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INTRODUCTION

Accurate prediction of the aerodynamic flow field in which the
F helicopter rotor operates is critically important in the cal~

culation of helicopter air loads and blade response. 1In
recent times, the development of a model for nonuniform inflow
determination was carried out independently, and at about the

% same time, by Piziali and DuWaldt (ref. 1) and by Miller (ref.

E . 2). The many applications of this theory, such as those of

k< references 3 and 4, have made quite clear the importance of

3 wake structure and geometry in determining blade dynamics. 1In
‘ particular, the outboard portion of the wake of each blade,

: which rapidly rolls up into a tip vortex, has a significant

H influence on higher-harmonic loading (refs. 3 and 5) and over-

s all performance (ref. 6).

Since the wake has such a strong effect on the blade loading,
it will obviously strongly influence the performance char-

3 acteristics of a rotor. Tais is especially true if (1) two
overlapping rotors exist in the system so that the wake from
one will pass through the other rotor, (2) the flight con-
dition is such that the wake remains nearby, or (3) large
radial and/or azimuthal variations occur in the loading dis-
tribution so that strong vortices are shed into the wake. The
5 effect of the wake on the stability and control derivatives is
not quite so obvinus. A system which would appear tc be

> stable if uniform inflow is assumed in analyzing the loads

g might turn out to be less stable (or even unstable) if the
actual wake~-induced velocity distribution were used in the
analysis.

A AT N

T

Because of the importance of considering an accurate wake re-
presentation, especially for advanced configurations, a study
has been conducted here tc investigate the effects of the
wake on rotor performance and stability. The basic wake geom-
etry and blade loads programs used here are described in
reference 7.

: Methods for predicting the rotor's aerodynamic flow field have

] recently undergone extensive refinement, primarily due to the

> . need for improved predictions and the availability of high-
speed, large-capacity digital computers. These refinements
have resulted in more realistically detailed models for calcu-

. lation of nonuniform wake-induced inflow. Some of these models
are discussed in references 7 through 1l. (orresponding
blade air load and blade response models have been developed,
so compatible blade loading and response models can be used.
The improved models for the wake-flow prediction have provided
a good qualitative approximation to average measured wake fiows
(refs. 7, 12).
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The determination of waka-iandcduced flow at the rotor blades has !
been the most difficul: part uvr . .e model to develop satis-~
factorily. This is prinavil- a result of the sensitivity of
wake~induced flow to the magniinde of the relatively small dis-
tances betwren the tip vortex of one blade and the subrequent

blade. especi _ly nn rhe advancing side. Similarly, because

of the int2ractions o -5 various wake elements, tae location

of the 1.« ~xd wake s/ ri.>ture also has a significant effect

on blade .z-.iug. Thus a reasonably accurate definition of :
the wak: geimetry is needed in ord..r that wake effects can be

! properly e.aluated.

D ey

A rigor .3 «ruerminas cen 0% *1€ structure and mction of the

wake of . .7Lu0YX 1S aum éx ¢ away arduous task. The flow is un-

steady sand threor dimer.sionul, and allows no convenient basis ,
for linearization. As a recult, in the past the wake has been i
; assumed to be a fixed skewed-hclical pattern for forward ,
flight conditions, and wake distortions have generally been ‘
neglected. Studies reported in refs. 13 and 14 indicated the
possibility of predictinc wake distortion effects by consider-

ing discrete elements of the tip vortex in the wake of a

propeller or heliccrter rotor.

In reference 13 the flow due to a rotor hovering near a ground
plane was approximated by axisymmetric flow due to a succession
, of vertex rings released from the rotor plane. A fairly good
approximation to the physical flow being modeled was obtained.
Near the rotcr plane the interior flow was poorly predicted;
it is believed that this resulted because the inboard wake
structure was not represented. In reference 14, the flow due
to a rotor in forward flight was calculated. The wake of each
blade was represented by a single concentrated tip vortex
having a finite core of rotational fluid. Good agreement with
flow measurements some distance from the rotor plane was ob-
tained. again, however, it is believed that omission of the
inboard wake structure is the reason that large errors in the
predicted flow in or near the rotor plane were noted.

In order to check out the wake geometry analysis developed by
Sadler in reference 7, comparisons were made with the induced
velocity distributions in the wake of a model rotor as mea-
; sured by Heyson and Katzoff in reference 12. The self-deform-
ing wake which was developed by Crimi in reference 14 and
i involved only the tip vortex model of reference 14 produced
good results outside of and at the edge of tha= wake but pro-
vided poor convarisons with the measured values over the inner
5 porticn of the wake, especially up near the rotor. The full-
] mesh model of reference 7 generally compared well with the
measured values throughout the entire region. These improved
induced-velocity calculations along the whole blade will
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provide a better basis for computiag the loading on the rotor.
This full-mesh model then is the one used when determining
wake effects for the cases conside»2d in this report. Some
attempts have been made to account for wake distortion in
blade load analysis. In the calculation of VTOL propeller per-
formance in reference 15, determination of wake distortion was
made a part of the overall calculation. In this wake, consid-
eration was limited to the hover case which made the flow
steady relative to the blade. 1In a similar approach, the the-
oretical results of reference 13 were used in reference 6 to
make an estimate of wake contraction for VTOL propellers in
yawed flight. Although :he procedures used in these studies
are limited to rather special cases, they do indicate the im-
portance of accounting for wake distortions in the performance
analysis of rotors and propellers.

The present program has the capability of predicting wake geom-
etry and wake flow, including the induced flow in the rotor
plane for use in blade loads calculations, for a system of one
or two helicopter rotcrs. If two rotors are used for the heli-
copter model, they may be arbitrarily located with respect to
one another, have blades of different properties, and rotate

in the same or different directions; and the wakes from all
blades are allowed to interact and to affect the induced
velocity distribution on each of the rotor blades. The blade
loads program uses input from both an independent blade fre-
quency and mode shape prediction program and from the wake
geometry program discussed herein to calculate blade loads and
blade response. The forces and moments transferred to the hub
by all of the blades are then computed in order to find the
values for the performance parameters. Rerunning the blade
loads and response program with values for the blade pitch
settings or aircraft attitude which are perturbed from the
trim settings then produces the stability and control deriva-
tives.

The computer prcgrams which were used for this investigation
were modifications of those developed in reference 7. The
major modifications involved were (1) the calculation of the
forces and moments transmitted to the hub, (2) inclusion of
program controls for computing static stability and control
derivatives, (3) use of radial variations for the airfoil type,
chordlength, and nonlinear twist as required by the advancing
blade concept rotor (see ref. 16), and (4) inclusion of air-
foil flap deflection effects in the calculation of aerodynamic
loads for the wake geometrv and blade loads programs and
elastic twist for the wake geometry as was required for the
controllable twist rotor (see ref. 17).
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ANALYSIS

Yt et e

A rotor performance analysis requires that the forces and

moments which are transferred to the hub be calculated. These
forces and moments are the result of the loading acting on the
individual blades of the rotor. 1If the blades are flexible,

then the loading will depend on the response of the blades to .
that loading, and so iterations must be carried out on the
blade 1loads and responses until they become compatible with
each other. The aerodynamic loading will be dependent upon,
among other things, the velocity distribution which is induced
by the wake from the rotor. Thus, a full analysis of the per-
formance parameters and stability and control derivatives
would require that (1) the wake geometry and wake influence
coefficients be determined so that the wake-induced velocities
can be calculated, (2) an interactive blade loads and response
computation be carried out, and (3) upon convergence of

the blade loads and response calculations, the forces and
moments which are transferred to the hub be calculated

using these final values for the loading distribution on the
individual blades. Perturbing the aircraft attitude or blade
pitch settings and rerunning the blade 1loads and response cal-
culations woul” then provide new values for the performance
parameters, and these nrew values would be used to determine
the stability and control derivatives.

Bdo £ % i 2 T
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The overall model and program arrangement is shown in Figqure 1.
The model and problem formulation may be conveniently thought

of in three sets: one dealing with the wake model and associated
calculations, the second dealing with determination of the
aerodynamic blade lcads and response, and the last section
concerned with computing rotcr performance and stability and
control derivatives. The combination of these analyses and
corresponding computer programs arc directed toward the pre-
diction of blade loads and stability and control derivatives

for helicopters in steady forward flight or hover in which the
effects of a free wake and flexible blades are included. One

or two rotors may be modeled, and if two rotors are used, the
blades on one rotor may differ physically from the blades on
the other rotor. Blade-wake interactions are allowed, but no
mass or elastic couplings between blades on a rotor or between
blades on different rotors are allowed. While the number of
hlades per rotor is arbitrary (subject to practical limits of .
the dimensioned variables in the computer program), each rotor
is assumed to have the same number of blades and to have the
same rotor speeacd.

A

Py

[/
b/

4
™
/!
'
2
i
H
it
%
3
&
3
51
i
i
5
#



WAKE GEOMETRY MODEL AND FORMULATION

The wake geometry is calculated by carrying out a process simi-
lar to the startup of a rotor in a free stream. The blades
are located at specified azimuthal and flapping positions,
without any wake vortices. The blades then rotate through an
azimuthal increment, Ay, and shed and trail vortex elements of
unknown strength, but with known positions. The strengths of
the vortices that are shed immediately behind the blade are
then determined, and include the effect of their own self-
induced velocities. An estimate of the blade loads that
result is then determined, without the effects of blade flexi-
bility being included. All vortex element end points not
attached to the blade are then allowed to translate as the
blade is stepped foxward for a time At = Ay/Q, where Q is the
rotational speed. This completes a typical first step in the
wake geometry calculation.

Subsequent steps are similar. In this manner arrays of dis-
crete shed and trailing vortices are generated immediately
behind the blades with strengths which correspond to approxi-
mate blade loads. These arrays have stepwise radial and
azimuthal strength variations so that total circulation is
conserved. The arrays of shed and trailing vortices which are
generated immediately behind the blades are referred to as the
full mesh wake. Comparisons of wake flows predicted using
this wike model for the entire wake with experimental measure-
ments cndicated that retention of shed elements with a coarse
mesh resulted in poor induced velocity predictions, and that
use o: a fine mesh increased running time to an unacceptable
level. Therefore, the full mesh wake was used to represent the
wake immediately behind the blades, and a modified wake model
was developed and implemented for use in the representation of
the remainder of the wake, as shown in Figure 2,

The modified wake consists of trailing vortices only, so vor- i
ticity is not conserved. The wake-induced velocities, wake '
distortions, and other calculations are essentially the same

for both the full mesh wake and for the modified wake portions

of the wake model.

Determination of Wake Geometry

The right-handed Cartesian coordinate system used in the for-
mulation for the wake geometry calculations has the x-axis in
the downstream direction (positive toward the rear of the
helicopter, $=0) and the z-axis vertical and positive up, as
indicated in Figure 3. A second rotor, if one is used in the
model, may be located arbitrarily within this system. Given
the flight conditions and appropriate rotor and control
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parameters, wake geometry calculations are essentially those
required to compute vortex element strengths, vortex induced
flow, and motion of the vortex elements.

[RvTS—

P

: The Biot-Savart iav is the basic relationship used for.calcu-
lating vertex . -nced flows, and gives the fluid velocity g at
a point located Ly the vector §p due to a vortex with -

circulation T as

R ey

r(s)s xds
(s):-— l - emm -
1% T;J—"'"‘—ss
1 i
her = - b :
where _8_1 8 §_

In order to compute total vortex induced flow at a point, the

integral is taken over all vortex elements in the flow. For a ‘
straight element, as shown in Figure 4, with end points lo- '
cated at A and B, the induced velocity, q,r at C is given by ‘

T LR PR

= L -
q, = 7o3 (cos &, cosy)

[

where I' is the strength of the element between A and B. When

computing the vortex induced flow at a point due to an ad- |
joining vortex element, the preceding relation becomes '
indeterminate. The calculation of the induced flow in this
case is discussed in reference 7.

The blade circulations are calculated as follows. The veloc-
ities V and U, normal and tangential to the plane normal to the
shaft axis, are given approximately by

RN T VIR TR TI Y e ,w_:-‘gﬁiyna;‘wa

= - - ( g
V= Velag GB) w 1). :
U=ar + Vg sin ¢ (2)

where g is the shaft axis angle with respect to the free .
stream, positive aft, ag is the forward tilt of the rotor plane
with respect to the shaft axis due to flapping, and w is the

induced downwash due to the wake (w=0 at startup, i.e.,
there is no downwash at the startup).
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Using small angle approximations, the lift per unit span is
given by

L = 1/2pUzccz (3)

where the chord length, ¢, may change with radius. For linear
aerodynamics, the lift coefficient, C,r can be expressed as

c,= ¢, (o =~ oy, ) (4)

o o

where c, is the lift curve slope and may change with radius i
a
due to a radial airfoil distribution, a is the aerodynamic
angle of attack, and ap is the angle of attack for zero lift.
o]
' The aerodynamic angle of attack is the sum of the geometric

pitch, °g' and the angle due to the normal and tangential
velocities so that

1

a = u_ + tan © (V/U) (5)

g

The geometric pitch is the sum of the collective and cyclic
k ancles, the built-in twist, ¢(r), and the elastic twist,
9 ¢e(r,w), so that

g ag =0 - Al cosy - 3131nw + ¢(x) + ¢e(:,w)

The elastic twist can be expressed as
N
¢o(r,y) = a (r) +n=1[?n(r) cos ny + b (r) sin n*]

where a, and bn are the harmonic coefficients of the elastic

twist with respect to y. '

The zero lift angle is essentially the result of camber in the !
airfoil. A flap deflection produces an effective camber, and
thus the zero lift angle will change with flap deflection. A
good representation of the zero lift angle is

#
X
&
7
=
4
4
]
z
3

k4
PR TS TN SR

.. -
iﬁn@.mbm

WP UUP YT ST 77 P aap s WY Y



. <, oz T AP
AR RO AR RSN G P e

e
RN,

i e,

e
g
b e S A0 Ay

Exodzesoreiavind iy

», ﬁ..\\.r s
Crds A

T3 TR (1 R U 2 Y e e Py T A AR

2 gaaxis

Rl v et v

T

Tt

The terms &y (0) and daL /de are illustrated in Figure 5.
0 0
Both oy (0) and duL /d6f are usually negative or zero.
0 0

The Kutta-Joukowski law states that

L= oUry (6)

where Fb is the bound circulation. Combining the various re-

lations given in Equations (1) through (6) and assuming that
V/U is very small yields a bound circulation of

ry = 1/2cczh[:ag-aLo)(nr + stinW) + Vf(as - as)-w]

(7)

For a set of rotor blades which have stepwise radial and azi-
muthal circulation variations, the above equations may be
thought of as applying to each radial and azimuthal location
independently. The wake~induced velocity on the blade, w, is
made up of velocities due to known circulations in the wake
and to unknown circulations at the blade, and may be written

in the form
W(rild’k) = WN(ripu’k) + %:' § GQj (ri’wk)”rz'wj) (8)

where wN(ri,wk) is the induced velocity due to all known wake
circulations, r(rg,wj) is the blade circulation at Tor wj' and
ozj(ri’wk) is an influence coefficient which, when multiplied
by the circulation P(rz,wj),qives the induced velocity of that
‘element at LoV The summations over the indices 2 and j in-

dicate a summation over all radial sections of all blades at
their respective azimuthal positions. Then a set of equations
for all r's may be obtained from Equations (7) and (8) and is

of the form

_ C - o, T, .
rik‘!"u[%% 23ik 23

+ (qq-— qLo)(nri + Vetsin 4 ) + Velag - a?) - WN)] (9)
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Here rik is equivalent to r(ri, wk) and occurs on both sides

of the equation. This equation is solved with a simple iter-
ative procedure. The procedure is as foliows. The terms on
the right-hand side of Bquation (9) which do not involve the
I''s are used as an initial estimate for the rzj's‘ Then the

rik's are evaluated from the cquation, and as each is evalu-

ated, it replaces the appropriate T {(on the right-hand side).

