
AD/A-002 322

CRITERIA FOR EVALUATING THE PERFORMANCE OF COMPILERS

I

SOFTECH, INCORPORATED

PREPARED FOR

ROME AIR DEVELOPMENT CENTER

OCTOBER 1974

DISTRIBUTED BY:

National Technical Inforation Service
U. S. DEPARTMENT OF COMMERCE



This report has been reviewed by the Office of Information, RADC, and approved
for release to the National Technical Information Service (FITIS)

This report has been reviewed and is approved:

APPROVED:

DOUGLAS A. WHITE
Project Engineer
Software Sciences Section

A?

APPROVED:

ROBERT D. KRUTZ, Col USA-F
Chief, Information Sciences Division

.......... ..... JAMES G. McGINNIS, Lt Col,USAF
SY ...................................... Deputy Chief, Plans Office

TIST1tIBUTION/AYAILABILIT" t OIES

pUT.IAI. L/ ORT/ CSOANR

Do not return this copy. Retain or destroy.



UNCLASSIFIED
X -" SECURITY CLASSIFICA-TIOH OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE _ BEFORE COMPLETING FORM

EPT NUMBER 2. GOVT ACCESS10 NO. 3. RECIPIENT'S CArALOG NUMBER

RADC-TR-74-259 A ,)
4. TITLE (nd Subtile) 5 . TYPIE P REP6RTA PERIOD COVERED
Criteria. for Evaluating the Performance of Cora- Final Report
pilers June 73 - June 74

6. PERFORMING ORG. REPORT NUMBER
N/A

7. AUTHOR(#) 8. CONTRACT OR 5RANT NUMBER(o)

Burton H. Bloom Clare G. Feldman F30602-73-C.-0321
Mac H. Clark Robert K. Coe

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM E .,MENT PROJECT. TASK
SofTech, Inc. AREA & WOIK UNIT NUMBERS

460 Totten Pond Road 62702F
Waltham MA 02154 Job Ordar No. 55811206

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT )ATE
Roi Air Development Center (ISIS) October 1974
Griffiss AFB, NY 13441 13. NUMBE IOF PAES

348
14. MONITORING AGENCY NAME & AODRESS(If dlloetnt from Cc" .trolllng Office) 15 SECk4 AITY CLASS. (of this report)

Uncle 3sified
Same

15a. ECLASSIFICA-ION/DOWNGRAOING

N/ ICHEOULE

16 OISTRIBUTION STATEMENT (of this Repert)

Approved for Public Release. Disttlbution Unlimitee.

7 DIST4AIBU IO P STArEMENT (of 'he btrc entered In Boc. 20, If jfer ,t from Report) ICk,.p,,odl ced by

Same NATIONAL rECHN'J;AL rINFORMATION SE'VICE
U S 0erpartnlenl >f C. nmerCC

Springfield VA 7.1151 nUC rI 9.3 .
19/. SUPPLEMENTARY NOTES [
RADC Project Engineer: Douglas A. White (ISIS) [L

D
19. KEY WORDS (Continue on reverse side It ntcosary end Ide itlty by blrck number)

Compiler Performance Compiler G16son Mix JOVIAL J3B
Compiler Comparison User Proflie
Compiler Evaluation Compiler %rofile
Compiler Gibson Mix Compiler Demand Profile UW SUBJECI TO CHARGE
User Profile AED

20 ABSTRACT ((.ontlnue on reverse slde It necessty and Identify by block number)

The main purpose of this study was to develop criteria by which it will beL $possible to qualitatively measure and evaluate the performance of compilers,

A possfh1 onperstinG on diffprpnr eomptIprs. and po~sibly having different
features. To satisfy this purpose, three technical questions were studied: (1)
How can two compilers with the same features and operating in the same environ-
ment be compared? (2) If two compilers with the same Lieatures operate in dif-
ferent environments, how can their measured differences in performance be attrn-_
buted to the environmental dtfferences vs. the com=iler differences? (3) How -

FORM UNCLASS IFIFMDD I JY 1473 EDITION OF I ON)V 65 IS OBSOLETE TC Fn,

SECURI fY CLASSIFICATION OF THIS PAGE (When D-1. En.-ed)



UNCLIS-FIED
SECURITY CLASSIFICATION OF THIS FAOEOThn Data Eterd)

20.
*should a compiler buyer deal with the problem of evaluating compilers witb

different special features? These three questions were studied from a point of
view that the answers should help provide a basis for conductinz dollar cost/benefit analysis of compilers. In addition, a fourth queation was studied to
satisfy a specific secondary purpose of the study: Can anJlysis of a compiler's
architecture and algorithms provide a basis for making valid judgments about the
performance that should be expected from a compiler?

The general conclusion from studying the fourth question was th&t anaiys's
of the internal organization of a compiler was not useful in providing a basic
for compiler evaluation. The study of the first question eztablished criteria
and methodb for assigning four measures (time and space for both compiler and
object code) to a compiler which quantitatively define its performance with
respect to a "typical" user program. The study of the second question estab-
lished criteria for defining a "compiler Gibson mix", and established methods
for using this "mix" to "equalize" er.vironments. The study of the third ques-
tion established contractual methods for pcoviding a cost component of cost/
benefit analysis of special features; aJo4o, several specific areas for future
study were identified which would provide needed data for establishing a basis
for the benefit side of such analyses.

? UNCLASSIFIED
SE CUI41TY CLASSIFICATION OF TNI ;'AGE(fl'en Data. IF.d)



Technical Evaluation

1.. This effort, Oompiler Perform nce Criteria and
Measuremnt Study, was undertaken to investigate methods of
determining and evaluatir* the performanr- of compiiers,
that will be more objective, informative and reliable than
metiods currently in use.

2. At present, compiler perfoam.ince measurnts are taken
in terms of cards per minute and machine ir;tructionr, per
source statement without any scientific basis far the
contents of the card, the size, type or complexity of the
statement, or the planned environment of the compiler,.

3. This effor defines the methodology by which co-m~iler
performanoe ray be objectively measured and compared tc,
other corpilers, including factors such as application and
environment.

4. This effort establishes the criteria neessary for the
evaluation of compilers that will insure that the compiler
selected for a particular use is the Trost efficient compiler
that will meet the requirements. The methods by which test
program are developed and the measured results analyzed are
spec-ified. Guide lines for data to be collected, and methods
for collecting the data are presented for the compiler and
user profiles involved. Methods developed in this effort
will be valuable in future procurements of compilers in
irsuring cost effectiveness.

Douglas WhiteProject Engineer
Software Sciences Section

%..



SUMMARY

Tqe main purpose of this study was to ievelop criteria by which

it will be possible to qualitatively measure aid evaluate the performance

of compilers, possibly operating on different computers, and possibly

having different features. To satisfy this purpose, three technical

questions were studied: (1) How can two compilers with the same features
and operating in the same envirorment be compared? (Z) If two compilers

with the same features operate in different environments, how can their

measured dlrerences in performance be attributed to the environmental

differences vs. the compiler differences ? (3) How should a compiler

buyer deal with the problem of evaluating compilers with different special

features ? These three questions were studied from a point of view that

the answers should help pruiide a basis for conducting dollar cost/benefit

anailysis of compilers. In addition, a fourth quescion was studied to

satisfy a-specific secondary purpose of the study: Can analysis of a

compiler's architecture and algorithms provide a basis for making valid

judgements about the performance thiat should be expected from a

compiler?

In studying the fourth question, fourteen functional elements of

a compiler were identified and described. A one-pass architecture

involving eight elements and a thirteen phase multi-pass architecture

involving thirteen elements were developed to illustrate the extremes

of architectural choice in conrpiler design. Four elements were studied

in detail: table look-up, parsing, optimization, and code generation.

The general conclusion reached from studying the fourth question was thdt

analysis of a compiler's internal organization was not useful in providing

a basis for compiler evaluati.on.

The first question was studied in terms of establishing criteria

for defining elements of a User Profile in terms of specific categories

of the language on which a compiler operates. A User Profile is specified

quantitatively as the fractions of a "typical" user program that are in

the form of specific language elements. The same langu~age elements can

also be used to ei,tablish - Compiler Performance Profile, which describes



quantitately how a compiler performs with respect to each language

element. This profile consists of (generally) four measures for each

language element: time and space for both compiler and object code.

Criteria were established for writing test programs for each language

element to be used in making these four measurements. A method was

developed for combining the User Proile and Compiler Performance

Profile to produce a Compiler Evaluation Profile. This profile consists

of the four quantitative measurements of a compiler's performance with

respect to a "typical- user program.

The study of the second question established criteria for defining

a "compiler Gibson mix". This "mix" defines how well a computer/

operating system supports the activity of compiling. The basis for

defining this "mix" is the establishing of a "typical" Compiler Demand
Profile. This profile is similar to a User Piofile, but describes a
compiler as a user o! the language in which the compiler is written.

Two such profiles were established during the study: one for an AED

compiler and one for a J3B compiler. These two profils turned out to

be very similar and provided the basis of an example of a "compiler

Gibson mix" which was developed during the study. Methods were also

established for using the "mix" to "equalize" environrnents ts an answer

to the second question.

The third question was studied only to a limited extent. A

contractuia' basis for the cost side of cost/benefit analysis of special

features v,';s developed. Also, several specific areas were identified

for futu.e study which would provide data needed for establishing a basis

for the benefit side of such analysis.



TABLE OF CONTENTS

CHAPTER PAGE

SUMMARY 1
LIST OF FIGURES 7
LIST OF TABLES 9

1 INTRODUCTION I0

1. Background 10
2. Purpose of the Study 11
3. Technical Questions Studies 15
4. Organization of th- Final Report 17

2 OVERVIEW OF TECHNICAL QUESTIONS 19

1. Introduction 19

2. Technical Concepts 20
3. Overview of the Architecture /Algorithms 22

Question

4. Overview of the Same Environment 23
* Question

5. Overview of the Environment Equalizing 23
Que s tion

6. Overview of the Special Features Question 24
7. Factors that Influence Compiler Performance 25

3 ARCHITECTURAL CHOICES IN COMPILER 30

DESIGN

1. Overview 30
2. Functional Elements of Compilers 34
3. An Architecture for a One-Pass Compiler 42
4. An Architecture for a Multi-Pass Compiler 46

4 TABLE LOOK-UP ALGORITHMS 54

1. Overview 54
2. Categories of Table Look-up Algorithms 54
3. Compiling Applications 614. Language and Program Structure 63

5. Summary and Conclusions 65

3



TABLE OF CONTENTS (Cont)

CHAPTER PAGE

5 PAIRSING ALGORITHMS 67

i. Overview 67

?.. Categories of Parsing Techniques 67

3. Parser Selection Factors 69

4. Advantages and Disadvantages of Various 70
Parsing Techniques

6 OPTIMIZATION ALGORITHMS 72

1. Overview 72

2. Categories of Optimization Methods 73

3. Machine Independent Optimizations 73

4. Machine Dependent Optimizations 81

5. Optimization Activities 84
6. Matrices of Optiizations vs, Required 89

Analysis

7 CODE GENERATION ALGORITHMS 92

1. Overview 92

2. Paradigm for a Code Generator Arc.'itecture 93

3. Directly Programmed Code Generators 95

4. Macro Organized Code Generators 96

5. Table Driven Coda Generators 96

8 HOW TO COMPARE COMPILERS IN THE SAME 98

ENVIRONMENT

1. Introductior, 98

2. Steps of the Study of the Same Environment 99
Ques tion

3. Desireable Related Work 101

4. Using the Results to Calculate Dollar Valuations 103
of Compilers in the Same Environment

5. A List of Lanugage Elements to be Used for 106
Generating a User Profile

4



TABLE OF CONTENTS (Cont)

CHAPTER PAGE

9 HOW TO W9RITE TEST PROGRAMS FOR 122
GENERATING COMPILER PERFORMANCE
PROFILES

1. O-erview 122

2. Lexical Elements 126

3. Declarative Elements 136

4. Scope Definition Elements 143

5. Program Control Elements 151

6. Data Manipulation and Computational 164
Elements

X0 HOW TO EVALUATE ENVIRONMENTAL 180
DIFFERENCES

1. How the Environment Equalizing Question 180
was Studied

2. How to Generate a "Compiler Gibson Mix" 18Z

3. How to Equalize Environments 192

4. Timing Data and "Equalizing" Environments 196

11 STATIC COMPILER DEMAND PROFILE DATA 198

1. Overview 198

2. Tables of Static Usage of AED Language 200
Forms in the AED and 13B Compilers

3. Bar Charts of Histograms of Static Usage 214
Patterns in the AED and J3B Compilers

4. Bar Charts of Frequency Histograms of 219
Relative Static Usage of AED Language
Forms

12 DYNAMIC COMPILER DEMAND PROFILE DATA 240
1. Overview 240

2. Tables of Dynamic Usage of AED Language 241
Forms in the AED and J3B Compilers

3. Bar Charts of Histograns of Dynamic Usage 250

Patterns in the AED and j3B Compilers

4. Bar Charts of Frequency Histograms of 259
Relative Dynamic Usage of AED Language
Forms



TABLE OF CONTENTS (Cont)
S

CHAPT'R PAGE

II 283S13 HOW TO EVALUATE SPECIAL FEATURES28

1, Introduction 283

2. Ease of Use Features 283

3. Ease of Maintenance Features 285

14 CONCLUSIONS 286

1. Introduction 286

2. Conclusions from the Study as a Whole 286

3. Conclusions from Studying the A rchiecture/ 286
Algorithms Question

4. Conclusions from Studying the Same 288
Environment Question

5. Conclusions from the Study of the 289
Environmen. Equalizing Question

6. Conclusions from Studying the Special 290
Features Question

15 RECOMMENDATIONS 291

1. General Recommendations 291

2. Criteria Developed in the Study 292

3. How the Criteria Can Be Used 293

4. Suggested Topics for Future Study 296

LIST OF REFERENCES 297

APPENDIX I INSTRUMENTS USED TO GENERATE 30Z
COMPILER DEMAND PROFILES

APPENDIX 2 TEST PROGRAMS USED TO GENERATE 307
COMPILER DEMAND PROFILES

1. Description of Tests 307

2. Programs and Data Files for J3B Version of Tests 309

3. Programs and Data Files for AED Version of Te3ts 324

APPENDIX 3 SAMPLE OF RAW STATIC AND DYNAMIC DATA 339

1. Meaning of Raw Data Matrix Elements 339

2. Examples of Raw Data Matrix Output 343

3. Dynamic Raw Data 346

6



II

LIST OFL ILLUSTRATrIONS

FIGURE PAGE

1 Architectural Flow C:hart for One-Pass Compiier: 43

Z Typical Node Relationships for a Tree 58
Structured Search Table

3 A Typical Binary Tree 5

4 Illustrative Master Spelling Tablc - Stage 1 64

5 Illustrative Block Attributes Table - Stage 1 64

6 Illustrative Master Spelling Table - Stage 2 65

7 Illustrative Block Attributes Table - Stage 2 65

8 Matrix of Preparatory and Optimization Work 90

Reqaired for Machine Independent Optimizations

9 Matrix of Preparatory a. d Optimization Work 91
Required for Machine Dependent Optimizations

10 Histogram of Static Occurrences of P-o(.ed,re 215
and Function Calls Using n Arguments

11 Histogram of Static Occc rrent es of Assignment 217
Statements with n Right Hand Side Operators

12 Histogram of Static Occurrences of Boolean 218
Expressions with n Operators

13 Histogram of Static Occurrences of FOR 220
Loops Nested n Deep

14 Histogram of Static Occurrence2 of Executable 221
Statements Nested n Deep in FOR L-nops

15 % of Stati= Use of Statement Types 222

16 % of Static Use cf Statement Types Following 223
'THEN'

17 % of Static Use of Statemnt Typ, ; Following 22 4
'ELSE'

i8 % of Static Use of Statement Types ' ".llowiig 225
'DO'

19 % of Static Use of Arithmetic OP".L-7 228

20 % of Static Use of Arithmetic Forms 230

21 % of Static Use of Boolean Operators 232

22 . qt -at-c I c.nf R, , 1'n T.lq

23 % of Static Use of Arithmetic Assignments 235
with n R. H. S. Operators

L7



LIST OF ILLUSTRATIONS (Cont)

FIGURE PAGE

24 / of Static Use of Boolean Expressions with Z36

n Operators

25 ,) of Static Procedure or Function Calls with 238
n Argumen'ts

26 To of Static Occurrences of Executable Statements 239
Nested n Deep in FOR Loops

27 Histogram of Dynamic Occurrences of Procedure 252
and Function Calls Using n Arguments

28 Histogram of Dynamic Occurrences of Assignment Z53
Statements with n Right Hand Side Operators

29 Histogram of Dynamic Occurrences of Boolean 255
Expressions with n Operators

30 Histogram of Dynamic Occurrences of FOR 257
Loops Nested n Deep

31 Hi.stogram of Dynamic Occurrences of Executable 258
btatements Nested n Deep in FOR Loops

32 % of Dynamic Use of Statement Types 260

33 % of Dynamic Use of Statement Types Following 262
THEN

34 % of Dynamic Use of Statement Typcs Following 264
-ELSE'

