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FREFACE

TSI ORI T )

This report was prepared as part of Rand's DoD Training and Man-
power Management Program, sponsored by the Human Resources Research
Office of the Defense Advanced Research Projects Agency (ARPA). With
manpover issues assuming an even greater importance in defense plan-
ning and budgeting, it is the purpose of this research program to de-
velop broad strategies and specific solutions for dealing with present
and future military manpower problems. This includes the development i
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of new research methodologies for examining broad classes of manpower !
problems, as well as specific problem-oriented regearch. In addition ]
to providing analysis of current and future manpower issues, it is i
hoped that this research program will contribute to a better general

understanding of the manpower problems confronting the Department of
Defense. :

B yinasia

We believe decision-theoretic psychometrics holds considerable
promigse for military selectfon, training, and other applications. 1In
the past, use of this technique has been hampered by the need to orient

: people to a new way of answering questions, and the need to process

the much greater amount of information the method yields.

Because computers now offer a reasonable and, in many cases, a

cost-attractive solution to these problems, we have devised programs
and proceduies for the on-line administration of tests according to
the requirements of decision-theoretic psychometrics. At this time,
these programs are running on certain IBM 360/370 computer systems

with graphic capability, on the IMLAC PDS-1 '"smsrt terminal" computer,
and on the PLATO 1V system.

This report provides the rationale for these applications, and !
thus should be of interest to potential users and adapters of these

programs, as well as to educators interested in examining in depth
the implications of this new methodology.
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SUMMARY

A student's choice of an angwer to a test question is a coarse
measure of his knowledge about the subject matter of the question.
Much finer measurement might Ye achievwed {f the student were asked to
estimate, for each possible answer, the probability that it is the
correct one. Such a procedure could yield two classes of benefits:
{a) students could learn the language of numerical probability and use
it to communicate uncertainty, and (b) the learning of other subjects
could be facilitated. .

This report describes the rationale underlying a procedure for
eliciting personal estimates of probabilities utilizing a proper scor-
ing rule, and illustrates some new techniques for calibrating those
probabilities and providing better feedback to students learning to
assess uncertainty. In addition, ne: results are presented comparing
the incentive for study, rehearsal, ind practice provided by the proper
scoring rule with that provided by the simple choice procedure, and
concerning the potential effect of cutoff scores and prizes upon stu-
dent behavior.

A companion report describes an interactive computer program in-
corporating these procedures. See W. L. Sibley, A Prototype Computer
Program for Interactive Computer Administered Admissible Probability
Measurement, R-1258~ARPA, April 1974,
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RATIONALE OF COMPUTER-ADMINISTERED ADMISSIBLE
PROBABILITY MEASUREMENT

1. FELICITATION OF PERSONAL PROBABILITIES IN EDUCATION :

Along with the recent growth of the theory and application of the k-
mathematics of decisionmaking has come an increased interest in expres- f
ging uncertainty in terms of personal probabilities. Most of the atten- ﬁ

g pie R L

tion in this area has been focused upon eliciting personal probabilities
from decisionmakers and experts to guide policy decisions [1-3]. How-
ever, at the end of his comprehensive and excellent review of this area,

Savage [3] refers to potential educational applications of these tech-
niques and states:

Proper sacoring rules* hold forth promise as more sophisti-
cated ways of administering multiple-choice tests in certain
educational situations. The student is invited not merely

to choose one [answer] (or possibly none) but to show in
; some way how his opinion is distributed over the [answers],
s i subject to a proper scoring rule or a rough facsimile thereof.

Though requiring more student time per item, these methods
should result in more discrimination per item than ordinary
multiple~choice tests, with a possible net gain. Also, they 3
seem to open a wealth of opportunities for the educational 4
experimenter. :

L N

Above all, the educational advantage of training people--
possibly beginning in early childhood--to assay the strengths

of their own opinions and to meet risk with judgment seems i
inestimable., The usual tests and the language habits of our
culture tend to promote confusion between certainty and be-
3 i lief. They encourage both the vice of acting and speaking

’ . as though we were certain when we are only fairly sure and

3 i that of acting and speaking as though the opinions we do

] { have were worthless when they are not very strong.

Effects of nonlinearity in educational teating+ deserve some
thought, but presumably nonlinearity 1s not a severe threat
when a test consists of a large number of items. One source
of nonlinearity that has been pointed out to me is this A

e -

*
Described and discussed in Sec. 5.3.
fThese effaects are discussed in Sec. 12.
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student competing with others for a single prize is motivated
to respond g0 as to maximize the probability that his score
will be the highest of all. This need not be consistent with
maximizing his expected score, and presumably situations
could be devised in which the difference would be important.

This brief statement characterizes both the promises and the problems
of eliciting personal probabilities from students. The promises come
from two educational goals that might be served by this application:

1. As 4 subject matter and skill that is valued in and of itself.
For example, it is important for students to learn to dis-
criminate degrees of uncertainty and to be able to communi-
cate uncertainty using the language of numerical probability.

2. As a means of facilitating the learning of other subject

matter, e.g., by providing more information about a student's
state of knowledge.

The problems reside largely in twn areas:

1. Students must be taught a new way of answering questions and
they must overcome bad habits and inappropriate sets induced
by their prior test-taking experience.

2. Great care must be exercised in insuring that the incentive
structure impacting on the student does in fact correspond
to that assumed in the decision-theoretic derivation of the
method, 1i.e., the student must be motivated to attempt to
maximize his expected score, rather than maximize the proba-
bility of exceeding some standard or surpassing his class-

mates. This ie2 a subtle point we discuss at greater length
in Sec. 12 below.

The purpese of this report is to describe the rationale underly-
ing a procedure for eliciting pereonal estimates of probabilitfs util-
izing 8 proper scoring rule, and to illustrate some new techniques for
calibrating personul probabilities and providing better feedback to
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students learning to assess uncertainty. In addition, new results are
presented comparing *the incentive for study, rehearsal, and practice
provided by the proper scoring rule with that provided by the simple

! choice procedure, and concerning the potential effect of cutoff scores
upon student behavior. i
A companion report [4] describes an experimental version of an
interactive computer program ircorporating these procedures and focuses
upon the first problem mentioned above. 3

TS
Pt

2. THE CONTEXT OF TESTING

o e eap——

Students are asked a series of queations to ascertain their know-

ledge of the subject matter represented by the questions. A test item

'; is compoged of a question and a list of k (k = 2, 3, ...) possible
; answers, one and only one of which is correct. A "test" is composed

of n of these {tems, usually answered in sequence, and where n typi-
cally has a value between 10 and 100.

3. _KNOWLEDGE AS A PROBABILITY DISTRIBUTION
While a person holding the answer key is not at all uncertain
about which answer to a question is designated "correct,” a student

n e et e s e = % ¢ wr wrar =

may encounter a certain amount of uncertainty. In information-
S : theoretic terms [5], that amount is

k
Us=- ] p; logypy »

1=1 ;

where Py is the likelihood (according to the student's view of the
situation) of the event, "Answer i i{s the correct answer." Becauge
the pi'a may be viewed as probabilities of mutually exclusive and t
collectively exhauative events, we have

k
0<p <1 and Zpi-l.
1 1=1
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The uncertainty measure, called "entrcpy" by information theorists,
achieves {tas maximum value (log2 k) when all the pi's are cqual and
achieves its minimum val e (zero) when one Py 18 unity and the rest
are zero.

There may be several sources of this uncertainty. Some exsmples
are: the student may not be familiar with the standards and values of
the writer of the test item; the student may not comprehend all of the
language used in the test item; most important, he may not know enough
facts and reasons tou arrive unequivocally at the correct answer.

The uncertainty measure itself is unsatisfactory as a measure of
useful knowledge, because it is symmetric or nondirectional with re-~
spect to the answers. According to this measure, a student would have
minimal uncertainty (and maximal information) whenaver one of the pi'a
equals one. A student holding a probability of one for an incorrect
answer possesses just as much information (in his own view) as does
another student holding a probability of one for the correct answer.
Uncertainty can serve as a measure of learning, but education and
training is concerned with what is learned and must focus on the prob-
ability associated with the correct answer. Before a student is ex-
posed to a subject matter and tries to learn it, he might be expected
to be uncertain sabout answers to questions. If a question has three
answers, the student's probability associated with the correct answer
might fluctuate over time but remain close to the value of 1/3 corre-
sponding to maximal uncertainty, as shown by the firgt segment of the
curve in Fig. 1.

When the student begins to take an active interest in learning the
subject matter, the probability might be expected to rise and buginm to
approach one as the student achieves greater and greater mastery of the
subject matter. The student's probability associated with the correct
angwer vhen measured over time might trace a path similar to the learn-
ing curve shown in Fig. 1. Upon completion of the learning phase and
if the student's knowledge or skill is not reinforced, the probability
might bagin to decline toward 1/3 and trace a forgetting curve such as
that shown in Fig. 1,

TN NTSELIPY SPURRATY.Y
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@ D
While these hypothetical curves resemble those found in the psy-

chology of learning, it should be remembared that much of the experi- *'
! mental data in this area are reported in terms of averages over either '!
i subjects, trials, or both. Such indirect measures must be used because

*
of the discrete nature of the responses made available to the subjects.
If it were possible to take direct and repeated measurements of a sub-
Ject's personal probabilities, the need for aggregation of data would

. be greatly reduced and the results of experiments might appear quite
: : different.

4, THE EFFECT OF LIMITING RESPONSE OPTIONS
In the true-false and multiple-choice methods of test adminisgtra-
tion, a student is required to sslect one and only one of the answers

4 re et el vl et It B nn s YA ity S As 4 e s e

The major exception, response latency, is a measure continuous in
the time dimension. Even so, it is frequently averaged because of its
instability and, while possibly reflecting uncertainty, it fsils to con-
vey the directional information contained in the distribution of per-
sonal probabilities.
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to the test question. Thus, for true-false and two-alternative multipie-~
choice items, the student's response is constrained to only two possible
values: for three-alternative multiple-choice items, the student's re-
sponse 18 constrained to nuly three possible values; and so on. If the
student's stata of knowledge and degree of uncertainty with respect to

PRI N T T T e

the queation sactually can assume more than k differeut values, it is
clearly impossible to have each different response uniquely associated
with a state of kniwledge. The student would have to use the same re-
sponse for several differcnt states of knowledge and the restricted
regponge set of the choice method would act as a2 filter inserted in the
communication chanael between student and teacher or experimenter. The
observer of the test beshavior could not use the student's response to
recover unequivocably the state of knowladge that led to the response.
This limitation can be removed only by increasing the number of
3 response options available to the student. To eliminate the filtering
action described above, the number of response options must be greater
than or equal to the different states of knowledge the student may
possa2ss. Because different students and the game student at Jifferent
times may experience a varying number of states of knowledge and because
these numbers are unknown, the safest way of preventing filtering appears

i TR e

to be to allow a very large number of response options.