L]
Once a complete set of rik's is determined, it is compared to

the previous set, and convergence is assumed when the sum of
the squares of the differences of the sets of I''s is less
than 0.00005,

After the blade circulation values are determined for a

given azinuthal location of the blades, vortex-induced
velocities are computed at all vortex element end points in
the wake. The blades are then advanced through an azimuthal
increment, 4y, and each vortex end point which is not
attached to the blades is allowed to translate for the time
period Ay/Q, with the resultant velocity due to the free
stream and induced velocities. The entire computational pro-
cess for the new rotor blade positions is then repeated.

That is, new wake-induced and free-stream velocities at the
blades are computed and used to determine new blade circu-
lations. Then new vortex end point velocities are computed,
etc. Each blade advance results in an additicnal set of shed
and trailed vortices being added to the wake. The number of
revolutions of wake retained for actual computational pur-
poses is restricted by an input to the computer program.

Wake Flow and Wake-Induced Velocity Influence Coefficient
Calculations

Wake flow is calculated by using the same basic programming
which computes flow at a point due to an arbitrarily located
vyrtex element, excepc that the position of the point is
specified by input, and the flow is averaged and nondimen-
sionalized. 1Input for the blade loads part of program is
calculated by manipulating and properly subscripting numbers
equivalent to the °2j(ri'wk) and similar numbers used in the

computation of Wi These numbers are used in the solution

of an equation in the blade loads program which is approxi-
mately equivalent to Equation (9). Both the wake flow
calculations and the evaluation of the input to the blade
loads program are computed only after a specified number of
revolutions have been done. Thus, the input (including both
c and T type quantities as discussed above) from the wake
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geometry program to the blade loads program is based on
approximate specified blade motions and an approximately re-
petitive wake. The repetitive nature of wake-induced effects
has been determined by visual checking of data to occur
after approximately QR/an rotor revolutions.

BLADE LOADS AND RESPONSE MODEL FORMULATION

The right-handed coordinate system used in the calculation of
(perindic) blade circulations and blade response is located
such that the z~axis is fixed to the shaft, directly upward,
the x-axis is downstream, blade azimuth angle, y, is mea-
sured with respect to the x~axis, y is positive on the
advancing side, and the distance radially outward from the
axis of rotation on a given blade is denoted by r.

Blade Natural Frequency and Mode Shape betermination

The program which calculates blade natural frequencies and
mode shapes is an independent program which was developed by
RASA and could be replaced by any apprcximately equivalent
program. The necessary output for any such program in order
that it might be used as input for the blade loads program
ie the natural frequencies together with the corresponding
mode shape quantities, i.e., flapping and edgewise displace-
ments, slopes, shear forces and moments, and torsional
deflection and torque. These mode shape quantities are to be
defined at the location of the point masses of the lumped
paramecer model, with mode shape magnitudes adjusted to give
unity generalized mass. The lumped parameter model lengths,
masses and inertias, mass eccentricities, offsets of elastic
axis from pitch axis and midchord, and twist distribution
(but not modal bending or torsional stiffnesses) are used in
the blade-response program.

The blade frequency program developed by RASA is described

in references 18 and 19, and the model used, development of
input data, and operation of the blade frequency program are
discussed in more detail in those reports. Briefly, the
model used for the real blade« is a lumped parameter approxi-
mation consisting of uniform massless elastic beam sections
under tension due to centrifugal loads, with point masses and
inertias located at the ends of the massless lengths. A
modified transfer matrix approach is used in determining the
natural frequencies and mode shapes. (See, for example,

ref. 20.) The natural frequencies and corresponding mode
shape quantities are used in the calculation of the response
of the flexible blades to aerodynamic and inertia loads in
the blade loads and response part of the program.
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Determination of Aerodynamic Loading

The aerodynamic loading at a given radial and azimuthal sta-

: tion is derived from the flow experienced by the blade

! section, as sketched in Figure 6. The geometric incidence of
the section with respect to the rotor plane is the sum of the
rigid-body pitch angle 0(y), blade twist ¢(r), and torsional

. deflection ¢e(r,w). The velocity component tangent to the

rotor plane, U,is given by
U= gqr + Vf cos a siny (10)

and that normal to the rotor plane, V,is given by

v = Vf sin ag + hir,y) -~ w-w_ - Vf cosa cosysing

c
(11)

wvhere h is the plunging velocity of the secticn due to the
response of the blade, and w is the chordwise average wake-
induced downwash, and is given by

. W(ri,wj) = 2‘:‘ ’zl omn(ri'wj) I‘(rm,'bn)

where omn(ri,wj) is the wake-~induced downwash at (ri,wj) due :

to unity bound circulation for blades which were located at
(rm,wn)(rm,wn+Ns), etc., w, is the climb rate, and 8 is the
blade flapping angle relative to the shaft.
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As is indicated in Fiqure 6, the airfoil section is re-~
placed by a vortex distribution of strength y(r,¢,y) along
the chord. This distribution is adjusted to make the flow
at the section tangent to the chord, which relates I to the
w and yields the basic relationships governing the aerody-
namic loading. More details of the derivation of I are
given in reference 7. The resulting equation for I is
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blade semichord at Lo feet

c =« lif+x coefficient
2 2 172
w =W +vy/

A = e(w""l) - e(wj"l) + ¢e(rile+l) - ¢e(ril¢’j_l)

]
8(y) = gsum of collective and cyclic pitch angles,
radians
¢e = torsional blade elastic deflection, radians

In equation (l12a) the lift coefficient, Cyo is a function of

angle of attack, a, and Mach number, M, as defined by ar:o-
dynamic coefficient subroutines. The total angle of ail.tack,
a, is defined by

-1
a(ri.wj) = e(wj) + ¢e(ri,¢j) + ¢(ri) + tan ‘Vij/Uij)
(12b)
Equations (l12a) and (12b) represent a set of nonlinear
equations in the strengths, I'. The nonlinearity is a result
of nonlinear aerodynamic coefficient definitions, and of the
nonlinear dependence of T upon itself (as contained in w and
its contributions to V, then o, and finally cl). Solution

of Equations (12a) and (12b) is therefore accomplished in an
iterative manner, and is discussed in detail in reference 7.

The lift, drag, and moment per unit span are readily calcu-
lated once blade circulations have been obtained. Resolving
the forces into components normal and tangential to the rotor
plane, F, and Fx' respectively, results in the following ex-

pressions:
F = pb, |ul{Uc, + Ve )]
zij il 1 Gl i3
r
Dbiir, r

(13)

(14)
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where cq = section drag coefficient and Cp = gsection moment
coefficient (about midchord). The moment about midchord, My,
is given by

Mo(x.,v.) = pb 2 2{c uz) - bi (r - I"--1)
A IAL oR4 me 'i5 T BEE' 41 e |
2
31b
- o -2a +a + (g, - E. 4)/2
2 g a._ j+l j-1
g(at) | I+1 3 i-1 i
(15)

where ¢ = local blade spanwise slope, radians.

Calculation of Aerodynamic Coefficients

Three types of procedures are available in the blade loads-
response program for determining the lift, drag and pitchiag
moment coefficients at the midchord of the airfoil. The
first type uses polynomial curve fit techniques, the second
type interpolates linearly on angle of attack, and the third
type performs a triple-interpolation for angle of attack,
Mach number, and flap deflection.

Curve fit techniques have been applied to the lift, drag, and
pitching moment data for the NACA 0012 and NACA 0015 in order
to determine the coefficients of polynomials which would
closely fit this data over various ranges of the angle of
attack. The data (and consequently the polynomials) is for
incompressible aerodynamics and covers all angles of attack
from -180° to +180°. Corrections for compressibility are

made by dividing all terms by v 1-M2, Further details are
given in references 7 and 21 for the NACA 0012 airfoil, and
in references 22 and 23 for the NACA 0015 airfoil.

The airfoil shapes used on the model for the wind tunnel
tests for the advancing blade concept rotor ranged from an
NACA 0006 at the tip to an NACA 0030 at the root. Among the

13




airfoils tested and reported in reference 24 are the NAGA
0006, 0009, 0012, 0015, 0018, 0021, and 0025 airfo“ls. The
curver for the sectional lift, drag and pitchiny moment co-~
efficients that are given in reference 24 were uc=3 to compile
tables which could be used for the ABC rotor. Usiang a linear
interpolation to find the lift coefficient, for example, at

a, which lies between oy and @ 410 We find that

c,(a) = c,(a;) + daLcﬁ(ai,,l) - ey lay)]
= (1-d ) c (a;) +d c (a; ) (16)
where
a = Q.
8, =i
@ ®i+17%

The data is for incompressible tests, and compressibility was
included through the relation

c, (a,;M) = ¢, (a)/ /1-m2

Values for C4 and cm were obtained in the same manner as des-
cribed above.

The tests in reference 24 were conducted at angles of attack
from -2° to 280, The angles of attack required by the pro-
gram in cases considered thus far have not exceeded the

-28° to +28° range, and no attempt has been made to extend
the tables set up for input at this time.

A flap is used to control the twist on the CTR, so the aero-
dynamic coefficients for this rotor vary with three factors:
angle of attack, Mach number, and flap deflection. Tables

were compiled and presented in reference 17 for C,r C4 and c

for the modified NACA 23012 airfoil with and without a flap.
The tables covered angles of attack from 0° to 360°, Mach
numbers from 0.3 to 0.8, and flap deflections from -~100 to
410°. For the sections of the blade without a flap, the co-
efficients will depend on angle of attack and Mach number.
Equation (16) can easily be extended to include an interpo-
lation on Mach number, so

m
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cz(a,M) = (l-da) cz(“i'uj) + d c, (u l,M ) +d

M

[(l-du) cl(ai,Mj+1) +d «S1 (a, —(l-da)

1+1’M3+1)

°z(“i'"j) d oC (°l+1'M )]

or

cl(a,n) = (l-d ) (l-d ) cﬁ\a ,M ) + d (1- d ) c, (a l'M )

+ (l-da) d vCe (a, ,M +1) + dudm°i( i+1'Mj+1) (17)
where
M-M.
8y = §ioW;
M Mj+1 3
5 For Mach numbers below 0.3, the flow is incompressible, so

the value given for M = 0.3 was used at all Mach numbers be-
low 0.3. Values of the coefficients for Mach numbers above
0.8 were obtained by extrapolation from the value given at
M = 038.

Finally, extending Equation (17) to include interpolations
for flap deflection and using a subscript "i,i,k" to indicate
a tabulated value at O Mj, and sf will yield

k

Cl(a,u,6f)

(1-d,) (1-d) (1-dgde,  +d (1-d) (1-d )c
i3,k
+ (1-4 )4, (1-d)e + (1-d ) (1-d_)d,c
L., .
¢ By 541, a MUTETh 5 kel

+ A dM(l-d )c + d (1-4.,)d_c
L .
¢ £ i+l,3+1,k M e ‘i+1,j,k+1

i+ 1,5,k

+ (1-d )da_d.c +dd,d.c p
oML eLkel S M E T sk

o,

)RS

(18)
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Lumped Loads

[

Conversion of the aerodynamic loads to a form suitable for
response calculations is done by lumping the distributed
loads at the mass points of the lumped parameter blade model.
The distributed aerodynamic moment is transferred to quarter-
chord; then the distributed loads are integrated, using a ;
straight-line approximation between load points, to obtaigh

lumped loads at the mass points. The drag force at the i=—
mass point, for example, is

Riv1
F;(r) dr

where Ri and Ri+1

between M and m; respectively, and F;(r) is the straight-

line approximation to the distributed drag load. Similarly ,

the lumped moment, my; , and lift force, fz , are computed !
i i

from My and Fz. Coordinate transformations are then applied

1 which result in loads in the local blade coordinate systen, i

2 : and are given by

are midway between masses m;, and m, ; and
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where z = distance of the elastic axis forward of quar-
3 ter chord, feet
o = angle between chord and the plane normal to the

shaft, positive for airfoil rotated nose up,
radians

The force at the iEE mass station and jsh azimuth, in the

direction of blade flapping motions, denoted by Q. ¢ is

ij
given by
2 .
Qv.." m,Q sxn¢ij (hi + €, COS °ij) + miec.[ei +
ij J
h~c05(¢ij - eoj)/cos "’ij] - 2miawijais:m ¢y5 + F

J Vij

+ (] L3 3 - i 3 » i i 9 L3
mlfg(cos ¢ljcos ag sin ¢1351n oy 51nwlj)

Here, the first term is the steady acceleration force on the

.th . -
i— mass due to rotation, the second term accounts for con-

trol angle acceleration, the third term is a gyroscopic
coupling term, the fourth term is the aerodynamic load on the

18D nass, and the f£ifth term is the weight of the il blade

segment. The in-plane noment is given by

= 2 - ] i ‘. s 33 ’
Qwij m, 9 e4T, ZQec[IJ sin ¢ij + mielhi sin 8y/cos 913]
- 29¢ij10 + 2minei(vij51n ¢34 * Wjyc08 ¢ij)
and the in-plane force is
= 2 - 9 -
Qwij m, 8% cos ¢ij(hi + e, cos ¢ij) mh6 sin(¢ij 8¢)
/cos °ij

bnd N N . . - N i . . +
2mlael?ljcos °1j + Fw.. mlfg(51n ¢1]cos g

1]

cos¢ij51n a, sin wij)

3
b
N
] %
i 1
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Finally, the torsional moment is given by

= -2
Q Q<4sin oij[Io cos ¢,

.+ m.2h,] - 6 1D +
¢ij ij iti (o

miaihicos (¢ - eo)/cos¢ij]

ij

+ 29w1j81n °ijI° + M - misifg(cos ¢ijcos ag -

sind

ij as ij

In the preceding relations

fg = =32.172 ft/sec?
h, = the horizontal separation between the elastic axis

and the pitch axis at the iEE station

Qij = the total average angle between the chord at the iEE

radial position and the planz normal to the shaft

ey = the chordwise separation ¢of the elastic axis and

center of mass and the cyclic pitch, ec,is given by

ec = -BlSant - Alroth

where
Al = lateral cyclic pitch, radians
Bl = longitudinal cyclic pitch, radians

Also, ¢i is the total uverage angle between the chord at the

iEE radial position and the plane normal to the shaft, and r,
is the radius to tlie i-ti-Il mass.
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Blade Responses

Generalized Forces and Coordinates

The generalized forces acting on each normal mode are
computed for each azimuth, according to

. (K) (K)
F (t) =Jo ¢z +] [Q A + Q. A
K g:’KJJ i1V Wi Wy
(K) (K) (K)
+ A + A + A
%%y Py %"y

where ?J is from the previous iteration,

o = -« Cc.. A (X) A () for J # K

KJ D
0 ¢1 ¢1
kK = 2 o Yx
ox = the average aerodynamic damping coefficient for

the KE-}l mode (read as input)

= the mode shape quantity for the "g" type of

clastic deformation, at the iEE radial location, for

the KEE mode

Cpe = the torsional damping associated with motion
0

defined by A¢ (K). The OkJ terms may be thought of as
1

damping coupling terms.

