AD/A-002 322

CRITERIA FOR EVALUATING THE PERFORMANCE OF COMPILERS

SofFTECH, INCORPORATED

PREPARED FOR
RoMe A1rR DeveLoPMENT CENTER

OcToBer 1974

DISTRIBUTED 8Y:

National Technical Inforination Service
U. S. DEPARTMENT OF COMMERCE

i =]

o NI NI M %, I Sl

This report has been reviewed by the Office of Information, RADC, and approved

for release to the National Technical Information Service (NTIE)

This report has been reviewed and is spproved:

APPROVED: gﬂjﬁ 4 . rlﬂ/}j/fl{

DOUGLAS A. WHITE
Project Engineer
Software Sciences Szction

APPROVED: ,W D, /"{;é—:-“ B

ROBERT D. KRUTZ, Col USAF
Chief, Information Sciences Division

MESSION for {
L White
boe Bl Secties (] ” a/" i
ORANNDUNCES o A
SUSTIFIGATION o FOR THE COMMANDER: mefﬁ//f iy
JAMES G. McGINNIS, Lt Col,USAF
]

................................... D ’- f P
DISTRIBHTION /AVAILASILITY COSES eputy Chief, Plans Office

Bt ATKIL and/er SPEGIAL

Do not return this copy. Retain or destroy.

e e et : At A

N Vmlmate s

o ed U L AR AAESNL

W

Fheaty
.,5_‘{

RN I T Y AL T B ST TR T ORI R 3 TR IW Ty
0

UNCLASSIFIED
SECURITY CLASSIFICLTION OF THIS PAGE (When Dete Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATIOM PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
V4

RADC-TR~74~259 AD4- 0P 2,32 2)
4. TITLE (and Subtitle) 5. TYPE oF REPORT/a PERIOD COVERED
Criterie for Evaluating the Performance of Con- Final Report
pilers June 73 - June 74

8. PERFORMING ORG. REPORT NUMBER

N/A
7. AUTHOR(s) 8. CONTRACT OR SRANT NUMBER(s)
Burton H. Blcom Clare G. Feldman F30602-73-C--0321
Mac H. Clark Robert K. Coe

9. PERFORMING ORGANIZATION N/ZME AND ADDRESS
SofTech, Inc.

10. PROGRAM E .EMENT, PROJECT. TASK
AREA & WOIK UNIT NUMBERS

460 Totten Pond Road 62702F

Waltham MA 02154 Job Ordsr No. 55811206

11 CONTROLLING OFFICE NAME AM[D ADORESS 12. REPORT JATE

Ron: Air Development Center (ISIS) October 1974

Griffiss AFB, NY 13441 13. NUMBE (OF PA3ES
348

14, MONITORING AGENCY NAME & ADORESS(I! dilfugent from Co .trolling Office) 15 SECUY UTY CLASS. (of this report)
Uncls ssified

Same

1Ca, * ECLASSIFICA TON/ DOWNGRADING
JCHEDULE
N//

16 OISTRIBUTION STATEMENT (of thio Repert)

Approved for Public Releasz. Distribution Unlinited.

'7 DOISTRIBUTION STATEMENT (of the abstract entered In Blocx 20, 1f 1life.¢ &t {rom Report)
Repraduced by .

Same NATIONAL TECHN’.UAL —

INFORMATION SE’(VICE ;J

U S Department of { mmerce
Springfield VA 7151

PRFH

DEC 23 19

1%, SUPPLEMENTARY NOTES

RADC Project Englneer: Douglas A. White (ISIS) HIHNNGHESHY
19. XEY WORDS (Continue on reverse side if niconsary end tde itily by blcck number)

Compiier Performance Compiler GJoson Mix JOVIAL J3B
Compiler Compurison User Profiie

Compiler Evaluation Compiler “rofile

Compiler Gibson Mix Compiler Demand Profile WS SUB]ECT 10 (HANGE

User Prcfile AED

20 ABSTRACT (Continue on reverse side i necaun_l-y- end identify by block number)

The main purpose of this study was to develop criteria by which it will be
possible o qualitatively measuze and evaluate the performance of compilers,
posaibly operating on different computers, and possibly having different
features. To satisfy this purpuse, three technical questions were studied: (1)
How can two compilers with the same features and operating in the same environ-
ment be compared? (2) If two compilers with the same ieatures operate in dif-
ferent environments, how can their measured differences in performance be attri-

buted to the environmental differences vg, the compiler differences? (3) How

—

DD ,55"M 1473 €0imion OF 1 N0V 6315 OBSOLETE UNCLASSIFIED

JANTI

SLCURIZY CLASSIFICATION OF THIS PAGE (When Data Entored)

—

C

=~

.- can - e [P - A e o —

o T ——— ot o St~ e it A, R e

C o —————

UNCLASSZFIED

SECURITY CLASSIFICATION OF THIS FAGE(When Data Entered)

20.

should a compiler buyer deal with the problem of evaluating compilers with
different special features? These three questions were studied from a point of
view that the answers should help provide a bazis for conductinz dollar cost/
benefit analysis of compilers. In addition, a fourth quedtion was studied to
satisfy a specific secondary purpose of the study: Can anxlvsie of a cempiler's
architecture and algorithms provide a basis for making vali¢ judgments about the
perfermance that should be expected from a compiler?

The general conclusion from studying the fourth question was that anaiye's
of the internal organization of a compiler was not useful ja providing a hasic
for compiler evaluation. The study of the first question ectablished critoria
and methods for aasigning four measures (time and space for both compiler and
object code) to a compiler which quantitatively define its performance with
respect to a "typical” user program. The study of the second question estab:
lished criteria for defining a "compiler Gibson mix", and cstablished methods
for using this "mix" to "equalize" erviromments. The study of the third ques-
tion established contractual methods for rroviding a cost cemponent of cost/
benefit analysis of special features; a)so, several specific areas for future
study were identified which would provide needed data for establishing a basis
for the benefit side of such analyses.

7I= UNCLASSIFIED

.'.Eclum‘r‘(CLASSIFICATION OF THIS #AGE(When Data Entared)

.1
*

S MY s SO N,

B it W E—

Technical Evaluation

1. This effort, Compiler Performance Criteria and
Measurement Study, was undertaken to investigate methods of
determining and evaluating the performance of compilers,
that will be more objective, informative and reliable than
methods currertly in use,

2. At present, compiler perfommance measurements are ¢aken
in terms of cards per minute and machine instructions per
source statement without any scientific basis for the
ocontents of the card, the size, type or complexity of the
statement, or' the planned environment of the -ompiler.

3. This effort defines the methodology by which compiler:
performance may be objectively measured and conmpared tc
other compilers, including factors such as application and
envirorment.

4, This effort establishes the criteria necessary for the
evaluation of compilers that will insure that the compiler
selected for & particular use is the nost efficient compiler
that will meet the requirements. The methods by which test
programs are developed and the measured results analyzed are
specified. Quide lines for data to be oollected, and methods
for ocollecting the data are presented for the compiler and
user profiles involved. Methods developed in this effort
will be valuable 1ir future procurements of compilers in
irsuring cost effectiveness.

