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ARSTRACT

Thig report is concerned first with the computer deter-
mination of optimum parameters of a tapped-delay line
canonic model of third ovder interference generation,
and second with the use of this model in simulating re-
ceiver response to waveforms.

Factors such as complexity and realism of the inter-
ference environment are used to establish the necessary
cases and boundary values to be approximated by the
model. The convergence of the tapped-delay-line model
to a frequency-polynomial model, and the rate of this
convergence, are used to establish limits on group delay
and tap spacing., An algorithm is developed embodying
these limits, that recursively searches for the best
group delay and tap spacing, and explicitly determines
the best tap coefificients. Sampled data techniques are
developed for generation of AM/FM or noiselike signals
and interferers, for generation of interference products
using the model, for simulation of the equivalent linear
filter of tue cascade model, and for calculation of dis-
tortion in phase demodulator or amplitude~demodulator

outputs. The functioning of the computer programs is dem~

onstrated with printouts from the tests.
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SECTION 1

INTRODUCTION AID SUMYARY

This technical report for fne period 8 Decembex 1973 to 7 March
1974 discusses the camputer determination of optimmm parameters of a
tapped-delay line canonic model of third order interference generation,
and second, With the use of this model in simulating receiver response to

waveforms.

1.1 Introduction

In earlier studies by SIGNATRON extensive effort has been
devoted to the determination of the response of nonliinear cir-
cuits to multiple sinusoidal inputs as characterized by the non-
linear transfer function of the circuit. The present effort is
concerned with the development of canonic models that will per-
mit easier determination of the network response tn modulated

input signals.

1.1.1 Specific Program Objectives

The development of canonic models falls naturally into a

sequence of steps which form the specific objectives of this

program:

a. The determination of analytically tractable approxima-
tions to the nonlinear circuit response that are partic-
cularly useful for the small-percentage-bandwidth sig-
nals of interest in communications.

b. Determining the minimum number of parameters necessary
to characterize these approximations.

c. Determine the minimum number and most effective set of
measurements that will permit the model parameters to
be extracted, both for entire receivers, and for com-
ponent amplifiers and mixers.

d. Verification of the feasibility of the measurement

procedure.
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e. Determine necessary computer programs to calculate
the model parameters either from measured data or
from analytic predictions of circuit response.

£. Vetermine nu:cessary computer programs for prediction
cf response to specific modulated input waveforms
using the measured/calculated model parameters.

1.2 Summary of this Report

This report is concerned entirely with items (e) and (f) in
the list of objectives: the determination and generation of com-
puter programs to calculate optimum model coefficients and simulate

the effect on waveforms cf the receiver being modeled.

Section 2 defines the objentives of the computer programs
and establishes appropriate limits on model complexity, interference

cases, and model parameters.

Section 3 deals with the calculation of optimum model param-
eters including tap spacing, group delay and optimum tap coef-
ficients. The rate of approach to a frequency-polynomial approxi-
mation is used to define search limits for tap spacirg while the
limiting behavior prcvides a guideline to setting search limits
for group delay. An algorithm is then developed that uses a re-
cursive search for optimum group delay and tap spacing and an

explicit optimization of the tap coefficients.

Section 4 derives properties of second-order sampled data

Butterwortl filters used in signal filtering and noise generation,

It is useful to have available an analytically well-understood
nonlinear circuic for testing program rcutines. Section 5 descrikes
such a circuit and the associated formulas for calculation of H

3

and Hl transfer functions,

1-2
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In Section 6 we discuss the generation of signal and interfer-
ence waveforms which may be sinusoidally amplitude modulated,
phase modulated, or both, or may be noiselike in character. These
are available as an alternative to sampled data tapes derived

from actual signal sources.

Computer programs have been successfully written that embody
all of the features described in Sections 2 to 6. 1In Section 7

we discuss the result., of an end-to-end test of these programs.

1.3 Contributors

The work reported on here was performed by L.H.Vears, J.N.
Pierce, N.Johnson, H.Gish and S.H.Richman. This report was

prepared by Ms. Vears and Mr. Pierce.

1.4 Acknowledgments

We are indebted for program guidance and technica'® suggestions

to Mr. John F. Spina of RADC and Prof.D. Weiner of Syracuse Uni-

versity.
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SECTION 2
COMPUTATIONAL OBJECTIVES

The bulk of the work discussed in this report relates to
the generation of computer progrcams rclated to the canonic
modelling effort. In this section we discuss the objectives

of this software effort.

2.1 General Objectives

Our Technical Report #2 demonstrated that, at the present
time, the scope of c«.onic modelling should be limited to the
modelling of third~order nonlinear transfer functions. We
further established that for computational purposes only a very
few models were practical. For the purposes of this effort we
have chosen the most ﬂseful of these, the generalized tapped-
delay line model, which involves complex-exponential approxima-

tions to the third-order nonlinear transfer functions.

The software necessary to use canonic modelling must provide
the following capabiliities:

a) A program to calcula*te the parameters of the tapped-
delay line model either from measured values of the
transfer function or from transfer function values
calculated by programs which analyze the nonlinear
circuits.

b) A program that accepts arbitrary signal and inter-
ference inputs consistent with the model bandwidth
and sampling rates, and generates the complex en-
velope of the curresponding third-order interference.

c) Routines to generate realistic signal and inter-

ference inputs to be used with the prcgram in (b)
above.

d) Routines to display the effect of the interference
on the baseband output of a receiver'‘'s demodulator.

[
|
[y




2.2 Spectral Structure of Signals and Interference

To put some structure on the computer modelling, we can visu-
alize the RF spectrum as consisting of a large number of equally
spaced channels with a separation of W Hz between the center fre-
quencies of adjacent channels. This structure is, in fact, quite
typical of military spectral allocations. The same number W will
also be roughly equal to the typical signal bandwidth, and typical
receiver IF bandwidth, if we take these bandwidths to be defined
bv the (-20 dB) or (-60 dB) points on the spectra, for example.
Since the objective here is the modelling of nonlinear effects,
it is an adequate approximation to equate the -3 dB bandwidths
to W as long as the software routines avoid any linear adjacent
channel interference effects. The basic framework will then be
taken as a desired signal at the tuning frequency v, and potential
interferers at v + W, v + 2W, etc., all witk equal bandwidth W,

which is also to be taken as the IF bandwidth.

Now let VirVye v3 be the carrier frequencies of the three
interfering signals. Then, as was pointed out in TR #2, the
bandwidth of the third-order interaction is 3W so that inter-

ference to the desired signal can occur if

v =y, -1
vy v, = vy =Y (2~1a)

or

1l

v, t v =y

. -1
1 2 3 =V + W (2-1b)

The most general type of computer modelling would then
admit

.
14 " Py

a) an arbitrary signal modulation at ithe carrier
frequency v,
b) three independent interference modulations at

carrier freguencies VyrVyrVar

c) the interaction carrier frequency located at either
v or one of the adjacent carrier frequencies v + W,

2-2




If we take into account, however, the relative importance or re-
lative probability of the various types of interference, the
scope of the modelling can be reduced with no loss of utility.
We will now develop these specific res:rictions. Before pro-

ceeding to this it is helpful to review some results from TR #2
and TR #3.

2.3 Use of Eguivalent Receiver

In Section 2.1 of TR#3 we introduced the concept of an
equivalent receiver. We repeat the relevant part of Fig. 2.5
of that report as Fig. 2.1 here. The essence of the equivalent
receiver is to replace the distributed (Hl- H3) structure of
the actual receiver with a single linear filter (with transfer
funct on H{f)) following a parallel combination of a unit-

gain amplifier and a third-order transfer function K(fl'fz'fz)’

This equivalent receiver structure also forms an excellent
signal flow chart for computer simulation in that the possibly
complicated tapped—delaf line structure for the equivalent IF
filter H\f) can be applied to the one~dimensional output of
the third-order filter K(fl,fz,f3) rather than having its ef-
fects incorporated in the three~dimensional tapped-delay line

structure which svnthesizes the nonlinear respovse.

2.4 Formulas for third-Order Zonal Output

In Section 2 of TR#2 we developed formulas for the zonal
outputs of cthe third-order transfer function. We repeat here the

necessary formulas; we are substituting the equivalent transfer

e
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function K for H3 wherever appropriate, and making very minor

notational changes where useful.

P
X(t) = total input signal =p§l xp(t): (2-2)
x (t) = Relz {t) exp (j2rm v _t)]: (2-3
p( [p ) exp (] p) )
z {t) = z_*(t): (2-4)
-P P
v_p = - p: (2~5)
yK(t) = third-order cutput; (2-6)
1 . .
vy, (t) =% % a (t) explj2r(v_+ v_+v_)tl: (2-7)
K 8 py+P, Py PyrPyePs Py Py P3
a
W/2
- ”J af, af,af, Gpl'pZ'p:;(_f_) expljamt (£ + £, +.£,)]
:_-W/z -
z (f,) 2 (£) z_ (£f)): (2-8)
ST PR E N
G (£) = K(£, + v_ ,E+ v JE+ Vv ). (2-9)
P, +P,sPy 1 P, 2 Py 3 Py

The sum in Eq. (2-7) contains 893 terms altogether, which
consist of 4P3 terms and their conjugates. Many of these terms
are identical because they represent subscript permutations.
Furthermore most of them will not fall at carrier frequencies
that can create interference; this is the cace tor any term all

€Ay avam
Lo X2

1

(1

"3

am ek =
Yipts are posi
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We will now spacialize Eq.({2~7) to those cases that might
he of interent for computer modelling; we will subsequently

narrow this list down even more.

In the tabulation that follows we will write the outputs

in the form

= C t-eR i ’ -
v fe) onstan e {ap - (t) exp[anth]} {2~10a)
1°72°%3
with
>
Py 0
Py < 0
and vV, =v + v + v . (2-10c;

The "Real part of" consolidates terms in Eq. (2-7) with their
conjugates and the constant takes into account the number of

permutations that lead to identical terms.

It will be recalled from Section 2.4.3 of TR#2 that for
certain combinations of interfering signals, many different
interactions will lead to inband interference. We have decided
that to keep the computer programs manageable it is reasonable
to require the operator either to ascertain by inspection of
the relative power levels which component is the most significant,

or to run all cases separately and combine the outputs afterwards.

In all of the cases of interest we allow the possibility
that none of the interacting frequencies is the desired fre-
guency. The computer program must thus allow for the possibility
that the linzarly amplified component is distinct from any of

the interfering complex envelopes.

2-6
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We now tabulate the cases.

i L Py 1P, !
. (2-11)
Y = 1
Y () (3/4) Re(al,l,-l(t) exp(Java(t)]
\)p1= \)ll\) 2= \,ll\)p3= - \’2
. (2-12)
Y = 3 1
Ye(t) = (3/4) Rela; | (&) exp(32mv,t)] J
vpl= vl.vp2= vz,vp3= - v,
() = (3/2) Re[al’zi_z(t) exp(szth)]
v 1- vl.vpz— VeV 3= - v, N

yK(t) = (3/2) Rela (t) eXp(j2ﬁth)]J

l'?,-3

2.5 Interference Spectrum

It is useful to have some idea of the shape of the spectrum
of the interference envelopes aB(t). To this end, let us write
the time domain analog of Eg. (2-8); we will drop some of the

subscripting where it will cause no confusion. We have

a(t) = jffatldtzdt3 gt t,t.)