A mathematically and graphicaslly convenient way of doing this is to
allow the student to assign a weight from the real number system to each
of the possible answers to the test queistion. For reasons which will E

become apparent, let the student's response be a vector R = (tl’ r
seey rk) where

2’

0<r, <1, 1 r,=1, and k22,

[vY
)
—

Thue, for two-answer questions the student's response corresponds to
selecting a point on the line segment [0,1] while for three-snswer
questions the response corresponds to selecting a point in an equi-
lateral triangle as stiown in Fig. 2. Questions with four .oscsible

N R AR WA ALY
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answvers require three dimensions for a unitary response while questions
with even more possible answers require complex sequential allocation
responses.

5. STRATEGIES FOR RESPONUING TO A TEST ITEM

Merely allowing a student wore response options does not insure
that more information about his states of knowledge will actually be
transmitted. The student might, for example, exercise only a minimal
number of the options or, for another example, the way he assoclates
the response option with hig probabilities might be inconsistent or
arbitrary. In either event, the amount of information actually trans-
mitted mny be greatly reduced.

A student's state of knowledge, 1.e., the facts recalled, reason-
ing, and other thought processes leading to a probability distribution
over the possible answers, are directly uvbservable only by the gtudent
himgelf, The student's responses are, of course, directly observable
by others, but there is no biological lsw that a student's responses
must reflect his probabilities. It is, in other words, a matter of
free will and volition on the part of the student as to how he asso-
ciates his response with his probabilities.

In a situation such as thisg, the begt that can be done is to struc-
ture the task given the student so that he is rewarded for consistently
and accurately associating response with his probabilities. Although
the association is one-to-many, this is implicitly done with the simple
choice method of responding used in the adminigtration of achievement,
aptitude, and ability tests.

5.1 Simple Choice Testing

To see this, suppose a student wishes to maximize his expected test
score. With the most frequently used simple choice scoring system, he
earns one point for each correct answer selected and no points for an

*
incorrect answer. Because his test score is simply the sum of his item

*

It can be assumed without loss of generality that the student re-
ceives no points if hé omits an item. Thus, the loss of a fraction of
a point as illustrated by use of the '"correction for guessing" formula

Finaie s




scores, his expected test score can be maximized by maximizing the
expectation for each item score. Thus, for any item on the test, the
decision problem faced by the student is as shown in Table 1; and his
optimal strategy is to choose that course of action or response asso-
clated with the maximum expected score as defined by the information 3
available to him at the time of making the decision. This information §
should be reflected in the personal probability distributions as de-
fined in Sec. 3.

Table 1

DECISION PROBLEM FACED BY STUDENT ANSWERING ITEM
UNDER SIMPLE CHOICE METHOD

£
&
k
i

Probability A
¢ (That Answer May Be Correct) 3
g

E Py P2 . . . Py i :
g Correct Answer Expected o
i Response 1 2 . . . k Score ! 3
| 3

§ Choose answer 1 1 0 . . . 0 1 5] | :
, E Choose answer 2 1 . . . 0 Py i ;“
i ! :

Choose answer k 0 0 . . . . Py f

It should be remembered that the probabilities characterize the
: student--not the item question and answers. One answer is correct-- .
the others are incorrect. Two different students, or the same student ]
at different times, may very well possess different probability dis-
tributions over the answers to the same question. The probabilities
reflect the information available to the student at the time he must
make his decision, and provide his only guide to action.

. ' does not change the structure of the task. The structure is changed,
, however, if the penalty for selecting a wrong answer is greater than
k - 1, where k 1is the number of possible answers to the test question.
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For a student who wishes to score well on a simple choice test,
g the optimal test-taking decision rule is, for each item, to select
A i that answer he congiders most likely to be correct. If two or more
answers are tied for maximum probability, it makes no difference which
he selects, because the expected score is the same. This decision rule
may be displayed graphically for two and three possible answers as
shown in Fig. 3.

This analysis makes it apparent that while the simple choice pro-
cedure can motivate a student to use a consistent and logical mapping

3 ; of probabilities onto responses, each response represents a very broad

range of probabilities. ‘hen a student chooses an answer, all that
may be inferred from this response is that he views no other answer
as being more likely to be correct.

Terms such as 'well informed," "misinformed," and "uninformed"
are sometimes used to describe a person's knowledge with respect to
some subject. These and related terms can be used to characterize
regions of the personal probability space, as illustrated by the de-
composition shown in Fig. 4 for three possible answers. Because each
point on the triangle corresponds to a possible probability distribu-
tion over the three angwers, this classification groups distributions
that may have a similar import. For oxample, 1f a student had no
reason for very strongly preferring any answer over the others, his
probability distribution would be located near the center of the tri-
angle and he would be "uninformed" with respect to the item. Figures

1 3 and 4 may be compared to see what information is yielded by the
" g response-to-probability mapping induced by the simple choice method.
f The relations can be summarized as in Table 2.

While the simple choice response is clearly in:apable of discrim-
inating many states of knowledge, a free response such as that described
in Sec. 4 would have the potential of transmitting a great deal more
information about a student's state of knowledge. Will this informa-
tion actually be transmitted?

5.2 Confidence Testing
Suppose, as befori, that the student wishes to maximize his ex~

pected test score and that he is allowed to distribute 100 points over
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Two possible answers

Choose Choose
Answer 2 . Answer 1

Answer 2
Probability line

Thiee possible anywers

Answer |

Choose
Answer 1

Choose Choose
Answer 2 Answer 3

Answer 2

Probability triangle

Fig.3— Optimal decision rules for two and three answers

Answer |

Answer 3
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Correct
answer

4 Well informed *

“ Partially
informed "

" Partially
informed "

" Uninformed "

" Misintormed *
. " hd ‘Y

"
Badly misinformed "

misinformed "

Incorrect Incorrect
answer answer

Fig.4— One possible decomposition of the probability triangle
to represent some meaningful categories of knowledge
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Table 2

INFERENCES THAT MAY BE DRAWN FROM THE SIMPLE CHOICE RESPONSE

If the student

has selected Student may be: Student is not:
Well informed Misinformed
The ¢ " Informed Badly informed
correct answe Partially informed
Uninformed

Partially informed | Informed

An in ¢ Uninformed Well informed
correct answer | . . o med

Badly informed

the possible answers to each item as is sometimes done in "confidence
1)

testing.” This would provide a set of responses fine-grained enough
to transmit considerably more information and it would be quite simple
to score the student according to the number of points he allocated to
the correct answer. To be more explicit, let mij be the number of

points allocated on the jth item to the ith answer, where

k
0 snu < 100 and 121 ™y - 100 .

Let the test score be

wvhere "*j is the number of points allocated to the correct answer to
item j.

The potential impact of this scoring rule upon student behavior
may be investigated by finding, as before, the optimal test-taking
strategy for a student who wishes to maximize his expected test score.
Because his test score is simply the sum of his item scores, his ex-

pected test score can be maximized by maximi~ring the expected score

ke 1 dmmitad o N e

et . LA e
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for each item. There are now far too many response options to list in
a table, but the expected score for any allocation on a single question
(ml, Moy ey mk) may be written as

E(m;, By, «.0s -klpl’ Pps +oes Py) =Py ¥ WPy + oo+ mp .

It i8 not too difficult to find the optimal decision rule, i.e., to
specify for each probability distribution that response (allocation of
points) which maximizes the expected item score. Because the labeling
of the answers is, in a sense, arbitrary, we may assume without loss
of generality that

plipzipak... :pk,

i.e., the angwers can be reordered from most likely to least likely to
be correct in the view of the student. The decision problem is one of

allocating points so as to maximize the sum of products as shown below.
my Py + mzp2 + .., + mp, -

The points may be placed one at a time because the placing of a point
does not change the structure of the problem. Allocating a point to
angwer i1 yields a return of Py because only that proportion Py of the
point will be added to the sum. If P > Pys then the first point should
be placed in the first position in order to yield the largest possible
return, Pys the gecond point should also be placed in the first posi-
tion: and so on for all 100 points. If Py = Py OT if P} = Py = Pgs
and so on, the points can be distributed between these maximum proba-
bilities, but there is nothing to be gained by so doing. The optimal
test-taking strategy for this scoring rule can be summarized as, "Find
an answer that ig at least as likely to be correct as any other and
allocate all 100 points to this answer."

Thus, this scoring rule induces a wmapping of response onto proba-
bility that degenerates into the simple choice situation (see Fig. 3).
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Although many response options are offered to the student, he 15 max-
imally rewarded for placing all 100 points on the most likely answer.
If a student follows this best test-taking strategy, his responses will
be essentially indistinguishable from choice type responses and no
additional information will be transmitted about his states of knowl-
edge. This example shows that merely of fering an increased number of
response options does not guarantee that more information will be
transmitted.

5.3 Admigsible Probability Measurement
What is required i{s a scoring rule that can motivate the student

to use more of the response options, each associated with a small region
of probabilities. In the limit, this relation could be expressed as
r, = f(pi). vhere f is a monotone increasing function of p and all of
the potentially available informatfion could be transmitted. There are
other cogent reasons, however, for further constraining f to be the
identity function, i.e., T, " Py

With the identity relation, the student's responses are directly
interpretable as probabilities and these numerical quantities can be
used in the equations of probability, information, and decision theory
[1]. Students would be learning to communicate degrees of uncertainty
in a universal language of probabilities. For this reason and in the
absence of any compelling reasons to do otherwise, it seems reasonable
to require that scoring rules possess the property that a student can
maximize his expected score i{f and only if his responses match his
probabilities. Scoring rules satisfying this condition have variously
been called "proper" [3]), "reproducing" [1,6], and "admissible" [6].