- -

>/ s /,.‘l /-'—/{, ’/-

Douglas White
Project Engineer
Software Sciences Section

e o Pt AV

SUMMARY

The main purpose of this study was to \levelop criteria by which
it will tbe possible to qualitatively measure and evaluate the performance
of compilers, possibly operating on different computers, and possibly
having different features, To satisfy this purpose, three technical
questions were studied: (1) How can two compilers with the same features
and operating in the same envirorment be compared ? (2) If two compilers
with the same features operate in different environments, how can their
measured duierences in performance be attributed tc the environmental
diiferences vs. the compiler differences ? (3) How should a compiler
buyer deal with the problem of evaluating compilers with different special
features ? These three questions were studied from a point of view that
the answers should heip pruvide a basis for conducting dollar cost/benefit

aﬁilygis of compilers,, In addition, a fourth question was studied to

i
satisfy a~specific secondary purpose of the study: Can analysis of a
compiler's architecture and algorithms provide a basis for making valid
judgements about the performance that should be expected from a

compiler ?

In studying the fourth question, fourteen functional elements of
a compiler were identified and described. A one-pass architecture
involving eight elements and a thirteen phase multi-pass architectursz
involving thirteen elements were developed to illustrate the extremes
of architectural choice in compiler design. Four elements wzre studied
in detail: table look-up, parsing, optimization, and code generation,
The general conclusion reached from studying the fourth question was that
analysis of acompiler’s internal organization was not useful in providing

a basis for compiler evaluaticn,

The first question was studied in terms of establishing criteria
for defining elemernts of a User Profile in terms of specific categories
of the language on which a compiler operates. A User Profile is specified
quantitatively as the fractions of a ''typical'' user program that are in
the form of specific languaje elements. Thne same language elements can

algo be used to eitablish a Compiler Performance Profile; which describes

o

et e B A B3 s LS ot odede 81 A

© e . =

SRR AIEITE VR

guantitately how a compiler performs with respect to each language
clement, This profile consists of (generally) four measures for each
language element: time and space for both compiler and object code,
Criteria were established for writing test programs for each language
elermnent to be used in making these four measurements. A method was
developed for combining the User Proiile and Compiler Performance
Profile to produce a Compiler Evaluation Profile. This profile consists
of the four quantitative measurements of a compiler's performance with

respect to a 'typical" user program,

The study of the second question established criteria for defining
a "compiler Gibson mix'. This ""mix'" defines how well a computer/
operating system supports the activity of compiling. The basis for
defining this "mix'' is the establishing of a ''typical' Compiler Demand
Profile. This profile is similar to a User P1ofile, but describes a
compiler as a user of the language in which the compiler is written,
Two such profiles were established during the study: cne for an AED
compiler and one for a J3B compiler, These two profiles turnaed out to
be very similar and provided the basis of an example of a ''compiler
Gibson mix' which was developed during the study. Methods were also
established for using the ''mix' to "equalize' environments 4s an answer

to the second question,

The third question was studied only to a limited extent, A
contractura® basis for the cost side of cost/benefit analysis of special
features vz developed. Also, several specific areas were identified
for frtuie study which would provide data needed for establishing a basis

for the benefit side of such analysis.

A —— S

CHAPTER
SUMMARY

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES

1 INTRODUCTION
1. Background
2. Purpose of the Study
3. Technical Questions Studies
4, Organization of th» Final Report
2 OVERVIEW OF TECHNICAL QUESTIONS
1. Intrcduction

Technical Concepts

Overview of the Architecture /Algorithms
Question

4. Overview of the Same Environment
Question
5. Overview of the Environment Equalizing
Question
. Overview of the Special Features Question
. Factors that Influence Compiler Performancs
3 ARCHITECTURAL CHOICES IN COMPILER
DESIGN
1. Overview
2. Functional Elements of Compilers
3. An Architecture for a One-Pass Compiler
4. An Architecture for a Multi-Pass Compiler
4 TABLE LOOK-UP ALGORITHMS
1. Overview
2. Categories of Table Look-up Algorithms
3. Compiling Applications
4. Language and Program Structure
5. Summary and Conclusions

PAGE

20
22

23
23

24
25

30

30
34
42
46

54
54
54
61
63
65

CHAPTER

5

TABLE OF CONTENTS (Cont)

PARSING ALGORITHMS

Overview
Categories of Parsing Techniques
Parser Selection Factors

Advantages and Disadvantages of Various
Parsing Techniques

OPTIMIZATION ALGORITHMS

]o

[oATNNN® L B ~ N VE R V)
*

Overview

Categories of Optimization Methods
Machine Independent Cptimizations
Machine Dependent Optimizations
Optimization Activities

Matrices of Optimizations vs. Required
Analysis

CODE GENERATION ALGORITHMS

1. Overview

2. Paradigm for a Ccae Generator Arclitecture

3. Directly Programmed Code Generators

4, Macro Organized Code Generators

5. Table Driven Codz Generators

HOW TO COMPARE COMPILERS IN THE SAME

ENVIRONMENT

1. Introduction

2, Steps of the Study of the Same Environment
Question

3. Desireable Related Work

4, Using the Results to Calculate Dollar Valuations
of Compilers in the Same Environment

5. A List of Lanugage Elements to be Used for

Generating a User Profile

PAGE
67
67
57
09
70

72
72
73
73
81
84
89

92
92
93
95
96
96

98

98
99

101
103

106

e ety e S om——— o Rt

CHAPTER
, 9
|
10
11
12
y

TABLE OF CONTENTS (Cont)

HOW TO WRITE TEST PROGRAMS FOK
GENERATING COMPILER PERFORMANCE

PROFILES

1, Overview

2. Lexical Elements

3. Declarative Elements

4, Scope Definition Elements

5. Program Control Elements

6. Data Manipulation and Computaticnal

Elements

HOW TO EVALUATE ENVIRONMENTAL
DIFFERENCES

1.

3.
40

How the Environment Equalizing Question
was Studied

How to Generate a ""Compiler Gibson Mix"
How to Equalize Environments

Timing Data and '"Equalizing'' Environments

STATIC COMPILER DEMAND PROFILE DATA

1.
2.

