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FOREWO D

The theoretical basis of the TIGER code for calculating the thermo-

dynamic state in a nonideal heterogeneous mixture was formulated by

Dr. S. R. Brinkley, Jr. The original version of the code was developed

and documented from July 1966 to November 1968 at Stanford Research

Institute by W. H. Zwisler, W. E. Wiebenson, and L. B. Seely for Ballistic

Research Laboratories under Contract No. DA-04-200-AMC-3226(X) monitored

by Dr. S. M. Taylor.

Development of the code after 1968 was supported by Lawrence Livermore

Laboratory under Contract AT(04-3)-115, Agreement No. 89, P.O. No. 5411209,

with Mr. M. Finger and Dr. E. Lee as Technical Monitors. New routines

were also added to the code as a result of work performed for Picatinny

Arsenal under Contract DAAA21-71-C-0454 monitored by Mr. J. Hershkowitz

and work performed for Naval Ordnance Laboratory under Contract N60921-72-

C-0013 monitored by Dr. S. J. Jacobs. The present documentation of TIGER

was written for Lawrence Livermore Laboratory, for Naval Ordnance Labora-

tory, and for Picatinry Arsenal under the contracts cited above to

provide an up to date version of the code.
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GENERAL ABSTRACT

TIGER is a digital computer program written in FORTRAN IV for calcu-

lating the thermodynamic state attained in a heterogeneous system of known

atomic composition containing gases, liquids, and solids with arbitAary

equations of state. As currently arranged, the program is modular,

includes 52 routines, and can be applied to systems containing up to 30

gaseous and 10 condensed constituents composed of up to 10 chemical

elements. The memory required to perform a calculation depends on the

computer, For example, on the CDC 6400 computer, 409 words are required.

The input instructions are written in a quasi-free-field format to

simplify the input of data into the computer.

The TIGER documentation consists of four volumes. Volume I presents

the theoretical basis of the code and its application to the calculation

Um,• of the detonation parameters of condensed explosives. The equations used

by Brinkley to calculate the tnermodynamic state in a nonideal hetero-

geneous system in chemical equilibrium are derived and extended to treat

systems in partial equilibrium. A brief discussion Gf the Chapman-Jouguet

(CJ) theory of detonation is followed by an account of the methods used

to calculate conditions in the CJ wave and the properties of the detona-

tion products along Hugoniot curves and isentropes. Volume II presents

a summary of the formulas and relationships used in TIGER. Volume III

presents the FORTRAN code and flow charts needed to understand the pro-

gram in detail, and Volume IV is a .ser's guide that explains how to

prepare input cards and interpret the output of a calculation.
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VOLUME I

THLQ,;TICAL AND MATHEMATICAL FORMULATICtS

FOR TIHE TIGER COMPITER PROGRAM

by

IM. Cowperthwaite and W. H. Zwisler

Stanford Research Institute

Menlo Park, California

January 1973
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VOLUME I

ABSTRACT

Volume I contains the theoretical basis of the TIGER code and its

application to the calculation of the properties of detonating condensed

explosives. The equations used by Brinkley to calculate the thermodynamic

* state in a nonideal heterogeneous system of known atomic composition in

chemical equilibrium are derived and extended to treat such systems in

partial equilibrium. A brief discussion of the Chapman-Jouguet (CJ)

theory of detonation is followed by an account of the methods used to

compute conditions in the CJ wave and the properties of the detonation

products along Hugoniot curves and isentropes. The presentation in this

volume will be of interest primarily to the reader concerned with under-

standing the theoretical background of the code rather than to the user

* of the program.
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I -A. IN4TRODUCTION

TIGER is a digital computer code written in FORTIR IV for calcu-

lating the thermodynamic state of a nonideal heterogeneous system of

known composition. It was developed at Stanford Research Institute

specifically for detonation calculations after experience with the RUBY

code at Lawrence Livermore Laboratory and the BKW code at Los Alamos

Scientific Laboratory had led to the conclusion that a more versatile

code was required to perform routine and research calculations on con-

densed explosives. While RUBY is limited by its inability to treat

certain explosive compositions, both RUBY and BKW are restricted by the

inflexibility of their interlocking subroutines which, for example, pre-

vent use of a new equation of state in a calculation without complete

reprogramming.

The TIGER code .-as constructed to avoid the problems associated with

interdependent subroutines. The program was written in modular form so

that the thermodynamics used to calculate the state, the hydrodynamics

used to calculate detonation parameters, and the equations of state used

to describe the properties of the system are treated separately in dif-

ferent parts of the code. Because of this separation, TIGER can be best

described as a general code for calculating the thermodynamic properties

of a nonideal heterogeneous mixture, described by an arbitrary equation 4
of state, with the capability of calculating detonation parameters pro-

vided by the hydrodynamic option. Whereas the hydrodynamic problems are

computationally trivial and are solved in the executive part of the pro-

gram, the thermodynamic problems are complex and are solved in the sub-

routines THERW and EMbU, which constitute the largest part of the

SI-A-I



programe The gaseous and condensed equation of state suaroutines adr

named STATE G and STATE C. They are called on by THEM and Esoe in a

Sthermodynamic calculation whenever equation of state data are required.

I-A-2



I

I-B. THEORETICAL BASIS OF TIGER

FOR EQUiLIBRIUM CALCULATIONS

1. Introduction

This section of the TIGER documentation presents the theoretical

basis of the methods developed by R. S. Brinkley, Jr. to calculate the

thermodynamic properties of a nonideal heterogeneous system of known atomic

composition containing gaseous, liquid, and solid phases. The thermodynamics

is formulated with an arbitrary equation of state to make TIGER applicable

to a wide variety of problems, and the most suitable equation of state

available should be used to perform the calculations in a particular

application.

The heterogeneous system is assumed to be in mechanical and thermal

equilibrium, but not necessarily in chemical equilibrium. Since pressure

and temperature are well defined in this case, the thermodynamic state

of the mixture can be defined by the values of the state variables,

pressure p, temperature T, volume V, entropy S, internal energy E, and

by the mole numbers of the constituents. Other thermodynamic variables

such as the enthalpy H and the Gibbs free energy G, can then be calculated

with thermodynamic identities. The problem addressed by Tiger is that of

computing the thermodynamic state when the gross composition and a com-

plete equation of state of the mixture are known. An assumption about

the attainment of chemical equilibrium and the specification of two

independent state variables are required to solve this problem. Section

I-B presents methods used to calculate the thermodynamic state when the

composition is assumed to be in a state of chemical equilibrium and the

pair of variables can be chosen from the following set: [(p,T), (p,h),

(p,s), (vT), (v,e), (p,v), and (v,s)], where h, s, v, and e denote the

specific values of the enthalpy, entropy, volume, and internal energy.

I-B-l

---



ZI
Section I-C presents the extension of these methods to nonequilibrium

systems that are partially frozen and partially in chemical equilibrium,

and Section I-D presents the method used to calculate the thermodynamic

state in systems that are completely frozen in metastable equilibrium.

Assumptions about the composition are required to calculate the

thermodynamic state when kinetic processes are not treated explicitly,

The assumptions used in TIGER are related implicitly to rate processes

and cover a wide spectrum of chemical kinetics. As a consequence, the

results based on them provide a means of modeling chemical kinetic

processes with the TIGER code. When the system is assumed to be in

chemical equilibrium, the composition is unknown and must be determined

in the calculations of the thermodynamic state, The equvlibrium compo-

sition is calculated with the equilibrium conditions and the stoichio-

metric conditions that express the conservation of mass for the system

in tcrms of its molecular and atomic composition. When the system is

assumed to be frozen, the composition must be chosen to satisfy the

stoichiometric conditions; when it is assumed to be in partial equili-

brium, the frozen composition is chosen and the remainder is calculated

with the equilibrium and stoichiometric conditions as in the previous

case.

2. Description of the Composition in Terms of Components

It is convenient for computationAl purposes to formulate a general

method for describing the composition of a heterogeneous system in terms

of its gross composition. The possible species that make up the system

are restricted to a set chosen on the basis of chLhical intuition and from

the results of previous calculations. We will consider the set of t

possible species, s gaseous and (t - s) condensed, formed from c

different chemical elements. These .ipecies will be distinguished with a

constituent index i and the elements with an atomic irdex k. Thus,

I-B-2



the gaseous constituents are labelled with i 1, ... , s, the condensed

constituents with i = s + 1, ... , t, and the elements with k = 1, ... , C.

Condensed species are assumed to be present as pure phases to exclude the

consideration of solid and liquid solutions. The initial composition in

a mass of mixture M0  is described by parameters specifying the gross

composition of the system. The final composition obtained by computing

the theimnodyrnamic state of the system is defined by the mole numbers

n(i = 1, ... , s) of the gaseous constituents and by Lhe mole numbers

n (i s + 1, ... , t) of the condensed species. The phase rule imposes

a restriction on the number of the variables n* that may be nonzero.

When all the n. are zero, the system is homogeneous and consists of a

gaseous phase only.

The parameters used to describe the gross composition of the mixture

i • are related to the mole numbers of the constituents by the law of con-

servation of mass, and such a relationship is used in the computation of

the mole numbers n and n. to ensure that mass is conserved in our

closed system. Since iterative procedures are in general necessary to

compute the composition, it is important to express the conservation of

mass relationship in terms of the most suitable representation of the

gross composition for performir.g the iterations. It has been found from

experience that calculation of n. and n* usually proceeds most readily

when the gross composition is expressed in terms of the most abundant

species in the system.

Let Mk aiud Q denote the mass and number of gram atoms of element
k k

k present in a mass MO of our mixture. Then K0  and the c values

of Qk are related by the equation

NO Q Mk (I-B-1)
K0MO k= k k

I-B-3•I



• i -expressing the conservation of mass. The gross composition of the system

can be described by using the c values of Qk as extensive variables

or the c - I values of their ratios as intensive variables. For two

mixtures with the same gross composition, the Qk s are proportional to

each other and the proportionality constant is the ratio of the masses

of the two systems. Although the Q ks are the natural parameters for

describing the gross composition of the mixture, they are usually unsuit-

able for computing ni and n i* because the elements are present in

small quantities In many systems of interest. It is therefore convenient

to formulate a general method for describing the gross composition of the

mixture so that the conservation of mass can be expressed in terms of

the most abundant species in the system.

The gross composition of the mixture will be expressed in terms of

its constituents, and the constituents sufficient for its description

will be called the components of the system. An analytic criterion will

be f.zrmulated for selecting a set of components. The criterion is based

on the assumption that the number of components is equal to the number

of elements c. The components will be distinguished with an index 3

and labelled accordingly with j = I, ... , c.

Since the species are labelled as conntituents with i = 1,2, ... t,

and as components with j 1,2, ... , c, the index i = i*(j) is

introduced to show that the species labelled as the j component is
th

also labelled as the i = i*(j) constituent.

It is convenient to rewrite molecular formulae so that each species

in the system can be represented as a vector. The molecular formula of

the constituent labelled i is thus written as

Sy X k c
Y! .X .... .. x (I-B-2)

i. iI ic

1 -0-4
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i k•iwhere X denotes the element labelled k, and ikdeontes the number

of atoms of element k present in a molecule of species i. A vector

representation of each species is then readily obtained by defining the

formula vector of the constituent labelled i as,

Yi= (. ,.., ) = I .... t (I-B-3)
X 1 ic

L Consider, for example, a system containing nitrogen, oxygen, carbon,

and hydrogen, labelled with k = 1, 2, 3, and 4 as X N, X 0,

X3 = C, and = H. Suppose that carbon dioxide is labelled with i = 3

and water with i = 4. Then writing Eq. (I-B-2) for these species gives

CO E = N0 02CIHt

with

= 0

%2 1

0

and

H20 Y NýI:H

with

0,= 0

, = 1

0

04= 2

and Eq. (I-B-3) gives their corresponding vector representations as

y= (0,2,1,0) and y. = (0,1,0,2),

A necessary and sufficient condition for the selection of a proper

set of components is that the formula vectors of the constituents selected

I -B-5
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as components be linearly independent. This condition implies that the

determinant *j of the formula vectors of these constituents is

"thnonzero. Let q denote the number of moles of the 3 component in

mass Mo of the hypothetical system consisting of components only. Then

the condition for the hypothetical system of components to have the same

gross composition as the system of interest follows from the law of

conservation of mas. as

c
q Q k = 1,2, ... , c (I -B-4)5=1  i*(j)k 3 k

The quantities q (3 ( 1,2, ... , c) are called the stoichiometrLc con-

stants of the system for a particular choice of components. They provide

an alternative specification of the gross composition of the system to

that provided by the

A choice of components is generally not unique. The elements always

constitute a proper set of components. And in the case that they are

chosen as components, Eq. (1-0-4) beco-tes

c
pEe : uu kqJ : us (6-5-5)

where 8 is the Kronecker delta having the property that I

when 3 = k, and 8 0 when j # k. However, if the elements arejk
Spresent in small quantittes, *s is usually the case, it is more convenient

to choose components from the more abundant species in the system.

We are now in a position to formulate the procedure used to describe

the composition of the system in terms of components. The procedure isS • th
based on the fact that the formula vector of the i constituent can

be expressed as a linear combination of the formula vectors of the

components as follows:

1-5-6



y 0 1,2, .. ,t) (I-B-f

If the dissociated elements are taken to be the components, then Eq. (I-B-6)

reduces to Eq. (I-B-3) and __ l 3 -. The expressions in Eq. (I-B-6) are

the vector representations of the chemical reactions producing the con-

stituents from the components; the corresponding expressions in terms of

molecular formulae can be written formally as

Y = Y I* () (i = 1,2, .... t) (I-B-7)

The expressions in Eq. (I-B-6) contain an identity for each constituent

* selected as a component. Although the expressions in Eq. (I-B-7) can

always be written by inspection, using the customary rules for balancing

* chemical equations, it is convenient to develop a method for constructing

the #,, matrix that can be used in the computer. The coefficients in

the 0,j matrix will be calculated using the coefficients Ckik of the

formula vectors of the constituents.

The combination of Eqs. (I-B-3) and (I-B-6) leads to the following

matrix equation

k (I-B-B)

where Oti,(j)k is the matrix formed from the formula vectors of the

components. Since -()k is by definition nonsingular, Eq. (1-B-8)

can be inverted to give the equation

( ) - k") (I-B-9)

where (•) denotes the inverse matrix (Q 1 Equation (I-B-9)

1-B-7



can be rewritten in terms of the coefficients as

Ir= eak ((1-5-0)

Since the matrix (aik) is known, Eq. (I-B-9) can be used to construct

the matrix ( i ) if a procedure is formulated for constructing the

matrix 1 *.). The matrix ) is construe * by selecting an appro-

priate set of linearly independent formula vectors mnd inverting the

corresponding (ai(J)k ) matrix. The (ak) matrix i.- constructed from

the (W), matrix with a method suitable for electronic computers. The

selection of components and the computation of the (K)matrix are

carried out concurrently.