The governing equation for the KEE generalized coor-
dinate, Sk is given by

2 -
g + 2°K“K tg *owf oy = FK(t) (19)

L pdelas Wt
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The damping term, ¢

TR

K is defined in terms of the mode

ix shape quantities and o

; as
A ‘ K

LA AR AR
P R

AR

It should be noted that viscous~type damping of any

motion (torsional, flatwise, or chordwise) may be repre-

sented by a similar expression. The solution of this ‘
equation is obtained in integral form. The solution =
assumes periodicity of both forcing function and response.
The integral relations for the generalized coordinate,

% and its time derivatives are given in references

7 and 22,

pasead BT

St e

¥

2553

-

The average aercdynamic damping coefficient term,zaxwx,
occurs on both sides of the governing equation for ;K(t).

Since an iterative solution method is used in computing
i a compatible set of loads and responses, this term ef- .
fectively cancels at convergence. &

Blade Response Quantities

Response variables are computed from

vit) =] AV(K) L (£)
K
(K)
sie) =3 a B (e

and similarly for w,é,¥,y, and 4

where v

flatwise blade deflection ‘ ;
w = chordwise blade deflection

¢ = torsional blade deflection, radians
4 = v/3r, radians

¥y = 3w/3r, radians
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Conversion of the response data to a form suitable for
loads calculations is then done by computing loads
quantities at aerodynamic load positions by linear inter-
polation of response quantities at the mass pointg. Thus,
t
’

response quantities, i.e., the plunging velocity
pitch o, and the slope ¢, are given by

he

h=Vcos ¢ -wsin ¢ + za$ cos ¢

+ (za - h)(éc - 2E) + gV, cos a, cos ¥,

(20)
a = shaft tilt angle, positive aft
og = 8g + 0, + ¢, (21)
and
E == (fcos ¢ + ¥ sin ¢) (22)

These values of 1, “g' and £ (computed at all aerodynamic

radial and azimuthal load points) are used in the next
iterative calculations of blade loads.

Once convergence has been established between blade loads
and response, blade shears and moments are computed in
terms of the normal mode and generalized coordinate quan-
tities according to

(K)
T, (t) = An g, (t)
i % i K (23)

i= 1'2'.."NR

for the torsional moment, T, and similarly for other
moments, shears, and motions.

DETERMINATION OF PERFORMANCE PARAMETERS AND STABILITY
AND CONTROL DERIVATIVES

Transfer of Forces and Moments to the Hub

A single blade analysis is conducted by the program during
its loads-response iterations. Upon converging, the normal
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: and chordwise shears, moments, displacements, velocities,
etc., are computed for each mass point along the blade and
for each azimuthal position. A harmonic analysis of the
shears and moments a*t the root of the blade is then carried
out. For articulated blades the blade root is taken to be
the location of the flapping hinge(s), and for cantilevered
blades (such as those for the ABC rotor) the root is the hub.
The axis system for the shears and moments is normal to and
in line with the cl.ord of the airfoil, as shown in Figure 7.
Resolving these shears and moments into a system in line
with and normal to the shaft then requires that

Wahod

2
- ewer

=
|

MZ cos 8§ + MY sin 6

=
[}

M cos 8 - M_ sin o
Y Y Z

<
[}

b V cos o0 +V_ sin o
Y Y 2z

<
i

V, cos 6 - Vy sin @

A Fourier series representation for the hub shears and mo-
ments for each individual blade can be written as

M, =M, + ) [hz cos ny + M, sin n%} -
o n=l-"c, Sn

with similar relations for My, Vy, and Vz.

Following the tables and methods given in reference 25, the
Fourier coefficients for the root shears and moments of each
3 blade are used to determine the combined effect of all of the
2 blades on the forces and moments transmitted to the hub.

¢ Thus, we find that

ﬁ thrust = Nb Vyc ;
° 3
? drag = —1/2 Nb VZ
i Sl .
3 pitching moment = 1/2 Nb[?z t M, =V xroot.]
c -] c
5 1l 1 1l
; rolling moment = 1/2 Nb[%z - M¢ - Vy xroot]Sign(Q)
; 8 c 1
’ 1 1l 1l
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The rotor torque is determined from distribution of aerody-
namic drag along the radius of the blade, so

R
ijo d(r) r dr

torque

NR+1 1
1/6N, ] A3 (ry, +2ry) + dy (21,41 y) (ry417%5)
i=0

where Nb is the number of blades, dj is the drag acting at rj,
and NR is the number of radial load points.

Stakility and Control Derivatives

For stability and control, the C.G. of the aircraft is the

reference point to be used. Thus the forces and moments at

the rotor hub(s) must be transferred to the C.G. As one

example, this transfer is especially important for pitch

control for a tandem-rotor system where the pitching moment

consists almost entirely of the thrust of each rotor times

its offset from the C.G. Thus, pitch control for a tandem

rotor system is achieved through the differential collec-

tive pitch between the fore and aft rotors. \

The stability and control derivatives are computed by per-

turbing the shaft angle or a blade pitch setting from its

trim value and then dividing the resulting change in the

performance parameters by this perturbation. For example,

consider the principal thrust control for a single-rotor

helicopter. In this case the collective pitch setting would

be changed from i

6 to e + 68 ,
o] [0} [o]
and the thrust (as well as all other forces and moments) is
recomputed. Then the thrust control is given by
aT _ T(e° + 690)-T(9°)

26 56
[o] [o]

oT

The perturbation variables (e.q., 660, §A, aBl,) must be

large enough so that round-offs won't cause an error by try-
ing to find a small difference between two large numbers and
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yet not so large that nonlinearities will be introduced.
Perturbations of 0.2 deg to 0.5 deg have been found to fit
the forementioned requirements well. Changing the lateral
and longitudinal cyclic pitch settings provides the neces-
sary values for finding the roll and pitch control which is
available from the rotor on a single-rotor system.

For dual-rotor systems, differential pitch settings can be
used between the rotors in order to achieve the desired con-
trol. For example, differential collective pitch is used

for pitch control on a tandem rotor. Some differential col-
lective may be required to achieve trim conditions.

Changing this differential pitch then provides the pitch con-
trol from

2PM _ pnheo + a(Aeo)]—pM(Aeo)
348 5(A907 '

Thus it is apparent that in order to find the stability and
control derivatives for rotor systems in general, one must
(1) determine the values for the performance parameters

when the aircraft is trimmed; (2) perturb the shaft angle,
blade pitch settings, and differential pitch settings (for
dual-rotor systems), one at a time, and recompute the perform-
auce parameters corresponding to these new settings; and
then (3) divide the performance changes by the perturbations
made on the settings to find the various derivatives. The
derivatives of all of the performance parameters with re-
spect to all attitude and pitch variables will then have
been determined. The principal control derivatives of in-
terest for the various rotor systems are given in the
following table.




Rotor type |thrust pitching rolling yaw
moment moment moment
S

ingl *
ngle 90 B, A TTR
[tandem 60 ABO Ar AR,
coaxial o, A, AB; A®
pounterrotating °
Bide-by~-side 8, B, L AB,

*TTR is tail rotor thrust
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RESULTS AND DISCUSSION

The cases consicdered in this investigation included (1) re-
presentative flight conditions feor five different types of
rotor systems operating at advance ratios from 0.0 to 0.5,
(2) three cases for the ABC rotor at y = 0.208 for compari-
son with experimental results, and (3) three cases in hover
for the ABC rotor system. Representative characteristics
of the five rotor ssstems are given in Tables 1-4, and the
flight conditions .nd trim settings for each case are tabu-
lated in Table 5. Discussion of the results obtained for
the various rotor systems is separated into three areas:

1) The effect of the deformed wake on the performance
parameters for the five rotor systems at the par-
ticular flight condition considered for each.

2) The effect of the deformed wake on the performance
of the ABC rotor system at p = 0.208 and in hover.

3) The effect of the deformed wake on the stability
and control derivatives

a) for the conventional, tandem, TRAC, and CTR

! rotor systems at their particular flight
conditions

and

b) for the ABC rotor system in forward flight
(including comparisons with experimental re-
sults) and in hover.

EFFECTS OF DEFORMED WAKE ON THE PERFORMANCE CHARACTERISTICS
OF REPRESENTATIVE ROTOR SYSTEMS

The five types of rotor systems analyzed in this study were
the conventional, single rotor, tandem, TRAC, CTR, and ABC
systems. The characteristics of each representative rotor
system are given in Tables 1 through 4. The conver ional
rotor was the articulated rotor system of the H-34 helicop-
ter as described in reference 26. The tandem-rotor system
used two H-34 rotors orientated to provide an 80% overlap
between the forward and aft rotocrs with a 5.67-ft (0.20R)
vertical separation. The representative Telescoping Rotor
AirCraft system was simulated by using the XH-51 helicopter
blades with a 40% cutout. The characteristics of the Con-
trollable Twist Rotor were obtained from reference 17. The
aerodynamic center was assumed to lie at 25% of the total
chord and thus was 2 inches behind the blade elastic axis
for the blade sections with the flap. In addition, it was
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assumed that the first torsional frequency of the blade was
4/rev. A cambered airfoil is used on the CTR, so the zero-
lift angle was non-zero. This zero-lift angle and its
variation with flap deflectio.. are given in Table 4 along
with the spanwise location and chord length of the flap.
The Advancing Blade Concept system consists of two counter-
rotating, coaxial, cantilevered rotors. The blades which
were built for wind tunnel testing are described in refer-
ence 16. The nonlinear built-in twist and the radial
distribution of the airfoil shape for the ABC are given in
Tables 2 and 3.

The flight conditions shown in Table 5 were chcsen so as to
provide a representative case for each rotor system and to
cover advance ratios from hover to y = 0.5. The trim
settlngs for blade pitch and the blade flapping response
given in Table 5 were obtained from reference 26 for the

H-34 helicopter, from trim runs with the U, S. Army's
Rotorcraft Flight Simulation Program, C-81, for the TRAC

and tandem systems, and from reference 17 for the CTR.
Reference 16 provided blade pitch settings which were the
average value between the upper and lower rotors for the ABC.
These average values were used as starting points for a manual
trial and error trim procedure that was followed to find the
individual pitch settings of each rotor.

The performance parameters calculated by the program de-
veloped herein with and without deformed-wake effects
included are given in Table 6 for the conventional, TRAC,
tandem, and CTR rotor systems.

A uniform induced velocity distribution was used for cases
run without deformed-wake effects included. This uniform
inflow is computed from momentum considerations, and no
wake effects are included in this type of model. When de-
formed-wake effects were included, the radial and azimuthal
distribution of the induced velocity was computed from the
known positions and strengths of the vortices in the wake.
Wake effects, then, show up when the results obtained with
the nonuniform wake-induced inflow are compared with the
results gained assuming uniform (i.e., momentum) inflow.

The weight of the H~-34 during tne flight tests varied be-
tween 11,200 and 11,805 1b (see Ref. 26). The thrust of
11,878 1b shown in Table 6 with wake effects included and
using measured trim control settings is in excellent
agreement with the measured values. The wake did not have
a significant effect on any of the performance character-
istics for this particular flight condition for the H-34
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since it represents operations at moderate values for the
loading, advance ratio, and shaft tilt of a sin¢gle-rotor
system where the wake effects would be expected to be small.

Trim settings for the TRAC and tandem-rotor systems were
obtained by running the trim option of the C-81 program for
each system. The performance parameters computed by the
program developed herein using uniform inflow are in fair
agreement with those computed by the C-81 program. Better
agreement may have resulted if blade mode shapes had been
input to the C-81 program to account for blade flexibility
during its trim iterations.

The wake remained close to the rotor in the hover condition
used for the TRAC, and results shown in Figqure 8 indicate

a drop of 8.7% in thrust and 24.8% in the power required
between the case for uniform inflow and the case using the
predicted distribution of the wake-induced velocity for the
same control settings. Retrimming the rotor with wake ef-
fects included would require that the collective pitch be
increased in order to recover the thrust lost due to wake
effects, The resulting increase in required power might
?r%gg it back up to the 1029 hp which was needed for uniform
inflow.

The trust produced and power required for the CTR with and
without wake effects included are presented in Figure 9.
Although the thrust decreased by 7.1% with wake effects in-
cluded, the power requirements increased by 15.4%. More
rlight conditions with subsequent retrimming with wake ef-
fects included need to be considered in order to further
investigate and explain this power increase with thrust loss
when wake effects are included. These changes are quite
significant even though the CTR is a single, articulated
rotor system and the advance ratio and shaft angle are
fairly large, seemingly reducing the wake induced effects.
This apparent reversal is probably due to large radial and
azimuthal variations in loading for the CTR, especially
along the flap. This variation would produce shed and
trailing vortices for the CTR which are quite strong and
thus cause strong wake effects.