DYNAMIC COMPILER DEMAND PROFILE DATA

1.
Z.

Overview

Tables of Static Usage of AED Language
Forms in the AED and J3B Compilers

Bar Charts of Histograms of Static Usage
Patterns in the AED and J3B Compilers

Bar Charts of Frequency Histograms cf
Relativz Static Usage of AED Language
Forms

Overview

Tables of Dynamic Usage of AED Language
Forms in the AED and J3B Compilers

Bar Charts of Histograms of Dynamic Usage
Patterns in the AED and J3B Compiiers

Bar Charts of Frequency Histograms of
Relative Dynamic Usage of AED Language
Forms

PAGE

122

122
126
136
143
151
164

180
180

182
192
196

198
198
200

214

219

240
240
241

250

259

e i S e et b — e s C

TABLE OF CONTENTS (Cont}

CHAPTI.R PAGF,
13 HOW TO EVALUATE SPECIAL FEATURES 283
1, Introduction 283
2. Ease of Use Features 283
i, Ease of Maintenance Features 285
14 CONCLUSIONS 286
1. Introduction 286
2. Conclusions from the Study as a Whole 286
3, Conclusions from Studying the Archiecture/ 286
Algorithms Question
4, Conclusions irom Studying the Same 288
Environment Question
5. Conclusions from the Study of the 289
Environmen. Equalizing Question
6. Conclusions from Studying the Special 290
Features Question
15 RECOMMENDA TIONS 291
1. General Reco:nmendations 291
2. Criteria Developed in the Study 292
3, How the Criteria Can Be Used 293
4, Suggested Topics for Future Study 296
LIST OF REFERENCES 297
APPENDIX 1 INSTRUMENTS USED TO GENERATE 302
COMPILER DEMAND PROFILES
APPENDIX 2 TEST PROGRAMS USED TO GENERATE 307
COMPILER DEMAND PROFILES
1. Description of Tests 307

2. Programs and Data Files for J3B Version of Tests 309
3. Programs and Data Files for AED Version of Teats 324

APPENDIX 3 SAMPLE OF RAW STATIC AND DYNAMIC DATA 339
1. Meaning of Raw Data Matrix Elements 339
Zz. Examples of Raw Data Matrix Output 343
3. Dynamic Raw Data 346

6

FIGURE

[\

o N O W

10

11

12

13

14

15
16

17

18

LIST O ILLUSTRATIONS

Architectural I'low Chart for One-Pass Compiier:

Typical Node Relationships for a Tree
Structured Search Table

A Typical Binary Tree

Illustrative Master Spelling Tablc - Stage 1
Illuctrative Block Attributes Table - Stage 1
Illustrative Master Snelling Table - Stage 2
Illustrative Block Attributes Table - Stage 2

Matrix of Preparatory and Optimization Work
Required for Machine Independent Optimizations

Matrix of Preparatory a. d Optimization Werk
Required for Machine Dependent Optimizations

Histogram of Static Occurrences of P~ocednre
and Function Calls Using n Arguments

Histogram of Static Occurrenc es of .Assignment
Statements with n Right idand Side Operators

Histogram of Static Occurrences of Boolean
Expressions with n Operators

Histogram of Static Occurrences of FOR
Loops Nested n Deep

Histogram of Static Occurrencez of Executable
Statements Nested n Deep in FOR L~ops

7, of Stati~ Use of Statement Types

% of Static Use cf Statement Types Following
'"THEN'

% of Static Use of Statement Typ: 3 Following
'ELSE’

% of Static Use of Statement Types ’ -llowing
lDO|

% of Static Use of Arithmetic Operaiors
% of Static Use of Arithmetic Forms

% of Static Use of Boolean Operators

—

% of Static Use of Baolean

(

% of Static Use of Arithmetic Assignments
with n R. H.S. Operators

91

215

217

218

220

221

222
223

228
230
232
233
235

i .

FIGURE
24

25
26
27
28
29
30

31

34
35

36
37
38
39
40

41

42

[
w

LIST OF ILLUSTRATIONS (Cont)

% of Static Use of Boolean Expressions with
n Operators

% of Static Procedure or Function Calls with
n Arguments

% of Static Occurrences of Executable Statements
Nested n Deep in FOR Loops

Histogram of Dynamic Occurrences of Procedure
and Function Calls Using n Arguments

Histogram of Dynamic Occurrences of Assignment
Statements with n Right Hand Side Operators

Histogram of Dynamic Occurrences of Boolean
Expressions with n Operators

Histogram of Dynamic Occurrences of FOR
Loops Nested n Deep

Histogram of Dynamic Occurrences of Executable
Siatements Nested n Deep in FOR Loops

% of Dynamic Use of Statement Types

% of Dynamic Use nf Statement Types Following
'"THEN!

% of Dynamic Use of Statement Types Following
‘ELSE!

% of Dynamic Use of Statement Types Following
IDOI

% of Dynamic Use of Arithmetic Operators
% of Dynamic Use of Arithmetic Forms

% of Dynamic Use of Boolean Operators

¥ of Dynamic Use of Boolean Forms

% of Dynamic Use of Arithmetic Assignments
vvith n R, H.S. Operators

% of Dynamic Use &” Boolean Expressions with
n Operators . '

% of Dynamic Procedure and Function Calls with
n Arguments

% of Dynamic Occur-ences of Executable Statements

Nested n Deep in FOR Loops

PAGE
236

238
239
252
253
255
257
258

260
262

264

266

268
270
272
274
276

278
280

282

-}

v e . e e i

TABLE

10
i1

12

13

14

15

16
17
18

LIST OF TABLES

Weights for Assignment Statements in "Compiler
Gibson Mix"

Weights for Procedure Calls in a "Compiler
(sibson Mix"

Weights for Boolean Expression in IF
Statements in a '""Compiler Gibson Mix"

Summary of Static Usage of Statement Types,
Operators, and Labels

Summary of Static Usage of Assignment
Statement Forms

Summary of Static Usage of Statement Types
Used with Conditionals an« Loops

Summary of Static Usage of FOR Statement
Sub-Types

Summary of Static Usage of Integer Forms in
FOR Statements

Summary of Static Usage of Arithmetic Forms
Summary of Static Usage of Boolean Forms

Summary of Dynamic Usage of Statement Types,
Operators, and Labels

Summary of Dynamic Usage of Assignment
Statement Forms

Summary of Dynamic Usage of Statement Types
Used with Conditionals and Loops

Summary cf Dynamic Usage of FOR Statement
Sub-Types

Surnmary of Dynamic Usage of Integer Forms
in FOR Statements

Summary ¢f Dynamic Usage of Arithmetic Forms
Surnmary ¢f Dynamic Usage of Boolean forms

Format of Raw Data Output from Instrumented
Compiler

PAGE
186

187
191
201
203
204
206
207

209
212
242

244
245
246
248
249

251
340

AR e e e e e e e L R e R L R e e P o St

1;‘1
L3

CHAPTER 1
INTRODUCTION

1. Background

Compiler performance is one of the most critical aspects in
today's software development process, and the admitted lack of scientifically '
based, useful evaluation criteria poses frustrating problems for buyers |
and sellers alike. For the Air Force, the value of having standard and
fair techniques for evaluating conipilers is clear:

e It will help to ingure selecticn of compil_vrs fo Air :
Force use that really maet Air Force needs. '

e It will help to insure that when buying a new compiler,
the Air Force will get value for its money, by
providing solid acceptance tect criteria,

e A —

s It will help to prevent and resolve disagreernents about
the performance quality of a particular compiier by
highlighting the reasons for disagreement.

There are countless aopportunities for consciously and wncon-~
sciously biasing an evaluation of compiler performance. It is no wonder
that different evaluators reach widely varying conclusions., What
constitutes a fair measurement of a compiler's performance? What

are the sources of bias, and how can they be eliminated ?