1’7273
- - -t.), -
zp](t tl) zpz(t t2) zp3(t 3) (2~15a)
where g(t ,t2,t ) is any function whose transform equais G on

tha mha Af intacratinn in F‘m (?_8):

el LR T Ve st g a S mmees A
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fffdtldtzdtB glt, et . t,)

exp[-jzﬂ(tlfl + t £+ t3f3)]

272
= < 1 = (V-
G(£).£,,£,) when |£.]= w/2, 1= 1,2,3. (2-15b)
For future reference we should keep in mind that siance p3< o,
z (t) =2 t). 2-186)
Py fo ! ¢ (

Let Ra(T) be the autocorrelation function of a(t):
R (1) = Ela(t)a*(t+7)]. {2-17)
(=3

Substitution of Eq. (2-~15a) in Eq. (2-17), with the introduct:ion

of new dummy vari.bles, yields

= * (x
R_ (1) I...Idtl...dt6 glt . to ts) g*(i,, b, t,)

U(tl'...'tﬁ;‘r) 12-183
where
Tz (t-t)) z* (t+ T - t)
Pl i Pl 4
- — - " - * - -
U(tl,..,tﬁ,T) E zpz(t t2) z p2(t + T ts) . (2-18b
8 — * + -
zp3(L t3) z p3(t T tG)J

As usual, by Ef) we mean the "expectea value of".

Before going any further, we should observe that the form
of Eq.(2-15a) indicates that in the case defined by Egs.(2-11),
(2-13) and (2~14), the interference is highly correlated with
i€ component envelspe z_ \u) . Consegquently, in ainy of these
three cases, if zP (t) is"the envelope of the desired signal, the

]
power spectrum of "the interference may be of little interest

2-8
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bzzause the interference actually beacs useful signal info~aa-
tion. We will therefore exclude those cases from consideration

in evaluating Eq. {2~18b).

That eguation is hopeless to evaluate as it stands hecause
th. determination of the expectation cf the sixfold products
reguires information on the joint statistics of envelopes at
six time instants. However, some prcgress can be made if we
assume that the envelopes{zpl(t)] are complex Gaussian processes
with identical covariance functions. (They will be identical
processes when the subscripts coincide.) We will make this

assumption, and write the common covariance as

(1) = g{ (t) z; (t+r) !, i = 1,2,3. (2-19a)

We note that this covariance satisfies
-T) = *{(T1). -
Rz( T) Rz (T) (2-19b)

It will be convenient to approximate these autocorrelations
as being associated with a rectangular power spectrum of band-~
width W:

W/2

R_(1) = [ exp (joreriar. (2-20a)
~-W/2
(It perhaps should be pointed out that we are ignoring the scale
factors on these autocorrelation functions and power spectra,
which are immaterial to the shape of the interference spectrum.)

It will be observed that where convenient we may use «qually well
r‘w/z
RZ(T) = exp {-j2rfr)df {2-20b;
-W/2

hecause the RZ(T) defined by Eq. (2~20a) is pure real.

2-9
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In the appendix to this section we derive the general
form of expectations of the type in Eq. (2-18b). The results
these may be used in conjunction with Eq. (2-18) to derive the
autocorrelation function of the interference envelope, and henc~n
the ,.wer spectrum. We wish to restrict attention here to the

special cases described by Egs.(2-12) and (2-14).

In BEq.({2-12) there are two distinct carrier frequencies

vy and Voo and consequently two distinct interferer envelopes
so that
zpl(n) = zpz(t) = zlgt) t
(». (3"‘21)
z_(t) = z* (t)
P3 2 J
Equation (2--18b) then becomes
U(tll . --lt67T)
-t - - ~,
j’zl(t tl’ zl(t tz) zz(t+7 té) \
- g > (2-22)

\
* - * -t * -
Lzl (t+7 t4) zl (t+r LS) 22 {t t3)J

whick, from Eq. (2-A7) in the appendix is

U(tl'."'tG;T)

-

4+ tl) RZ(T_t5+ t2)

-t3~T) . {2-23
R (Tt + t,) R (Tt + t))

If we now assume the autocorrelation function given by Egq.{2-20)},

T -
Rz( t

= Rz(t6

this may be substituted in Eg, (2~18a) to yield

2-10




e e g

A ero T e

FRRg=r e e

A
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o I ; _ \
R_(7) th af df af, J.,.Jdtl...dt6 GE, t k) g¥(t b .t )

2 5
~-W/2
o ‘.' -. 4‘ '
expl-j2m (£ 1t flt4+f17rt2t f2L5+f rf3t3 f3t6.f37)]|
- - + - + \
i+exp[ 321 (f 157 s 4tlT+f Ey b, v ET f 385~ E5t £, ]]
.
(2-24)
Evaluation of the integrals in tl,...,t6 yields
W/2
R (T)= IPJ af. df.af exp(-j2mr(f, + £ + £ ]
a J 1772773 71 2 3
-W/2
rG(f £ ,£)) 6* (f ,f f )
1"72°73 1’72 (2-25)

£ & 3 &
LfG(fl,-z,fz) G (fz,fl.x3)
Since

f = 1 4 + -
G(leflpn-B) K( ZTVI'fl Jl,f3 V2)

= . -+ R . R -
.(fl vl f2+\/l f3 vz)

G(tl.fz.EB) '

the large bracket in Eqg.(2-25) is actually equal to twice the
first summand in it. We can write down by inspection the power

spectrum of the interference as
-]

G (f) = lxdf exp (-j2m£T) Ra(T)
w2
=2 ;‘fr af. df. Af. b{f-f.-f -f.)
JJJ GFp G G5 PIETE TR,
-W/2




. ar . . 2
G_(£)= 2 jf ag ag, Ja(E, £, £ £,) |

2

where
0, = {(nl,f2>:lfi| % W/2,|f~tl~f2| % wyz}. (2-26b)

when
Vv =\ = YV ra hY = -~V - .
P, P, 1 Tpg 2 (2-26c!

We are particularly interested in the tail of the spectrum

where
w2 < || s 3w/2,

in comparison with the peak value. Suppcse we let

G_ = Min le(s, . £, £ ] (2~27a
mifi|5W/2 1°72°73

and
G = Max |G(f,,£.£.)]. (2-27b
M |fllsw/2 - 23

2
{I 4 S -
s (£) 52 6 Ji af df (2-28a
f
N S
G (£ =226 1, df. df_. (2-28b
2 m "5 1 2
Uf
The integral cver Qf can be evaluated fairly readily; we find
. f&wzfé - £2 . £l = w2 3
| af,af,= _— b . (2-29)
hf = w2 ~ (£ /2, w2 <|g]s 3w/2_f

2-12




From Egs(2-28) and (2-29) we can bound the ratio of inter-
ference power in the channels centered on Vi + W to the inter-

ference power in the channel centered on Ve We have

adjacent channel interference power < GM
direct channel interference power 4Gm

. (2-30)

We can repeat the whole procedure now for the case in Eq.

(2-14) where all three carriers are distinct:

v = Vo,V = Vo, V= Vo, (2-31)
pl l P2 2 PB 3

The expectation U is given by

U(tl,...,t6;T)
_ zl(t-tl) zz(t-tz) z3(t+7—t6)
= E * * * (2-32)
+7- +7— -
\?l(t T t4) zz(t T tS) 23(t t3)
from which
U(t]'ooo't6;T) = R(T—t4+tl) R(T—t5+t2) R(te-ta_r). (2-33)

A comparison with Eg. (2-23) shows that the interference spectrum
is exactly one-half that found in the previous case so that Eq.

(2-30) applies in this case also.

2.6 Final Selection of Interference Combinations

We are now in a position to make a selection of the inter-
ference cases to be modelled. We recall that Egs. (2-11l) to
(2-14) defined four basic combinations of interfering frequencies,
and for each of these cases it would in general be possible to
examine situations where the int Carriex Vi fell on
either the desired carrier v or the adjacent channel carriers vi+w.




o

The case given by Eq. (2-11) involves interaction of a
signal with itself so that the interference band is centered
on the same carrier frequency. The only two situations of
interest are those where Vg =V and V=V + W. (The lower ad-
jacent channel case ig essentially identical to the upper ad-
jacent channel and need not be treated separately.) We find
it reasonable to assume that a well-designed AGC circuilt will
preclude significant self-interference of the desired signal.

We therefore restrict this case to

Case 1: v_=v = -V =Vp =V + W . (2~-34)
1 P Py
The situation in Eg. (2-12) is that of carriers at vy and
v, producing an intermodulation carrier at 2vl - V,e We again

assume that an adequate AGC makes the case v. = v uninteresting.

1
This leaves only the question of w.ether to allow modelling of
the cases

v2=2v1-v_-l;w,

as well as

v2 = 2\)1 -V,

The conclusion we draw from Eq. (2~30) is that the adjacent
channel interference effect is unlikely to be as strong as the
direct channel interference effect so that for any reasonably
well behaved K we can restrict attention to the situation ‘where
the intermodulation carrier falls on the desired carrier. We

are thus led to take as the second case:

Case 2: vpl= qu = vl;vp3= v-2v1:vT= V. (2-35)

The situation in Eq. (2-13) is a cross-mcdulation inter-

ference where the interference carrier is at the frequency of

2-14




one of the two interfering carriers. The classic case in-
volves crossmodulation of the desired& signal, which certainly
must be evaluated. However, it woula appear egually important
to consider the situation wherce a moderately strong adjacent
channel signal is splattered into the desired band as a result
of crossmodulation by a strong out-of-band signal. We are

thus led to two more cases:

Case 3: Vv =V =V, VvV ==V = vy_; (2-36)
p, T P, P; 2

Case 4: v

[
<

Py = v+W, vp2= - vp3 =V, (2-37)

The final situation is that of Eq.(2-14) involving three-
frequency intermodulation. We note that Case 2 and Case 4 above
are special cases of Eqg.(2-14). Furthermore, from the results
of Section 6 of TR#3 we know that the probability that three
carriers have sufficient power to produce this interference
is small compared to the probability of the two-carrier inter-
actions described by Eqgs.(2-35) and (2-37). We therefore ex-

clude this ontion from the modelling capability.

In summary, the cases described by Egs. (2~34) through (2-27)

will form the basis of our modelling.

2.7 Scaling

The complex envelopes appearing in the several expressions
include implicitly a scale factor proportional to the square
root of the nominal carrier powzr. These implicit scale factors
are multiplied together (also implicitly) in determining the

peak voltage of the complex envelope of the interference.

2-15
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Considerable efficiency can be achieved in the operation
of the computer programs if these scale factors are made ex-

plicit and their product used to scale the interference output

after it has been calculated. In this way the effect of varying

power level can be determined by scaling a single output sequence
rather than by repeating the entire triple summation involved

in the tapped-delay line model.

It is also appropriate to include the peak magnitude of
K(fl'fZ'f3) in this final scaling so that the tapped-line co-

efficients have a relatively restricted set of magnitudes.

2.7 Tap Spacing and Sample Spacing

We would like to discuss here the interrelation between

the tap spacing and the sample spacing. Let

0 = time interval between adjacent samples of the

complex envelopes; (2-38)
to = time interval between taps in tapped delay line
model. (2-39)

The range of values of to is determined by the requirement of
getting a good fit to the transfer function. Values of to near
zero will be used, for example, in approximating polynomial fits
to the transfer function. At the other extreme we can assume
that to < 1/wW which is the largest value that permits a Fourier

representation of K(fl,f ,f3). We thus have

2
0 < to < 1/W. (2-40)
A second constraint is imposed by compatibility with the

sampled-data representation of the complex envelopes. We clearly

must constrain tO to be an integer multiple of 6:

t0 = integer.b. (2-41)
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The sampling interval itself is constrained by the need
for adequate representation of the complex envelope of the
interference. Since, by the earlier assumptions, this envelope
has a spectrum occupying the interval (-3W/2, 3W/2) a sampli'g
rate of 3W samples/second is the mirimum allowable to permit
Nyquist sampling. To avoid the need for (sin x/x) sampled
data filters it is wise to allow at least some margin and re-

quire that
b < 1/4w. (2-42)

For this initial effort, which must be looked on as a
validation of the possibility of computer simulation of the
models, we have chosen to satisfy all of the constraints

simultaneously by requiring that

b = to (2=-43)
and

0 < t, < 1/4%. (2-44)

The penalty imposed by this lack of flexibility in setting 6=t0
is a restricti»n of the "wildness" of the transfer functions
that can be accommodated by the model. We should point out,
however, that this same restriction greatly ieduces the measuce~
ment or computational burden in determining the values of the

transfer function on a cubic lattice.
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APPENDIX TO SECTION 2:

CALCULATION OF TRIPLE MOMENT OF COMPLEX
GAUSSIAN RANDOM VARIABLES

Let xl,...xc be complex Gaussian variables and let K be
the moment:

* % %

R = E(xlx2x3x4x5x6). (2-a1)

By a Gram-Schmidt procedure we can represent {xA} as a trans-—

formatior on uncorrelated unit variance variables in the form

X1 T an Y )
Xy T a5 YetayyY,
> (2-a2)

X6 = + +

T 861 Yy T omeer MY

where
*

E{y y } = & , the Kronecker delta. (2-a3)

m n mn

If we substitute Eg. (2-A2) in Eq. (2-al), the result is a sum
containing 6! products of the {Yn} and their conjugates. It
would be had judgment to write this sum out because most of the
terms vanish when we take the expectation. 1In fact the only non-

zero expectations are those of the form

2 2 2
E{Iyil !yjl ly, | }

in which i,j,k may or may not be distinct subscripts. We see
immediately that y4,y5 and Y will never enter into the calcula-
tion of R because they never appear unconjugated in the product.