The rows of the (Ofk ) matrix are added to an initially null c x c

matrix one at a time. After each such addition the rows are tested for

linear independence. Linearly independent rows define components and 're

retained, linearly dependent rows are re3ected, and the process is continued

until a c x c matrix is obtained. The test for linear independence is

made by beginning the reduction of the matrix to triangular form (by opera-
tions on rows) with the first such addition and by continuing it with each

subsequent addition. After triangularizing, a row is linearly independent

if it contains T nonzero element on the diagonal or to the right of the

diagonal. The nonzero element is placed on the diagonalo if necessary.

by rearrangement of columns. The c x c matrix is used to construct

Sthe matrix by back substitution.

The (a t (a ), and %. matrices for a system containing
i*(Q) k) ik

C, H, 0, and N (with C, CO, H2, and Na considered as components) are

given below to exemplify the method used in the TIGER code to describe

the composition of a thermodynamic system:

! !~



C H 0 N

"t i*.()k k 1 2 3 4

i*(J)

SI 1 0 0 0o

COa 3 1 0 2 0

*Hi 4 0 2 0 0

N:2  6 0 0 0 2

ELEMENTS

C H 0 N

ik k 1 2 3 4

"'•c I 0 0 0

CO 2 1 0 1 0

CO 2  3 1 0 2 0

H2 4 0 2 0 0

H20 5 0 2 1 0

E4 Na 6 0 0 0 2

0• 7 0 LU 2 0

0 8 0 0 1 0

OH 9 0 1 1 0

H 10 0 1 0 0

I-B-9
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COMPONEIrS

C CO2  Ha N2

= 1 2 3 4

C 1 1 0 0 0

CO 2 A 1 0 0

Com 3 0 1 0 0

H• 4 0 0 1 0

lmOs 5~ 2 1 0

E- N2  6 0 0 0 1

o 7 -1 1 0 0

0 8 1 0:0

H 10 0 0 j 0

3. Thermodynamic Description of Nouideal Heterogeneous System

Section I-B-3 presents the thermodynamic description of nouideal

. heterogeneous systems used in the TItER code. Systems in mechanical and

theimal equilibrium, with condensed phar-es considered as pure substances

to exclude solid and liquid solutions, are treated under the assumption

that an equation of state exists for each phase. The equations of Ftate

are restricted only by thermodynamic identities and stability conditions.

This description is convenient to use in calculations of the thermodynamic

state of such systems at one of the following points, (p,T), (p,h), (pRs),

(v,T), (ve), (v~p) or (v,s), when the composition is in chemical equilib-

rium, in partial equilibrium, or completely frozen in metastable equi-

librium. In the treatment of partial equilibrium, part of the composition

is prescribed to be frozen and the remainder is assuned to be in chemical

I-B-10



equilibrium. Calculation -A the state at a point involves calculating

the composition and evaluating the other state variables with thermo-

dynamic identities. As stated in Section 1-5-2, the composition is

restricted a priori to s gaseous species with mole numbers

n(1- 1,2, ... , a), t - s condensed species with mole numbers

an Ci = a + 1, ... , t), and must satisfy the stoichiometric conditions

expressing the law of conservation of mass for tt'? system.

Calculation of the state is easiest when the -7.spwosition it completely

frozen because the mole numbers can be chosen to satisfy the stoichiometric

conditions. The calculations are more complicated for the equilibrium

cases because the composition must satisfy the equilibrium conditions as

well as the stoichiometric conditions. Since calculation of the equilib-

rium composition is based a priori on the assumption that some of the con-

densed species are present and the remainder are absent, the results of

the calculation must be used to test if this assumption satisfies the

equilibrium conditions for condensed species. To satisfy these equi-

librium conditions, the mole number of a species i assumed to be

"present must satisfy the condition n -: 0, and the chemical potential

of a species assumed to be absent must exceed its chemical potential in

the gaseous phase.

a. The Stoichiometric Conditions

The stoichiometric conditions expressing the conservation of

mass for the system will be formulated by expressing the formula vectors

of the constituents in terms of the formular vectors of the components.

A set of components is first chosen, and the corresponding stoichiometric

constants are evaluated. The system is tb-n transformed into a system

containing only these components by expret.sing the constitutents as

"linear combinations of them. IT': stoc'itiom•etric conditions are then

s-B-l1
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obtained by equating the mole numbers of the components in the transformed

system to their stoichiometric constants. Following this procedure with

the notation introduced previously in Section I-B-2 gives the stoichio-

metric conditions as

s A
ri a 1ni + r~÷ i n q• 1 p2, ... , c

It is convenient to introduce the index i'(m),, -, t - s,

so that the condensed species labeled as m is also labeled as the

i = t(M)th constituent. It is also convenient to denote the mole numbers

of the condensed species by Nm so that

n = N m = 1,2, ... , t - s (1-B-12)

SThe condensed constituents assumed to be present and in equilibrium with

the gaseous phase will always be chosen as components as in the original

veision of the TIGER code formulated by R. S. Brinkley, Jr. It is

necessary to set i*(j) i'(m), and n*t() = NJ for m = j = 1,2, ... , p
3

to make the i£ map compatible with the i* map introduced previously

for mapping coMponents into constituents. The condensed species assumed

to be frozen and not in chemical equilibrium with the gaseous phase will

be labeled with a =p + 1, .. , p', and the remainder that are assumed

to be absent (but to satisfy the equilibrium conditions) will be labeled

with a = pl + 1, ... , t - s. Thus the mole numbers of the condensed

species are subject to the following restrictions: N = N 2 0 for

j 1,2, ... , p; N t 0 for m = p + I, .... p'; and N 0 for

m = p' + 1, **., t - s. The suation term over the concensed species

in i•q. (I-B-Il) can therefore be rewritten as

N -- N ( (--13)
M=), i i m i i'(j m '



It is convenient for comparative purposes to wriLe an equation

similar to (I-B-13) for the gaseous summation term in Eq. (1-B-Il),

although the gaseous species will not be treated with this equation in

the code. Assume that s' of the gaseous species are in equilibrium

while the remaining a - s are frozen, and introduce the index t•g)

with g s, ... , a to indicate that the gaseous species labeled as g

is also labeled as the i = f(g)th constituent. The gaseous species

asumed to be components will be labeled with g 1, ... , c - p, those

assumed to be in equilibrium with g = c -p÷l, ... , +s, and those

assumed to be frozen with g - s* + 1, .. , s. As in the treatment of
A

the condensed species, it is necessary to set i(g) = i*(g + p) for

A
g , ... ,c - p to make the i map compatible with the i* map for

identifying components as constituents. UVith this notation the summation

term over the gaseous species in Eq. (1-6-11) can be rewritten as

52 c-p SI ,5n•

Z nE 8 8n + En1- =1 13 2 g=1 gg) e,'=-c-P+l 1(g)j f(g) g-s'js'8f(g)jnf(g)

with (1-8-14)

Since m = 1, , p and m = p + 1, ... , t - s are used to label the

condensed species assumed to be in chemical equilibrium, and m = p + i, ... , p

are used to label the condensed species assumed to be frozen, the coadition

for all the coadensed species to be in equilibrium is p = p, and the

conditions for them all to be frozen are p = 0 and p' = t - s. Similarly,

since g = 1, ... , st are used to label the gaseous species in chemical

equilibrium and g = sI + 1, ... , s are used to label the frozen species,

the condition for all the gaseous species to be in equilibrium is s = s',

and the condition for them all to be frozen is s' = 0. Thus p = p' and

a = s when the composition of the heterogeneous system is in complete

1-B-13
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equilibrium, and p = s' = 0 and pl = t - s when it is completely

r frozen. When t = s, no condensed species are present and thc system is

a homogeneous gas phase. Furthermore, when t = s = s', the composition

a of the gaseous mixture is in chemical equilibrium, and when t - s so 0,

it is completely frozen.

In calculations of the thermodynamic state, the mole numbers of

the equilibrium species are calculated using the stoichiometric conditions

and the equilibrium conditions. The c - p gaseous components are chosen

first from the gaseous constituents assumed to be in equilibrium; they must

include frozen species when so < c - p, and must be chosen from the

frorcn species when so 0. It is convenient for computational purposes

to combine Eqs. (I-B-11) and (I-B-13) and rewrite the stoichiometric

conditions as

S.' 8li N + Zin + N q 3=1,2,..., p (I-B-iS)
Mýp~ i~3 (m)j in ii1ijl I 3

€ s
/_ ' N + r n = .= p + 1, ... , c (I-B-16)

m p+1 i (m)j m i-I ij i

These equations are generalizations of the stoichiometric conditions

formulated by Brinkley for the case of equilibrium, and thus they reduce

to the stoichiometric conditions presented in the original documentation

of the TIGER code when p = p and the first summation term vanislhs.

For the homogeneous system when p' = p = 0, Eq. (I-B-15) vanishes and

"Eq. (I-C-16) reduces to the stoichiometric conditions for the gaseous

phase.

Let n denote the total number of moles of gas in our mixture

of mass MO so that

5
n S n (I -B-17)

i= i - -

1-8-14



It is useful for computational purposes to have another expression for

n and such a relationship can be obtained by combining Eqs. ki-B-i6)

and (I-B-17). Thus, summing Eq. (1-B-16) over j and subtracting the

result from Eq. (I-B-17) leads to the equation

•.S pg-- i ÷g 4• (1 -p n±- mSii(~ (I-B--lS)
• n g it) (I $:.,+ 1,(M):Nm

where qg1 , and Pilm) are defined by the equations,

q C•.qg =/' q3 (1 -8-19)

• c

g 3 p+l 0

ic-m)1(1-B-21)

It is slzo useful to define the reference mass U0  of the

mixture in terms of the components as

M0  q M (I-B-22)
J=.L 3 3

thwhere M is the molecular mass of the j component, and to normalize
3

the system by choosing M0  as 100 grams. Then the mass balance equation

for the normalized system is

c
100 E (100 q /M0 )M (I-B-23)

3J = 3 3

and the corresponding stoichiometric coefficients are

q = 100 q /MC (I-B-24)S':3 3

•i 1-B - 15



Thus, the equations for the normalized system are obtained from those for

the reference system of mass X. by replacing q by 100 q3 0JO

If Ae consider the decomposition products, of TNT, COIOAN. ,

as an example and choose C, CO, H2 , and Nj as components according

to the reaction

CH60ON 3 . C + 6 CO + 5/2 H2 + 3/2 N2

then the normalized stoichiometric coefficients are q= 100/Mq

600eM, - 250/M, and q - 150/I, where MN 228.18 is the

rnolecular weight of TNT.

b. Equations of State

The gas phase is treated with an equation of state of the form,

p = p(p,T,n 1 , ... , n ) (I-B-25)

expressing the pressure as an explicit function of the gas density p,

the temperature, and the mole numbers of the gaseous constituents. It is

convenient to introduce the variable p through the identity

"N0  MP (I-B-26)

so that )/A is the volume of gas per unit mass of mixture, and p P

when M = MO and no condensed species are present. Equation (I-B-25)

is then written more explicitly as

p = fA,T,nI. n) (I-B-27)
MO

with • an imperfection term that approaches I as the gaseous mixture

becomes ideal.

I -B-16



The chemical potential xi of the i gaseous c~nstituent

is written as

aT /WrT +4 +r + i=l, ... ,s (1-6-28)I i ± c+I

where o 1•0 M(T) is the chemical potential of the i gaseous con-

£ re ,eae d

stituent in its standard state at unit pressure, and tj ac+I d

are defined by the equations

S=Znn(r/o (I-B-2o)

rAn (RTj6A4) (1--0-30)'C+
with the integration performed along an isotherm. The imperfection term

r can be considered as the logarithm of an activity coefficient and can

be written in terms of ('as

r pr i + nov. -I 1 (1-B-32)

The ýhermodynamic identity

0H
LL - - - i = 1, .... a (I-B-33)

d An T -)RT

is used to introduce the molar enthalpy H and the reduted molar enthalpy

)i of the i thgaseous constituent in its standard state.

The condensed species are treated with equations of state of

the form

1 -t-17
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V VV (T,p) i a + 1 ... , t (I-B-34a)

H= i (T.p) (I-B-34b)

where V and I* denote the molar volume and molar enthalpy of the

th I d I
I condensed constituent. It is convenient to label these molar quanti-

ties with the index m introduced earlier for condensed species, so that

'() = V* m 1, ... t - a (l-B-35a)

He,() = H* (I-B-35b)

and i'(m) = i*(3) for m = = 1,2, .... p. Use will be made of the

derivatives

-- •C& (T ,p) =(1 -8-36a)
m (6 In T

p

* , n V*

(T,p) = (I -B-36b)

S~and

C (I-B-37a)
5 P Pa

p

V V(I~* (I -B-37b)(aP /T m m

* The derivative Cg is related to the coefficient of thermal expaitsion
m

at constant pressure and to the coefficient of compression at
J9 thconstant temperature of the m condensed species; C* is the

S~pm
corresponding constant pressure molar heat capacity.

The chemical potentials of the condensed species, in contrast

to the chemical potentials of the gaseous species, are functions only of

I-B-18
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temperature and pressur-e and will be written as either

Sa A
i (T'p) i s 4 1, ... , 1 ([-B-38)

S~or

o* = j*(Tp) m = 1, .... t - s (I-B-39)
-mm

with i'(m) - i'*(j) and (L for m j = 1, ... , p. The

cnemical potentials of these species in the gaseous phase are deroted by

1 with i = s + 1, ... , t. It is important to note that the index i

on the gaseous potential •i has the range i = 1, ... , t and covers

all the constituents, even though the species labeled with i = s + 1, ... , t

are assumed a priori to be condensed constituents. It is convenient for

computatiotul purposes to define the reduced molar volume 4' and the
m

reduced molar enthalpy )e of the condensed species with the thermodynamic

ident itie-.

ItL*(p,aj) pV*

1 (I-B-40)

andm•~~( • : PT) %t H*

T T RT _ (I--1

Equations (I-B-26) , (I-B-40), and (I-B-41) are used to obtain

a convenient expression for the specific volume of the mixture. The

volume V of the mixture is written as the sum of the volumes of the

phases as
p

V O lb+ :N V* + N V* (I-B-42)
3 4 3J m=p+i m m

by remembering that m = j for m = 1, ... , p. The equation for the

specific volume is obtained as

v = + p J=N J0 + 7 +,Nm-w (I-B-43)
M~p \ i .J j M=P~xm

by dividing Eq. (I-B-42) by WC.
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4. Calculation of the Equilibrium Composition

a. Equilibrium Conditions and Iteration Parameters

It is convenient to consider the case of complete equilibrium

when p = p', s = s, and the mixture contains no frozen constituents.