It has been showa that there exist an infinite number of scoring
rules that induce the identity relation between response and proba-
bility [1,6]. Only one, however, possesses the property that the
score depends only upon the response assigned to the correct answer,
and not upon how the responses are distributed over the other answers
vhen more than two answers are possible [6]. This is the logarithmic
scoring rule, which may be written as S1 = A log L + B, where A > 0.

-
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Notice that log rg == wvhen r, - 0. This means that the loga-
rithmic scoring rule cannot be strictly applied in practice, because

if a student ever assigned a response of zero to a correct angwer the
logarithmic scoring rule calls for an infinite penalty. However, by
restricting the range of possible responses that a student may use,

so that r, 2 d (where d might be set at 0.01 or some other small value)
the need for a very large penalty is avoided, but with the sacrifice
of gome accuracy in measuring very small probabilities [6].*

For many purposes it geems desirable to adjust A and B so that
when a student possesses no information with respect to an item ({i.e.,
all p's are equal), his score will be zero. This may be accomplished
by chocsing a range, K, of possible scores and setting A = 0.5K and
B = 0.5K log k, where, as before, k 18 the number of possible answers.
The score that the student will receive if answer 1 1s correct can now
be written:

S(ti) = 0.5K log kr1 , r, 2 0.01 .

A range of 100 points appears satisfactory for .sany applications.
Figure 5 shows graphically the conditional scores for the case of two
possible answers while Fig. 6 shows selected conditonal score triplets
for the case of three possible answers. Notice that in the case of two
alternatives, the maximum score obtainable is about 15, while the mini-
mum score is about -85, 1In the case of three alternatives, the maximum
is about 24 and the minimum is about -76. This difference in maximum
and minimum scores is caused by the requirement that the scoring func-
tion be zero when all the responses are equal, but Lt may also be taken
to indicate that prediction may be, in some sense, easier with two
alternatives than with three.

Notice, also, how the penalties tend to be larger than the rewarcda.
This 18 a characteristic of all th: admisgible scoring ~ isles because
the nonlinearity is required in order to induce matching behavior in

*
For those special situations requiring the accurate measurement
of very small probabilities, d may be set at a very much smalier value.
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ANSWER 1

(24, -76,-16)

(32 -Réﬂ 22, 'h ~26)

(19,-14 -16) (19,-26, -2¢} (19,-16,-1))
L]

(16, =2, +76) (16, ~11, -26) (A6, -26, = A1) (16, -16, -4}

N

(13,4, -76) (13, -2,-26) (13,-11,<11) (24, =26,-2) (14,-76,4)

AN

(99, -76) (4,4,-20) (Y,-2,-12) (B,-114,-2) (4 -25,4) (9,-96,9)

. . . . \

(413,276 (44,730 (4-22)  (4,0,0) (4,-1L4 (4-26,9) (416,13

(=, 36, -76) (=2, 13,-26) (-2.9,-31) (-2,4,-2) (-2,-2,4) (=2, -1L,4) (-2,-2¢,18) (-2,+~76, 16)

/ . . . . . .\

(=30 20, -0 (=10, du, - 2t) (=13, 8, -10) (=11, 14,42) (10,4, 4) (-1),-4,9) (-13,-14, 18) (-1%-2u, 16} (-1l

<16, 19
[ ] [ ] [ ] ® ° [ ] [ ] \

26,22, T8 (ud, Ly, -28) (08,06, 10} (-0, 14, =) (26,0, 4) (-NG, 4, 9 (-8, -0, 1) (26,511, 16) (-26, <26, 1) (-2€,76,22)

/ ° [ ® ° [ Y . °
(38,08, %6) (276,24, 26) (T 0w DT 16 8 T M) T60 )

LT I (76,2, 16) 1-16,-10, 1y (76, -28,w¢) (-6, - 16, 24)

— - ———————o * -

ANSWER 2 ANSWER 3

Fig. 6 — Conditional score triplets (based on logarithmic scoring function)
for some selected responses on the equilateral probability triangle
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the gtudents. This characteristic of the scoring rule may have other
implications, as illustrated by this quotation fcom a Rand staff mem-

ber after experiencing computer-assisted admissible probability measure-

!
;

ment as reported in [4].

One thought that occurred to me after I took (the) test
was that, contrary to other tests, this one can also be

a learniy, experience. The situation in which one is
punished severely for emphatically stating what turns out
to be wrong, more so than one is rewarded for what is
right even if emphatically stated, ig one that is closer
to the reality situation of everyday life than the simple
tests that look only for right or wrong. Thus, the test
4 ‘ itself exercises a certain negative reinforcement against
stating too strongly what one 18 not really sure about,

3 and thus actually conditions 2 person to using what knowl-
g edge he has, and at the varying degree of certainty with
which he commands it, judicicuely. This will be of ad-
vantage to him in li{fe. For it 1s a fact of life that a
mistake stated with aplomb permanently reduces our credi-
g bility with others who must rely on our say-so, {.e., it
\: makes us less likely to succeed in a job, tor instance.
Thus (the) test 1s not only evaluative but educational.

Consider now the optimal test-taking strategy for a student who wishes
to maximize expected test scores. As befor(, the total test score is

simply the sum of the item scores, so expected test scores can be maxi-

mized by maximizing each expected item score, which may be expressed as

.

" ! E[S(r1)9 S(rz)g es ey S(rk),pl' sz ey Pk]

= E[S(r)|p] =

1~

p,S(r,)
- 41

e et e

8~ 1x

p;(0.5K log kr )

i=]

oy

k
= 0.5K(log k + ﬁ Py log ri) .
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This last form of the equation makes clear a relation between the
logarithmic scoring rule and information theory. If a student responds
with T, =Py for all i, then his expected item score 1s proportional to
a constant plus the amount of information he perceives that he possesses
with respect to the itém. This relation mukeg it easy to derive informa-
tisn measures from test scores based on the logarithmic scoring rule
(cf. Sec. 8).

Should the student respond with his probabilities or, more speci-
fically, how does the logarithmic scoring rule induce the student to do
this in order to maximize his expected scores? Figure 7 shows, for the
case of two ansvers, expected scores for all possible responses for each
of the four different probability distributions, while Fig. 8 shows ex-
pected score contours for the case of three answers. Notice that for
@ach probability distribution the largest expected acore occurs where
the response matches the probability dfstribution. With an admissible
scoring rule such as the logarithmic, this is true not only for these
selacted distributions but for all possible probability distributions.
This means that a student always suffers a loss iu expected score when-
ever he deviates from the optimal test-taking strategy of setting
Ty =Py for all 1. Note further that the loss in expected score in-
creases the more he deviates from this optimal strategy. For those
ingtances in which the student has no knowledge about an itew, i.e.,
all the p's are equal, if ne pretends to have complete knowledge by
setting one of the r, = 1, he loses 35 points in expected score whea
there are two answers and almost 43 points when there are three answers.
This feature of the logarithmic scoring rule may be expected to serve
as a disincentive toward guessing-type behavior. More important, how-
ever, the logarithmic scoring rule can serve to indice an exact argo-
ciation of responses with probabilities. What other impact might 1t
have upoir student behavior?

6. MARSHALING FACTS AND REASONS BEFORE RESPONDING

Up to this point the decision analyses have taken the student's
uncertainty (his probability distritution) as given, and then focused
on finding that responie which gives the highest possible expected
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for four selected probability distributions
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gcore. There does come a time during the taking of any test when the
student has to commit himsell to some response. The optimal strategies ;
derived above are appropriate to this problem and, thus, are designated
teet-taking strategies in the narrow sense. ]
The scope of the decision context must be enlarged, however, when
it is considered that a student may have some control over his proba-

bility distribution for an item. For one example, while taking a test

5;
3

he can think more deeply about the questions and answers to bring more
facts and reasons to bear upcn the problem at hand. For another ex-

ample, prior to taking a test he can study in order to gain additional
information about the subject matter. What implications does the scor- !

ing rule have for these types of behavior on the part of a student? ! 3

=y

N

* .
Given that a student uses the optimal response strategy, r , his .
* * ‘ i
. : optimal expected score, E[S(r Yipl = zt-l piS(ri). can be computed for b
? each possible probability distribution., Figure 9 shows this relation 3
_

P s i

when there are two possible ansawers for both the simple choice or linear
and the logarithmic scoring rules. Notice that as the student acquires i
information to move his probability away from the state of being un-

RE IR o O Y E L

informed (p1 “p, = 0.5), the optimal expected score from the simple
choice procedure increases in proportion to the distance moved along
the probability scale, while that from the logarithmic scoring proce-
dure increases only slightly at first and then more and more as higher

levels of mastery are achieved, A similar effect is observed in the

case of three possible answers, as shown in Figs, 10 and 11. Thus, the

logarithmic procedure requires a higher level of mastery to yileld any

b given optimal expected score (other than zero) than does the simple
choice procedure and, in this sense, can serve as a more striagent in-

centive system for learning. In Sec. 11 we build a model to investfgate

this in more detail.

7. _DETECTING BIAS IN THE ASSIGNMENT OF PROBABILITIES

i ANt A A Rt o e B A s

The central theme so far has been concerned with the relation be-
tween a student's responses and his probabilities. The probabilities

were taken as given and t'a relation (if any) between the student's

e WA 300,

PN

probabilities and the external world was reflected indircectly in the
student's actual test score.
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Here, the focus will be on the assessment of probabilities them-
selves, i.e., on the relation between the student's probabilities and
the facts and reasons leading to these probabilities. It should be
recognized that there is a point beyond which this type of analysis
cannot go. There exists no completely general descriptive or prescrip-
tive theory of how to derive probabilities from facts and reasons.

Even if such a theory did exist, there is at present no way of knowing
what facts and reasons a student is aware of at a particular moment in
time. Nevertheless, a number of powerful methods for the assessment
of probabilities are currently available or under development.

The external validity graph is the most fundamental means of cali-
brating and operationally defining personal probabilities. Assume that
a student taking a test is following the optimal test-taking strategy
for the logarithmic scoring rule so that r = p, Now let

N(C|p) = number of correct answers assigned probability p ,

and

N(I|p) = number of incorrect answers assigned probability p .

