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ABSTRACT

This report is concerned first with the computer deter-vination of optimum parameters of a tapped-delay line
canonic model of third order interference generation,
and second with the use of this model in simulating re-
ceiver response to waveforms.

Factors such as complexity and realism of the inter-
ference environment are used to establish the necessary
cases and boundary values to be approximated by the
model. The convergence of the tapped-delay-line model
to a frequency-polynomial model, and the rate of this
convergence, are used to establish limits on group delay
and tap spacing. \An algorithm is developed embodying
these limits, th t recursively searches for the best
group delay and 4ap spacing, and explicitly determines
the best tap coe !ficients. Sampled data techniques are
developed for generation of AM/FM or noiselike signals
and interferers, for generation of interference products
using the model, for simulation of the equivalent linear
filter of ttie cascade model, and for calculation of dis-
tortion in phase demodulator or amplitude-demodulator
outputs. The functioning of the computer programs is dem-

onstrated with printouts from the tests.
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SELrION~ 1

INRiDxxjaq Ai SiRD4AY

This techrical report for tne period 8 December 1973 to 7 March

1974 discusses the omputer determination of optimin parameters of a

tapped-delay line canonic model of third order interference generation,

and second, Oith the use of this mrxel in simulating receiver response to

wave forns.

1.1 Introduction

In earlier studies by SIGNATRON extensive effort has been

devoted to the determination of the response of nonlinear cir-

cuits to multiple sinusoidal inputs as characterized by the non-

linear transfer function of the circuit. The present effort is

concerned with the development of canonic models that will per-

mit easier determination of the network response to modulated

input signals.

1.1.1 Specific Program Objectives

The development of canonic models falls naturally into a

sequence of steps which form the specific objectives of this

program:

a. The determination of analytically tractable approxima-
tions to the nonlinear circuit response that are partic-
cularly useful for the small-percentage-bandwidth sig-
nals of interest in comnunications.

b. Determining the minimum number of parameters necessary
to characterize these approximations.

c. Determine the minimum number and most effective set of
measurements that will permit the model parameters to
be extracted, both for entire receivers, and for com-
ponent amplifiers and mixers.

d. Verification of the feasibility of the measurement
procedure.
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e. Determine necessary computer programs to calculate
the model parameters either from measured data or
from analytic predictions of circuit response.

f. Determine n'cessary computer programs for prediction
cf response to specific modulated input waveforms
using the measured/calculated model parameters.

1.2 Summary of this Report

This report is concerned entirely with items (e) and (f) in

the list of objectives: the determination and generation of com-

puter program. to calculate optimum model coefficients and simulate

the effect on waveforms cf the receiver being modeled.

Section 2 defines the objectives of the computer programs

and establishes appropriate limits on model complexity, interference

cases, and model parameters,

Section 3 deals with the calculation of optimum model param-

eters including tap spacing, group delay and optimum tap coef-

ficients. The rate of approach to a frequency-polynomial approxi-

mation is used to define search limits for tap spacirg while the

limiting behavior provides a guideline to setting search limits

for group delay. Au algorithm is then developed that uses a re-

cursive search for optimum group delay and tap spacing and an

explicit optimization of the tap coefiicients.

Section 4 derives properties of second-order sampled data

Butterworth filters used in signal filtering and noise generation.

It is useful to have available an analytically well-understood

nonlinear circuit for testing program routines. Section 5 describes

such a circuit and the associated formulas for calculation of H3

and H1 transfer functions.
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In Section 6 we discuss the generation of signal and interfer-

ence waveforms which may be sinusoidally amplitude modulated,

phase modulated, or both, or may be noiselike in character. These

are available as an alternative to sampled data tapes derived

from actual signal sources.

Computer programs have been successfully written that embody

all of the features described in Sections 2 to 6. In Section 7

we discuss the result, of an end-to-end test of these programs.

1.3 Contributors

The work reported on here was performed by L.H.Vears, J.N.

Pierce, N.Johnson, H.Gish and S.H.Richman. This report was

prepared by Ms. Vears and Mr. Pierce.

1.4 Acknowledqments

We are indebted for program guidance and technical suggestions

to Mr. John F. Spina of RADC and Prof.D. Weiner of Syracuse Uni-

versity.
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SECTION 2

COMPUTATIONAL OBJECTIVES

The bulk of the work discussed in this report relates to

the generation of computer programs related to the canonic

modelling effort. In this section we discuss the objectives

of this software effort.

2.1 General Objectives

Our Technical Report #2 demonstrated that, at the present

time, the scope of c".onic modelling should be limited to the

modellirg of third-order nonlinear transfer functions. We

further established that for computational purposes only a very

few models were practical. For the purposes of this effort we

have chosen the most useful of these, the generalized tapped-

delay line model, which involves complex-exponential approxima-

tions to the third-order nonlinear transfer functions.

The software necessary to use canonic modelling must provide

the following capabilities:

a) A program to calculate the parameters of the tapped-
delay line model either from measured values of the
transfer function or from transfer function values
calculated by programs which analyze the nonlinear
circuits.

b) A program that accepts arbitrary signal and inter-
ference inputs consistent with the model bandwidth
and sampling rates, and generates the complex en-
velope of the c'irresponding third-order interference.

c) Routines to generate realistic signa3 and inter-
ference inputs to be used with the prcgram in (b)
above.

d) Routines to display the effect of the interference
on the baseband output of a receiver's demodulator.
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2.2 Spectral Structure of Signals and Interference

To put some structure on the computer modelling, we can visu-

alize the RF spectrum as consisting of a large number of equally

spaced channels with a separation of W Hz between the center fre-

quencies of adjacent channels. This structure is, in fact, quite

typical of military spectral. allocations. The same number W will

also be roughly equal to the typical signal bandwidth, and typical

receiver IF bandwidth, if we take these bandwidths to be defined

by the (-20 dB) or (-60 dB) points on the spectra, for example.

Since the objective here is the modelling of nonlinear effects,

it is an adequate approximation to equate the -3 dB bandwidths

to W as long as the software routines avoid any linear adjacent

channel interference effects. The basic framework will then be

taken as a desired signal at the tuning frequency v, and potential

interferers at v + W, v + 2W, etc., all with equal bandwidth W,

which is also to be taken as the IF bandwidth.

Now let v1,v2, V3 be the carrier frequencies of the three

interfering signals. Then, as was pointed out in TR #2, the

bandwidth of the third-order interaction is 3W so that inter-

ference to the desired signal can occur if

v1 + V 2 - v 3 
= v. (2-1a)

or

i + ,2 - V3 -- W. (2-1b)

The most general type of computer modelling would then

admit

a ..bitary signal modulation at Lhe carrier
frequency v,

b) three independent interference modulations at
carrier frequencies v1,v2 ,'V',

c) the interaction carrier frequency located at either
v or one of the adjacent carrier frequencies v + W.
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I
i If we take into account, however. the relative importance or re-

lative probability of the various types of interference, the

scope of the modelling can be reduced with no loss of utility.

We will now develop these specific restrictions. Before pro-

ceeding to this it is helpful to review some results from TR #2

and TR #3. 1
2.3 Use of Eauivalent Receiver

In Section 2.1 of TR#3 we introduced the concept of an

equivalent receiver. We repeat the relevant part of Fig. 2.5

of that report as Fig. 2.1 here. The essence of the equivalent

receiver is to replace the distributed (HI- H3) structure of

the actual receiver with a single linear filter (with transfer

funct on H(f)) following a parallel combination of a unit-
gain amplifier and a third-order transfer function K(flf2f 2 )f

This equivalent receiver structure also forms an excellent

signaflow chart for computer simulation in that the possibly

complicated tapped-delay line structure for the equivalent IF

filter H(f) can be applied to the one-dimensional output of

the third-order filter K(f ,f,f 3) rather than having its ef-

fects incorporated in the three-dimensional tapped-delay line

structure which synthesizes the nonlinear response.

2.4 Formulas for Third-Order Zonal Output

In Section 2 of TR#2 we developed formulas for the zonal

outputs of the third-order transfer function. We repeat here the

necessary formulas; we are substituting the equivalent transfer
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function K for H3 wherever appropriate, and making very minor

notational changes where useful.
P

X(t) = total input signal 21 x (t); (2-2)

x (t) = Re[z (t) exp (j2n v t)]; (2-3)
p p p

z (t) = z *(t); (2-4)
-p p

v =-V ; (2-5)

yK(t) = third-order output; (2-6)

1 Y a (t) exp[j2-(v + v + v )t]; (2-7)

YK(t) - 8 plP-,,p 3 pI'P 2 'P 3  P p 2  P 3

aaPl 'P2OP 3 (t)

W/2

= dfldf df G (f) exp[j2rt(f + f +'f3))
fj 2 f3 p1,p2 p3  1 2 3

-w/2

z (f ) z (f 2) z (f 3); (2-8)
2 p 3

G (f) = K(f1 + v ,f 2 + ,f3 + v ). (2-9)

P1P 2 P 3  p1  p2  P3

3
The sum in Eq. (2-7) contains 8P terms altogether, which

consist of 4P3 terms and their conjugates. Many of these terms

are identical because they represent subscript permutations.

Furthermore most of them will not fall at carrier frequencies

that can create interference; this is the cact- for any term all
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We will now specialize Eq. (2-7) to those cases that might

be of interet fcr computer modelling; we will subsequently

narrow this list down even more.

In the tabulation that follows we will write the outputs

in the fo:xm

YK(c) = Constant - Re (a (t) exp[j2nTv t]], (2-10a)

with

Pl > 0

P2 > 0 (2-10b)

p3 < 0

and V = + v + V . (2-10c:T P1  P2  P3

The "Real part of" consolidates terms in Eq. (2-7) with their

conjugates and the constant takes into account the number of

permutations that lead to identical terms.

It will be recalled from Section 2.4.3 of 'R#2 that for

certain combinations of interfering signals, many different

interactions will lead to inband interference. We have decided

that to keep the computer programs manageable it is reasonable

to require the operator either to ascertain by inspection of

the relative power levels which component is the most significant,

or to run all cases separately and combine the outputs afterwards.

In all of the cases of interest we allow the possibility

that none of the interacting frequencies is the desired fre-

quency. The computer program must thus allow for the possibility

that the linearly amplified component is distinct from any of

the interfering complex envelopes.
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We now tabulate the cases.

V v- l,v =v ),v = -v 1
Vp. V1VpV1V ip V1Pi- 2 1 3

(2-11)

YK (t) = (3/4) Re[a 1,1 ,l (t) exp(j2rrvT(t)]

V P= V IV p = % -V I2
.2  3  (2-12)

YK (t) = (3/4) Re[al 2 (t) exp(j2Tv t)] J

V 2 V2  P3 2  t }(2-13)
YK (t) = (3/2) Re~al,2,-2 (t) exp(j2 vTt)]

vpl= V 1 1V p 2 = V2 'VP3 = - V3
p3 . (2-14)

WK (t) = (3/2) Re[al,2,-3 (t) exp(j27v Tt)])

2.5 Interference Spectrum

It is useful to have some idea of the shape of the spectrum

of the interference envelopes a P(t). To this end, let us write

the time domain analog of Eq. (2-8); we will drop some of the

subscripting where it will cause no confusion. We have

a (t)= ffdtldt 2dt 3 g(t ,t 2,t3)

z (t-t2) z  (t-t 2 ) z (t-t3 (2-15a)

where g(tlft 2 ,t3 ) is any function whose transform equals G on

2-7



J0'Ft t2 t 3 g~ 1,t2 t3

exp[-j2rr(t f + t f + t f3)]
1 1 2 2 3 3

= G(f 1 lf 2 ,f 3 ) when If i: W/2, i 1,2,3. (2-15b)

For future reference we should keep in mind that since p3< 0,

Zp3 (t) = z Pi (t). (2-16)

Let R (T) be the autocorrelation function of a(t):a

R (T) = E[a(t)a*(t+T)]. (2-17)

Substitution of Eq. (2-15a) in Eq. (2-17), with the introduction

of new dummy variAbles, yields

R a(T) = f...fdt1 ...dt 6 g(tlt 2,t 3 ) g*(t 4 ,t 5 ,t 6 )

U(tI, ...,It6 ;T) 42-18a*

where
zpl(t-t ) z*pl(t + T t4

U(t ,..,t ;T) =E -zp2(t-t 2 ) ZP2 (t + T - 5)(2-18b

6' Z(t-t3 ) z* (t + T - t6)
- P3 P3 -

As usual, by E() we mean the "expected value of".