Then equilibi,'¾m conditions must be formulated for the s gaseous consti-

tuents, for the p condensed constituents assumed to be present, and for

the remaining t - (s + p) condensed constituents assumed to be absent.

Use will be made of the fact that the chemical potentials of the species

in equilibrium satisfy the same equations as their formula vectors.

Equation (1-8-6) is thus used to express the formula vectors of the con-

Sstituents as linear combinations of the formula vectors of the components.

The equations for the formula vectors are written as

Y = 3;I-p ~y*( 3 ) + Y i ,....t (1--44)

because the p condensed constituents assumed to be present must be chosen

* as components. Replacing y by L,(3. ) in Eq. (I-B-44) and taking

Saccount of Eqs. (I-B-38) and (I-B-39) leads to the equation

-- p * +.c i =1 .... t (I-B-45)

* Equation (I-B-45) expresses the chemical potential of -ach constituent in

the gaseous phase in terms of the chemical potentials of the condensed

and gaseous components. Thus for i = 1, ... , s it is an expression for

the gaseous constituents, but for i - s + 1, ... , t it is an expression

for the gaseous species assumed a priori to be condensed constituents.

*• Equation (1-B-45) contains c identities for the values of

i - i*(j) labelling the constituents chosen as components. Introducing

•I
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1, ... ,c as a dummy component index so that =1 1 , and

setting i = i*( 3') in Eq. (I-B-45) gives these identities as

= - 3 = 1, .... p (I-B-46a)

* i +i• *j). j P ÷ ... , c (I-B-46b)

Whereas Eq. (I-B-46a) is the condition for a condensed constituent that

is present to be in equilibrium with the gaseous phase, Eq. (I-B-46b) is

an identity specifying the gaseous constituents chosen as components. We

must now consider the condensed constituents assumed to be absent with

i c s + 1, ... , t and i = i*(m), m = p + 1, ... , t - s. The equilibrium

condition for each of these species is that its chemical potential in the

condensed phase must be greater than its chemical potential in the gaseous

phase. Gibbs' conditions for chemical equilibrium in the heterogeneous

mixture can thus be written as

Lfti = 1 i = . ... , s (I-B-47a)

Sji*(j) j-t, ... ,p (I-B-47b): vi

for m = p + 1, , t - s (I-B-47c)

Thus the gaseous constituents in an equilibrium mixture must satisfy Eq.

(I-B-47a), the condensed constituents assumed a priori to be present must

satisfy Eq. (l-B-47b), and those assumed to be absent must satisfy

Eq. (I-B-47c).

* A-
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When a complete equation of state of the mixture is known,

Eqs. (I-B-47) and the stoichiometric conditions obtained by setting p -

p' in Eqs. (I-B-15) and (I-B-16) are sufficient for calculating the

equilibrium composition at any one of the following specified points

(p, T), (p, h), (p, s), (v, T), (v, e), (v, p), or (v, s). Since Ii

is known as a function of the n 's, the s - c + p independent equilib-

rium conditions together with the c stoiehiosetric conditions constitute

a set of 9 + p equations for calculating the s + p unknown mole numbers

n i(i + 1, ... , s) and N a( = 1, ... , p). The computed compositions must

be checked, however, to test the validity of the a priori assumptions that

had to be made about the presence (N 3 0 for j = 1, ... , p) and the

absence (N = 0 for a = p + 1, ... , t - s) of condensed constituents.

The assumptions are valid when the calculated composition satisfies the

condition N • 0 and Eq. (I-B-47c), and they are invalid when the calcu-: .3
* lated composition does not satisfy these conditions. In the latter case,

the assumptions must be changed and the composition must be recalculated

* until X a 0 and Eq. (I-B-47c) is satisfied.
'3

The equations used in the TIGER code to compute the equilibrium

composition will now be derived. The first step is to obtain an expression

for the equilibrium conditions of the gaseous species in terms of their

mole numbers. Thus substituting 1A and iL,(j) given by Eq. (I-B-28)

into Eq. (I-B-47a) and making use of Eq. (I-.& 10) leads to the following

equation for fn = n (1 I, .... ,

AT + " r + (0 -B-48)
- i I i J=10ij 1j J*=p+18i3 ~3 + - )C+1 (I--8

where 9 T - c0 / T( 
- - 9

and

3 = iCOO) +i *('0) 3 =P + ,... C

I I -B-22



Equation (I-B-48) reduces to Eq. (I-B-50) fer the gaseous constituents

chosen as components because j()g=0, and #=I for

i = i"(Vfl.' = p + 1, ... , c). The next step is to express the inequali-

ties of Eq. (1-B-47e) in terms of the mole numbers of the gaseous species.

The combination of Eq. (I-B-28) and (I-B-47c) leads to the expression

-- m a Z J p9 n + - 7 < 0
-g jn11i'(j + j=P+j~14 i %')3 + r <0M)c~

(I-1-51)

we for M = p + l, t..,t - s

S~where

/R£T* AlT (I1-B-52)a =p+ i'(=)1j i*1()

It is now convenient to simplify Eqs. (I-B-48) and (I-B-51) by introducing

S~the parameters

A, = It = , *.., p (I-B-53)

9 and
= (•-B-54)

For notational convenience, the index j used for the - parameters will

be extended from c to c + 2 so that Eq. (I-B-48) can be written as

,• = "gi'- +, 8 i~ i 1, .... , 5 (1-B-55)

and Eq. (I-B-51) can be written as

i c+1

SOter +ai i D + m r < 0 m q ip + 1u.u. , t are (1-8-56)

S • Other equations needed to compute the equilibrium composition are the

Sstoichiometric conditions

•;. I -B --2 3
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i 1+N q J = 1, ... , p (I-B-57)

=n q = P + 1 ... c -B-56)

obtained by setting p = pl in Eqs. (I-B-15) and (i-B-16).

Equations (1-83-53), (I-B-55), (I-B-57), and (I-B-58) can be used

to compute the equilibrium composition with a set of condensed components

specified a priori by the assumption about the presence of condensed con-

stituents, and then Eq. (I-B-56) can be used to teat whether this assumption

is valid. It is convenient to define • by the equation

* c+*2 = nT (I -8-59)

InT
For fixed values of and , Eqs. (1-8-53), (I-B -55), (I-B-57),

c+1L +
and (1-8-58) constitute (c + p + s) equations for the (c + p + s)

unknown quantities r (j = 1, ... , c), N Q - 1, .-. , p), and n (i 1,

s). Equations (I-B-53), (1-8-55), and (I-B-58) can be used to

determine the c + s values of r and u , however, because N

appears only in Eq. (I-B-57). Solving the former equations thus determines

the composition of the gas phase at fixed temperature and density,

provided that the condensed species assumed to be present satisfy

* the inequalities N 0 (3 1. .. , p). And solving the latter equation

for the N's with the calculated gaseous composition determines the

composition of the condensed phases. According to Brinkley, this method

of treating the equilibrium problem in terms of gaseous and condensed

comoonents is consistent with the Gibbs Phase Rule.

An iterative procedure is required for the simultaneous solution of

the equilibrium and stoichiometric conditions because Eq. (1-8-58)

Y 1-8-24



is linear in the mole numbers of the gaseous species, but Eq. (I-B-55) is

transcendental in these mole numbers and their logarithms. The -n parameters

are considered as independent variables in Brinkley's iterative procedure

for solving the equilibrium problem at a specified point. It should be

remevhered that the index 3 originally introduced for components has the

range 3 = 1, ... , c + 2 when used for the - parameters. That the

1, ... , c + 2) parameters can be chosen as independent variables
a I

follows from the equations presented earlier in this volume. Specifically,

Eq. (I-B-55) can be rewritten as

S+r = G( 3 .... r ) (I-B-60)

with

Gi = - g+ (-B-61)

because g1  defined by Eq. (I-B-49) is a function of temperature only,

and AnT . Equation (I-B-60) can then be regarded as an expression
C*2

n ni ( ,- ) (I-B-62)Sni C+2 c

defining the mole numbers of the gaseous species as implicit functions of
A

the because Zn n and r is an explicit function of p, T,

and n,

r = r(n 1 , *.., n + r ) (I-B-63)I i s + +

It follows from Eq. (I-8-62) that Eq. (1-B-57) can be regarded as an

expression

NC = N+(2..., ) (I-B-64)

I -1-25
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defining the mole numbers of the condensed species as implicit functions

of the parameters.

Brinkley's approach to the equilibrium problem was to construct

a set of c + 2 equations

p. (rI .... rt• ) 0 =1I, *..., c + 2 (I-B-OS)
31c+2

so that the set of ' satisfying these equations defines the equilibriuma

composition. This set of r that satisfies Eqs. (I-B-65) will be called3

the set of equilibrium values of r It is convenient to write the itera-

tive equations used to solve (I-B-65) for the equilibrium values of n¶3

with the Newton-Raphson technique s3

k r -- •,' .. 'c-" +},k = F ... , (IB-Bk +c+

where L• 1- + -+1 and r is the I a; roximation to the equi-

librium value of -k" It should be noted that the index k introduced

originally for atoms is also being used as a dummy index for the iteration
"parameters in order to simplify the notation in the remainder of the

documentation. The partial derivatives must be known as explicit

functions of the r parameters in order to generate a solution to Eqs.
1C

-(-B-65) with (1-B-66). This being the case, an initial approximation to

the solution (i ,, .. ) is tised to generate a second approximate
I C+2

Solution (r', **2) with (I-B-66), and the procedure; is continued

until preassigned conditions for convergence to the solution are satisfied.

The conditions used to test for convergence in the present version of the
p C

code are 1: F /p 1 fl, FA/(c - P) < C2, F2 e -C., and F2 c- 4
3=1 3 3=p3l 3 C+1 C+2

where C1, (2, (3, and C., are preassigned small numbers. The Eqs.

(i-B-53) and (1-0-50) were chosen to define c of the expressions in

S~(1-0-65) as

A 1 -B-26
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a Fn AJT- iI 0 ., (I -B-67)

and the remaining two equations

F = 0
C+1 (1-8-69)

F =0
C+2

were used to define the constraints imposed by specifying the two indepen-

dent state variables at the thermodynamic point of interest. The differ-
ent expressions for F and F for the seven different point

calculations considered earlier will be presented later. A double

iterative scheme is required to solve Eqs. (I-B-67) and (I-B-68) for the

equilibrium values of r because Eq. (I-B-60) must be solved for n

in order to evaluate the F 's and the partial derivatives

5J

=i - X . j = p + 1, ... c (I-B-70)

obtained from the stoichiometric conditions expressed by (I-B-68).

The equilibrium values of are determined in an outera
iteration '.th Eqs. (I-5-67) to (I-B-69), using values of n. calculated

i
in an inner iteration with Eq. (1-8-60) and the Newton-Raphson technique.

The equations in (I-B-60) were rewritten as

W Q1, .) + (

,• ~(1•-8-71l)i +
and solved for In n, to determine the mole numbers corresponding

I-B-27
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tc• a fixed set of the parameters in the inner iteration. The itera-- 3.

tive equations used to solve (I-B-71) were written similarly to those used

to solve (I-B-65) as

S s k k

rs~ I s 1 ~ r** i ,.. i1-2
r

with

• _tir - 73n .r
nr

rr'r

k+t k k th
•r •r - &r, and •r the k approximation to Pr

When the equilibrium composittion of the gaseous phase has been

determined, the mole numbers of the condensed phases are calculated with

Eq. (I-B-57) , and Eq. (l-B-56) is used to test the validity of the a priori

l assumption about the condensed phases that is required to perform the

I ~ equt.librium calculation. When the equilibrium composition of the mixture

is known, the thermodynamic state at a specified point is computed with

-- • thecrmodynamic identities.

S~b. State Equations i

_• The equations will mow be presented for computir~g the thermo-

S~dynamic state in the seven different point calculations after the equi-

_• libriuni composition has been determined. The pressure p , the specific

. ~~volume v ,the specific enthalpy h , the specific Gibbs free energy-.

• ~g , the specific internal energy e ,the specific entropy s , and

• . • , their derivatives ;

1 -B-28 •
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will all be regarded as implicit functions of the iteration parameters

T C+2 ). The partial derivatives of these variables with respect

to - that are used in the iterations will be presented later.

The equation for the pressure is written as

p Mo ,' .,. (I -B-74)

with * regarded as an implicit function of the iteration parameters

instead of an explicit function 4 = 40, T, n, .. n, n ) specified by

the equation of state of the gaseous mixture. The equation for the

specific volume of the equilibrium mixture is obtained by setting p = p'

in Eq. (I-B-42) as

... (-I I/P-+ l/M( 'L NV) (I-B-75)
c+2 -13

The specific enthalpy h of the mixture is given by the expression,

:, P , sA

M0 h N H + 2 U H + Wiio/P + RT(C - n) (I-B-76)
J=1 3 3 11 i

with the imperfection term f defined by the following integral along

an isotherm

A

( ~ rpT~-~ (I-B-77)

Another expression for h(r1 , ... , c+) with 0 - X

is obtained as

SP * c sA

Moh 3 •N H + r q H + RT 7 n + pIdO/p + RT(4 - n) (I-B-78)ij i 3=p+1 3 i*(j)

by multiplying Eq. (I-B-58) by HO and adding the resulting expression

to Eq. (I-B-76). The frozen heat capacity of the mixture is given by
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the equation

p , C S

Cf=7N C + q C- + U CO)n + R( -n) (I-B-79)
j 4 3 JPpi J=p-ti Pi*(j) i=1 .P i T

wher1 . CO cJH,/dT is the molar constant pressure heat capacity of the
thSgaseous constituent in Its standard state,

ic
* C

0 0 -C° C C - Oi"c, (I -BO)it p pi j=p+ 13 pj*(j) (

and

SThe quantity R is the contribution to the constant volume heat capacity
'IT

of a mixture of weight M0  resulting from gas phase imperfections.