35 % of Dynamic Use of Statement Types Following 266
'DO'

36 % of Dynamic Use of Arithmetic Operators 268

37 % (,f Dynamic Use of Arithmetic Forms 270

38 ,% of Dynamic Use of Boolean Operators 272

39 $o of Dynamic Use of Boolean Forms 274

40 / of Dynamic Use of Arithmetic Assignments 276
with n R.H.S. Operators

41 , of Dynamic Use z( Boolean Expressions with 278
n Operators

42 % of Dynamic Procedure and Function Calls with 280
n Arguments

"13 UL, of DyndIrsic Occur-ences of Executabie Statements L8Z
Nested n Deep in FOR Loops

8



LIST OF TABLES

TABLE PAGE

1 Weights for Assignment Statements in "Compiler 186
Gibson Mix"

2 Weights for Procedure Calls in a "Compiler 187
Gibson Mix"

3 Weights for Boolean Expression in IF 191
Statements in a "Compiler Gibson Mix"

4 Summary of Static Usage of Statement Types, 201
Operators, and Labels

5 Summary of Static Usage of Assignment 203
Statement Forms

6 Summary of Static Usage of Statement Types 204
Used with Conditionals and Loops

7 Summary of Static Usage of FOR Statement 206
Sub -Types

8 Summary of Static Usage of Integer Forms in 207
FOR Statements

9 Summary of Static Usage of Arithmetic Forms 209

10 Summary of Static Usage of Boolean Forms 212
11 Summary of Dynamic Usage of Statement Types, 242

Operators, and Labels

12 Summary of Dynamic Usage of Assignment 244
Statement Forms

13 Sumr..ry of Dynamic Usage of Statement Types 245
Used with Conditionals and Loops

14 Summary cf Dynamic Usage of FOR, Statement 246

Sub-Types

15 Summary of Dynamic Usage of Integer Forms 248

in FOR Statements

16 Sdunary of Dynamic Usage of Arithmetic Forms 249

17 Summary of Dynamic Usage of Boolean Forms 251

18 Format of Raw Data Output from Instrumented 340
Compiler

9



CHAPTER 1

INTRODUCTION

1. Background

Compiler performance is one of the most critical aspects in

today's software development process, and the admitted lack of scientifically

based, useful evaluation criteria poses frustrating problems for buyers

and sellers alike. For the Air Force, the value of having standard and

fair techniques for evaluating compilers is clear:

" It will help to insuire selection of compil-rs fo-- Air
Force use that really meet Air Force needs.

* It will help to insure that when buying a new compiler,
the Air Force will get value for its money, by
providing solid acceptance test criteria.

* It will help to prevent and resolve disagreements about
the performance quality of a particular compiler by
highlighting the reasons for disagreement.

There are countless opportunities for consciously and tuncon-

sciously biasing an evaluation of compiler performance. It is no wonder

that different evaluators reach widely varying conclusions. What

constitutes a fair measurement of a compiler's performance? What

are the sources of bias, and how can they be eliminated?

These questions provide the point of departure for the study

described in this report. At present, compiler efficiency measurements

are commonly expressed in terms of cards per minute and machine

instructions per source statement. These expressions at best are

inaccurate. When confronted with a neasureme.it expressed in cards

per minute one must determine what is included in this minute, what

clock is used, if I/0 and operating system time is included, how many

statements are on a card, and the compiexity of each statement.

Similarly, when a measurement is expressed in terms of machine

instructions produced per source statement, it is necessary to ask how

complex the statement was, what machine instructions were necessary

10



to perform the function of the source statement, and how many times each

instruction is executed. The inaccuracies caused by expressing per-

formance in these terms has made possible widely differing claims of

performance, or the lack of performance, by different individuals for the

same compiler. Using the criteria of Lards per minute and instructions

per statement to measure performance, it is possible for the producer

of a compiler to back up very optimnistic performance claims simply by

properly arranging a test program.

As will be seen, this report presents a basis for defining a

methodology for evaluating the performance of compilers, together with

supporting data, which justifies the conclusion that the methodology will

be significantly more objective, fair, informative, and reliable than

methods currently in use.

2. Purpose of the Study

In considering the objectives to be sought in performing the

present study, two distinct points of view were taken into account. Trhe

first point of view required the identification of specific technical

objectives. These objectives were, for the most part, spelled out

explicitly in the statement of work for the pioJect. The second part

view looked beyond the technical goals toward eventual application of

the results of the study. These application objectives provided insights

which were useful in establishing an appropriate operational organization

of the study activities.

The result of the organizational effort was to seek a basis for

answerhig a small number of specific, well defined, technical questions.

Here the intent was to separate the varied aspects of the numerous

technical problems to be explored into a few clearly defined questions.

The combined answers to these technical questions would provide the

basis for fulfilling the technical objectives.

The technical objectives and the application objectives are dis-

cussed !:-low. The organization of the study into four specific technical

questions is discussed briefly in Section 3, and in greater detail in

Chapter 2.
3 I



Technical Objectives. The overall technical objective of this

study was to develop criteria by which it will be possible to qualitatively

measure and evaluate compiler performance. These measurements

should make possible valid performance comparisons of different com-

pilers on different machines. If the results of the measurements are

weighted appropriately, then it should be possible to equalize the

environment in which the compiler is being measured with other environ-

ments in which similar compilers might be measured. This "equalization"

of environments should take into account factors such as memory size,

processor speed, instruction set, and operating system support.

Once an "equalization" of environmental differences has been

performed, it is desired that criteria be establi3hed for properly taking

into account other factors such as the type of compiler being tested
(e. g. produ-tion, debugging, etc. ), characteristics of the machine and/

or operating system for which the compiler was designed, and other

features of the compiler that might adversely effect the performance of

the compiler while producing an overall savings to the user. Other

factors to be taken into account are the effects on compiler performance

caused by including in a compiler functions such as optimization and

debugging aids. Here it is desirable to determine a method whereby

the final performance value calculated for a compiler can include an

appropriately weighted component so as to negate the compromises in

compiler efficiency made necessary by including these functions.

Thus, the overall technical objective can be summarized as

follows. It is desired to determine criteria by which the performance

of a compiler can be measured and compared to that of other compilers.

In particular, the criteria shall include factors such as speed, size,

ease of use and maintenance, and efficiency of generated code. Further-

more, the result of using the criteria obtained in the study should

reduce the range of values obtained when different individuals measure

the performance of any given compiler.

iI



A specific secondary technical objective was identified for this

study. This objective was to determine whether or not knowledge of

the architecture and algorithms used in a compiler might provide a

basis for making valid judgements about the performance that should

be expected from a compiler, independent of actually measuring per-

formance by means of test runs, etc. For example, car a useful

generalization be made about an algorithms to the effect that it is most

efficient for the particular language and/or application for which it is

used, or that the complexity of the algorithm is wrong for that of the

language and/or application.

With respect to parsing schemes and table searching methods

in particular, a specific technical objective was to determine:

* If there is a particular parsing scheme that is most
efficient for all languages and user types, or is each
language better suited by a unique parsing scheme.

* If there is a relationship between table searching
methods and the type of language which is being
compiled.

In addition to these two major functional elements of a compiler

* (parsing and table look-up), two other eletnents (code generation and

optimization) were also reviewed with. the objective of seeking useful

generalizations. Also, an analysis of architFectural choices in compiler

design was made. With this context in mind, it is convenient to sum-

marize briefly here the major concl.usions resulting from this part of

the study.

* With respect to compiler architectures, one-pass
compiers are faster and larger than multi-pass compilers.

* Multi-pass compilers permit more extensive optimizations,
and thereefore can produce more efficient object code.

* Choicer. of algorithms for parsing and code generation
are generally made for other than performance reasons.

4Gen rally, the reasons relate to cost of development of
I tcho compiler.

Y

13



* Some generalizations on the relative efficiency of table
look-up algorithms are possibkc, but such generalizations
are mainly related to specific internal architectural
purpose,3 for the table rather than external factors such
as the language being compiled.

0 Optimization methods are highly varied, and no useful
quantitative geaeralization was found which could relate
compiler performance and object code quality for a
particular individual or class of optirnizations.

In view of the above paucity of useful generalizations that

"* resulted from the study of architectures and algorithms, it is clear

that a different approach is necessary to establish the desired criteria

to satisfy the technical objectives of the proposal. The approach taken

* is discussed briefly in Section 3, and in greater detail in Chapter 2.

Application Objectives. Given that criteria could be determined

for compiler evaluation as discussed above, what application might be

made of these criteria? Answering this question providetd insights

that were useful in organizing the activities of the study. These

activities are discussed briefly in Section 3 and in greater detail in

Chapter 2. The answer to the question is summarized below.

The criteria to be established by the study will be useful for the

following tasks:

* Seltcting the best performing compiler from among a
number of off -the-shelf compile,:s.

* Preparing RFP's for compilers and providing the basis
for reliable performance acceptance testihg of the
delivered product.

* Provide useful assistance in choosing computer hardware
and compiler combinations as a package.

* Provide useful assistance in choosing computer hardware
where compilers are to be parchased separately.

With these application objectives in mind, it becomes clear that

the criteria to be established Lo satisfy the technical objectives discussed

above must (at least in principal) be translatable into a common unit of

value. The obvious ,-.t of value that comes to mind is the dollar.

14



Con:equently, it became an identified objective of the study to establish

criteria which could provide the basis of dollar cost/benefit analysis

of a compiler. This means that measurements to be taken of compil(.er

pe'rformance should ultimately be translatable into a dollar value for

the performance benefit of the compiler. The approach taken in this

study is specially directed toward this objective.

Implicit in the above observation iu that a better basis for

establishing the dollar cost of a compiler is needed. In choosing off-

Ihe-shelf compilers, its price tag is an adequate cost measure. However,

in preparing RFP's, the vendor must be given in incentive to produce

a better performing compiler than minimum specifications. These cost

and incentives issues are beyond the scope of the present study. However,

the criteria for evaluating performance might be a suitable basis for

eventually establishing appropriate incentives in procuring compilers,

once sufficient experience in their use has accumulated.

3. Technical Questions Studied

In this section a brief discussion is presented of the specific

technical questions whose answers were sought as the basis for fulfilling

the technical objectives of the study. The reasons for choosing these

questions, and how these questions determined the specific activities of

the study are discussed in Chapter 2.

Four technical questions were pursued. These questions are

conveniently organized into two groups. The first group consists of

the following single question which constitues the basis for fulfilling

the specific secondary technical objective discussed in Section 2:

. Can analysis of a compiler's architecture and

algorithms provide a basis for making valid
judgements about the performance that should
be expected from a compiler?

We will refer to this question briefly as the "architecture/algorithms

question".

15



The second part consists of three questions which jointly provide
the basis for fulfilling the overall tecLhical question discussed in

Section 2. These questions are listed. bel3w,

e How can two compilers w:.th the same features and

operating in the same environment be compared?

6 If two compilers with the same features operate in
different environments, how can their measured
differences in performance be attributed to the
environmental differences vs. the compiler
differences?

a How should a compiler buyer dea.l with the problem
of evaluating compilers with different spe :ial
features ?

These three questions will be briefly referrcd to respectively as:

9 The "same environmcnr question",

* The "environment equalizing question", and

0 The "special features question".

It should be noted that the first question is directly applicable

to the application objective of selecting among off-the-shelf compilers

(provided that these compilers have similar features). Furthermore,

the question specifically applies to the overall technical question once

the environmental contributions have been "equalized" and appropriate

weights for special features have been calculated.

The second question is specifically aimed at the application

objective of assisting in hardware selection where compilers are to be

procured separately. Furthermore, this question specifically applies
to the overail technical question in that its answer provides the basis

for "equalizing" environments.

The third question is specifically aimed at the technical objective

of calculating appropriate weights for Taking compensations in overall

performance values calculated for compilers with different special

features.

16



4. Organization of the Final Report

Chapter 2 presents P. detailed discussion of how the technical

questions studied contribute to fulfilling technical and application

objectives.

Chapters 3, 4, 5, 6, and 7 respectively present analyses of

architectural choices in compilers, and algorithms used for table

look-up, parsing, optimization, and code generation. These analyses

comprise the report on the study of the architecture/algorithms

question.

Chapters 8 and 9 provide a basis for answering the same environ-

ment question. Chapter 8 provides a detailed overview and technical frame-

work, and Chapter 9 specifically establishes methods of preparing test

programs which would establish useful compiler performance measures.

Chapters 10, 11, and 12 provide a basis for answering the

environment equalizing question. Chapter 10 describes the methods

that can be used to measure environments L, terms of a "compiler

Gibson mix". That is, standard tests are described which can be applied

to different environments to determine their relative efficiency in

.3upporting compi'.er activities, and thus providing "equalization" factors

for the environments. Chapters 11 and 12 present experimental data

which provide the basis of establishing a "compiler Gibson mix".

Chapter 13 discusses a basis for seeking an answer to the special

feature question. The study of this question quickly led to the conclusion

that a great deal of work beyond the scope of the present study would be

required in order to establish criteria to answer this question in an

adequate manner. Consequently, the study was limited to identifying

specific areas of possible future study that would contribute to providing

an adequate answer.

Chapter 14 summarizes the conclusions reached in the study.

Conclusions are genaerally included in the separate chapters where

appropriate, and Chapter 14 presents an organized list of these con-

clusions with appropriate cross references to other sections of the

report.

17



Chapter 15 presents recommendations which appear appropriate

in the light of the results of the study. Specifically, these recommendations

identify areas requiring further study, and summarize the specific pro-

cedures constituting a standardized methodology for evaluating compilers

in different environments with different special features which were

developed in the study.

.41

18



CHAPTER 2

OVERVIEW OF TECHNICAL QUESTIONS

1. Introduction

Section 2 of this chapter introduccs the basic technical concepts on

which the study was based. The concepts are discussed briefly in Section 2

and in furthe., detail in other sections of this chapter. It is convenient to

organize the conce.-k! -;.o two broad catagories:

a Concepts related to the establishing of a canonical
representation of users, environments, and compilers.

#A Concepts related to catagorizing the factors which influence the
performance of compilers in measurable terms.

The first category consists of a number of profiles and "Gibson

mixes". Profiles represent a user or a compiler in terms of elements of a

high level language, such as AED, or the source language on which a

compiler to be evaluated performs its compilation function, or in .erms of

performance factors. A "Gibson mix" is a representation of a collection of

programs in terrrs of which a compiler/operating sy-stem environment can

be measured. The result of such a measurement provides a quantitative

statement of the degree to which such an environment supports the functions

of the collection of programs.

The second category establishes a complete organization of factors

affecting performance, The organization consists of five components

which are introduced briefly in Section 2, and are discussed in detail in

Section 7.

Sections 3, 4, 5, and 6 respectively present discussions of the

architecture/algorithms question, the same environment question, the

environment equalizing question, and the special features questions. For

the architecture/algorithms question, the discussion consists of a general

introduction to Chapters 3, 4, 5, 6, and 7 in which detailed discussions of

algorithm, choices and algor.thms for four compiler functions are discussed.

For the remaining three questions, the discussions in their respective sections

v provide an overview of the appioach taken in this study to explore the question,

and a brief summary of how the study of the questions contributes to establishing

a basis for cost/benefit analysis of compilers.

19



2. Technical Concepts

This section introduces the technical concepts on which the study was

based. Each of the concepts relate to repreRenting users, environments

and compilers, and each is discussed in a separate sub-section, The

discussion includes a description of how these concepts interrelate. The

five factors which influence performance are introduced in the first sub-

section of this aection.

Factors that influence compiler performance. Below is a brief

introduction to the five classes of factors that influence the measureable

performance of a compiler. These factors are discussed in further detail

in Section 7.

1. Directly Measureable Factors

Factors which define performance. (Time and space for both
compiler and object code.)

2. Direct imnternal Factsrs

Factors internal '.o the compiler 'architecture and algorithms)
which ilirectlv affect performance as measured.

3. Direct External Factors

Factors external to the compiler (environmental factors such
as host machine and operating system, etc. ) which directly
affect performance as measured.

4. Indirect Internal Factors

Factors which contribute to the "value" of a compiler (special
features) but which cannot be directly measured in terms of
performance as measured.