We will need the three moments of the (nit-mean exponential

2a-1
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distribution in writing down the expected products:

E{linZP} = p!. (2-a4)

We theli have

*
112213310 (84725,34;)
+2(a

R=6(a
*
11%22%317211%21%20) (35, 3613,,4, 35,3, a2, )

*
+2“"‘11"21833)(as1a61343+a41"“61a53+a41a51363)

%
+ .
2(alla22“3z)(351a62a41+a42a62a51+a42a5zael)

+(21‘11322""33)(5‘41"“525‘63“‘5:L""e,z‘?‘a,34""‘61"‘42"“53+‘”‘41"“53a62

*
Ta513633927361243355) (2-A5)

This latter expression needs to be rephrased in terms of

the covariances of pairs of {xn}:

*

*-
R = E{X X } =7 0. a.. (2-26)
mn m n i mi ni

Now if Xl' Xz,and X3 were 1independent and if X4, XS' X6 were

permutation of them, then R would contain a product of the form

where (pl,pz,p3) was a permutation of (4,5,6). We are thus led

to conjecture that

R R R + R R

= Rig Rys Ryg * Ryg Ryg Ryy + Rig Ry, Ry,

¥ Rig Fog Rys T Ryg Ryy Ryg + Ryg Ry Ry . (2-27)
1f we write out this sum using Eq. (2-2A6) we can verify its

coincidence with Eq. (2-A5) and thus correctness of our conjecture.
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SECTION 3
DETERMINATION OF MODEL PARAMETERS

We start here with Eq. (2-~10) of the last section which we

repeat here:

yi(t) = constant -Re{apl'pyp (t) expszant]} (3-1a)
3
where
B, > 0‘\
p; <0
and
vV, = Vvt v +v . ({3-1c)

The complex envelope gg(t) in Eq. (3-la) is given by Eq. (2-8)

as

W/2
= r. -
a, (t) f” Af G_(£) exply2me(f + £, + £))
-W/2
2 (£.) Z2_ (f)) z2 (f)), (3-2)
Py 1 P, 2 P 3
in which
G (£) =K(f.+v , £+v , f.+ v ). 3~3)
B L 'pp 2 p," T3 Tpy (

Our modelling procedure reiies on the property that if
GE(Q ~ G(f) for |fi] < w2, i=1,2,3, (3-4)

then

zr?r N {59
éE(t) JJjOf S(fexplj2 B+ £4 fz)]

z (f) 2 (f . -
pl( 1) Pz( 5) ZPB(f3) (3-5)

[}

3-1
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by virtue of the bounded support of the input spectra {Zp 1. we
. . i
have furthermore chosen to restrict attention to approximations

G(£) of the form

e = N \ 5‘, ¢ * f"‘. 6 f + + -
G(£) n) n2 n3B(nl n, n3)exp j2n (nl 1 n2f2 n3f3)]
(3-6)
Substitution of Eq. (3-6) in Eq. (3~5) then leads to
a(t)= ¥ » ¥ B(n,,n_,n_)
P n, n, n3 12 3
3 .=
r j -n. % -
.ﬂ | df, exp rgzﬂfi(t n, )] zp_(fi) (3-7)
. i
i=l -*
or
3
a ()= ¢ § & B(n,,n_.n.) z (t-n.d),. (3-8)
el n, n, n3 1”23 igl P, 1

3.1 Choice of Model Parameters: General Considerations

Referring to Eq. (3-6) the parameters that must be specified

a) the tap spacing o

b) the range of indices {n_,n ,n3} in the sum

1" 2

c) the coerfficient set {B(nl,n2

)3
For computational purposes it is reasonable to require that the
set of indices be identical for each coordinate so that Eq.(3-6)
can be specialized to read
3 =j2mdn £,
G(f) = T T B(nl,nz,n3) T[e 1 (3-9)

T n T
1
i=l
A < <
’\II+ 1 nz} NI+ 1
"3

3-2
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The analogoug time response of Eq. (3-8) then becomes

At R U P I S

3

3 = Ty , ! -n.b). -
: aE(t) lf B(nl nz,nB) ﬂ zp (t ng ) (3-10)
1 1 i=1 "1
3
" +]1 < s +
. N 1 n, NI N

N3

In these expressions N is then the number of delays used in the

model for each input sequence, while the number N_ can be thought

1
of as an overall delay of the output sample sequence relative to
the linear components of the model. The number N can be assumed
to be fixed ahead of time by complexity limitations on the com-
puter programming. It is therefore necessary to determine N3+ 2
model parameters:

a) the delay spacing &

b) the overall delay NI

c) the NS values of the {B(nl,nz,n3)].

If the function G(f) were specified at all values of f by an
analytic description, it would be reasconbly straightforward con-
ceptually to find a choice of the N3+ 2 parameters that minimized

the quadratic approximation error

([ azls® - e 12

(Y LY
what we will actually be working with, however, is a finite set

of calculated valuec as measurements of G(£f) in the form
’ £, 1
G(mlfo m2 o) m3fo)
as ml,mz, and m3 range over some small set of integers. If M is

total number of measurements is M3, then clearly we require that

3-3




M3 > w4 o2,

so that the number of measurements viil exceed the number of

parameters to be Getermined. Thus we must take

M2N+ 1,

On the other hand, the determination of each of the M3 data points
will require either a significant measurement effect or significant
computation time. Therefore we believe that it is reasonable to

use only the minimum number and hence require that
M= I:.I. + 1, (J—lla)

where N is the largesc valus of N for which modelling is to be done.

At this point we should observe that the smallest "interesting
value of N is N = 2 corresponding to a two-tap model, or, in the
limit of small tap-spacing 6§, a frequency power series with linear
terms in each frequency. We have chosen to allow values of N as
large as 4 which provides considerable flexibility beyond the
minimally interesting model; the corresponding value of M = 5
which requires 125 measurements or calculations is probably as
large as can be conveniently accomplished with any reasonable
econumy of either computer or measurement time. We thus will re-

strict attention to

M s 5 (3-12a)

and, from Eq. (3-11),
N = 4, (3-12b)

The most favorable locat:.on of the frequency lattice points
is not immediately apparent. To be more specific, it is not ap-
parent how close to the band edges of + W/2 the extreme data point:
should be. Although an argument could be made that choosing the
frequencies of + W2 as 2 of the data coordinates on each dimen-

sion gives undue weight to possibly anomalous band-edge phenomena,

3-4
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this choice is a conservative one in that it will make any model

weaknesses most apparent. We therefore will henceforth assume that

the measured or calculated data consist of the values

-W/2 + (ml-l)W/g,
M) = G 1 =W/2 + (LW, |, (3-13a)
-W/2 + (m3~l)W/§

Y(ml.m

for

< < 3
1 ml,mz,m3 N+1. {3-13b)

We now define ¥ in the obvious way as the value of the ap~

proximating function G at the same lattic2 frequencies, and define

an error criterion

N+l N4l NHL 5
v=mz=l m2=1 mZ=lly(ml,m2,m3) = Y(m ,m,.m,) | (3-14)
1 2 3
which is a discrete version of the quadratic error criterion. It
should be observed that V is implicitly a function of the param-
eters NI,6, and {B(nl,nz,n3)}. The objective of the parameter-
extraction program is then to minimize V by the choice of these

implicit arguments.

Before proceeding further it is helpful notationally to let

’ = ) +N -
B(nl,n2 n3) B(nl-i-NI n2+NI,n3 I) (3-15)

so that Egs. (3-9) and (3-~10) can be rewritten as

G(£f)= exp [-JZﬂNlé(fl+f2+f3)]
N N N 3 —j2ﬂ6nifi
s Z & v Biln,,un.,n )7 e . {3—-16)
_ _ _ 1727737 |
n, 1 n2—l n3—l i=1
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N N N 3
a (t) = T ) Z Bn,,n_,n )T =z (ten d-N_0).
2™ cner 22 T (R

17t P ong i=1

{3-17)

It can be verified that for any fixed & and Ni' the determina-
tion of the best values of B(nl,nz,n3) is a routine quadratic mini-
mization. (We will present the derivation of these coefficients
subsequently.) The problem thus reduces to finding an efficient

algorithm for determining the best choice of 5 and N,.

2.2 Dependence of V on &

Although it is theoretically possible to find the optimum
value of 6 by differentiating the quadratic errcr V with respect
to & and equating this derivative to zero, it appears to be more
realistic computationally tc search for the minimum V by evaluat-
ing Eq.(3-14) for several discrete values of &, This approach
also guarantees that the value of & we select will be an approxi-
mation to the value yielding a gli.bal minimum rather than one
which yields only a local minimum. We now need to investigate
the limits of this computer search, or, more exactly, the lower
limit, since we have already determined that & < 1/4W. We thus
need to investigate the behavior of the optimizing solutions as
6~0 and then determine the largest possible positive & which per-
mits approximating this limiting behavior.

From Egs. (3-13) and (3-16) we have
bw-3/2-3/N+ (m, +m,+m_) /N] ]

Y(ml,m lm3)= exp{"JZ"N

(o]

2

N

P B(nl,nz,n3)
n_=1

3

il £1 %=

L
™Mz
|

o
=
=

[
N

exp(-j2mbn W(-1/2 -1/N+m./N) ]. (3-18)
1

| I P

i
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We clearly must have each of the ¥ approaching a limiting value

as & - 0; we will denote this limit by the subscript zero:

?O(m ,mo,m.) = lim ¥Y(m

) PRUUINPE 1] ). (3"'19)
T

1723

In Eq.(3-18), let us denote the triple sum by o(ml,mz,mB).

By writing the prcduct of exponentials as the exponential of the

sum of arguments, O can be written as

N N N
= <« *
o(ml,mz,m3) n2=1 o nz_lﬂ(nl,nz.n3)
1 2 3
E 1
. exp| ~j2m0W T n, (-1/2-1/N+m,/N) . (3-20)
L i=1 * o4

If we now expand the exponential in a power series in 6, the sum-
mation in the power series can be commuted with the triple finite

sum on (nl,n ,n3) to yield

2

omy) = % (-52mws)® -
k=0

N N N

o(ml,m

n :l n :] n i‘lB(nllr’.z’n:g')
1 273
3 m, K
. 1 1 i\
RIS S S S A _
NG 5t g>J : (3-21)

Now, if the coefficients {B(nl,nz,nB)} were constants independent

of 6, then, for sufficiently small b, the leading term in the in-

finite sum would be the dominant term, and ¢ (ml,m2
1'm2' and m35 However, we can expect that the
dependence of the {B(n,,n_,n,)} on & will be reflected in rela-

.m3) would be

independent of m

tions of the form

3-7




X B(n,,n ,n3) - constant as 6-0,

1" 2
(nl,nz,n3)
X n. B(n,,n_.,n_ )~ EQE%FEEE as 6-0,
(n,,n_,n_) 17203
17273
X n.n, B(n,,n_,n.) - constant s 6~0,
(n..n.,n.) i 12 3 62
17273

and so forth. It will thus be possible to obtain polynomials

in ml.mz,and m3 as 8-0,

Suppose, then, that we postulate that each B has a finite
Laurent development of the form

-1
B(nl,nz.nB) = Bo(nl-nz.nB) + Bl(nl,nz,n3)6

~L
+.., .+ BL(nl,nz,n3)6 (3-22)

+ terms of the order of 6 or smaller.
If we let

PD(nl.n ,n3) = homcgeneous polynomial

2 .
in (nl,nz,n3) of degree D, (3-23)

then clearly we must have

z ' . ’ ’ = i < ‘L

- i i )B£(nl n, n3) PD(nl n, n3) 0 if D < (3-24)
17273

for otherwise there would be infinite values of ¢ as 6-0. Egjua-

tion (3-24) imposes

(L+2) _ A (L+1) (4+2)
3/ 6
)} corresponding to the

- . . s s 4 .
llilnear consctrainits on wne {SL \n Fyy!