Before going any further, we should observe that the form

of Eq.(2-15a) indicates that in the case defined by Eqs. (2-11),

(2-13) and (2-14), the interference is highly correlated with

Ale COT .AJIfJJ1 e n- Z1V.%JJ .p %Li . in1eU~LL an of.1 -l iese

three cases, if z (t) is the envelope of the desired signal,the

power spectrum of -the interference may be of little interest
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bzc:use the interference actually bears useful signal inforna-

tion. We will therefore exclude those cases from consideration

in evaluating Eq. (2-18b).

That equation is hopeless to evaluate as it stands because

th-- determination of the expectation of the sixfold products

requires information on the joint statistics of envelopes at

six time instants. However, some progress can be made if we

assume that the envelopes zp1 (t)) are complex Gauss-can processes

with identical. covariance functions. (They will be identical

processes when the subscripts coincide.) We will make this

assumption, and write the common covariance as

R(7)= E z (t) z* (t+T)l, i = 1,2,3. (2-19a)
z Pi Pi

We note that this covariance satisfies

R (-T) = R *(T). (2-19b)
z 7

It will be convenient to approximate these autocorrelations

as being associated with a rectangular power spectrum of band-

width W:

W/2
R (T) = J exp (j2'f'T)df. (2-20a)

(It perhaps should be pointed out that we are ignoring the scale

factors on these autocorrelation functions and power spectra,

which are immaterial to the shape of the interference spectrum.)

It will be observed that where convenient we may use equally well

rW/2
R (T) = / eXp k- fT)f(2-20bz -W/2

because the R (T) defined by Eq. (2-20a) is pure real.

2
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In the appendix to this section we derive the general

form of expectations of the type in Eq. (2-18b). The results

these may be used in conjunction with Eq. (2-18) to derive the

autocorrelation function of the interference envelope, and hencl

the _-aer spectrum. We wish to restrict attention here to the

special cases described by Eqs. (2-12) and (2-14).

In Eq. (2--12) there are two distinct carrier frequencies

V1 and v2, and consequentiy two distinct interferer envelopes

so that

z (t)= z (t) = z (t)
,. (2-21)

z p(t)= z* 2 (t)

p3 2(

Equation (2--18b) then becomes

U(t f,I, • .. t ;-)

E ( t - t ) z ( t - t 2  z 2 ( t + - t 6  (2-22)
Zl*(t+T-t 4 ) z (t+-t 5 ) z *(t-t 3 )J

4 1 5 2 3

which, from Eq. (2-A7) in the appendix is

U(t , ...,t 6;T)

r Rz (r-t 4 + t1 ) Rz (T-t 5 + t 2 ) 2

R R(t6-t3-T) . (2-23
6Rz(T-t 4 + t2 ) Rz(-t5+ t 1 )

If we now assume the autocorrelation function given by Eq. (2-20),

this may be substituted in Eq. (2-18a) to yield

2-10



w/2

R()= df df df ... dtl... (t I ,  (t 4 ,t
a J f 1 23 2 g~~ , 3) ~ 4 1 5 6

-W/2

" exp-j2rr(f t -ft 4+f T+f2 t 2-f2t 5+f2 rf 3t 3-f3t 6+f 3T)

+exp [-j 2T (f t -f t 5+f T+f2t2 t 4 + f 2T+f3 t 3- f 3 t 6 ii

(2-24)

Evaluation of the integrals in ti, ...,t6 yields

w/2

R (dfldfdf exp[-j2- T(fl + f2 + f3'1
a 3

-W/2
"r- G(fjf 2, f 3 ) G.-* (fl~f 2,f 3) 1  2-5

L LG(flf 2 If 2 ) G* (f 2 ,fl 1 f 3 )

Since

G(f'flf3) = K(2v ,fl+vlf 3-v 2
Si c G f2 1 i f3 2 +1 1 f 1 +O o 3 V2

-- (f 1+V f 2+v ,f 3-v2

- G(fl,f2,f3) I

the large bracket in Eq.(2-25) is actually equal. to twice the

first summand in it. We can write down by inspection the power

spectrum of the interference as

Ga (f) = J d-T exp(-j2frfT) Ra (T)

w/2

= 2 1'df df df 6(f-f-f-f)
J J 1 2 3 -1 2 3
-W/2

- 1 -F f 3f '1IrI
c-r
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G (f)= 2 J'f df 1df 2IC'rif 1 ff 2# f-f 1 - f 2fW

(f' If 2 )e f

where

Of=f(f1f2::f j W2, f-f I-f 2 W/2 (2-26b'j

when
V= V = V V -2VP1  P 2  V.' P 3  2 (2-26c:

We are particularly interested in the tail of the spectrum

where

W2 f S 3 ? 2,

in comparison with the peak value. Suppose we let

G =Min IG(f 1, f2 # f 3 )I (2-27aI i I--W/2

and

GM = Max IG(f,,f 2 f3)I. (2-27b
If I-W/2 "

Then for any f

G (f) 2 GM2 f df 1 df 2 , (2-28a

f

2 PG (f) m2G idf df (2-28ba i ~' 1 2'
f

Thie integral o.ver D f can be evaluated fairly readily; we find

.3W.- ' ,4 - f 2 , If 1 5W2
df-df ,3w/2 if 2 /2 . w/2 f 3W/2J (2-29)
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From Eqs(2-28) and (2-29) we can bound the ratio of inter-

ference power in the channels centered on vT + W to the inter-

ference power in the channel centered on VT" We have

GMadiact channel interference power 4G . (2-30)
direct channel interference power 4G (-0

m

We can repeat the whole procedure now for the case in Eq.

(2-14) where all three carriers are distinct:

VP = V l p 2 = V2' VP3 - V 3  (2-31)

The expectation U is given by

U(t I , •...It6;T)

E z 1l( t - t l ) z 2 (t-t 2 ) z 3 (t+6 - t 6  (2-32)

Z (t+T-t 4 ) z2 (t+T-t 5 ) z 3 (t-t3))

from which

U(ti,... t 6;T) = R(T-t 4+t ) R(T-t 5+t 2 ) R(t 6-t 3-T). (2-33)

A comparison with Eq. (2-23) shows that the interference spectrum

is exactly one-half that found in the previous case so that Eq.

(2-30) applies in this case also.

2.6 Final Selection of Interference Combinations

We are now in a position to make a selection of the inter-

ference cases to be modelled. We recall that Eqs. (2-11) to

(2-14) defined four basic combinations of interfering frequencies,

and for each of these cases it would in general be possible to

examine Ritii1finns where the i4tcrfcrence carrr TI.. .. .... .. ... ... .... Lt::. ca i T fLi on

either the desired carrier v or the adjacent channel carriers V+W.
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The case given by Eq. (2-11) involves interaction of a

signal with itself so that the interference band is centered

on the same carrier frequency. The only two situations of

interest are those where v1 = v and V1 = V + W. (The lower ad-

jacent channel case ig essentially identical to the upper ad-

jacent channel and need not be treated separately.) We find

it reasonable to assume that a well-designed AGC circuit will

preclude significant self-interference of the desired signal.

We therefore restrict this case to

Case 1: v = v = - v = v = v + W. (2-34)p1  P2  p3  T

The situation in Eq. (2-12j is that of carriers at v and

v2 producing an intermodulation carrier at 2v - V2o We again

assume that an adequate AGC makes the case vI = v uninteresting.

This leaves only the question of w.-ether to allow modelling of

the cases

V2 = 2v 1 - V +W,

as well as

2= 2v -v.

The conclusion we draw from Eq. (2-30) is that the adjacent

channel interference effect is unlikely to be as strong as the

direct channel interference effect so that for any reasonably

well behaved K we can restrict attention to the situation where

the intermodulation carrier falls on the desired carrier, We

are thus led to take as the second case:

Case 2: vpl= v = v1 ;V P= v-2v ;VT = v. (2-J5'

The situation in Eq. (2-13) is a cross-modulation inter-

ference where the interference carrier is at the frequency of
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one of the two interfering carriers. The classic case in-

volves crossmodulation of the desired signal, which certainly

must be evaluated. However, it woula appear equally important

to consider the situation where a moderately strong adjacent

channel signal is splattered into the desired band as a result

of crossmodulation by a strong out-of-band signal. We are

thus led to two more cases:

Case 3: v = VT= v, V =- v =v ; (2-36)
P T P2  P3  2

Case 4: v = VT V+W, = V2 * (2-37)

The final situation is that of Eq.(2-14) involving three-

frequency intermodulation. We note that Case 2 and Case 4 above

are special cases of Eq.(2-14). Furthermore, from the results

of Section 6 of TR#3 we know that the probability that three

carriers have sufficient power to produce this interference

is small compared to the probability of the two-carrier inter-

actions described by Eqs.(2-35) and (2-37). We therefore ex-

clude this option from the modelling capability.

In summary, the cases described by Eqs. (2-34) through (2-37)

will form the basis of our modelling.

2.7 Scalinq

The complex envelopes appearing in the several expressions

include implicitly a scale factor proportional to the square

root of the nominal carrier power. These implicit scale factors

are multiplied together (also implicitly) in determining the

peak voltage of the complex envelope of the interference.
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Considerable efficiency can be achieved in the operation

of the computer programs if these scale factors are made ex-

plicit and their product used to scale the interference output

after it has been calculated. In this way the effect of varying

power level can be determined by scaling a single output sequence

rather than by repeating the entire triple summation involved

in the tapped-delay line model.

It is also appropriate to include the peak magnitude of

K(flf 2 ,f 3 ) in this final scaling so that the tapped-line co-

efficients have a relatively restricted set of magnitudes.

2.P Tap Spacing and Sample Spacing

We would like to discuss here the interrelation between

the tap spacing and the sample spacing. Let

= time interval between adjacent samples of the
complex envelopes; (2-38)

t 0 time interval between taps in tapped delay line
model. (2-39)

The range of values of t is determined by the requirement of0

getting a good fit to the transfer function. Values of t near0

zero will be used, for example, in approximating polynomial fits

to the transfer function. At the other extreme we can assume

that t < I/W which is the largest value that permits a Fourier0

representation of K(fl,f 2,f 3 ). We thus have

0 < t < I/W. (2-40)o

A second constraint is imposed by compatibility with the

sampled-data representation of the complex envelopes. We clearly

must constrain t to be an integer multiple of 6:0

t = integer.6 . (2-41)
o
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The sampling interval itself is constrained by the need

for adequate representation of the complex envelope of the

interference. Since, by the earlier assumptions, this envelope

has a spectrum occupying the interval (-3W/2, 3W/2) a sampli,.g
r

rate of 3W samples/second is the minimum allowable to permit

Nyquist sampling. To avoid the need for (sin x/x) sampled

data filters it is wise to allow at least some margin aad re-

quire that

6 < 1/4w. (2-42)

For this initial effort, which must be looked on as a

validation of the possibility of computer simulation of the

models, we have chosen to satisfy all of the constraints

simultaneously by requiring that

6 =t (2-43)
0

and

0 < t < 1/4W. (2-44)

The penalty imposed by this lack of flexibility in setting 6=t
0

is a restricti)n of the "wildness" of the transfer functions

that can be accommodated by the model. We should point out,

however, that this same restriction greatly reduces the measure-

ment or computational burden in determining the values of the

transfer function on a cubic lattice.
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APPENDIX TO SECTION 2:

CALCULATION OF TRIPLE MOMENT OF COMPLEX

GAUSSIAN RANDOM VARIABLES

Let xl,... x be complex Gaussian variables and let P be

the moment:

R = E(x x2xx x4x5) . (2-Al)

By a Gram-Schmidt procedure we can represent (x A I as a trans-

formation on uncorrelated unit variance variables in the form

x2 =a 2 1y,+a 2 2Y2

(2-A2)

6= a61y1 + .... +a 6 6Y 6

where

E{ y = 6 , the Kronecker delta. (2-A3)E m Yn mn

If we substitute Eq. (2-A2) in Eq. (2-Al), the result is a sum

containing 6! products of the {Yn and their conjugates. It

would be bad judgment to write this sum out because most of the

terms vanish when we take the expectation. In fact the only non-

zero expectations are those of the form

2 2 2,

{lyi I !y I lyki )

in which i,j,k may or may not be distinct subscripts. We see

immediately that y4 ,y5 and y 6 will never enter into the calcula-

tion of R because they never appear unconjugated in the product.