The overlap of the rotors on the tandem system produced a
strong wake interaction over the aft portion of the lower
rotor and over the forward portion of the aft rotor. The
wake from the aft rotor swept through the aft portion of
the forward rotor and significantly reduced the induced
downwash in this area. The result was a 21.9% increase in
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thrust and 42.5% increase in power required for the forward
rotor wren compared to results obtained assuming uniform in-
flow. The wake from the forward rotor moved under the aft
rotor and increased the downwash for the aft rotor. The
wake interaction effect was smaller on the aft rotor than it
was on the forward rotor since the wake is farther away from
the blades, and therefore th: thrust and power drops were
only 8.6% and 11.9%, respectively. These thrust and power
changes for both rotors as well as the pitching and rolling
moments at the hub of each rotor are illustrated in Figure
10.

EFFECTS OF THE DEFORMED WAKE ON THE PERFORMANCE CHARACTERIS-
TICS OF THE ABC ROTOR CONFIGURATION

The performance parameters which were computed for each
rotor in the ABC system are listed in Table 7 for the vari-
ous flight conditions. The results for the forward flight
cases are shown in Figures 11 through 14, and the hover
cases are shown in Figures 16, 1?7, and 18. Since the ABC

is a coaxial rotor system, the loading distribution was
significantly different on the lower rotor when comparing
the results obtained with and without wake effects included.
In hover, the wake from the upper rotor passes through all
of the lower rotor and creates a highly nonuniform upwash-
downwash distribution. The tunnel tests in forward flight
were conducted mainly withk the shaft being vertical or
tilted aft. This caused the wake from the upper rotor to
remain primarily above the lower rotor, and in scme condi-
tions the wake from the lower rotor also moved up. In these
flight conditions, a large thrust increase would be obtained
on the lower rotor, and it would go into an autorotation
mode and produce power rather than use it.

In Case 1, the rotors were cperating at an advance ratio of
0.466 and the shaft was vertical. No significant change
occurred in the thrust or power of the uvpper rotor when the
effects of the deformed wake were included. The changes
shown in Figure 11 for the lower rotor were a 24.5% in-
crease in thrust and a 40.4% decrease in power. The
pitching and rolling moments for both rotocrs increased, and
the net result was a change of the total pitching moment
from zero to +5100 ft-lb and a change of the total rolling
moment from -4000 to +480C ft-1b.

The advance ratio for Cases 2, 3, and 4 for the ABC was
0.208, and the chaft was tilted aft by 4° for Cases 2 and
3 and 8° for Case 4. The result of the calculations con-
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ducted for these flight conditions indicated a significant
increase in thrust, especially for the lower rotor when the
wake effects were included For the lower rotor, the
change from power required (i.e., pusitive horsepower) with
uniform downwash to power produced (i.e., negative horse-
power) with the actual wake-induced upwash distribution is
obviocus in Figures 12, 13, and l14. This power switch is
due to the aft shaft tilt which causes the wakes from both
rotors to be swept above the lower rotcr. This causes an
upwash on the lower rotor, thus placing it in an autorota-
tive mode of operation.

In Case 2 the shaft angle was 4° aft and the rotors were
trimmed to yield a total thrust of 14,700 1lb., This smaller
shaft angle and thrust caused the wake to remain nearby,

so it had a significant effect on both rotors. The results
shown in Figure 12 for Case 2 indicate an increase in

thrust of 15.0% for the upper rotor and 44.2% for the lower
rotor. The power required by the upper rotor decreased by
54.1% when the wake effects were included, and the power

for the lower rotor changed sign (i.e., negative horsepower).
The pitching and rolling moments increased for both rotors
with wake included. The net result was a change from

- -2300 ft-1lb to +3350 £t-1lb for the pitching moment. The

9 net rolling moment changed from -7400 ft-1b to +7700 £ft-1lb.

- The thrust was increased to 22,000 lb for Case 3. This
b caused the wake to move farther away from the upper rotor,
: and thus, except for the rolling moment, the wake had only
a slight effect on the performance parameters for the
5 upper rotor. The wake effects for Case 3 caused an up-
wash on the lcwer rotor, and the result, as illustrated in
k Figure 13, was a 29.2% increase in thrust for the lower
1 rotor and a change in sign for the power required. The

3 thrust and power remained essentially unchanged for the
; upper rotor. ‘The left roll prcduced by the upper rotor de-

i 2 creased by 22.9%, and the right roll produced by the lower
] . rotor increased by 33.8%. The net change in rolling moment
| : then was from -11,250 ft-1lb to +12,000 ft-1lb.

4 ’ The shaft angle was increased from 4° to 8° in moving from
' Case 3 to Case 4. Again for the upper rotor, only the

rolling moment changed significantly. An upwash occurred

3 on the lower rotor; as a consequence, the results given in
E Figure 14 for Case 4 show a 35.4% increase in thrust and a
change from 130 horsepower to -500 horsepower for the

lower rotor. A very large increase also occurred in the
pitching moment produced by the lower rotor. The left roll
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of the upper rotor decreased by 13.5%, and the right roll
of the lower rotor increas:-d by 37.4%. The net result was
a change from 8100 ft-1b ot left roll with uniform inflow
to 8100 ft-1b of right roll with wake effects included.

The results for the performance parameters show that the
rotor system should be retrimmed when wake effects are in-
cluded. The net effect due to inclusion of the wake was
generally a large increase in the net thrust, pitching
moment, and rolling moment. The blade pitch settings for
both rotors need to be changed to bring these parameters
back to the desired trim values. With the lower rotor in
autorotation, the tocques from the rotors will join instead
of cancel each other. As a consequence, a significant
amount of differential collective pitch may be required in
order to restore yaw equilibrium.

The wake geometry and the wake influence coefficients fox
Cases 2 and 4 were used with the flight conditions and trim
settings of Case 3 in an effort to ascertain the sensitivity
of the calculations to variations in the wake geometry.

Case 2 had required a total thrust of 14,680 1lb instead of
the 21,980 1b for Case 3. The shaft angle was changed from-
4° to 8° between cases 3 and 4, respectively. The differ-
ences in the wake geometries caused by these differences

in the flight conditions did not produce any significant
changes in the performance parameters, except perhaps in
the power requirements for the lower rotor. ‘whe horse-
power ranged from -225 horsepower to -280 horsepower among
the cases for the different wakes, and this represents a
variation of +12.2% from the average value for the three
cases. The thrust and rolling moment variations shown in
Figure 15 are all less than 2% for the different geometries.

Thrusts of 10,000, 15,000, and 20,000 pounds with zero shaft
tilt angle were considered for the ABC in hover. The re-
sults for the thrust and power of each rotor are shown in
Figures 16, 17, and i18. Since the induced effect of the
lower rotor moved the upper rotor vortices inward, the wake-
induced velocity showed upwash thrcugh the outer portions

of the lower rotor <.isc¢ .u these hover cases. As a result,
the thrust for the i~ -, -otor increasad by 31% to 38% for
these various cases. Th. “hrust increase for the upper
rotor was between i:. and . %, since the wake-induced down-
wash was generally small).r chan the value used for uniform
inflow. The effect of tie wake on the power required by

the upper rotor was very small in all cases, but the effect
on the power required by the lower rotor was gquite large.
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Again, because of upwash through part of the lower rotor, the
power required by the lower rotor decreased by about 500
horsepower in each case. This meant a sign change for the
horsepower for T = 10,000 1lb, a 66.9% decrease in horsepower
for T = 15,000 1b and a 30.4% decrease for T = 20,000 1b.

The variation of the thrust from either rotor and the power
of the upper rotor was less than 3% when the wake geometries
for T = 10,000 and T = 20,000 1b were used with the trim
collective and cyclic pitch settings for T = 15,000 1b. The
range of power required by the lower rotor was +95 horsepower
(i.e., 51%) from the average for the three cases shown in
Figure 19 with wake effects included.

Comparing the results obtained for the performance parameters
with and without wake effects included for the ABC has shown
that use of the correct wake-induced velocity distribution
is very important for coaxial counterrotating rotor systems.
This is especially true for determining the forces and mo-
ments generated by the lower rotor. The wake effects
generally caused an autorotative mode of operation for the
lower rotor, thus increasing its thrust and decreasing, or
even reversing, the power required by the lower rotor. For
the forward flight cases considered here, a large right
rolling moment was introduced when wake effects were in-
cluded. The pitching moment was generally more nose-up with
wake effects included. Changing the blade root pitch set-
tings in a retrim procedure would be required in order to
bring the thrust and moments back to the desired trim

values with wake effects included.

WAKE EFFECTS ON STABILITY AND CONTROL DERIVATIVES

Conventional, TRAC, CTR, and Tandem Rotor Systems

The wake had only a slight effect on most of the stability

and control derivatives for the articulated, single-rotor
systems for the flight conditions considered in this study.
For a moderate advance ratio and shaft tilt angle, the wake was
quickly carried away from the rotor due to the free stream
velocitv components normal to and parallel with the tip path
plane. As a consequence, the effect of uniform or wake-
induced velocity distributions on the angle of attack

becomes overshadowed by the effect of the throughflow velo-
city, V sin oy

The values computed for these single-rotor systems with and
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without wake effects included are given in Table 8. The de-
rivative of thrust with respect to collective pitch angle
(aT/aeo) increased from 187 lb/deg to 365 lb/deg for the

H~34 and from 149 1lb/deg to 290 1lb/deg for the TRAC when
deformed-wake effects were included. The change in yawing
moment (i.e., rotor torque) due to collective pitch for the
8 TRAC was decreased by 20.3%, but this derivative is a coup-
ling term for single-rotor systems since the principal yaw
control would come from the tail rotor thrust.

SEEE AL

The strong wake interaction which occurs for the tandem-
rotor system caused a significant change in the stability
and control derivatives for the tandem rotor. The values
ror the more important derivatives for the tandem rotor with
and without weke effects included are given in Table 9.
The thrust and pitching moment (about the C.G.) controls
shown in Figure 20 were reduced by 34.8% and 25.9%, respec-
k> tively, when the wake effects were included. With the
g deformed-wake included, an increase in the thrust produces
# § a stronger wake, and thus a greater downwash. Some collec-
tive pitch is required to overcome this larger downwash and
is lost as far as thrust control is concerned. As a conse-
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3 ‘ quence, the thrust control derivative with respect to col-
. lective pitch is reduced by including wake effects. This
3 , reduction is evident in Figure 20. The same interdependence

between thrust and wake-induced downwash reduces the pitch
control since the pitching moment is mainly composed of the
3 differential thrust between the two rotors times their hori-
C zcntal offsets from the C.G.

‘; ABC Rotor System, Hover and Forward Flight

3 Advance ratios of 0.208 and 0.466 were considered for the

¢ ABC so that comparisons could be made with the experimental
: values given in reference 16 for these advance ratios. The
; trim settings and the forces and moments generated by each
individual rotor were not given in reference 16. Since the
trim settings hel to be obtained by trial and error using
iterative single runs of the blade loads-response program,
only three cases at p = 0.208 and one case at u = 0,466
could be completed in the time available f~r the calcula-

' . tions. These cases did include variatio n shaft angle,
K thrust, and flight speed, and the effect these param-

: eters on the stability and control deriva..ives will be
discussed here,
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The thrust and moments produced by each rotor were not known.
The total thrust is, of course, the sum of the thrusts of
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the upper and lower rotors. The total rolling moment is com- {
posed of the thrust from each rotor times its lateral lift
offset. The lift offset given in reference 16 for each i
flight condition was assumed to apply to both rotors. Thus,
the thrust from each rotor was determined from the following .
two equations: ‘

Tl + Tu = Ttotal

T (Ty = Ty = RMian

where . is the lateral lift offset. Each rotor was trimmed

out to produce zero pitching moment. Considering each rotor
separately then, the thrust, rolling moment, and pitching
moment were the dependent variables which were controlled by
the blade pitch settings (collective, lateral cyclic, and
longitudinal cyclic).

Since an automated trim routine was not available for the
ABC rotor system, a manual trim procedure was employed which
involved varying the blade pitch settings and plotting the
resulting performance parameters versus these pitch settings.
Several runs are required in order to obtain the points
needed for these plots. It is fairly difficult to obtain
the trim settings assuming uniform inflow, and the procedure
becomes too complex when wake effects are included. Lacking
an automatic trim procedure, the upper and lower rotors were
therefore not in trim when the wake-induced velocity dis-~
tribution was used with the pitch settings calculated
assuming uniform inflow. Since the true trim forces for each
rotor were not known, no attempt was made to retrim the
rotors by hand with wake effects included.

Hover Cases J

Thrusts of 10,000, 15,000, and 20,000 pounds were considered
in hover. The values for the control derivatives for these
cases with and without wake effects included are given in
Table 10. The effect of thrust on the control derivatives
with and without wake effects included is shown in Figure 21.
The values for each derivative have been normalized by using
the value at T = 15,000 1lb as a base,

“r e e

The same trends exist with respect to thrust with and without
wake included for the thrust control (3T/36 ). The thrust
control, however, was more sensitive to thrist changes with
wake-induced velocities than it was with uniform inflow.
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Also, reductions of up to 20 percent occurred in the thrust
control when the uniform inflow was changed to the wake-
induced velocity distribution.

The results for the roll control (3RM/34B;) show the same
trends with and without wake effects included. In either
case, greater roll control is possible with greater thrust.
In changing from uniform inflow to wake-induced velocities,
the roll control was reduced by 18 to 20 percent. The pitch
control through lateral and longitudinal cyclic pitch de-
creases slightly as the thrust is increased with uniform in-
flow. With wake effects included, the trends with respect
to thrust are mixed.

Good yaw control by use of differential collective pitch
(i.e., about 7000 ft-1b/deg) was computed for the ABC rotor
system in hover. However, the trend with increasing thrust
for wake-induced velocities was opposite that which was pre-
dicted assuming uniform inflow. With uniform inflow, the
yaw control increased with thrust, but it decreased with
thrust when the wake effects were included. As was noted
earlier, an autorctation condition exis‘s for the lower
rotor when the actual wake effects are considered, and this
effect becomes stronger as the thrust increases. Thus the
yaw control trend is reversed when wake-induced velocities
are used. The sensitivity of the derivatives to perturba-
tions on the wake geometry, as shown in Figure 22, was
fairly large for these hover cases. Due to this sensitivity,
the wake geometry should be recomputed with any change in
the flight conditions at low speeds or in hover.

Forward Flight Cases

Under an Army contract with Sikorsky Aircraft, the full-
scale ABC rotor system was tested in the NASA/Ames Research
Center 40-ft-x-80-ft Wind Tunnel. Some of the values ob-
tained for the stabilitv and control derivatives from these
tests as well as those computed in this study with and with-
out wake effects included are given in Table 11. The

flight conditions which changed among these cases were shaft
angle, thrust, and flight speed. The effect of these flight
variables on the stability and control derivatives is pre-
sented in Figures 23, 24, and 25.