I
1"2°73
numbexr of types of homogeneous polynomials of degree < 4. Since

there are only N3 cf these coefficients, it follows that

3-8




L(L+1) (L+2) € 6N (3-25)
or
L<1if N=1
L<2if N=2
Lsq4ifN=3 [° (3-26)
L<6if N =4

The limiting value of ¢( ), which we will denote by oo( ). is then

L
6 (m,,m_,m ) = £ (-j27W) -
1"°2°73 £=0

N N N

: Z ’ ’

n El n El n_=1 sé(nl %2 n3)

1 2 3

3 m, %

r S S A _

L n(-2-5+ g)_i : (3-27)

oo(ml.mz,m3) = E%A Cg ml m2 m3 (3-28a)
where

a = (al,az,aB) (3-28b)
and

an = {a: Ya, s L}. (3-28c)

The numher of coefficients in Egq. (3-28a), or, equivalently,

the cardinality of A, is

Card (A) = (L?). (3-29)

This might suggest the inference that there are more degrees of
freedom in tne limiting case than in any of the expressions for
nonzero 0. This inference would be false, however. 1In addition

to the linear constraints of Eq. (3-24) there are linear constraints

3-9
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between the different [BL} and the measurement valaies. In fact,

if 61 is some value of & sufficiently small so that

6, (m,,mm_,m_ ) = oo(m m

b 123

Jm_)
1 3

1772

then the fact that there are only N3 independent coefficients in
Eq. (3~-20) implies that of the M3 = (N +l)3 values of 98¢ only

N3 are linearly independent.

We now need to investigate the rate of approach to the limit-

ing form of Eq. (3-28a). To this end, let us define

L
-1
=Y - Qe
Te(8) =7 42,8, () exp[ szaznifi]. (3-30)

The rate of approach of Fb(f) to its limiting value is at least
as good as would be obtained if the summation on 4 included positiwve

powers in &. We find

Lim 677 B, (n)exp(-32nbin £.] = B, (£) (3-31)
6-0 n ol

where PL is some homogeneous polynomial of degree 4 in 3 variables.

It is actually one part of the frequenc, polynomial approximation:

L. 4L 1 Lo 2
_ {1 L1, 2. 73 172 73
P () = ¥ (732m g TEy TE) T 2 B (mingTn, ng
471772773 n
(3-32a)
in which
= A -l -1 ). -
it (61 2 1 2) (3~32b)

It is not difficult to verify that the slowest convergence is

obtained when 4 = 1I,, We will therefore restrict attention to

that case.
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We now observe that

m m m {(n.z_+n_z_+n_z )D
12 3 1 171 2%2773%3
ny N, N3 = 2y 3 ”f 1+m.  1+m Tam. 92,92,32
(23 2, .

. z z ’
2 3
(3-33)

Hence any

homogenous polynomial of degree D in n can be approximated by a

where all three integrals are on the unit circle.

linear combination of polynomials of the form (n.z.+n_z _+n_z )D.

11 272 373

The linear constraints of Eq. (3-24)can therefore be phrased as

D
EL(Q) (nlzl+n222+n3z3) = 0

580

for every nonzero z and for every (3-34)
D < L.

Suppose that we define

® D
= ¢ ¥ D -
g(w,z) b Y -'BL(Q)(nlzl+n222+n323) . (3-35)
D=0 n
Transposing the order of the two sums,
—. r -~
g(w,z) —.gﬁl}g)exp .w(nlzl+n222+n3z3)]. (3-3F,

The constraint equation now becomes, from Edgs. (3-34) and (3-35)

Lim w " g(w,z) < « for every nonzero z. (3-37)
w-0

We observz now that the right hand side of Eq.(3-36) is a
polynomial in

wz 1 wz wz

e , e , and e .

This polynomial is of degree N in each variable with the zero

degree terms in each variable missing. It is readily seen that

the only polynomial of this form that satisfies Eq.(3-37) is

3-11
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L

= - + -
g(w,2z)= exp(w Zzﬁ T'{l eXPFW(Hmlzl um222+um3z3)]}f (3-38)

m=1
up to a constant multiplier. In this expression the {umi] are non-
negative integers with at least one M ; nonzero for each m. Furthex

more since the product includes a term of the form
e 3 % . k
Xp ty x E “m z

i “ig”

the exponent in this product must be nc greater than

(N-l)(zl+ z_+ z3).

2

W2 therefore have

nu i > 0 for every m. (3-39a)
i m
Y M . S N-1 for every i. (3-39b)
m  mi

The coefficients {9L(g)} could be found by writing out the
L-fold producc in Eqg.(3-38) and matching coefficients with Eqg. (3-3¢
However, it is much more to the point to compare Eq.(3-30) with
Eq. (3-36) for the special case where Bé(g) is zero for ¥ < L, and

note that in this case
.-L .
Fé(g) = 6 "g(-j2md, f) (3-40)

so that from Eq. (3-38)

T (f) = & " exp(-j2mdFE,)
6= i
L
ﬂ {l—exp[—jZnéfumifi]}. (3-41)
m=1 i

The limiting form of this can be written by inspection as

T

2
L u . f,.. (3-42)

L
T (£) = (32m)
o oy goy mitd

3-12
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Let us write

19

: ©(8) = Ty (£)/T_(£) (3-43)
% in order to evaluate the approach to the limit. Then

; ©(d) = exp(-jzﬂé“fi)

% L l-exp[—j2W6§ “mifi]

3 -Ti 1 . (3-44)
n A n \"

: m=1 J2rotu

% The multiplier

exp(-j2ﬂ62fi)
can actually be subsumed in the multiplier
-J§2TN_6 T
exp{-j2 N Yfi}

which appears in its discrete version as the first multiplier
to be that of

We can therefore take the approach to the limit

- -2 N
_ expl j_nééumifi]

~ ) 1
@(8) = ;hl PTTEVN) ' (3-45)
= , mi"i

a~

which, for sufficiently small 6 is approximately

S(d) = 1 - jmd i % Mo Es - (3-46)

The absolute fractional differerice between Fb(g) and To(ﬁ) can
then be taken to be

e(d,£) = md Loy “mifi' (3-47)

This is clearly largest at the band edges so that

le] s (76w/2) ~ T u .
. ml
m 1

Py
W
I
RN
[#e]
S

From Eg.(3-39b) this can in turn be bounded above by
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le| s 3(n-1)wdw/2, (3-49)
or, using

MmsN=4, (3-50)
{e] s omdwy/2. (3-51)

it is & numerical convenience to have the smallest value of

5W be an inteqger power of 1/2. At O0W = 1/128 we have

el s 9r/256 if sw = 1/128, (3-52)
This represents about a 6° discrepancy from the limiting value
when this discrepancy is 90° out of phase as suggested by the
form of Eqg. (3-46).

We can also check the relative amplitudes using Eq. (3-44).
We have

p |sin n8 X umifil

i
o)l = [ —Tev o T - (3-53)
m=1 . mii
i
which for small 8, is approximately
2.2 2 [ 2
lo(o) | = 1- (ns%w?/20) = (3 u_ )2,
m
if |fi| = w/2. (3-54)

The maximum of this under the constraints of Eq.(3-39) occurs,

for N = 4 and L. = 6, when

' = =1 1l < <
Mol © Mm2 ! m =3
= 1 4 < m<6
HmB .
ik, =0 , otherwise.
mi
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We tnen have

lo(6) ~ 1-5(r6wj%/8, N = a. (3-55)

. ~4 .
For OW = 1/128, this represents an error of abouc 2.3 x 10 which

is negiigible.

3.3 Choice of Values of & in Parameter Fitting

Ba: 1 on the results of the previous subsection we will con-

fine 6 to the range
1/128 < oW < 1/4. (3-56)

It is also necessary to select the grid of points for & within
this range. We have somewhat arbitrarily chosen to steart at

6W = 1/4 and successively halve the value of & to get the next
trial value. In this manner, each tapped line can be looked on
as a refinement and truncation of the previous one. We therefore

have the final selection of values
bw = 1/4, 1/8, 1/16, 1/32, 1/64, and 1/128. {(3-57)

3.4 Range of QI

Referring back to Egs. (3-18) and (3-20), let us write

Y{m,,m

1 2,m3) = o(ml.m

2' ™)

2+m3)/1j_]}.

. exp{—j2ﬂN16wf—3/2-3/§+(m1+m
(3-58)
For sufficiently small & we can replace G(ml,mz,nb)‘byits iimiting
value oo(ml,mz,mB). Unless NIG is very small throughout the range
where this approximation holds true, the values of ¥ will change

as 0-0 unless NIG remains fixed. We therefore can assume that
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NI * gonstant/d as 8-0. (3-59)

We will use this property to pigkX the range of NI after the first

trial.

At the other extreme, we observe that a change of m. by 1

causes a change of
i2n(N_+ n,)O0w/N
I i ~

in the argument of some exponential term. More accurately, if

we use an arbitrary lattice of M3 measurement pointg, the argu-

ment of the exponential changes by
j .+ 6 -
sz(b.I ni) W/ (M-1),
which for OW = 1/4 is

j"(NI+ ni)/Z(M-l).

This implies that if INI+ ni!> M-1, then one of the exponentials
is incurring more than 90° phase change between adjoining lattice
points. We believe that such a situation corresponds to an under-
sampled transfer function (in an engineering serse) and that

therefore the restriction should be assumed that
1

iNI + ol <M1,
or, since

l] s n. SN,

i
w~ will require that
+ 1 2 l-M
NI
NT + N 5 M-1

or

-M = NI s M-1-N. (3-69)




Let us now denote by ﬁl(é) the apparent best choice of NI

for a particular value of 6. From Eg.(3-58) we would expect that

ﬁI(é/z) ~ 2&1(6), (3-61)

sO that the new interval of delays covered by che tap locations
falls within the old interval. We note that with the tap spacing
6 the actual delays are rﬁI(6)+ 1}6,...,[ﬁ1(6)-&4]6. I1f we then
choose the minimum and maximum values of NI(6/2) to cover all pos~

sible overlaps of this range we must have
(Min N (8/2) + 1)(8/2) = (R (&) + 1]6

(Max N_(8/2) + 4](8/2) = [N (8) + 4]®
so that

2&1(6) + 1N (6/2)s 2&I(6) + 4 {3-62)
3.5 Best Choice of{B(R)}

We can now assume that & and NI are temporarily fixed at
some trial value; the values of {B(n)} must be calculated. We
have available the lattice of measurements Y(ml.mz,m3)for 1 Smi =M,
1 i <3, It will be a labelling convenience both computationally
and to derive the best choice of the {B(n)} if we define two in-

dexing variables

2
U =M (ml-l) + M(mz-l) + m3 (3-63)
2
v = N (nl—l) + N(nz—l) + n3. (3-64)
The ranges of these variables are
1 s s M3; . (3-65)
l sy < N3. (3-66)

We modify the measurement values by the first complex ex-

ponential factor in Eq.(3~18) by setting

+ -
3 ml m2+m3 3,

S(u)=Y(ml,mz,m3)exp{ijNléw[}ng — J}'(3“67)

3-17
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We further define a coefficient array equal to the triple

product of Eq.(3-18):

Cu,v)= exp[-ijbwgni(~ s -i—")W. (3-68)

We now want to find that se . of f(v) for which

V== |s@) -z B clw|? (3-69)
M v

is minimum.
We can interpret the array

¢ = {cu,v)]

3 3
as an M ~row by N -column matrix; the array

B=(BW]
as an N3~entry column matrix; and the array
s = {s]}

3 . .
as an M -entry column matrix. We can then rewrite Eq. (3-69) as

the matrix equation

v=(s-cB (s - cB) (3-70)
where

* = conjugate

T = transpose.