5. Indirect External Factors

Factors which define how the compiler is to be used and thereby
indicate the relative importance of the factors. in combination.
these factors define the measured performance of a compiler
with respect to a "typical" source language program.

User Profile. A User Profile defines how a user's application

*programs make use of the various elements and constructions of a language.

It is specified quantitatively as the fractions of all the elements or constructions

of a language in a "typical" user program which appear in the form of each

element or construction. Chapter 8 presents a descripriun of Lhe anguagu

elementh which might be used as a basis for defining User Profiles.

20



a iTwo different User Profiles are meaningful. A static 'User Profile

countb each occurrence of a language element in the user's collection of

applicition programs equally. A dynamic User Profile weights each
occurrence with the relative frequency with which the occurrence is

executed in normal use of the collection of programs.

Compiler Performance Profile. A Compiler Performance Profile

defines how well a compiler handles each of the language elements and
constructs in terms of which User Profiles are defined. Each element is

assigned four (or sometimes two) performance measures. These measures

are described above as the "directly measurable factors."

Compiler Demand Profile. A Compiler Demand Profile defines how

the source code in which a compiler is written makes use of the various

elements and constructions of that language. It is specified quantitatively

in the same manner as a User Profile. Both static and dynamic Compiler

Demand Profiles are meaningful , as in the case of User Profiles.

Compiler Evaluation Profile. A Compiler Evaluation Profile defines

how well a compiler performs on a "typical" user program. It is specified

quantitatively by four quantities, one for each of the four "directly measur-

able factors" described above. It is calculated by taking a weighted sum of
the four evaluation factors for all elements comprising a Compiler Perform-

ance Profile. The weights used for generating compiler space and time per-

formance measures are the static User Profile weights, and the dynamic

User Profile weights are used for :,enerating the object code measures.

If additional adirnistrative information is taken into account, then

a number of uscful dollar valuations can be assignea o a compiler once its

compiler evaluation profile has been calculated. These considerations are

discussed further in Section 4 of Chapter 8.

"Compiler Gibson mix'". A "compiler Gibson mix" defines how well

a computer/operating system environment supports the activity of ccmpiling.

An example of how a 'compiler Gibson mix" might be defined is presented

in Chapter 10. This example is based on two static Compiler Demand

Profiles generated during this study, one for an AED compiler and one for

a J3B compiler.

Ai



"User Gibson mix". A "user Gibson mix" defines how well a

computer/operating system environment suppcrts the collection of user

* application programs which will normally run in an environment. A "Gibson

-mix" for a computer has in the past been defined for such applications

categories as COBOL applications. These "mixes" are based on specifying

the relative importance oi different instructions and addressing modes of a

computer. It is suggested in Chapter 6 that a "user Gibson mix" could

alternatively be developed using the methods of Chapter 10 for generating a
"compiler Gibson mix. " Whereas a "compiler Gibxon mix" is based on a

Compiler Demand Profile, the "user Gibson mix" would be based on a

dynamic User Profile.

3. Overview of the Architecture/Algorithms Question

In Chapter 3, fourteen fuctional elements of a compiler are described.

An architecture is described for a one-pass compiler using eight of these

elements, and an architecture for a multi-pass compiler is described

involving thirteen of the elements. The multi-pass architecture involves

thirteen phases in order to demonstrate an extreme design directed toward

minimizing space. This architecture also demonstrates the wide range of

multi-pass architectures that are possible by means of recombining the

twelve phases into a smaller number.

Four of the twelve functions are discussed in great detail in

Chapters 4, 5, 6, and 7. The functions discussed in these chapters are

table look-up, parsing, optimization, and code generation respectively.

Discussed are four categories of table look-up algorithms, four categories

of parsers, two broad categories of optimization techniques (involving a total

of twenty-eight distinct optimizations), and three types of code generators.

The major conclusion reached from the study of the architecture/

algorithms question is that knowledge of these aspects of a particular

compiler is not useful in evaluiting the usefulness of the compiler.

(A summary of these conclusions is presented in Chapters 1 and 14.)

zzI

%2



F

4. Overview of the Same Environment Question

The full statement of the same environment question is repeated

below.

How can two compilers with the same features and

operating in the same environment be compared?

Approach. A number of test programs are created which represent

(in a suitable weighted combination) a "typical" program to be compiled or

executed. The directly measurable factors are measured with respect to

the test programs, and the measurements are suitably combined to create a

performance measurement for each directly measurable factor with respect

to the "typical" program. The direct external factors are not involved since

the environments are identical. Direct internal factors are not explicitly

considered, because better algorithms and architectures should result in

better performance as measures. However, knowledge of variety of these

factors is necessary in order to establish a suitable set of test programs.

Consideration of indirect internal factors is avoided by assuming that the

special features of the two compilers are identical. Indirect external

factors comprise the User Profile which determine the weighting factors to

use as combining test program results into measures for the "typical"

program.

Basis for Cost/Benefit Analysis. Each directly measurable factor

may be assigned a re.lative dollar worth. The performance measures for a

"typical" program can then be used to assign a dollar benefit difference

between the two compilers. Cost is price.

5. Overview of the Environment Equalizing Question

The full statement of the environment equalizing question ic repeated

below.

If two compilers with the same features operate in
different environments, how can their measured
differences in performance bo attributed to the
environmental differences vs. the compiler
differences?

r Approach. Each compiler is evaluated as in the equal environment

questicn to generate performance measures for a "typical" program,

23



However, these measures represent effects of both direct internal factors

(architecture and algorithms) and direct external factors (machine and

operating system). To separate these two contributions, generate a

Compiler Demand Profile in terms of some suitable elements. This profile

constitutes the relative use of the elements by a "typical" compiler. Each

element should be represented as an assembly language program pro-

grammned by a highly skilled programmer to take advantage of all of the

environmental special features which could be exploited by a compiler.

These programs are then compiled and executed. The relative time and

space for these Compiler Demand Profile programs can be combined to give

an overall measure of how well the computer/operating system environment

contribute to possible compiler performance for compiler time and space

measures. If the test programs used to represent the '"ypical" user pro-

gram (the User Profile) are used instead of the Compiler Demand Profile

programs, then the resulting mEcasures should show how the computer/

oerating system environment contribute to object code time and space measures.

Basis for Cost/Benefit Analysis. The answer to the environment

equalizing question will contribute to improved purchase criteria for:

(1) A package of compilers together with computer,
operating system, etc.

(2) A computer, operating system, etc., when
compilers are to be purchased separately; and

(3) Writing specifications for expected performance
of a compiler on a new computer operating system,
etc. , based on the known performance for a similar
compiler on a different computer, operating
system, etc.

6. Overview of the Special Features Question

The full statement of the special features question is repeated below.

How should a compiler buyer deal with the problem of
evaluating compilers with different special features?

Approach. Rather than attempt the very difficult allocation of

pe rformaznce deraaton inlui., of spca fc-Uc eseo . n

ease of maintenance), we instead recommend that the benefit of the feature

be calculated independently as a dollar value.

24



Basis for Cost/Benefit Analysis. For the ease of use factors, the

benefit derives from reduction in number of debugging compilations, a-d

related factors. * These can relatively easily be assigned a dollar benefit

value. In comparing two compilers, their differences in performance may

be assigned a dollar value as described above for the same environment

question and the environment equalizing question. The dollar value of ease oZ

use factors can then be added into the anaiyais in a straightforward manner.

To apply this approach therefore requires research (beyond the scope of this

study) on the psychology of using ease of use factors. For ease of maintenance

factors, the suggested approach is to require vendors to supply option price for

the features for -which there is a clear expectation that they will be used.

7. Factors That Influence Compiler Performance

With the above brief overview of the three main technical questions

of our study to provide an understanding of the overall method of approach

for the study, we present in this section a diecussion of each of the five

categories of factors, and how they interact in effecting the study of these

three questions.

Directly measurable factors. The intention here is to make measurements

which in combination provide a Compiler Performance Profile. The dimen-

sions of the profile should be such that a User Profile can also be generated

which assigns a relative importance factor to each dimension. Consequently,

the study establishes criteria which corresponding to these dimensions,

and establishes methods of creating test programs to be used in generating

the Compiler Performance Profile.

For each dimension, a group of test programs is generated; for each

test program, the following measurements are iaken:

1. Compilation Time - This factor should be a combination of
both CPU time and I/O time. (The present study was primarily
based only on CPU time. ) If the compiler output is assembly
language code, the time to assemble may be included.

2. Object Code Execution Time - Thia factor is the CPU
time required to execute the compiled code.

See discussion on indirect internal factors in Section 7.

25



_! 4 1 7

3. Compiler Space - Tlis factor is the amount of core
(e. g. size of partition) needed to compile the test
program.

4. Object Code Size - This factor is the amount of core
required to execute the test program.

A combination of the measurements for the test prograns within the

group results in four summary measures for the dimension.

Direct internal factors. These factors are internal to the compiler

and directly affect the values of the four measurements indicated above.
They are: T Architectural organization of the compiler.

Algorithms used.

* Data organizations used.

* Presence of special features.

The approach we take makes no attempt to allocate or distribute perform-

ance measurements among the above internal factors. Rather, the direct

benefits and/or costs due to these factors should be accounted !or in the

dollar procurement cost of the compiler and the Compiler Performance

Profile discussed in Section 2. Since the relative ease of r.maintenance may

depend on the architecture of the compiler, and the ease of use depends upon

the inclusion of special features, certain indirect benefits of architectural

organization and special features will be discussed in a later sub-section on
i indirect internal factors. In spite of the fact that this study was not directly

concerned with the effects of these factors on performance, it is important

that the breadth of possible direct internal factors be taken into account in

designing the sets of test programs. This means that potential differences

in performance between two compilers due to their architecture or algor-
ithms should show up as differences in 2ompiler Performance Profiles.

The weights assigned to these differences, however, are entirely dependent
on the User Profiles of the syntactic elements comprising the dimensions of

the profiles. (See the later sub-section on indirect external factors.)

Direct external factors. These factors are external to the compiler

and directly affect the values of the four measurements indicaned ab've.

They are:

26



'7 71-.

0 Hardware

" Machine Configuration.

• Machine Speed.

* Machine Instruction Set.

* Machine Instruction Word Format.

• Operating System

• I/0 Interface.

0 I/0 Support Software.

0 Linker/Loader/Compilation Unit Format.

* Inter-Module Interface Standard.

* Parameter Passing Standard.

Q Error Handling Standard.

• Assembly Language/Assembler Requirements.

Consider two compilers with the same architecture, algorithms, data
organization, and features which are to run in different environments

(i. e. different hardware and/or operating systems). One would expect

differences in performance due to the above factors. If it is necessary to

compare two compilers which have both different internal factors and

different external factors, how does one attribute the differences in perform-

ance profiles as to internal vs. external factors?* The suggested approach is to

develop methods of constructing a profile cf compilers which will be analo-

gous to the "COBOL Gibson mix" (used for evaluating the comparative

performance of machines with respect to business applications). The profile

of compiler computational element usage may be more or less the source

for a vide variety of language types and ieatures, or may be highly sensitive

to such differences. The stuiy undertakes to at least approximately

determine the degree of such variability. Given a profile for a certain class

of compilers, the approach recommends that the profile be implemented by

good coders in assembly language for each machine under consideration.

The resulting programs constitute "compiler Gibson mix". Given t-o environ-

merits, the performance of the two environments with respect to this "mix"

characterizes the overall compiler support performance factor for each

This is simply a restatement of the environment equalizing question.

~27



environment for compiler time and space measurements. These factors

would then constitute the fraction of combined compiler and environment

performance for compiler time and space as measured due solely to environ-

mental differences. The remainder of the differences in compiler time and

space performance as measured would be attributed to the direct internal

factors of the compilers.

A "user Gibson mix' which characterized the applications to be run

could be used in a similar manner to determine the environmental contribu-

tions to the object code time and space performance factors. One way in

which su-vh a "user Gibson mix" could be derived would be to use the test

programs (or a suitable subset) developed to characterize the static and

dynamic User Profiles. By hand coding the programs into assembly

language, by a good coder, the static profile weights could be used to

generate an overall object code space factor characterizing the environ-

mental support. By using the dynamic profile weights, the overall object

code time factor could be similarly generated.

The present study of the direct external factors is limited to:

0 The approximate determination of the degree of
Compiler Demand Profile variability.

0 Development of methods for establishing Command
Demand Profiles.

* Development of methods for measuring the
compiler support performance profiles of various
environments.

Indirect internal factors. There are several factors which are based

on architecture and special features, Lnd whose costs are therefore internal.

However, the major benefits of these factors are external to the compiler.

Architectural factors may be present for such purposes as:

* Portability (changing host machine).

* Retargetability (changing target machine).

* Maintenance (bug fixing).

0 Enhancabilitv (addine features).

The suggested approach to these features is that the cost/benefit analysis

can be bc-t handled contractionally. This will he discussed further in

Chapter 13.
28



Ease of use factors affect the value of a compiler by faci'litating the

manne r in which a compiler can be used operationally. The forlowing are a

list of isuch factors:

* Diagnostics.
* Data dependent error detection.

0 Parameter/argument data type matching.

C Syntactic error detection.

* Hooks for traces, breakpoints, symbolic debugging,
patching, etc.

The determination of how the value of these factors can be evaluated is

beyond the scope of the present study. How their value might be determined

is discussed in Chapter 13.

Indirect external factors. The factors which define how a compiler

is to be used are both external to the compiler (being determined by the user)

and not directly measurable. The suggested approach to these factors is to

establish a set of language elements in terms of which a User Profile cau be

ascertained. This profile will assign to each element a weight which will

correspond to the relative importance the element has in the collection of

user application programs. For each element, one or more test programs

can be written which when compiled and executed generate the four direct

measures of compiler performance with respect to these measurements.

Section 5 of Chapter 8 presents an organized list of language elements

which could provide the basis of establishing User Profiles. How test

programs might be prepared to measure a compilers performance with

respect to these elements, thereby establishing a Compiler Performance

Profile, is described in Chapter 9.

29



CHAPTER 3

ARCHITECTURAL CHOICES IN COMPILER DESIGN

1. Overview

Trade-off factors. In designing a compiler, an architecture is

chosen which balances a number of design objectives. The trade-off

factors normally taken into account in choosing an architecture are the

following:

" Compiler speed

" Compiler size (including work space)

* Object code speed

* Object code size

* R.targetabiity

* Portability

* Ease of maintenance

" Debugging features

" Cost of development

Elements of compilers. Thus, a compiler architecture can be

regarded as the organization of the several (unction3l elements required

to perform the compiling of a source program. These functionpl elements

will be described briefly in Section 2. For the purposes of the overview,

they are listed below with short descriptive phrases:

• Lexical analysis -- forms lexemes.

* * Table look-up -- maps lexemes to symbols.

• Declaration processing -- assigns types to symbols,

• Parsing -- identify groups o( symbol strings.
* *Tree building -- organizes groups into tree structure,

* ***Set/used analysis -- identifies where variables are set
or used.

S €***Flow analysis -- identifies straight line executable
sequences.

30



* ***Global machine independent optimization -- restructures tree.

* Storage allocation -- maps variables onto storage locations.

• Register allocation -- maps variables onto hardware registers.

* *Machine independent code generation -- walks tree and
maintains state information.

• Machine dependent code generation -- outputs object code.

0 **Peephole object code post-processing -- modifies object

code locally.
* ***General object code post-processing -- modifies object

code globally.

Note: Those functional elements flagged with a single asterisk (*) are

used in multi-pass compilers to facilitate information maintenance

between phases (passes) of the compilation. The single element

flagged with two asterisks (**) is used only within a one-pass

architecture for optimization purposes, i.e., to improve object

code quality. Those elements flagged with three asterisks (***)

are only used in multi-pass compilers for a variety of optimization

purposes. (See Chapter 6.)

Interactions among trade-off factors. Let us now consider how

the trade-off factors influence compiler architecture, Compiler and

object code speed and size constitute the four basic performance measures

considered in the study. Compiler size trades-off with compiler speed

by means of overlaying and one-pass vs. multi-pass design considera-

tions. Object code speed and size generally both improve together at

the cost of compiler speed by means of various optimization techniques.

Retargetability does not interact very strongly with the performance

measures, but rather interacts for the most part in the ease of maintenance

and cost of development. Retargetability is generally obtained by an

appropriate choice of the method to be used for imr!!ementing the machine

independent part of the code generator. (See Chapter 7.)

Portability interacts somewhat with c piler speed and -- i---

in that it is achieved by minimizing that part of the compiler implemented

in assembly language. The assumption here is that assembly language

31



* impiementations are generally more efficient than high level language

(say AED) implementations.

Ease of maintenance is generally improved at the expense of

compiler speed and size by means of such techniques as top-down design,

modularity, and structured programming. Consequently, the methods

used to improve ease of maintenance also generally reduces the cost of

development for the compiler, except possibly that some one-shot

programming training costs may be required for learning the techniques.