Summing the Gibbs free energy of the condensvd and gaseous phases

gives the equation for the specific Gibbs free energy of the mixture as

+Jg i+ ' ni-B-82)

An alternative expression for g in terms of the Etoichiometric constant

q is obtained as3

p * s p c
MJ'�J J= + �+ + --. Li (I-B-83)blg 3ý1. 3k + q 4 + L - i :-Ai0t i j="+plj i*()j

by multiplying Eq. (I-B-57) by and Eq. (I-1-58) by V j and

adding the resulting expression to Eq. (I-B-82). Combining Gibbs' con-

dition for chemical equilibrium Eq. (I-B-47a) with Eq. (I-B-83) gives

the free energy of the equilibrium mixture as

Pg * •_+ (1-B-84)"
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since the bracketed term in Eq. (I1--83) vanishes. Combining Eq. (I1--84)

with Eqs. (I-B-28), (I-B-50), and (1-4-531 gives the equation for

g(. ) in terms of - as
C+2

c C

J . 3 J=p+j v+i Jp+i ji (j)/R

The specific internal energy of the mixture is calculated with

the thermodynamic identity

e( h -pv (I -B-86)

and specific entropy is calculated with the iden*ity

-"...,r -c+2) = (h - g)fr (/-T-87)

c. State Conditions

The state conditions expressed in Eq. (1-B-69) by F 1 = FC2 = 0

define which one of the seven pairs of state variables (poTo), (p1,,ho),

(Po ,so) , (Po PVo) , (v 0 To) , (vo ,eo) , or (vo ,so) is specified at the

thermodynamic point of interest. The case when the pressure Po is

specified will be considered before the case when the specific volume

v0  is specified.

When the pressure of the system is specified as Po, F is

defined by the equation

F = In Pc - In p = 0 (b-B-88)
Vt'

and p is calculated with the gas phase equation of state. At (Po,TO)

points, the condition - constant is used to specific that T =To

+ 1--31 I
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and consequently the equ•tion F = 0 is not required. The iteration

* procedure used to calculate the equilibrium composition is simplified

"because the rank of the Newton-Raphson matrix is reduced to c + 1 and

rthe condition -� 0 is imposed at each iteration. At (po,hc)

and (po,so) points, F is defined, respectively, by the equations,
CC+2

SF Molhc - h)/RT 0 (I-B.-S9)

and

F MO(so - (h - g)/T)R = 0 (I-B-90)

where h is evaluated with Eq. (I-B-78) and p = po. and g is evaluated

with rq. (I-B-85). At (povo) points F is defined by the equation
C+2

F PM (vO - v)/RT = 0 (I-B-91)

Sand v is evaluated with Eq. (I-B-75).

When the specific volume v. is specified and the pressure is

not, then F is defined by the equation
c+1

F = pM(vo - v)/RT = 0 (I-B-92)
C+1

and v is evaluated with Eq. (I-B-75). At a (vr,To) point, the tem-

perature To is specified in the same way as for the (po,1o) point.

At (vo ,e) and (vo,so) points, F is defined respectively by the
C+:2

equations

F MO(eo -h + pv0 )/RT 0 (I-B-93)-
c+2

and

F = Molso - (h - g)/T)R 0 (I-B-94)
C+2

where h is evaluated with Eq. (1I-B-78) and g is evaluated with

Eq. (1I-B-85).
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d. Partial Derivatives with Respect to thi- Iteration Parameters

It is convenient for notational purposes to expand the expressinns

(I-B-65) in a linear Taylor series about an aporoximation (r, + 1 )0
I C+2

to the solution (r ., 2 ) and write

S•i &k = FO 3 =, , C + 2 (1-B-95)

Swith Dk CV /6% L and the superscript 0 used to

denote that the quantity so designated is evaluated at the approximation

to the state of the system. The equations for the pirtial derivatives

of the state variables, obtained in the expressions for D by differ-

entiating F partially with respect to - according to the chain rule,I 3
will be presented before the expressions for D k

(1) Partial Derivatives of the Mole Numbers

Equations for the partial derivatives of the mole numbers

with respect to the iteration parameters are derived with Eq. (I-B-29)

and (I-B-55). Differentiating Eqs. (I-B-29) and (I-B-55) with respect to

. gives the equations

4 n - (1-B-96)

k

and

5P )r A &r r n C+2

.- - =r - ~ 1' 7 (I-B-97)Ik k r ki• ~' 6 -• k 6T •k r__1 ýnr ý'k • i3k (--)

A
with k z 1, ... c + 2, the partial derivatives ip/•ik and 2rf/c)

given by the equations

A

i c+i,k C+2,k
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and defined by the equation

a .. . T dg (1i-8-99)
-8,+ a- C-,

since g is a function of temperature only. It follows from Eq. (I-B-33)

that A can be expressed in terms of the reduced enthalpies of the

gaseous species in their standard states as

C

+ = - (I-B-too)

Setting an /67i = n rýý k and V r =I /bn in Eq. (I-B-97) and
r r r cir i r

rearranging terms leads to the following equations with i = 1, ... , s:

-s rr= (8 + Yrn r) P ik k 1 :... (I-B-1o1)

ri i r r a

k

s I
r r nr p d (I-B-104)

c+2

where the derivatives of the activity coefficient r are given according

£I.to Eq. (I-B-31) by the equations,

ar r 12n
r p d 11-B-104)

C- RTi

*and
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~LnT

Although the integral expression for Zt i //a n T is given here, this

derivative can be ?eadtly obtained bv differentiating the explicit
expression for r directly.

The relationships in Eqs. (I-B-1Ol) to (I-B-103) constitute

c + 2 sets of a simultaneous linear equations for 2 /6% and can be

-- solved for these derivatives when the mole numbers associated with a set

S(% , ... , r C2 ) of the iteration parameters have been calculated with

Eq. (1-8-71) in the inner iteration. The corresponding derivatives of the

gaseous mole numbers can then be calculated with Eq. (1-8-96).

The Eqs. (I-B-101) to (I-B-103) become simplified for an

ideal gas mixture with rI = o, I = i, ... , s. In this case, the matrix

of Eqs. (I-B-101) to (I-B-103) reduces to the unit matrix, and the

equations have the solution
S•I i = 1,..... s

-k k 1, ... , c + 2 (I-B-107)

The abbreviation an I1 )

= - k =1, .. ,c + 2(I-OS

is introduced for convenience in writing other derivatives -f the state
with respect to the iteration parameters. Differentiation of Eq. (1-B-57)

gives the partial derivatives of the mole numbers of the condensed species

3 as

SC n 1, ... ..- 109)
i=13j ik i k 1, 2

I-B-35
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and differentiation of Zq. (I-B-I8) with p = pl gives the derivatives

of the total number of gaseous moles n as

C n k = I, ... + 2 (I-B-110)
6r =J4 i C+l 1ik 1

with +i,1+1 defined by Eq. (I-B-54).

(2) Partial Derivatives of the Pressure

It is convenient to derive equations for these partial

derivatives with Eq. (1-8-74) for the pressure rewritten as

A up = u + In n +? (I-B-ll)

Differentiation of Eq. (I-B-ill) with respect to x then leads to the

following equat ions

6 An b 1A + ÷ 1 (1 -B-113)

,c+% c+1 c+

SLp ~ i*1~(I-5-114)

'C+2 C+2ýi 'C+2

where i is considered to be a function of T . r C+." Differentiating

9by the chain rule and making use of Eqs. (I-B-98) and (I-B-lOS) leads

to the following expressions for the partial derivatives of

- Ck = ,E..s ) (A-5-1k)

S+ i . n n i,c+x (6-I-n16)

I I1-3-36
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Equations (I-B-112) to (I-B-I14) for the partial derivatives of the pres-

sure are evaluated with the aid of Eq. (1-5-110) for the derivatives of

n and Eqs. (I-B-115) to (I-B-lIT) for the derivatives of *.

(3) Partial Derivatives for the Condensed Phases

The thermodynamic properties of a condensed phase are assumed

to be explicit functions of temperature and pressure specified by its

complete equation of state. They can therefore be regarded as implicit

functions of the iteration parameters because of the implicit dependence

of the pressure on these parameters. The partial derivatives of the

thermodynamic properties of a condensed phase with respect to r are

derived because they are required to calculate the partial derivatives

of tha mixture.

The partial derivatives of the molar volume V* and the
t* th

molar enthalpy H of the j condensed component are expressed in

terms of the identities contained in Eqs. (I-B-36), (1-B-37), and (I-5-40)

with j~,..p as

R• p (pT) = _ - k 1,2, ... c + 1 (I-B-118)

-- V*(T,p) = + 2k (I-n-119)

*c+2 +

and

(pT) l of) k 1, ... , C + I (I-B-120)

3Tbr 3 a

C*

_ Hp = _2p+ 0 *(1 _n. p (I -B-2I)
RT& j R 3 B

c+22
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The partial derivatives of the reduced chemical potential j A/RT of the
th

3 condensed component are expressed in terms of the identities in Eqs.

(1-0-40) and (1-3-41) with . - 1, ... c as

HT clr

=T (1-B-123)
BnC2 n+Q

In a point calculation with the pressure specified to be

po, the properties of the condensed phases can be evaluated in each itera-

tion with V0 instead of with the current value of the pressure calculated

with the gaseous equation of state. In this case, the properties of the

condensed phases can be regarded as a function of temperature only, and

the equations for the partial derivatives of V*, B, and *t/RT are
3 3 3

obtained by setting b An p/ b% = 0 (k = 1, ... , c + 2) in Eqs. (I-B-118)

• •- to (1-8-123).

t i 124) Partial Derivatives of the Specific Volume of the Mixture

The partial derivatives of the specific volume with respect

to the iteration parameters can be written as

2& +v rP --- + = j . .. 1 , c (I -B-124)

RT (In 3= aai, ± JRT a% (116

I nd

S•.....V = •' " = + 'P NP -T (I -B-125)

-- 6r C+ J1ibC2 = jRTBy*+2 RI
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These c-luations can be rewritten with Eqs. (I-B-118) and •I-E-1lS as

Ij(OV _ p -2 •"---. N3• k =1, 2, ... c (1-B-127)

and

Nfld = 1,P 2, cL... 7)

aN~

The Eqs. (1-B-127) to (1-B-129) are used to evaluate the

•Jderivatives of F aix! F at a point where the specific volume of

C+ + C1 2.RT

the mixture is specified to be v 0 .

(5) Partial Derivatives of the Specific Enthalpy of the Mixture

The identity

"" -- ~L.(I-B-130)
ani 2•An T

i

together with Eqs. (I-B-120) and (I-B-121) for the derivatives of H*

Eq. (1-5-110) for the derivatives of n , and Eq. (I-B-79) for the frozen

heat capacity, are used to express the partial derivatives of the specific

enthalpy as

L* Z -- 'L p N ee+ !Qpv n¶

÷ n + -C (1-8-131)

for k = , 2, ... ,c and

I-B-39
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Ati

no Pn An 0

* ~(.i,c+i + ~is, C+2 In ~Ti,c~x ni RTP iý An T

Sand

RT~f 6r+ JhX3bc+2an + 3~ j.3 IT n+

+ + C-~_~ C n1  (I -B -133)

C,~

The equations for the derivatives 3h/ at a point where the pressure is

specified to be po can be obtained by settin& 2 In Pib% = 0 (k = 1,j ... , c + 2) in Eqs. (I-B-131) to (1-B-132) because in this case H* is

a function of temperature only.

(6) Partial Derivatives of the Specific Free Energy of the

Mixture

The derivatives • (MOi/RT)/;ý are readily obtained by

differentiating Eq. (I-B-85) as

" 2-g qk for k 1, 2, ... , c (I-B-134)

and

&g : (1-B-135)

and

ItT CS• T .] =,r q3i (0 (I -B-136)

c+8
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(7) Partial Derivatives of the Specific Energy and Specific
Entropy of the Mixture

The equations for the derivatives Že/Zr and ts/ZIr

are obtained by differentiating the identity for e Eq. (I-B-8) and

the identity for s Eq. (I-B-87) and substituting the equations for the

resulting derivatives that have already been presented.

(8) Equations for the D DerivetivesS. ... .. J k

The partial derivatives of the state variables wit.i respect

- to the iteration parameters presented in the previous paragraphs can now

be used to formulate the equations for the D derivatives. The equa-

tions for the condensed components (j = 1, ... , p) will be presented

first, then the equations obtained from the stoichiometric conditions

0( p + 1, ... , c), and then those obtained from the state conditions

(j= c + , c + 2).

The equations for Dk with j 1, ... , p are obtained

as
Ij

D = jk k!?1, .kc + 2 (I-B-137)Dfk jk • ItT

by differentiating Eq. (I-B-67) partially with respect to Combining

Eq. (1-B-137) with Eqs. (1-B-122) and 4I-B-123) gives the equations

S*;3 In p
- D 6 1k , 23 ... , c + I (I-B-138)

jk jk a

and

3, * *L (I -B-139)

which reduce to the equations

= k = k 1, 2, ... , c + 1 (I-R-140)

and

I -B-41
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D,•J +2(I -$-141)
JC+2 3

*for the point calculations when the pressure of the system is specified

to be p!.

The equations for DJ with j = + 1, ... , c are

obtained as

D = s • k = p +1, c + 2 (I-B-142)

by differentiating Eq. (I-B-68), and they are rewritten as

S
D k= i~x jlCn, k p p+ 1,., c + 2 (1I-B-1 43)

with the Eq. (I-B-lOB).

The equations used in the seven different point calculations

for D with O c + 1, c + 2 are obtained by differentiating theSJ3k
state conditions. The case when the pressure of the system is specified

to be Po will again be considered before the case when the specific

volume is specified to be v0 .

At points where p = po, the equations for D are
"c+l,k

obtained as

D 6 A k 1, 2. .. , c + 2 (I-B-144)- c+l ,k ank

by differentiating Eq. (I-B-88) partially with respect to -.k and the

derivatives are evaluated with Eqs. (I-B-112) to (I-B-114), At (po,TC)

points, the D derivatives are not required because the conditionS~c+ , k

L- C = 0 is employed. The equations for D are obtained at (pcu,ho)ic+-2 c+;• , k

points as
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r '4 " -'-i''. '" ii_ ': --- _-:.:•J _- -I_ * : v. -=.:,, -.......................- ;

MD 'bh 'k =1, 2, 1.,c+I (I-B-145)
-+d~ RT \T)o

k

and

DC + C+2  T r + (ho h) -B-146)

by dif ferentiating Eq. (T-B-89) ; at (po,so) points as

D- e )g k = 1, 2, .. c + I (I-B-147)
C+2k T ykRT

and

"7 D = ]• .F /h h - hg ("-B-148)
fC+2,C+g NIT L )r 0 ] r +2 NIT

C+2

by differentiating Eq. (I-B-90); and at (po ,v 0 ) points as

Pe- D 6%0v\ k 1, 2, c 1 (I-B-149)

and

o.- ~ F( c 1+ (VC - V)
C+2,C+2 b, L ) t

by differentiating Eq. (I-B-91). The (ah/r k)o and (av/ý%')0  deriva-

tives are evaluated with the equations obtained by setting (a Ln p/ = 0

in Eqs. (I-B-131) to (I-B-133) and in Eqs. (I-8-127) to (I-B-129), and

the a(Mog/T)/P r derivatives are evaluated with Eqs. (I-B-134) to

(I --B -136).