1. Effect of shaft Angle.

For cases 3 and 4, the advance ratio was 0.208,
and the thrust was 22,000 1lb. The shaft angle
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changed from 4° to 8° between these cases. Divid-
ing the values for each derivative when ag = 8° by
its value when a = 4° provided the normalized

values shown in Figure 23, The roll and pitch con-
trol derivatives increased by 10% when the shaft

angle was increased from 4° to 8°. Increasing the
shaft angle created a greater autorotative condi-
tion, so the yaw control for ag = 8° was half (or
less) what it was for ag = 4°. Using differential

collective pitch as yaw control in forward flight
was not found to be very effective either in the
wind tunnel or in this analysis. The cases with
uniform inflow did not follow the trends shown by
the experiments for shaft angle as well as the
cases with wake-induced velocities did.

The effect of the shaft angle on longitudinal sta-
bility is destabilizing in all of the forward flight
cases. The positive values obtained for apM/aas

indicate that an increase in shaft angle will cause
a nose-up moment and thus tend to drive the air-
craft to even higher shaft angles. Control of the
pitching moment through eoor B, was virtually un-

changed assuming uniform inflow; it changed by
moderate amounts in the tunnel tests, and the cases
with wake-induced velocities showed large changes
due to shaft angle. The wake location relative to
the rotors is sensitive to the shaft angle. Signi-
ficant changes would probably occur in the trim
settings, especially for the lower rotor, if the
rotors were retrimmed with wake effects included.
Thus, better agrecement might be obtained between the
calculations with wake-induced velocities and the ex-
perimental values if the rotors were retrimmed.

Effect of Thrust

The thrust for Case 2 was 15,000 1b and the thrust
for Case 3 was 22,000 1b. The advance ratio was
0.208 and the shaft angle was 4 in both Cases.

The values for the derivatives for T = 22,000 1b
were normalized by their value at T = 15,000 1lb.
These results are shown in Figure 24. The roll and
pitch control derivatives were reduced by 190 to 25
percent when the thrust was increased from 15,000

lb to 22,000 1lb. The prediction of the thrust effect
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3.

was closer to the experimental results with wake-
induced velocities used than with uniform inflow.
Differential collective pitch was quite ineffective
in yaw control for T = 15,000 1lb. 1Increasing the
thrust to 22,000 1b more than doubled the torque
required by each rotor and then differential col-
lective became effective as a yaw control parameter.
Thus, the large change shown in Figure 24 for
3YM/346 is due in part to the low base values
which efisted at T = 15,000 1b for the experimental
case, the uniform inflow case, and the wake-induced
velocities case. The experimental values show a
35% reduction for the destabilizing effect of shaft
angle and about a 20% reduction for control of
pitching moment through 6, or B; due to the in-

creased thrust. Little change occurred for any of
the longitudinal stability derivatives due to
thrust when uniform inflow was used. The calcu-
lations with wake effects included were sensitive
to the thrust, but the thrust computed on the wake
runs was quite a bit out of trim. Retrimming
these cases with wake-induced velocities should
bring the derivatives into better agreement with
the test results.

Effect of Advance Ratio.

The advance ratio was changed from 0.208 in Case 2
to 0.466 in Case 1. The shaft angle alsc changed

from 4° to zero, so the trends to be noted here
are not purely due tc flight speed. The thrust in
both cases was 15,000 1b. The values for the de-
rivatives at u = 0.466 were divided by their value
at 1 = 0.208, and these normalized results are
shown in Figure 25.

The higher speed produced much greater roll con-

trol since the difference in local velocities on

the advancing and retreating sides of each rotor

will add to the difference in pitch angle (due to
B;) and thus increase the effectiveness of B;.

The change in 3RM/3AB; due to advance ratio which

was computed using wake-induced velocities is
closer to the experimental results than uniform
inflow was. A 10% increase in pitch control oc-
curred with the increased flight velocity for both
the experiment and the calculations with uniform
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inflow. Retrimming the cases with wake-induced
velocities should bring the wake results into
better agreement with experiment.

S kY
R A

The destabilizing effect of shaft angle was in-
creased by a factor of five when the advance
ratio was increased from the value in Case 2 to
that in Case 1. Control of the pitching moment,
either thrcugh 8, or By, was essentially doubled

with this increase in advance ratio. Good agree-
ment exists between the computed results and the
experimental values for all of the derivatives
except apm/aeo. An increase occurs for aPM/aeo

it

Eretx g edechy

N

when the advance ratio increases. 1In Figure 25
it is evident that a fair to poor comparison
exists between the measured change in 3PM/ae° and

the values computed assuming uniform inflow. A
large discrepancy exists, however, when the wake-
induced velocity distribution was used since the
3 % wake geometry calculations are sensitive to shaft
3 ‘ angle and advance ratio. The higher velocity and
, ! shallower shaft angle in Case 1 (as compared to

* Case 2) made the wake be relatively well removed.
As a consequence, the change in aPM/aeo due to a

change in u from 0.208 to 0.466 was overestimated
by the computations with wake-induced velocities.
Retrimming these cases using wake-induced velo-
cities should improve the results obtained with
wake effects included.

e SR A N e 3O K

The measurements of the trends which correspond
to changes in shaft angle, thrust, and flight

' speed using the programs developed for this study
3 have compared fairly well with the experimental

i3 : measurements. More detailed comparisons will re-
' quire (1) an automated trim procedure for deter-
mining trim settings using wake-induced
velocities and (2) specific values for the trim
gsettings and forces and moments on each rotor
during the tunnel tests.

EFFECT OF RESPONSE ERROR

The blade flexibility is handled in the blade loads and re-
sponse program through the use of normalized rotating blade
1 mode shapes and generalized coordinates which determine how
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much each individual mode contributes to the total blade
motions. For the first iteraticn, no blade response is con-
sidered (i.e., the generalized coordinates are all
identically zero around the azimuth) and the blade loading
which would occur for these "rigid" blades is computed. The
response to this force and moment distribution is then de-
termined by computing the azimuthal variation which each
generalized coordinate (i.e., mode) must have in order to
make the blade responses compatible with these forces. The
blade response has a direct effect on angle of attack (and
thus blade loading) through elastic twist and an indirect
effect through plunging velocity, etc . Thus, the blade
loading distribution must be recomputed with the blade re-
sponses taken into account. Computing the blade responses
for this new loading then provides the response values for
the second iteration. The change in the blade responses
between successive iterations is measured by the response
error, e., which is defined as

N,
M A [ )2
A I )]
oo d=li=1 i3 ij
r ¢
M N 2,)2
z ZA Cj(_‘)
j=1 i=1 | *J

where M is the number of modes input for the calculatioms,
N, is the number of azimuthal steps per revolution, and

A
h

c£§) represents the generalized coordinate for the jt mode
at the ith azimuth station with the superscript 2 designat-

ing the values for the latest iteration and a superscript
of 1 for the values on the previous iteration. When the
loading and the responses become truly compatible, no
rshanges will occur in the loading distribution or the
blade response and then € will drop to zero.

A series of runs was made for th~ ABC rotor, with smaller
and smaller values being require. for the response error.
The resulting values for the performance parameters and for
the control derivatives are shown in Figures 26 and 27.

The number of iterations required to satisfy the various
values for the response error are given below:
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response error: | 0.05 0.02 0.01 0.005

number of iter-
ations required: 7 9 10 13

Good values were obtained for all of the performance para-
meters except the pitching moment with €, = 0.05. The thrust

and yaw control derivatives did not change significantly for
0.025;r1 0.05. As shown in Fiqure 27, the pitch and roll

control derivatives did not vary smoothly with €,r 8O it is

unclear what response error is required to provide good re-
sults for these derivatives in this particular case. Making
€ = 0.02 would provide a fairly good representation for the

pitch and roll control and excellent rzsults for all of the
other variables considered here. The extra iterations re-
quired to make the response error less than 0.02 are not
excessive for this case, so a response error of 0,02 should
be used in future runs with the blade loads and response
program.
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CONCLUSIONS AND RECOMMENDATIONS

The main conclusions reached from this study are that wake
effects are quite important to the performance and to the
stability of rotor systems which (1) have overlapping rotors
so that the wake from one passes through the other or (2)
are operating at low speeds so that the wake remains nearby.
More detailed conclusions are:

1. Excellent agreement exists between the measured
and calculated thrusts for the conventional rotor
when the measured trim settings are used.

2, A conventional single rotor operating at moderate
advance ratios and shaft tilt angles will not be
sensitive to a deformed wake. However, the effects
of the wake are significant in near hover condi-
tions and during transition.

3. The CTR system will probably always be sensitive
to the wake. The torsional moment applied by the
flap is affected in large part by the wake-induced
velocity distribution, so the CTR is more sensi-
tive to wake effects than other single-rotor
systems are.

4, The wake caused significant changes in the per-
formance and stability and control derivatives on
the tandem-rotor system due to the rotor overlap.

5. The counterrotating, coaxial rotor system of the
ABC is very sensitive to wake effects. This was
especially true for the lower rotor, which ap-
proached or went into autorotation for the aft
shaft-tilt angles considered here for comparison
with experiment.

6. The nonuniform induced velocity distribution on
the ABC rotors caused a large difference to exist
; between the results with uniform inflow and those
] with wake =zffects included for the rolling and
¢ pitching moments. The net rolling and pitching
moments usually changed direction between the cases
with and without wake effects included.

7. A good agreement existed between the trends mea-
sured for the values of the stability and control
derivatives for the ABC and those calculated using
wake-induced velocities. Better agreement might
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be obtained for the cases with wake effects
included if the rotor were retrimmed with the
wake included.

8. Perturbing the wake geometry, and consequently the
wake influence coefficients, has little effect on
the performance parzmeters for the ABC in forward
flight. The performance is sensitive tc wake geo-
metry variations when in hover, however.

9. Most of the variables considered herein are re-
latively insensitive to blade response convergence.
A response error of abcut 0.02 produces the best
results overall without requiring too many iter-
ations.

Based on the conclusions reached in this investigation, it
is recommended that:

1. An automatic trim procedure be set up using the
blade loads and response program, especially if
rotors are to be trimmed with wake effects in-

cluded.

A detailed wakc and blade loading investigation
be conducted at different flight conditions for
the CTR and the tandem~rotor systems in order to
better define and understand the wake inter-
actions and its effect on performance and stabil-
ity. Of particular interest would be the reason
for the power increase with thrust loss ou the
CTR when comparing results with wake effects to
those with uniform inflow.

The ABC rotor be retrimmed in hover and in forward
flight with wake effects included. The stability

and control derivatives with wake effects included
should then be computed using these new trim set-

tings for their basis.

The actual test values for the blade pitch settings
on each rotor and the individual rotor perfor-
mance parameters (if such are available) be used
for a more detailed comparison with ABC rotor ex-
perimental results.

In considering wake effects, the wake geometry
and wake influence coefficients be computed for
any variations in flight conditions in or near
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6.

hover. The wake geometry for a flight condition
for y greater tnan about 0.2 is probably satis-
factory for other similar conditions.

A response error of 0.02 be used when doing the
blade loads and response analysis.

Further development should be conducted in order to:

1.

Include the full aircraft to find forces and mo-~
ments at the center of gravity.

Automatically trim an entire aircraft.

Calculate dynamic stability derivatives for the
full aircraft.

Conduct dynamic stability analyses for the full
aircraft.
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Table 2. Twist Distribution for the ABC Rotor System
r twist
(£t) (deg)
0.0 0.0
6.20 -1.85
10.24 -3.35
13.50 -5.05
17.10 -7.45
20.00 -10.00

Table 3. 2irfoil Distribution for the ABC Rotor System

B ] |

r NACA
(ft) Airfoil type
2.0 0030
8.30 0025
11.90 0021
14.06 0018
15.86 0015
17.42 0012
18.80 0009
20.00 0006
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Effect of Wake on Control Derivatives for Single-Rotor Systems
PRINCIPAL COUPLING
Rotor Wake M 3T oPM 9RM M
Type Effects 26, 3B, FL.YY 20,
1b ft-1b ft-1b ft-1b
deq deg deg deq
H-34 no 0.228 187 -2107 1385 5226
yes 0.228 365 -2020 1213 5397
TRAC no 0.0 149 -16 22 3221
yes 0.0 290 -23 28 2568
CTR no 0.300 5067* 2908* 1047* 150~*
yes 0.30C 1480 -798 397 2031
&These values are questionable since a small -esponse divergence on the
initial iterations with perturbed pitch settings stopped the iterations,
EW

Table 9. Effect of Wake on Control Derivatives for Tandem Rotor
T -y -
PRINCIPAL COUPLING
Wake u T oPM aPM oYM PM
Effects I ake_ 348, 386 28,
1b ft-1b) ft-1b) ft-1b ft-1b
deq deq | deq | deq degq
no 0.200 | 3674 64386 -16716 -5452 10856
2395 47722 -14492 801 16989
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4 Table 10. Effect of Wake on ABC Control Derivatives in Hover

for 0° Shaft Ti1t Angle

3 mw

3 PRINCIPAL COUPLING

3 Case Trotal Wake from aT 3RM aPM AYM aPM

- No. (1b) Case NoX* | 36 34B 3A 348 a8

3 . 0 1 1 (o} 1

g x10~3 1b) (ft-1b) [ft-1b) (ft-1b) [ft-1b

- deg|| deg deg || deg L deg

4 5 10 none 2142 9111 9450 2925 |-6549

: 5 1925 7310 7286 7590 |-4573 ?

i 6 15 none 2226 9351 9350 3711 |-6399 :

i 6 2184 7692 6706 7130 |-4717 i

S 5 1895 8175 8144 5290 |-4606 d

3 7 2007 8317 7705 6134 |-3258 :

f

7 20 none 2107 9488 9214 4428 |-6195 ;

: 7 1673 7765 7149 3892 |-3850 :

*None implies uniform inflow
s U S R 4
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Define the fiight conditions

Find trim control settings using one'of the following:

B ANV e e o Y AR e S — 32t

Y L 4 , . 4
. C-83 Exp. Manual trial and error with
program values blade loads and response program
- [ 2 Alf _y
Wake geometry fe—{ Wake program Blade mode shapes
data 3 and frequencies
Wake tlow Wake influence U?;;?;&
data coefficients
H and load
§ estimates
1

i r -—-L-“L’
! Airload Blade loads |
| distributiuns | 1 J |

? Motions, shears, etc., | Blade response |
' and harmonics T X

,f y

i X{frces and moments Vere Change
' at hub control settings control
perturbed? settings

Stability and
control
derivatives

AL?_ yes

Are
more derivatives
needed?

es

Figure 1. Flow Diagram of Program Usage.
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r(rile)~\

full mesh
<:- wake
4

2

modified
wake

the "Modified" wake.

bound vortex

shed vortex

P(ri+1,¢j_l)

- F(ri,¢j_1) !