- ———— r———

These questions provide the point of departure for the study
described in this report. At present, compiler efficiency measurements
are commonly expressed in terms of cards per minute and machine

i instructions per source statement. These expressions at best are
inaccurate. When confronted with a measurement expressed in cards
per minute one must determine what is included in this minute, what
clock is used, if I/O and operating system time is included, how many

statements are on a card, and the compiexity of each statement.

Similarly, when a measurement is expressed in terms of machine

(R R Y

instructions produced per source sta‘ement, it is necessary to ask how >

r

complex the statemernt was, what machine instructions were necessary

D ammeare

10

z
£
5
-
E
5
:
3
3
3

[e)

T T mE et

257

G R B S S X

|

-

-

-

-

QN KA G A BAPR RIS PRI RIS SNSRI R IR O ANRGIA T e R e R RS O O TR A B T O FARRE TR AR o H

to perform the function of the source statement, and how many times each
instruction is executed. The inaccuracies caused by expressing per-
formance in these terms has made possible widely differing claims of
performance, or the lack of performance, by different individuals for the
same compiler., Using the criteria of cards per minute and ingtructions
per statement to measure performance, it is possible for the producer

of a compiler to back up very optimistic performance claims simply by
properly arranging a test program,

As will be seen, this report presents a basis for defining a
methodology for evaluating the performance of compilers, together with
supporting data, which justifies the conclusion that the methodology will
be significantly rmoxre objective, fair, informative, and reliable than

methods currently in use.

2. Purpose of the Study

In considering the objectives to be sought in performing the
present study, two distinct points of view were taken into account, The
first point of view required the identification of specific technicai
objectives, These objectives were, for the most part, spelled out
explicitly in the statement of work for the pioject. The second part
view looked beyond the technical goals toward eventual application of
the results of the study. These application objectives provided insights
which were useful in establishing an appropriate operational organization

of the study activities,

The result of the organizational effort was to seek a basis for
answering a small number of specific, well defined, technical questions.
Here the intent was to separate the varied aspects of the numerous
technical problems to be explored into a few clearly defined questions,
The combined answers to these technical questions would provide the

basis for fulfilling the technical objectives,

The technical objectives and the application objectives are dis-
cussed tclow, The organization of the study into four specific technical
questions is discussed briefly in Section 3, and in greater detail in

Chapter 2.
11

o~ A~

o =l g e S |

- AN e e A

PR ST A IO 7 SRy et DR R A YL O MRS 1 L AN S Y S A S A a2y

Technical Objectives. 7The overall technical objective of this

study was to develop criteria by which it will be possible to qualitatively
measure and evaluate compiler performance. These measurements
should make possible valid performance comparisons of different com-
pilers on different machines. If the results of the measurements are
weighted appropriately, then it should be possible to equalize the
environment in which the compiler is being measured with other environ-
ments in which similar compilers might be measured., This '"equalization'
of environments should take into account factors such as memory size,

processor speed, instruction set, and operating system support.

Once an ''equalization' of environmental differences has been
performed, it ie desired that criteria be established for properly taking
into account other factors such as the type of compiler being tested
(e.g. production, debugging, etc.), characteristics of the machine and/
or operating system for which the compiler was designed, and other
features of the compiler that might adversely effect the performance of
the compiler while produvcing an overall savings to the user, Other
factors to be taken into account are the efiects on compiler performance
caused by including in a compiler functions such as optimization and

debugging aids, Here it is desirabie to determine a method whereby

the final performance value calculated for a compiler can include an
appropriately weighted component so as to negate the compromises in l
1

compiler efficiency made necessary by including these functions.

Thus, the overall technical objective can be summarized as
follows., It is desired to determine criteria by which the performance {
of a compiler can be measured and compared to that of other compilers.
In particular, the criteria shall include factors such as speed, size,
ease of use and maintenance, and efficiency of generated code. Further-
more, the result of using the criteria obtained in the study should
reduce the range of values obtained when different individuals measure

the performance of any given compiler, \

A specific secondary technical cbjective was identified for this
study. This objective was to determine whether or not knowledge of
the architecture and algorithms used in a compiler might provide a
basis for making valid judgements about the performance that should
be expected from a compiler, independent of actually measuring per-
formance by means of test runs, etc. For example, car a useful
generalization be made about an algorithms to the effect that it is most
efficient for the particular language and/or application for which it is
used, or that the complexity of the algorithm is wrong for that of the

language and/or application,

With respect to parsing schemes and table searching methods
in particular, a specific technical objective was to determine:
e If there ic a particular parsing scheme that iz most

efficient for all languages and user types, or is each
language better suited by a unique parsing scheme.

e If there is a relationship between table searching

methods and the type of language which is being
compiled.

In addition to these two major functional elements of a compiler
(parsing and table look-up), two other elements {code generation and
optimization) were also reviewed with the objective of seeking useful
generalizations, Also, an analysis of architectural choices in compiler
design was made. With this context in mind, it is convenient to sum-
marize briefly here the major conclusions resulting from this part of
the study.

® With respect to compiler architectures, one-pass

compilers are faster and larger than multi-pass compilers.

e Maulti-pass compilers permit more extensive optimizations,
and therefore can produce more efficient object code.

e Choizer of algorithms for parsing and code generation
are gznerally made for other than performance reasons,
Gzn«rally, the reasons relate to cost of development of
the compiler,

13

e Some generalizations on the relative efficiency of table
look-up algorithms are pcssiblc, but such generalizations
are mainly related to specific internal architectural
purposes for the table rather than external factors such
as the language being compiled.

e Optimization methods are highly varied, and no useful
quantitative geuneralization was found which could relate
compiler performance and object code quality fcr a
particular individual or class of optirnizations,

In view of the above paucity of useful generalizations that
resulted from the study of architectures and algorithms, it is clear
that a diffecrent approach is necessary to establish the desired criteria
to satisfy the technical objectives of the propesal. The approach taken

is discussed briefly in Section 3, and in greater detail in Chapter 2.

Application Objectives, Given that criteria could be determined

for compiler evaluation as discussed above, what application might be
made of these criteria? Answering this question provided insights
that were useful in organizing the activities of the study. These
activities are discussed briefly in Section 3 and in greater detail in

Chapter 2. The answer to the question is summarized below,

The criteria to be established by the study will be useful for the
following tasks:
@ Selecting the best performing compiler from among a
number of oif-the-shelf compile.s.,

e Preparing RFP's for compilers and providing the basis
for reliable performance acceptance testing of the
delivered product,

e Provide useful assistance in choosing computer hardware
and compiler combinations as a package.

e Frovide useful assistance in choosing computer hardware
where compilers are to be purchased separately.

With these application objzctives in mind, it becomes clear that
the criteria to be established to satisfy the technical objectives discussed
above must (at least in priancipal) be translatable into a common unit of

The obvious uniit of value that comes to mind is the dollar.

value.

AN LT TR ST T I T TR YT

TR S T

F"
A3
i

Consequently, it became an identified objective of the study to establish
criteria which could provide the basis of dollar cost/benefit analysis
of 4 compiler. This means that measurements to be taken of compiler
performance should ultimately be translatable into a doliar value for
the performance benefit of the compiler. The approach taken in this

study is specially directed toward this objective.