Then

- N{C|p)
*®) = FETp) + NQTH)

is the empirical success ratio conditional upon the probability assign-
ment p. A student's probability assignments are perfectly valid if
R(p) = p for all p when the number of observations is increased without
limit. Figure 12 illustrates an external validity graph.

An external validity graph requires an inordinate amount of data
before a student's probabilities can be calibrated. However, by plac-
ing some constraints on the relation between rclative frequency and
probabilfty, it is possible to obtain some results with much less data.

Suppose, now, that R(p) tends to q =ap +b, 0 £ q < 1. To estimate
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Fig. 12— An external validity graph based on 28 15- and 20~
item tests taken by one subject ofter receiving training
in admissible probability measurement. All tests were
composed of three answer items. Dashed line represents
ideal match between relative frquency and probability.
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this linear realism function, let P < Py < ses & Py, be the level of '
probability that the student has sssigned, and let

u, - number of times Py has been assigned to a correct answer, and
vy - number of times Py has been 2ssigned to an incorrect answer.

A convenient estimation procedure 1s to find a and b so as to minimize

Ii uy 2
(u +v)(———-—-——-—lp -b) .
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The least square estimators are (see [15]):

By # vy Buypy - By + vyey By
Z(n1 + vi)pi X(ui +v,) - (I(ui + vi)pilz

.- Luy +v)p, Zuﬂ: T, + vi)pf Z‘ii__ .
Teug + vdp3 TCuy + v)) = [TCu, + vp,1?

As long as a reasonably wide range of p's is used by the student, this
estimstion procedure can yield fairly stable results with 15- and 20-
item tests, so it represents & tremendous improvement in efficiency
over the external validity graph. It should be noted that if the slope
estimate 4 > 1, the student appears to be undervaluing his subject
matter information, while if & < 1, the student is apparently over-
valuing his information (see Fig. 13). This analysis of bias appears
to be completely satisfactory for the case of just two possible answers
to each test item. Where three or more answers are allowed, however,
this analysis requires that each response/probability is independent of
the others in the distribution. This is not necessarily true for ail
persons. For example, some people might tend to overvalue information
when deducing reasons in favor of an answer, but tend to undervalue
information when deducing reasons against an answer. In Appendix A we
give a planar estimation procedure for the case of three possible
answers. This procedure is capable of detecting the separate dimen-
sions of bias.

The calibration results yielded by the realism function are re-
lated not only to Savage's conjecture quoted at the beginning of this
report but also to a familiar saying of Confucius: '"When you know a
thing, to hold that you know it and when you do not know a thing, to
acknowledge that you do not know it. This is knowledge."

8. PERCEIVED VERSUS ACTUAL INFORMATION
This aspect of student behavior may be explored further by com-
puting (under the assumption of independence among test items) the
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Fig. 13— Two realism functions based on probability ossignments
for two answer questions, Person | undervalues his information
3 while person |l overvalues his information |

amount of information the student perceives he possesses with respect
to the subject matter of the test, as indicated by his probability
assignment; 1i.e.,

n k
n log k + X z P,s log p .
ju1 g=1 13 1

If the logarithmic scoring rule is used, ihis expression when multi-

plied by 0.5K becomes the difference between the test score the student
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expects and the test score he would expect if he had no information
relevant to the subject matter.

The amount of information the student actually possesses with re- 3
spect to the subject matter of the test may be estimated by substitut- A
ing 611 = max[0, min(1l, iplj + 8)] for the Pyj in .he above expression.
Comparison of these two information measures reflects the extent and

*
direction of student bias. This comparison may be made graphically
in terms of the infomation square shown in Fig. 14, which has been
drawn to illustrate the aptness here of the Arabian proverb, 1

TR PR

, He who knows and knows that he knows,
He is wise, follow him.

He who knows and knows not that he knows,
He is asleep, awaken him.

He who knows not and knows not that he knows not,
He is a fool, shun him.

He who knows not and knows that he knows not, ,
He is a child, teach him. :

AT [ TR R

e date ! ez ek e

I I

Wise !
nlog k n log k
o 2 5
4 i g So ‘c
; £ 5 i
i g E :
: 5 L2 ;
DL c :
< = f
‘ 3 g |
¢ U \ v
H < % Oo [
i a.
:
0 0
Child

B T = s ol Tt

Fig. 14 The information square
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*Under certain conditions, however, the information measures may
be equal but the realism function reveals that the student is tending
to overvalue his information. These instances tend to be vxtreme and
even pathological, e.g., when a ntudent tries to minimize his cvxpected
test score.
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At Rand we have demonstrated, and tried out, computer-adainistered
decision-theoretic testing with many different people using as sampls
tests Reader's Digest vocabulary tests; Humanities, Natural Sciences,
and Social Sciences items from a workbook for the College Level Examin-

‘ ation Program tests; and a midterm postgraduate-level test in Econo-
' metrics. About halfway through these demonstrations we decided to begin
kseping a permanent record of what people were doing at the terminal.

Figure 15 compares the two information measures for the first test
taken by each of 66 people. Most of the data points fall below the
diagonal, indicating that most of the "subjects” at least initially
overvalue their knowledge of these subject matter areas. A few people
fall close to the diagonal, suggesting that some people may exist who
can discriminate with great accuracy what they know well from what they
know less well.

What happens when people take more tests and, thus, gain more ex~
perience with decision-theoretic testing? We find that many people can
reduce their score loss due to lack of reaslism [4]. I think that this
improvement comes as they begin to experience the consequences of the

3 admissible scoring system [6] and leain to reduce their risk-taking

i tendencies by making their utilities more nearly linear in points earned

or lost. There does, however, appear to be a limit to this improvement.
A number of people were encouraged or challenged to take more tests,

and to try to be as realistic and to score as well as they poassibly could.

We ended up with 11 subjects who toock an appreciable number of teste~-

enough 8o we could discard the early ones they took while they were

learning the procedures and the consequences of the admissible scoring
system.

Figure 16 shows the apparently stable state behavior of the most
biased of the 11 subjects. The line designated I, is located at the
mean of the actual information measures, while the line designated Ip
is located at the mean of the perceived information measures. The in-
tersection of the two lines gives a gross indication of actual versus
perceived information for those tests the subject decided to attempt.
By taking the ratio of T; to Tk we can obtain a rough measure of the
extent and direction of bias. The ratio for this subject is 2.44, in-
dicating that she thought that she had almost two and one-half timeg
as much information as she actually had.
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Table 3 1ists some personal characteristics for the 11 subjects
arranged in decreasing order of bias, which goes d wn almost to the
unbiased value of 1.00. Notice that no subject yielded an overall
ratio less than one, which would have indicacted a person who typically
undervalued his information. Figure 17 compares the information meas-
ures for subjects B through K. Subject B, although apparently striv~
ing to reduce bias and to improve his score, waz unable to do so. The
raemaining subjects, depicted in decressing order of bias, were rare and
more often guccessful in producing a realistic assessment of their un-
certainty. Subjects J and K, the two most accurate subjects, were

remarkably consistent in demonstrating their ability to assess their
uncertainties accurately.

Table 3

SUBJECT CHARACTERISTICS

Subject T}/fk I Tests Sex Age Education

»

A 2.44 0.31 18 Woman 20-30 Master's +
B 2.42 0.i7 12 Man 30~-40 Doctorate

c 2.26 0.28 7 Man 50-60 Doctorate
D 2.1 0.32 27 Woman 20-30 Bachelor's
E 1.81 0.18 20 Woman 20-30 Some college
F 1.67 0.40 12 Woman 50-60 Doctorate

G 1,52 0.30 20 Woman 30-40 Bachelor's
H 1.33 0.35 9 Girl 9 Third grade
I 1.22 0.38 21 Girl 12 Fifth grade
J 1.02 0.71 34 Man 40-50 Doctorate

K 1.00+ 0.85 8 Man 40-5C Doctorate

In corclusion, the introduction of decision~-theoretic testing makes
it possible to define and to measure for the first time a huwman ability,
call it realiam, which may prove to be a *.ry impurtant determinant of
individual and team performance. For example, to what extent and in
what manner is an unrvalistic student handicapped in his attempts to
learn and to study effectively? For another example, does a team of
realistic people tend to out-perform a team of overvaluing people and,

it so, for what types of tasks? Answers to these and many other ques-
tions must await further research.
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Fig. 17 = Continued

We have shown here that some people can be very realistic over a
wide range of subject metter while otlers characteristically overvalue
their information. We do not yet know what deficits in this ability
exist within different subgroups of the population nor do we know
exactly how to go about educating people to become more realistic. The
results for subject A, sumsarized in Pig. 16, certainly prove that
level of education does not insure realism ir. assessing and communicat-
ing uncertainty,.




IR TR VR

- s, ST

e R TR

R s RS ik SO AL AL b

37~

9. THR CONSEQUENCES OF BIASED PROBABILITIES

SRS LR S

% A g e

Decomposing the test score provides a conveniint weans for showing
a student the consequences of having less than perfect realism in
assessing the value of information. It 1is algo related to a major, but
little known, property of an admissible scoring system: A student’s
actual test score is maximised if and only if hie responses match the
eonditional sucoess ratios defined in the previoue section. Thus, the
effect of experience upon a student who desires to score well on admis-
sible probability tests should be in the direction of making his re-
sponses conform more cloasely to the conditicnal success ratioa.* In
other words, the student should develop his ability to give better
probabilistic predictions.

The maximum test score obtainable on an n-item test with the loga-
rithmic senring rule is M(n) = n(0.5K log k), while the minimum score
15 m(n) = n(0.5K log G.01K) because of the restriction on r. If S(n)
is the total test score earned by a student, then M(n) - S(n) is the
amount of improvement left in order to achieve perfect mastery of the
test, and when K = 100 this total improvement score can range between
0 and 100n. Thus, one function served by the use of an improvement
score is the elimination of negative scores.