We will need the three moments of the tni.t-mean exponential
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distribution in writing down the expected products:

E{Iy 12P} p. (2-A4)

We then have

R = 6(al a121a31 Ha41a51a61)
+2 (ala 22 a31 +a11a 21a 22) Ha51 a61 a42 +a 41 a61 a52+a 4! a51 a62)

+2 (a11a 21aC.33 )(a 51 a61 a43+a 41 a61 a53+a 41 a51 a63)
+2(a 1a22 a 32 a 51a 62aa41 a +a42 a 52a a 61)

+(a11a22 a33 a41 a52a63 +a51a62 a43+a61a42a53 +a41a53a62

This latter expression needs to be rephrased in terms of
the covariances of pairs of {xn

**

EX X . (2-A6)mn m mi ni

Now if X I, X2,and X3 were independent and if X4  X, X6 were

11 2 32 546 41 426

permutation of them, then R would contain a product of the form

RIP R2 "P R 3,

where (plIP2,P3 ) was a permutation of (4,5,6). We are thus led

to conjecture that

R R RI4 R25 R36 + R15 R26 R34 + R 615 R324 R435

+ R14 R26 R35 + R15 R24 R3 6 + R16 R25 R34- (2-A7)

If we rite out this sum using Eq. (2-A6) we can verify its
coincidence with Eq. (2-A5) and thus correctness of our conjecture.
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SECTION 3

DETERMINATION OF MODEL PARAMETERS

We start here with Eq. (2-10) of the last section which we

repeat here:

YK(t) constant -Rea (t) expfj2rv tJ (3-1a)

where

Pl > O0

2> 0 (3-1b)

p 3 < 0

arid

v = v + v + v . (3-ic)T p1  p2  p3

The complex envelope a (t) in Eq. (3-1a) is given by Eq. (2-8)

as

W/2
a (t) = ff df G (f) exprj2lt(f + f2 + f 3)]

-W/2

*z p1(f l ) Zp2(f2 ) Zp3(f3 (3-2)

in which

K f_=K(fl+vf + vf + ) (3-3,)
P-1 p1  2 p p313 -Pl 2 P3

Our modelling procedure relies on the property that if

G (f) -6(f) for Ifil < W/2, i= 1,2,3, (3-4)13--

then
a (t) fdf '(f)expgj2-t(fl+ f2+ f2)]

Z (fl) Z (f (3-5)
Pl P2  2
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by virtue of the bounded support of the input spectra (Z 3. Wep.

have furthermore chosen to restrict attention to approximations

i(f) of the form

G(f) = n 2 B(n ln 2n )expr-j2nb(n f + n f + n f3)].
2 3 (3-6)

Substitution of Eq. (3-6) in Eq. (3-5) then leads to

a (t)= Z Y B(n ,n on
P n1 n2 n 3  2 3

3 .C

P df i exp rj2rf i (t-ni6)] Z (fi) (3-7)

i=l -P

or
3

a Z F B(n ,n n 3 ) T z (t-ni6). (3-8)
P( n1 n2 n3  1 2 3 = Pi

3.1 Choice of Model Parameters: General Considerations

Referring to Eq. (3-6) the parameters that must be specified

are

a) the tap spacing 6

b) the range of indices (nlon 2 ,n3 ) in the sum

c) the coefficient set [B(n ,n 2,n3 )j.

For computational purposes it is reasonable to require that the

set of indices be identical for each coordinate so that Eq. (3-6)

can be specialized to read

3 -j2rbn. f.
(f) F B(n ,n n e (3-9)

N I+ 1 :5 n 2 I-N I+ 1 =

.n3
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The analogouL time response of Eq. (3-8) then becomes

3
a (t) = 5 B(n 1 ,n 2 n3 ) z (t-n.b). (3-10)

NI+I 1 N I+ N

n3

In these expressions N is then the number of delays used in the

model for each input sequence, while the number NI can be thought

of as an overall delay of the output sample sequence relative to

the linear components of the model. The number N can be assumed

to be fixed ahead of time by complexity limitations on the com-

puter programming. It is therefore necessary to determine N 3+ 2

model parameters:

a) the delay spacing 6

b) the overall delay NI

c) the N3 values of the (B(nl,n2,n3

If the function G(f) were specified at all values of f by an

analytic description, it would be reasonbly straightforward con-

ceptually to find a choice of the N3+ 2 parameters that minimized

the quadratic approximation error

ff f f - G(f) 2.

What we will actually be working with, however, is a finite set

of calculated values as measurements of G(f) in the form
G(m1 fo, m2 fO, m3 f )

as ml#m 2, and m3 range over some small set of integers. If M is

the number of measurements per frequency coordinAte Rn that the

total number of measurements is M3 , then clearly we require that
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M 3 > N3 + 2,

so that the number of measurements t I exceed the number of

parameters to be determined. Thus we must takeI M L* N + 1,

On the other hand, the determination of each of the M3 data points

will require either a significant measurement effect or significant

computation time. Therefore we believe that it is reasonable to

use only the minimum number and hence require that

M = N + 1, (3-11a)

Where N is the largesc value of N for which modelling is to be done.

At this point we should observe that the smallest "interesting

value of N is N = 2 corresponding to a two-tap model, or, in the

limit of small tap-spacing 6, a frequency power series with linear

terms in each frequency. We have chosen to allow values of N as

large as 4 which provides considerable flexibility beyond the

minimally interesting model; the corresponding value of M = 5

which requires 125 measurements or calculations is probably as

large as can be conveniently accomplished with any reasonable

economy of either computer or measurement time. We thus will re-

strict attention to

M ! 5 (3-12a)

and, from Eq. (3-11),

N - 4. (3-12b)

The most favorable location of the frequency lattice points

is not immediately apparent. To be more specific, it is not ap-

parent how close to the band edges of + W/2 the extreme data pointi

Rhould be. Although an argument could be made that choosinq the

frequencies of + W/2 as 2 of the data coordinates on each dimen-

sion gives undue weight to possibly anomalous band-edge phenomena,
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I
this choice is a conservative one in that it will make any model

weaknesses most apparent. We therefore will henceforth assrme that

the measured or calculated data consist of the values

-- W/2 + (m1-l)W/N,

Y(m11m2 ,m3 ) = G -W/2 + (m2-.I)W/NI. , (3-13a)

-W/ 2 + (m3-1)W/N I
for

1 < mlIm2 ,m3 
< N+I. (3-13b)

We now define ^ in the obvious way as the value of the ap-

proximating function G at the same lattic3 frequencies, and define

an error criterion

N+l N+l N+l
V Z ,m ,m ) - y(m m ,m3)1 2  (3-14)

ml=l m2=l m 3=1

which is a discrete version of the quadratic error criterion. It

should be observed that V is implicitly a function of the param-

eters N ,6 and [B(n ,n ,n 3)]. The objective of the parameter-

extraction program is then to minimize V by the choice of these

implicit arguments.

Before proceeding further it is helpful notationally to let

P(n ,n 2 ,n 3 ) = B(n +N I ,n 2 +N I ,n 3 +N I ) (3-15)

so that Eqs. (3-9) and (3-10) can be rewritten as

G(f)= exp F-j2rN I6(f +f 2+f 3)]

N N N 3 -j276n .f.

nl=l n 2=1 n 3=1 ~
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K
N N N 3

a (1 n P(nl 2,n3) z (t-ni6-N.6).P_ nl=l n 2=1 n 3=1 1Pi
1 2 3i=l

(3-17)

It can be verified that for any fixed 6 and N., the determina-
tion of the best values of O(n ,n 2 ,n3) is a routine quadratic mini-
mization. (We will present the derivation of these coefficients
subsequently.) The problem thus reduces to finding an efficient
algorithm for determining the best choice of 5 and Nt..

3.2 Dependence of V on 6

Although it is theoretically possible to find the optimum
value of 6 by differentiating the quadratic error V with respect
to 6 and equating this derivative to zero, it appears to be more
realistic computationally to search for the minimum V by evaluat-
ing Eq. (3-14) for several discrete values of 6. This approach

also guarantees that the value of 6 we select will be an approxi-
mation to the value yielding a gl,.bal minimum rather than one
which yields only a local minimum. We now need to investigate
the limits of this computer search, or, more exactly, the lower
limit, since we have already determined that 6 < 1/4W. We thus
need to investigate the behavior of the optimizing solutions as
6-0 and then determine the largest possible positive 6 which per-
mits approximating this limiting behavior.

From Eqs. (3-13) and (3-16) ue have

9(mI m2 , m3 = exp(-j2-N I 6W[-3/2-3/N+(m1 +m2 +m3 )/N]J)

N N N
Z E P(nl,n2,n3)

nl=l n2=l n 3l 1

exp[-j2Trbni" W(-1/2 -I/N+mi/N)]. (3-18)

i=l
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We clearly must have each of the y approaching a limiting value

as 6 - 0; we will denote this limit by the subscript zero:

Y 0(ml,m 2 ,m = lir Y(ml 1 m2 ,m3). (3-19)
6-0

In Eq. (3-18), let us denote the triple sum by a(mlm 2 ,m3 ).

By writing the product of exponentials as the exponential of the

sum oE arguments, a can be wiritten as

N N N
a l ,mU ,m ) = 2 3Z (nl,n2,n 3 n •

nl=l n n2=1 n 3=2

p 2w 3

•exp[-j2W (-I/2-1/N+m. /N). (3-20)
L i=li

If we now exparnd the exponential in a power series in 6, the sum-

mation in the power series can be commuted with the triple finite

sum on (nl,n 2 ,n 3 ) to yield

k
o(milm 2 ,m3 ) = Y (-j2nW6)

k=0

N N N
•F. F 1: (nl,n ,n 3

nl n2=. n3=l 1
1 3 3 mhk(-1

3 1
"i 1  

I  - + N/i •

Now, if the coefficients (P(nl1n2,n3) ) were constants independent

of 6, then, for sufficiently small 6, the leading term in the in-

finite sum would be the dominant term, and a (ml 1 m2 ,m3 ) would be

independent of ml,m 2 , and m3 . However, we can expect that the

dependence of the [l(nl 1n2,n3 on 6 will be reflected in rela-

tions of the form
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L P(nl,n2,n 3 ) - constant as -0,

(nl,n 2 ,n 3 )

constant

(ni ,n F n l ( n l n 2 ' n 3) - as 6-0,

S n.n. P8i~ n constant CO60

(nn 2 n3 ) 1 1 2 3 2

and so forth. It will thus be possible to obtain polynomials

in ml1m2, and m 3 as 6-0.

