (1-F-12)
he + b wo? (1 -F-13)

]

h1 + % wla



The Chapman-~Jouguet condition is expressed by the equation

w? = ¢? (1-F-14)

with the sound speed ¢ defined by the equations

] ® = Fepdv | = v (1-F-15)
i
p g and the adiabatic index x related to the thermodynamic coefficients ;
} % & asnd 8 by the feollowing expression given previously in Section I-B-de, :
by i
v'ap p v 2p @ + 1 ‘
u s -XE) -2 - a-r-10
4 ne s €. P ° T 8
i Combination of Egqs. (I-F-11) and (I-F-12) leads to the equation
7‘ 1 - B X \_Q -1} (1-F-17)

N Pyvivvy

e

and combination of Egqs. {I-F-11) through (I-F-13) leads to the Hugoniot

a4

equation (I-F~3), ; ~ ez = 3(py + pad{vs - V1), relating the thermo-

dynamic states connected by the shock discontinuity. Equations (I-¥-14),

T

(I-¥-15), and {(I-F-17) can then be combined to give the following

expression
-1
rL v Bg)
Vy T Vy = i1 - + 1 (1-F-18)
3 e le AN 01 ]

for the CJ condition in terms of thermodynamic quantities only. Chapman-

Jouguet states can therefore be considered as thermodynamic states

defined by the Eqs. (I-F-3) and (I-F-18). Since TIGER was designed to

9 perfecrm thermodynamic calculations, these equetions are used to compute

CJ points in the cod>, but an iterative procedure must be used to solve

them because e; =and X; cannot be evaluated at a (p;.v;) point .

unless the composition is known.

The equations used to step forward from one equilibrium thermody-

----- : namic point calculation to the next inm the iterative scheme will now b~

I-F-8
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derived. Let superscript prime denote a point where the thermodyaamic

state has been calculated and the values of {e,', p;’, w'/, T/,

&', B’ ...} s8re known. Then Eq. (I-F-18) and an epproximation to
the Hugoniot equation are used with these values to generate the two
state variables that are required to perform the next thermodynamic
point calculation. Le* Ap = py - p;' and Av = vy - vl', then combi-

nation of Eq. I-F-5) with the Taylor series expansion for e; about
the point (py’,v; 9,

e = e’ +0g ;A + By vy AP (I-F~19)
gives the equation

2e;’ -e) ~ ;" F Vo - = Dve -vy' - 28 v 4
(1-F-20)

~Tpo + m ' + 204 'P{]Av -~ APAV
which on rearrangement gives the approximation to the Hugoniot equation
that is used in the code

2(e; " ~e) - (' + p) vy - vy) - 2p) foy “av (1-F-21)
Vg - V3 - 2v1r51'

ap

Equation (I-F-~21) is used to step forward in pressure, and Eq. (I-F-18)
written as
- -3
“1 7 Py ]
v = Va7 11 - =i+ 1 (1-F-22)
: QLX.1\ P/
is used to step forward in volume in performing the sequence of
thermodynamic calculations to determine the CJ point,

The procedure for calculating the CJ point on the detonation branch
of an equilibrium products Hugoniot curve of & condensed explosive is
described below, The case when no problems are euncountered in the
calculations is discussed first, and then the types of problems that

arise in such calculations,

I-F-9
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derived, Let superscript prime denote a point where the thermudynsmic

state has been calculated and the values of {e;’, p,°, W', T/

* $ ¥

o’ B’, ...} are known. Then Eq. (I-F-18) and an approximation to
the Hugoniot equation are used with these values to geverate the two
state variables thai are required to perform the next thermodynamic
point calculation. Let Ap =3, ' a&and 8v=v; - v,', then combi-
nation of Eq. I-F-5) with the Tayloy series expansion for e; about

the point (p; ", v; ),
e =er’ + oy 'pyav + By viap (1-F-19)
gives the equation

2(ey ' - &) -y Py - v = [ve - v’ - 2@ vy Tap
(1-F-20)

- Cpo + ' + 208 "'pi]av - ApAV

which on rearrangement gives the approximation to the Hugoniot equation

that is used in the code

2(ey - eg) ~ (py’ + pd vy ~ v3) + 2p; ‘ay AV
Vg = Vy = 2V1’51’

bLp (1-F-21)
Equation (I-F-21) is used to step forward in pressure, and Eq. (I-F-18)

written as

G . ) ]~‘
= ymy =1 ~ + 1 1-F-22
" ol \ Py ¢ )
is used to step forward in volume in performing the sequence of

thermodynamic calculations to determine the CJ point,

The procedure for calculating the CJ point on the detonation branch
of an equilibrium products Hugoniot curve of a condensed explosive is
described below. The case when no problems are encountered in the
calculations is discussed first, and then the types of problems that