Debugging features will generally add to development costs.

Generally they also cost something in compiler performance. However,

it appears that one can make a quite useful generalization concerning the

desirability for debugging features in a compiler. This generalization

will be presented below in the context of a general comparison of one-

pass and multi-pass compilers.

Contrasting obiectives of one-pass and multi-pass compilers.

Generally a one-pass compiler is designed for speed as a primary

objective. Multi-pass compilers, on the other hand are designed with

a trade-off of the various factors in mind to achieve an appropriate

balance of these factors. Consequently, it seems desirable to have two

compilers, if budget permits, for a given language:

* A one-pass compiler intended primarily for debugging

at the unit testing level.

* A multi-pass compiler intended for system hitegration
and the compilation of final production run object code.
This compiler should include instruments to facilitate
the development of static and dynamic User Profiles.

Since the one-pass compiler is intended for repeated recompilations

during the debugging (unit testing) of programs, it should be as fast

as possible and should have a set of diagnostic and debugging features

which are suitable for minimizing the number of recompilations and

debugging runs required to successfully unit test a module. On the
udin mr hif du t'he rily opi mizat.io nls '"hat could be us.. .ed

code quality are those of the peep-hole object code post processor

32



variety that will not significantly slow down the compiler. The reason for

this rather extreme position favoring compiler speed over object code

quality is that many recompilations are likely during debugging, and

executions will generally be limited to partial or limited trial cases.

The multi-pass compiler must balance compiler performance

agaiz~st object code quality. It is probably desirable to be able to

optionally include a variety of optimizing passes depending on whether one

is in the system integration phase or the final compilation of production

run programs. During these activities, compiler diagnostics are likely

to be of much less value than in the debugging (unit-testing) phase using

the one-pass compiler. Furthermore, it is desirable to instrument

the system integration/production run compiler so that detailed static

and dynamic user profiles can be established. These profiles and instru-

ments should be able to locate bottlenecks in the production system so

that the system can be fine tuned, and bottleneck programs can be re-

programmed or recompiled with more optimizing options so as to

improve overall performance. Compiler aids to debugging are less

important in these stages as in the debugging stage, but the compiler

should still create some support for symbolic referencing /modifying of

programs and variables.

The remainder of the review. Section 2 following will present

?, brief description of each of the functional elements of a compiler

introduced above. Section 3 will present a characteristic architecture

for a one-pass compiler. Section 4 will present a generalized architecture

for multi-pass compilers, in which almost every functional element is

a separate pass of the compiler. This generalized architecture will

illustrate how various architectural choices within the multi-pass frame-

work can be seen as appropriate groupings of the elements or phases in

to fewer phases.

33

'I.,



2. Functional Elements of Compilers

In this section, a brief description is presented for each of the

functional elements of a compiler that were introduced in Section 1.

Lexical analysis. The lexical analyzer scans the input scrings

character by character and applies lexical formation rules for tokens.

If the input source language program is interpreted as a one long

character string, then the output of the lexical processor is a sequence

of short character strings, each such short string being a lexeme. In

the process of lexical analysis, comments are generally removed, and

blanks are either removed, or in some contexts, converted to a standard
punctuation mark, such as a comma. As a by product of lexical analysis,

a lexical code is usually attached to the lexeme which provides some

information as to the lexeme's broad cat-3gory. Examples of categories

that might be used by a lexical analyzer are as follows:

0 Punctuation mark (e.g. comma (,), semi-colon (;), etc.).

. Reserved works (e. g., GOTO, CALL, IF, THEN, etc.).

0 User variable names,

• User labels.

* User literals (may be broken .own by data type of literal).

In most architectures, the lexical analyzer is called as a subroutine

by the parser (one-pass compilers) or by the declaration processor

(multi-pass compilers). When called, the input character string is

scanned, and the next single lexeme formed is returned as output, in

the multi-pass architecture presented in Section 4, the lexical analyzer

is organized as a separate phase in order to illustrate the many

architectural choices available for grouping the functional elements.

Table look -up. The table look-up function accepts as inpLut a

lexeme which is the output of the lexical analyzer. Using one of a variety

of mechanisms (see Chapter 4 ), it is determined whether or not an

entry exists for the input lexeme in a symbol Ltb!.z. If so, usually the

34



location of the entry is returned as output. lf not, a new entry is made

for the lexeme, and, usually, the location of the new entry is returned.

In a one-pass compiler, the table look-up function is usually

called by the parser immediately after a lexeme is returned by the

lexical analyzer. In a multi-pass compiler, the table look-up function

is generally called by the declaration processor, which is a separate

phase. In the architecture presented in Section 4, the table look-up

function is itself organized as a separate phase.

Decl-aration processing. The declaration processor accepts as

input the location of an entry in a symbol table, output by the table look-up

function, and an appropriate type identifier obtained from the lexc:me

string in one of several possible ways. The declaration processor stores

the type information in the symbol table for the specified entry; it produces

no output.

In a one-pass compiler, the declaration processor is called by

the parser. In this case, the pa-sing rules include productions for

declarations, and when the parser recognizes that a declaration production

is to be performed, the parser calls the declaration processor to perform

the work associated with this production.

In a multi-pass compiler, the declaration processor is usually a

separate pass. In this case, the declaration processor usually is

organized more-or-less as a special parser which recognizes just those

simple syntactic productions related to declaration keywords. When such

a production is recognized, then the appropriate type information is

stored in the symbol table for the current active non-keyword symbol

table entry.

In the architecture presentcd in Section 4, the declaration processor

is organized as a separate phase which is distinct from all the other

functional elements.

35



27z -_ -fA - M

Parsing. The parser's function is to apply the syntax rules to

the source program. In effect, the parser may be thought of as processiug

a sequence of symbols (each represented by a location in a symbol table)

stacking the symbols on a push-down list (until a pattern matcher recognizes

the applicability of a syntactic production), invoking an appropriate output

function for the recognized production, and then appropriately modifying

the stat,; of the push-down list. (The variety of alternative parsing

algorithms is discussed in Chapter 5.) If we ignore the output part of

the parser's activity, then the parser can be thought of as placing a pair

of syntactical marks (e. g., special parentheses), around a syntactic

phrase, where a syntactic phrase is a sequence of elements, each of

which is either a symbol or a lower level syntactic phrase. The particular

form of output used depends upon how the parser fits into the overall

compiler architecture.

In a one-pass compiler, generally the parser is "boss". The

sequence of symbols to be processed are "generated" one at a time by

successive calls to the lexical analyzer, each followed by a call to the

table look-up functioi,. The output function called by the one-pass parser

"boss" is the code generator, which d.rectly produces object code for

the recognized syntactic phrase.

In many multi-pass compilers (e. g., the AED compiler), the

parser is a separate phase which follows the declaration processing

phase. The parser processes the linear sequence of symbols which

constitutes the output of the dec.laration processing phase. Although
the code generator could be combined with the parsing phase, in most

multi-pass compilers the parsee invokes a tree-builder as its output

processor.

In the architecture presented in Section 4, the parser is organized

as a separate phase in which the output generated by the parser is simpi;y

the linear string of symbols, together with the pairs of special syntactic

parentheses. Also included for each pair of special syntactic parentheses

is.some :.fo.rmati n deci--ribing the globai state of the push-down list

(beyond the top portion of the list involved in the matching of a syntactic

production) at the time the syntactic phrase is recognized.

36



Tree building. The Lree builder is used in multi-pass compilers

to organize the parsed phrases recognized by the parser into a hierarchical

tree structure representation. Whenever the parser does not directly

invoke the code generator as its output process, then usually a tree builder

is invoked so that the information representing the source program that

survives the parsing phase is in tree structure form. (Examples include

the AED and J3B compiler's. ) At each node of the tree, the following infor-

mation is generally maintained:

* The location of one symbol or keyword in a symbol/keyword
table. (Generally bottom nodes correspond to user symbols
representing op'.jrands, and non-bottom nodes correspond
to keywords re ?unctuations corresponding to productions
to be performed. )

* State infcrmation representing the "global" condition of
the push-down stack at the time the syntactic phrase is
recognized by the parse-.

In the architecture presented in Section 4, the tree builder is a

separate phrase distinct from the parser.

Set/,ised analysis. In a multi-pass compiler the set-used

analyzer develops for each symbol corresponding to a user variable a

list of information that specifies where in the program the data (contents

of storage) associated with the variable is set (changed or stored) and

where it is referenced. In addition, it m~y be conven .ent to -enerate

a similar list for the setting and using of temporary variables associated

with intermediate computational expressions. However, if machine-

dependent optimization " temporaries is desired, then information as

to how temporaries are used and set can be generated as late as general

object code post-processing.

Set/used analysis can be performed during tree building, but in

the architecture presented in Section 4, the set/used analyzer is a

separate phase.

37



Set/used analysis is used in order to perform one or more global

machine independent optimizations. These optimizations may result in

further modifications of the set-used information. (See Chapter 6.)

Flow analysis. The flow analyzei is used in multi-pass compilers

to support one or more optimization algo:'itbms. (See Chapter 6 .)

The flow analyzer processes the tree struzture representation of the

source program being compiled to identify those nodes corresponding

to straight line sequences of executable cod!e. The output of the flow

analyzer may either be a table of identilied groups of nodes, or suitable

codes entered into Lhe nodes of the tree structure.

* Architecturally, the flow anal'yzer cculd be attached to the parsing

phase, or could be part of a global -machine independent optimization phase

which follows the parsing phase. in the architecture presented in

Section 4, the flow analyzer is a separate phase that is invcked one or

more times during iterative optimization passes. (See Chapter 6.)

Global machine independent optimization. in some multi-pass

compilers, this function takes place following the parsing phase and

before the code generation phase. The purpose of this function is to

reorganize the tree structure representative cf the source programs

so a: to produce improved performance in the object code tc be generated.

(See Chapter 7 .) Since these optimizations miy result in altere t

set/used patterns, it is assumed that appropriate changes are made to

the set/used information as part of the function (f optimization.

In the aichit.!cture presented in Section 4, global machine

indepenaunt optirization is represented as one o- more separate phases

teat may be iteratively invoked in conjunction with iterative invocations

of the flow analyzer.

Storage allocation. In one-pass compiler:;, or in multi-pass

global machine independent optimization), storage can be allocated for

38



v- -- Y*Y* -I

variables immediately after declaration processing. Otherwise, allocation

of storage to variables is done in conjunction with, or following, global

machine independent optimization.

Allocation of storage for temporaries is fairly wellhandled by

the following approach. This approach operates during object code

processing by assigning the n(i,j)-th temporary of a given data type (say,

data type i) to the n(i,j)-th sub-expression (which was not immediately

used as an operand following its calculation) of that data type within the

j-th expression. (Temporaries for common-aub-expressions are allocated

during global machine independent optimization.) At the end of code

generation, space for N i = MAX n(i, j) occurrences of data type i are

allocated. A somewhat more optimized approach would reduce the

required number of temporaries during general object code post-processing

by taking into account that the intermediate calculated result is preserved

in a register until needed, and therefore does not have to be stored in a

temporary location. (See discussion for register allocation which follows

below.)

In the architecture -resented in Section 4, storage allocation for

variables is a separate phase, and storage allocation for temporaries

is done as a separate global object code post-processing phase.

Reister allocation. The allocation of hardware registers (e. g.,

base registers, operand registers, index registers) to variables and

indices for subscripted variables is quite complex if a highly optimized

approach is desired. Probably the best relatively simple approach is

for a preliminary assignment of registers to variables to be made as

part o. machine dependent code generation using a least recently

used algorithm. (T'ie previous contents is allocated a temporry

storage "ocation at 'he same time, and the old contents is "tentatively"

stored in the temporary at this time. The global machine dependent

post-p.-ocessor will eliminate these allocations and STORE instructions

from i,he object code. This will take place when it is determined that the

old c )ntents will nct be again required in a computation within an identified

stra'.ght line sequence of executable code.)

V 39



A least recently used algorithm can be incorporated into a cne-

pass architecture (without the global optimization benefits, of course),

as well as in multi-pass compilers. In the architecture described in

Section 4, it is assumed that the above described approach is taken for

register allocation, although the architecture includes the possibility

of using alternative selection algorithms other than the least recently

used algorithm.

Machine independent code generation. The separation of machine

independent and machine dependent code generation functicns is described

in some detail in Chapter 7 . In the architecture presented in Section 4,

a table driven code generator approach is assumed, and the machine

independent code generator is organized as a separate phase which

operates in a modified fashion from the procedure described in Chapter 2

for table driven code generation.

Machine dependent code generation. As indicated above,

Chapter 7 presents a detailed discussion of the separation of machine

independent and machine dependent code generation functions. In the

architecture presented in Section 4, the machine independent code

generator is also organized as a separate ;e which operates in a

modified fashion frc.m the procedure described in Chapter 7

Peephole object code post-processing.. This activity is used in

one-pass compilers to improve the quality of the object code produced.

A small buffer of object code lines examined to determine if simple

machine independart optimizations can be performed. The most common

use of this activity is to eliminate unnecessary contiguous LOAD STORE

pairs of instruction5 which result from two consecutive code generation

productions.

General object code post-processing. This function serves the

purpose of performing a number of global machine dependent optimizations.

As discussed in Chapter 6 , this type of optimization is probably best

handled in this nanner. As indicated above, register allocation and

40



storage allocation can be optimized in this way. In the architecture

presented in Section 4, a separate general object code post-processor

phase is included as the last phase of that architecture.

41



3. An Architecture for a One-Pass Compiler

In this section we present an architecture for a one-pass compiler

which is more-oi -less representive of how one-pass com-ilers are

organized generally. The one-pass compiler architecture is illustrated

in Figure 1. Certain "boxes" in the flow chart are numbered in the

upper left hand corner. These "boxes" correspond to basic compiler

functions as discussed in Section 2. Note that four error conditions are

identified in the flowchart (El, E2, E3, and E4). It is beyond the

intended scope of this discussion to elaborate on error-handling in the

compiler.

In the architecture illustrated in Figure 1, the parsing function

is "boss". That is, the main routine of the compiler performs the parsing

function after appropriate initialization, and by appropriate invocations

of the other compiler functions as subroutines. Following the flow in

Figure 1, we see that after initialization and opening of files (and

other preliminary I/O functions), the lexical analysis function (1) is

invoked to obtain a character string corresponding to a lexeme. This

function would normally use system I/O functions to fill input stream

buffers as they were scanned. Any error detected by the lexical analyzer

constitutes a lexical error and would be handled by some appropriate

mechanism (not shown' following the node El.

The character string lexeme is next used as input to the table

look-up function (2:. If no entry is found, then the table look-up function

may or may not make a new entry for this lexeme. What detern-iines this

action is the value of state information that indicates whether or not

declaration processing (4) is complete. The state variable is set to

indicate that declaration processing is complete in conjunction with

the storage allocation function (5). If declaration process ag is

complete, then not finding an entry for the lexeme constitutes an undefined

symbol error, wbich is handled by appropriate action (not shoun) follow-

ing node E2. In all other cases, ihe address of the symbol table entry

for the lexeme is returned and put on top of the push-down stack.

42



BEGIN
PARSER)

INITIALIZATION

SA.

LXLOP KPALOCATION
- ERROR INDEPCODEE.

PUT ~ ~ FIS SYBLYPOVLU E

ERRO **YES 8 IPEEHL 1
POST- ROCE SINS

[SS

1 43
STRG EC RTO



At this point a test is made to the applicability of the syntax rules

to the sequence of ,.ymbols on the top of the push down stack. This test

constitutes the primary parsing function (3) activity. One of three

possible results can occur from this test activity:

0• A match is found indicating the applicability of a syntactic;, rule that permits a production to be applied to the input string

of symbols.

0 No match is found.

0 A syntactic error is detected.

Syntactic errors are handled by appropriate functions (now shown)

following node E3. The "no ma*ch" condition implies that no production

is applicable, so control loops back to lexical analysis to obtain another

I: leneme.

A "match" is handled as follows. First, the test is made

to determine if the matching production Lidicates that the end of the
source program has been identified, indicating that the compiler has
completed the parsing of the source program. If this is the case,

Final I/O processing takes place including "flushing" output buffers and

closing files, followed by termination of the compiler activity.

L the production is other than "end of program", then a test is

made to determine if the production is a declaration processing

production or a code generation production. Declaration processing

productions are handled by the declaration processing function (4).

This function generally stores type information in the symbol table for

a user declared variable. The first time a code generation production

is detected, the storage allocation function (5) is invoked to allocate

space for user declared variables. (See Section 2.)