At points where v = v0  and the pressure is not specified,

the equations for D are obtained as.:,- c+1 ,k .

D TOT -(V 0 -V) - k = 1, .... 1c + (I-B-151)

I -



and Dpo~ V
a n d, c ~ DP ORT L 2 1 + v ) ( a n ( I -B -l 5 2 )"" + T 3

by differentiating Eq. (I-B-92), and the derivatives are evaluated with

Eqs. (I-B-112) to (I-B-114) and Eqs. (I-B-127) to (1I-B-129). At (vo ,To)

points, the D derivatives are not required because the condition
C+2,k

D = 0 is employed. The D are obtained at (vo,eo) points aa
C+2 c+2 ,1

D c+2,k RT tL - Pvo - ..., c + I (-1B-153)

and

C+2,c+2 RT ['PV° -+(
c+2 C+2

by differentiating Eq. (I-B-93), and at (vo,so) points as

D = - ~ 1 ~
c+2,k T 6, c + I (I-B-155)

and! (6h 21 MOgN
11 D =_ ( I -B-156)

C+2,C+2 RT &Cr r }2
C+2

by differentiating Eq. (I-B-94).

e. The Equilibrium Partial Derivatives

Equations will be derived for a complete set of equilibrium

first-order partial derivatives of the system so that the equations for J

I-B-44
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any other equilibrium partial derivative can be obtained with thermodynamic

identities.

A convenient set of complete derivatives for use in hydrodynamic

calculations consists of the equilibrium specific heat capacity at constant

•{ ~volumeo

2e) =(~ v v(1p(-B17
v v v

and the following derivatives of the equilibrium (e-p-v) equation of

state

C "I

8 =T B C v ~• -- = -- = - (I-B-159)
T V V 6

The adiabatic exponent 1 used in hydrodynamic calculations is related

to Or and p by the identities

S[ • n p) + I

XS

It is convenient to rewrite the Eqs. (I-B-157) to(I-D-159) and change the

independent variables to r. and "+ with the identities

(I-B-161)
FVT c C+1 T1

C+21 C+2

-0 . V .62

T v
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tso hat the quantities C , O, and 8 can be evaluated with the partial
VI• derivatives presented in Section d. Care must be taken however to remem-

ber that (0/6-c+) and (0/a ) are equilibrium partial deriva-
C+l cC+ I"

tives related to the frozen derivatives 6/6% (k 1, c + 2)

by the equations

0/6-War -n +6/&r(1-8-163)
c+- k& - "+k U c+1>rC

0 /3+ + ;/ar (T-B-164)
•:, [c+I 1rc+I

and that the equilibrium derivatives of the iteration parameters '(k 1,

c) are required for their evaluation. The derivatives (Or/Cr )
C+2

denote the rates of change of the r parameters with respect to

c+1 when - is kept constant and the system remains in chemicalc+1c~a

* equilibrium. Similarly, the ( )/rC+) derivatives denote the

rates of change of the -1• parameters c+i with respect to r• cc+2

when c+ is kept constant and the system remains in chemical equilibrium.

SThe equations for C , a, and are rewritten as
v

MaC R RT/ -5) T ") ([-B-165)

SV V

F- - (I-B-166)

p i)T R v M e T v

and

RT p'c CC (' i
* = MpiT (I-B-167)
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and the identities (I-B-16L) and (I-B-162) are used to express the partial

derivatives appearing in these equations in terms of 7C+ and 'C as

R (8 I--- p (b In Pý /( -• p
"v.C + 2 

T + 2

a In c\ An p b In ( / (map --
T( a= ?T I ( jR + 71•Gc+I

C+2 C+ +I C+2 ~ "C+a 7 + C+ 2

and

v ) - (- -L ( 1-)-1 7 0 )
p (RT ART f

+ C+2 C+2+

-o -~ !!p ah Vh (EPP -ipt

, ~The application of Eqs. (1-8-163) and (I-tt-164) tro the pressure, the specific

S~volume, and the entholpy then gives the equations relating the equilibrium

partial derivatives to the frozen derivatives presented in Section d.

The equations for the derivatives of the pressure are written as

In + k 'I (1-B-172)

c+2 +

and

% i-In p a An_ p -c b Ip ) (1-B-173)

C+2C+2 C+I
*0+j
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with the frozen derivatives of the pressure given by the Eqs. (I-B-112)

to (1-B-114). The equations for the derivatives of the specific volume

of the mixture and written as

ad K =+ (;) c+a (I¢+-l74

RT 16VRT ;;7+ ki~1 RT

with the frozen derivatives given by the £qs. (1-B3--27) to (I-B.-129),

and those for the specific enthalpy as

C4.)TIC+ ar~ c

and

RT~~~~R a- B-7?
R aC+2 C+ 0T k R lT c+2

with the frozen derivatives given by Eqs. (I-8-131) to (I-B-133). The
equations for the equilibriuc derivatives of the iteration parametersandk) , and ( /•- ) are obtained

'k1 ,c..., c) , 1 c++
for ,j = I, ... , c by differentiating Eqs. (I-B-67) and (I-B-68) and

&setting 1 a & as

- D( /•c+) = , (I -B-178)

Ics~~6- c+k 'n~r ,

SI -B-48
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k=1 3k 'k c+2 c+ t+c+l

expressions for D for the condensed components j = 1, ... , p are
3 k

given by Eqs. (I-B-138) an.i (I-B-139), and expressions for D for the3k

gaseous components 3 p p + 1, ... , c are given by Eq. (I-B-143).

Equations (1-B-178) and (1-B-179) are solved for the equilibrium deriva-

tives with the values of D obtained by solving Eq. (I-1B-95) for the3k

equilibrium composition with the Newton-Raphson method.

Equations (I-B-165) to (I-E-179) are used to evaluate the complete
set of derivatives (C , a, 0 at a point where the system has attained

chemical equilibrium without a condensed component changing phase.

f. Phase Change of a Condensed Component

* iThe foregoing treatment of condensed species cannot be used to

solve the equilibrium problem when the condensed species are considered

capable of existing in different phases. The treatment must be extended

to determine when a condensed species is present as a single phase or as

an equilibrium mixture of the phases. The important practical case of

melting when the phases are solid and liquid is presented to illustrate

the basic method used to solve this type of problem.

Gibbs' conditions for equilibrium used previously to test the

a priori assumption made about the presence of condensed constituents

must now be used to determine the relative stabilities of the liquid and
solid phases of a condensed component. Let Ks* and * denote the

chemical potentials of the solid and liquid phases of the jth condensed

component, N* and N enote their respective mole numbers, T*

* T*(p) denote the Clausius-Clapeyron equations for the variation of

melting points with pressure, and f denote the fraction o!
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liquid present at the mselting point. Gibbs' conditions for equilibrium

of the solid and liquid phases can then be written for j 1, .... p as

*(p,T < T*) < t"3(P,T < T*) (1-8-180)a 1 A 3
=.!

~V 3(PT > T*) < * 3(P,T > T*) -- 11
tj i NJ

S(pT = T*)= (pT = (1-13-182)

with 1 = 1, ... , p. Equation (I-B-18O) gives the stability condition for

the solid, Eq. (1-B-181) the stability condition for the liquid, and

Eq. (I-B-182) the stability condition for a mixture of solid and liquid

at a meltineg point. In an equilibrita mixture the 3 th condensed

com;onent will exist as a solid with f : 0 when Eq. (I-B-18i) is

satisfied, as a liquid with f, 1 when Eq. (I-B-181) is satisfied,

and as a mixture of solid and liquid with 0 !g f. ! 1 when Eq. (I-B-182)

is satisfied.

The Eqs. (I -B-180) to (I -8-182) apply to all condensed components,

but at this stage melting of only one of them, the ith , will be considered.

It is then convenient to write the following equations for the properties

of the jth condensed component constituent.

S e. +( (I f (I-B-1-3)
3£s3

_ =f let + (1 - (1-8105

RT RT £ RT

1-8-50
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+ I - f (I -B-187)

" = -- + (1 f (I -B-188)

-Af * 1 *(I -8-189)

A s e
• J.3  - g *s IV.~s'

Equations (1-B-183) to (1-8-189) are used with those already presented for

the mixture to calculathethe equilibrium therlyrmic state at a specified

point when the jth condensed component can occur as a liquid, a solid, or

a mixture of liquid and solid at the melting point. As in the previous

treatment of the equilibrium problem with condensed species, the validity

of the calculated state is determined by its compatibility with the

assumptions required to perform the calculations. It should be remem-

bered, however, that the question whether a condensed species is present

as a liquid or a solid is not a problem in a (p,T) calculation because

the phase is determined by the specified values of p and T and the

Clausius-Clapeyron equation. In the particular case wtien the free ener-

gies of the solid and liquid are found to be equal, the (pT) calculation

is performed at the solid phase boundary with f, 0.

Consider the other six point calculations when the phase assump-

tion iF fixed by the values of T and p, say (To ,Po), choser.

"to start the iterative procedure to determine the thermodynamic state.

Only the case when the choice of the solid as a component is valid and

N 0 will be considered. Suppose further that A T ,Po) > 0 so5 3 3

that the calculation is perforbzed with f, = 0, and let T and p

denote the values of temperature and pressure resulting from the calcu-

lation. Since the point calculation was performed with ft = 0, it is

necessary to check that the calculated state is compatible with this

phase assumption, The calculated state is an equilibrium state when
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either p (T ,p ) > 0 and the solil is more stable than the liquid, or
C C

& (TeP) c 0 and the solid is in equilibrium with the liquid at the

solid phase boundary. But it is not en equilibrium state when & (Tc ,p c) < 0

and the liquid is more stable than the solid, for then the phase assumption

and the calculated state are incompatible. When -p (T ,Pc) c 0, values

4-• of To and p0  are chosen so that * (Topo) < 0 and the point calcu-
V3

lation is performed again with fI 1. Now with * z 0, the calculated

state is an equilibrium state when &t{(T ,P ) ! 0 and the liquid is

more stable than the solid or is in equilibrium with the solid at the

liquid phase boundary, but not when 4jt(T ,p ) > 0 and the solid is
3Cc c

more stable than the liquid. When apb(T ,p ) > 0, it follows that
3 C c

= 0 at the point of interest, and the thermodynamic state must beS~3
in the mixed phase region with f in the range 0 < f < 1.

When = 0, the value of fA in the mixed phase region must

be determined to perform a point calculation except at a (p,T) point

where Tr = T'(p) and the value of f can be chosen at will. Since

< C 0 In the first calculation with f• = 0, and Ali * > 0 in the

second calculation with f, = 1, it is convenient to use the equilibrium

condition 41 = 0 to determine the equilibrium value of f Since fI lies in the range 0 < fI < 1, a bounded linear approximation is used in

the iteration scheme to determine the value of f that satisfies the

equation LP 0.

The order of the procedure must obviously be changed when the

3 th condensed component is first assumed to be present as a liquid and

not as a solid. The development of a general procedure for solving the

equilibrium problem when more than one of the condensed species can melt

will be based on the treatment for one species presented In this section.
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g. Determination of a Mixed Phase Line

The routine for performing mixed phase line calculations is

called MIXXED. The mixed phase line T = T (p) of a condensed species
3 .3

in the (p-T) plane is determined by solving the following equation

L i (Tp) = Ij (T,p) (1-0-190)

expressing the equilibrium condition for the solid and liquid phases. if

values of temperature are specified, then Eq. (I-B-190) is solved with a

Newtou-Raphson iteration scheme to determine the corresponding values of

pressure. Similarly, if values of pressure are specified, Eq. (I-B-190)

is solved to determine the corresponding values of temperature.

The thermodynamic state in a mixture containing a melting com-

ponent can be calculated readily when the mixed phase line of this compo-

nent has been determined. The calculation is performed at a (p,T) peint

on the mixed phase line with a specified value of ft. However, calcu-

.ltions of only two of these equilibrium states, namely, those with

f 0 and f = 1, have been programmed into the code. These values

of f were chosen purposely to define the phase boundaries and the

mixed phase region of the thermodynamic system in the pressure-volume

(p-v) plane.
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h. Phase chaes of Condensed Species

The treatment of melting developed for one species was extended

to t - s species to obtain a more rnalistic treatment of thermodynamic

systems containing multiple condensed phases. The equilibrium conditions

expressed by tqs. (I-B-180) to (1-9-182) must now be used to test the

phase assumptions for t - s species rather than for one. A calculated

state is an equilibrium state when it satisfies the phase assumptions

required to make the calculation. As discussed in I-B-4f, however, there

is no problem in (pT) calculations because the phases are determined

by the specified values of p and T and by the Clausius-Clapeyron

equations for the species.

Consider the other six point calculations when the phase assump-

tions are fixed by the values of To and po chosen to start the itera-

tive procedure to determine the thermodynamic state. It is convenient to

label those species set as solids with m 1, . .. , a and those set as

liquids with m = a + 1, ... , a' C t - s, so that the point calculation

is performed with f =0 for m1=, ... , a andwith 1.=1 for

m = a + 1, ... , a'. It follows from Section I-B-4f that a calculated

state is an equilibrium state when it satisfies the conditions APA(Tctp )
cc

0 for m =l, ... , a, and &0 for m =1+, ... , a

When any one of these conditions is not satisfied, the calculated state

is not an equilibrium state and it is necessary to chotse new values of

To and po, say (To',pc'), and repeat the point calculation with the

new phase assumptions determined by the Clausius-Clapeyron equations.