Suppose, then, that we postulate that each 0 has a finite

Laurent development of the form

(nl,n 2 n 3 ) = 10(nl'n2,n 3 + 1 (n1 n2n 3)6

+...+ 8L (nln 2 ,n 3 )6-L (3-22)

+ terms of the order of 6 or smaller.

If we let

P D(n ,n ,n ) = homogeneous polynomial
in (nl,n 2,n 3 ) of degree D, (3-23)

then clearly we must have

E(n 1 n2 ,n 3 ) P D(n 1 n2,n 3 ) = 0 if D < t
(nl,n 2,n3) (3-24)

for otherwise there would be infinite values of a as 6-0. Rqua-

tion (3-24) imposes

(4+2) -, (it+l) (,t+2)

linear constraints on the [ (n 1 1 n2 ,n 3 ) 3 corresponding to the

number of types of homogeneous polynomials of degree < t. Since

there are only N3 cf these coefficients, it follows that
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L(L+1) (L+2) 6N3  (3-25)

or

L <1 if N 1

L 2 if N 2

L 4 if N 3 " (3-26)

L <6 if N 4

The limiting value of o( ), which we will denote by a (), is then
L

a (m 1 m2 m3 ) = r j2rrW)
'=0

N N N
E E, P, (nl n ,n3)

nl=l n2=l n 3 =2

3 m
F r n(- +(3-27)

Li=J ~ .

The terms in this expression can be rearranged to yield
l 1 (2 C3

ao(nil. m2,m3 )  c mi  m2  m (3-28a)
o 1 2 3 oMeA a1 2

where

a_ = (alo1a 2,a 3 ) (3-28b)

and

A = [.: EM r LI. (3-28c)

The numher of coefficients in Eq. (3-28a), or, equivalently,

the cardinality of A, is

Card (A) 3 () (3-29)

This might suggest the inference that there are more degrees of

freedom in the limiting case than in any of the expressions for

nonzero 6. This inference would be false, however. In addition

to the linear constraints of Eq. (3-24) there are linear constraints
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between the different [ and the measurement valies. In fact,

if 6 is some value of 6 sufficiently small so that

6 (ml,m2,m 3) 3 a 0o(ml,m2,m 3)

then the fact that there are only N3 independent coefficients in

Eq. (3-20) implies that of the M3 = (N +1) 3 values of o61, only

N3 are linearly independent.

We now need to investigate the raue of approach to the limit-

ing form of Eq. (3-28a). To this end, let us define

L

r(f) =n P (n) 6 expI - j2rrb6T n f. ". (3-30)6- n -t=O It L114

The rate of approach of r6 (f) to its limiting value is at least

as good as would be obtained if the summation on t included positiw

powers in 6. We find

lim 6- 7. %(_)expF-j26En.f.) = p%(f) (3-31)
6-0 n

where Pt is some homogeneous polynomial of degree t in 3 variables.

It is actually one part of the frequenc polynomial approximation:
___. tfl1i2 3 1 2 3

P (f) = 7 (-j2Tr) f f 2f 3 .()n 1 n2 n 3
1 2 21231 "2 32 n

(3-32a)

in which

t= ('t, t ,-t, -2t ) (3-32b)

It is not difficult to verify that the slowest convergence is

obtained when t = L. We will therefore restrict attention to

that case.

3-10



We now observ6 that

ml m2 m3 (nlz +n z2+n z3)D
n 1 n12 n3 -1_ 1 n2  2 3 3 dzldz dz

S= j ) 3 +m l+m 2  +m 1 2 3

2 (r~)1 2 3zI z2  z

(3-33)

where all three integrals are on the unit circle. Hence any

homogenous polynomial of degree D in n can be approximated by a

linear combination of polynomials of the form (n1z1+n 2z2+n3 z 3)D.

The linear constraints of Eq. (3-24)can therefore be phrased as

D
L(n) (nlzl+nz2+nz)= 0

n L 1 1 2 2 3 3

for every nonzero z and for every (3-34)
D < L.

Suppose that we define

DwO D
D!(wz) = F -MB (n) (nl+z3+ ) . (3-35)

D ! n L -11 2 2 3 3D=0 n

Transposing the order of the two sums.

g(w,Z) = >0 (n) exp 1w(nlzl+n 2z2+n3z3  (3-3f-- n L -- 1 2 2

The constraint equation now becomes, from Eqs. (3-34) and (3-35)

Lim wL g(w,z) < - for every nonzero z. (3-37)
W-0

We observe now that the right hand side of Eq. (3-36) is a

polynomial in

wz1  wz2  wz3
e ,e ,and e

This polynomial is of degree N in each variable with t-he ero

degree terms in each variable missing. It is readily seen that

the only polynomial of this form that satisfies Eq. (3-37) is
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L

g(wz): exp(w Ez7 {1-exprw(PmiZl+P 2 z 2+P 3 Z3 ):}, (3-38)

m=l

up to a constant multiplier. In this expression the [Pmi are non-

negative integers with at least one Pmi nonzero for each m. Further

more since the product includes a term of the form

exp jw E Z p z ,
. - m i mi i

the exponent in this product must be no greater than

(N-i) (z 1 + z 2 + z 3 ).

W.? therefore have

F P.i > 0 for every m. (3-39a)
i

E N-I for every i. (3-39b)
m mi

The coefficients (9L (n) could be found by writing out the

L-fold produc" in Eq. (3-38) and matching coefficients with Eq. (3-3(

Ho;.!ever, it is much more to the point to compare Eq. (3-30) with

Eq.(3-36) for the special case where (n) is zero for t < L, and

note that in this case

%6(f) = 6-Lg(-j26,f) (3-40)

so that from Eq. (3-38)
r if )  = 6 - L e x -j f i

LP6 (=6 exp (- j 2Tr6 f.)

F1 (l-exp [-j2n6 .mi.. (3-41)
m=l i

The limiting form of this can be written by inspection as

S(f) = (j2Tr) L 71 Z mI1.f (3-42)
o im=l i=1
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Let us write

p(6) = F'6(f)/ 0(f) (3-43)

in order to evaluate the approach to the limit. Then

Tp(6) = exp(-j2r6b'f.)1

L l-exp[-j2n6'F u .f.]
i m (3-44)

m=l I mi

The multiplier

exp(-j2b6 f. )

can actually be subsumed in the multiplier

exp[-j2N i 6 Yf.)

which appears in its discrete version as the first multiplier

in (Eq.3-18). We can therefore take the approach to the limit

to be that of

L l-exp[-j2TT6EP .f.]
1

(6) = I j2Tri6"'P f. (3-45)
m=1 mi I

which, for sufficiently small 6 is approximately

5(6) 1 - jrr6 .f.. (3-46)
in 1 mi 1

The absolute fractional difference between r6 (f) and r (f) can

then be taken to be

(6, f) = '8 / " 7 1i .f.. (3-47)
1P 1 mi I

This is clearly largest at the band edges so that

lE: (-6jW/2) ~u (-Smi

From Eq. (3-39b) this can in turn be bounded above by
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lei 3(N-l)r-6W/2, (3-49)

or, using

N - N = 4, (3-50)

He I - 9rr6W2. (3-51)

It is a numerical convenience to have the smallest value of

6W be an integer power of 1/2. At 6W = 1/128 we have

lei - 9T-/256 if 6W = 1/128. (3-52)

This represents about a 60 discrepancy from the limiting value

when this discrepancy is 900 out of phase as suggested by the

form of Eq. (3-46).

We can also check the relative amplitudes using Eq. (3-44).

We have

L Isin - f ifii
I(P(6)l = 11 1n6 : mfif-- (3-53)

which for small 6, is approximately

IP() I 1- ( 22/24) Z ( 'mi) 2 ,

m

if Ifi = w/2. (3-54)

The maximum of this under the constraints of Eq. (3-39) occurs,

for N 4 and L = 6, when

"fl ' Pm2 =1, 1 m 3

P m3 =1 , 4 m 6

p mi =) ,otherwise.
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We then have

R (6) ; l-5(rv6W) /8, N = 4. (3-55)

For 6W = 1/128, this represents an error of abouc 2.3 x 10 - which

is negligible.

3.3 Choice of Values of 6 in Parameter Fitting

Ba. A on the results of the previous subsection we will con-

fine 6 to the range

1/128 &W s: 1/4. (3-56)

It is also necessary to select the grid of points for 6 within

this range. We have somewhat arbitrarily chosen to start at

6W = 1/4 and successively halve the value of 6 to get the next

trial value. In this manner, each tapped line can be looked on

as a refinement and truncation of the previous one. We therefore

have the final selection of values

6W = 1/4, 1/8, 1/16, 1/32, 1/64, and 1/128. (3-57)

3.4 Ranae of N

Referring back to Eqs. (3-18) and (3-20), let us write

"(m l f m 2 , m3) = o(m l ,m2 , m3 )

exp[-j2N I6W!-3/2-3/N+ (m I+m 2+m 3)/N.

(3-58)

For sufficiently small 6 we can replace o(mlIm 2 ,m3 ) by its limiting

value a0o(m1m2,m 3 )  Unless N6 is very small throughout the range

where this approximation holds true, the values of 9 will change

as 6-0 unless N16 remains fixed. We therefore can assume that
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N. constant/S as 6-0. (3-59)

We will use this property to pick the range of Ni after the first

trial.

At the other extreme, we observe that a change of m. by 1

causes a change of

j2n(N I+ ni)6W/N

in the argument of some exponential term. More accurately, if

we use an arbitrary lattice of M3 measurement points, the argu-

ment of the exponential changes by

j2"(N + n i)6W/(M-l),

which for 6W = 1/4 is

jr(NI+ ni)/2(M-1).

This implies that if INI + n. I> M-l, then one of the exponentials

is incurring more than 900 phase change between adjoining lattice

points. We believe that such a situation corresponds to an under-

sampled transfer function (in an engineering sense) and that

therefore the restriction should be assumed that

IN + nij i M-l,

or, since

1 n. N,
1

w- will require that

NI + 1 1 I-M

N + N M-lI

or

-M ! N M-l-N. (3-60)
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Let us now denote by & (6) the apparent best choice of N1
for a particular value of 6. From Eq. (3-58) we would expect that

A (6/2) z2 (6), (3-61)

so that the new interval of delays covered by the tap locations

falls within the old interval. We note that with the tap spacing

6 the actual delays are N (6)+ ]6,...,[ i(6) +46. If we then

choose the minimum and maximum values of N1 (6/2) to cover all pos-

sible overlaps of this range we must have

[Min N (6/2) + 1](6/2) [ (6) . 116

[Max N (6/2) + 4](6/2) = [NI(6) + 416
so that

2& (6) + 1 N6(6/2)5 2 1(6) + 4 (3-62)

3.5 Best Choice of[0(j

We can now assume that 6 and NI are temporarily fixed at
some trial value; the values of [ (n)0 must be calculated. We
have available the lattice of measurements Y(m ,m2' m )for 1 < m. < M,

1 " i - 3. It will be a labelling convenience both computationally

and to derive the best choice of the [P(n)) if we define two in-

dexing variables

P = M (m -1) + M(m 2-1) + m3  (3-63)

v = N (n-i) + N(n 2-1) + n . (3-64)

The ranges of these variables are

1M (3-65)
3.1 <v s N (3-66)

We modify the measarement values by the first complex ex-

ponential factor in Eq. (3-18) by setting

S() =Y (ml m2 m3 ) exp j 2rrN6{ - + " M' - 3 (3-67)
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We further define a coefficient array equal to the triple

product of Eq. (3-18):

1 iiIcCu,v)= exp[_J2.6W3ni(_ -m-l)" (3-68)

We now want to find that s -. of F(v) for which

V = Z IS(-'p) - z P(v) C(I.,v)12  (3-69)

is minimum.