Wnereas in a multi-pass compiler, the code generacion production

would usually result in some activity like the tree-builder to develop an

intermediate representation of the source program, in a one-pass

compiler; the production in3tead directly invokes appropriate code

generation functions. First, the machine indiependent code generation

function is invoked. in the one pass compiler, this generally consists

44



I_-. -Ii -- 
k  

I

only of maintaining state information (6) to be used during machine

dependent code generation (7). During the maintenance of state infor-

mation activity, it :s possible that the compiler might detect a fourth

category of error dealing with illegal mismatching of data types or values.

These errors are handled by appropriate functions (not shown) following

node E4.

Since the rejult of the machine dependent code generator is a

sequence of object code "lines" added to an output buffer, a peephole

object code post-processor (8) examines a few lines in the buffer in

order to make munor modifications constitutiig local machine independent

optinizations. (See Section 2.)

Following both the declaration processing function (4) and peep-

hold object code post-processor (8), flow loops back to the lexical

analyzer (1) to obtain another lexeme.

*

445

444



4. An Architecture for a Multi-Pass Compiler

In this section we present an architecture for a multi-pass compiler

in which almost every compiler function discussed in Section 2 is

organized as a separate phase. The purpose of this architecture is to

illustrate two points. First, the degree to which the various compiler

functions can be separated so as to minimize core requirements.

Secondly, the extremes of separability illustrated demonstrates un-

mistakenly that vary numerous alternatives exist for combining what

are presented as consecutive sequences of compiler phases into single

phases encompassing more than one compiler function. When such

combinations are mnade, changes naturally occur in the nature of the

interface data used between phases as a means of inter-phase communica-

tion.

Phase 1. During Phase 1, initialization is performed, files are

opened, and other I/O functions of a preliminary characters are performed,

substantially the same as in the one-pass architecture. (See Section 3.)

Then the I ical analyzer is iteratively called to generate a sequence of

lexemes, also in a similar manner as in the one-pass compiler. Here,

however, the lexenme generated is directly put into a buffered output

stream for processing by Phase 2.

The space required for Phase 1 consists of that needed to contain

the initialization, I/O support, and lexical analysis programs, and I
data structures together with space for input and output buffers.

Phase 2. liauctionally, Phase 2 consists entirely of the table

look-up activity, In addition, I/O support functions are required.

The input to Phase 2 consists of the sequence of lexemes, suitably

buffered, as output by Phase 1. The output of Phase 2 consists of a

symbol table with entries for each user declared (or defined) lexeme,

together with a suitably buffered output stream of symbols, each being

L lucation of the symbol in the symbol table. It is assumed that any

permanent data used for the t.ble look-up functions, such as, for

example, a partial symbol table for punctuation and/or key words, are

included with the tctal symbol table indicated above.

46



We note that in some languages, a suitabl,. use of key words

and/or punctuation would permit a separation of the output stream into

two independent streams: one for declarations and one for executable

statements.

Phase 3. Functionally, Phase 3 consists entirely of the declaration

processor. In add.tion, 1/O support functions are required. The input

to Phase 3 consists of the symbol table and the sequence of symbol table

locations, suitably buffered, which constituted the output of Phase 2.

(If the note indicated for Phase 2 applies, then only a part of the entire

output stream needs to be processed by Phase 3.)

Included in the declaration processor, as envisioned in the

present architecture, is a partial parsing function for just those syntactic

rules selected to declaration processing. Generally, this part of the

syntax should consitute only a small subset of the total syntax of the

source language. As declaration productions are identified, appropriate

entries are made in the symbol table. Also, the symbol table may be

structured according to the hierarchical nesting of declaration blocks,

so that only appropriate portions need be core resident during parsing.

The space required for Phase 3 consists of that needed to contain

the declaration processor programs and data structures (including the

partial parsing functionality), together with I/O support programs ana

data structures, and additional space for input buffers and the symbol

table. Note that no buffers are required for an output stream since

Phase 3 does not generace any.

Phase 4. Functionally, Phase 4 consists entirely of that larger

part of the parser dealing with the syntax of executable statements.

In addition, I/O support functions are required. The input to Phase 3

includes the symboi table as modified by Phase 2, suitably organized

hierarchically so that only appropriate portions need be core resident

while parsing within nested procedure definition and block boundaries,

In addiLion, Phase 4 inputs the sequence of symbols suitably blocked,

constituting the output of Phase 2. If the note indicated for Phase 2

47



applies, then o-ily a part of the entire output stream needs to be pro-

cessed by Phase 4.

In the present architecture, the output of Phase 4 consists of

an edited ve: sion of the input stream. The editing consists of the

insertion of pairs cf special syntactic parentheses together with

appropriate state information, as described in Section 2.

The space required for Phase 4 consists of that needed to contain

th-. executable statement parser programs and data structures, together

with I/O support prog-ams and data structares, and additional space

for the symbol table, and input and output buffers. Note that the

separation of the tree building function fiom the parsing phase removes

*the need to also ho;d the tree structure representation of the source

language program .n core concurrently with the above listed items.

Phase 5. Functionally, Phase 5 consists entirely of the tree

builder function. (See Section 2. ) In addition I/O support functions

are required. The input to Phase 5 consists of the outut stream,

suitably buffered from Phase 4. Note that the symbol table is not a
required input for die tree builder, as it is for the parsing function.

Furthermore, the tree builder is a very simple function as compared

with the parsing function. Input support fiinctions are also required.

The outpuc of the tree builder is the tree structured representa-

tion of the source language of program being compiled. State infor-

mation is the input stream (as output b ihe parser) is placed into the

appropriate nodes of the tree structure. Conceptually, at least, it

* is assumed that the entire tree structure remains in core when Phase 5

completes its worK. However, in practice, the tree might be organized

so that smaller portions can be sequentially processed by later phases

provided excessive T/O for re-reading and re-writing the separate

parts can be avoided.

TIM 5p-Ue require' for Phase ", consists of rnat nee(ed to contain

the tree builder and I/O support function programs and data structure,

and additional space for I/O buffers and the tree structure output of the

phase.

48



Phases 6, and 8. The next three phases cinsists of the

set/used analyzer, the flow analyzer, and the global machine independent

optimizer re.,-tively. These three funcLions are optionally used

iteratively to perform machine-independent optimizations as described

Ln Chapter 6 . The input to these phases is the tree structure output

by Phase 5 togetber with the symbol table output by Phase 3. The

c r_ 'lt of the processing performed by Phases 6, 7, and 8 is a restructuring

of t e tree to reflect introduced optimizations, as well as appropriate

indication: in the syrmbol table of unused symbols following all introduced

optimization s.

Each of the three Phases, 6, 7, and 8 require space for the

symbol table and the tree structure. In addition, space is required for

the respective functional programs and data structures. Note, however,

that no intermediate file interfacing exists, and therefore no I/O support

functions are used and no I/O buffers .ire required.

Phase 9. Fanctionally, Phase 9 consists entirely of the part of
the storage allocation function dealing with user declared variables.

(See Section 2. ) The input Po Phase 9 is the symbol table. The output

to Phase 9 consists of entries in the symbol tab, to reflect the addresses

within blot,. nf the storage allocated to various variables, and an

additionell t;,ble (SYMDEF's and SYMREF's) which will be output with

the object code in a suitable format to provide linkage for external

variables.

The space r.:quired for Phase 9 consists of that needed to contain

the storage allocation programs and data structures for variable

handling, as well as the symbol table and the SYMDEF and SYMREF

table for external variables.

Phase 10. Functionally, Phase 10 consists of a very small part

of dhe inachine independent code generation function as described in

Chapter 7 . This small function is described in Chapter 7 as the

recursive Tree Walker (TW). Support output functions are also required.

49



Let A denote an arbitrary node of the tree, and B amd C its left

and right descendents respectively. (Note that either or both of B and

C may be NULL nodes, ) Phase 10 then consists of a single recursive

call to TW with the base node of the entire tree as its single argument.

TW then operates as follows:

* Output the conteritt, of node A with code 1.

* If ttz pointer to node B is not NULL, then recursively
call TW with the pointer to B as argument.

* Output the contents of node A, with code 2

* if the pointer to node C is not NU LL, then :ecursively
call TW with the pointer to node C as argur:ent.

, Output the contents of node A witi, code 3.

* Return to caller.

it is clear that the entire effect of Phase 10 is to linearize the

information contaii.ed in the tree in exactly the same sequence as would

be available to the machine independent code generator as described

in Chapter 7.

This space required for Phase 10 consists of that needed for

the TW program and data and support output programs and data

structures, together with space for the tree and output buffers. Note

that the symbol table need not be core resident during Phase 10.

Phase 11. Functionally, Phase 11 consists of the major part

of the machine independent code gencrato;:. It consists of a scanning

program which linearly scans the data from the nodes of the tree as

output by Phase 10. For each node, a call is made to an appropriate

node-type -elated program which consisr.s of code to process che node

for each of the tree codes that can accompany the node information.

Thus, each node-type related program contains the functionality of

three programs as described for the code generator in Chapter 7

I/O support functions are also required.

50



There are tvo main functions performed by each node-type related

program. One function is to maintain state information that characterizes

the context (derived from ancestor nodes from the tree) that may effect

the interpretation of the node information. The other function is to

output the parameters which would have been included in the sequence

of calls to a table driven machine dependent code generator interpreter.

In Chapter 7 , the machine dependent code generator calls this

interpreter, but in the present architecture, the call is replaced by

putting the parameters into an output stream to be processed by the

machine dependent code generator in a separate phase.

The space required for Phase 11 consists of that needed to

contain the scanning program, the various node-type related programs,

I/O support programs, data structures for these programs, and space

for the symbol table and input and output buffers. Note that the linearizing

of the tree by Phase 10 removed the need for having the tree concurrently

core resident with the large programs of Phase 11.

Phase 12. Functionally, Phase 12 consists of an input stream

scanning function, the machine dependent code generator, a preliminary

storage allocator for temporary variables, and a register allocator.

aupport I/O functions are also required. The input to Phase 12 is the

symbol table and the sequence of parameter data, suitably buffered,

which was the outpu,- of Phase 11. The outp.;t of Phase 12 is an output

stream comprising the object code form of the source program being

compiled.

The input stream scanning function performs some initialization

of state variables, etc., and then scans the sequence of parameter data

combinations in order. For each such combination, the table driven

iriLerpreter (which is the form used here for the machine dependent

code generator ) is called with the parameter list. The interpreter,

as part of its functioning, will Lclude register allocation function and

a preliminary temporary variable storage allocation function.

51



-

In order to perform these functions, .-ach register will be

associated with an identifier for its contents within each straight line

sequence of executable code. These sequen,:es will have been identified

during flow analysis. An algorithm, such as the least recently userc,

algorithm, will be used to reassign a register to new contents for an

intermediate result during a calculation, or for a compiler assigned

temporary resulting from common expres sion elimination during global

machine independent optimization (Phase 8). As each reassignment

is made, code is g-nerated to store the previous contents (if any since

the beginning of a new straight line sequence) in the next available

temporary location of the appropriate type (e.g. base register/pointer;

index register/integer, floating point register/real, etc. ). When the

end of a straight line sequence is found, the bookkeeping tables are

appropriately updated to represent the fact that the contents of registers

are no longer availzble. This may also result in code being generated

to store the present contents of registers in temporary storage locations.

The final temporary storage allocation function is performed in

Phase 13.

The space required for Phase 12 consists of that needed for the

table driven interpreter and its data structures (including those for

managing register allocation and storage allocation), the input stream

scanning program and I/O support functions and their data structures,

and additional space for the symbol table and input and output buffers.

Phase 13. This phase includes a number of general object code

post-processing functions used for global machine dependent optimiza-

tion. (See Chapter 6 . ) In particular, Phase 13 includes a function to

make the final storage allocations for temporary variables. 1/O support

functions are also required.

The input to Phase 13 is the object code output by Phase 12.

The output of Phase 13 (including al'. such post processing activities) is

an edited form of the object code.

52



The final storage allocation for temporary variables works as

follows, The object code is scanned to determine those occasions where

the stored value in a temporary is not subsequently used. In such cases,

the STORE instruction can be detected, and the storage for the temporary

may be deleted if all such uses are eliminated.

The space required for Phase 13 consists of that required for

the particular post processor functions and I/O support functions and

their respective data structures (including bookke. ping tables such as,

for example, for the storage allocation functions described above),

together with space for input and output buffers.

53

{5



CHAPTER 4

TABLE LOOK-UP ALGORITHMS

1. Overview

This chapter reviews the set of compiling algorithms which are classed

as table look-up algorithms. In this class are included all those algorithms

for organizing info.'mation into a number of different structures and access-

ing any specific entry only through the use of a single identifying attribute.

Many such algorithms have been developed for use in assemblers, compilers,

and filing systems, and many have been thoroughly modeled and analyzed

mathematically. The structures used by these algorithms are not necessari-

ly tables, but also include tree structures as well. In addition, the various

structures may have many different internal organizations, and, consequently,

they have definite ranges of performance characteristics which are dependent

on the manner in which that information is accessed, altered, and processed,

as well as on the attributes of the information which is stored into them.

The first sections of this chapter discuss the various computational

struclures which support table look-up operations, and these are di assed

independent of any specific application. The remaining sections explore the

application environment for table look-up algorithms within the context of

compilers. The concluding section summarizes and highlights some of the

more interesting tiade-off and performance aspects for the algorithms and

the applications wh-,ch are discussed. As is indicated in this last section,

Section 5, the greaer part of the information and data presented here is

drawn from the Art of Computer Programming, Vol. III, by D. E, Knuth,

and this survey is augmented with results from a number of reports and

papers which have appeared since this book was published.

2. Categories of Table Look-up Algorithms

Table look-up algorithms fall primarily into four broad categories

determined by the data access methods and storage organizations they

employ.

54



1. Sequential list algorithms are the simplest with
information taking on uncomplicated tabular or list
forms, The searching techniques used are strictl
serial, possibly taking advantage of orderings cn te
table to gain advantages in performance.

2. Binary table algorithms operate on ordered tables
and have average and worst case retrieval properties
which make them attractive for certain applications.

3. Tree organizations allow great flexibility in providing
rapid updating, and well defined worst case performance.
Most trce structures are either the simple binary form,
or the more complicated multi-way forms.

4. Hashing and algorithms built around hashing as a basic
function have emerged as th.- most useful class of table
look-up algorithms to date. They are particularly
interesting in the mathematical problems involved in
their analysis, and considerable work has been done
in this area.

Each of these broad classes provide specific opportunities for the system

designer to adapt a particular algorithm to his needs and, in some cases,

to even mix the strategies of two or more such algorithm:s Lo synthesize

a system with more desirable performance characteristics. Discussed

in the sections which immediately follow are the basic data structures,

and the operations performed on them, which characterize the above four

categories.

Seqtuential Algorithms The simplest algorithms involve straightforward se-

quential search o': . tabular data structure. Each element of the table is

examined in sequence starting with the first, until either the desired element

is found or the end of the table is reached, indicating that the element is

absent. The best case performance results when the desired element appears

first in the table, and the search process terminates immediately. The worst

case performance results whe: the desired element is nonexistent or appears

last ii- the table, in which case all the elements of the table must be examined

in turn. Given a table of N elements, each accessed with the same frequency,

the average number of probes A, required for retrieval of an element is

A = N/2. That is, the average number of probes grows linearly with the

length of the table.

Some improvements in performance can be gained whenever there

are differences in the frequency of retrieval requests for the elements. This

55



is achieved by ordering the elements in the table so that their positions

correspond to their frequency of access. More frequently accessed informa-

tion appears earlier in the table than less frequently accessed information,

yielding a reduction in the average number of probes, with the reduction

dependent on the frequency distribution of the elements. If the elements

of a table are ordered on frequency, and the frequencies form, for example,

the sequencef 1 = 1/2, f 2 = 1/4, ... , f. 1/(2j), then the average number

of probes can be shown to be A 2 -11 2 N-1.

The deletion of a table element or a contiguous block of table elements

can be achieved by marking them as non-existent; however, since these

elements must be accessed examined during the retrieval of any elements

which follow them in the table, they contribute to the cost of retrieving

those elements. This cost may be reduced through a compaction of the

table to reclaim the space taken up by elments marked for deletion but

not physically removed. The cost of performing the compaction is simply

the cost of moving the elements of the table into the vacated positions, and

the decision to compact can be made whenever this cost is exceeded by the

average cost of retrieving. For tables which are ordered on frequency of

access, deletions and comnpactions preserve this ordering.

Insertions for tables without frequency ordering are achieved by

adding the element to be inserted to the end of the table. Tables with such

ordering require that the new element be placed within the table at the

appropriate position, and this generally requires that all elements following

it in the order be physically shifted down one position to make room. The

cost of making an insertion into a frequency ordered table consists of

the number of accesses required to find the appropriate position and the

data movement required to displace the following entries down one

position.