The values of To I and pe' are based on the results of the last calcu-

lation and on the fact that the phase line of each species with an incor-

rect phase assumption intersects the line segment joining (p0 ,To) and

(p #T ) in the (p -T) plane. These points of intersection are firstS ic c
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determined, and the values of T,.' and pot are chosen to change the

phase assumption of the particular species whose intersection point lies

closest to (po,To). Thus the phase assumption of only one species is

changed by this procedure, and (p0 ,TO) lies on one side of its phase

line and (p0',%') lies on the other. Calculation of the state now

gives new values of T and p f say ('F ,p '), and the procedure
c c c c

is continued until the calculated state agrees with the phase assumptions

used to perform the calculation. If the phase assumptions for a particu-

lar species, say with m - b, are found to be incorrect in two successive

point calculations, the state must lie in the mixed phase region of this

species with 0 < f 1. In this case, the phases of the other con-
Ltb

densed species are fixed, and the thermodynamic state in the mixed phase

region is calculated using the method presented previously in Section

i-8-4f.

i. The Equilibrium Partial Derivatives in a Mixed Phase Region

This section will be completed at a later late.
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I -C. THEORETICAL BAS IS FOR NONEQU ILIBRIUM CALCULATIONS

IN PARTIALLY FROZEN SYSTEMS

1. Introduction

The theoretical basis for making nonequilibrium calculations is an

extension of that developed by R. S. Brinkley, Jr. for making equilibrium

calculations.* Methods are presented here for calculating the thermodynamic

state of a nonideal heterogeneous system in partial equilibrium when the

pair of state variables can be chosen from the following set: [(p,T),

(p,h), (p,s), (v,T), (v,e), (p,v), and (v,s)]. The nonequilibrium states

considered are those in mechanical and thermal equilibrium, with part of

the composition frozen and part of it in chemical equilibrium. Frozen

species are defined as species with mole numbers that are fixed and do

not change in calculations of the thermodynamic state. But frozen con-

densed species are allowed to change phase according to their equations

of state as in equilibrium calculations. In calculating the thermodynamic

state of such a system, the mole numbers of the frozen species must be

specified, and the mole numbers of the other species must be calculated

using the equilibrium conditions and the stoichiometric conditions given

in Section I-B of the TIGER documentation. It is important to note

however that the choice of the frozen composition may not be compatible

with the total stoichtometry of the system. The frozen species should

be chosen so that the mass balance equation for the system can be satis-

fied. In other words, it is necessary to ensure that there is a feasible

solution to the mass balance equations for the nonfrozen species. This

problem was treated in a way similar to that used for the linear programming

e
Presente'd earlier in Section I-B-4.
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problem, *nd a routine called FEASIB was written to determine the choice

of frozen constituents compatible with the total stoichiometry of the

system.

It is important to remember that the description of the composition

presented in Sections I-B-2 and I-H-3a applies equally well to nonequi-

librium system as to equilibrium system because it was formulated with

the conservation of mass, which is valid for all thermodynamic systems.

In fact, it was for this reason that the notation for labelling frozen

constituents was introduced in Section I-B rather than in I-C. The dis-

cussion of equations of state presented in I-B-3b is also valid for our

system in partial equilibrium because the pressure and temperature are

i well defined by the assumptions of mechanical and thermal equilibrium.

For convenience in presentation, the treatment given in this section

of systems in partial equilibrium will parallel that given in section

I-B for systems in chemical equilibrium. Consequently, equations that

are the same as those in Section I-B will be repeated in special cases

only.

2. Calculations with a Partially Frozen Composition

a. Equilibrium Conditions and Iteration Parameters

When the systemi is assumed to be in partial equilibrium, the

frozen composition is chosen and the remainder is calculated with the

equilibrium and stoichiometric conditions. These conditions will be

expressed in terms of the notation for frozen constituents introduced

in Section I-B-3a. The condensed constituents assumed to be present and

in equilibrium with the gaseous phase are labelled with j = 1, 2, ... , p.

These om~stituents will always be chosen as components. The condensed con-

stituents assumed to be frozen and not in chemical equilibrium are labelled
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with m - p + 1, ... , p, and the remainder that are assumed to be

absent (but to satisfy the equilibrium conditions) with p'+ 1, ... , t - s.

The gaseous species assumed to be components and in equilibrium with tiw

rest of the system are labelled with g 1, ., c - p, the remaining

equilibrium species are labelled with g = c - p + 1 .. , s', and those

assumed to be frozen with g = s 1 +1,..., s.

The stoichiometric conditions for the mixture are written with

the il(m) subscript introduced on page I-B-12, and with terms summed

from p + 1 to p' to account for frozen condensed species as

Sa N + n + N q 1, 2, ... p (0-C-11
m-+l i I(n3 i=ij i 3 3

N + = p + 1, c (0-C-2)
M-= 1 i '(M)j M i-~l i.3 i

The conditions for the chemical potentials of gaseous constituents are

written as
"p C g =1,..., S' (I-C-3)

and
p c

j1A igje . ~ ~ g3~(,g=s + r, + . s (I -C.-4)

The first of these expressions is used to obtain equilibrium conditions,

and the set-nd is included to account for the fact that s - st gaseous

species are frozen and are not in chemical equilibrium with the remainder

of the system. Remembering that Eq. (I-C-3) contains c-p identities

for the constituents chosen as components, the equations for the chemical

potentials of the species in our partially frozen mixture can be written

as:

p c c
"- ft(g) J=a•IB(g) 3 + J=EP+l f(g) 3•f"(3) g = 1, .... s (I-C-5a)
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SP c

= 1- +*....1 P I C 5
p c
rtht a p ui1 sti( p (I -C -5d)

ýi() j=l £ (a) 3 j J=p+lo i'(M) tJ) Im

ip) 1 tj .c ~, m P' + 1..,t - s (I-C-5e)

The gaseous constituents in equilibrium must Satisfy (I-C-5s) ,and those

that are not in #r4uilibrium must satisfy (I-C--5b). The condensed con-

stituents assumed a priori to be present and in equilibrium must satisfv

(I-C-Zc), the frozen condensed species must satisfy (I-C-sd), and those

assumed to be abse-t must satisfy (I-C-Se). Equations (I-C-i), (I-C-2),

and (I-C-5) are sufficient for calculating the equilibrium composition

in the mixture at one of our specified state points when the mole numbers

of the frozen species (N k 0, m = p + 1, ... , p' and g = s + ,
m

s) have been properly assigned and a complete equation of state of

the mixture is known.

Since is known as a function of the n. 's, the s - c + p

independent equilibrium conditions together with the c stoichiometric

conditions constitute a set of s' + p equations for calculating the

5 I + p unknown equilibrium mole numbers. With regard to the previous

treatment, note that the number of equilibrium .;onditions and the number

of unknown mole numbers for the gaseous species are both reduced by

s - by the inclusion of s - a' frozen species. Here again, the

computed equilibrium composition must be checked to test the validity

A of the a priori assumptions made about the presence (N - 0, = , ... , p)

and the absence (N = 0, m = p + 1, ... , t - s) of condensed constituents.
Im
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The assumptions are valid when the computed equilibrium composition is

found to satisfy the condition N 3 0 and that expressed by Eq. (0-C-50).
S~3

Most of the equations for calculating the equilibrium gaseous

composition (Section 1-B-4a) can be used for our system in partial equi-

librium when the constituent indices are changed to account for the

presence of frozen species. It is necessary to change the indey i with

values i =1 .... , s to f(g), with g = 1 ... , s , and to change

the values of m to range from m = p + 1..., t - s to m = pt +1,

.... t - s. There is no need to change the j index, however, because

it refers to components.

Thus the equations for t(g) (g = , ...( ) are

obtained by substituting f(g) for i in Eqs. (I-B-48), (I-B-49),

(I-B-55), (I-B-60), and (I-B-61). The expressions for g are obtained
.m

by substituting p' for p in Eqs. (I-B-51), (I-B-52), and (1-8-56).

The equations (I-B-50), (1-1-53) , (I-B-54) , and (I-B-59) ased to define

Sr •3 8i,c+lj and ,nc+2 remain the same. Similarly, the equations for

nt•(g•) and rt(g) are obtained by changing i to f(g) in Eqs. (I-B-62)

and (I-0-63), but Eq. (I-B-64) for N is unchanged.
3

The equation modifications required to make the iterative pro-

cedures for calculating the equilibrium composition applicable to a

system in partial equilibrium will now be discussed. Recall that Brinkley's

approach to the equilibrium problem was to construct a set of c + 2

equations

F (. .- 0 (I-C-6)

so that the set of 3 satisfying these equation defines the equilibriumS.3
composition. The definitions of F for the system in partial equilibrium

are as follows:
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F/t = L1 r 3 j= ,i p (1-C-7)

5 P
F - q - #i + N j , p + 1, .. , c (I-c-8)3 3 iJ 18i m=p+l i(m)j M

F =0

c+-C-9)

F =0
c+8

These equations differ from those used for the system in chemical equi-

librium only by the summation term for the frozen condensed species in

Eq. (I-C-8). The iterative equations for F are the same as those
3

presented in (I-B-66), but the following equations for their derivatives,

corresponding to those given in (I-B-70),

gl h-- nx (g) 3 p + 1 ... c (I-C-10)
k

must be modified with the conditions,

= 0 g = S + 1, s., S (I-C-1l)

to ensure that the concentrations of the frozen gaseous species do not

change when the composition of the part of the system in equilibrium is

calculated. The equations for 1V(g), corresponding to those pre-ented

for W in (I-B-71) to (I-B-73), are as follows:

WA A1(g)

i~~ i~l, fs

• ~ + G,% )(% 1 .. .0c • (1 -C -12)

,. k k )A~f( gk)

r- it " 'lsr)r "

(I -C- )
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=b S t ter)quations

~Titr)

r)~ir

2 p

b. State Equations

The state equations are used to calculate the thermodynamic

-state of our system in partial equilibrium when its equilibrium composi-

tion has been determined. Only the equations differing from those

presented in Section I-B-4b will be given.

The equation for the specific volume of the mixture is written

as

N V•+ N V1 (I-C-15)

and the corresponding equation for the specific enthalpy a..

p p S 0
Mo h ElN H* + m N H* + ZnH, + p 0 / + RT(C-n) (1---6)

with the imperfection term defined by Eq. (I-B-77). The alternative

expression for h(r, C" 2 " ) is

Moh ;.Ni+ HI * + H q -

m=p+l a a j=p+l m: +lm P+(m)3

(I -C -17)
S A

+ RT Si n, + W/1 + RT(c - n)

and the equation for the frozen heat capacity of the mixture is
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p -,

Sc f = •NC; + N C*+ : C pPi3 mp+l m Pm J=p+I pi*13)(qj M=i+l i(m~j

•. (I-C-18)

+ (A CO)n + R( -n)

Equations (I-B-82) through (1-B-85) for the specific free energy must be

altered because part of the composition is frozen. Summing the Gibbs'

free energy of the condensed and gaseoub phases of the mixture gives the

specific free energy of the mixture as

P
Mog Z ZN L+ N e + E n ji

3=I33 m=p+1 Mm i1 ini

Following a procedure with Eq. (I-C-19) similar to that presented for

Eq. (1-8-82) gives the following expressions for the free energy

Mg = 3 j=p+l i(j) j IN -plMi'(m) - 3=p+lJi'(R) Ji.Ll*(•))

(I -C-20)

+ 2, - r 0 ix)3 ý3

C 0
MOg/RT = rqJ' + Y q(r + i /RT)

j= 3=p+l j c+l i()

c+l c+ - r• S
+ N T - : () jrj -j 1 (J /RT) (I -C-21)M~~ im 3=1lm j=p+limJi j

S c'-l C
+g=rs+1nt(g)k Yf(g)/' J-10tg)r .3=_lot(g)j, I i)* Q )

The last two summation terms in Eqs. (I-C-20) and (I-C-21) are for the

frozen species, and they disappear if the system is allowed to come to

* equilibrium.

I -C-8



c. State Conditions

The state conditions expressed in (I-C-9) by Fcl F c+2

define which one of the seven pairs of state variables (po,T 0 ), (po,ha),

(po,so), (pcvo), (vT 0o), (vo ,eo), or (v 0 ,so) is specified in the

thermodynamic calculation. The equations used to define F and
c+l

F for these seven different point calculations are obviously the sameS~c+2
as those already presented in Section -B-64c of the TIGER documentation

and will therefore not be given here.

d. Partial Derivatives with Respect to the Iteration Parameters

Partial derivatives with respect to the iteration parameters

are required to evaluate the derivatives F /\k = - D in the equation

Cý 2 DO a F (I-c-22)S • ~~~k=l 3 k k (I--2

which are used to solve the set F = 0(3 = 1, .... c + 2) with the

Newton-Raphson technique in the TIGER code.

. (1) Partial Derivatives of the Mole Numbers

The equations for these partial deritvat'es are derived

from tVe relationships

•(g) = Ln �U(g) g = 1, .... s' (I-C-23)

Strg) - g - r ) l gl, ..0 s' (I-C -24)ý1(g) gflg) f(g) + 1 "

by the procedure given in Section I-B-4d-l of the TIGER documentation.

They are therefore essentially the same as the equations given in I-B-4d-1

and can be readily obtained from them by changing i to i(g), with

g s and r to t(r), with r = 1, ... , s , where necessary,

I -C-9
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* and including the additional conditions for the frozen species. It in

necessary to change the i index in Eqs. (1-41-96), (1-11-97), (p-01-99)

through (l-B-103) . (1-41-107), and (I-11-I~b) , rc i" 1ndix iu Eqs.

(1-8-101) through Eq. 1i-6-103), and to add the following equations for

frozen species,

t)= 0 g =s + 1, ... a s (I-C-25)

fi 0g s s, + 1, ... e I4 -26

C(g) k 0k 1 , c + 2

M m =p + 1 .,p-p2 = 0 .. (I-C-27)

6kk=l, ... c +2

It should be noted that although the subscript i(g) could be used in

(1-B-lIO), there is no need to change the notation because the summation

"is taken over all the gaseous species.

(2) Partial Derivatives of the Pressure

The equations (I-B-Ill) through (I-B-117) for the pressure

derivatives derived previously for systems in chemical equilibrium are

also used for systems in partial equilibrium.

(3) Partial Derivatives for the Condensed Phases

* The partial derivatives of the molar volume, molar enthalpy,

and chemical potential of the condensed species in a partially fruzen

system are obtained by adding the derivatives of the frozen species to

those given for the equilibrium species in (I-B-118) through (I-B-123).

The equations for the frozen species are generated irom Eq. (I-B-118)

through Eq. (I-B-123) by changing j(j = 1, ... , p) to m(m = p + 1,

... p'). The equations for V* are given as an example.
M
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iF iI UM P
.P. .L V*(p,T) = L% In p p = 1, .. p I (I[-C-29)

RT- r - m a *.k

c+2 C+2

"(4) Partial Derivatives of the Specific Volume of the Mixture

The derivatives of the specific volume are obtained by

differentiating Eq. (I-C-15) with respect to the iteration parameters.