Implicit in the above observation is that a better basis for
establishing the dollar cost of a compiler is needed., In choosing off-
the-shelf compilers, its price tag is an adequate cost measure, However,
in preparing RFP's, the vendor must be given in incentive to produce
a better performing compiler than minimum specifications, These cost
and incentives issues are beyond the scope of the present study. However,
the criteria for evaluating performance might be a suitable basis for
eventually establishing appropriate incentives in procuring compilers,

once sufficient experience in their use has accurulated.

3. Technical Questions Studied

In this section 2 brief discussion is presented of the specific
technical questions whose answers were sought as the basis for fulfilling
the technical objectives of the study, The reasons for choosing these
questions, and how these questions determined the specific activitiea of

the study are discussed in Chapter 2.

Four technical questions were pursued, These questions are
conveniently organized into two groups. The first group consists of
the following single question which constitues the basis for fulfilling

the specific secondary technical objective discussed in Section 2:

e Can analysis of a compiler's architecturc and
algorithms provide a basis for making valid
judgemeants about the perforrnance that should
be expected from a compiler?

We will refer to this question briefly as the ''architecture/aigorithms

question’,

15

R R L L T T B S

N b T armam o AR ~m——

- ————

T D TR L TSt Rl ST AT e A D R L S RO X L TN S S P S T T e M et o g Sy 2T wy B eme i e e s s e o

4

st it e eawe—. . ———

The second part consists of three questions which jointly provide
the baeis for fulfilling the overall technical question discussed in
Section 2, These questions are listec. beiow.

e How can two compilers wi.th the same features and

operating in the same environment be compared ?

¢ If two compilers with the same fzatures operate in
different environments, how can their measured
differences in performance be attributed to the
environmental differences vs. the compiler
differences ?

¢ How should a compiler buyer deal with the problem
of evaluating compilers with different special
features ?

These three questions will be briefly referrcd to respectively as:

The ''same environmenr question'',
The "environment equalizing question', and

e The "'special features question',

It should be noted that the first question is directly applicable
to the application objective of selecting among off-the-shelf compilers
(provided that these compilers have similar features), Furthermore,
the question specifically applies to the overall technical question once
the environmental contributions have been "equalized'' and appropriate

weights for special features have been calculated.

The second question is specifically aimed at the application
objective of assisting in hardware selection where compilers are to be
procured separately, Furthermore, this guestion specifically applies
to the overail technical question in that its answer provides the basis

for '""equalizing'' envircnments,

The third question is specifically aimed at the technical objective
of calculating appropriate weights for making compensations in overall
performance values calculated for compilers ivith different special

teatures,

16

3 e e R s B T O I G e 77 L SO T e L g e e ey v

B T YN C VS AU

O

4, Organization of the Final Report

Chapter 2 presents 2 detailed discussion of how the technical
questions studied contribute to fuifilling technical and application

i
. objectives.
Chapters 3, 4, 5, 6, and 7 respectively present analyses of
) architectural choices in compilers, and algorithms used for table
look-up, parsing, optimization, and code generation, These analyses
comprise the report on the study of the architecture /algorithms
§

question,

Chapters 8 and 9 provide a basis for answering the same environ-
ment question., Chapter 8 provides a detailed overview and technical frame-
work, and Chapter 9 specifically establishes methods of preparing test

programs which would e stablish useful compiler performance measures.

Chapters 10, 11, and 12 provide a basis for answering the
environment equalizing question, Chapter 10 describes the methods
that can be used to measure environments i1 terms of a ''compiler
Gibson mix''. That is, standard tests are described which can be applied
’ to different environments to determine their relative efficiency in
supporting compi'er activities, and thus providing ''equalization'’ factors
for the environments, Chapters 11 and 12 present experimental data

which provide the basis of establishing a '""compiler Gibson mix''.

Chapter 13 discusses a basis for seeling an answer to the special
feature question. The study of this question quickly led to the conclusion

that a great deal cf work beyond the scope of the present study would be

required in order to establish criteria vo answer this question in an
adequate manner, Consequently, the study was limited to identifying
specific areas of possible future study that would contribute to providing

an adequate answer,

Chapter 14 summarizes the conclusions reached in the study.
Conclusions are geaerally included in the separate chapters where
v appropriate, and Chapter 14 presents an organized list of these con-
clusions with appropriate cross references to other sections of the
report,

17

Chapter 15 presents recommendations which apoear appropriate
in the light of the results of the study. Specifically, these recommendations
identify areas requiring further study, and summarize the specific pro-
cedures constituting 2 standardized methodology for evaluating compilers
in different environments with different special features which were

developed in the study.

18

B RIS T TR T DA ST S TR SR 12 e A D RIS 3 vy TR A T ATy TR Ta T UV NG F ATE R SRS Vi 2oy SN TP e [SV AL S R R P

CHAPTER 2
OVERVIEW OF TECHNICAL QUESTIONS

1. Introduction

Section 2 of this chaptex introduccs the basiz technical concepts on

which the study was based. The concepts are discussed briefly in Section 2
and in furthe: detail in other sections of this chapter. It is convenient to t
organize the concepic i:.to two broad catagories:
® Concepts related to the establishing of a canonical
representation of users, environments, and compilers.
¢ Concepts related to catagorizing the factors which influence the
performance of compilers in measurable terms.
The first category consists of a number of profiles and '""Gibson
mixes'. Profiles represent a user or a compiler in terms of elements of a :
high level language, such as AED, or the source language on which a
compiler to be evaluated performs its compilation function, or in ierms of
performance factors. A '"Gibson mix'' is a representation of a collection of
programs in term:s of which a compiler/operating system environment can
be measured. The result of such a measurement provides a quantitative
statement of the degree to which such an environmeat supports the functions

of the collection of programs.

The second category establishes a complete organization of factors
affecting performance. The organization consists of five components ;
" which are introduced biiefly in Section 2, and are discussed in detail in

Section 7.

Sections 3, 4, 5, and 6 respectively present discussions of the
architecture /algorithms question, the same environment question, the
environment equalizing question, and the special features questions, For
the architecture/algorithms question, the discussion consists of a general
introduction to Chapters 3, 4, 5, 6, and 7 in which detailed discussions of
algorithm choices and algorithms for four compiler functions are discussed.
For the remaining three questions, the discussions in their respective sections
provide an overview of the approach taken in this study to explore the question,
and a brief summary of how the study of the questions contributes to establishing

a basis for cost/benefit analysis of compilers.

19

R B o T e i M X S T Y S R N S 1 s IR T e R T At § s R L ST L

2. Technical Concepts

This section introduces the technical concepts on which the study was
based. Each of the concepts relate to repr=senting users, environments
and cornpilers, and each is discussed in a separate sub-section. The
discussion includes a description of how these concepts interrelate. The
five factors which influence performance are introduced in the first sub-

section of this section.

Factors that influence compiler performance. Below is a brief

introducticn te the five classes of factors that influence the measureable
performance of a compiler. These factors are discussed in further detail

in Section 7.

1. Directly Measureable Factors

Factors which define performance. (Time and space for both
compiler and object code.)