A dynamic frequency ordering can be achieved by treating the table

as a least recently used stack. That is, each elernnt is moved to the

'top' of the table whenever it is accessed and tbe topmost elements are

PU.IFC doWXI, LIU thus aLIng theC tableC to dYnaicaIltLly CJajus tV whAatever

access pattern exists at a particular time. More frequently accessed

elements will tend tc move to the top of the table, while elements which

56



tend to be less frequently used will move to the bottom of the table. Dele-

tions and insertions in this scheme can be handled as in the unordered table,

with the usage pattern of the newly added or remaining elements being deter -

mined by the pattern of accesses to them.

Binary search algorithms. Binary search algorithms operate on tables

which have some content dependent ordering defined for them. This order-

ing is usually achieved by treating each element's identifying field as a

numeric or alphanumeric field, and then sorting the table using this identifier

as a primary key. For a table of length N, the search begins by first com-

paring the key of the table entry whose position is closest to N/a with the

key of the desired element. If the two keys agree, then the search is suc-

cessful, and the desired element has been found. If the search key is greater

than the table entry key, the desired element must be found in the half of the

table having all elements with keys greater than that of the table entry. The

converse applies if the search key is less than the table entry key. In either

case, half of the table has been excluded from the search on the basis of this

one comparison. The search then proceeds, treating the proper half of the

table in the same manner as above. The search terminates either on locating

the desired element, or on finally halving the table to just one entry. The

maximal length search requires log 2N comparisons and the average number

of comparisons is A = log 2(N-l).

Insertions and deletions are achieved in the same manner as for

frequency ordered sequentially searched tables. That is, an element

inserted in the binary search table must be positioned so as to preserve

the ordering defined by the key values. Elements following the one to be

inserted must be moved down in the table to provide room. Deletions can

be accomplished by marking elements as non-existent, and the table com-

pacted when the cost of handling those deletions rises above some thresh-

hold. A number of properties of the binary search algorithm make it

attractive for use in table look-up applications. Among these there is
r ~~a well-definei1 and casily calculable worst case---- r

i' .... 1 ^€. L -- %4 : .... 1A .1 A .. . ,V. .. . .P f,"c measur

which is very close to the average performance of the algorithm. In
addition, the ordering defined on the table is an intuitive one, and the

table can be brought into initial order with the use of standard sort

57



algorithms, without additional data on access patterns as required by

frequencey ordered tables.

Tree searching algorithms. These algorithms operate on tree like data

structures where each node in the tree represents a data element. Such

algorithms have search patterns that begin with the top, or root node of the

tree and successively isolate subtrees which are searched until the desired

element is located or found to be absent. The most common tree form

used is the binary tree in which each node can have at most two successor

nodes as indicated in Figure 2.

El PARENT NODE

E2  E

LEFT SUCCESSOR RIGHT SUCCESSOR

Figure 2 - Typical Node Relationships for a Tree Structured Search Table

Some tree forms allow a parent node to have many successors; others

require that the data elements stored in the tree be situated at the lowest

level, with the nodes having values which guide the search to the proper

element at this level. In the interest of brevity we will discuss only the

binary tree and some variations on this structure which improve perform-

ance of the algorithm for specific classes of use.

In the binary tree search, the key of the desired element is compared

with the key of the root node. If the key is equal to that of the root node,

the search is successfully terminated. If the key is greater than the key

U0 1IJ IJUvt, ode, theIZOJL c P o ee Usig U1 6 A;lr t 0 - 00J. *AWJ- l0 - lAy W

root node. The converse of this applies if the key is less than that of the

root node element. Evenltually, the proper node is found, or the search

58



terminates at a node which has no successor pointer for the result of the

comparison of the desired key with the key at that node. An example tree

is shown in Figure 3 employing a set of keys entered in the order D, C,

A, B, F, E, G.

)D

Figure 3 - A Typical Binary Tree

The resulting tree has the property of being partially ordered. That is,

all nodes subordinate to right successor of a given node are all greater than

that node, and conversely all nodes subordinate to the left successor of a

given node are all less than that node. Thus in searching such a tree the

pattern of accesses to nodes proceeds from level to level, isolating at each

level successively smaller subtrees for examination. While this search

pattern resembles closely that of a binary table search, the average and

maximum number of comparisons required span a rather wide performance

range. For a free which is well balanced, the search length is proportional

to log N, and for unbalanced trees the search length is proportional to N.

(This worst case performance results from entering a set of elements in

inverted order, with the greatest key first, and the least key last.)

Deletions in binary trees require some care in preserving whatever

balance exists in the tree. Proper deletion strategies prevent any one

path in the tree from growing much shorter than any other path. Insertions

require that the tree be searched for an available position in much the

same manner as a retrieval is performed; the new node beccmes the left

59



or right successor of the appropriate node. Various specialized algorithms

(such as the AVL, balanced tree scheme) have been developed to create and

maintain a pseudo-random distribution of key values at the nodes, thereby

bounding the average and worst case performance.

The binary searched tree is attractive for several of its retrieval

and update characteristics. Among these are the similarity of its perform-

ance to th-.c of the binary searched table. The tree form also facilitates

the insertion and deletion of data elements without involved data movement

or displacement of (xisting elements within the tree. To implement this

algorithm, some sort of dynamic storage algorithm is necessary, and in

determining cost of updating, the work required for managing the storage

pool must be taken into account.

Hashing algorithms. Hashing algorithms have grown to be the method of

choice in many of the compiling systems currently used, These algorithms

must operate on a fixed sized table, say of length N, and treat each of the

available locations as addressable by an integer between 0 and N-i. To

locate the address of the position in the table where a given element is to be

stored, tle key associated with that element is mapped via some numerical

function onto the integers 0, 1, 2, .... N-i. The value of the function for

each key is taken to be the address of the appropriate table position. If the

function which is chosen to perform this mapping is fairly well behaved, most

of these data elements would map to unique addresses, and a few would map

to the same address. To resolve the conflict at those addresses which

are assigned more than one element under the mapping, a second.ry function

must be applied to determine which elements to assign to those table

positions which remain unoccupied. As with the actual mapping function,

the conflict resolution may be performed in many different ways. A

considerable amount of work has been performed on the behavior of both

hashing functions and conflict resolution or overflow functions. Under the

assumption of a fairly good hashing function, and assuming that the table

is to be filled with K elements, where K < N, the average number of

comparisons for a linear search overflow method is found to be

A = 1/2 (1 + 1/(l - a)), where a = K/N represents the fraction of total

positions that are occupied. Comparable results are obtained for other

conflict resolution methods.

60



Insertions and deletions are constrained to preserve the size of the

table, since this number is a parameter of the mapping functions and must

remain unchanged if all the other elements are to remain addressable.

Once, under successive insertions, the table becomes full, a new one must

be created, in order to increase the size of the table. If under deletions,

the ratio a grows very small, considerable effort is required in order to

reclaim the unused space. Despite these minor disadvantages, the average

cost of retrieving information from hash addressed tables makes them

quite attractive in terms of their use in compilers. Empirical studies have

shown that average retrieval costs for reasonable sized tables can be made

to approach very close to one comparison at the expense of allowing unused

storage in the table to keep the loading factor at somewhat less than one.

Additional reductions in average retrieval costs can be gained by entering

elements into the table in the order of decreasing frequency of usage.

3. Compiling Applications

All of the table look-up algorithms described in Section 2 have been em-

ployed in compiling systems to implement a wide variety of functions which

require table look-up activity for their operation. The most familiar

and well known of these applications are symbol table management and

pattern recognition. Pattern recognition is used in compilers to identify par-

ticular constructions which can be reduced to simpler ones, or for which

optimized code generation sequences can be formed. Such uses attempt to

improve the object code produced by t compiler by reducing the space it

occupies and/or by the run-time required to execute it. Some discussion

of the usag - of table look-up algorithms for optimization can be found in

Chapter 6.

The most wide-spread use of table-look-up methods, however, has

been m the area of symbol table management for compiling systems, and the

following discussiorn presents some of the specific applications and various

factors which affect performance of the algorithms in those applications.

Symbol tables are used to recognize and manage information about

several classes of symbols which are encountered in source language

programs. Some tables are used to identify special key words or tokens

which have preassigned meanings; others are used to store user defined

61



symbols and their attributes; specialized tables are used to store whatever

literals appear in a source program. The lexical analysis and declarations

processing phases of compilation pe:form the translation of source progran.

character strings first to language tokens, and then to symbol table

locations. These can be used by the following parsing and code generation

phases in retrieving whatever symbol attribute information they require. Of

the three classes of symbols, key words, user symbols, and literals, key

words present the least difficulty in symbol table management. Key words,

such as 'IF', 'THEN', 'FOR', can all be organized into a single convenient

table, and each name encountered in the program can be easily compared

against entries in this table to determine if it is a key word. If key words

are maintained in a separate area, they can be ordered on frequency, for

more efficient searching. Alternatively, all the key words can be stored

along with user defined symbols, generally without disturbing the structure

of the table, allowing the same access routines to be used for both classes

of vmbols. Since their attributes are fixed, and predefined, such symbols

present no insertion, or deletion problems, and are subject only to retrieval.

Because key words have fixed attributes they are sometimes referred to as

permanent symbols.

User symbcls require both insertion and retrieval operations, and

in some languages with block structure, they albo require deletion operations

or their equivalents. Insertions of user symbols are performed at their

point of definition. In many lang,;ages user symbols are defined by their

first usage, -. 1th their attributes being determined by the context of that

usage, or by implicit spelling rules; this is true for exariple of FORTRAN.

Other languages require explicit declarations of all user symbo!s before

their usage, and certain of these languages restrict such de _iarations to

all appear together in a declaration portion of the source program. How-

ever, since empirical studies have shown that user symbols, similar to

key word symbols, are heavily biased toward retrieval, insertion operations

represent a one time cost which can be significantly less than the total cost

of retrieval over a compilation.

Literals such as '1', '3. 1459', '-10' etc., are almost universally

defined by their usage, and are usually maintained in a table organized

pool. A compiler isually allocates a literal to a created 'constant' tariable,

62



and will search this pool to avoid duplicate created constants. This form

of retrieval can be facilitated by transforming the literal to a bit string in

a constant form, and then using this string as an identifier for the table

look-up operation. Thus '1. E+01' and '10. 0' would both have the same bit

string representation, and would identify the same literal.

Language and Program Structure

The stri.cture of a source language, and the form of source programs

written in it, can have some effect on both the choice and performance of

a particular table look-up algorithm for symbol table management. -his

is particularly true of languages which permit block structure eithe. with

or without the qualification of user symbols wihin a block by the block

name. The effect of block organization is to cause all symbols defined

within a block to refer only to storage associated with that block, even

though a containing or possibly separate block may also define symbols

with the sarne spelling. The effect of qualification is to permit within any

given block, exn)licit reference to symbols of another block, by simply

qualifying the symbol name with the nerne of the external block. Both o.

these features require modifications to the simplified table look-up

algorithms which permit the compiling system to distinguish reference

to user symbols on 'he basis of block context. The general appearance

of such symbol table management is to create a separate symbol table for

a block when it is entered, use this to satisfy retrievals of symbols local

to the block, and then erase this symbol table when the block is passed.

Symbols which were defined previous to that block can then be retrieved

in a logically consistent manner.

One such scheme, employed by the AED compiler, uses a Master

Spelling Table to hold all the unique spellings of symbols encountered in 3ll

the blocks of a program, and separate sub-tables (Block Attribute Tables),

[each subordinate to a block, to hold all the attributes of the associated

symbols. Access to the Master Symbol Table is via hashing of the srrnbol

spCLiiirig narne. Associated wit'h ca-ch name in the fad is a pointer to ~i.q

f currently active attribute entry. For instance consider the following program

schema.

63



12 LOCK B!

DEFINE A, B;

BLOCK BZ;

DEFINE A, C;

END BZ;

END BI;

At the point when the second 'BLOCK' definition is enicountered the Master

Spelling Table and Block Attzibutes Table resembles the configuration shown

in Figures 4 and 5.

A © © B1

© A
0

B

Figure 4 - Illus.rative Master Figure 5 - Illustrative Block
Spelling Table - Attributes Table -
Stage 1 Stage 1

Now when the new definition of A is encountered, the Master Spelling Table

entry for 'A' is altered to associate that spelling with the attribute entry

subordinate to block B2, and a copy of the old association is placed in that

entry.

The Master Spelling Table and Block Attribute Tables now resemble

the configuration shown in Figures 6 and 7.

64



A ® Bi ® B2

B AA

0 2

C Bc

0 0

Figure 6 - Illustrative Block BI. Block BZ.
Master Spelling Figure 7 - Illustrative Block Attributes Table -

Table - Stage 12 Stage Z

When block BZ is exited, the copy is recovered, and replaced in the Master

Spelling Table, restoring A's old association block Bl.

Block qualification can also be handled transparently using hashing

by appending to each symbol an identifier for the block which defines the

symbol, thus achieving uniqueness, and then using this unique spelling as

an argument to the hashing function.

Binary tree organizations are fairly adaptable to such wholesale

deletions and insertions, provided those operations preserve random dis-

tribution of the symbols throughout the tree, and avoid serious degradation

in performance.

5. Summary arid Conclusions

The above material has summarized salient features of table look-up

technology, and the compiling environments where table look-up algorithms

are applied. The specific performance behavior of all these methods,

or the impact of the compiling environment on this behavior has not been

considered. As indicated in the introduction, much of the relevant analysis

is contained in The Art of Computer Programming. Vol. 3, by D. E. Knuth,

and the reader is directed there for specific details, proofs, and the like.

Additional references are founa at the end of this report.
T

The basic conclusions can be summarized briefly in the following

statements, which have to do with trade-off and performance aspects of

the methods described above.

65



e Each algorithm has performance characteristics
which favor its use in particular applic.,tions. The
following is a brief summary of the areas of per-
formance trade-offs:

* Very short fixed lists can be organized for
sequential search table management with
reasonable efficiency if the data elements
are ordered in frequency of use. Moderately
small variable bits might be better treated
with sequential methods than with binary
search methods, although some hashing methods
will give improved performance unless block
oriented processing is required.

* Moderately large lists are amenable to binary
tree representations, although variability in the
tree introduced by block inserts and deletes will
in general disturb the average performance
characteristics of the search stra'egy.

& Very large lists, or no block oriented processing
for any but the smallest lists, are best treate I
using hashing methods. Proper choice of a hashing
function, collision resolution method, ard loading
factor (either through analysis or empirical study)
can achieve very attractive average performance
characteristics. Blocx oriented processing requires
some care in the implementation of search strategies
to avoid introducing excessively large overhead costs.

66



4I

CHAPTER 5

PARSING ALGORITHMS

1. Overview

This chapter presents the results of a review of parsing algorithms

conducted during the study. The general conclusions reached from our

study of parsing algorithms is as follows:

0 For most parsing techniques in common use, differences in
implementation overshadow differences in -echnique in
impact on performance.

0 For one technique category ("general techniques"), which
is not commonly used in zompilers, the performance ex-
pected would generally be poor due to the generality of the
technique. This expected poor performance is probably the
reason the technique is not conmonly used in compilers.

* The reasons a particular technique is selected for use in
a compiler are generally distinctly independent of performance
conside rations.

* Aside from performance considerations, it is possible to
make some general statements about various advantages or
disadvantages one parsing technique would be expected to
have in comparison to the other techniques.

In Section 2, the categories of paring techniques are summarized.

Section 3 discusses the ]kinds of factors which influence the choice of parsing

technique to be used in designing a language and/or a compiler. Section 4

summarizes some generalizations of non-performance related advantages/

disadvantages among the various techniques.

2. Categories of Parsing Techniques

Below are presented five categories of parsing techniques . For

each category a brief characterization of the category is presented, together

with a brief discussion of variations within the category currently in use.

F

67



General techniques. These techniques can handle any context-free grarurar

including non-deterministic and ambiguous grammars. Algorithms within

this category are essentially the British Museum Algorithm, or some variant.

Consequently, performance is expected to be poor.

Limited look-ahead bottom-up. This category includes the least restrictive

deterministic techniques. This category also permits the algorithmic (auto-

mated) translation of a BNF description of the grammar rules into a table

for driving the parsing algorithm. (This automated parser building property

is a characteristic of most commonly used techniques. ) These techniques

all involve looking ahead a number, say k, of lexemes to determine if the

top of the stack completes a new phrase, or if the next lexeme should be put

on top of the stack. The most general algorithm of this category is the

LR(R). Variations such as SLR(k) and LALR(k) attempt to simplify the book-

keeping tables in exchange for some loss of generality.