In expanded form this is

AT L *T

A *
V=s g§-8"1¢ " £ T

*. *
§- 8 "R+ B " c " CB. (3-71)
Let us now conjecture that we can rewrite V as

v=(B-a) T T ¢ (Brw) 4 © (3-72)

. . . . A
where U 1s a scalar congtant anéd & is a c¢olumn matrix with N

entries. Expanding the product we have

x M 3
vV =278 C " CB ~ & T "B -B "¢’ ca
* %
+ a T c T Ca + U. (3~73)
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! If we equate corresponding terms in Egs. (3~ 1) and (3-73) we
| £ind that

* *p
C T Ca=2C S

so that
* -1 =*
a= (T Ts; (3-74)
and that * * *
(o T C T ca + U =28 TS
so that
* * *
U=58T7Ts - T o Tea (3-75)

Substitution of the value for a from Eq.(3-74) in this last ex-

pression gives

2 % * * — * * - v
v=5Ts-5Tcic™o)™?t ¢*Tec (™ Tyt ¢ Ts
or
* * * - *
v=57Ts-5T cc'Toy™? T, (3-76)

This last result can also be phresed as
' U = S*T S - S*T ca.
Clearly, the minimum value of V is attained when
B = a (3-77a)
where

vV = U. (3~-77b)

3.6 Program Outline

We are now in a position to summarize the programs for deter-

mining the model parameters.

3.6.1 Input Data from Measurements

If Lhe input data are to be acquired by measurements it is

necessary to specify
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a) the size of the measurement lattice M,

b) the three carrier frequencies TP and Vg
(where v, is negative),

c) the bandwidth W.

The output of the measurements should be a tape record or

card deck containing the following data.

a) lattice size M
b) bandwidth W
3 c) a three dimensional array Y(ml.mz,m3) where

; /2 + (m-1) W/ (M-1),
Y(m ,m,m) = :} G (W2 + (m,-1) W/ (w-1), (3-78)
° /2 + (m~1) W/ (M-1)

where

+£._, + +
e f £y < H3(v1 fl v, f2. Vg f3) (3-793)
1"72°73 Hl (vl+v2+v3+fl+f2+f3)
and
G0 = ; M;x ; G(fl'fZ'fB)
17273
d) the normalizing constant Go.

3.6.2 Input Data by Computations

If the input data are to be determined by computer analyses

of the nonlinear circuit it is necessary to duplicate the same

type of output as in Section 3.6.1.

Using SIGNCAP for example, we must specify

a) the lattice dimengion M

where
2 £ MSS. (3-80)
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b) the bandwidth W
{ c) the carrier frequencies

, Vv,V where
v, < 0. (3-81)

One then calculates the three dimensional array variable

Y(ml,mz,m3) fxom
, y
G(m}’mz'mB) N HI?I{I{:(E); \;:2(;: f(?)f'(mv)3++f:‘(‘3n,3} (3-82a)
i 171 2 '3 1 2 3
where
f(mi) = - W/2 + (mi—l)w/(M—l)
for 1 = 1,2,3; m, = 1,2,...,M, {3-82b)
by setting
Y(n,,m_,m_) = —L'G(m LR ,M) (3-83a)
1273 GO 1"2°3
with
GO = al??ﬁi} G(ml,mz,m3). {3-83b,

Note that the maximum data generated by this programare 125 com~

plex numbers. The program output should then be

a) the lattice dimension M

b) the bandwidth W

c) the array variables Y(ml,mz,m3)
4) the normalizer Go'

3.6.3 Computation of Model Parameters

The input to the program consists of the output oZf the lat~
tice value computation routine or the wmeasurement results. Specif-

ically the input data should contain
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a) the lattice Z&imension M
b) the bandwidth W

c) the array variables Y(ml,mz,m3)
for 1 - meo M; i=1,2, and 3.

4a) the normalizer Go.

In addition
e) the number N of taps/coordinate must be specified.
This number must satisfy

1 SN <M1, (3-84)
We define a normalized tap spacing
D = Wb, (3-85)
and take the "group delay"” NI as defined before. For each D we
define the minimum value of NI by Nm(D), and the maximum value of
NI by NM(D). We will reserve the symbol V for the final minimum

value of the approximation error and use U for the approximation

error for a specific NI and D:
*7
U(NI,D) = (s-cB) ~(s-CB). (3-86)

It will be helpful to define partial minimizations of U

I I
VT(D) = U(KO,D) = nMénN U(nI,D),
I M
and
NI

Note that KT is implicitly a functicn of NI and D, KO is implicitly

a functicn of D, and that KR’DR are implicitly functions of D.
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We can then write the recursion relations

NM(D) = 2KO(2D) + 4, (3-89a)
Nm(D) = 2Ko(2D) + 1; (3-39b)
o }'VT(NI~1,D) if U(N,,D) > vT(NI-l,D)‘k
TUI . 4
1~ U(NI.,D) if U(NI,D) < VT(NI—l,D))
(3-90)
K (N.-1,D) if U(N.,D) > V_(N_-1,D)
ke (N,.,D) = { 1 I 1 };

i £ < -
NI if U(NI,D) VT(NI 1,D)

VT(D) = VT(NM.D),

KO = KT(NM'D);

Vv_(2D) if v_(D) >
v (o) = {: R P
VT(ZD) if VT(D) S
K _(2D) if v, (D) >
KR(D) _ { R T
Ko(d) if VT(D) s
D_(2D) if v_(D) >
DR(D) _ R T

' <
D if VT(D)

For each of these recursions we also

For N and N we have
n M

N
UM

M-1-N

3-23

{3-91)
(3-92)
(3-93)
Vv_(2D)
R } , (3-94)
v, (2D)
V_ (2D}
R } (3-95)
VR(ZD)
v_(2D)
R , (3-96)
v, (2D)

need initial conditions.

N o=-M
when D = 1/2. (3-97)

Rt . ]




Since we have constrained the values of vy by
2
<
IY(ml,mz,mB)I 1,

it follows that
*T

S 'S = 125
so that VR and VT can be initialized by setting them egual to any
number larger than 1279, say 200. We have then
VT(Nm—l,D) = 200 (3~98)
VR(l/Z) = 200.

The final values of the parameters then yield the optimum

parameter values:

Optimum value of oW

)

DR(1/128) (3-99a)

"

Optimum value of N, KR(l/128)

W

Mimimum of V VR(1/128).

We then have the following scheme for calculations:

a) Initialize record keeping parameters:
VT = VR = 200
b) D is initialized at
D =1/4
c) NI is initialized at
NI = - M
NM is initialized at M - 1 - N
4q) For each m,

l s m. < M;1i=12,3

define an integer
2 h]
o= M (ml-l) + M(mz— Y + m_,

and an array variable

m 4+ m_+ m_-3.
(P r 3 1 2 3 X
2.m3)expLj2TNIDL 2 + Y J}.

S(u) = Y(ml,m
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Note that under the program restrictions,
. 3
l1 sy <M <125,
e) For each m. .,

l < m, < M; i

]
[
-
[ 8
-
w

and for each ni

1l < ni < N; 1 =1,2,3,

define U as before and define

2
v =N (nl— 1) + N(nz- 1) + n3,

and a two dimensional array variable

3 m.—- 1
. 1 i \
= - AN - =
C(u3v) exp[ ]2ﬂDi=l ni< 2-+ Mol /].
Note that
l su = M3 s 125,
1svsN s (M-1)°s ea.

f) Interpreting S(H) as a column matrix and C(M,Vv)
as a rectangular matrix with M3 rows and N3
columns, calculate the number

* -1 * * * -1 *T
u="rc(c Tc) e Ts-s] T[c(c Tc) c ~s-s]
If U< Vv ,
q) T
V. =U
set T .
Kp = N,

Make available for print out NI'D' and U.

h) Replace N_ by N_+ ¢
i) If Nl < NM go back to step (d)
j) Set Ko = KT
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k)

1)

m)
n)

o)

p)

q)

r)

s)

t)

If V_ < V_ set {VR= v

T R ™" R “T'TR
= + 5
Set NM 2KO
= 2K +
NI 2 ° 1
D = D/2
= 200.
vT 200

If 129 D 2 1 go back to step (d)

Set D=1D N_ =K, V=V , K=K

R’ 1 R R R
Calculate the array variables £ and C as in

steps (d) and (e)

Calculate the zrray variables
B(v) for v = 1 to N3 by interpreting B as a
column matrix given by

* - *
B = (¢ Tyt s,

for 1 = ni < N, for i = 1 to 3 set

B(n,n ,n3)==6[(n1-1)N2+ (n,- 1) N+

2

Calculate the normalized error

Make available for print out

Go,r D,p and the array variables B(nl,n

Make av able on cards
GO,K,é = D/W,N, and the array variables
B(nl,n

2'P3) -

3-26
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SECTION 4

SAMPLED DATA BUTTERWORTH FILTER

4.1 Use of Approximate Linear Filter Response

After adding the third order distortion terms to the linearly
amplified components, it is necessary to filter the resultant sig-
nal so that its bandwidth is equal to the nominal IF bandwidth of
the receiver. Simulation of the exact IF response on the computer
would, in general, require a convolution involving a very large
number of delayed replicas of the input process, and would be very

time consuming.

It will be adequate for most purposes to replace the impulse
response of the actual linear circuit by any filter having the cor-
rect 3 dB bandwidth and adequately fast roll off. It should be em-
phasized that such a change does not have the drastic effect on
nonlinear spectra that would result from changing the actual IF
transfer function. The effect of this actual receiver filter will

have been incorporated in the equivalent transferfuncthmmK(fl,f ,f3);

2
the substitution of an approximate filter for H(f) causes only

linear distortion of the output.

The filter that is chosen to approximate H(f) should obviously
be selected for ease of simulation on the computer as well as for
reasonable match to IF filter characteristics. The second-order
Butt._.worth filter meets all these requirements satisfactorily: it
has maximally flat inband response, it yields 12 dB rejection at
one bandwidth separation from its center frequency, and it can be

simulated by a two stage recursive filter on the computer.




4.2 Use of Butterworth Filter for Spectral Shaping of Noiselike
Signals

In order to simulate the effects of random interference it
is desirable to include a noiselike waveform as one of the possible

inputs. This waveform can be generated conveniently using a sequenc

of random complex numbers at the sampling rate of the simulation.
However, it is neces=ary Lo provide spectral shaping in order to
approximate the bandwidth charactericstics of the interference.

We have again chosen a second-order Butterworth sampled data filter

for chis function.