2. Direct Internal Fact-ors

Factors internal ‘o the compiler ‘architecture and algorithms)
which directly affect performance as measured.

3. Direct External Factors

Factors external to the ccmpiler (environmentai factors such
as host machine and operating system, etc.) which directly
affect performance as measured.

4. Indirect Interna) Factors

Factors which contribute ic the ''value' of a compiler (special
features) but which cannot be directly measured in terms of
performance as measured.

5. Indirect External Factors

Factors which define how the compiler is to be used and thereby
indicate the relative importance of the factors. In combuination,
these factors define the measured performance of 2 compiler
with respect to a ''typical' source language program.

User Profile. A User Profile defines how a user's application

programs make use of the various elements and constructions of a language.

It is specified quantitatively as the fractions of all the elements or constructions
of a language in a ''typical' user program which appear in the form of each
eiement or construction, Chapter 5 presents a descriptivn 0f the janguage

elements which might be used as a basis for defining User Profiles.

20

Two different User Profiles are meaningful. A static User Profile
counts each occurrence of a language element in the user's collection of
applicition programs eqgually. A dynamic User Profile weights each
occurrence with the relative frzquency with which the occurrence is

executed in normal use of the collection of programs.

Compiler Performance Profile. A Compiler Performance Profile

defines how well a compiler handles each of the ianguage elements and
constructs in terms of which User Profiles are defined. Each element is
assigned four (or sometimes two) performance measures. These measures

are described above as the '"directly measurable factors."

Compiler Demand Profile. A Comtgiler Demand Profile defines how

the source code in which a compiler is written makes use of the various
elements and constructions of that language. It is specified quantitatively
in the same manner as a User Profile. Both static and dynamic Compiler

Demand Profiles are meaningful , as in the case of User Prefiles.

Compiler Evaluation Profile. A Compiler Evaluation Profile defines

how well a compiler performs on a 'typical' user program. It is specified
quantitatively by four quantities, one for each of the four 'directly measur-
able factors'' described above. It is calculated by taking a weighted sum of
the four evaluation factors for all elements comprising a Compiler Perform-
ance Profile. The weights used for generating compiler space and time per-
formance measures are the static User Profile weights, and the dynamic

User Profile weights are used for -,enerating the object code measures.

If additional administrative information is taken into account, then
a number of uscful dollar valuations can be assignec o a compiler once its
compiier evaluation profile has been calculated. These considerations are
discussed further in Section 4 of Chapter 8.

""Compiler Gibson mix'., A "compiler Gibson mix' defines how well

a compuater/operating system environment supports the activity of compiling.
An erxample of how a ""compiler Gibson mix ' might be defined is presented
in Chapter 10. This example is based on two static Compiler Demand
Profiles generated during this study, one for an AED compiler and one for

a J3B compiler.

—

N ot e .

i, AR s e -
2 S R AR R e s o o i e e g T

el
PR
ey -

- - "User Gibscn mix''. A "user Gibson mix' defines how well a

s computer/operating system environment suppcrts the collection of user

3 application programs which will normally run in an environment. A '"Gibsox
) } mix'" for a computer has in the past been defined for such applications

: categories as COBOL applications. These ''mixes'' are based on specifying
the relative importance of different instructions and addressing modes of a
computer. It is suggested in Chapter 6 that a '""user Gibson mix" could
alternatively be developed using the methods of Chapter 10 for generating a

' Whereas a "compiler Gibxon mix' is based on a

""compiler Gibson mix.'
Compiler Demand Profile, the "user Gibson mix' would be based on a

dynamic User Profile.

3. Overview of the Architecture/Algorithms Question

In Chapter 3, fourteen fuctional elements of a compiler are described.

N
G ‘g 5 A S A A
S A S

An architecture is described for a one-pass compiler nsing eight of these
elements, and an architecture for a muiti-pass compiler is described
involving thirteen of the elements, The multi-pass architecture involves
thirteen phases in order to demonstrate an extreme design directed toward
minimizing space. This architecture also demonstrates the wide range of
multi-pass architectures that are possible by means of recombining the

% twelve phases into a smaller nuisber.

Four of the twelve functions are discussed in great detail in
Chapters 4, 5, 6, and 7. The functions discusse] in these chapters are
; table look-up, parsing, optimization, and code generation respectively.
‘; Discussed are four categories of table look-up algorithms, four categories

of parsers, two broad categories of optimization techniques (involving a total

a3 of twenty-eight distinct ocptimizations), and three types of code generators.
*i: ¥ The major conclusion reached from the study of the architecture/

3 algorithms Juestion is that knowledge of these aspects of a particular
; compiler is not useful in evaluating the usefulness of the compiler.

(A summary of these conclusions is presented in Chapters 1 and 14.)

22

il

,

3
b
-3
1
%
4
3
3

TR v

&

3

l:
!

]

ST T

B A B R W A Sor iy 1 F s Pt P i R fwm s el 75 im FE T AT U AR NN § R R R I TN 0 S T
F Aty WL b~ e g LAl

f_ >0 - — — . L

4. Overview of the Same Environment Question
The full statement of the same environment question is repeated
below.

How can two compilers with the same features and
operating in the same environment be compared?
Approach. A number of test programs are created which represent

(in a suitable weighted combination) a ''typical" program tc be compiled or
executed. The directly measurable factors are measured with respect to
the test programs, and the measurements are suitably combined to create a
performance measurement for each directly measurable factor with respect
to the "typical" program. The direct external factors are not involved since
the environments are identical. Direct internal factors are not explicitly
considered, because better algorithms and architectures should result in
better performance as measures. However, knowledge of variety of these
factors is necessary in order to establish a suitable set of test programs.
Consideration of indirect internal factors is avoided by assuming that the
special features of the two compilers are icentical. I[ndirect external
factors comprise the User Profile which determine tne weighting factors to

use as combining test program results into measures for the "typical”
program.

Basis for Cost/Benefit Analysis. Each directly measurable factor

may be assigned a relative dollar worth. The performance measures for a

"typical' program can then be used to assign a dollar benefit difference

between the two compilers. Cost is price.

5. Overview of the Environment Equalizing Question

The full statement of the environinent equalizing question iz repeated

below.

If two compilers with the same features operate in
different environments, how can their measured
differences in performance be attributed to the
environmental differences vs. the compiler
differences?

Approach. Each compiler is evaluated as in the equal envircnment

questicn to generate performance measures for a 'typical' program,

23

TF AR IR eyt

oy ga A G ST

s

o RA

o

k2, 2V B el i =T
O es Wieh3, s G

However, these measures represent effects of both direct internal factors
{architecture and algorithms) and direct external factors (machine and
operating system). To separate these two contributions, generate a
Compiler Demand Profile in terms of some suitable elements. This profile
constitutes the relative use of the elements by a ''typical" compiler. Each
element should be represented as an assembly language program pro-
grammed by a highly skilled programmer to take advantage of all of the
environmental special features which could be exploited by a compiler.
These programs are then compiled and executed. The relative time and
space for these Compiler Demand Profile programs can be combined to give
an overall measure of how well the computer/operating system environment
contribute to possible compiler performance for compiler time and space
measures. If the test programs used to represent the '"ypical' user pro-
gram (the User Profile) are used instead ot the Compiler Demand Profile
programs, then the resulting measures should show how the computer/

cperating system environment contribute to object code time and space measures,

Basis for Cost/Benefit Analysis. The answer to the environment

equalizing question will contribute to improved purchase criteria for:

(1) A package of compilers together with computer,
operating system, etc.;

(2) A computer, operating system, etc., when
compilers are to be purchased separately; and

(3) Writing specifications for expected performance
of a compiler on a new computer operating system,
etc., based on the known performance for a similar
corapiler on a different computer, operating
system, etc.