We can interpret the array

C = [C(i,v )H

as an M -row by N -column matrix; the array

I = (OM)I

as an N -entry column matrix; and the array
S = [S( )]

as an M -entry column matrix. We can then rewrite Eq. (3-69) as

the matrix equation

V= (S- C) (S - c) (3-70)

where

* = conjugate

T = transpose.

In expanded form this is

= S*T -*T S - S C *T C*T Co. (3-71)

Let us now conjecture that we can rewrite V as

V= (O-a)*T c*T C (O-M) + U (3-72)
--_3

where U is a scalar constant and a is a column matrix with 
-

entries. Expanding the product we have
*T *T *T -:T *T *T

C - C _ CO

*T *T
+ a C Ca + U. (3-73)
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If we equate corresponding terms in Eqs.(3- 1) and (3-73) we

find that

*T *T
C Cc =C S

so that

C= (C* T C) C* T S; (3-74)

and that *T*T *T
C Ca + U = S S

so that
s*T *T (375)

Substitution of the value for a from Eq. (3-74) in this last ex-

pression gives

*T *T *T *T *T -1 "IT
U=S S- S C(C C) C C (C C) C S

or *T *T ,* -1 *Ts
U=S S-S C(C*TC) C . (3-76)

This last result can also be phra.sed as

*T *T
U=S S- S Ca.

Clearly, the minimum value of V is attained when

(3-77a)

where

V = U. (3-77b)

3.6 Program Outline

We are now in a position to summarize the programs for deter-

mining the model parameters.

3.6.1 Input Data from Measurements

If Lhe input data are to be acquired by measurements it is

necessary to specify
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a) the size of the measurement lattice M,
[ b) the three carrier frequencies vlVv2, and v 3

(where v3 is negative),

c) the bandwidth W.

The output of the measurements should be a tape record or

card deck containing the following data.

a) lattice size M

b) bandwidth W

c) a three dimensional array Y(ml,m 2,m3) where

C-W/2 + (m -1) W(-)1 +
Y(ml'm 2 m2 ) G -W/2 + (m.-1) W/(M-I), (3-78)

0 W-W/2 + (m3-1) W/(M-l)

where

G(f ,f ,f H(V 1 +f, V 2+f 2V+f (3-79a)
HGvvf If +ff+

and

G = Max G(flf 2,f3)
f1l' 2' f3

d) the normalizing constant G 00

3.6.2 Inut Data by Computations

If the input data are to be determined by computer analyses

of the nonlinear circuit it is necessary to duplicate the same

type of output as in Section 3.6.1.

Using SIGNCAP for example, we must specify

a) t e lattie,' dim en sinn M

where
2 5 M < 5. (3-80)
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b) the bandwidth W

c) the carrier frequencies

VV PV2 , 3 where

< 0. (3-81)

One then calculates the three dimensional array variable

Y(ml fm2 , m3 ) from

Hi 3[V + f(m ), 2+ f(m2 ), V 3+ f(m3 (3-82a)
SS GImlim 2  3 H Lv +V 2+v 3+ f(m ) + f(m ) + f(m 3)]

where

f(mi) = _ W/2 + (mi-l)W/(M-1)

for i = 1,2,3; m. = 1,2,...,M, (3-82b)

by setting

, 1m G ,m2  (3-83a)
23- G 1m 2 3

0
with

G = Max G (m ,m 2,m ). (3-83b)
o all[m. i

Note that the maximum data generated by this program are 125 com-

plex numbers. The program output should then be

a) the lattice dimension M

b, the bandwidth W

c) the array variables Y(ml 1 m2 ,m3)

d) the normalizer G
0

3.6.3 Computation of Model Parameters

The input to the program consists of the output of the lat-

tice value computation routine or the measurement results. Specif-

ically the input data should contain
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a) the lattice c' .Tension M

b) the bandwidth W

C) the array variables Y(mlm 2 ,m3)

for 1 - m. - M; i = 1,2, and 3.1

d) the normalizer G00

In addition

e) the number N of taps/coordinate must be specified.

This number must satisfy

1 < N < M-1. (3-84)

We define a normalizcd tap spacing

D = Wb, (3-85)

and take the "group delay" NI as defined before. For each D we

define the minimum value of NI by N m(D), and the maximum value of

NI by N M(D). We will reserve the symbol V for the final minimum

value of the approximation error and use U for the approximation

error for a specific NI and D:

U(NIOD) (S-Ce*T (S-CO). (3-86)

It will be helpful to define partial minimizations of U

V (N ,D) = U(K,D) = Min U(nI,D), (3-87)
T I I n IN I

V (D) = U(KoD) = Min U(n ,D),
T n0i NM  I

and

V R(D) = U(K R,D) = Min U(N ,d). (3-88)

NI

Note that KT is implicitly a function of NI and D, K is implicitly

a function of D, and that K_,D_ are implicitly functions of D.
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We can then write the recursion relations

N (D) = 2K (2D) + 4, (3-89a)M 0

N (D) = 2K (2D) + 1; (3-39b)m o

VT (N T -1D if U(N I D) > V T(I- 1D)~

U (NI .,D) if U(NID) r VT (N1-1,D)j

(3-90)

KT(N I-,D) if U(N ,D) > V T(NI-I,D)

N I if U(N ,D) VT(NI- I,D)

(3-91)

V T(D) = V T(NM,D), (3-92)

K = K T(NM,D); (3-93)

(V (2D) if V T(D) > V R(2D) >
VR(D) = ,R R(3-94)
R (DVT(2D) if V T(D) > V R(2D) (

( K (2D) if V T(D) > V R(2D)
KR(D) = , (D) if T VR ) (3-95)

K (d if T(D) < V(2D)
oTR

DR(2D) if V T(D) > V R(2D))
DR(D) = , TR(3-96)

'D if VT (D) < VR (2D)}

For each of these recursions we also need initial conditions.

For N and N we have
N M

m when D = 1/2. (3-97)
N =M-3- 2
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Since we have constrained the values of y by

jY(ml'm 2 'm 3 ) 2 1 i,

it follows that

S *TS 125

so that VR and VT can be initialized by setting them equal to any

number larger than 12,, say 200. We have then

V T(N -1,D) = 200 (3-98)

VR (1/2) = 200.

The fiaial values of the parameters then yield the optimum

parameter values:

Optimum value of 6W = DR (1/128) (3-99a)

Optimum value of NI = KR(1/128)

Minimum of V = VR (1/128).

We then have the following scheme for calculations:

a) Initialize record keeping parameters:

VT = VR = 200

b) D is initialized at

D = 1/4

c) NI is initialized at

NJ = - M

N is initialized at M - 1 - N
M

d) For each m.1
1 m. M; i = 1,2,3

1

define an inteqer
2

1 = M (m1-1) + M(m 2 - ') + m3 ,

and an array variable
3 ml1+ m 2+ m 3-3.

S(u) = Y(ml m2 , m3 ) exp [j2TN D[ -  + M m .

231L 2 M - 1
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Note that under the program restrictions,
3

1 P e- M 3 125.

e) For each m.,
I

1 ! 5. M; i = 1,2,3

ane for each n.
1

1 < n. : N; i = 1,2,3,1

define W as before and define

v= N2 (ni- 1) + N(n2- 1) + n 3

and a two dimensional array variable

3 1 m- 1
C(P3v) = exPL-j2nDi~l r i- + M- )'

Note that

1 < U - M 3 125,

1 v !r. N 3 (M-l) 3 64.

f) Interpreting S() as a column matrix and C(I,v)

as a rectangular matrix with M 
3 rows and N3

columns, calculate the number

u= rC(C C) -C *Ts-s] *Tc(c*TC) -IC*T-S]

g) If U< V

se T
K T =N.

Make available for print out N ,D, and U.

h) Replace N, by N,+ i

i) If N1  NM go back to step (d)

j) Set K =K
o3T
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k) If V < V set (VR= VT,KR= KT,DR= D).
T R R T R T R

1) Set NM = 2Ko+ 5

N, = 2K + 1

D = D/2
VT = 200.

m) If 129 D > 1 go back to step (d)

n) Set D = DR , NI = K V = V, K =K R

o) Calculate the array variables . and C as in

steps (d) and (e)

p) Calculate the array variables

O(v) for v = 1 to N 3 by interpreting as a

column matrix given by

= (C*T C) C *TS.

q) for 1n. N, for i = 1 to 3 set

2.2
B(nl 1 n2 ,n3 ) =P[(nl-l)N2 + (n2 - i) N + a 1.

r) Calculate the normalized error

Vp - s*Ts

s) Make available for print out

Go, F D,p and the array variables B(nl1 n21 n3)

t) Make av able on cards

GoK,6 = D/W,N, and the array variables

B(nl 1 n2 ,n 3).
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SECTION 4

SAMPLED DATA BUTTERWORTH FILTER

4.1 Use of Approximate Linear Filter Response

After adding the third order distortion terms to the linearly

amplified components, it is necessary to filter the resultant sig-

nal so that its bandwidth is equal to the nominal IF bandwidth of

the receiver. Simulation of the exact IF response on the computer

would, in general, require a convolution involving a very large

number of delayed replicas of the input process, and would be very

time consuming.

It will be adequate for most purposes to replace the impulse

response of the actual linear circuit by any filter having the cor-

rect 3 dB bandwidth and adequately fast roll off. It should be em-

phasized that such a change does not have the drastic effect on

nonlinear spectra that would result from changing the actual IF

transfer function. The effect of this actual receiver filter will

have been incorporated in the equivalent transfer function K(f1,f2,f3);

the substitution of an approximate filter for H(f) causes only

linear distortion of the output.

The filter that is chosen to approximate H(f) should obviously

be selected for ease of simulation on the computer as well as for

reasonable match to IF filter characteristics. The second-order

Butt.worth filter meets all these requirements satisfactorily: it

has maximally flat inband response, it yields 12 dB rejection at

one bandwidth separation from its center frequency, and it can be

simulated by a two stage recursive filter on the computer.
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4.2 Use of Butterworth Filter for Spectral Shaping of Noiselike
Signals

In order to simulate the effects of random interference it

is desirable to include a noiselike waveform as one of the possible

inputs. This waveform can be generated conveniently using a sequenc

of random complex numbers at the sampling rate of the simulation.

However, it is necesqar:' Lo provide spectral shaping in order to

approximate the bandwidth characteristics of the interference.

We have again chosen a second-order Butterworth sampled data filter

for chis function.

4.3 Properties of Second-Order Filter

Let [Z : -- n ] be a sequence of complex numbers derivedn
from sampling an input process using a sampling interval 6, and

let

f= (2Pcos P) Yn- P Yn+ AZ n , (4-1)
n =n-l n-2 n

where P and (P and A are real constants. We assume the nonrecursive

definition of Y to be
n

Y = m (alb3  + ab) Zn . (4-2)

Then since Eq.(4-1) can I- written as

Yn - (2PcosP) Yn-l+ p Yn-2 = AZn (4-3)

we can determine alobla 2 ,b2 by substitution of Eq.(4-2) in Eq.

(4-3) to yield

•.2+k 2+k

(al+ a2)Zn+ (alb+ a b )Z + Z (a b + a b2  )Z1 2 Y1 1 1 2 2 n-1 k=O 1 1 2 2 n-2-k(2 (a b I a b 1+k
(2ocos)(a+L 1  2)Zn-1+ k=0(albl + 2 2  Zn-2-kj

2[kv~ (a.bk+ a2 b k)z+a~ 1 +k = a2 b 2 -2 -k i

-AZ
n
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From this equation we deduce that

b. - (2pcosp)b. + p2 = 0, i = 1,2; (4-4)
1 1

a + a2 = A; (4-5)

a b + a2 b 2 - (2pcosp)(aI+ a 2 ) = 0. (4-6)

Equation (4-4) has the solution

2pcosp j42 Cos, 2p - 40
b. 2

or

b I = P exp (jcp) (4-7 a)

b = p exp (-jp). (4-7b)
2

We observe that a2 = a1 since b2= b . We can thus write
2 1 2 1.

a, = lal exp (ja), (4-8a4

a2 = lal exp (-ja), (4 -8b)

so that Eqs. (4-5) and (4-6) become

21alcos a = A (4-9)

-21alP cos(P-a) = 0. (4-10)

We deduce immediately that

a = -/2

and

lal A/(2sinp).