4.3 Properties of Second~Order Filter

Let {Zn: ~»<n < ®} be a sequence of complex numbers derived
from sampling an input process using a sampling interval &, and

let |

2
y = (2pcos®) Yn-l— p Yn-2+ Azn, (4-1) ‘

where p and © and A are real constants. We assume the nonrecursive |

definition of Y‘1 to be

0

m m
vy o= Lo (ab" +ab™ oz . (4-2)

Then since Eq.(4-1) can F written as

Y - (2pcosy) Y .t 92 Y _, = Az (4-3)
we can determine al,bl,az,b2 by substitution of Eq.(4-2) in Eq.
(4~3) to yield

®
(agt 2,)Z.+ (ap+ a,0))z, 1+ T (ayby "+ azb§+k)zn—2—k

@®

- l+k 1+k
4 +
(20cos¢)L(al a0z 1% o ( a,b,” '+ ab, )Zn-z-kj

1
+ p [k a, b + a b2 )Zn- 2-k

= AZ .
n




From this equation we deduce that

a, + a, = A; (4-5)
albl+ azbz- (ZQCosw)(al+ a2) = 0. (4-6)
Equation (4-4) has the solution
2 2
b. = 2pCcosy Jaﬁ cOos @ - 402
i 2
or
bl = p exp (39) (4-7a)
b2 =p exp (-j9). (4-7b)
* *
We observe that a2 = al since b2= bl . We can thus write
a, = |a| exp (jo), (4-8a})
a, = |lal exp (-32), (@ -8D)
so that Egs. (4-5) and (4-6) become
2|ajcos a = A @-9)
—2|a|o cos(p-a) = O. (4-10)
We deduce immediately that
a = -"7/2
and
la] = a/(2sinw).
Hence
a, = (a/2) (1-jcotw), (4-11a)
a, = (a/2) {i+3coren). (4-11h)
We thus have
- (1-jcot®) (5m0)
_ . m -jcotyp) exp (jmy
= % -
Yn (a/2) m=0 ° Zn—m +(1l+jcotyp) exp (—jm@)] : (4-12)

4-3
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4.3.1 Response to Sampled Cissoid

Now let {Zm} he the samples of a complex cissoid with fre-
quency f:

Z = exp (527 £6m) . (4-13)

We can shorten subsequent expresgsions by setting
B = 2mfd (4-14)
so that

Z, = exp (jmB) . (4-15)

Substitution of this in Eq. (4-12) yields
2Yn exp(-jnB) /A

L]

(1-jcotw) Z. [ exp (3v-3B)1"

-]

+(1—jcotw)m§o[p exp (-jm-jB)]m

- l-jcoty + l+jcotl
1-pexp (j9-3jB) l-pexp(-jo-38) *

or

2an(sin®)exp(-jnB)/A

=lexp(-jo) - p exp (-jﬁ))—l
~Texp(j©) - p exp(-38)]7L.
=2jsin® [1-(2pcosw®) exp{-jB) + 92 exp(--j25):|--l
so that
Y = Aexp(jnB) [1-(2pcosy) exp(-jB) + Pzexp(—jZB)]—l.
(4-18)

We then have the magnitude of Yn given by the expression
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|y 12 A2|l~(20cosw) exp(~jB)+ 0~ exp(-32B) |

Azl[eXP(jw)— p exp(-jB)]lexp{~jv)~- p exP(-jB)]1‘2

= A%1-20cos (B+0)+ 021 1 {1-2pcos (B—w) + 02yt
or A _1
|Yn|2/A2=[(l+ 02)2 - 4p(l+92)cos B cos © + 20‘(cos 26+c032w)]
(4~17)
If we now write
cosf = 1-2 sin2Y (4-18a)
where
y = B/2, (4~18b)
and then use the relation
cos 28 = 200528—1 = 1-8 sinzy + 8 sin4Y, (4-18c)
Eqg. (4-17) can be rewritten as
2%/l I? = (1402) %= 40 (120%) cosw + 20° (L+cos2p)
+8p (1+p%) cosw sin®y - 16p2sin”y + 16p°sin’y
or as
A2/|Yn|2 = (1-2pcos w+p?)?
+ 807 (14+02) cosw-2p] siny
+ 16p sin’y, (4-19)

4.3.2 Special Choice of p

. . . 2 )
We now choose p so that the cecefficient of sin”Y vanishes

in order to have a maximally flat response:

(l+92)cosw -2p =0
or

cos © = 20/ (1+p°). (4-20)

.t




We then have

sinp = (1-p2)/(140%) @-21)

so0 that

2 _ l1-sin® _ l-cos (@-m/2)
1+sin® l+cos (p-1/2)

4-22a

]

tan® (o/2 - n/4)
or

p = tan (0/2 - n/4). (4-22p
With this choice, the leading term of Egq. (4-19) becomes
2
(1~20P cosyp + p )2

2
[1 -4 + pzj

l+p2 =

2

22 2
[ (1=p”) 7
- 14p?

]

251n
l+51nw

Hence

2_[2sin 9 1- 31n9j
| k | “= Ll+51nw4 16[ siny
or

2 -1
Iy |2 - AZFlTslnm ] rl + dcos osin Yj

L - L

28in" o sin o

(4-23)
In order to have unity gain at zero frequency we take

A = Zsinzg
1+sino. (4-24)

4-6




Furthermore, the 3 dB attenuation point is achieved when

4 coszg,sin Y_

2 1 (4-25)
sin'¢

If we wish this 3 dB point to be at f = W/2, then when B = mwd

(see Eq.(4~14)) or when Y = "Wd/2 (see Eq. (4-18) ) ,Eq. (4-25) must

be satisfied. We thus require

e sin4YO (4-262a)
COs ©®

where
yo = "Wd /2. (4-26Db)

We can solve Eq. (4-26a) immediately to arrive at

]

) arc sin 3 (4-27a)

where 2 1/2

2sin’ vy
S = [ TRRYE — 1 . (4-27D)
f14sin Yo] “ 4+ sin Yo”

We thus have, upon substitution in Eq. (4~24),

2
A = 25 /(1+s), (4~28)
and, upon substitution in Eg. (4-22a),

p = T(1-5)/(145)1%2, (4-29)
Finally, since
cos © = (l--Sz)l/2 = [(l+S)(l—S)]l/2, (4-30)
the recursion relation Eq. (4~1) can be written as
Y o= 2(1-8) ¥ -T{1-5)/{148)) ¥ .+725%/(1+s)]z
‘n T Y0 fpl) 7OV n-2 n’
(4-31)
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4.3.3 Response toc Independent Samples

We now investigate the response of this sampled data filter

to a sequence of independent complex samples.

here,
Y =
n

Letting

vV = E{Iz |2}
/ n

be the common variance of the input sequence, we have

Y

(a/2)

mn=

v, = E{IY |2
n

o«
2O

A
Y=
J

P

m
Z
n-m

(l-jcotw) exp (jmp)
+(1+jcoty) exp (~-jmop)d °

2
(a vz/4)

©
* %
m:

0 P

2

m '

We can immediately rewrite this as

, 2 2
4(sin w)VY/A Vz

<]

m=0

- exp (j2®)mgor&%xp(j2®)]m

2
- exp(—jZ@)mgorpexp(—ij)]m

+2 X
m=

2m

0 P

exp (j20)

@

exp (~j29)

(1-jcoty) exp (jmp)
+(1+jcoty) exp (-jmp)

2 . . . . 2
L.p m,exp(jw+jmw) ~-exp (-jo-jmo)

2 oy 2 .
1-p exp(j2p) 1l-p exp(-j20)

(1+p) [1-cos (29)]

4

Repeating Eq. (4-12)

(4-32)

(4-33)

(4-34)




If we now substitute Egs. (4-27) through (4-30) in this we

obtain

. (4-35)
Y 2-52 Z

In order to provide a unit variance output, we therefore set

7 S . (4-36)




SECTICN 5

NCNLINZEAR TRANSYER FUNCTION FOR TESTING COMPUTER ROUTINES

It is helipful to have available a routine for generating the
first and third order rtransfer functions Hl(f) and H3(fl,f2,f3)
that does not require the use of SIGNCAP. This section presents

an outline of a routine fcr providine such transfer functions.

Consider the circuit diagram shown in Fig. 5.1, consisting
of twe single tuned circuits separated by an amplifier that ex-
hibits a cubic distcrtion terxrm. If HA(f) 1s the transfer function
of the first filter then an input of the form
jZov,t

vo(t) = % ane , (5-1)

where the {vn} occur in pairs of positive and negative frequencies,
vields an input to the nonlinearity of the form
j2ﬁvnt
v, (&) = X a H_( e . 5-2
L8 = Ya H () (5-2)
The output of this ronlinearity is
j21v t
] n

v_{v: = . a H{v) e
2\ n n A( n

yr ¥ oa a a H (v )H (v ) H (v )
A .
nl n2 3 nl n2 n3 A nl A n2 n3

5
exp rj2ﬁt(vn + vn + Vo ). (5-3)
- 1 2 3 -
The second linear filter has the same transfer function as the

first so0 that the final output is
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jzﬂvnt
=¥
v3(t) z a H (vn) e

Yoo H
+ Br? a a a A(vn ) HA(Vn ) HA(Vn )

I R W T 1 2 3
H{v +v +v )
A nl n2 n3
exp| j2rt(v_ + v + v )1 (5-4)
pLJ n n n :

1 2 3 -

Since we can also write

_ j2mEL )
v, (£) jdf e Ho(£) a b(f-v )

j2mt(£.+ £ + £_)
. 1 2 3
+ jjjdfldfzdr3 e
H3(fl,f2,f3)
3.
T X % a b(f,-v,), (5-5)
n, n, HB.TR n, i'i
i=}1
we have the immediate correspondence
2,
Hl(f) = H (£) (5-6)
3
’ ' = + + : . -
Hy(£).£,,£,) = B, (£,+ £+ £) 1] H, (f,) (5-7)
i=1

The transfer function of the single-tuned filter is just

Ho(£) = (1 + jRl2nfC - 1/(2nf0)]) 7L, (5-8)
If we use the usuzal notation
) 1/2
£ = 1/2m0) Y2, (5-9)

and

Q = R/{27Ff L}, (5-10)

5-3

e i




15 S Lo utal

we can write the transfer function as
-1
= + f - 5~-11
HA(f) (1 JQ(f/to fo/f)] . ( )

For numerical calculations to test various program routines
it is necessary to assign numerical values to Q and fo' and also
to select the bandwidths and center frequencies of the signals to

be accommodated by the canonic model. To this end we take

f = 50 MHz
o]
or 7
f,=5x 10 (5-12a
and
Q = 102 (5-12b

to characterize the filter. We will then model a crossmodulation

situation where the desired carrier frequency v, is at the center

1
frequency of the filter:

v, = f =5x 107, (5=13a
1 o)

and where the interfering carrier is 1 MHz removed from the desired

carrier:
v, = 5.1 x lO7 (5-13b
vy =-5.1x10". (5-13c
We will take the nominal bandwidth of the signals to be 0.5 MHz:
W= 0.5 x 106. (5-134

These choices of reasonably realistic transfer functions and
numerical values will permit testing of the parameter-fitting
routines without the necessity of time consuming calculations with

linear circult analysls programs.

5-4




It is an additional convenience in testing program routines
to include the effect of computational or experimental error. This
can be accomplished by introducing deliberate round-off error in

the H3 or Hl outputs.

5-5
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SECTION 6
COMPUTER GENERATED WAVEFORMS

After having computed the model coefficients by the procedure
outlined in Section 3, the necessary parameters are available for
calculating the complex envelope of a third order interaction term.
The general form of this complex envelope can be found by substitu-
tion of the tapp: i delay line model into Eq. (2-7) to yield

3
ﬂ z (t-nb - Ko) (6-1)

t) Z B
aE( ) & (3)i=l b

where K is the optimum value of N. found by the procedures out-

I
lined in Section 3. For purposes of computation we will actually
evaluate aR(t) only at integer multiples of &, however. Let us

therefore introduce the notation

Y3(J)

It

aE(Jé + Kbd) {6-2)

and

z, (J) zp.(Jb). {6-3)

i

(It will be noted that these represent a duplication of earlier
use of upper case letters for spectra:; no confusion should result
in the balance of this material where only sampled data sequences

are to be considered.) We then have

LW

B |
i

Zi(J - Ni)' (&-4)

_"

Z
N

This sampled output Y3(J) is advanced by K samples with respect
to the linear output term and this discrepancy of alignment must

be compensated in the program by delaying ¥_ kv KR sairples before

3

output by |K| samples if K is negative.