Precedence systems. Precedence systems are also "bottom up" techniques
which attempt to construct phrases from simpler elements. All are equiva-
lent to special cases of the previous category. There are many variations.

Conceptually, one or more precedence tables are used to determine if the

top of the stack completes a phase, or if the next lexeme should be put on

top of the stack. The grammar rules may be directly represented by the

precedence tables, rather (or in addition to) representing the grammar in

BNF. Variations trade generality (in a number of different dimensions) for

table size and complexity.

Deterministic top-down techniques. These techniques are all essentially re-

cursive techniques ,vhere a phrase causes a recursive procedure to be in-

voked to break a phrase into smaller constituent phrases. Whereas the

limited look-ahead bottom-up techniques are by their nature deterministic,

the top-down techniques may require considerable designer effort to ensure

its deterministic character.

Reductions analysis techniques. These techniques are conceptually similar

to the bottom up techniques, except that the grammar is represented as a

program for doing pattern matching on the stack configuratioi, rather as

BNF.

68



i* I
3. Parser Selection Factors

The principal decision criterion in selecting a parsing technique for

a compiler is the availability of support tools for converting a language

grammar representation into a functional parser. If a compiler designer has,

for example, only tools for LALR(1) grammar, then this is the technique of

choice.

The reason the availability of tools is a primary importance is that

a variety of "fixes" are available to handle those cases not directly encom-

passed by the parsing technique chosen. These "fixes" will be discussed

below. However, it will be useful to first note that virtually all compilers

use some "fixes" for situations that are by their nature beyond the reach of

any of the parsing techniques in common use.

Virtually all languages have one or more aspects that are not con-

text-free. For example, the constraints against duplicate or undefined

symbols are handled outside the grammar and parser by means of auxiliary

symbol table management mechanisms. Data type matching may also be

handled in the same manner rather than expanding the grammar to include a

much larger number of production rules. Lexical analysis is also

generally handled outside the parser, although it is sometimes included

by expanding the grammar with rules for symbol generation.

In view of the accepted approach to go outside the grammar when the

technique does not fit some lan guage requirement, the generality of a pars-

ing technique is not a critically important selection criterion. However,

'fixes" using auxiliary mechanisms generally take significant time and

energy to work out, and reduce reliability by increasing compiler complexity.

Consequently, if several parsing techniques are available, one should probably

choose the most general technique.

Besides using an auxiliary mechanism there are other "fixes" possible

to fix a mismatch between language requirements and the chosen technique. If

the compiler design also has control of the language, then a slight change of a

l..g..age orstr,ction ir fiv ths, mi-,matrh nrohlem.Tf the language is a "given".

then the possibility of modifying the grammar rules for describing the language

may fix the situation. The introduction of additional intermediate phrase con-

structions might be one such pucsible grammar level fix. if the language is

69



"given" and the grammar cannot be made to fit, then an auxiliary mechanism

outside the parser might be used. Finally, changing the choice of parsing tech-

nique to a different and more general system (which is not immediately avaiable)

could be used as a last resort.

4. Advantages and Disadvantages of Various Parsing Techniques

Presented below is a summary of some generalizations concerning the

advantages and disadvantages of the various parsing techniques discussed

earlier.

General Techniques:

" are too slow.

" have poor error recovery.

* provide no help in design.

* might be useful in experimental environments
with frequently changing language and grammars.

Limited Look-Ahead Bottom Up:

* are very general.

" permit fast performing implementations.

" have storage requirements that vary greatly with
particular choice within category.

* are fairly complex.

* are amenable to good error recovery.

Deterministic Top Down Techniques:

0 have excellent error recovery capability.

* are somewhat 'Less general than the above techniques.

* Permit excellent design support aids.

* permit very fast performing implementations.

* include some requirements for ad hoc design effort
to guarantee deterministic behavior.

Precedence Systems:

0 are very good for processing arithmetic expressions.

e also pernit trade-off. of generality for table size.

* are relatively simple.

* have good error recovery possibilities.

70



f permit very fast perforrfting implementations.

0 are moderately general.

Reductions Analysis Techniques:

* are very general.

* require much ad hoc design effort.

* can pre *-e excellent error recovery.

0 permit very fast performing implementations.

* are hard to debug.

I:I

; 71

I.



-C.

CHAPTER 6

OPTIMIZATION ALGORITHMS

1. Overview

This chapter discusses work performed in this study in surveying

the literature on techniques for the optimization of compiler generated

object code. The range of optimizations covered is quite broad and

includes all identified areas which can possibly influence compiler

performance in any way. Specific algorithms employed in optimizing

compilers were not directly studied since their implementations are

generally quite diverse. Instead, an organized survey is presented of

classes of optimization which are currently used in commercially

available compilers, or which are currently being investigated in various

research environments. Each of these optimization classes is discussed

in terms of examples of the application of the techniques involved, and

what kinds of improvement they might produce in object code.

The examples presented are in the form of sequences of simple

statements. These may be shown with a representation of distinct linear

sequences of executable code linked with branching flow above and

reconvergence below. Each example consists of an "original" sequence

and an "optimized" sequence which reflects the effect of th'e particular

optimization being illustrated.

In lieu of exploring specific algorithms in detail, a thorough

discussion is presented of the kinds of preliminary analysis activity required

by a compiler in order to generate a sufficient body of information about

a program so that optimizations can be performed on them. The kinds

of actual data manipulation and processing required to perform the

program restructuring and code generation activities necessary for

optimization are also presented.

Thus, the discussion extends over a two dimensional conceptual

space with Onti izaFihn c1aiqcP aq on coordinate and activity caso

as the other. The dependencies of optimizations on analysis are

72



represented in the form of two matrices in Section 6. The use of a matrix

form is intended to clearly indicate the processing activity required to

support the optimizations being discussed. Optinizations can be of the

machine independent type, discussed in Section 3, and the machine

dependent type, discussed in Section 4. An Optimization-Analysis matrix

is provided in Section 6 for each type. Analysis classes can be oriented

toward data gatherzng and information structuring or the actual perform-

ance of the optimization. Both cases are discussed in Section 5.

2. Categories of Optimization Methods

Optimizations fall into two fairly distinct categories: the machine

independent type and the machine dependent type. Machine independent

optimizations tend to require considerable manipulation and restructuring

of the source program structure and logic. For this reason, most

require an intermediate representation of source program structure.

There are many such representations which are more or less equivalent,

and for the purposes of the present discussion it is assumed, without

appreciable loss of generality, that the intermediate representation used is a

tree structure. Generally, machine dependent optimizations attempt to

improve object code quality by adapting source programs to a particular

computer hardware environment. Such optimizations generally do not

invol- e modifications of the tree structure. On the other hand, machine

independent optimizations are generally representable by specific changes

in the tree structure representation. Section 3 discussed machine

independent optimizations, and Section 4 discusses machine dependent

optimizations.

3. Machine Independent Optimizations

Common expression elimination. Common expression elimination

refers to the transformation cf programs to minimize the repeated

calculation of an expression which occurs in several distinct places.

The net effect of applying this optimization is to compute a repeatedly

used expression only once, store its value in a temporary location, and

then for all later occurrences of that expression, substitute the value

store d in the temporary.

73



I . . .. . . .

I

There are ez.3entially two different scopes for this optimization:

. Within :-ingle assignment statements.

• Across a multiplicity of assignments statements.

Both optimizations require modification of the tree structure representation

of the source program being compiled, but the first requires only local

examination and manipulation of this representation. The second

necessitates more involved analysis. Since the expressions of interest

span possibly a number of intervening assignments, a flow analysis and

set/used analysis is required before constant values stored in temporaries

can be substituted for occurrences of these expressions. Both optimiza-

tions rely heavily on pattern matching computations to identify occurrences

of the same expression, and tables to hold expressions which potentially

can be optimized. The pattern matching involves matching one part of

the tree structure representation to another part. The specific imple-

mentation used for this data structure, the matching algorithms, table

organization and table access methods all determine the performance of

the common expression optimization processing within a compiler.

An example of common expression elimination is the following:

Original Optimized

E =A B E =A * B

C =A *B + D - C = E + D

Equivalent expression elimination. This optimization is for all

pracLical purposes identical to common expressioa elimination. The

most significant distinguishing characteristic is that it may be applied

over expressions which, at the source code level, have different

constituent variables. In terms of program logic (at the static level,

without actually h;.ving to execute the program) the optimizer can

determine that although such variables bear different names, they

actually take values which render their respective containing expressions

equivalent. One means of recognizing this kind of equivalent results

from assignment propagation together with the appropriate substitutions

74



of values or variable references. Once two different expressions have

been so reduced, the machinery of common expression elimination can

be applied, and any potential optimizations then introduced. Assignment

propagation then is a precursor of some removal of redundancy in

expressions that differ at the source code level, but which are semantically

equivalent under the substitution of values or names for certain variables

within these expressions. Equivalent expression elimination can be

performed along with common expression evaluation, but is applicable

only after a preliminary transformation which propagates known values

through the program's tree structure. All considerations of scope bounds,

flow analysis, set/used analysis then apply in the same manner as for

common 'xpression evaluation.

An example of equivalent expression elimination is the following:

After Assignment
Original Propagation Optimized

E =A ' B E =A ::"B E =A *- B

F= B - > F =B - F= B

C =A -F *D C= A ':B +D C= E + D

Code motion out of parallel paths. Equivalent code can frequently

be displaced from parallel paths through a program. Such paths can be
established through an instance of an IF-THEN-ELSE construction in
which the THEN clause and ELSE clause constitute the program segments

which are parallel. Such parallel paths are also created through GOTO

statements involving variabie indexed switches. Such statements cause

flow to diverge from a common point in a program (possibly rejoining

at a later point). An analysis of program flow can be performed which

identifies forking or reconverging situa.tions, which create parallel

paths. Equivalent statements in such parallel paths may be moved up

above the forking point or belgw the point of reconvergence (if one exists).

*Thc direction in which code can be moved is dictated by performinig a

75



If no variables referenced as data sources within a statement are

altered between the forking point and the occurrence of the statement,

then that statement can be removed from the parallel paths and established

above the forking point. Thus the work done by the statement is per-

formed only once, rather than on each path. On the other hand, if

variables set by a statement are not referenced below the statement up

*to the reconvergence point (if one exists), then that stat.ient can be

moved below the reconvergence point.

This optimization relies heavily upon flow analysis to identify

the straight line sequences of executable code, the forking points and

* the reconvergence points. Once this has been done, pattern matching

is used to isolate those constructions which potentially may be moved

up or down from parallel paths. Whether such motion of code is

performed depends on the results of set/used analysis. Code can

actually be moved only if the conditions above are met and then only in

the directions indicated.

An examp)e of code motion out of parallel paths is the folloving:

Orig inal Optimized

A B *C

CA=B*C__
A= B" C A = B'' * C i G = A F = A
G =A FI F=A

Invariant computations. Invariant computation optimizations

also rtsult in code motion, but of a special kind. This form of optimiza-

tions attempts to improve the object code resulting from iteratively

controlled loops, and equivalent forms, by moving constant computations

outside loops where they are evaluated only once. The requirement for

performing this optimization is a flow analysis to identify and hound

76



the iterative loop, and an associated set/used analysis to determine those

constructions which can be calculated above the loop, and then referenced

as values of temporary locations. The same facilities employed in code

motion optimization can be applied to move invariant code upward outside

of loops.

Dead variable elimination. Dead variable elimination involves

the recognition and elimination of variables which are set but not used,

or which are declared but never referenced. Essentially, a variable

which is never referenced can be deleted. Furthermore, the deletion

of certain variables in a program may be sufficient to trigger the

deletion of other variables which may have been used to produce a

right hand side value for that variable in an assignment. A set/used

analysis is sufficient to support this optimization. This set/used

analysis can be performed either before other optimizations, or after

all other optimizations. If the former, then each subsequent iteration

of assignment propagation should update in an appropriate manner the

results of the set/used analysis. The actual work of the optimization

is the maintenance of the set/used data, usually in conjunction with the

compiler's symbol table. Once this work is done, the optimization is

made effective during the storage allocation function of the compiler.

(A description of the storage allocation function is presented in

Section 2 of Chapter 3.)

An example of dead variable elimination is the following:

After Assign-enr

M iOriginal Propaation Optimizt:d

A = 10 A = 10

B = A -> B = - C = 0 +DIi
C = B +D C = 10+D

Redundant statement elimination. This optimization involves therroarm Sof statements fI't al % pf(; nrn thr. ,vottion of a

* 77



0 Those which are apparent at the source code level.

* Those which result from an assignment propagation pass.

This optimization is dependent only upon flow analysis and set/used

information. Assigrments of values to variables not used before they

are reset with new values can be eliminated. Such operations are most

easily performed on the tree structure representation.

Variable merging. Variable merging is a form of space saving

optimization. The storage allocations to variables which are never used

concurrently are overlayed. Flow analysis and set/used analysis is

required to make tie determination of the active or inactive state of a

variable in various segments of a program. Inactive variables become

candidates for storage sharing, provided their set/used information

indicates their storage allocaticns can be safely reused. The optimization

becomes effective during storage allocation.

Formula transformation. Formula transformation is one of the

more complex cacegories of program optimization. There are many

different transf rr.ation which can be applied, and almost any kind of

transformation can be considered (short of actually changing the

algorithm).

. Expre. ,ion reordering is usually done as a space saving
optimization by reducing the use of temporary locations
required to evaluate an arbitrary expression. Some
labeling, counting, and interrogation of the tree
structure representation is required to determine
reorderings that do indeed improve usage of temporary
locations. However, the effect of the optimization is
best seen in the resulting object code produced as
illustrated in the example below. The following is an
example of expression reordering:

Originai Optimized

E =A + B + C'D -> E = C D +A + B

LOAD A LOAD C
ADD B MPY D
STO T A DD A
LOAD G compiler ADD B compiler
IP D output STO E output

ADD T
STC E



* Factoring involves essentially algebraic manipulation of
the source program at the intermediate representation
level. It relies heavily on pattern matching techniques,
and the interrogation of fixed tables of transformations
which may potentially be applied.

The following is an example of factoring:

i l. Optimized

D =A*B+A*C D=A*(B+C)

* Strength reduction is primarily concerned with the optimi-
zations of calculations within iterative loops. Operations
involving iterative computation (e. g. multiplication,
exponentiation, factorials, etc. ) can be objects of this
form of formula transformation optimization.

The following is an example of strength reduction:

Origal Optimi-sed

FORI = 1, N Z = K

BFGIN FOR I = 1, N

L = K "I +M > BEGIN

END L= Z + M

END

Constant evaluation generates values for expressions
involv.ng only constants at compile time. Simple pattern
matching to isolate the constants and associated operators
is sufficient to determine opportunities for this optimiza-
tion.

The foltowing is an example of constant evaluation:

Original Optimized

R. = 2. '* 3. 1415916 -; R = 7.2831852

* Low power exponentiation changes exponentiation by a
low integer power into a sequence of multiplications.
In the rrechine independent realization this optimization
it is performed as follows. iFirst, pattenr. matching in
the tree structure representation is perform.ct, then a
transformation is made of the represen,;ation of the
exponentiation expression into a representation for a
sequ,.nce of multiplications.

79

K!



The following is an example of low power exponentiation:

Original Optimized

X=Y**5 Tl=Y*Y
TZ = Ti * TI

X=T2*Y 

Subroutine losing. Subroutine closing is similar to code motion.

However, the straight line program segments affected need not be

parallel. For this optimization, identical groups of statements which

appear in distinct areas of a program are "extracted", and a single copy

established as a closed subroutine. Calls to this closed subroutine

replace the statement groups. Thus a space savings results as compared

with the unoptimized program. This transformation is supported by flow

analysis and pattern matching to isolate the code segments of interest.

A major modification of the intermediate representation is required to

physically restructure a program in this fashion.

The following is an example of subroutine closing.

Original Optimized

[CALL P

[CALL P

S n

rS1  2 This sequence
rS becomes subroutine

2 P

SS

80

sa,,~



Retargeting of jumps. Retargeting of jumps is one of the conceptually

simpler optimizations, and it can be performed either as a machine

dependent or machine independent optimization. For machine independent

retargeting, a flow analysis is used to reveal those transfers of control

. which pass through one or more other branch statements to reach a

particular program statement. Then the original branch statement is

. simply retargeted to the destination program statement to eliminate

intervening branches. (Machine dependent retargeting is discussed

under Section 4).

The following is an example of retargeting of jumps:

Origiral Optimized

GOTO Ll GOTO LZ

Li: GOTO L2 Li: GOTO L2

L2: --- LZ: ---

4. Machine Dependent Optimizations

Minimization of memory references. Minimi ,ation of memory

references is a generali7ation of the register allocation problem.