They differ from the derivatives for the equilibrium mixture by a sum- j

n.aticoa term over the condensed frozen species as shown, for example, in

the following equations corresponding to Eqs. (I-B-127) through (1-8-129).

p N Inp P
= g +p ( N Ov ' +  -NAre (I -C-30)

RT ,=1 j€l (J=-' 33 1plmm 1uiRT

_P +-'r ( I-C -32)

R icd, 313rc+l c j~l j j p IMi b

. ,• N. m N(e,, r+ ?Nf T c+2 c+2 ~c+2 (I~ -C-2

+ , .N,.0O+ N Ntg, + %

3+1lja3j m--l m.mam RTp

(5) Partial Derivatives of the Specific Enthalpy of the Mixture

Here again, the partial derivatives of the specific enthalpy

of the partially frozen mixture differ from those for the equilibrium mix-

ture by stumation terms for the frozen species. The equations are readily

-' I -C -11-t/



obtained by adding 1 An p/N a to Eq. (I-B-131), by
S- _~I R ',w~'- a mej

adding I rn parc+lk•, • INa rj to Eq. (I-B-132) and by adding

fitN C~'Jto Eq. (t-B-133).
P/ nc+2\m=p+l tmmi

(6) Partial Derivatives of the Specific Free Energy of the

Mixture

The derivatives 4(Mog/RT)/5rjk are obtained by differen-

tiating (l-C-21) as

JI

q+ 4.
* RT k M=+fmký W ~~. g--sl+l 1

(I -C-33)
k 1, *~c

- og I 2
q ~ +-

RT ~P+l 3 m-'p+1 m an it )C+1
(I -C-34)

+= g'1O()t ~(g)c+1)

d C q + N 06
2ks c+2 =p+lixi*() a=Bpc+2 l gA) 1

(I -C-35)

all 0
- X~() 0 l()Ji()

c+2

e. The Nonequilibrium Partial Derivatives

The identities for the complete set of partial derivatives

(Cv, C, ) given in Section I-B-4e of the TIGER documentation apply

to any system whose thermodynamic state can be described by two
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independent variables. Consequently the equations given in I-B-4e in

terns of the iteration parameters can be used to evaluate these deiiva-

tives for the system in partial equilibrium when care is taken to account

for the fact that part of the composition is frozen. This fact Is

automatically taken account of in TIGER, however, because the derivatives

) and ( arc~l) used in the evaluation are them-
c+2 +c÷2

selves evaluated with the values of C calculated for the equiltorium

species and with the values of C 0 for the frozen species.
ik

f. Phase Changes

The treatment of phase changes for systems in partial equili-

brium is exactly the same as that presented for equilibrium systems in

Sections I-B-4f through I-B-4h of the TIGER documentation.

; I:
I I

; I}
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I-fl. THEORETICAL BASIS FOR NONEQUILIBRIUM CALCULATIONS

IN COMIWTEY FROZEN SYSTEMS

1. Introduction

The aethod for computing the thermodynamic state of a nonideal

±:,zterogeneous system with a frozen composition will be considered as a

Z limiting case of the method described in Section I-C for computing the

state in systems with a partially fi:izen composition. Here again the

nonequilibrium states are considered to be in mechanical and thermal

equilibrium and the condensed species are allowed to change phase as in

equilibrium calculations, but the mole numoers of all the species are

fixed. li any one of the seven point calculations for determining the

thermodynamic state, the composition is chosen to satisfy the stoichio-

.•metric conditions, and the calculation is performed with the concentrations

of the species fixed.

2. Calculations with a Completely Frozen Composition

The completely frozen system is described in terms of the indices

introduced to label species in Section I-B-3 of the TIGER documentation
2*

by the conditions p = s' = 0 and p' = t - s. Consequently, the equa-

tions used to perform point calculations for completely frozen systems

are readily obtained by setting p=s =0 and p' = t - s in the

equations presented in Section I-C-2 for the partially frozen system.

For this reason they will not be given here. The equations for C , U,V

and ft are the same as those presented in Section I-B-4e of the docu-

mentation for equilibrium systems. In this case, however, the deriva-

tives are evaluated with ,£_ = 0 for i = 1,... s and k = 1,...-- • ik

c + 2 because all the species are frozen.
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I-E. INCORPORATION OF AN EQUATION OF STATE

INTO TIGER

1. Gaseous Equation of State

The incorporation of a nonideal gaseous equation of state into TIGER

to perform the calculations discussed in the previous sections is by no

means a trivial task. It is necessary to use the imperfection term *
to derive expressions for the thermodynamic quantities required to per-

form the calculations. These quantities include the frozen partial

derivatives of 4Z, 2 In V/ In T, .? In Výý In PA, and a In Výni; the

imperfection integrals C and CT; and the activity coefficients r. and

their frozen partial derivatives. Equations for these quantities are

derived with the Becker, Kistiakowsky, Wilson (BKW) relationship to

demonstrate the incorporation of a nonideal equation of state into the

code. The corresponding expressions for the JCZ2 and JCZ3 equations of

state developed by Jacobs, Cowperthwaite, and Zwisler are well documented

in the final report, "Improvement and Modification• to TIGER Code" written

under Contract N60921-72-C-0013, and will therefore not be presen4 1 here.

The form of the Becker equation of state proposed by Halford,

Kistiakowskv, and Wilson and modified by Fickett and Cowan has become

known a-ý the BKW equation of state. It is written here in terms of the
A A

universal constants G, a , and a as

-- *= x = 1 + xe~x (I-E-l)
A

X), + e OX (I- 1

'C kfi/Mý(T

and

I -E -1
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A 9
k n k (I-E-2)

.ihcre X is a scale factor introduced for coiaputational convenience,

Xk. denotes the covolume constart of the ith gaseous constituent, and
I

k denotes the covolume of the mixture. Differentiating Eq. (I-E-1)

leads to the following equations for the frozen derivatives of 4?,

A

-n0W dInc np 1 (1 A -3)
8 An T (T + d In x 8 An T

- 1 (1 A -E-4)

In - d 4n x - An

k In = n - (I -d n- 5)
bnk d In x n n i

with

d (n ( I -( -6)

d In x

Let e denote the internal energy of the gas mixture contained
g

in a unit mass of mixture, and let E• denote the molar internal energy

of the ith cor..tituent in its standard state taken as the hypothetical

ideal gas at unit pressure. Then the imperfection integral C for the

• * gas mixturd? can be written as

UT g e1 Manri E i Ln pl (I -E -7)

with

n EO i0 -F i8

• . I --E-2• = - • - . . . . .•• . .. .1 . . .. ...... . . .. •• . __•a. .. .... .. ., •• :•• .. .



and the integration performed along an isotherm with the composition fixed

as that of the mixture.

Performing the integration in Eq. (l-E-7) with Eqs. (1-E-l) to (I-E--3)
gives the imperfection integral f for the 3KW equation of state as

A"• = rA xe (--9)T + T +

and the corresponding imperfection integral zI is obtained by differ-

entiating (Eq. I-E-9) partially with respect to T as

n/ r A A ýtX2 2 -- - (1 + Af + ;xxe (I -E -10)T T+L T j

The expression for the activity coefficient is derived with the following

equation introduced earlier

AA

i l on.P

Performing the integration in Eq. (l-E--il) with Eqs, (I-E-l), (I-E-2),

and (I-E-5) gives the activity coefficient i for the BKW equation of

state as

A

r (e.x i xe ( -12)

And differentiation of Eq. (i-E-12) gives the corresponding equations for

"the partial derivatives of ri needed for tne equilibrium calculation as

" See Ref. 3 for a careful discussion of nonideal mixtures and the

standard state.
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6 I n

• and

•x( i "- ,,k~I kjA
-- ;.~~~~ ---- W-=k k xe -5

The thermodynamic identities

--

~~Ln MO 8 In pn(IE-

-1 -pn- nT (I-E-17)
6Inp RTL InT

and

-__. :" -8 ,n ( I -E -18)

are useful f4r checking the expressions derived for r and C with a

particul•r p = p(p, T, n 1 , ... , n ) equation of state.

2, Condensed Equations of State

Since routines for condensed equations of state are still being

developed, this section will be completed at a later date.

"I -E-4
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I -F o ONE--DIMNSIONAL DEI0NATIC-M

1. Chapen-Jouguet Theory of Detonation

a. Brief History

The one-dimensional model of a detonation wave was formulated

by D. Chapman,1 and independently by E. Jouguet? at the turn of the century.

Its purpose was to account for wave propagation in combustible gases at

speeds of the order of 2000 meters per second. Since experiments had

shown the propagation to be supersonic, the front of the detonation wave

was assumed to be a reactive shock discontinuity. The exothermic process

in the discoatinuity was viewed as maintaining the velovity of the wave,

and a thermodynamic-hydrodynamic theory based on this asgumption was

developed to calculate that velocity. The theory combines the energy

yield of the combustion reaction with the conservation laws of mass,

momentum and energy. These well established laws, together with the

equation of state and the Chapman-Jouguet hypothesis, define the problem

and allow completion of the calculations.

Calculated velocities in gaseous explosives are in good agrae-

ment with experiment, which is partly to be explained by the fact that

the perfect t- equation of state can be validly applied. Successful

calclilations of detonatiou velocity in gases led Schmidt to apply the

"Cviapman--Jouguet theory to condensed explosives. Here, however, an

equation of state at several hundred kilobars is required, but in general r

no satisfactory equations are available in this pressure range.

I -F -1



b. Rankine-Eugoniot Relationships

The Rankine-tugonict relationships express the continuity of

- mass, momentum, and energy across a shock discontinuity. Since the rela-

tionships are well known, they will be presented without derivation. Let

S~D, u, and P = I/v denote shock velocity, particle velocity, and

density, and let the subscripts 0 and I denote values at the bottom

and top of th.Q shock discontinuity. Then the Rankine-Hugoniot relation-

ships for a shock p-opagating at velocity D in a stationary material

(u 0 f0) can be written as

pOD p=(D - ul) (I-F-I)

P, - Po pofDl (I -F-2)

plu 1  = POD(e 1 - ec + u) (14-3)

Equation (1-F-1) expresses the conservation of mass, Eq. (1-F-2) expresses

* the balance of momentum, and Eq. (I-F-3) expresses the first law of

thermodynamics under the assumption that the shock process is adiabatic.

Moreover, since the shock process is irreversible, the second law of

thermodynamics is expressed by the following inequality for the specific

entropy, s 1 (el,pl) > so(e 0opo). Combination of Eqs. (1-F-1) and (1-F-2)

gives the equation

"p, - Pc, = (D/v 0 ) 2 (v 0 - v1 ) (I -F-4)

for a straight line in the (p - v) plane that passes through the initial

"conditions (po,vo) and is called the Rayleigh line. Combination of

Eqs. (1-F-1), (1-F-2) and (i-F-3) gives the equation

e- eo j (p, + pO)(v 0 - v1) (I-F -5)

I -F-2



which relates the thermodynamic variables across the shock and is called

the Ilugoniot equation. An initial condition (e 0 p, v,r), an (e-p-v)

equation of state of shocked material, and the Hugoniot equation define

a curve in the (p-v) plane called the Hugoniot curve centered at (po,vo).

The compressive portion of the Hugoniot curve specifies the locus of states

attainable from an initial state (e 4 5 ,p 0 ,v 0 ) by shocks with different

velocities. For a nonreactive shock, the Hugoniot curve passes through

its center point (povO), but this is not so for a reactive shock

because of the energy change in the reaction process. In calculating

Hugoniot curves with Eq. (I-F-5), the heat of reaction is automatically

accounted for by the difference in the specific internal energies of the

standard states of the reactants and the products of combustion.

For exothermic waves, the compressive part of the Hugontot

curve is called the detonation branch of the Hugoniot, and the expansive

part is called the deflagration branch. Since a shocked state must satis-

fy Eqs. (I-F-4) and (I-F-5), the intersection of the Hugoniot curve cen-

tered at (Po,ve) and the Rayleigh line of slope -(D/vr) 2  passing

through (p0 ,vW) defines the thermodynamic state (e1 ,pi ,v 1 ) behind

either a nonreactive or reactive shock discontinuity traveling with con

stant velocity D in stationary material with pressure po and specific

volume vo.

Since the slope of the Rayleigh line must be positive to satisfy

the conservation of mass, and momentum htwever, the detonation branch of

the Hugoniot curve is terminated at the point where el = e0 and v,

vo, and the deflagration branch of the Hugonlot curve is terminated at

the point where h, = ho and Pi = po. These termination points are for

obvious reasons called the constant volume explosion point, and the con-

stant pressure combustion point, and will be denoted by the superscripts
A

e and c. The pressure at the constant volume explosion point can then

I-F -3
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be written formally as p = p(e 0 ,v 0 ) , and the volume at the constant

1Pressure combustion point as v v(ho p0)

c. Chaman-Jouguet Hypothesis

Since the states on a Hugoniut curve centered at (po,vo)

represent the locus of states connected to an initial state (eo,p 0 ,v 0 )

by shocks traveling at different velocities, an additional condition is

needed to determine a unique detonation velocity. In other words, the

three conservation laws, together with a complete equation of state for

detonation products in chemical equilibrium, are insufficient to calcu-

late the variables D, u,, P2, ., el, which characterize the detonation

process. Since there are five unknowns, but only four equations to

calculate them, ai additional equation is needed to complete the theory.

The fifth equation, known as the Chapman-Jouguet condition

D u + c, (I -F -6)

where cl is the velocity of sound in the detonation products at the top

of the shock discontinuity, follows directly from the Chapman-Jouguet

hypothesis that the head of a rarefaction wave at the shock discontinuity

travels at the same speed as the aiock itself.

It follows from the Chapman-Jouguet condition that the stable

detonation wave is represented in the (p-v) plane by the Rayleigh line

(see Figure 1-1) through (p0 ,vo) that has a point of tangency with the

Hugoniot curve. This point of tangency defines t-he compressed state at

the front of the detonation wave and is called the Chapman-Jouguet point.

It is of interest to derive these properties of the Chapman-Jouguet

detonation. Subjecting the differential forms of the (e-p-v) equation

of state and the Hugoniot Eq. (I-F-5) to the condition that de is a

perfect differential gives the folloving equation for the slope of a

lHugoniot curve centered at (p 0 ,vo):

I-F-4



HUGOMIOT CURVE

Ci POINT

CONSTANT VOLUME4
EXPLOSION POINT

RAYLEIGH LINE

TA-413.M•-R

FIGURE 1-1 TANGENCY OF THE RAYLEIGH LINE TO THE PRODUCT £

HUGONIOT CURVE AT THE CHAPMAN-JOUGUET (CJ) POINT
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dp Oe/av) + (p + PO)Sd~pp = _2 (1-F-7)

dv (Ge/ap) - WOv - v 1)
v

Equation (1-F-7) gives (be/bp)v - j(vo - i) $ 0 as a necessary candi-

tion for the slope of the Hugoniot curve to be finite. Elimination of

(a(/iw) and (p + pa) from Eq. (I-F-i) with the identity
P

2 ~p + (?te/-Ov)
2-)2  P (-I -F -8)C = - = (ae,,p)

s v

and the equations for the Rayleigh line written as

(p1. - pa) ( [(D - ul)/vjl) 2 (vo - v1)

gives the equation

(cd(/vj/)'(Be/ap)V - [(D - UP)/vl] ,j(vO - v1)

dp - (1-F-9)

dv (aem2p) v- WOv - vi)

Since (be/up) - J(vo - v 1 ) A 0, combining Eq. (I-F-9) with the
&• v

Chapman-Jouguet condition Eq. (I-F-6), and Eq. (1-F-8) gives the

equation

;2

dv - K) ýg)5

Thus, the Rayleigh line through (po1 ,vo) that satisfies the Chapman-

Jouguet condition is tangent to the Hugoniot curve centered at (po,vo)

and is tangent also to the isentrope passing through the Chapman-Jouguet

point. In other words, the Hugoniot curve has a first-order point of

contact with the isentrope passing through the Chapman-Jouguet point.