This total improvement score may now be broken down into two scores,
each of which has a meaningful interpretation. Suppose the test is re-
scored using the adjusted probabilities 611. computed from the student's
realism function as described above, instead of the student's actual
responses rij' This procedure yi:lds a new gcore, §(n): vhich typically
is greater than or equal to S(n). The adjusted score S(n) is an 2sti-
mate of the score the student could have made 1f he were unbiased and

*Por a student who iz biased in assessing uncertainty, i.e.,
p # r(p), we have the possibility of conflict between maximizing ex-
pected score versus maximizing actuel test score. While of profound
importance, a detailed tresatment of this gubject is beyond the ucope
of this revort. The conflict is resolved, of course, if the gtudent
is able to change his probabilities to match the conditional suzcess
ratios.

*Recall that the realism function is only a least-gquares fit to

the data. If the realism function were fitted using a maximum like-
1ihood procedure, the logarithmic score would be strictly maximized
and there would be more agsurance that S(n) > S(n).
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made more effective use of the information available to him. Now,

§(n) - S(n) represents the improvement possible through more effective
use by the student of the information already available to him, while
M(n) - §(n) represents the improvement possible as a result of his gain-
ing additional information pertaining to the subject matter of the test.
These two {mprovement scorer are a decomposition of the total test score
becauge, when summed, they equal the total improvement score. Such an
analysis, of course, is not possible with the simple choice method.

10. A LIKELIHOOD RATIO MEASURE OF PERSPICACITY

Realism appears to be an important goal for human behavior. There
is some indication, however, that it may not be sufficient as an ideal.
For example, by using complex strategies which sacrifice potential test
score, a student might be able to produce a realism function with a
slope nearer to one. This kind of pseudorealism must not be produced

at the expense of test score and if the proper emphasis is placed upon
score, it probably will not be.

For another example, there is the question of a student's ability
to discriminate levels and patterns of uncertainty. To {llustrate,
conasider some data from a 15-item, three-answer test. Figure 18 shows
the 15 probability distributions elicited from a student inexperienced
in explicitly assessing uncertainty. It appears that this student was
thinking in terms of which answer was most likely to be correct and, as
a result, responded along the line going from the no-information point
up to complete information. Figure 19 shows the 15 probability distribu-
tions elicited from a student with considerably more experience in ex-
plicitly assessing uncertainty. It appears that this student would
sometimes use information to "rule out"” one of the answers and perform
other kinds of complex discriminations yielding a variety of probability
distribut fons.

Consider now using just one probability distribution to represent
each student's knowledge. Let pj be the highest probability assigned
for item j, p? be the next_ﬁlghesi, and p"j' the smallest. The average
probability distribution (p, p", p"') wmay be found by calculating

s et LeaB el
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Fig. 18 == Probability distributions (ignoring permutations omong
the answer labels ) used by inexperienced subject taking one
15«item test and yielding a likelihood ratio of .214. Circle

represents average probability distribution.
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Fig. 19 — Probability distributions (ignoring permutations omeng
the answer labels ) used by highly trained subject toking one
I5=item test ond yielding o likelihood ratio of 36.55. Circle

represents averoge probability distribution.
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This average probability distribuiion is displayed as a circic in Figs.
18 and 19. Notice that (iey are not strikingly different for the two
students.

Which set of prob:sbiiity distributions, the original set or the
average one used for all items, 18 the better predictor of the set of
correct answers? To be more specific, consider the "data" to be the
sequence of correct angwers and let ’cj be the original probability
assigned by the student to the correct answer to item j. Then, the
1likelihood of the data under the hypothesis that they were generated
by the student's probability distributions is

n [1]
. 331 Pey

Now consider the hypothesis that the data were generated by the con-
stant :verage_?roszilitz distribution. That is, look at pcj and give
it the value p', p", or p"' according to whether it was the largest,
middle, or smallest probability in the set. Or, equivalently, let

n' = the number of times pcJ was largest,

"

a" = the number of times pcj vas next largest, and

n"' = the number of times pcj was the smallest, so that

n' +n" +n" =,

If there are ties among the ’cj' fractional numbers must be used. The
1ikelihood of the data under this second hypothesis can be written as

Lz - ;'n';"n"_p_"'n"'

SEIPRT CYT S L)
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The likelihood ratfo can now be computed as LI/LZ' For the data shown
in Fig. 18 this likelihood ratio i{s about 0.2, indicating that the data
are about five times more likely under the constant probability hypothe-
sis. For the data showm in Fig. 19 this likelihood ratio iz about 37,
indicating that the data were about 37 times more likely using the
student's original set of varying probability distributions than using
the constant average probability distribution. Thus, this likelihood
ratio may prove to be a useful meagure of a student's progreas in learn-
ing how to extract and process information in probabilistic terms.

11, POTENTIAL IMPACT OF TESTING METHOD UPON STUDY BEHAVIOR
Because lower levels of mastery often require much less effort to

achieve than do the higher levels, the logarithmic may prove to be a
very appropriate reward system that can motivate students to achieve
higher levels of mastery of a subject matter than they do at present.
To investigate this, assume that the gtudent has, for each question,

an exponential "learning curve" of the form
p=1- % exp (-2X¢) ,

where ¢ represents the cost to the student in time and energy, say, of
the effort he puts into studying the question; ) i{s a parameter that
reflects the "easiness" or rate of learning of the subject matter of
the question; and p is the student's prubability associated with the
correct answer. For the sake of definiteness and simplicity, assume
that each question has only two possible answers. Thus, if the student
prt3 no study at all into the question ({.e., ¢ = 0), his probability
for the correct answer is 0.5, but as he invests effort in studying the
subject matter his probability increases asymptotically toward 1.0, as
illustrated in Fig. 20.

There are two ways of modeling the way a student will choose to
spend his study time and effort. You way either assume that he has a
fixed amount of time avallable and seeks to allocate it across the

questions in such a way as to maximize his optimal expected score; or
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Fig.20 — Probability as o function of effort, ¢, where p 1-1/2 exp(-2Xc)

you may assume that there is some "exchange rate" between study time

and score (e.g., one point of score is worth three minutes of time to
this particular student) and that he will "spend" his time on each ques-
tion in such a way as to maximize his "profit,'" i.e., the difference
between nis optimal expectud score on a question and the value of the
time he expends on studying it. These approaches will be discussed

separataly, but it will become apparent their solutions are closely
related.

11.1 Allocation of Study Effort Among Topics

First, suppose that the gtudent has a fixed and limited amount of
study time available ard wishes to allocate it over the questions likely
to be asked in such a way that he wi!l maximize his optimal expected
score. On a glven question, by following the optimal test-taking strat-
egy he will expect to score
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Elste) Ip(e)] = B,

wvhere p(c) 1is the function of study time and effort defined in the pre-
vious section. Figure 21 shows optimal expected score as a function of
effort for a single question under both the simple choice or linear and
the logarithmic scoring procedures. The maximum return (in terms of
expected score) per unit of effort may be found graphically by measgur-
ing the slope of the steepest line through the origin which is tangent
to the opginal expected score.function, E*. Analytically, it can be
determined by finding the point where the derivative of (%) with re~
spect to ¢ is zero. Now in fact,

~(1 - p)logl2(1 - PIE - E
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Because of the particular form chosen for p(c), it follows that the
nunerator of this expression depends on p alone, not on ¢ or A. Thus,
there exists a "critical value" of p, say p*. for any given scoring
rule such that on any question and regardless of what A may be, the
student will get maximum reward per unit effort to bring his probability
for the correct answer up to p*.

It 1is easy to calculate p* for any given scoring rule (see Appen-
dix B). To be specific:

SCORING RULE CRITICAL PROBABILITY
Simple choice or linear 0.5
Logarithmic 0.891....

An allocation procedure that yields an approximately optimal solu-
tion to the overall problem (and an exactly optimal solution in most
cases) is as follows. Arrange the questions in order of increasing
study difficulty so that Xl 2 Xz R e 2 An' The student should work

*
on the first question until he has expended enough effort so that p 2 p

and the ratio of marginal return to marginal cost (that is, dE/dc) is

- o e v e mtem—,,
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; Fig. 21— Optimal expected score as a function of effort (c) when A= 0.5

4

\ just equal to the maximal achievable gain per unit effort on the second

é question. Then he should work on the second question until P2 p* and

} then work on the first and second question (keeping marginal return

: ratios equal) until the marginal return ratios equal the maximal achiev-

; able gain per unit effort on the third question. The process is con-

tinued until the student has allocated all the effort he has available.
This allocation procedure will yield the true optimum for the scor-

ing rules considered above if the student "runs out of gas" at a point

vhere every question he has worked on at all has been worked on to a

point where p > p*._ In more complex, nonreproducing scoring procedures
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that do not have steadily diminishing marginal returns for p 2 p*. the
optimal allocation procedure will not work so well,

Now, obviously, a '"real-1life" student will not go through a care-
ful quantitative analysis of how ro allocate his study efforts, but the
quantitative model (which may come to represent the behavior of experi-
enced, test-wise students fairly well) does catch one aspect of study
behavior that is worth remarking: The use of a logarithmic scoring
rule encourages the student to study fewer questions to a higher degree

of mastery, while the conventional simple-cholce procedure encourages

T T A LA TR AT AT A T

the study of more questions to a lower degree of mastery. Which in-
centive system {s to be preferred depends upon the tradeoffs between
scope and retention of the subject matter for the particular learning
situatfon at hand.

Neither incentive system is beyond fault when study time is strictly

Gt

limited. On the one hand, use of the conventional simple-choice proce-
dure may mean that the student will remember none of the subject matter
3 more than a few hours or days after he takes the test. On the other
3 hand, {f he uses the logarithmic procedure he may remember some of the
subject matter, hut not enough for it to be of any use to him. "Cram-
}: ming' for a test can easily be a losing proposition which, with the
simple-choice procedure, yields an adequate test score but produces
little learning.

e m e ket < e T T B 2
gl e o~ 2 G Wiy ¥

11.2  [I[nvestment of Study Effort in a Single Topic

An alternative way of modeling the student's study incentives is ;
to assume that his study time is not strictly limited and that his time 4
has a value to him which i{s commensurable to the value of the test score
he may earn. 1If the total amount of time which he may spend on study
is flexibie, he would perhaps attempt to maximize his "profit"” on each 1
test question. That is to say, he would choose an expenditure of time

* *
¢ on each question that maximizes E[r ]p(c)l - gc, where g is the

value, in units of test score, of a single unit of time (or study ef-

fort). Assume for the moment that the units of time (or study effort) ;

have been normclized in such a way that s = 1. -
Within the context of the quantitative model {t is an easy task to

calculate (see Appendix C) as a function of », the optimal i{nvestment
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strategy and maximal point under both the simple choice and the loga~
rithmic scoring rules. The resuits of these calculations are graphed
in Fig. 22. For a given X the simple choice procedure allows the
larger profit and, in this sense, is a more lenient reward system than
is the logarithmic. Under the simple choice procedure it never pays
to work on a question where )\ < 0.5, while under the logarithmic the
student cannot make a profit I1f X < 1.5. If )} 2 1.5, the student will
expend considerably more effort under the logarithmic scoring rule.
Note, by the way, that if the student studies a question at all under
the "maximum profit" hypothesis, he studies it at least up to the level
where his probability exceeds p*.