6. Overview of the Special Features Question

The full statement of the special features question is repeated below.

How should a compiler buyer deal with the problem of
evaluating compilers with different special features?

be calculated independently ae a dollar value.

24

e ——— A

Basis for Cost/Benefit Analysis. For the ease of use factors, the

benefit derives from reduction in number of debugging compilationa, and
related factors.* These can relatively easily be assigned a dollar benefit
value. In comparing two compilers, their differences in performance may

. be assigned a dollar value as described above for the same environment

question and the environment equalizing question. The dollar value of ease ol

- use factors can then be added into the anaiysis in a straightfocrward manner.
To apply this approach therefore requires research (beyond the scope of this
study) on the psychology of using ease of use factors, For ease of maintenance
factors, the suggested approach is to require vendors to supply option price for

the features for which there is a clear expectation that they will be used. *

7. Factors That Influence Compiler Performance

With the above brief overview of the three main technical questions
of our study to provide an understanding of the overall method of approach
for the study, we present in this section a diecussion of each of the five
categories of factors, and how they interact in effecting the study of these

three questions.

Directly measurable factors. The intention here is to make rmeasurements

s which in combination provide a Compiler Performance Profile. The dimen-
sions of the profile should be such that a User Prcfile can also be generated
which assigns a relative importance factor to each dimension. Consequently,
the study establishes criteria which corresponding to these dimensions,
and establishes methods of creating test programs to be used in generating

the Compiler Performance Profile.

For each dimension, a group of test programs is generated; for each

test program, the following measurements are taken:

1. Compilation Time - This factor should be a combination of
both CPU time and 1/O time. (The present study was prirnarily
based only on CPU time.) If the compiler output is assembly
language code, the time to assemble may be included.

2. Object Code Execution Time — This factor is the CPU
time required to execute the compiled code.

% See discussion on indirect internal factors in Section 7.

25

e T WATLRP AR
S a.«s‘ﬁwm/m" PR T Dt T R (P2 RO L

3. Compiler Space — This factor is the amount of core
(e.g. size of partition) neede to compile the test
program.

4.

Object Code Size — This factor is the amount of core
required to execute the tzst program.

A combination of the measurements for the test programs within the

group results in four summary measures for the dimension.

Direct internal factors.

These factors are internal to the compiler

and directly affect the values of the four measurements indicated above.
They are:

Architectural organization of the compiler.
Algorithms used.

+
|
Data organizations used.

Presence of special features.

The approach we take makes no attempt to allocate or distribute perform-
ance measurements among the above internal factors.

)
i
Rather, the direct s
benefits and/or costs due to these factors should be accounted for in the \

{

dollar procurement cost of the compiler and the Compiler Performance

Profile discussed in Section 2. Since the relative ease of riaintenance may

depend on the architecture of the compiler, and the ease »f use depends upon
the inclusion of special features, certain indirect benefits of architectural

organization and special features will be discussed in a later sub-section on

indirect internal factors. In spite of the fact that this study was not directly

concerred with the effects of these factors on performance, it is important

that the breadth of possible direct internal factors be taken into account in

designing the sets of test programs. This means that potential differences ‘

in performance between two compilers due to their architecture or algor-
ithms should show up as differences in Sompiler Performance Profiles.

The weights agsigned to these differences, however, are entirely dependent ‘
on the User Profiles of the syntactic elements comprising the dimensions of

the profiles. (See the later sub-section on indirect external factors.)

Direct external factors.

These factors are external to the compiler |
and directly affect tne values of the four measurements indicated abcve
They are:

26

Y S e A A g

° Hardware

Machine Configuration.

Machine Speed.

) Machine Instruction Set.

) Machine Instruction Word Format.

° Operating System

. 1/0 Intexface.

° I/0O Support Software.

o Linker/Loader/Compilation Unit Format.
Inter -Module Interface Standard.
Parameter Passing Standard.

o Error Handling Standard.
Assembly Language/Assembler Requirements.

Consider two compilers with the same architecture, algorithms, data
organization, and features which are to run in different environments

(i.e. different hardware and/or operating systems). One would expect
differences in performance due to the above factors. If it is necessary to
compare two compilers which have both different internal factors and
different external factors, how does one attribute the differences in perform-
ance profiles as to internal vs. external factors?* The suggested approach is to
develop methods of constructing a profile cf compilers which will be analo-
gous to the ""COBOL Gibson mix'' (used for evalnating the comparative
performance of machines with respect to business applications). The profile

of compiler computational element usage may be more or less the source

for a wide variety of language types and teatures, or may be highly sensitive

to such differences. The study undertakes to at ieast approximately

determine the degree of such variability. Given a profile for a certain class

of compilers, the approach recommends that the profile be implemented by
good coders in assembly language for each machine under consideration.

The resulting programs constitute ''compiler Gibson mix'. Given two environ-
ments, the performance of the two environments with respect to this "mix"

characterizes the overall compiler support performance factor for each

% This is simply a restatement of the environment equalizing question.

27

3

environment for compiler time and space measurements. These factors
would then constitute the fraction of combined compiler and environment
performance for compiler time and space as measured due solely to environ-
mental differences. The remainder of the differences in compiler time and
space performance as measured would be attributed to the direct internal

factors of the compilers.

A "user Gibson mix' which characterized the applications to be run
could be used in a similar manner to determine the environmental contribu-
tions to the object code time and space performance factors. One way in
which su<h a "user Gibson mix" could be derived would te to use the test
programs (or a suitable subset) developed to characterize the static and
dynamic User Profiles. By hand coding the programs into assembly
language, by a good coder, the static profile weights could be used to
generate an overall object code space factor characterizing the environ-
mental support. By using the dynamic profile weights, the overall object

code time factor could be similarly generated.

The present study of the direct external factors is lirnited to:

. The approximate determination of the degree of
Compiler Demand Profile variability.

° Development of methods for establishing Command
Demand Profiles.

° Development of methods for measuring the
compiler support performance profiles of various
environments.

Indirect internal factors. There are several factors which are based

on architecture and special features, ind whose costs are therefore internal.

However, the major benefits of these factors are external to the compiler.
Architectural factors may be present for such purposes as:

Portability (charging host machine).
Retargetability (changing target machine).
Maintenance (bug fixing).

Enhancability (adding features).