arise in such calculations,

1-F-9
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Determination of the CJ point involves the sequential performance of

an {e,v) point calculation, 2 {(T,v) point calcularion, and a series of

©,v) point calculations. The (e,v) calculation is performed first

with e; = e and vy = v, to obtain the constant volume explosion

point (eo, Vo pe'. Te‘s ael

CJ point. The (T,v) calculation is then performed to obtain a hetter

, pe" ...} 85 a first approximation to the

kS
3;
3
L
H
¥
ki
4
)_‘
3

approximation to it. Originally the (T,v) calculat.on was performed

i
AR R T

with T, = Te' and vy = voue'/(xe’ + 1), obtained by ignoring the

!
1 g pressure term pc/pe' in Eq, (I-F-22), but experience has shown that a g
i? % better approximation to the CJ state is obtained by choosing Ti1 = Te' §
,i 5 and v; 2 0.85 v, %
% g The series of (p,v) calculations are performed next to determine §
4 % the CJ point. The first (p,v) point calculation is performed with §
% values of p; and vy generated from Eq. (I-F-22) and with the values %

% of the thermodynamic verisbles obtaimed in the (T,v) calculation.

%

Specifically, Eq. (I-F-22) is first used to calculate vy, and then

Eq. (I-F-21) is used to calculate the corresponding value of py. The

: state variables calculated at the first (p,v) point are then substituted

; into Eqs, (1-F¥-22) and (I-¥-21) to generate the values of p; and v, g
for the second (p,v) calculation, and the process is contained until
the CJ point is obtained., When |&v/vy| < 10" and | ap/py| < 107
betweer successive calculations, it is assumed that the CJ point has been
celculated successfully., It is clear that the method for calculating the !
CJ point on the detonation branch of the Hugoniot can easily be modified a
to calculate the CJ point on the deflagration branch of the Hugoniot %

curve. k

The original iterative scheme for determining CJ points by perform-
ing a series of (p,v) point calculations was developed for gases by

S. R. Brinkley, Jr. A series of computational problems encountered with

I-F-10
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CJ calculations when the code was being developed, however, led to the

conclusion that this scheme was unsatisfsctory for condensed explosives.
L. B. Seely solved these problems by introducing the (T,v) point

calculation to obtain a better approximation to the CJ point in the

early stages of the iterative procedure,

Calculation of the CJ point becomes a problem when the code cannot

i e S § R S 3&\%4’1 w‘.‘ %

compute the constant volume explosion state or the state at one of the

SR

i
b
£
g
;‘:
¢

{p,v) points in the series of (p,v) calculations. The constant volume E

explosive state could not be computed for nonideal explosive compositions
because it lay in the mixed phase region of one of the condensed con-
stituents. No difficulties have been found with these compositions,
however, since the revision of the reutine for handling systems contain-

ing multiple condensed species capable of changing phase.

Difficulties in the (p,v) points calculations were found to arise
: for the following reasons: (1) the »r's do not converge, (2) the tem-

's do not converge, (4) the code

o
i b

perature is out of range, (3} the ni

cannot find a set of -ondensed components, and (5) the set of equations,

F =0 with 3=1, ,,., ¢ + 2, has no solution because of a local

minimum, In the first three cases, the step size Av taken to reach

] the ircalculable point is halved until convergence is obtained, and then
the series of (p,v) point calculations is continued. The last two
cases arise when the values p and v chosen for the (p,v) calcula-

_ tion are incompatible with the equilibrium states of the sysztem. In

.% either case, a (p,T) calculation is performed to cbtain an equilibrium

(p,v) point, and the iterative procedure with (p,v) points is continued.

I-r-11
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4. Construction of the Hugoniot Curve for an Arbitrary Equation of State

The iterative procedurc for constructing a point on the Hugo lot
curve Ly performing a series of (p,v) calculations when either the

volume or pressure is gpecified is based on Eq, (I-F-20).

Consider first the case when the thermodynamic state &t a (p',v')
point i® known, and the Hugoniot point at a specified volume vq; is
required., Equation (I1-F-21) is used to generate the first approximation
to the Hugoniot point., Then the equation

2(91l -~ ep) - (Pll + Po)(VQ - V;)
Vo ~ V1(1 + 2&’

Ap (I1-F-23)
obtained by setting Av = 0 in Eq. (I-F-~21) is used to generate sub-
cequent approximations, The iteration process is started by substituting
the known values of &v, e, p’, a', and B’ into Eq. (I-F-21) to obtain
the value of p; for the mext (p;,v;) calculution. This procedure is
continued, using Eq. (I-F-23), until the Hugoniot point is obisined. When
lap/m]| < 10-43 between successive calculations, it is assumed that the
Hugoniot point has been calculated successfully, The Hugoniot curve
passing through the point calculated at v; can be readily constructed
by performing & series of such calculations for different values of v,