Thus, the same basic pattern appears under the "maximum profit"
hypothesis as under the "optimal allocation' hypothesis. Specifically,
the student is theoretically motivated to study fewer questions (through
avoidance of the harder ones with A < 1.5) but to a higher degree of
mastery under the logarithmic scoring rule than under the conventional
simple choice procedure. In the case of the investment problem, how-
ever, the student may be induced to study all of the questions by in-
creasing the reward for learning or by increasing the rate of learning
(A\) either through improving learning efficlency or through reorganiza-
tion of the subject matter. Any of these steps may serve to resolve
the conflizt between scope of learning and retention.

Whether tliese effects will be observable in real students in real-

life situations will be an interesting matter to investigate empirically.

12, IMPACT OF INAPPROPRIATE REWARDS UPON TEST-TAKING BEHAVIOR

A fundamental assumption underlying all of the above analyres of
optimal behavior is that the student wishes to maximize his expected
test score. What may happen when this condition is relaxed?

With the simple choice procedure, a student desiring to maximize
expected test ascore does it by selecting, for each question on the
test, that answer he considers most likely to be correct, as shown in
Sec. 5.1. Suppose, however, that a cutting score or some grading
limits are imposed on the test so that the student now wishes to maxi-
mize the probability that his test score will equal or exceed a speci-
fied gcore, say N or more answers correct.
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Fig. 22— Optimui investments and profits as a function of rate of learning
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To find the optimal test-taking strategy under this retard struc-
ture, assume that the student perceives all t‘he questions to be inde-
pendent. That is to say, he feels that the probable correctness of
the answers to one question would not be affected by what the correct
angier turns out to be on another question. N.ow let

Pi1),3 = probability of getting question j correct given that
student chooges answer 1(3),

pz(x) = probability of getting K correct out of the first £
questions,

pl(x+) = probability of getting v or more correct out of the
first L questions.

Then,

n
P, (M) = hzn P (h)

n

|
= hzn lpi(n).n Ppah -1+ 11 - pi(n).n] Pn-l(h)‘

" Pe(n),a P10 - 1) + P, () .

Since Pn_l(N - 1) 2 0, regardless of what strategy the student uses
on the firgt n - 1 questions, it follows that choosing i(n) so that
pi(n).n will be a muximum will give the student an equal or better
chance of getting N or more correct as will sny other choice on the
nth question. Clearly, the nuestions could be renumbered to make any
question the "nth question," and thus the obvious strategy is, indeed,
an optimal one.

The assumption of independence among the test items was used in

the proof given above. Consider now an exarmple showing that this re-

sult does, in fact, depend on the assumption of ivdependence. Here is
the tect:

Sras

FPCTIE o+2 SR ST L

et il e it S

AU -T SN




M
b
r
3
¥

-50~

1. It rained in Santa Monica on July 24, 1932. True or False?
2. It did not rain in Santa Monica on July 24, 1932, True or Falsge?

You must get at least one item right to pass the test. Obviously, if
you answer both items "True" or both items "False" you are certain to
pass. If you are 90 percent certain that it did nof rain in Santa
Monica on July 24, 1932 and you use the "obvious" strategy, then there
is a 10 percent chance that you will flunk. This shows that the ob~-
vious strategy is not necessarily optimal if the questions are not
independent.

Be that as {t may, the simple-cho@ce procedure is relatively in-
sensitive to the reward structure within which it is embedded. As a
consequence of this property of the widely used simple-choice scoring
precedure, test givers have probably gotten in the habit of ignoring
reward structures and can afford to use cutoff scoreg and prizes with
abandon. Such behavior can cause great difficulty when one attempts
to improve testing through the elicitation of personal probabilities.

The notion that the student should answer each question in such a
way as to maximize his expected score is based upon the assumption that
he has a linear utility for points. 1In many educational contexts as
they currently exist, this assumption will be manifestly out of line
with the facts.

For example, suppose that some special prize is to be given to
whoever gets the best score for a given test. This will tend to make
students overstate their probabilities (or, to put it another way, to
appear to overvalue their information), because the chance of getting
a really high score will be worth more than the risk of getting an un-
usually low score (which will be no worse for the student than a medi-
ocre score). The precise quantitative measurement of this effect is
very difficult in general, because {t involves a multiperson game that
is affected not only by each player's perception of the difficulty of
the questions but also by his perception of the ability of the other
players. However, an analysis of what happens i1f cwo players are asked
a single question will be found in [7], pp. 12-13.

The special case in which a prize is awarded only in the event that

the student makes a perfect score is very easy to understand. With this
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revard striucture, the student should always set one uf the L 1lnrno
matter how great his uncertainty because if he fails to do so, he will
foreclose any possibility of making a perfect score.

Another context in which students might be wmotivated to give re-
sponses other than their personal probabilities is any situation in
which all that matters is to achieve a given level of score. Por ex-
ample, if the students are on a “pass-fail" system, where they pass
the course if they achieve a certain test score or better, and fail
the course otherwige, then they may have considerable incentive to
shade their responses up or down from their probabilities. The gen-
eral problem of determining an optimal response strategy under these
circumstances is mathematically very complex and no solution is knownm.
The following simplified example, however, can be solved and it {llus-
trates very clearly how the imposition of a 'pass-fail" reward struc-
ture on top of a reproducing scoring system may completely destroy any
incentive for students to respond with their probabilities.

Suppose a student faces an exam consisting of n two-answer items.
Suppose these questions all "look alike" to the student, in the sense
that on each question he has a fixed probability distribution, p and
1 - p, with p 2 1/2. Suppose that he requires a total score T on the
test in order tc pass. He wants to choose a fixed response r to assign
to the preferred answer to each question. What value of r should he
choose in order to maximize his probability of passing the test? It
is not hard to show (see Appendix D), that he will have the maximal
probability of passing if he chooses r such that E[S(r)lr] = T/n. Note
that this r does not depend on p at all! So the student's optimal test-
taking strategy depeands only on what score he must make in order to pass,
and not on his level of knowledge with respect to each test item. In
short, this reward structure utterly destroys the reproducing character
of the scoring rule. Figure 23 illustrates the student's probability
of passing as a function of his response strategy in the particular case
where T = 0.58, n = 20, and p = 0.8. Note that the student will be

about nine times as likely to fail the test if he pursues the "maximum
expected value" strategy as he will be if he follows the "maximum proba-
bility of passing" strategy.
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In an actual situation, however, the raproducing character of
the scoring rule would not be completely washed out, because the stu-
dent would 7ot have precisely the same probability distribution for
each item. It seems intuitively evident (although a rigorous proof
has not yet been discovered) that his best strategy would be to hedge
all his responses but still let his responses vary somevhat with his
probabilities. 1
. But the best remedy is to avoid creating reward structures which %
put a highly nonlinear value on points earned under an allegedly re- 3
producing scoring rule. Another (partial) remedy is to avoid letting 4
the student know how many questions there are on a test, or how dif-
ficult they are, before he begins to take it.

13. _SUMMARY AND CONCLUSTONS 3

We have seen that it is patently desirable to broaden the responses
that students are permitted to make to multiple-choice questions. The
reasons for this are as follows: the student is then able to transmit
more information to the teacher on each item; conventional multiple-
choice tests do nothing to train the student to weight the strength of
conviction justified by his knowledge on a given item; and students
themselves prefer greater fresdom of response and chafe under the limi-
tations of the conventional one-choice response format.

-
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However, it is meaningless or even deceptive to permit students !
to give a weighted response rather than a unitary choice if the scor-
ing system is not carefully chosen so as to encourage students to use
the full range of choice available to them. For example, if the stu-
dent is allowed to respond with weights (which add up to one over all i
alternative responses on each question) and is then given a score on !
each question equal to the weight he ascribed to the correct alterna- i
tive, then it will not take an intelligent student long to recognize !

i
]

g emae

that he should not utilize the freedom you have made available to him,
but simply respond with weights of zero and one as in a conventicnal
multiple~choice test. One excellent solution to this problem appears
to be the use of "admissible scoring systems," which are designed to
provide the student with a maximum expected scors if he makes his re-
sponses correspond to his subjective probabilities.

e NPT e M7 e e LT Y !
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Aduigssible scoring procedures have many desirable features. They
link the student's responses to the well-developed disciplines of sub-
jective probability, information theory, and Bayesian decisionmaking.
The student who becomes "test-wise" against a reproducing scoring sys-
tem has learned to express his uncertainty in the universal language
of probability theory. He has also learned to weight the facts, clues,
and reasons available to him and come up with a “risk-balancing” re-
sponse. Preliminary data from computer-administered admissible proba-
bility testing show that, while some people possess this aptitude,
others are quite biased {n their assessment of uncertainty and could
benefit greatly from further training in this skill. Admissible scor~
ing procedures also have the theoretical advantage that they lead the
student toward higher degrees of mastery than do conventional scoring
procedures. That is to say, the student perceives increased rewards
for higher degrees of certainty on each question under an admissible
scoring system than under a conventional multiple-choice scoring sys-
tem. The latter tends to encourage suparficial knowledge of a wide
variety of topics; the former encourages total mastery of a smaller
nuaber of topics. This perception should have a desirable effect on
the student's study habits. Whether this effect will be observed in
practice mskes an interesting topic for future experiments.