Hence

a1  (A/2) (l-jcotcp), (4-11a)

1 71 /)1 1 _ 1 L- _I-e I[ - 1 )a2  - I7/) f,\. ,~ .4....h

We thus have

Y [ m (l-jcotp) exp (jmp)

n= (A/2) mO 0 m Zn-m +(l+jcotp) exp (-jmn)] " (4-12)
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4.3.1 Response to Sampled Cissoid

Now let (Z ) be the samples of a complex cissoid with fre-

quency f:

Z m exp (j27rf6m). (4.-i3)

Wie can shorten subsequent expressions by setting

=2nfb (4-14)

s o thia t

Z = exp (jmP). (4-15)
In

Substitution of this in Eq. (4-12) yields

2Y nexp(-jnP)/A

(l-jcotP) E [ exp (jcp-jp)Jm
M=O

+ (1-jcotcp) 1: [P exp (-jcp-jO)]m
in=O

1-jcotcp 1+-jcotcp
1-Pexp(jcP-jP) l -pexp(-jp-jP)

or

t2jY n(sinco)exp(-jnP)/A

-.texp(-jcD) - P exp (j)-

-Fexp(jp) - P exp(-jP)J-

-2jsincp rl-(2pcosp) expl%-jP) + P 2 exp(-j2P)J-1

so that
2 -1

Y= Aexp(jnP)fl1(2pcoscp) ex-p(-jP) + p exp(-j2P)]J

We then have the magnitude of Y ngiven by the expression
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IYly 2= A2 11-(2Pcosep) exp(-jP)+ P,2 exp(-j2P)-2

= A2 1[exp(jcP)- P exp(-jP)][exp(-je)- P exp(-j$)] 1-
2

= A2[l 2 Pcos(o+c)+ P 21 1-[ _l2P0cos(O _) + P2 ]-1

or -1

lY I/A 2 1(1+ - 4P(1+P )cos 0 cos c + 2P2 (cos 20+cos2P) .

(4-17)

If we now write

cosp = 1-2 sin 2 Y (4-18a)

where
y = 0/2, (4-18b)

and then use the relation

cos 20 = 2cos 2-1 = 1-8 sin 2y + 8 sin4 Y, (4-18c)

Eq. (4-17) can be rewritten as

= (1+p2 2 )cOs + 2P2(l+cos2

+8p(l+p 2)coscf) sin 2y - 16p 2sin2 y + 16p 2sin4 Y

or as

A 2/IY 
2 (1-2Pcos rP+P2)

2

" 8P.(1+P 2 ) coscp-2P] sin2 Y

+ 16P sin Y. (4-19)

4.3.2 Special Choice of p

We now choose P so that the coefficient of sin2 Y vanishes

in order to have a maximally flat response:

(1+p 2)cosp - 2P = 0

or

2
cos M = 2P/(1+p2). (4-20)
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We then have

sincp (1-p2 )/(+p2 (4-21)

so that

2 1-sincp = 1-cos (cp-"/2) (4-22a
1+sincp I+cos (Cp-TT/2)

2
r tan (0/2 - "/4)

or

P = tan (co/2 - "/4). (4 -22b

With this choice, the leading term of Eq. (4-19) becomes

(1-2P cos + p2)2

= E - 4 P 2  + p2 2

L l+p 2

-2 2

l+ 2 2

2sin2 -2-L+si'r1Cpj"

Hence

A2 n Fsi2 + 16 1-l-sin inY
=n Ll+sin<0, 1LsinpSj

or

Iy 12 =2rl+sin F, + 4cos2epsin 4y (4-23)
n AL-si -2 L .4 (-

L2sin2 co sinq p

In order to have unity gain at zero frequency we take

A = 2sin 2p
1+sincp. (4-24)
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Furthermore, the 3 dB attenuation point is achieved when

2 .'44 cos sinsYn 1 (4-25)
.4

sin p

If we wish this 3 dB point to be at f W/2, then when r = W6

(see Eq.(4-14)) or when Y = TTW6/2 (see Eq. (4-18)),Eq.(4-25) must

be satisfied. We thus require

4 si4 (4-26a)
2 ocos tp

where

Y = -W6/2. (4-26b)0

We can solve Eq. (4-26a) immediately to arrive at

= arc sin S (4-27a)
where 2 1/2

S 4 o 0 2 (4-27b)
Ll+siny ] + siny

0 0

We thus have, upon substitution in Eq. (4-24),

2A = 2S /(l+S), (4-28)

and, upon substitution in Eq. (4-22a),

S= E(l-s/(l+S)]1/2 (-.9• (-w +~ (4-29)

Finally, since

cos cP = (-S2)1/2 = [(l+S) (l-S)]1/2, (4-30)

the recursion relation Eq. (4-1) can be written as

V = 2 11-01 r , .1 , . 1 . _
n-l '-' k x n-21'b /(i.S)JZ n

(4-31)
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4.3.3 Response to Independent Samples

We now investigate the response of this sampled data filter

to a sequence of independent complex samples. Repeating Eq. (4-12)

here,

m -L(l-jcoto) exp (jmP)
Y = (A/2) E P Z (4-32)

n m=O n-m L+(l+jcotcp) exp (-jmp) "

Letting

,= EZ 12(4-33)

be the common variance of the input sequence, we have

V, = E{IY 12 = (A2Vz/4)

C 2m (1-jcotp) exp (jmp) 12
m0 P +(l+jcotp) exp (-jm0) " (434)

We can immediately rewrite this as

4(sin 2P)VY/A 2Vz

m=O p2 mlexp(jc+jma) -exp(-jp-jmP) 2

M=OO

-exp (j2 0)m=E0[hxp(j2cP)m
M=O

-exp (-j20) m7 rPexp (-j2o0) ]

2m
+2 Z0 P

m=+

= - 2c) ep-e)2

I-p exp(j2t) l-p 2exp(-j2cp) 1-p2

- 2 (l+P)[l-cos(2P)]
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If we now substitute Eqs. (4-27) through (4-30) in this we

obtain

Vy 2_$2 Vz  (4-35)

In order to provide a unit variance output, we tLerefore set

2

V 2-S 2 (4-36)
-S
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~SECTION 5

NONLINEAR TIBANSFER FUNCTION FOR TESTING COMPUTER ROUTINES

It is helpful to have available a routine for generating the

first and third order transfer functions H (f) and H 3(f,f 2,f3

that does not requi.re .:he use of SIGNCAP. This section presents

an outline of a routine for providing such transfer functions.

Consider the circuit diagram shown in Fig. 5.1, consisting

of two sinqie tuned circuits separated by an amplifier that ex-

hibits a cubic distortion term. If H A(f) is the transfer function

of the first filter then an input of the form

j2,v nt
av (t) = ae (5-1)

0 n n

where the {v n occur in pairs of positive and negative frequencies,
n

yields an input to the nonlinearity of the form

j2rrj tn
v (t) a H( ) e (5-2)

1 n n A n

The output of this nonlir-a--it is

j2rvt t
v a H ( . n

n n A n

+ BY a a d H( )H(v ) HA(v
n 1 n3 n n 2 n3 A n n2  An

exp [j2T7t(v + V + vn) 1 (5-3)

%_ n1  n 2  n3
The second linear filter has the same transfer function as the

first so that the final output is

5-1



-

0

4-I

4

-. Q)

o 5-2



52 j 2T v t
v3(t) = a H (v ) e n

3 n n A n
+ B a a a H (v H (v H (vnl n :2 n 3 nI1 n 2 n 3 A n I1 A n 2 HA n 3

H A(v nl1+ vn 2+ v n3)

expLj2nt (vnl + vn2+ vn3)I.. (5-4)

Since we can also write

v =dfe 2~ft ()E a 6(f-v
v3(t) = + n n n

+ ffdfld f2 df3 e 2tf1+f2+f3

H3 (f(5 

-2 

f3)
3

H +Z jR[nf -" a1(-.

v/a26(fL j) (5-5)n 1 n 2 n3.. n . i '

w we the immediate correspondence

Hl1(f) = HA (f (5-6)

3H 3(fl1'f 2,If 3 ) = BA(fl1+ f 2+ f 3)  H A(f i) (5-7)

The transfer function of the single-tuned filter is just

HA(f) = (1 + jR[2T7fC - i/(2nfL)'} - I  (5-8)

If we use the usual notation

f 0= i/2n (LC) (5-9

and

R/ =~ to (5-10)
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we can write the transfer function as
-1

H A(f) = [i + jQ(f/f - f /f)] " (5-11)

For numerical calculations to test various program routines

it is necessary to assign numerical values to Q and f , and alsoo

to select the bandwidths and center frequencies of the signals to

be accommodated by the canonic model. To this end we take

f = 50 MHz
0oro

or fo = 5 x 107 
(5-12a

and

Q = 102 (5-12b

to characterize the filter. We will then model a crossmodulation

situation where the desired carrier frequency v1 is at the center

frequency of the filter:

Vl = f = 5 x 107, (5-13a

and where the interfering carrier is 1 MHz removed from the desired

carrier:

*2 = 5.1 x 107 (5-13b

= - 5.1 x 107. (5-13c

We will. take the nominal bandwidth of the signals to be 0.5 MHz:

W = 0.5 x 106. (5-13d

These choices of reasonably realistic transfer functions and

numerical values will permit testing of the parameter-fitting

routines without the necessity of time consuming calculations with

.- -nlinear circuiL analysis programs.
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It is an additional convenience in testing program routines

to include the effect of computational or experimental error. This

can be accomplished by introducing deliberate round-off error in

the H3 or H1 outputs.
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SECTION 6

COMPUTER GENERATED WAVEFORMS

After having computed the model coefficients by the procedure

outlined in Section 3, the necessary parameters are available for

calculating the complex envelope of a third order interaction term.

The general form of this complex envelope can be found by substitu-

tion of the tapp, . delay line model into Eq.(2-7) to yield
3

a (t) Z () z (t -n.6 - K6) (6-1)

S n i=l Pi 1

where K is the optimum value of N found by the procedures out-

lined in Section 3. For purposes of computation we will actually

evaluate a (t) only at integer multiples of 8, however. Let us

therefore introduce the notation

Y3(J) = a (J6 + K6) (6-2)

and

z. (J) = z (J6). (6-3)

(It will be noted that these represent a duplication of earlier

use of upper case letters for spectra; no confusion should result

in the balance of this material where only sampled data sequences

are to be considered.) We then have

3
Y3 (J )  z ( - N.). (6.-4)

N i-l 1

This sampled output Y 3(J) is advanced by K samples with respect

to the linear output term and this discrepancy of alignment must

be compensated in the program by delaying Y3 by K s~ampes before

combining if K is positive, or delaying the samples of the 1i.near

output by IKI samples if K is negative.
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It will also be recalled that in Interference Cases #1 and

#4 of Section 2.6, (Eqs.(2-34) and (2-37)), the interference en-

velope is actually modulating the adjacent carrier frequency sepa-

rated by W Hz from the linear output. Hence a transformation of

tile samples tY3 ()l equivalent to this frequency translation must

must be affected.

Finally, as discussed in Section 2.7, the amplitude of the

third order product must be scaled relative to the linear component

to take into account both the relative amplitudes of interferers

and desied signal, and to incorporate the normalizing constant G0

of Section 3.