_'P(ri+1,¢j_2)

Figure 2. Wake Model Showing the "Full Mesh" Wake and

trailing
vortex
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rotor shaft axis

z)
]
F(
Ve ",
,4
z 3
Y
5
P
; CoGo x 2 ';:".
1 2 3
i a g
: 82 ¢
§
rotor hub locations and rotor Y2 K
rotation directions are given :
as input quantities j
:
Q *2 :

PRSP TS SO, PN

Figure 3. Wake Geometry and Blade Loads Coordinate System.
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q, is a vector normal to and out of the paper
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Figure 4. Vortex-Induced Velocity Model.
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ﬁ 8 =1
6f=0
CL-C,, [Q-GL, (o)
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SN ey,
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Figure 5. Effect of Flap Deflection on the Lift Coefficient. i
i
3
62 ;
%
3
¢




y(r,&,¥)
midchord

. Qr+V _cosa_siny %g -

. stinas-o-h(r,w) +Vfcosussine

wir,i,y)- EaJi
t

Figure 6. Chordwise Distribution of Bound Circulation and
Downwash for an Oscillating Airfoil,

M
Yy

Figure 7. Transformation of Shears and Moments on Chordwise
Axes to the Rotor Shaft Axes.
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Effect of Wake ¢:: Thrust, Power,and Pitching and
Rolling Moments at the Hub of Each Rotor on the

Tandem Helicopter.
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[/ wake-induced inflow
7

uniform inflow

10
] 4
8 L /
4 400 -
|/
6 " // 200 | ;;;
I ﬁ 7
Tx10 / / HP /] m
1b 4 0
" // upper lower
2 ’ / rotor rotor
- ” //T
o d ) | /
upper lower
rotor rotor
8 ad
50
6 " ¢ (/ i
% 7]
- - 40 =3
10 % — ;
..34 B d L
PMx10 -20 1 30
ft-1b -3 ¢
2 RMx10 |~ L
£t-1b_4q 1 / 20 b »
L~ L~ .
0
lower [:1 L~ :
; rotor -40f L 10 |- A
‘ -2 upper |~
- -gg L rotor 0
lower
-4 - upper rotor

rotor

Figure 11, Effect of Wake on Performance Parameters of Each
Rotor of the ABC System, Case 1; w = 0.466,

ag = 0, Ttotal = 14,500 Lb.

66

Bz g . ot pet P _
R I e L T TP TS T VI e




TR AR 2

uniform inflow wake-induced inflow

i 10 Z
: 8 # /| 400 [
; / /|
6 |- 4 ,j 200 L
-3 7
Tx10 /
w 4 / Q e 0 4 >
) L/ V 200 rotor 4
= // // . //
A1 | P Z
0 — -400L lower
upper lower rotor
rotor rotor
4 r 0 30
| “
H 2 N
i PM _ ? ?
: x10"~3 ¢
lower /
-2 F rotor RM_, ﬁ v
x1C 6 ;
it~-1b
-4 = gggg; L..zo ~ 0L L
e
¢
0 L~
-30 -
upper lower
rotor rotor

Figure 12. Effect of Wake on Performance Parameters of Each
Rotor of the ABC System, Case 2;

v = 0.208, a, = 4°, Ttotal = 14,680 Lb.
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gt

u = 0,208, ag = 4°,

Ttotal

Figure 13. FEffect of Wake on Performance Parameters of
Each Rotor of the ABC System, Case 3;

= 21,980 Lb.
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at hub
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AN
lower rotor
Z\
~10 ¢t N
N
a0 bR
30 // ::
N
PREN
=30 I~ upper rotor

e e mL - 4 Sad s e cwwr e Crmmaen

Wake Geometry Determined For:

c V0.
ase No “s Ttotal
A °
4 21980 1b
N 4° 14680 1b
= S 8° 21280 1b

7z

_ < E§§
-200 N

-400 L
lower rotor
60 [
50
1IN
RM 40 I // \\
at hub AN <
x10-3 30 L1 IN
ft-1b A T
20 /// .<j EE;
ZENRe
10 N ><
1~ L4
0 N NS

lower rotor

Figure 15. Effect of Dif‘erent Wake Geometries on Performance

of Lower Rotor and Rolling Moment of the Upper

Rotor on the ABC,

PrE

w = 0.208.
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E] uniform inflow /] wake-induced inflow

10[-

s - 600 _
6 / 400 [ /
Tx10~3 / 4 %
b 4t / 4 200 | L/
LU ™
/ / upper lower / !
/ y rotor rotor
0 -200 *
upper lower
rotor rotor

Figure 16. Effect of Wake on Thrust and Power for Each Rotor

of the ABC in Hover, Ttotal = 10,000 1b.
Uniform inflow Wake~induced inflow
10 [ ) 1000 [
7] ¢ _ -
8 [ L/ e 800 r/
Tx10 "¢ |- /| A 600 |
ib % g L
HP d
4 / - 400 [ /
‘Al z
2 L | 200 | P /
¢ A % s
0 P 0 P
upper lower upper lower
rotor rotor rotor rotor

Figure 17, Effect of Wake on Thrust and Power for Each
Rotor of the ABC in Hover, Ttotal = 15,006 Lb.
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D uniform inflow ‘u-g
V wake~induced inflow ’
/ _ l:
14 1400 [
1z - ; 1200 |- ¥
) g e
4 L/ "
10 . % 1600 L % 3
T -3 / / "" .
x10" | 4 d 800 {_ % P .
1b < d HP ] /
. g L 600 |- ¥ ] »
4 d % ¢ d “
- d P 400 - % L <
¢ ¢ % % ~;
2 d L 200 - -
e 3
0 }/; /: 0 3
upper lower upper lower .
rotor rotor rotor rotor A
Figure 18. Effect of Wake on Thrust and Power for Each
Rotor of tne ABC in Hover, Tt = 20,000 Lb,
otal 3
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Figure 19. Ef<ect of Different Wake Geometries on the Thrust

ana Power of Each Rotor on the ABC in Hover,
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Jsing Wake Geometry Determined For:

Case no. Ttotal
D 6 15,000 1b  (uniform infiow)
6 15,000 1b
N
5 10,000 1b (wake~-induced
X inflow)
7 20,000 1b
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] [
8000 | N
N
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6000 |- 3RM N aeM | | Y 3YM /
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o L N , ,
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Figure 22, Effect of Different Wake Geometries on Control
Derivatives for the ABC in Hover, Case 6,
Reference Thrust = 15,000 Lb.
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Figure 26. Effect of Response Error on Performance
Parameters, ABC Rotor, Case 4, Uniform Inflow.
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APRENDIX
USERS MANUAL FOR THE WAKE GECMETRY AND BLADE LOADS
AND RESPONSE PROGRAMS FOR ADVANCED ROTOR SYSTEMS

INTRODUCTION

The programs to be described in this users manual were devel-
oped in order to determine the effect of the rctor wake on
the performance and stability characteristics of advanced
rotor systems. These rotor systems include the conventional
type, the Telescoping Rotor AirCraft system, the Controllable
Twist Rotor, and tandem and coaxial counter-rotating rotor
systems. For dual-rotor systems, the rotational speed, number
of blades per rotor, and the number of airload points must be
the same for each rotor but all other blade characteristics
can be different between the rotors. The wakes shed from
both rotors will fully interact with each other when the wake
geometry calculations are done. The blades can be canti-
levered at the root, articulated, or teetering. The mode
shapes and frequencies must be supplied to the Blade Loads
and Response program. These shapes and frequencies can be
obtained, for example, using the Blade Frequency program des-
cribed by S. Gene Sadler in NASA CR-112071.*

The Wake Geometry program determines the location of the vor-
tex elements in the wake and their effect on the induced
velocity distribution in tha rotor plane. The wake is self-
deforming and if two rotors are involved their wakes will
interact with and deform each other. The radial and azimuth-
al variations £ the bound circulation produces the shed and
trailing vortices which are in the wake. The bound circu-
lation strength is calculated using the 1lift distribution on
the blades and this lift is computed using linear aerody-
ramics. Elastic twist and blade flapping (up to 2/rev) can
be input for the program but no other blade responses are
considered. The wake~induced velocity coefficients are com-
puted using the Biot-Savart law which relates the location
and strength of the vortex elements in the wake to the
velocity which is induced at the blades. The use cf these
coefficients by another program allows the bound circulation
distribution to be changed and then the induced velocity dis-
tribution to he adjusted ancordingly.

The response of the blades effects their angle-of-attack dis-

3

Sadler, S. Gene: INFORMAL FINAL REPORT ON BLADE FREQUENCY
PROGRAM FOR NONUNIFORM HELICOPTER ROTORS, WITii AUTOMATED FRE-
QUENCY SEARCH, Rochester Applied Science Associates, NASA

CR~112071 or RASA Report No. 72-01, April 1972,
82
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tribvtion and thus effects the loads generated by the blades !
which in turn change the responses of the blade. Thus,
iterations are carried out in the Blade Loads and Response
program until the loads and response are compatible. If wake-
induced velocity distributions are used, then the bound
circulations are calculated from the blade loading. Multi-
plying these circulations by the wake-induced velocity
coefficients then provides the induced velncity distribution
which can be used in recomputing the loads. The forces and
moments transferred to the hub(s) by all of the blades on
each rotor are calculated and these hub forces and moments
are then transferred to the C.G. of the aircraft. Perturbing
the shaft angle or blade pitch settings will change the
fcrces and momants at the C.G. and the stability and centrol
derivatives are computed accordingly.

The hierarchy charts for the two programs are shown in Fig-
ures 28 and 29. Descriptions of the input and output for the
two programs are included in this manual. Sample cases for
the programs are provided under a separate cover, however,
the input and primary output for one such case is shown in
Figures 30-34. Tape or disk unit no. 4 must be set up to
store the wake-induced velocity coefficients from the Wake
Geometry program; unit no. 8 is used for the bound circula-
tions computed by the Wake Geometry program and unit no. 10
is used to store the variables needed for restarting the
wake geometry calculations if an earlier run does not finish.
Units 4 and 8 are used by the Blade Loads and Response pro-
gram only if wake-induced velocity distributions are to be
used for its calculations.

g
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Most of the input variables for the wake geometry and blade
loads and response programs have been described in sufficient
detail in the preceding tables. An extended explanation for
some of those variables is given below.

Linear interpolation is used to compute the lift curve slope,
zero lift angle, chordlength, twist, etc., from the distribu-
tions input to the wake geometry program. If a distribution

is constant or linear then only two values for that variable
need to be input: the value at the root and the value at the
tip. Nonlinear distributions must be broken down into sections
which are essentially linear. The resulting radial positinns
and the value of the variable (e.g., twist) at those radial
positions are then input to the wake geometry program.

The number of blades on each rotor is input as NIB on Card #5
for the wake geometry program and as NB on Card #5 for the
blade loads and response program. The programs are currently
dimensioned for two (2) rotors with four (4) blades each. A
single rotor with six (6) or eight (8) blades can be modeled
by two rotors with three (3) or four (4) blades each. Both
rotors must rotate in the same direction (e.g., DIR = 1.0 for
both rotors) and, with PSIR = 0.0 on the first rotor, PSIR
will be 60° or 45° for the second rotor. A rotor with five or
seven blades cannot be considered since the spacings between
the blades will not be equal. Variable geometry rotors can be
handled this same way. If, for example, a four-bladed rotor
with 30° blade phasing is to be considered, then two 2-
bladed rotors are required with DIR = 1.0 for both and PSIR =
306.0 for one of them,

The number of wake points to be considered is input as WW on
Card #5 for the wake geometry program and as NW on Card #5 for
the blade loads program. The value used is normally WW =
NREV*NA + 1 where NREV is the number of revolutions savad and
NA is the number of azimuthal steps per revolution. A frac-
tional numksr of revolutions can be used if some other value
is used for WW. For example, if NA = 12 and WW = 17, then
1-1/3 revolutions of wake are used to compute the wake-induced
velocities at the blades. The extra 1 is needed since the
blade itself counts as wake position number one.

The variables NWKRQ and NUWKPT on Card #7 of the wake geometry
program are nonzero if the user wants to compute wake-induced
velocities at arbitrary points in space. NUWKPT is the number
of points at which this velocity is desired. The (x,y,2)
coordinates for each of these points is then entered on

Card #24.

Blade flapping angles (up to the second harmonic) are input on
Card #20 of the wake geometry program if NCALB is zero on
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Card #7. If NCALB = 1, then the flapping angles are computed
internally using the blade mass, inertia, thrust, etc., pro-
vided on Card #2la-Z1lh.

The reference azimuth position is input as PSIR on Card #9 of
the wake geometry program and Card #25 of the blade loads pro-~
gram. It is used to take care of phasing between the first

and second rotors and/or a nonzero azimuthal starting position
for either rotor. For example, a tandem rotor system with

four blades on each rotor might have PSIR = 0.0 for the forward
rotor and PSIR = 45.0° for the aft rotor. PSIR is zero when
the reference blade on the rotor lies downstream and is in-line
with the free stream velocity.

The 1lift. drag, and moment coefficients can be obtained in
three different manners in the blade loads program depending on
the value input for IAERO., If IAERO = 1 then the coefficients
are computed internally using polynomials which have been
curve-fit to the measured data for the NACA 0012 or NACA 0015
airfoils. 1If NAIR = 0012 then the data for the NACA 0012
airfoil is used.

If IAERO = 2 then tables fnr the incompressible values for Ce,
Cd, and Cm are to be read in for one or more symmetric airfoils.

The two-dimensional incompressible values for Cz, Cd, and Cm are

input on one card for each angle of attack (a = 0°, 2°, 4°, 6°,
eee,2*{IA~1)°). This block of data is then repeated with the
values corresponding to each successive airfoil type. Suppose,
for example, that the NACA 0006, NACA 0009, and NACA 0012 air-
foils are to be used with the anqle of attack ranging up to 16°.
In this case, IA = 9 and IT = 3, and the data cards would appear
as follows:

c C c o Airfoil
£ d m (deq) type
0.00 0.006 0.00 0 0006
0.21 0.007 ¢.00 2 0006
0.41 0.008 0.00 4 0006
0.61 0.015 0.00 6 0006
G.85 0.20 -.125 16 0006
0.00 0.0075 0.00 0 0009
0.20 0.0080 0.00 2 0009
1.06 0.2 -.080 16 0009
0.00 0.008 0.00 0 0012
1.50 .035 -.005 16 0012
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Note: Thz airfoil type and o are shown on the previous page
only for the sake of clarity. They may be put on the cards
if the user so desires, but they are not required.