It will be very important, in practical applications of admissible
probability testing, to insure that the external incentive system (i.e.,
vhat is done with the test scores) be consistent with the basic assump-
tfion of admissible probab{lity testing. That is to say, the students
must perceive the maximization of expected score as being their best
strategy. In theory, the use of a "pass-fail" system, or the use cof
extreme competition, may have the effect of distorting the students'
responses awvay from their true subjactive probabilities. The value of
the students' rewards must be gomehow proportional to the total score
thoy each receive. Whether this problem turns out to be serious or not

is another question that can be answered only by empirical tests.
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Appendix A

FITTING A PLANAR REALISM FUNCTION

1. NOTATION, NORMALIZATION, AND SYMMETIRY
Asgsume there are n questions in the test, with three possible

ansvers for each question. We reorder the answers so that pi > p% 2 p%,
where pi is the probability the student ascribes to thc ith answer on
the jth question. We let ij denote the correct answer on the jth
question.

We wigsh to find a linear transformation
93 = A11Py * a5, *+ 814P3
4y = 85.P) + a,,p, + 2,4P4 (A.1)
A3 = 83)P) + 3535, + a35P,

that will minimize the quantity,

n 3
(qd -eHy2a=p, (A.2)
321 121 I

3

where ey is zero or one depending upon whether answer i to the }t
quegtion 18 incorrect or correct.

In addition to minimizing expression (A.2), we require the trans-
formation to meet certain conditions of normality and gymmetry:

3 3
W\ 1If ) p, 1 then q, = 1.
11t 121 1

(8) 1I1f Py =Py, then gq, = 9 -

{c) 1f Py = P3 » then 9 = 94 -
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All three of chou condttionc together imply that p = (3, 3. 3)
is carried into q = (3. 3. 3) by our transformation; thus for all {,

k|

a,=1. (A.3)

k=1

Condition A, applied in turn to p = (1,0,0), p = (0,1,0) and
p = (0,0,1), implies that for all {,

3
-1, (A.4)
kzl 81

Condition B, applied to (%. %. 0), implies

8, +a, " 3, + a,, - (A.5)

Condition C, applied to (1,0,0), implies

Now let us danote 8, by a, and 4, by 8. From (A.6) and (A.4)
we see that

l=a
Prom (A.3) we see that
112-1-0-8- (A-a)
From (A.5), (A.7), and (A.8) we have
l1+a-28
‘22 - "——'2—"-—_' . (A-g)
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From (A.8), (A.9), and (A.3) we derive
a, = 8 . (A.10)
Applying (A.4) now ylelds
0, = 24 g 4 e-1-28. (A.11)

In summary, the application of normality and symmetry conditions
shows that system (A.l) may be written

q =ap, + (1 -a-~8)p,+Bp,

l1-a 14+ a -~ 28)
qZ = 2 Pl + 2 Py + BP3 (A.12)

1- (-1 + a + 48)
Gy =iyl + 2G4 4 oae)y, .

It is easy to see that these expressions are necessary and suf-
ficient conditions for (A), (B), and (C) to hold. :

The parameters a and B have an immediate interpretation, as follows.
The requirement that P; 2Py 2 Py means that we are restricting our
attention to one-sixth of the "answer triangle" (the shaded area in the
upper left-hand triangle of Fig. 24). The mapping (A.12) leaves the
point (%, %3 %) fixed, carries (1,0,0) into («,0,0), and carries
%w %30) into (1 ; B. l_g_ﬁ, B). These three points are the vertices
of the shaded triangle, and by knowing what happens to them it is easy
to visualize what happens to all other points in the triangle. Figure
24 includes three examples of what the mappings look like for Jdifferent
values of a and 8.

2. MINIMIZATION OF A

This section gives the formulas required to calculate values of
a and B8 that will minimize A, the quantity defined by (A.2). The der-
ivation of these formulas is by taking the derivative of A with respect

i
i
i
g
s_
i
!
!
.g
%
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4 -2 -1 g
« Pi2Py2 Py @=3 B="i3 3
2 3 2
z1d a1 =2 p_1
J @'y B=3 a=3 B=3
Fig. 24— Effect of the linear transformation on the triangle p,> p, > p, |
for various values of a and B
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to a and B. We skip the intermediate steps in this routine calcula-
tion, and jump directly to our final formulas:

€, Cog -Cp €
a.ca. cﬁ- 2. cﬁ.;
as B8 “"Ba aB

(A.13)

[ +4 [ - [ 3
8. “ax ~ %a., ®Ba

B = %

ax 88 ~ °Ba Saf

The quantities appearing in these formulas are defined as follows.

Let
J .o 3._.3 -ad o J .3
A=p -7 l’:'1 P3P "D
3 3 3 3
Py - P P + p
R LI BRI o S
k] h] h ] b |
Py - P Py - p
R R L TR e A
The reader will note that
qi - Ai a + 53143 + c{ (A.15)

Now we define

tf % 3 3
c. .. = A, A
ao jm1 4=1 p S §

n 3
- Al B

c = C
A

(A.16)
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Recall that 13 is the subscript of the probability ascribed to the
correct answer on the jth question. Now the reader may be bothered

by the following question: suppose a respondent on the first questions
lists probabilities (0.4, 0.2, 0.4), and the third answer is in fact
correct. We reorder the probabilities to get (0.4, 0.4, 0.2), but
what value do we take for 11? Should it be 1 or 2? It does not matter,
as far as calculating our coefficients o and B is concerned, for ij
enters into the calculation only as a subscript for A's and B's; when
this ambiguity arises about whether 15 = 1 or ij = 2, we have p{ = p%
and so A} = AJ and B] = ). simtlarly, if there 1s ambiguity over
whether ij = 2 or ij = 3, we have A% - A% and B% = Bj. Because of the
symmetry built into Eq. (A.12), it also makes no difference which pos-
sible value of 1j we select (where ambiguity exlsts) in calculating
the total score awarded to the "transformed" estimates.

3. _TRUNCATION AND RENORMALIZATION

The procedure above does not necassarily lead to a vector (ql,
93 q3) that is a proper probability vector. Although the q's will
sum to one, they will not necessarily fall between zero and one. We
truncate and renormalize in the obvious way:

(1, max (0, a}))

d

h LA
9y min

(A.17)

3
dj = } min (1, max (0, qi)) .
i=1

This truncatiou may seem rather arbitrary and ad hoc. Recall,
however, that it will take place only if the respondent underestim-tes
his knowledge (and a and B do not full between zero and omne), a phenom-
enon that so far has occurred only rarely and with naive subjects.

Therefore, the use of a more gsophisticated truncation and renormaliza-
tion routine hardly seems justified.
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Appendix B

HOW TO CALCULATE THE VALUE OF "p" AT WHICH MAXIMUM
EXPECTED RETURN PER UNIT EFFORT IS ACHIEVED

Recall that in Sec. 11 we assumed, for a given true-false ques-
tion, that a student's probability, p, of choosing the correct response
could be expressed as an exponential function of the effort he pu;.in:o
studying the question. Specifically, we assumed that

p=1-%exp(-20) , (8.)

wvhere c represents the study~time ('cost") and ) is a parameter reflect-
ing the "easiness' of the question. Recall algo that the expected score
a ntudent is able to make on a question can be expressed as a function
of his probability of choosing the correct response. Specifically,

EIS(p) |p) = pS¢p) + (1 =~ p)S(L - p) . (B.2)

We assume in the formula (B.2) that the scoring function is sym~
metric; i.e., the student gets exactly as much credit for "0.7 true;
0.3 falge" if "true" 1s correct as he gets for "0.3 true; 0.7 false"
if "false" is correct. By combining (B.1) with (B.2) we may express

maximum expected score directly as a function of '"cost," ¢, and "easni-
nesg," A:

E[\,c] = (1 - § exp(-2)c))S(L - 7 axp(-2Ac))

+ 3 e 208G exp(-22e)) . (8.3)

Now, it is {immediately evident that E[1,Ac] = E[)A,c] for all posi-
tive values of A and ¢, If we are looking for the maximum return per
unit effort, we may apply this observation as follows:
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mnax EQ,z) = max A EK%:ASl = ) max 21%451 (B.4)
ex0 © c20 c20

In other worda, if c; represents the cost that maximizes ESA:EI'
then Ac; = cI. This is true, in an obvious sence, even if the c: are
not unique. 1In our learning model, p depends cn the product of X and
c; Th:s is extremely convenient, for if we let p; - Ac;, we see that
Py = Py In other words, the maximum return per unit effort 1s achieved
on a given true-false question by studying that gquestion until a given
probability of choosing the correct answer is achieved; and this
"mastery level" (which we shzll call p*) does not depend on the easi-
neas of the question, but only on the scoring function used. This
critical mastery level is thus a characteristic of the scoring func-
tion; presumably students will study harder when faced with a scoring
function with a high critical mastery level than they will when faced
with a scoring function having a low one.

If the scoring function is differentiable, elementary - x1.ulus
may be used to calculate the value of p*. One good way to do this is
to use the chain rule, as follows:

L(M&l).li&éz.ﬁ_ @.5)
de ¢ ¢ dp dc c2 * ‘

Example 1: Let S(p) = i:g g) . This is the logarithmic scoring rule

noraslized so that S(3) = 0 and S(1) = 1. Then

g = R 10g(2p) + (1 - p) 1log(2(1 - p))

log 2
log (=P
dc - 08(1 ) ]!) (5.6)
dp log 2 *

%{- = ) exp(-2\c) = 2(1 - p)A .

?;
i_’i
A
.
B
3
s
!
s
;
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Therefore,

o tlog@ §- & « o [10g 2] - 20 - ;1

e v

-p log(2p) + (1 - p log(2(1 = p)) . (B.7)

Since

c = =lo 221__“'_3).1 (B.8)

we see that (B.7) may be expressed as

b

2

¢® 1052 & @ = -log(rR) log21 - PN - B)

- p log2p - (1 - p) log(2(1 - p)) . (B.9)

L ke SR B

The maximum value of %wﬂl be achieved at the point where the
right-hand side of (B.9; ‘quals zero. Solving this transcendental
equation 1s very difficult by hand, but is easy (using the method of
i false position or Newton;c method) on any cgmputer. The derivative
in (B.9) is zero at p = %5 is positive for T<p< 0.8910751 ...; and
is negative for 0.8910751 ... < p. Thus the maximum expected score
per unit effort is achieved for p = 0.8910751 ....