Let {Y(J)3 be the samples (Y 3(J)) corrected for the frequency

offset:
2-,rAW J (-aY(J) e= e Z B(N) Zi (J-N.) (6-a)

N 1

where

(0 if interference product is at nominal carrier
A =1A=l if interference product is at adjacent carrier)

(6-5b)

and let

Y, (J) =Z (J+K) (6-6)

with (Z (J).) thr, samples from the desired signal. We can then

write the samples of the total output from the unit gain amplifier

and idealized third order transfer function as

" T (J ) = CLYL (J) + C TY (J) (6-7)

where C1 anrd CT are norma].izing constants that inciudL the con-

stant G and .he .re±ative powers of the signal a.d interferers

as we.l as the overall gain of the receiver. For most computatio*is



where only relative distortion is important, only the 
ratio of

CT to CL need be specified, and the absolute 
scaling can be ac-

complished for computational convenience.

6.1 The Four Signal/Interference Combinations

In Section 2 we discussed the four cases appropriate for anal-

ysis. We now list these cases in the notation of this section, 
using

the additional notation

S(t) = signal waveform

U1 (t) = interfering waveform .(6-8)

U2 (t) = different interfering waveform

Table 6.1 Signal/Interference Combinations

Case I Case 2 Case 3 Case 4

z (t) S(t) S(t) S(t) S(t)

z1(t )  Ul(t )  Ult )  S(t) U 1(t)

z (t) U (t) U (t) U(L) U (t)
2 1 1 12

z 3(t) U k(t) U2 (t) UI *(t) U2 *(t)

A 1 0 0 1

6.2 Equivalent IF Filter

It is necessary to include the effect of the linear 
filter

H(f) of the equivalent receiver to determine the overall 
impact

of the interference on inband interference. As we discussed

earlier, it is adequate to approximate this filter by any filter

which restricts the bandwidth to W Hz; and a sampled 
data second-

order Butterwortl tilter is adequaLe fjL pi-
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Using the results of Section 4, we define

y = nW6/2 (6-9)

S=I 2 sin2 y1/2
L 4 I- . (6-10)
L(1+sin4Y)1/2 + sin y "

The filtered output sequence is then given by

y (J) = 2 (l-S)Y (Ji1) - I-S (J-2) + 2S 2 Y (J). (6-11)
TF TF 1+ TF l+S T

We can also examine the filtered version of the third order produc

without the linear term by defining

Y F(J) = Y TF(J) when CL = 0. (6-12a

Correspondingly, we can define a linearly filtered signal by

Y LF(J) = Y TF(J) when CT = 0. (6-12b

6.3 Signal and Interference Waveforms

The model, as it stands, will accept any choice of waveforms

for the signal and interferers of Table 6.1. It is a program re-

quirement that it be possible to generate typical waveforms in-

ternally during the computations. We believe that suitable wave-

forms can be provided by the following repertoire:

a) Signal waveform:

i) CW

ii) Sinusoidal amplitude modulation

iii) Sinusoidal frequency modulation

iv Cmbe F 4 with different modulating frequencies

b) First Inteferer:

Same p.ossible characteristics as for signal
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c) Second Interferer:

Noiselike waveform with second-order Butterworth
frequency characteristics.

We therefore define the following sampled data sequences

S (J) = [1 + p cos(2v f J6 + )JIG s SA s

exp[jD cos(2nf J6)]; (6-13)s SFM

U(J) = [i + PI cos(2 fI AMJ 6 + 0 1

• exprj DI cos(2- fI FMJ)]; (6-14)

I-S 2C5
i(J) = 2(1-S)i(J-1) -I-T (J-2) + i- (J), (6-15a)

1+S l+S
where

=[r-(-2S 2 ) (1-S 2 ) 1/2] 1/2
c5=2S3 (l+ s)rl+ (1- s 2 ) 1/2] 61b

[G(J)} are independent, zero mean complex Gaussian random
variables,with unit variance (6-15c)

and the initial conditLons are

r,(l) = r(2) = 0. (6-15d)

(The normalizing constant C5 was derived in Section 3.)

In choosing the modulating frequencies and deviation ratios

fSM' fSFM' fIM, fIFM' DS D I

it is necessary to insure that the resultant bandwidth of the cnmpiex

envelopes does not exceed W. We note that a deviation ratio of ap-

proximately 2.405 permits generating an FM waveform having complete
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carrier suppression; we therefore have chosen to restrict the maxi-

mum deviation ratio to 2.5:

( S D 2.5 (6-16)

0 D 1 2.5

At this peak deviation ratio, the sideband power distribution is as

given in Table 6.2.

Table 6.2

Sideband Power for Deviation Ratio of 2.5

Component Fraction of Total Power
Carrier : 0

Sideband # + 1 0.25

Sideband # + 2 0.20

Sideband # + 3 0.03

Sideband # + 3 0.005

Restriction of the FM modulating frequency so that the fourth

sidebands are included in (-W/2,W/2) is adequate to meet the band-

width restriction. In the AM and combined AM/FM cases, the ampli-

tude modulation introduces an additional spreading of every com-

pcnent equal to the amplitude modulating frequency. We therefore

need to restrict the pairs of modulating frequencies by some re-

lation of the form

f SAM+ W/2 , (6-16a

fI + 4f I F W/2. (6-16b
AM FM

6.3.1 Drift Frequency

Becaus-e of the choice of sample . -acing to be an integer sub-

multiple of the reciprocal bandwidth, and because of the placement
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of an interfering carrier exactly one bandwidth away from the

desired signal in Cases 1 and 4 of Table 6.1, it is possible for

a CW or AM interferer to yield an interference product in a fixed

phase relation relative to the desired signal. To avoid this pro-

gram artifact it is useful to introduce a "drift" frequency in

Eq.(6-14). This dr'.ft frequency should be chosen to be less than

a few percent of the bandwidth,and irrationally related to it.

These requirements can be met by taking the drift frequency to be

W/20r so that Eq. (6-14) can be replaced by

U(J) = 1l + PI cos(2rf IAMJ6 + e )]

exp {jO.lJ6W + DI cos(2fiFM J6)]}. (6-17)

6.3.2 Interference Cases with Internal Routines

In Table 6.1 we listed the possible signal/interference corn-

binations. With the internal routines available for generation of

"modulated" interference (the sequence U(J)) and noiselike inter-

ference (the sequence r(J)), it is possible to create two distinct

interference products for each case, depending on how we associate

U1 and U2 with U and r. We can therefore expand the table to yield

the eight cases shown in Table 6.3.

6.4 Demodulated Outputs

It is of some help in evaluating the impact of nonlinear dis-

tortion to determine the distortion voltage after detection. It is

possible to provide this option in the computer routines for both

envelope detection and phase detection. It should be observed

that for both of these types of detection the "filtered" output

version Y TF(J)] or YLF (J) in Eqs. (6-lla) and (6-12b) should be

used, since the unfiltered distortion products have a bandwidth of

3W.
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Table 6.3

Internally Generated Signal/Interference Combinations

Offset
Parameter

Case A Z (J) z 1 (J) z 2 (J) Z3 (J)

la 1 S (J) U(J) U (J) U*(J)
IG

lb 1 S (J) 7 (J) ' (J) (J)
IG

2a 0 S IG(J) U(J) U (J)()

2b 0 SIG (J) ?I(J) ?(J) U(J)

3a 0 S IG(J) S IG(J) U(J) U*(J)
3b 0 SI (J)IG IG (J) T (J) (J)

4a 1 SIG (J) U(J) T (J) (J)

4b 1 SIG (J) 1 (J) U(J) U*(J)

A simplified presentation of the distortion in the detector

outputs is possible if only the distortion is made available at

the output. In the case of the phase detector, this also simplifiE

the computation in that it eliminates computational errors of 27

in computing the arc tangent. We therefore define an envelope dis-

tortion

env(J) = Y TF(J)I - IYLF(J)I (6-18)

and a phase distortion

ph(J) = arg[YTF (J)] - arglY LF(J)I.

it will be noted LhaL Lhi5 ict IdLL L ?- or, can be w .. e.. s
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ph = Im [ log(Y /Y H)
TF LF

TF- LF]}JM =m log 1 +
LF J

which, if the distortion is small enough to be tolerated at all,

can be approximated by

ph Im{ YTF- YLF}
YLF

Im (YTF /LF

We will use this approximate formula as sufficiently precise for

the purpose of estimating phase distortion. (The phase distor-

tion can be equated to - radians when YLF is small.)

6.5 Necessary Computer Routines

6.5.1 Generation of Signal, Interference and Noise

(a) The necessary input parameters are given in Table 6.4.

Table 6.4

Input Parameters for Waveform Generation

Description Textual Notation

Bandwidth W

Tap spacing 6

AM modulation index,signal Is

AM modulation index, interferer I

FM deviation ratio,signal D S

FM deviation Ratio,interferer D
I

AM modulating frequency,signal fSAM

AM modulating frequency,interferer

AM phase,signal S
AM phase, interferer 0I
FM modulating frequency,signal fSFM

FM modulating frequency,interferer fiFM
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(b) Restrictions on parameters

~~W6 < /4
0 S !g

S
" 0 1 i i

I

o D S 2. 5,

0 DI 2. 5

fS 0

p~ ~~1 SJ40 5 /If then

fFM=0
nr 0

if D 0 w fs W/2ifthen A

>= 0
S

If <s > }U >Ohen -< 0 W/10oSSAM

D > 0 0 f :9W /1 0if S hnSFM

If 0 then 0 f fI W/8

If ) PM

L 0
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f =0IFM
If (DI= 0. then 0 : f 5M W/2

p > 01
I 'AM

Ei = 0

0 5f. !W/l0,

.1AM

IfDI > 0 then 0 fs W/10

1 0 - A 1 ;2rr
I

(c) Recommended Values of Parameters for Tests

(c-l) AM Signal and AM Interferer:

P= 0.3

=1

f = 0.45 W,

f1 0.5 W,

', = =DS=D=fS f =0.
S I S I 0.

FM FM

(c-2) FM Signal and FM Interferer
PS = PI= PS= 0.1= =fA

AM fAM

DS = DI= 2.405

f .= 0.11

f = 0.12
FM
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(d) Signal generation: for some large number of positive

values of J, set
I? -1

S (J) FI + Iiscos(2V f J6 + S
IG L. S. SA

exprj Dsczos(2 fSF Jb)l
FM -

(e) Interferer generation: for some large number of positive

values of J, iet

U(J) = + Picos(2v fIAJ6 + P1]
AM

exp{jO.lJ6W + Dicos(2 J8)].

I FM

(f) Noise generation

Calculate

Y = -1'

L 2 2
S = ( 2sin~y l/

(l+sin4 y) I 2 + sin2Y-

= L 2+S)[+(lS2)/2 -1

Generate a sequence of independent, identically distributed, zero-

mean, unit variance, complex Gaussian variables [G(J)1.

Set

• (I) = n(2; = 0.

For a large number of positive inteqer, J, cet

r() 21Sr(-) I-S +C S

(J) = 2(I-S),(J-I) - 1+S 1(J..2) I+S G(J).
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6.5.2 Generation of Linear and Nonlinear Interference Outputs

a) Case selection

The input data aequences must be matched to the appropriate

sequences for computation. There are four main cases which can be

described by the titles:

Case a) Splatter of adjacent channel

Case b) Two-frequency intermodulation

Case c) Cross-modulation

Case d) Cross-modulation splatter of adjacent channel.

In addition, each case is subdivided into two cases according to

the assignment of interferer and noise waveforms to the internal

data sequences. The internal data sequences are labelled Z0, ZI,Z 2

and z and there is an additional labelling variable A which describes
3

whether the interference spectrum is centered on the desired channel

or the adjacent channel. Table 6.3 lists the possible cases.

b) Calculate tLe third-order interference product,

N N N
Y(J) =exp(j2rAWbJ)- *" ) 7 _ '' BI N2= N- 3 B(N N 3

z (J--N Z (J-.N2 ) Z3 (J-N3 ),
.1 -, *l 2 2 )z3 ( -N3

and the linear term

YL o .,YL(J) = 1 0 0-101,..