The suggested approach to these features is tha* the cost/benefit analysis
can be best handled contractionally. This will he discussed further in

Chapter 13,
28

Ease of use factors affect the value of a compiler by facilitating the
manner in which a compiler can be used operationally. The following are a
i
list of such factors:

Diagnostics.

Data dependent error detection.
Parameter/argument data type matching.
Syntactic error detection.

e o & o o

Hooks for traces, breakpoints, symbolic debugging,
patching, etc.

The determination of how the value of these factors can be evaluated is
beyond the scope of the present study. How their value might be determined

is discussed in Chapter 13,

Indirect external factors, The factors which define how a compiler

is to be used are both external to the compiler (being determined by the user)
and not directly measurable., The suggested approach to these factors is to
establish a set of language elements in terms of which a User Profile can be
ascertained. This profile will assign to each element a weight which will
correspond to the relative importance the element has in the collection of
user application programs. For each element, one or more test programs
can be written which when compiled and executed generate the four direct
measures of compiler performance with respect to these measurements.
Section 5 of Chapter 8 presents an organized list of language elements
which could provide the basis of establishing User Profiles. How test
programs might be prepared to measure a compilers performance with
respect to these elements, thereby establishing a Compiler Performance

Profile, is described in Chapter 9.

29

T AL R R et SR T, R BT IR e v

wpeagres s anaina -
AP ERRE e T A o)

CHAPTER 3
ARCHITECTURAL CHOICES IN COMPILER DESIGN

1. Overview

Trade-off factors. In designing a compiler, an architecture is

chosen which balances a number of design objectives. The trade-off

factors normally taken into account in choosing an architecture are the

followiny:

Compiler speed

Compiler size (including work space)
Object code speed

Object code size

Ratargetability

Portability

Ease of maintenance

Debugging features

® & @& & o o o & 3

Cost of development

Elements of compilers, Thus, a compiler architecture can be

regarded as the organization of the several functional elements required
to perform the compiling of a source program. These functional elements
will be described briefly in Section 2. For the purposes of the overview,

they are listed below with short descriptive phrases:

Lexical analysis -- forms lexemes,

Table look-up -- maps lexemes to symbols.
Declaration processing -- assigns types to symbols,
Parsing -- identify grouns of symbol strings,

*Tree building -- organizes groups into tree structure,

#¥%Set/used analysis -~ identifies where variables are set
or used,

° #*%*Flow analysis -- identifies straight line executable
sequences,

30

ST RIS 2 PN T S0 S e R T e Tt R = TR Ky e AR o ; i
3 e a¥ :b * Prati 5" x EAFIS R 'x’,r"-ﬁ‘ﬂa‘.w'};.xg-,q D T S T AR E W AU SRR RSN B PR e TR GRS

19

3’ ® *%%Global machine independent optimization -- restructures tree.

1;' ® Storage allocation ~- maps variables onto storage locations.

b e Register allocation -- maps variables onto hardware registers.

BT e *Machine independent code generation -- walks tree and

. maintains state information.

E e Machine dependent code generation -- outputs object code.

2 e *¥Peephole object code post-processing -- modifies object

1 code locally.

.“ e *¥*¥General object code post-processing -- modifies object

k § code globally. :

Nete: Those functional elements flagged with a single asterisk (*) are ‘

B used in multi-pass compilers to facilitate information maintenance)

i . between phases (passes) of the compilation, The single element :

flagged with two asterisks (*¥*) is used only within a one-pass

’Es architecture for optimization purposes, i.e., to improve ob,ect '

"" code quality, Those elements flagged with three asterisks (%*%%) 3

are only used in multi-pass compilers for a variety of cptimization }
1

purposes. (See Chapter 6.)

Interactions among trade-off factors. Let us now consider how

the trade-off factors influence compiler architecture. Compiler and
object code spe=d and size constitute the four basic performance measures
considered in the study. Cornpiler size trades-off with compiler speed

by means of overlaying and one-pass vs. multi-pass design considera-
tions. Object code speed and size generally both improve together at

the cost of compiler speed by means of various optimizaticen techniques.

Retargetability does not interact very strongly with the performance

measures, but rather interacts for the most part in the ease of maintenance
and cost of development. Retargetability is generally obtained by an

appropriate choice of the method to be used for imrlementing the machine

independent part of the code generator. (See Chapter 7.)

Portability interacts somewhat with commpiler speed and sizc
in that it is achieved by minimizing that part of the compiler implemented

in assembly language. The assumption here is that assembly language

31

- 'y‘-,,‘?‘:‘:'?-"\:)ﬁ&'A-Vel,«:,‘(.,;w,l‘v‘.n,vr’_pp'—.--?“‘,,\wwn TINT e AT D e T E I e T L e S S

impiementations are generally more eificient than high level language

(say AED) implementations,

Ease of maintenance is generally improved at the expense of
compiler speed and size by means of such techniques as top-down design,
modularity, and structured programming. Conscquently, the methods
used to improve ease of maintenance also generally reduces the cost cf
development for the compiler, except possibly that some one-shot

programming training <osts may be required for learning the techniques.

Debugging features wiil generally add to development costs.
Generally they also cost something in compiler performance. However,
it appears that one can make a quite useful generalization concerning the
desirability for debugging features in a compiler. This generalization
will be presented below in the context of a general comparison of one-

pass and multi-pass compilers.

Contrasting obiectives of one-pass and rulti-pass compilers,

Generally a one-pass compiler is designed for speed as a primary
objective., Multi-pass compilers, on the other harnd are designed with
a trade-off of the various factors in mind to achieve an appropriate
halance of these factors. Consequently, it seems desirable to have two
compilers, if budget permits, for a given language:
. A one-pass compiler intended primarily for debugging
at the unit testing level,

¢ A multi-pass compiler intended for system iategration

and the compilation of final production run object code.

This compiler should include instruments to facilitate

the development of static and dynamic User Profiles,
Since the one-pass cornpiler is intended for repeated recompilations
during the debugging (unit testing) of programs, it should be as fast
as possible and should have a set of diagnostic and debugging features
which are suitabie for minimizing the number of recompilations and
debugging runs required to successfully unit test a module. On the
other band, the only optimizatior

code quality are those of the peep-hole object code post processor

32

Ty S T Ty S - o g T
5 = R e R e e B T e Wy Nk AT F X7 W T e e e et s eeag e SRR LTS S P
[NEECIS s - N eras e e ey PRV

DM v

variety that will not significantly slow down the compiler. The reason for

this rather extreme position favering compiler speed over object code
quality is that many recompilations are likely during debugging, and

executions will generally be limited to partial or limited trial cases,

The multi-pass compiler must balance compiler perforrnance
against object code quality. It is probably desirable to be able to
optionally include a variety of optimizing passes dependinyg on whether one
is in the system integration phase or the final compilation of production
run programs., During these activities, compiler diagnostics are likely
to be of much less value than in the debugging (unit-testing) phase using
the one-pass compiler. Furthermore, it is desirable to instrument
the system integration/production run compiler so that detailed static
and dynamic user preofiles can be established. These¢ profiles and instru-
rents should be able to locate bottlenecks in the production system so
that the system can be fine tuned, and bottleneck prngrams can be re-
program