Data for any symmetric airfoil can be input and used in the
blade loads program as it now stands. To make the values input
for NAIR in this case correspond to the code numbers for such
airfoils, a few changes are required in subroutine CCCl.
Suppose, for example, that the symmetric airfoil types to be
uséd on a given rotor blade were to have code numbers of

65012, 65015, and 65018. Then the following statements at the
beginning of subroutine CCCl1,

Is = (1Isp - 3)/3
IF (IS .G7. ISMAX) GO TO 30950

should be eliminated and replaced by the following:

Is =0
IF (ISP .EQ.65012) IS 1
IF (ISP .EQ.65015) 1S 2

IF (ISP .EQ.65018) IS = 3
IF (IS .EQ. 0 ) GO TO 30950

This can be expanded to include additional airfoil code numbers
(up to a maximum of 7) and any arbitrary code numbers a2 appear
within these gtatements. In the preceding example, the values
for the lift, drag, and moment coefficients must be read in for
a = 0°, 2°, 4°, 6°, ...,2*(IA-1)° for airfoil 65012. The same
tables then follow with the values for airfoils 65015 and 65018.

If IAERO = 3, then values for the coefficients at various angles
of attack, Mach number, and flap deflection angle must set up
for input with the tables being filled in that order. Nine (9)
values are read on each card so that the lift, drag, and moment
coefficients can be input for three successive angles of attack
(at the current Mach number and flap deflection angle) on one
card. As one very brief example, suppose that IA = 5,

IMOCK = 2, and IFLP = 3. Then the data cards would be set up

ag shown on the next page.
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WAKE GEOMETRY OUTPUT

The output from the Wake Geometry program can be broken down
into four sections which cover:

l. printout of the input data.

2. interpolated values for the blade characteristics
at the airleoad points.

3. intermediate values for the blade loading and
circulations as the wake is developed.

4. final values for the wake-induced velocity in-
fluence coefficients and the wake geometry.

INPUT DATA

The input data is presented in the same order as it appeared
on the cards for input to the computer. The one exception to
this is the values for the RCAPS if they are read in rather
than computed internally. The description for the input data
is given in the preceding section of this documentation. An
example of the data for the ABC rotor is shown in Figure 32,

INTERPOLATED VALUES

RCAP is the radial coordinate of the trailing vortices given
in units of "feet". These values are computed internally if
ISWRAD=0 and were read in if ISWRAD=1,

RBL represents the radial locations of the airload points.
These values are nondimensional and are defined by

RBLi = (RCAPi + RCAPi+l)/2R

where R is the rotor radius.
The blade characteristics at each RBL are obtained by inter-
polation from the input data at its arbitrary radial locations.
The characteristics involved are:

chordlength, ft

lift curve slope, dc,/da, per radian

zero lift angle with no flap deflection, ay (0), deg

o]
change in zero-lift angle with flap deflection,
daLo/de,deg/deg

built-in twist, ¢(r), positive nose up, deg
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An example of the interpolated values for the ABC rotor is
shown in Figure 33a.

INTERMEDIATE CALCULATIONS

One set of values during the intermediate calculations for
the ABC rotor is given in Figure 33b.

For each azimuthal step taken during the build-up of the shed
wake, the following data is printed out:

ril) for i=1,2,..., NTV1*NROT*NIB
2

ri( ) for i=1,2...., NTVI*NROT*NIB

ITR GTEST MSET

(3)
XK and ri for i=l' 2 roesey NTV1*NROT*NIB

]
LYy for i=1,2,..., NTVIL*NROT*NIB
NAS NW NWSTRE
These variables are definsd as follows:

Pi is the nondimensional bound circulation at each airload

point on each biade of each rotor for the current azimuthal
position. This circulation is calculated from the relation
r,=1/2ce, a /524v? /(ar?)

L
a

with the angle of attack,a, calculated under three different
conditions. These conditions correspond to the superscripts
for ry and involve various assumptions on the induced velo-

city distribution. These assumptions are:

1) A is identically zero at all points.
2) vs is computed from the wake-induced velocity in-

fluence coefficients and bound circulation values
computed for the azimuthal steps up to and includ-
ing the last one.

3) v; 18 computed as in step 2) except that the current

azimuthal step is also included.
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computed.

In step 3) above, ry changes the induced-velocity dis-
tribution and thus the angle of attack by which it is

Thus, iterations must be carried out to make the

bound circulations and the wake-induced velocities correspond
to each other. These iterations involve ITR, GTEST, MSET,
and XK where

ITR is the number of iterations required for con-
vergence of the ris.

GTEST is 2 measure of the differences for the I's
between the last two iterations.

MSET 1s the blade position index (see Figure 35),
XK is a measure of the induced velocity at the
last airload point on the last blade. It should
be ignored.

Li is the lift per unit length at each airload

point on each blade of each rotor with units of
lb/ft.

NAS is the total number of azimuthal steps taken.

NW is the number of steps of wake in the full
mesh and will invariably equal NANRM.

NWSTRE is the number of steps included in the full
and modified mesh (with the blade itself counting
as 1).

NWSTRE=NAS until the wake is fully developed and
computations begin for the final values,

NTV] is the number of airload points (i.e., number
of trailing vortices minus one).

NROT is the number of rotors.

NIB is the number of blades per rotor.

FINAL VALUES

A portion of the final values for the ABC rotor is shown in
Figure 33C. A brief Aescription of these blocks of numbers

follows.
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The wake-induced velocity influence ccefficients and the posi-
tions and velocities of the end points of each vortex element
in the wake are given in the final output. The number of
blocks of this data which appear is equal to NA/NIB. Data

is presented for zach blade of each rotor (i.e., NIB sets)
within each block and so the fuli azimuth is covered.

The first set of data to appear in each block for the final
values is a set of tables for the wake-induced velocity co-
efficients for each airload point on each blade of each rotor
at the azimuthal location corresponding to the total block.
Each table is headed by the integer MSET which identifies the
airload point which corresponds to the given table of coeffi-
cients. The indexing scheme is illustrated in Figure 35.

The number of entries in each table is NTV1*NROT*NA whach is
egqual to the total number of bound circulations which would
influence the downwash at the airload point. These numbers
are printed out in the same sequence in which they are stored
on disk or tape for use by the Blade Loads and Response pro-
gram,

The intermediate calculations described earlier are also done
for the final values. The bound circulations and the lift
distributions are presented following the wake-induced veloc-
ity coefficients just as they were for the intermediate
calculations.

The next set of data to appear is the wake-induced velocity,
nondimensionalized by the rotor tip speed, in each direction
at the end points of each vortex element in the full mesh.
These velocity arrays are VX(i,3j), V¥(i,j), and VZ{(i,j) with
"i" varying from 1 to NA and "j" varying from 1 to NTV*NIB*
NROT. The subscript "i" refers to azimuthal positions in the
full mesh with the blade itself counting as 1. The subscript
"3§" covers each trailing vortex on each blade of each rotor.

The spatial location of the end point of each vortex element
in the full mesh follows the velocity ocutput. The indices

i and j cover the same range and have the same meaning that
they did for the velocity arrays.

The induced velocity and the pcsition for the end points of
the vortex elements in the modified mesh conclude the data
given in each block of the final values. The index j varies
from 1 to NTVM*NIB*N.OT and so covers the number of trailing
vortices in the modified mesh for each blade of each rotor.
The index i varies from 1 to NA*NREV and so covers each azi-
muthal step for the number of revolutions (NREV) saved in
the wake. The first NANRM-~1l rows represent points in the
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gull mesh which are irrelevant and therefore not considered
in the calculations. Any numbers in these rows are to be ig=-
nored by the user. It might be noted t.. t the location of
the tip vortex is the same for the full wake and the modified
wake at the boundary Letween the two meshes. This boundary
exists for i=NANRM,and the tip vortex is located at a)

=n*NTV for the full mesh and b) j=n*NTVM for the modified
mesh with n=1,2,...,NIB*NROT.

In the final block a full table of the bound circulations is
printed out preceding the velocity matrices. The values in
this t§ble are in the same sequence with which they are read
onto disk or tape for use by the Blade Loads and Response
program a3 initial estimates for the distribution of the
bound circulations with no blade response.

BLADE LOADS AND RESPONSE OUTPUT

The four main sections of the output from the Blade Loads and
Response program are concerned with:

l. the input data.

2. the intermediate values of loading and blade
response which are computed during the iterations
required to make the loads and response be
compatible.

3. the aerodynamic loading and the blade responses
for each rotor after the iterations converge as
well as the forces and moments transferred to the
hub of each rotor.

4. the total forces and moments at the C.G. and the
derivatives with respect to shaft angle or blade
pitch settings after they have been perturbed.

INPUT DATA

The general input data appears just as it does for input
with the cards and thic description for each variable is
given in the section for input data. The input value for 1IN,
which contreols +he unit on which the aerodynamic and mode
shape data is read in, is omitted in this printout, however.
A sample set of the input data for the ABC rotor is given in
Figure 34a.

The tables for the aerodynamic coefficients are printed out
if IAERO is 2 or 3 and if NPRNT=2,

The rotor properties and the blade properties are printed
out just as they are swupplied for i:put.
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The torsional damping matrix is computed from input values as
follows:

SIGKJ (K,J) = DAMPC* APHI(1,K)*APHI(1,J) for K#J
and
SIGKJ (K,K)

-2*SIG(K) *OMEGA (K)
where

DAMPC=torsional damping coefficient, ftE%b-sec

APHI(l,K) = torsional response of the K~ mode at the
outboard end of the first blade element, rad

SI ﬁK) = input value for the modal damping coefficient
of the K 'mode
and

th

OMEGA (K) = natural frequency of the K~ mode, rad/sec

The data for the normal modes is provided by input.
The values are those supplied as input except that the sign
of w and Vy are changed. The variables defining the shape of

each mode are v,w, ¢,SI, and THETA where

v = flatwise deflection, positive down, ft

w = edgewise deflection, positive for lead, ft
¢ = tcrsional deflection, positive nose up, rad
SI = 3v/ar

and
THETA = 3w/3r

The frequency for each mode is self-evident. The damp-
ing term is

DAMPING SIGMA = SIG(K) + DAMPC*[APHI(I,K)]2
2¥OMEGA (K)

The shear and moment distribution for each mode concludes the
input data. The flatwise and edgewise shears and moments
(Mz,-VY,MY, and VZ) are illustrated in Figure 7. The tor-
sional moment, T, is positi-e nose up.

INTERMEDIATE VALUES

The amount of information which is printed out during the
iterations varies with the control variable NPRNT. Very
little printout is produced if NPRNT=-2. The output to be
described in this section is that which occurs for NPRNT=1
plus the more significant terms among those additional ones
which would appear for NPRNT=2,

The local airspeed, angle of attack, wake-induced downwash,
and bound circulation are given for each airload point on
each rotor at each azimuthal step. The angle of attack is
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positive nose up, the downwash is positive down, and the
bound circulation will be pesitive if the lift is positive
(i.e., up). There will be NR1*NROT columns in each table to
cover the airload points (as read in through the RBL's) for
each rotor. The first NRl columns are for the airload

points (RBI's) on the first rotor and, if a second routor
exists, the next NR1l columns will be for the second rotor.
The azimuthal position of the blade on each rotor varies from
PSIR to PSIR+DIR*(NA-1)*360°/NA for the rows in each table.
The reference azimuth is given on input by PSIR, the direc-~
tion of rotation is counterclockwise for DIR=1l. and clockwise
for DIR=-1, and the number of azimuthal steps is NA. PSIR
and DIR can be different for each rotor if two rotors are in-
volved. This tabular scheme for presenting the radial and
azimuthal variations of the output variables fcc each rotor
is used whenever values at the airload points are to be
printed.

IT1,IT2,1T3, and the ERRORS assocated with them are orinted
out so that the iterations during the calculations and their
rate of convergence can be monitored. The innermost itera-
tion is an iterative scheme used to solve a set of
simultaneous equations for the bound circulations. The wake-
induced velocity is not allowed to vary within this iteration.
The iterations on the innermost loop will continue until
ERROR <ALLl or IT1=NITl. For the second loop, *the wake-in-
duced velocity is recomputed to correspond to the new set of
bound circulations and bound circulatinns are recomputed to
correspond to the updated v:locity distribution. The changes
in the circulations due to induced-velocity corrections then
make up the error associated with the second loop. Itera-
tions will continue on the second level until the errci on
this level is less than ALL1l or until IT2=NIT2. Finally,

the revised bound circulations represent new loading distri-
butions for the blades and so the blade respobnses must be
corrected to make them correlate with the new loading. The
changes in the response quantities make up the RESPONSE ERROR
which is uassociated with IT3. Respcnse iterations will con-
tinue until RESPONSE ERROR <ALL2 or until IT3 = NIT3.

The azimuthal variation of the generalized force for each
mode is printed out on the lines labeled FORC., These forces
have been integrated over the radius of the blade for each
azimuthal position from PSIR to DIR%*3(0° (NA-1l)/NA+PSIR.

If NPRNT=2, a considerable amount of additional data is
printed out during the iterations. The more significant
portions of this printout include 1) the aerodynamic forces
acting at the airload points, 2) the shears and moments at
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the mass points due to the aerodynamic loading, 3) the gener-
alized coordinates, and 4) the plunging velocity and elastic
twist of the blade at each airload point.

The table headed LOADS ON BLADE contains the azimuthal varia-
tion of the aerodynamic loading at each airlcad point. FORCE
Z is in the direction of the shaft and is positive up. FORCE
X is in the plane normal to the shaft and is positive back
(i.e., causing blade lag). Both of these forces are nondi-
mensionalized by the factor pQ2R%2(¢/2). The moment is
measured about the midchord, is positive nose up, and is
nondimensionalized by the factor p22R2?(c/2)2%. The printout
for the last iteration is dimensionalized with FORCE Z and
FORCE X having units of lb/ft and MOMENT having the units of
ft-1b/ft.

The aerodynamic loading is integrated between each mass
point assuming a linear variation between airload points, and
the resulting shears and moment are given in the tables
labeled FV, FW, and EMOME. The values are given for each
mass point from the one nearest the root to the one nearest
the tip. FV is the shear normal to the chord, is positive
dowr, and is given with units of 1lb. FW is the shear along
the chordline in 1lb and is positive toward the trailing edge.
EMOME is the torsional moment about the elastic axis at the
mass points, is positive nose up, and has units of ft-1lb.