6-1
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It will also be recalled that in Interference Cases #l and
#4 of Section 2.6, (Egs.(2-34) and (2-37)), the interference en-
velope ig actually modulating the adjacent carrier frequency sepa-
rated by W Hz from the linear output. Hence a transformation of
the samples {YB(J)} equivalent to this freguency translation must

nmust be affacted.

Finzlly, as discussed in Section 2.7, the amplitude of the
third crder product must be scaled relative to the linear component
to take into account both the relative amplitudes of interferers
and desired signal, and to incorporate the normalizing constant GO

of Secticn 3.

Let {¥{J)) be the samples {Y3(J)} corrected for the frequency

cffset:
y(a) = e STAWET & B(N) [ 2, (3-N,). (6-5a)
N i 27
where
(0 Lf interference product is at nominal carrier
}x=il if interference product is at adjacent carrier}
(6~5b)
and let
YL(J) = ZO(J+K) (6~6)

with {Z)(J)} thn samples from the desired signal. We can then
write the samples of the total output from the unit gain ampiifier

and idealized third order transfer function as

‘,{T(J) = CL&'L(J) + CTY (J) (6-7)

where C and O, are normalizing constants that inciude the c<on-
] .

Frant Go and che retative powers of the sigral and interferers

as wz)l as the overall gain of the receiver. For most computatious




where only relative distortion is important, only the ratio of
CT to CL need be specified, and the absolute scaling can be ac-
complished for computational convenience.

6.1 The Four Signal/Interference Combinations

In Section 2 we discussed the four cases appropriate for anal-
ysis. We now list these cases in the notation of this secticn, using

the additional notation

s(t) = signal waveform
Ul(t) = interfering waveforn . (6-8)
U2(t) = different interfering waveform

Table 6.1 Signal/Interference Combinations

Case 1 Case 2 Case 3 Case 4
zo(t) s(t) S(t) 5(t) S(t)
zl(t) Ul(t) Ul(t) S(t) Ul(t)
zz(t) Ul(t) Ul(t) Ul(u) Uz(t)
23(t) Ul*(t) Uz(t) Ul*(t) UZ*(t)
A 1 0 0 1

6.2 Equivalent IF Filter

It is nezessary to include the effect of the linear filter
H(f) of the equivalent receiver to determine the overall impact
of the interference on inband interference. As we discussed
carlier, it is adequate to approximate «his filter by any filter

whish restricts the bandwidth to W Hz; and a sampled data second-




Using the results of Section 4, we define

Y nwd/2 {6-9)

1/2
: 2 sin y
= | -
S L 2 1/2 3 ] . (6-10)
(l+sin'v) + sin Y

The filtered output sequence is then given by

1-S 282
YTF(J) = 2(1—S)YTF(J—1) - 1is TF(J--2) + 145 YT(J). (6~11)

We can also examine the filtered version of the third order produc

without the linear term by defining
YF(J) = YTF(J) when c, = 0. (6~12a
Correspondingly, we can define a linearly filtered signal by

YLF(J) = YTF(J) when CT = 0, {6~-12b

5.3 Signal and Interference Waveforms

The model, as it stands, will accept any choice of waveforms
for the signal and interferers of Table 6.1. 1t is a program re-
gquirement that it be possible to generate typical waveforms in-
ternally during the computations. We believe that suitable wave-
forms can be provided by the following repertoire:

a) Signal waveform:

i) cw
ii) Sinusoidal amplitude modulation
1ii) Sinusoidal frequency modulation

iv) Combined FM/AM with different modulating frequencies

b) First Inteferer:

Same }.0ssible characteristics as for signal

6-4
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c) Second Interferer:

Noiselike waveform with second-order Butterworth
frequency characteristics.

We therefore define the following sampled data sequences

S. (J) = [1 +u1 cos(2m f J6 + 68 )]
IG s sAM S

* expljD cos(2nf  J8)]; (6~13)
s SeuM

u(J) = {1 + Mo cos (27 fI Jb + 91)]

AM
+ explj Dy cos (27 £ Jé)]; (6-14)
FM
1-S 2C552
n(J) = 2(1-S)n(J—l)-1:511(J—2)-+ 1+s G(J), (6-15a)
where
1/2
[ (1-(1-25%) 1-8%) Y ?17Y .
Cs =1 3 2.1/2. ' (6-15b)
28~ (#9l1+(1-87) ]

{G(J)} are independent, zero mean complex Gaussian random
variables,with unit variance (6~15c)

and the initial conditions are
n{l) = n(2) = 0. (6-154)

(The normalizing constant C_ was derived in Section 3.)

5
In choosing the modulating frequencies and deviation ratios

f ’ f ’ f ’ f ’ D ’ D 4
AM FM AM IFM S I

it is necessary to insure that the resultant bandwidth of the acomnlex
envelopes does not exceed W. We note that a deviation ratio of ap-

proximately 2.405 permits generating an FM waveform having complete

6~5




carrier suppression; we therefore have chosen to restrict the maxi-

mum deviation ratio to 2.5:
s £ 2.5
{O Ps } (6-16)
< < 2.
0 DI 2.5
At this peak deviation ratio, the sideband power distribution is as

given in Table 6.2.

Table 6.2

Sideband Power for Deviation Ratio of 2.5

Component Fraction of Total Power
Carrier =~ 0
Sideband # + 1 0.25
Sideband # + 2 0.20
Sideband # + 3 0.03
Sideband # + 3 0.005

Restriction of the FM modulating frequency so that the fourth
sidebands are included in (-W/2,W/2) is adequate to meet the band-
width restriction. In the AM and combined AM/FM cases, the ampli-
tude modulation introduces an additional spreading of every com-
pcnent equal to the amplitude modulating frequency. We therefore
need to restrict the pairs of modulating frequencies by some re-
lation of the form

£, + 4f; < w2, (6-16a
AM FM

£, o+ 4f, S W/2. (6-16b
AM FM

6.3.1 Drift Frequency

Becaus: oi the choice of sample : *acing to be an integer sub-

multiple of the reciprocal bandwidth, and because of the placement

6-6
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of an interfering carrier exactly one bandwidth away from the
desired signal in Cases 1 and 4 of Table 6.1, it is possible for

a CW or AM interferer to yield an interference product in a fixed
phase relation relative to the desired signal. To avoid this pro-
gram artifact it is useful to introduce a "drift" frequency in

Eqg. (6-14). This dr ' .ft frequency should be chosen to be less than
a few percent of the bandwidth,and irrationally related to it.
These requirements can be met by taking the drift frequency to be
W/20m so that Eg.(6-14) can be replaced by

U@ = (1 + cos(2mf,  Jb + eI)]
AM

exp {j[o.lJéw + DI COS(ZWfI Jé)]}. (6-17)
FM

6.3.2 Interference Cases with Internal Routines

In Table 6.1 we listed the possible signal/interference com-
binations. With the internal routines available for generation of
"modulated" interference (the sequence U(J)) and noiselike inter-
ference (the sequence n(J)), it is possible to create two distinct
interference products for each case, depending on how we associate
Ul and U, with U and n. We can therefore expand the table to yield

2
the eight cases shown in Table 6.3.

6.4 Demodulated Outputs

It is of some help in evaluating the impact of nonlinear dis-
tortion to determine the distortion voltage after detection. It is
possible to provide this option in the computer routines for both
envelope detection and phase detection. It should be observed
that for both of these types of detection the "filtered" output
version (YTF(J)} or {YLF(J)} in Egs.(6~1la) and (6-12b) should be
used, since the unfiltered distoriion products have a bandwidth of

3W.




Table 6.3

Internally Generated Signal/Interference Combinations

Offset
Parameter

Case A Z () z, (J) Z,(J) 2,(3)
la 1 SIG(J) u(J) u(Ja) U*(J)
1b 1 5:6¢7) n(J) n(J) n*(J)
2a 0 ) u(J) u(J) 1 (J)
2b 0 S:c(9) n(J) n(J) u(J)
3a 0 §1g¢T) S1(9) U(J) U*(J)
3b 0 PR S:6(%) n(J) n*(J)
4a 1 SIG(J) u(J) n(J) n*(J)
4b 1 S1g(P) n(J) U (J) U*(J)

A simplified presentation of the distortion in the detector
outputs is possible if only the distortion is made available at
the output. In the case of the phase detector, this also simplifie
the computation in that it eliminates computational errors of 2w
in computing the arc tangent. We therefore define an envelope dis-

tortion

env(J) = |y (] - |YLF(J)| (6-18)

TF
and a phase distortion

ph(J) = argl¥ (D] - argly (D].

It will be noted thatl this laller expression can be written as

6-8




=1
ph m { 1og(YTF/YLF)}
Y -Y
-
= Im {log [l + —25———LEZ}
LF -~

which, if the distortion is small enough to be tolerated at all,

can be approximated by

oh ~ Im { Yop~ YLF}
P

= Im {YTF/zLF].

We will use this approximate formula as sufficiently precise for
the purpose of esti.lating phase distortion. (The phase distor-

tion can be equated to = radians when YLF is small.)

6.5 Necsssary Computer Routines

6.5.1 Generation of Signal, Interference and Noise

(a) The necessary input parameters are given in Table 6.4.

Table 6.4

Input Parameters for Waveform Generation

Description Textual Notation

Bandwidth W
Tap spacing )

AM modulation index,signal us
AM modulation index, interferer My
FM deviation ratio,signal DS
FM deviation Ratio, interferer DI
AM modulating frequency,signal fSAM
AM modulating frequency, interferer fIAM
AM phase, signal QS
AM phase, interferer GI
FM modulating frequency,signal fSFM
FM modulating frequency, interferer fIFM

6-9




{b) Restrictions on parameters
wb < 1/4,
< <
0 us 1,
< = 1;
0 “I
0 s Ds" 2.5,
< <
0 DI 2.5
(= \
fs 0
AM
Hg =0 [0S £, sws
if > 6 then ) M
D
S
. y
f = 0 h
( SFM
Dy = 0 <OSfS < w/2
if then AM
o> 0
kﬂs = O J
s 0 < fS < W/10
AM
> < < w
If DS then J 0= fS W/10
FM
>
us 0 C £ f_ <2
- S
' =
£ =0
IAM
M_ =0 J 0 < f_ s w8
If ( I Bthen IFM
D > o
L1 7 %) a_ =9 j
W I




T

i ot SN

— “
: (oo
é If {DI B O} then é 0 < £ swW?2 ?
: M >0 AM
% \GI =0 J

-
(05 £ < W10
AM
D_ > 0 JOSf < W/10
If{l } then S )
Hy 7 0 0 <6 < on
\ 1 4

(¢) Recommended Values of Parameters for Tests

(c-1) AM Signal and AM Interferer:
= 0.
Mg 3
Hp =1
fS = 0.45 W,
AM
fI = 0.5 W,
AM
f.=Ff =D=D=Ff =f_ = 0.
S I S I SFM IFM
(c-2) FM Signal and FM Interferer
M =g =0 = a = f = f = 0
S I S I SAM IAM
DS = DI— 2.405
£, = 0.11
Pyl
£f. = 0.12
IFM




(d) signal generation: for some large number of pogitive
values of J, set
S_(J) = rl + M (27 £ J&6 + A )j
1G = L I»SCOS Z S S _i
AM
- exprj D cos(2m F J6)1
i S SFM J

(e) Interferer generation: for some large number of positive

values of J, szt

U(J)} = [1 + U_cos(2r f Jb + 8 )1
I L 1’

. exp{jro.laéw + D_cos(2r f Jé))}.
I "
M
(f) Noise generation

Calculate

1
sinzy 10/2

2
S =r )z
L'(l+s:‘.n4\f)l")' + sinly"

- [ (157) 21

= j X —_—
5 Las®(1rs)[14(1-5%) /2
Generate a sequence of independent, identically distributed, zero-
mean, unit variance, complex Gaussian variables {c(m 1.