The required Input i.nformation consists of

(1) th- four data sequences Z,. . - Irom (a) preceding,

(2) the nunoer of taps/coordinate N from the routine described

in section :3

i3) the -oefficients 8 (N,,.,NJ from Section 3

(4) the group delay K :.f the nonlinear product, fro;(n
Secticn 3.
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Note that the extreme range of K values that can occur is

-129 " K 251

and consequently the allowable range of arguments of Y and Y, must

be adjusted accordingly.

c) Calculate Y and S as in Step (f) of 6.5.1

d) Calculate, as needed for output requirements,

(d-l) The total output

YT (J) = YL (J) + C TY(J).

Required input parameter is CT -

(d-2) The filtered linear output

l-S L(J2 2S 2

Y (J) = 2(I-S)Y (J- ) --- Y (J-2) +-s Y (J) for J J
LF LF l+S LF 1+S Lo

with initial values

Y LF(J -2) = Y LF(J -1) = 0,

with J chosen sufficientl.y large so that Y L(J ) is defined.c L

(d-3) The filtered total output

_-_ 2S2
YT(J) = 2(I..S)Y (J-1) - Y (J-2) + -- Y (J) for
TF TF l+S TF 1+S T

J > J
0

with initial values

Y.,(J -2) = Y T(J -) = 0

%,-th J0 chosen sufficiently large so that Y T(J ) is de-ined.
o 614

6-14



(e) Calculate, as needed for output requirements the dilstor-

tion terms:

ENV(J) = yTF (J)I - Iy L,(J)l

Im[YT/Y 3 if l I -  21Y
PH(J) = YTF if 'YTFUF

if ITF I > 21YLI

6-15

Isit



SECTION 7

TYPICAL OUjTPUTS

We have written computer programs that incorporate all

the features described in, Sections 3, 5 an~d 6. Figures 7.1 to0

7. 11 show the results of comnputer runs using th-ese programs.

The particular nonlinear calculation involved cross-

modulation of a desired signal by a nearby modutlated carrier.

WJe used the model circuit of Section 5 to create =ransfer f-anc-

tions H 1 and H3. Figures 7.1-a and 7..l-b show the form of the

computer ouitput for these functions. The normnalized nonlinear

transfer fUnction is then computed from those values and i_- shown

in Figures 7.2-a and 7.2-b. .The normalizer G is also included

in the output data for later use.

Front the values of the normalized transfer function the

optimum model coefficients are determined. WP show in Figs.

7.3-a to 7.,4-z part of the print out associated w,,ittn the inter-

mediate steps in thia, where the distortion vs group delay and

norizalized tap spacing are made available L.fter each computation

of delay line3 coefficients. The optimum normalized tap spacing

for this case proves to be the initial value of D = 1/4, and

the associated group delay N Ior Y,. .s -,I.. The nomputer auto-

matically sel~ects this case for data tr:taffer to the next program

segment, along with the correct tap coefficients. This output

in printed form is shown in Fig. 7.4.

The generation'of sampled data sequences corresponding to

two amplitude nzodulaled signal.s and one noise waveform ise shown

in Fig. 7.5.
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The model parameters, case selection and Jibrary of three

inpuat waveforms are then made available to the program segment

that calculates nonlinear outputs. Figure 7.6 shows the verifica

tion of the input selection and model coefficients, while Fig.

7.7 shows the selection of the -model, inputs according to

z (J) =S (J)
0 IC-%

Z1(J) =S ICG(J)

Z2 (J U(J)

Z3 () = U*(-T).

The nexz program begment calculates the third order inter-

ference termts, and replicates Z0 (.) as the linear output; these

are shown in Fig. 7.8. The cctiibined output, with the weighting

of the incerfereence set at G , is shrow± irn Fig. 7.9, This in-0

-ludus the Propez group de].a, N

The linear and combired outputs are then filte'ed in a

sampled data second order Butterworth filter. These filtered

outputs are shown in rig.. 7.0. As a nrte of caution, th first

few outputs include the transient response of the fiter, whieh

has a respor'se time roagjhly oqual tc 1/D samples. STiese first

feb' samples should not be lised in subsequent data reduction.

The ervel.ope and phase distortion are then calculated

as in-"ications," the distorticn to be expected in amplitude or

phase demodi.lators. These are shown in Fig. 7.11.
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ul -U TAPE

CASE 3A -1 = 3
GROWUP ELAY K=-1_____

CT = 0.1147600E-32 -'.10103G0E-02

Z0 = SIG
ZL = SIG3 -______

Z2 = U
Z3 = __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _

= . 53J303EJ 05 DEL TA 0.50030VJE-06

s = 3.5031143F2 0)
C = 0 3367c5-E ,J ___ _ _ _ _ __ _ _ _ _

Cl = 6,9937713E U)
C2 =-).3335704E 00

U I.1 ).6303033E 30 3.5607003EC 00
(11,) )375 95-E 33 Jr799999832-J1

(1,.193) J. E946c,)E -3 1 -3.97699996E-01
(10?,1) 0.333 7)G)E-) 1 -J.394706JE 30O

(, -S3) .4,55))E-1 O.364O.J00)t-J1
(19,1) '-6 814 -49 3 E-0 1 -O.1310303E 00
(1,v3,2) ).-2~3-1 *.)e39C0.)UJE-Jl

____(1?313) -23,0 1 -0.2070JOL vO

(2,192) -3132000JE200_- 39.d>699956 -31
(2,1,3) ).39E0 J.t233OJE-Jl

____'292,1) 019-O3 3) -3.12143002" 30
12,212) ).12770032 30 0.11290UOE00

___(2,2t3)_-),688c9',9E-Ml -J*5780003E-31
(2,3,1) J*469J30)JE-31 0*59CG0U0E-J1
(2#,,2) --0.66JA996E-)l_-0*b3200%J2--J ___

(2,303) l*34203C)E--0I 093110JOOE-JI
-3,I,)- ).46100(-)E-01 0,3579COOE 00

(391,2) -J*27740,OUE 00 -,.1.U75J3002 00
(3,1#31) 3.7)b6995E-,)1 -, 39COO~t-31
(3,2,1l -).1373)OOE 00 -3.26u8j9 00
(3'.2,2)_-J.11343003,,E 00 -,.#1526999E 00

(393,11 -324 0 0 0 )E- )2 0.3z99994F.-j1___

(3#330) -. 3)-1-.~~JcE

NUM6 ER OF INPUT SEOJENCES ON TAPiE

F-ig. 7.6 Inpiut Data fcr Nonlinear Response C.-klculation
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THIRD OROER INTERFERENCE PRODUCT -Y OUTPUT

1 4 -0o.75682zE 00 -3*662829E 00 __

2 5 780W -. bfO 0
3 6 OooOO'*04E-01 0.657727E-31
4 7 .4 O.T5E ).9 -5 Li
5) 8 )*81o)96E 03 .).136553E 31
6 9 .2 OlT03 W

________7 1.3 -0*632.-32E 00 -0.4560cd9E 00 ___

9 12 -3.*27369;- O 03-3.7775cl6E 00

____11 14____ 0.b267o4E-JL 0.733756E-J____
12 1 DE0
13 116 0*600180E 03 3o11b5)4E 01

15 18 -J.579662E 003 -0.382213E 0)
16 19 -J*64PT)4~' - ---- . 62 11l 01- -
17 20 -029bJ86E 00 -0*87 709EJC~

LINEAR OUTPUT -YL

s-E~ No. I I*K YL(l)

______1 2 1 091223122E 31 0.0

_____ 3 4 3 0,8432508E 'JC 0.0

4 4 -L,7r43EJJ- t w--0
______5 5 0*722:,3358E 30 0.0(

____ 7 8 7 3.1'7))32E 031 0.0
8 T 7Z24Z7T42TYV'1-070
9 10 9 091244075E 01 0. _____

11 12 11 9.1023538E_01 0.0
12 13 12 j . ;2 3 o 55c -Uu u.0u
13 lit 13 0 ,7 Jd2 8 9.6E -) 0 000

15 16 15 0,8351938E 03 0.0
1k...J7 J&j.Q~2'J3E01 0.0 ____

17 13 17 0*J1'5379i;- )1 0,0
id 1-) 16 3.1296307;- 01 0.0
19 20 19 0.1194835E 01 0.0

Fig. 7.8 Interference and Linear Outputs
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F1LTREI LTELR- TP r-- L...

SEQ NO. JO YLF(JO)

1 4 J.2840Ob4E 03 0.0
2 5 0.5229423E CO 0.0
3 ---. 66925 5 E2 ..( - 00
4 7 O.7831417E OC 0.0
5 8 0.9174149E CC 0.0
6 9 O. 10t359E Cl 0.0
7 10 0.1198941E 01 0.C
8 11 0. le4538E Cl 0.o
9 12 0.I619E 01 U.0

10 13 0. 10t4' E Ci 0. 3
11 14 O.d843915E LC 0.0
12 15 0. 1CJ850E CO O.C
13 lb 0,7813029E CO 3.0
14 17 O.8b485bE 00 0.0
15 18 J.1045o37E 0I 0.0
16 19 J.1182o73E C1 J.0
17 20 O.l2iZOb7E C1 0.0

FILTERED T3TAL OUTPUT - YFT

-- Sl NC). "JO YFJO

1 4 0.28-56743E 00 -0.16/-3845P-03
2 5 0. 52,e54iE CO -0.2125190E-03
3 b, U.6b90114E O)-O.t235237E-)3
4 7 0. 783- g9tE CO 0. 701024CE-05
5 8 O. 485e94E 00 0,3O74836F-03
6 9 .o10289)E 01 0.632596SE-03
7 10 0.11 9b62E Cl 0.6J32716E-03
8 L1 0,1244u8UE CI O. 45086E-03

q 12 ).1id4420E Cl -3.1E5914F-03
10 13 U. IOtt.:.3tbE J1 -0.31 75866r -03
11 14 0. Su) 1478E O -0. 2,722 3 3E-03
12 15 0. 78.)b8E OJ -0.391q388E-04
13 16 O. 78219bE CO O.28J8537F-03
14 17 J. 878k3.ZbE 00 0.5765562E-03
15 18 cJ*146316E 01 3.526980 1E-13
16 19 U.lld2115E 01 O.S447016E-04
17 20 itl2jC8C7E C1 -0.3161145_E-03

Fig. 7.10 Filtered Outputs
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DISTORTION TERMS

SEQ NO. JO E,'iv(JO) PH (JO)

_ 1 4 -0*. 3 eO75E- C3 -0.b7L7636E-03
2 5 -.U.3 80-9E-03 -J.4 03908E-33
3 6 -0.2401411E-C3 -O.2279019E-03

SO.2508364E- C3 O.8 51431E-05
5 8 JO.11i4488E-C2 0. 33!I672E-33
6 9 0. 15J6469E-C2 0.°5C4622E-03

7 10 U.b8C9Zi5E-0.3 Oo5281924E-03
8 11 -0. t 94794E- C3 0. 1802474E-03
9 12 -0. 7CZ94E-C2 -0. 15646CCE-03
10 13 -O..119614E-02 -0.30C659E-03

,,11 L4 -J.o437302E-03 -0.27S5404E-)3
12 15 0. 5119o44E- C4 -0. 5022377E-04
13 16 0. 89/-6392E- C3 O.36'7076E-03 _

14 17 0.1337171E-C2 J.65C384CE-03
15 i8 O. 6790161E-03 0.5C39885E-03
16 19 -0.35789' - -03 0.7987853r-04
17 20 -* X1189232E-O0 -0.25t,5726F-)3

Fig. 7.11 Distortion Terms
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