The generalized coordinate for each mode and its first two
time derivates are given in the tables labeled CSI, CSIDT,
and CS2DT. The columns correspond to the various modes and

thgs§ows cover the azimuth positions from PSIR to DIR*360° ;
+ R. }

The plunging velocity and elastic twist of the blades at the
airload points are given in tables labeled by VERTICAL ;
VELOCITY AT AIRLOAD POINTS, ROOT PITCH ANGLE PLUS RADIAL :
ELASTIC TWIST, and HARMONIC ANALYSIS OF ELASTIC TWIST. These

tables also appear in the final output for each rotor and

will be described in the next section.

FINAL OUTPUT FOR EACH ROTOR
4

The azimuthal variation of the aerodynamic forces and tor-
sional moment at each airload point for each rotor are
printed out as the first part of the final output. The
first NR1 columns correspond to the airload points of the
first rotor and the right-hand block is for the second rotor,

if it exists. The azimuth varies from PSIR to PSIR + DIR*
3600 (NA-1) /NA for each rotor. The force in the z-direction

is in the direction of the shaft and is positive up.

115




The force in the x-direction is in the plane normal to the
shaft and is positive toward the trailing edge of the blade.
These forces are given with units of 1lb/ft. The torsional
moment is referenced to the aerodynamic center, is positive
nose up, and has units of ft-1lb/ft.

Each rotor is treated individually following the output for
the aerodynamic forces and moments. Blade response velocities
and slopes are given for each mass point along the blade. The
flatwise velocity is normal to the chord, positive down, and
has units of ft/sec. The chordwise velocity is positive to-
ward the leading edge in the direction of the chord and has
units of ft/sec. The torsional deflection angular rate is
positive nose up with units of rad/sec.

The table labeled VERTICAL VELOCITY AT AIRLOAD POINTS shows
the blade motions in the direction of the shaft due to the

blade response. This velocity is positive up and is nondi-
mensionalized by the rotor tip speed.

The ROOT PITCH ANGLE PLUS RADIAL ELASTIC TWIST is given in
radians at the airload points of each rotor and is positive
nose up. This angle represents the geometric angle of attack
with the built-in twist removed and is equal to

8, - Alcosw - 8131nw + ¢e(ri,w)
A harmonic analysis of the elastic twist is carried out and
the Fourier coefficients, in degrees, for the twist at each
airload point are printed. The Fourier series for the
elastic twist can be written as

(NA/2) -1
bolris¥) = a (r;) + ! [a (r;) cos ny + b (r;) sin ny]
n=1

with r, varying from the airload point nearest the root to
the airload point nearest the tip.

The displacements of the blade at each mass point are given
as a function of azimuth. The torsional deflection angle is
due to the elastic twist of the blade; it is given in
radians and is positive nose up. The flatwise displacement
is positive nose up. The flatwise displaemen* is positive
down, with units of ft, and is measured normal to the chord.
The chordwise displacement is positive toward the leading
edge of the blade, has units of ft, and is measured parallel

to the chord.
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The shears and moments at the inboard side of each mass point
are shown in their respective tables as they vary with azi-
muth. The torque is positive nose up with units of ft-1lb.
The units for the y-moment and z-moment are ft-lb,and the
units for the y-shear and z-shear are lb. The sign conven-
tions and reference axes for these shears and moments are shown
in Figure 7. A harmonic analysis is conducted for the
shears and moments at the root,and the Fourier coefficients
for these rcot values are given at the head of each table.
These coefficients are used to determine the forces and mo-
ments which are transferred to the hub.

The hub drag is the force in the shaft plane, lk, and is posi-
tive aft. The thrust is the force in the direction of the
shaft, positive up, with units of 1b., The torque is a measure
of the power required to turn the rotor and has units of £t-1lb.
The pitching moment at the hub is positive if it causes the
helicopter to pitch nose up and is given with units of ft-lb.
The rolling moment at the hub is positive if it causes a

right roll for the helicopter and has units of ft-lb,

VALUES AT THE C.G. AND DERIVATIVES

The thrust is the total vertical force in 1lb, and positive up.
The "drag" is the horizontal force in 1lb due to the rotors
and is positive in the direction of flight. This horizontal
force includes the horizontal component of the thrust from
each rotor. The TORQUE is the yawing moment about the C.G.
in ft-1b and is positive if it causes the helicopter nose to
yaw to the right. This yawing moment includes the horizon-~
tal force(s) at the rotor hubs times their lateral offsets
from the C.G. The horsepower is the power required to drive
the rotors. The pitching moment in £t-1lb is positive nose up
and includes the vertical and horizontal force(s) at the
rotor hubs times their horizontal and vertical offsets from
the C.G. The rolling moment in ft-lb causes a right roll if
it is positive and includes the vertical rotor forces times
their lateral offsets from the C.G.

If the shaft angle or blade pitch settings have been per-
turbed (i.e.,NIP>1) then the stability or control derivatives
are computed and printed out following the summary of forces
and moments for the perturbed settings about the C.G. The
derivatives for any forces have units of lb/deg, the deriva-
tives of the moments are in ft~lb/deg, and the variation of
power required with the shaft angle or blade pitch setting

is in HP/deg. The derivatives which are computed appear in
the following order:




NIP Derivative taken with respect to:
shaft anqgle

collective pitch
longitudinal cyclic pitch, B

lateral cyclic pitch, Al

differential collective pitch, A6 (for two
rotors) 0

differential longitudinal cyclic pitch, AB1
(for two rotors)

1

~ A Ut W N

A portion of the intermediate and final values for each
rotor and the values at the C.G. for the sample case for the
ABC rotor are shown in Figure 34b. The derivatives with
respect to collective pitch are given in Figure 34c.
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3
A 0
g TEST CASE FOR CTR
g MU=, 3
- CASE 765-AQ of USAAMRDL TR72-16
: . 1 4 5 12 25
3 : 1117. .002378 30. 198. 0.
5 , 4 2 3 0 0 0
, ! 0. 0. 0. -9,5
3 { 1. 0. 22, 4.4 .6875
3 i 11.972 -.429 -3.962
¥ i 11500.
E 1
K : 16.8167 2z. .578 -1,052 -.219
4 ‘ .6875 0. 0.
3 5
3 4.4 .5
£ 6.6 1.7967

16.813 1.7967
16.817 2.49

22. 2.49
4

4.4 6.12 -1.4 0.
: 16,813  6.12 -1.4 0.
i 16.817  6.31 -1.0 ~.43
: 22. 6.31 -1.0 ~.43
! 2.29 -1.52 -.36
e 2

0. 0.

22. -2,

Figure 30. Sample Wake Geometry Input Data for the
CTR Rotor.
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S rreresgaes:
AN ol ot i 2

| First rotor

52
60 44 (outboard index only

shown after 4th step,
for clarity)

e
LOSPETA,

4 Second rotor

Blade #1, 32 24
reference position

NROT = 2
NR1 =

]
[
N &>

72 80 Blade #1,
reference position

Figure 35. 1Index Notation for Bound Circulations.
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LIST OF SYMBOLS

lateral cyclic pitch, deg

mode shape quantities representing the "gq" type
mode variable

mode shape quantity for the "q" type of elastic

deformation, where q = v,w,¢,¥, or <\

: Aéx) coefficient of torsional moment at ith radial

; i station in Kth mode, ft-1b

f Aéx), A£K), mode shape onantities of the Kth mode represent-

ing the lir.. .« flap deflection, linear lead-lag

A(K) A(K) deflection, angular torsional deflection, angular

¢ ' v ' lead-lag deflection and flapwise bending slope,

(K) respectively. Linear deflection in ft, angular
A deflection in rad

R
a speed of sound, ft/sec

ap coefficient of zeroth harmonic of elastic twist

with respect to ¢, rad

a_,b harmonic coefficients of elastic twist with
respect to ¢, rad

B1 longitudinal cyclic pitch, deg

bi blade semichord at radius Lo nondimensionalized
by R

c blade chord length, ft

cq drag coefficient

Cp. torsional damping coefficient

c lift coefficient

c lift curve slope
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R e P T T I Y, B
Nl S "

moment coefficient about the midchord
da perpendicular distance from point of induced
velocity to axis of vortex element, ft
(see Fig. 4)
df interpolation ratio for flap deflections,
_ %,
P
i+l i
M- M,
dy interpolation ratio for Mach number, |= ﬁ-__fif'
: i+l i
i
da interpolation ratio for angle of attack,
_ G'Gi
®i+17%
duLo
. O change in zero-lift angle due to unit flap
f derflection
, Fy generalized force acting on the Kth mode
% Fv' Fw lumped aerodynamic forces acting on blade mass
: points, 1b
1
Fx aerodynamic force component parallel to the rotor
plane, positive toward trailing edge, 1lb
F; straight-line approximation to distributed drag
load at a blade station, lb/ft
Fz aerodynamic force normal to the rotor plane
: (i.e.,parallel to the rotor shaft), positive up,
1b
fg acceleration due to gravity, ft/sec2
fx drag force applied at a blade station, lb
lift force applied at a blade station, 1lb
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HP

Io

X X =

horizontal distance from elastic axis to pitch
axis, positive for pitch axis ahead of elastic
axis, ft

plunging velocity for blade section, positive
down, ft/sec

horsepower

blade element torsional mass momth of inertia
about the elastic axis, lb-ft-sec

lift per unit span, lb/ft
Mach number (=local aero. velocity/speed of sound)
number of modes

aerodynamic moment about the midchord, positive
nose up, ft-1b

in-plane bending moment, normal to rotor plane,
positive down, ft-1b

chordwise bending moment, normal to chordline,
positive down, ft-1b

out-of-plane bending moment, parallel to rotor

plane, positive toward leading edge (i.e., blade
bends down with increasing radiusj), ft-1b

flatwise bending moment, in-line with chord,
positive toward leading edge, ft-1b

first harmonic cosine and sine components of
pitching moment of all blades, ft-lb

lumped aerodynamic twisting moment about elastic
axis, lb-ft

first harmonic cosine and sine components of
rolling moment of all blades, ft-1b

blade element mass, 1b~sec2/ft

aerodynamic moment applied at a blade station
about the quarter chord, ft-lb
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number of azimuthal steps per revolution

s

| Ne number of radial load points per blade

1

!

% Nb number of blades per rotor

!

§ PM pitching moment at rotor hub, positive nose up, ft-1lb
Q rotor torque, ft-1b

Q.,0 ,Q., forcing functions corresponding to linear flap,

viTwiTe linear lead-lag, angular twist, angular lead-lag
. Q,.Q motions, and flapwise bending slope used in
i LAEN | computing generalized forces
' q vortex induced velocity at a point located by the
; vector s, ft/sec

q, induced velocity at a point in space due to a

straight vortex element, ft/sec
R rotor radius, ft
RM rolling moment at rotor hub, positive for right
roll, 1b

r radial distance from rotor hub, ft

r, lateral lift offset, ft

S position vector of vortex element

s position vector of point at which induced

-p velocity is computed

S position vector, §p-§

T thrust, 1b

Ti torsional moment, ft-1lb

TTR tail rotor thrust, 1lb

Tu, Tz thrust of upper and lower rotors, respectively,

1b




tangential velocity, ft/sec

local airspeed [ =/Ju? + VZ}, ft/sec

velocity normal to rotor plane, positive up, ft/sec

flight velocity, ft/sec
shear normal to the rotor plane, positive up, lb
flatwise shear, normal to chord, positive up, lb

vertical zeroth harmonic component of shear of
all blades, 1b

vertical first cosine and sine harmonic components
of shear of all blades, 1lb

in~-plane shear, parallel to rotor plane, positive
toward leading edge, lb

chordwise shear, parallel to chord, positive
toward leading edge, 1lb

in-plane first harmonic sine component of shear
of all blades, 1b

flatwise deflection, positive down, ft
the chordwise average downwash, ft/sec
downwash induced by the wake, positive down, ft/sec

edgewise deflection, positive toward trailing
edge: ft

climb velocity, positive up, ft/sec

rectangular coordinates as defined in Figure 3

offset of flapping hinge from hub, ft

yawing moment, positive for nose right, ft-1b

distance of elastic axis forward of quarter chord,
ft
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Ty,

vy{(r,g,v)

I T v
« ar
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angle of attack, rad

forward tilt of the rotor plane with respect to
the shaft axis due to flapping, rad

geometric pitch angle for the blade section, rad

angle of attack for zero 1lift, rad
angle of attack for zero lift with no flap
deflection, rad

shaft tilt angle, positive aft, rad

blade flapping angle, (8 = 8_ + B_ siny + 8_ cosy),
rad (o] & C

steady and first harmonic lateral and longitudinal
blade flapping components, rad

vortex element circulation,ftz/sec

bound circulation strength, ftz/sec

chordwise elemental circulation strength

incremental change in yaw moment, ft-1b

incremental change in rolling moment, ft-1b

time increment, sec

differential collective pitch angle between two
rotor systems, rad

azimuthal increment, deg
flap deflection, positive down (Gf = 60 GSsinw
+ sccosw), rad

incremental change in differential collective
pitch angle, rad

incremental change in collective pitch angle,
rad
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response error: measure of change in blade
response from one iteration to the next,
nondimensional

generalized coordinate for the jth mode at ith
azimuthal station for Kth iteration

generalized coordinate for the Jth mode
generalized coordinate of the Kth mcde

flatwise slope, (W= 3v/dr)
rigid-body pitch angle along the blade, rad

angles used in vorte:x induced velocity
determination (see Figure 4), rad

cyclic pitch (e = -a,cosy - B,siny), rad
blade root pitch angle, (8o + ec), rad
collective pitch, rad

rigid-body pitch angle plus torsional deflection
at a blade section, rad

advance ratio, Vf/QR

distance from the midchord, measured parallel to
the rotor plane, positive toward trailing edge, £t

air density, 1b secz/ft4

wake influence coefficient: downwash at the
blade due to a vortex element in the wake

average aerodynamic damping coefficient for the
Kth mode

damping coefficient which couples the torsional
components of modes K and J

angle between chord and rotor plane, rad

built-in twist, positive for leading edge up, rad

torsional deflection, positive for leading edge
up , rad
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Subscrigts

i

wom oWy

w©

edgewise slope (¥ = 3w/3r)

azimuth angle measured from the downstream
position, positive in the direction of rotation
of the particular rotor, deg

rotor rotational speed, rad/sec

natural frequency of the Kth mode, rad/sec

indicates time derivative, i.e., v = dv/dt

indicates second time derivative, i.e., v = dv/dt

denotes radial leocation
normal mode number

denotes azimuthal location
normal mode number

denotes azimuthal location
denotes radial location
denotes radial location
denotes azimuthal location
total number of wake elements

denotes number of azimuthal steps

denotes quantities parallel to the x-axis or
normal to the rotor shaft

denotes quantities parallel to the y-axis

denotes quantities parallel to the z-axis
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