Set
n{l) = n(2; = 0.

For a large number of positive integers J, cet

n(J) = 2(1-8)n(J-1) - —i—;—g n(J-2) + "’uié' G(J).

6-12
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6.5.2 Generation of Linear and Nonlinear Interference Outputs

a) Casc selection

The input data sequences must ke matched to the appropriate
sequences for computation. There are four main cases which can be
described by the titles:

Case a) Splatter of adjacent channel
Case b) Two-frequency intermodulation
Case c) Cross-modulation

Case d) Cross-modulation splatter of adjacent channel.

In addition, each case is subdivided into two cases according to
the assignment of interferer and noise waveforms to the internal
data sequences. The internal data sequences are labelled 2 _.,%,..,2

0°"1°"2
and z_and there is an additional labelling variable A which describes

whether the interference spectrum is centered on the desired channel

or the adjacent channel. Table 6.3 lists the possible cases.

b) Calculate tle third-order interference product,

N N ht
. N N
21 N,)2=] Nz=p BN NN

Y (J) = exp{j2rmhwdd) "
N 3

)
1
zl(Jnmln Zz(J”Nz) Z3(J~N3),

and the livnear term
YL(J) z 20(J+x‘n
The required imput “nformation consists of

(1) the four data sequences Zo..,.,Z; vrom (a) preceding,

(2) the nunber of taps/coordinate N from the routine described
in Seckion 3
{3) the aoefficients 8(N,,N,,H,)) from Zection 3
4 e ;

{4} the group Gelay K of the nonlinearx prodact, from
Secticn 3.
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Note that the extreme range of K values that can occur is

-129 < K < 251

and consequently the allowable range of arguments of Y and Y, must
14

be adjusted accordingly.
¢) Calculate Y and S as in Step (f) of 6.5.1

d) Calculate, as needed for output requirements,

(da-1) The total output
YT(J) = YL(J) + CTY(J).

Required input parameter is C

-
(d-2) The filtered linear output
2
Y (3) = 2(1-8)Y. _(3-1} - =2y (3-2) + 2.y (J) for g2
LF LF 1+S "LF 1+S 'L or o

with initial values
YLF(JO—Z) = YLF(JO-l) = 0,

with Jc chosen sufficient.y large so that YL(JO) is defined.
(d-3) The filtered total output

1-5 282
- 175 YTF(J—2) + 118 YT(J) for

I}

Yo (9) = 2(1-8) ¥, (3-1)

J 2 J
o
with initial values
Y (3. -2) = ¥, (3 -1) = 0,

vieth Jo chosen sufficlently large so that YT(JO) is de .ined.

H=14
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(e) Calculate, as needed for output requirements the distoyr~

tion terms:

ENV(J) = IYTF(J)| - lYLF(J)|

4
E
E

Im{y, /¥ 3} if ly_| s 2]y !
PH(J) = TF’ "LF TF LE
m if I{TFI > ZIYLFI

|
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SECTION 7

TYPICAL OUTPUTS

We have written computer programs that incorporate all
the features described in Sections 3, 5 and 6. Figures 7.1 to

7. 11 show the results of computer runs using these programs.

The particular nonlinear calenlation invelved cross-
modulation of a desirad signal by a nearby madulated carriex.

We used the model circuit of Section 5 to create transfer func-
tions Hl and H3. Figures 7.1i-a and 7.1-k show the form of the
computer cutput for these functions., The normalized nonlinear
transfer function is then computed from these values and ic shown
in Pigures 7.2-a and 7.2-b. . The normalizer Gn is also included
in the output data for later use. .

From the values of the normalized transfer function the
optimum model coefficients are determined. We show in Figs.
7.3-a to 7.4-- part of the print onut asgociated -vitn the inter-
mediate steps in thig, where the distortion vs greoup delay and
normalized tap spacing are made available zfter each computation
of delay line cocfficients. The optimum normalized tap spaciny
for this case proves to be the initial value of D = 1,74, and
the associated group delay NI or X vs ~1. The computer auto-
matically selects this case for data lrmnsfer to the next program
segment, along with the correct tap coefficients. This nutput

in printed form is shown in Fig. 7.4.

The gereraticn of sampled duta sequences corresponding ©o
two amplitude modulated signais and one noise waveform is shown

in Fig. 7.5.




The model parameters, case selection and Jibrary of three

input waveforms are then made available to tiie program segment
thot calculates nonlinear outputs. Figure 7.6 shows the verifica
tion of the input selection and model coefficients, while Fig,

7.7 shows the selection of the model inputs according to

= 1.5
ZO(J) SIG\J)

Zl(J) = S__ (J)

Ic
Ty - v -
22 (u, J(d)
g J) = U*(T1).
2-3( ) u* (.7)

Th2 nex:t program segment celculaces the third ordex inter-
ference terms, and replicates ZU(J\ as the linear output; these
are shown in Fig. 7.8. The ccwbined output, with the weighting

of the incerference set at Go' is shown in Fig, 7.%, This in-

<ludcs the proper arcup dela, NI.

The lineaxr and combired ouktputs are then filteved in a
sampled data sccond order Butterworth filter. These filtered
outputs are shown in Fig. 7.20. As z nnte of caution, the first
few outputes include the transient response o0f the filkex, whizh
has a resporse time roayhly ecgual ¢ 1/D samples. TYhese first

fev samples should not be used in subseguent data reduvuction.
Tre envelope and phase distorticn are then calculated

as inaications . the distorticn to be expected in amplitude or

phase demodulstcrs. These are shown in Fig. 7.11.

~
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] S = 0.5031L143E 09
3 . (= D-3367555E 02
3 Cl = G.G937T7T13E CJ
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NJMBER OF INPUT SEQUENCES ON TAPE = :
UM = I JIAL =~ 723 -

Fig. 7.6 Input Data fcr Nonlinear Response (alculation
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THIRD ORVER INTERFERENCE PRODUCT - Y QUTPUT

SEQ

—nu

~-0,2755828 00

~Jet662829E 00

~0.334783€-91
Us000403E-01

=0, L8 [6CiE 00

06657727E-01

Ue4 L7130 CU
JedlodybE TJ

Jed%DT764c 0OV
Je1306553E J1

——

Je327130c 00
-0e8325322E 09

Je114013E Cl
~0+4458UdGE 00

= Je9TIDGTE SV
-Je297369& 00

-J)e I30)39E U1
=Ja 177536 0D

~0e384395E~ )1
0e620704E~J1

-JelBoso it €U
De 7133756E~I1

Ve 334240E 0
Je63018VE 0

“0e 50L3YVE V0
Jelles)sE 0L

D.32615TE I7
-Je579662E 990

. IDT203E 01
~0e382213E 02

NO o 1
1 4
2 5
3 6
4 1
5 8
6 9
7 10
8 11
9 12

10 13
11 14
12 15
13 i9
14 17
15 13
16 19
17 20

~Ja 340 1401 OJ
-0, 2%5J86E 00

~Je 135217 V1
-JeB77TJI3E 0L

LINZAR JUTPUT - YL

SZ3 NO. I I+K YL{I)
1 2 1 0,1223122€8 JL Q.0
2 3 7T 06 LU8930T D100
3 4 3 0eB84329%9J8BE 4C 0.0
A 5 G UL ITE5332ZE DY 00
5 ) 5 072233585 20 0aU
3 ¥ S Je b0 353044t JuU Ve U
= 7 8 7 Jel13537JJ32E 91 Q&0
3] 9 6 LY ZEZTIGEOITT0LGO
9 10 9 0612790752 01 0.0
10 T T3 V. IZI2122E 91 0.0
11 12 1l De19235382 01 0.0
12 13 12 J.3230655c U0 Ue0
1314 13 D,7)d2896E J0 040
TS T T 0. 13259752 0370600
15 16 15 U.B351938E 03 040
16 171 16  0,10927935 0l _ 0.0
17 13 17 2.125579i2 )1 0.0
143 19 18 J.1296307=2 01 060
19 20 19 Je.1194835¢ 01 0.0

rig. 7.8 Interferénce and
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Linear Outputs
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SEQ ND. JO YLF(JO)

TFILTERED LINEAR JUTPUT = VLR~~~ 7~ 77 77777

1 4 J.2840004E 0) V.0
2 5 0,5229423E (0 0.0
3 6 "D0.66925158 £C70.0 Tt T
4 7 0.78314176 JUC 0.0
5 8 069174149 ¢C 0.0
6 9 0,1071399E €1 0.0
7 10 O.Ll198941E 91 0.C
8 11 VelZ45598E C1 0.0
9 12 0.1186191E 01 0.0 T
10 13 0.1V44460E ClL  Jed
11 14 0.8843915E (C 0.0
12 15 0.78C38%0E CO 0.C
13 16 J,7813029E CO 0.0
14 17 0.v864856E 00 0.0
157 TI8 J0.1045037E 01 0.0 7 -
16 19 J.1182073E Cl 9.9
17 20 041252067 C1 0.0

FILTERED TITAL OUTPUT - YFT

TSEQ NO. T J0 0 YFT(JO)

4 0,2836743E 00 -0.1623845F-03
5 0052¢5443E CO -0.212519CE-03
6 Ue0690114E 0 -0.15252376-33
7 0.783598% CO 0.701C24CE-05
8

9 0.1u7289>E 01 0.6325966€E-23
10 0.119%6228 Cl 0.6332716E-03
Ll 0.1244888E (1 0.2245086E-03

9 12 J.1i84920E CL =3.1€55914F-03
10 13 U.1043346E Ul -0.3175866%-03
11 14 0.8857478E 0U =0,24722335-03
12 15 2.,7843688 0J —0.3S163885-04
13 16 0.7821956E €O 0.28485375-03
14 17 J.687B226E 00 0.57655625-03
15 18 9.1046516E Ol 0.5265891E-93
16 19 U.1102L1%€ 0l 0.5447C165-04

L~ OV N

Fig. 7.10 Filtered Outputs
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0a 9185294 00 0.3C748765<03 "

17 20 V.125C878E Cl -0.3161149E=03




DISTORYION TERMS

AP Sy I N MY bR NI LD TAGANE < ST SR ol

: SEQ NO.  JO EriviJ0) PH{J0)

: .1 4 —0.9320575E-C3 ~0,57176365-03
g 2 5 =0e3580598E~03 =~J,4063908E-73
: 3 6 —0.s24014711E-C3 -0.227901SE-03
{ 4 7 0.2508364E-C3 0.8551431E-05
¢ 5 8 V.1114488BE-C2 0.3351672€6-93
' 6 9 0.1536369E-C2 0.55C4622E-03
! ) T _10 U.68C9235E-03__ 0s5281924E~03

8 11 -0./0694794E-C3 0. 18024 74E-03
! 9 12 -0. 27C294E-C2 ~0.15646CCE-03

; 10 13 -0..116614E-02 ~0.304C65GE-13
. 11 14 -J).08437302E-33 -0.2755404E~93
‘ 12 15 0.51719044E-C4 -0.50223775-04

13 _ 16 __0e489¢6392E-C3__ 0,3657076E-03

14 17 0.1337171E-C2° J.65C384CE-03
15 18 0.,06790161E~03 0.5C39885£-03
; 16 19 -0.55789% .« -03 0.17587853F-04
17 20 -0.11892326-92 ~0,2565726F-93

Fig. 7.11 Distortion Terms
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of

Rome Awr Development Center

RADC is the principal AFSC organization charged with
planning and executing the USAF exploratory and advanced
development programs for electromagnetic intelligence
techniques, reliaspbility and compatibility teshniques for
electronic systwms, 2lectremagretic transmission and
reception, ground basod surveillance. ground
communications, informaticon displays and information
r.ocessing. This Canter provides technicel or
management assistance in support of studies, analyses,
development planning sctivitics, acquisiticn, test,
evalustion, modificacion, and operatisn of aercspacs
systems and rslaled egulpnent.
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