But then it is convenient to use the equation

[pp ' + 200" + pol Av
VQ - Vl(l + 2 Bi')

ap (1-F-24)

rather than Eq. (I-F-22) to find the value of p; for the first (p,v

calculation because the original state that 1s known lies on the Hugoniot

curve,

I-F-12
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Now consider the case when the thermodynamic state at a (p:,v‘)
point is known and the Hugoniot point at a specified pressure Py is

required. A similar procedurs is followed with p, fixed and values

e reeans ARt i ¢ P R \i&z\fﬁ

of v; evaluated, using the equaticns for Av nbtained from (I-F~-20).

i

5
a3
3

The value of v, for the first (py,v;} calculation is obtained from

" ST

the equation

(py + B)vg = v;) =~ 2(e;” ~ ey + B ‘v, ‘ap)

3 v I-F=~25
. 4 Po + Py + z%lpll ( y
; ; corresponding to Eq. (I-F-21), and values of v for subsequent (p;,V)
& calculations are obtained from the equation
3 . {p, + r¥vg - v, ) « 2ey’ - e
: pv = EET {vo ) S A o) (1 -F -26)
* po + (1 + 2040
. corresponding to Eq. (I-F-23). When the known point lies on the Hugoniot
3 . curve, the value of v for the first (p,,v) calculation is obtained
from the equation *
!’ s
Vg -~ V 1 + 2 ]
Av = Cvo - v % 28, Y Ipp (1-F-27)

4 pc + pr(1 + 2(11-7) :

corresponding to Eq. (1-F-24). As in the previous case, Hugoniot points
-
are assumed to be determined when |[Av/vy| < 10 between successive

{p1,-;) «calculations.

Construction of the Hugoniot curve becomes a problem when a (p,V)
point is incalculeble because of discontinuities associated with a con-
densed species disappearing from the system. In one case, the incelcul-
ability arises because the code cannot find a set of condensed components;

in the other, because thiere is no solution to the set of F\J = 0 equations

I-F~13
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for the specified values of p and v. In either case, the values of

p and v chosen for the (p,v) celculation are incompatible with the
equilibrium states of the system, and the problem is treated in the same
way as in the CJ routine, A (p,T) calculation is performed tc obiain
an equilibrium (p,v} point, and then thae iterative procedure with

(p,v) points is continued,.

5., Construction of sn Isentrope for an Arbitrary Equation of State

An isentrope is readily constructed by performing either a series
of {s,v) or a series of (s,p) point calculations with 8 constant

value of s. The CJ isentrope is obtained by starting the calculations

at the CJ point,

6. Frozen Chapman-Jouguet Calculations with an Arbitrary Equation of
State

Frozen CJ states are readilv calculated in TIGER by performing non-
equilibrijum point calculations in the CJ routine with the partisl freeze
options described in Section I-C of the TIGER documentation, The frozen
CJ states calculated are therefore those in mechanical and thermal equi-
librium, with part of the composition frozen and part of it in chemical
equilibrium. The mole numbers of the frozen species are fixed, but
frozen condensed species are allowed to change phases according to their
equations of state as in equilibrium calculetions., Frozen calculations
can easily be performed without phase changes by removing the equation

of state of one of the phases from the library.

The SPECIAL routine for computing nonequilibrium CJ states with two
frozen constituents was developed to provide Picatinny Arsenal with a
capability to investigete nonideal explousives., It was developed primarily

for computing frozen CJ states with part of the explosive composition

I-F-14
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unreacted, but 1t can obviously be used for computing CJ states when the
explnsive is completely decomposed and two of the reaction products are

frozen. The resction coordinates A; end Ay were introduced to describe

the partially frozen nonequilibrium states. The coordinates li(i = 1,2

o St L Gttt MR B i B B¢

were chosen to satisfy the conditions O < ki <1 by setting ki = ai/mi, _
where ai denotes the mass of species 1 frozen in 1 kgm of mixture, g
and mi denotes the largest value of ai that will be used in calcu-~

lations with the particular composition, Since m can be chosen to be

vy A A e

larger or smaller then the equilibrium mass of species 1, frozen CJ

states containing more or less of species i than the equilibrium CJ

state can be considered.

SPECIAL was written to provide a complete thermodynamic description
of frozen CJ states with different values of }; and A, Included in
this description are the perameters listed in the equilibrium CJ routiue,
the rate of entropy production, two additional quantities ¢ and
{whieh can be preselected), the first aand second derivatives of these
quantities with respect to volume along a frozen Hugoniot curve, and
the first derivatives slong the loci of frozen CJ states., These first
and second directional derivatives are approximated by differencing

techniques when their explicit expressions are not available,
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