SV Ty

e

Example 2: Let S(p) = 1 - 4(1 - p)z. This is the "quadratic scoring
system," or "Brier acore," often used by meteorologists to evaluate ;
the quality of probabilistic weather predictions. In our case, we ;
normalize it 20 that I(%‘) = 0 and 8(1) = 1. Then

E= (2p ~ 1)2

d
3-3 -8p -4 (B.10)

3 ’ -d-nn .
; ~: . de 2(1 ~ p)a .

]
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2
c

,n.

Gac-@-02:a-mr- -0, (8.11)
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[

Using relation (B.8), we see that

S=[8 1082 1-p]* Q-p)-@-D]@-1.
(B.12)

(1]
i

|

|

Simple calculation shows that the derivative in (B.12) is zero at J

p= %1 positive for % <p <0.857665933 ...; and negative for p > !
0.85766593 .... Thus the maximum expected score per unit effort against i
the quadratic scoring system is achieved at p = 0.85766593 .... 1In i
short, the quadratic scoring system is apparently slightly less effective ‘
(theoretically) than the logarithmic scoring system in stimulating stu- :
dents to work hard on individual questions. .

Example 3: The techuiques of this appendix may also be applied to scor-
ing syutems that are not admisgsible. For example, suppose a student ia
approaching a true-false test that is to Ee wmarked and graded in the
traditional way (+1 for a right answer; -1 for a wrong one). Then if

a student has probability p «f selecting the right answer, his expected
score on the question will be p * (+1) + (1 - p) * (~1). We therefore
have

E=2p -1

dE

-d-i- - 2 ’ (Bn 13)

dp -
do 2(1 - pIA .

°2§'E"§)"°‘2'2(1'!’)%-(21’-1)- (B.14)
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It follows that

? %; (59 = -2(1 - p)log(2(1 - p)) - (2p =~ 1) . (B.15)

, The derivative in (B.15) is negative for -i- <p<1l. It follows ’
~ that ('z') “‘ﬂmatv--}. In other words, the maximum return

par unit effort against a conventional true-false question is achieved
by putting forth an infinitesimal amount of effort.
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Appendix C
ALLOCATING STUDY EFFORT TO MAXIMIZE PROFIT

In Appendix B we snalyzed the problem of how much study would get
the maximum return per unit effort. Another approach to the question
of how students will be motivated to study is to suppose that study
effort and points gained on a test question cen be measured in com-
mensurable terms. The student is then in the position of 'purchasing”
expected score with study effort. You might expect the student to
sttempt to meximize his "profit"; that is, to try to make the differ-
ence between the value of the score he expects tv gain and the value

(to him) of the effort he expends in study. In short, he will try to
maximize

B(A,C) -C (col)

If the reward system is such that E 1s a differentiable function

of p, then this maximization problem may be solved by finding the point
at which the derivative is zero.

4 (g -c) =9Edp _
r (E - ¢) dp dc 1. (c.2)
We assume, as in Appendix B, that
1
p=1- 7 exp (-2Xc)
(c.3)

42 o )\ exp(-22e) = 2201 - p) .

Comdbining (C.2) with (C.3) we see that the derivative of profit
will be zero where




-67-

Although we would ordinarily think of fixing A and then solving
for p (or what is the same thing, c), Expression (C.4) is such an easy
formula that the best way to derive numerical values seems to be to
regard p as a parameter and derive the maximum expected profit as a

function of A by plotting the curve (E(p) + .1.2&%%;_;_2).. X(p)) .

LRI

™ " 33 Fe ol iitidor Aot i
e g S
e

: E Example 1: Consider the logarithmic scoring system, S(p) = %3:--%2 .
- Then we have

2 log 2 E
: MP) = ZT =5 og(p/1 = P 3

E(P) -c= 1+ M{‘iﬁl&’u (C-S)

. (1 -~ p)log{p/l - p)log 2(1 - p)
log 2 *

Carrying out these calculations yields the following values:

© e . A~ e 2 At e e Y T VAT

] lambda cost profit
3 \ 0.99 7.542 0.25934 0.65986 |
3 ; 0.98 4.453 0.36146 0.49710 i
4 ' 0.97 3.323 0.42327 0.38233 !
{ 0.96 2,726 0.46321 0.29449 !
; 0.95 2.354 0.48906 0.22054 |
1 0.94 2,099 0.50500 0.16756 ;
; 0.93 1.914 0.51360 0.12048 i
: 0.92 1.774 0.51658 0.08124 f
] 0.91 1.664 0.51514 0.04839 j
f 0.90 1,577 0.51018 0.02082 :
: 0.89 1.507 0.50238 ~0.00229 ‘
, 0.88 1.450 0.49226 -0.02163 i

_ Note that for p less than about 0.9 there is really no value of A
‘ for which such a p is optimal, since it is better not to study at all
" ' (and get zero profit) than to do any studying and get a negative profit.

Example 2: Now let us turn to the quadratic scoring system, S(p) =
2

athiz Far
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1
; MP) = 2@ T P42 - DI
(C.6)
E() - c= (1 - 2p)2 + (1 - p)é(2p - 1)1log 2(L - p) -

~ Carrying out these calculations leads to the following:

e ————

lambda cost profit

©

12.755  0.15335  0.80705
6.510  0.24721  0.67439
4.433  0,31735  0.56625
3,397  0.37179  0.47461
2,778 0.41447  0.39553
2.367  0.44780  0.32660
2.076  0.473%4  0.26616
1.860  0.49260  0.21300 3
1.694  0.50621  0.16619 Ly
1.563  0.51502  0.12498 3
1.457  0.51965  0.08875 4
1.371  0.52061  0.05699 L
1.299  0.51835  0.02925
1.240  0.51326  0.00514
1.190  0.50567  ~0.01567

e o o ®
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If A is less than about 1.2, it 1is better not to study at all, and
accept zero profit, for no finite amount of effort expended will lead

to a commensurate reward.

Example 3: As a final example, consider a normal true-false test.
This is not an admissible scoring system, but we can see that E(p) = ;

1
A(p) = G-

c.7)
E(p) —ec=2p -1+ 2(1 - p)log 2(1 - p) .

Computation yields the following:
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: P lambda cost profit
‘ 0.5 5.000 0.23026 0.658974
E 0.90 2.500 0.32189 0.47811
: 0.85 1.667 0.36119 0.33881
, { 0.80 1.250 0.36652 0.23348
0.75 1.000 0.34657 0.15343
0.70 0.833 0.30650 0.09350
: 0.65 0.714 0.24967 0.05033
> 0.60 0.625 0.17851 0.02149
;. 0.55 0.556 0.09482 0.00518
1 0.50 0.500 0.0 0.0
5,
t If A £ 0.5, then any positive amount of study 1s unremunerative.
2
;
r !
: ¢
i
- .
| :
§
p 5
:
]
%
|
§
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Appendix D

; SOME RESULTS OF OPTIMAL STRATEGIES TO
ACHIEVE A PASSING GRADE

Let us suppose s student faces a test consisting of N questions,
each with two alternativé answers.  He knows the test will be scored
using an aduissible scoring system S, but that +*e only thing that
matters is that his total score exceeds s certain "passing threshold"
T. Suppose all the questions "look alike" to him, in the sense that
on each question he feels there is probability p k<%-that one alterna-
tive is correct, and probability 1 - p that the other is correct.

; Assume also that the questions are independent (in the stochastic sense).
[ Then the student will perceive that his chance of ascribing the higher
probability to the correct alternative on exactly K out of N questions
is exactly

o B e bt Er R A s il A

@ria - ¥ E (D.1)

ERE PRSP W0

i If he makes the same regponse ((r, 1 - r}, r > %9 on each question,
‘ then the value (V) of his gcore, if he ascribes the higher probability
3 to the correct alternative on K out of N questions, will be i

V(K, r) = KS(r) + (N - K)S(1 - r) . (p.2)

!
|
§ If r > % 5(r) > 5A - 1),  Therefore, 1f K; > K,, then V(K,, 1)
i > V(K,, ). Now let us define g (r) as follows:

!

K (r) = o) (®.3)

®
i K (r) is not necessarily an integer. By virtue of the above equa-~
: "
tion, however, if K is an integer such that K > K (r), then

KS(r) + (N-K)S(1 -zx) >T. (D.4)
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Therefore, the student will maximize his probability of "passing the
test" (i.e., getting a score greater than T) if he selects that r which
nininmizes K*(t). 1 asgert that the optimum value of r (which we shall
call r*) is that r which satisfies the equation,

'se™ -5 - - z. (.5)
By substituting (D.5) in (D.3) we see that
LK } -
Ele) ot (0.6)

*. * *
Now consider gome r #r , r > %. We will show that K (r) > K*(r ),
*
thus proving that r 1s an optimal response. By definition of what an
admissible scoring system is, we know that

* *» LK ] *, 6 ®
!(._él'_). s(r*) + (1 - 5—5{—)-)8(1 - r*) > E_ér_l 8(r)
®.7)
*_ &
+(1 -'—‘-{‘—'—)—)su - .
From this, and (D.3), we deduce
s + - K @))S -1) =T > KNS ()
(0.8)
+ - K a")sa - ) .
Thus
K () [S(r) - 8L =~ 1] - K (S = 51 = D))
@) - K. (D.9)

The fact that the solution to (D.5) is an optimal response in this
setting is a striking illustration of the fact that nonlinear utility
for score may destroy the admissible property of a scoring system, for
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] Eq. (D.5) does not depend upon the student's subjective probability p

at alll

: It is interesting to note, by the way, that the optimal total test

strategy may not involve making the same response on all questions, even

when the student's subjective probabilities on all questions are the

same. For example, if T = S(1) and he is completely uninformed (p = %)

: on all questions, then he will secure a 50 percent chance of passing

\ by making & (1,0) response on one question and a (-!'-. %—) response on all

{ the rest. This i{s manifestly a better chance than he can secure by any
' strategy that calls for the same (r, 1 - r) response on every question.
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