"*/ It follows from the tangency condition that the Chapman-Jouguet detona-

tion wave propagates with a minimum velocity. The Chapman-Jouguet

I 1-F -6



hypothesis leads to the conclusion that all unsupported reaetive shoels

discontinuities satisfying the conservation laws of mass, momentum, and

energy are unstable with respect to the discontinuity propagating at the

• • lowest velocity.

2. States Attainable from the Chapman-Junut State

Other processes resulting from the interaction of a detonation

wave with its surroundings are important for understanding the behavior

of explosives. A particular interest in states attained by the reflection

of a shock on the one hand, and cZ a rarefaction wave on the other hand,

into a detonation leads, respectAvely, to the construction of the Hugoniot

curve of detonation products centered at the Chapman-Jouguet point and to

the isentrope of detonation products through the Chapman-Jouguet point.

This Hugoniot curve centered at the Citapman-Jouguet point specifies the

maximum pressure in detonations reflected from metals with increasing

shock impedance; the isentrope specifies the succession of states

attained in detonation products expanding into the atmosphere.

3. Equilibrium Chapman-Jouguet Calculations with an Arbitrary

Equation of State

Our treatment of CJ states will be based on more general

expressions of the jump conditions than those given in Section l-D-lb.

Let w denote the mass velocity with respect to the reactive shock

discontinuity, and let the subscripts 0 and I again denote conditions

at the bottor and the top of this discontinuity. Then the Rankine-

Hugoniot jump conditions expressing the balance of mass, momentum, and

energy across the discontinrity can be written as:

iwi = cwo 11 )

PI + pJw 1
2  = Po + 00w0 2 (1 -F-12)

h, + W1
2  = ho + w0 • (I -F-13)
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The Chapman-Jouguet condition is expressed by the equation

wI = c•(I-.F-14)

with the sound speed c defined by the equations

A

c = -v 2 (dp/bv) Xpv (I-F-15)Ss

and the adiabatic index X related to the thermodynamic coefficients

at and 5 by the following expression given previously in Section I-B-4e,

V'1) ,+l I~~ =1 = _- p ._• (1-F-16)
Svs v T

Combination of Eqs. (I-F-I1) and (I-F-12) leads to the equation

and combination of Eqs. (I-F-I1) through (I-F-13) leads to the Hugontot

equation (1-F-5), I - ea = j(p. + pa)(vo - v 1), relating the thermo-

dynamic states connected by the shock discontinuity. Equations (I-F-14),

(I-F-15), and (1-F-17) can then be combined to give the following

expression

= V0  -(I + 1l (I -F -18)

for the CJ condition in terms of thermodynamic quantities only. Chapman-

Jouguet states can therefore be considered as thermodynamic states

defined by the Eqs. (I-F-5) and (1-F-18). Since TIGER was designed to

perform thermodynamic calculations, these equations are used to compute

CJ points in the cod-s, but an iterative procedure must be used to solve

them because e, and X, cannot be evaluated at a (pl,v 1 ) point

unless the composition is known.

The equations used to step forward from one equilibrium thermody-

namic point calculation to the next in the iterative scheme will now bh-t

I -F-8



derived. Let superscript prime denote a point where the thermodynamic

state has been calculated and the values of fe1
1, P -1, 1 ', T,

-'. ! ',...I are known. Then Eq. (1-F-18) and an approximation to

the Hugoniot equation are used with these values to generate the two

state variables that are required to perform the next thermodynamic

point calculation. Le t Ap = p1 - p, and Av = v 1 - vi1 , then combi-

nation of Eq. I-F-5) with the Taylor series expansion for el about

the point (pj',v 1
1 ),

elz = lI+Ch'iA + At pv t vAff-'v 1 19p

gives the equation

-(e e0) -(p, + p,) (v0 -vt 1 ) Cv.0  v,' 2$ri1
tljP

(I -F -20)

Fp0 +p 1 ' + 20 4kJ'AVAPAV

which on rearrangement gives the approximation to the Hugoniot equation

that is used in the code

A•p = 2(el' - ec) - (p<' + pr)(v, - vi) + 2pC ' -.•L% 4L -AV v• (I -F-21)

v - 2v-,S

Equation (I-F-21) is used to step forward in pressure, and Eq. (I-F-18)

* written as

"- 1 -P
vV17 ( P 1 (I -F-22)

is used to step forward in volume in performing the sequence of

thermodynamic calculations to determine the CJ point,

The procedure for calculating the CJ point on the detonation branch

of an equilibrium products Hugoniot curve of a condensed explosive is

described below. The case when no problems are encountered in the

calculations is discussed first, and then the types of problems that

arise in such calculations.
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I derived. Let superscript prime denote a point where the thermodynamic

state has been calculated and the values of (e1 ¾t p1 , v1 1, TIP

§• ,• i ¾• .} . are known. Then Eq. (1-F-18) and an approximation to

the Hugoniot equation are used with these values to generate the two

state variables that are required to perform the next thermodynamic

point calculation. Let Ap = p P ant! &v = v 1 - v1 , then combi-

nation of Eq. I-F-5) with the Taylor series expansion for el about

the point (Pi 'v 1 )

"el el + ak1 "'p, &v + 1 'vI1 p (I-F-19)

gives the equation

-(e - eo) - (pW + p 0 )(vo - vi t ) CEvo - v1 ' - 20'v' &,p
( I -F -20)

po+ pi' + 2%L'piIA &v APAV

which on rearrangement gives the approximation to the Hugoniot equation

that is used in the code

=2(e• P- eo) - (pa' + p)(vo - v 1 ) + 2p .

"6p V0 - v 1 - 2vI'$i' (1-..21)

Equation (I-F-21) is used to step forward in pressure, and Eq. (I-F-18)

written as

r i -O + K(I-F-22)

is used to step forward in volume in performing the sequence of

thermodynamic calculations to determine the CJ point.

The procedure for calculating the CJ point on the detonation branch

of an equilibrium products Hugoniot curve of a condensed explosive is

described below. The case when no problems are encountered in the

calculations is discussed first, and then the types of problems that

arise in such calculations,

I-F-9
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Determination of the CJ point involves the sequential performance of

an (e,v) point calculation, a (T,v) point calculation, and a series of

(p,v) point calculations. The (e,v) calculation is performed first

with el = e 0  and v, v0  to obtain the constant volume explosion

point (ee ve p eT ' ") as a first approximation to the
e e

CJ point. The (T,v) calculation is then performed to obtain a better

approximation to it. Originally the (T,v) calculat..,n was performed

with T, = T and v, = vo /xeA + 1), obtained by ignoring the
e e

pressure term po/pe' in Eq. (I-F-22), but experience has shown that a

better approximation to the CJ state is obtained by choosing Ti T
e

and v1 - 0.85 v0.

The scries of (p,v) calculations are performed next to determine

the CJ point. The first (p,v) point calculation is performed with

values of P, and v, generated from Eq. (I-F-22) and with the values

of the thermodynamic variables obtained in the (T,v) calculation.

Specifically, Eq. (I-F-22) is first used to calculate v1 , and 'hen

Eq. (1-F-21) is used to calculate the corresponding value of pl. The

state variables calculated at the first (p,v) point are then substituted

into Eqs. (I-4-22) and (I-F-21) to generate the values of P, and v1

for the second (pv) calculation, and the process is contained until

the CJ point is obtained. When Ijav/vji < 10 and lAp/pui < 10

betweer successive calculations, it is assumed that the CJ point has been

calculated successfully, It is clear that the method for calculating the

CJ point on the detonation branch of the Hugoniot can easily be modified

to calculate the CJ point on the deflagration branch of the Hugoniot

curve.

The original iterative scheme for determining CJ points by perform-

ing a series of (p,v) point calculations was developed for gases by

S. R. Briknkley, Jr. A series of computational problems encountered with

I-F-l0



Cd calculations when the crole was being developed, however, led to the

conclusion that this scheme was unsatisfactory for condensed explosives.

L. B. Seely solved these problems by introducing the (T,v) point

calculation to obtain a better approximation to the CJ point in the

early stages of the iterative procedure.

Calculation of the CJ point becomes a problem when the code cannot

compute the constant volume explosion state or the state at one of the

(p,v) points in the series of (p,v) calculations. The constant volume

explosive state could not be computed for nonideal explosive compositions

because it lay in the mixod phase region of one of the condensed con-

stituents. No difficulties have been found with these compositions,

however, since the revision of the routine for handling systems contain-

ing multiple condensed species capable of changing phase.

Difficulties in the (pv) points calculations were found to arise

for the following reasons: (1) the r's do not converge, (2) the tem-

perature is out of range, (3) the n,'s do not converge, (4) the code

cannot find a set of -ondensed components, and (5) the set of equations,

F = 0 with j = 1, ... , c + 2, has no solution because of a local

minimum. In the first three cases, the step size 6v taken to reach

the incalculable point is halved until convergence is obtained, and then

the series of (p,v) point calculations is continued. The last two

cases arise when the values p and v chosen for the (p,v) calcula-

tion are incompatible with the equilibrium states of the system. In

either case, a (p,T) calculation is performed to obtain an equilibrium

(p,v) point, and the iterative procedure with (p,v) points is continued.
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4. Construction of the Hugoniot Curve for an Arbitrary Equation of State

The iterative procedure for constructing a point on the Hugoi tot

curve by performing a series of (p,v) calculations when either the

volume or pressure is specified is based on Eq. (I-F-20).

* Consider first the case when the thermodynamic state at a (p',v')

point i9 known, and the Hugoniot point at a specified volume v1  is

required. Equation (I-F-21) is used to generate the first approximation

to the Hugoniot point. Then the equation

2(e,- eo) - (p,' + po)(vp -. v,)
'"Li(p l (I-P-23)

obtained by setting Av = 0 in Eq. (I-F-21) is used to generate sub-

zequent approximations. The iteration process is started by substituting

the known values of Lv, e', pt l, and 1' into Eq. (I-F-21) to obtain

the value of P, for the next (pl,vj) calculation. This procedure is

continued, using Eq. (I-F-23), until the Hugoniot point is obtained. When

[Ip/pij 9 10 between successive calculations, it is assumed that the

Hugoniot point has been calculated successfully. The gugoniot curve

passing through the point calculated at v, can be readily constructed

by performing a series of such calculations for different values of v.

But then it is convenient to use the equation

Ap= rp 1 "(I + + pl AV (I-F-24)
vo - v1 (l + 2 •')

rather than Eq. (I-F-22) to find the value of p, for the first (p,v)

calculation because the original state that Is known lies on the Hugoniot

curve.
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Now consider the case when the thermodynamic state at a (p',v')

point is known and the Hugoniot point at a specified pressure p,  is

required, A similar procedur, is followed with pl fixed and values

of v, evaluated, using the equatiens for Av obtained from (I-F-20).

The value of v, for the first (pl ,vj) calculation is obtained from

the equation

AV (Pi + PO) (vr v- + # 1  (1-F-25)
Po + p, + 2&1 'p, .

corresponding to Eq. (I-F-21), and values of v for subsequent (Pl ,v)

calculations are obtained from the equation

S•(p_ +.-1 (vo - v,.) 2(ej eo)
AV Po + Pi(I + 20) (I-F -26)

corresponding to Eq. (I-F-23). When the known point lies on the Hugoniot

curve, the value of v for the first (p, ,v) calculation is obtained

from the equation

Av vo - v'(l " + 2')]Ap (I -F-27)

pc + p,(I + 20k(

corresponding to Eq. (1-F-24). As in the previous case, Hugoniot points

are assumed to be determined when ftv/vll ! 10-6 between successive

(pj , -',) calculations.

Construction of the Hugoniot curve becomes a problem when a (p,v)

point is incalculable because of discontinuities associated with a con-

densed species disappearing from the system. In one case, the iticalcul-

ability arises because the code cannot find a set of condensed components;

in the other, because there is no solution to the set of F= 0 equations
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for the specified values of p and v. In either case, the valnes of

p and v chosen for the (pv) calculation are incompatible with the

equilibrium states of the system, and the problem is treated in the same

way as in the CJ routine. A (p,T) calculation is performed to obtntn

an equilibrium (p,v) point, and then tha iterative procedure with

(p,v) points Is continued.

5. Construction of &n Isentrope for an Arbitrary Equation of State

An isentrope is readily constructed by performing either a series

of (sv) or a series of (s,p) point calculations with a constant

value of s. The CJ isentrope is obtained by starting the calculations

at the CJ point.

6. Frozen Chapman-Jouguet Calculations with an Arbitrary Equation of
S~State

Frozen CJ states are readily calculated in TIGER by performing non-

equilibrium point calculations in the CJ routine with the partial freeze

options described in Section I-C of the TIGER documentation. The frozen

CJ states calculated are therefore those in mechanical and thermal equi-

librium, with part of the composition frozen and part of it in chemical

equilibrium. The mole numbers of the frozen species are fixed, but

frozen condensed species are allowed to change phases according to their

equations of state as in equilibrium calculations. Frozen calculations

can easily be performed without phase changes by removing the equation

of state of one of the phases from the library.

The SPECIAL routine for computing nonequilibrium CJ states with two

frozen constituents was developed to provide Picatinny Arsenal with a

capability to investigate nonideal explosives. It was developed primarily

for computing frozen CJ states with part of the explosive composition
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unreacted, but tt can obviously be used for computing CJ states when the

explosive is completely decomposed and two of the reaction products are

!fr,.zvn. The reaction coordinates X, Pnd X2 were introduced to describe

the partially frozen nonequilibrium states. The coordinates X.(i 1,2)

were chosen to satisfy the conditions 0 X . I by setting X. a 2i/mil

where a denotes the mass of species i frozen in I kgm of mixture,

and m denotes the largest value of a, that will be used in calcu-

lations with the particular composition. Since m can be chosen to be

larger or smaller than the equilibrium mass of species i, frozen CJ

states containing more or less of species i than the equilibrium CJ

state can be considered.

SPIECIAL was written to provide a complete thermodynamic description

of frozen CJ states with different values of X1  and X2 . Included in

this description are the parameters listed in the equilibrium CJ routine,

Sthe rate of entropy production, two additional quantities 01 and 0

(which can be preselected), the first and second derivatives of these

quantities with respect to volume along a frozen Hugonlot curve, and

the first derivatives along the loci of frozen CJ states. These first

and second directional derivatives are approximated by differencing

techniques when their explicit expressions are not available.
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