Registers on almost all rnachine5 can be refer,.nced and altered at rates

significantly faster than main memory locations. This, and the fact that

the majority of machines require -variables to be held in registers in

order to be operated u.pon, rniike it very desireable to minimize references

to memory in order to reduce execution tire. The common approach is

to allocate a target machine's registers in such a way as to minimize direct

reference to main memory for the values of variables. For machines with

only one or two operational registers, the whiole problem of register

allocation is of little consequence. However, for machines with many



operational registers, where such registers may have specific usage

characteristics, sudh as indexing, fixed point, and floating point, the

problem can be quite complex.

Several different forms of this optimization may constrain the

register allocation process. One form merely attempts to keep as

many registers busy as possible during the evaluation of complicated

arithmetic expressions since this will reduce stores and retrievals of

values for variables and temporaries. Another form attempts to bind

certain variables to registers across loops, in order to keep frequently

and periodically referenced values readily accessible in machine

registers. Yet another form is concerr-,cO with addressing which is

dependent on base register and index register usage.

Register allocation, as a means of minimizing memcry references,

is a complicated process resulting in algorithms which can become quite

complex. However, simplified heuristics, such as assignments based

on least recently used rules, can achieve results which are respectably

close to optimal at a much lower computational cost. Most sophisticated

algorithms, especially those which operate over loops, require flow

analysis and set/used ana.ysis to provide sufficient information about

the source program to allow efficient register allocation.

Elimination of redundant stores. Elimination of unnecessary

stores attempts primarily to isolate and remove store instructions which

move values from registers to variables and temporary locations. There

are two techniques for achieving this elimination. The fii -+- requires that

the compiler have complete information about the reference and usage

patterns of variabl.es during the code generation operations on arithmetic

or Boolean expressions. Using this information during the register allocation

pass, it is possible to deter;nine just when the value assigned to a register

is no longer needed. Rather than force a stvre of the register~s value to a

temporary when that register must be fret:6 for other use, the regise,,r is

simply reassigned and the value forgotten. The second method involve.

using a simpler procedure requiring less compl- te knowledge of the reference

patterns, and a correspondingly 6inplcr register allocation algorithm. A

heuristic approach is used for the allocation of registers, and, as tne code

82



generation progresses, special usage tables -re maintained which are sub-

sequently used in a post-processing pass to isolate and remove redundant

stores.

Retargeting of jum s. Retargeting of jumps car. be performed

during object code post-piocessing. This requ:re! following chains

of transfer instructions, and then shortening the chains to direct

branches.

Low power, exponentiation. Exponentiation by low integer powers

can be detected and i-fficiently processed during the machine dependent

code generation process. The exponentiation code generator can examine

the exponent expression, determine its form, and if appropriate,

generate an appropriate sequence of multiply instructions, thereby

avoiding the otherwise costly call to a library exponentiati.on routine.

Use of spec.ial instructions. Code generators which attempt to

use special instructions available on the target machine can achieve a

considerable improvement in the object code they produce, though such

improvements are generally quite local in their nature. This optimization

can be accomplished one of two ways. Either special machine dependent

code generators or tables can be used which recognize and respond to

the special sit'.,aLions in which special instructions can be used, or

object code paitern matching can be done during general obJect code

post-processing, and the appropriate object code substitutions made at

that time.

The following are two examples of the use of special instructions:

* Shifts ane increments may be substituted lor certain
machine operations to more efficiently achieve a standard
program operation, which would otherwise require more
code or slower code to be generated. Fairly transparent
examples include the use of SHIFT instructions to
perform integer division and multiplication by powers of
two, and INCREMENT instructions to achieve addition
by one. Such substitutions are generally handled
by apecial logic itn the code generation process.

K 83



Special operation3 ±nd mernory-to-memory operations
availaole on some 'machines are largely anexplored in
optinizations currently practices. However, some
compilers do generate code for such machines. The
identification of opportunities for such optimizations
is easiest to implement by analysing the tree
structure representation of the source program daring
machine dependent code generation.

Use of special data reference modes. Data organizations in

current languages can be quite complex, with elementary items

organized into data structures with possibly many hierarchical levels.

Referencing such structures or parts of structures present an opportunity

for optimization at both storage allocation and data referencing time.

The following are three examples of the use of special data

reference modes:

, Variable precisicn is al',U.afed !,y many compilers; they
maintain sufficient information abou. -he types and
precision of data items to allow the st.rage allocation
pass to determine whether or not an iten should be
stored in a byte, halfword, or double word location.
Fgr instance, some systems restrict loop and iteration
variabl--, to occupy half word iocations unless explicitly
declared to be of greater precision.

* Packing and unpackinp of data items is simplified by
machines which have facilities for accessing variable
lengch bytes, or which allow referencing of partial
word: using special modes or masks to discard portions
of w")'rds which are not needed.

* I ri0_ iac at. IG'.'0,:, aCCceS. I .odes arc of great
utility in CoMpiLcr gencr ated code, in accessing
simple .- onstants and referencing based or pointer
referenced cata.

Otimization Actiiies

Optimization activity within compilers can be organized into

two fairly general categories. The first involves all those algorithms,

processing tasks, and data manipulations which are preparatory to the

actual performance of optimnizations such as we have d'c,,e-c ve.

This includes tI.e preiminary analysis of program structure, anr! the

84



construction.and maintenance of necessary data and associated tables to

support these optimizations. The second category includes those

operations by which optirnizations of a program are realized. These

can be organized into two distinct classes: (1) those which require

modification of the program at the level of the tree structure represen-

tation, and (2) those which can be achieved through the use of special

machine dependent code generation elements or table entries. Most of

the former are machine independent optimizations, which are considerably

inflaenced by the actual instruction repertoire of the target machine.

Flow analysis. Flow analysis is performed on a program to

develop several kinds of useful information. The primary result is a

static representation of the straigbt line executable sequences and the

dynamic control paths within a program. For the purposes of the

present discussion, straight line executable sequences are called

"blocks ". Secondary information includes identification of dominance

relationships among blocks, parallel control paths and the like.

Flow analysis is performed by taking into consideration the

influence on the flow paths of various language elements. Some simple

examples of such considerations are the following:

* FOR statements represent iterative loops.

" IF-THEN (-ELSE)constructions create parallel paths.

* Conditional GOTO's create either parallel paths or
iterative loops. (The determination of which is well
defined but somewhat complex. )

* Labeled statenents which are the objects of GOTO's and
which are executable in sequence fromn preceding
stateren.s represent reconvergence points of
parallel paths, or possibly, loop constructions.

. BEGIN-END pairs bounding no GOTO's or IF-THEN-
(ELSE) constructions, or labeled statements constitute
boundaries of a block (or a constituent part of a block).

The results of such analysis is of great use in many optimizations

* LS at L= t ~t ' *, 4., , e,,i LV .. ,.L . . 3 o .. , .,L, £ri J -,r .a. t., c t

The hierarchical dominance relationships among statement blocks can

85

-* - - - *--



be determined as well, allowing some optimizations of register allocation

across block boundaries. This information is represented as block

dominance graphs, and indicates what statement groups are subordinate

to others within control flow paths. Optimizations proceed frorn innermost

blocks to outermost blocks.

Flow analysis information is most conveniently represented in

the form of directed graphs with blocks of statements as edges, and

branches and control receiving points as nodes. For the purposes of

determining the connectivity of blocks, matrix forms are also used.

An initial adjacency matrix, giving those blocks which can be reached

within a single control step, under repeated self multiplication is

sufficient to determine which blocks are adjacent in any number of

steps.

Set/used analysis. Set/used information is collected for each

variable declared in a program. Uses are recorded whenever a variable

appears on the right hand side of an assignment statement, as an

argument in a subroutine call, or in an expression which must be

evaluated subordinate to another statement. Sets are recorded for a

variable whenever it appears on the left hand side of an assignment

statement, as an argument in a subroutine call or as an iteration control

variable. In program languages which allow pointers to refer to

variables, any usage of a pointer to reference data also counts as set/

use references for all variables to which the pointer refers.

Set/used information can be collected relative to control flow

structure, including block dominance relationships. Such information
can be easily represented in list form, with each variable "owning" a
list of source program statements ir, which it is set, and a corresponding

list of statements in which it is used.

Tree structure representation pattern matching. Pattern matching

on the tree structure representation presents a fairly difficult problem

O the rompiler diesigner, While smch analysis could proceed easily

using node by node comparison on a tree structure, considerations of

efficiency require greater attention to organization and execution.

86



Pattern matching on tree structures can be of a local nature

(constrained to a single arithmetic statement). Techniques for speeding

up such matching and searckiing include the use of hashing techniques

and the insertion of special information at certain nodes within the tree.

It is also possible to take advantage of host machine characteristics in

representing tree structures and searching for specific bit patterns

during the matching process. For instance, using a single or double

word to hold an operand-operator-operand structure can yield considerable

improvement in search times.

Pattern mamching at the tree structure representation is essential

to carry out optimizations based on common expression or subexpression

detection. Formula transformation also requires such techniques to

isolate node structures which have simpler or more efficient expressions.

Patter., matching can be applied directly to the original tree, or to the

tree resulting from an iteration of assignment propagation.

Tree structure representation processing. Some additional

processing of the tree structure can be of utility in facilitating certain

optimizations. For expression reordering, labeling the tree for node

depth is convenient in signaling when a construction can be rearranged

to minimize the generation of temporary locations in its evaluation.

Object code pattern matching. Detecting special patterns in

object code produced by a compiler may be performed either as part

of a separate general object code post-processing pass, or in a limited

fashion as part of a peephole object code post-processor. If part of a

separate pass, then global occurrences of special instruction sequences

are sought, as well as opportunities for reordering evaluations, constant

evaluation, retargeting jumps, and many other special cases of machine

independe.,t optimizations. Such searches can be implemented as special

tests, or they can be driven by a sophisticated finite state machine wh;ch

can be constructed to detect rather complex object code patterns and

trigger their reduction.

87

*.- ' .. - - *-... - - -" I .. .. .. . .;- -- ' 
' -,

.. .. + w ... +: + - +": . ., . . ' . .. . @ '+ . .. , _ ,



If the pattern matching is performed as part of a peephole object

code post-processor, then the range of object code over which matching

is attempted is limited to the contents of a relatively small core resident

ouffer.

Assignment propagation. Assignment propagation falls quite

appropriately in the class of preparatory optimization work. It can

potentially induce sufficient equivalence in form to allow pattern matching

driven optimizations to procee,' where, otherwise, they would have

been blocked by superficial source program differences. (See discussion

of equivalent expression elimination in Section 3. )

Iteration. Several iterative preparatory and optimisation work

passes are possible. For example, an iteration might involve an

assignment propagation pass followed by code motion, redundant state-

ment elimination, conunon expression elimination and eead variable

elimination.

rree restructuring. Restructuring of the intermediate representation

is required to support many machine independent optimizations. Restructu,-ing

includes the operations of eliminating nodes in the tree structure,

replacing node sequences with equivalent ones, altering node linkages

and so on. Most of tnese restructurings are generally controlled by

specific optimization algorithms and are local in nature, involving only

a small number of nodes.

Major tree restructuring. Alternate of program structure on a

major scale is rarely required, but in the instance of subroutine closing,

considerable code motion and elimination may occur, which would have

such an effect.

Space allocation adjustment. Allocation of storage to variables

generally leaves the intermediate representation unchanges. Most

alterations required by variable elimination and mergi-ig can be easily

and simply indicated with a program's associated symbol table.

' 88



Object code post-processing. Post-processing of object code

generated by the compiler is performed for a number of reasons.

Simple examples include removal of redundant LOAD-STORE or

STORE-LOAD pairs, and the transformation of certain code sequences

to more efficient ones. In conjunction with pattern matching algoritlms,

more complex optimnizations can be performed, such as movement of

invariant code. However, code motion of any sort requires considerably

more work at this stage than at the global machine independent optimiza-

tion stage when the function opetates on the tree structure representation.

Special code generators. Code generation routines, which are

engineered for optimizing certain local constructions for a given target

machine, fall into this class. The primary optimization is to employ

special machine instructions to achieve standard operations with

improvements in speed or space utilization. Simple examples include

the use of shifts for multiplication by powers of two, increments for

addition or subtraction by one, and immediate data modes to reference

constants. Such code generation functions can operate directly from

tree stracture representations, or those representations can have been

augmented with special information to signal constructions which are

*candidates for special techniques. This special information would have

been placed into tne tree structure representation (or into auxiliary

data structures) duiing general machine independent optimization.

6. Matrices of Optimizations vs. Required AnalySis

Two matrices are presented below. The first (Figure 8)

summarizes the preparatory work and optimization work required to bring
about the various machine independent optimizations discussed in

Section 3. The second matrix (Figure 9 ) presents a similar summary

with respect to the machine dependent optimizations discussed in

Section 4.

89



SJO~J DUar)

0 StIss"10-d ISMd

2 irdS iW~nrlv

o alia.0l xx xX x~ X x x xx XO<XX x

poD Ifq(- x - X X

o 4u

Ao stiI- U

0 o iu~n X x X X Ix x xx X X 1.

H Xlmou--u 0X >. X

gsAlietVpasfl/ia4. 0 X - - - -

x x x x - x x

00

00

00

40 Q

w 0 0

0 ~ ~ .-1 -e '0 *W, 'z - E --. F
E 0 0' Q-C

no N C4 0C 't

* - --. S-5 0 -- 1 -



0 spowto I-epd x

0 0

0p0, P~d

; a poo loafqo X X 0

00

alepatuxatq iXj

C4  ss 1 ~ltUy pAsf1ld

W 0

00

0 0 4)

c 0 >)04

0 4)
-4 0~ C 4)

Q) mo
z-4 .:7 'J~

0 0 0
00OH~0 Hl C

E I

0r1 0 14 M~~4)

~IO~0 U)

911



CHAPTER 7

CODE GENERATION ALGORITHMS

1. Overview d see
This chapter discusses various methods of code generation used in

compilers. The range of code generation methods used is quite small as

compared with optimization, table look-up, or parsing algorithms. In fact, i
there are only three distinct methods used:

* Directly Programmed Code Generators.

* Macro Organized Code Generators. j
* Table Driven Code Generators.

In Section 2, a paradigm architecture for code generation is described.

This architecture describes an organization for the machine independent part

of a code generating phase, which follows a parsing phase. The three methods

of code generation indicated above constitute alternate methods of including

the machine dependent parts of a code generator. The place in which each

of the above three methods of code generation fits into the paradigm is also

presented in Section 2. Then in Sections 3, 4, and 5, each of these three

methods will be discussed from the point of view of overall advantages and

disadvantages. One clear conclusion can be summarized here:

a There is no definite advantage or disadvantage with respect
to compiler performance in comparing the three methods.

This conclusion for code generation is the same as that found for

parsing algorithms and, to some extent, for table look-up algorithms. The

choice of an algorithm in designing a compiler is generally made for other

than compiler performance considerations. Consequently, compiler per-

formance is best determined by direct measurement rather than by looking

into its architecture and algorithms. With respect to optimization algorithms,

for example (see Chapter 6), algorithms are generally selected to providc

a desired balance between compiler performance and object code performance.

92

\^



Z. Paradigm for a Code Generator Architecture

The code generation architecture described below includes what is

more-or-less the overall functional activities performed by a code generation

phase of a compiier. Although there are unlimited variations possible, the

essential elements would all have to be present in any architecture used.

The purpose of describing a single architecture as a paradigm for code

generation architectures generally, is to provide a basis of comparison of

how the three specific methods indicated in Section 1 fit into a code generEation

architecture.

The architecture described assumes a separate code generation phase

following a parsing phase. The parsing phase is assumed to produce a binary

tree structure repsentation of the source language program, and the code

generation phase walks through the nodes of the tree to gather information

used to generate object code. In a one pass compiler, some state informa-

tion available from the parser could be used by the ccde generation activity;

in a multi-pass compiler, this information would normally have to be

recreated if it were needed. Furthermore, in a one pass compiler, the

parser does not generate nodes of a tree as output; rather the parser pro-

ductions directly call upon the node type related code generating procedures

(denoted below as PROG-A-l, PROG-A-2, and PROG-A-3) as the parsing

activity discovers appropriate productions are to be applied. However, these

distinctions are relatively unimportant from the point of view of providing a

single context for comparing the three code generation methods listed in

Section 1.

At the completion of the parsing phase, the following information is

assumed to be included in the tree structure representation of the program

being compiled. At each node of the tree there is specific information,

more-or-less related to particular syntactic elem .nts in the source language,

as well as the linkage_" to the other nodes which define the tree structure.

Let us refer to the node spezific information simply as the node type. Let

us denote an arbitrary node of the tree as A. Let B and C be the left and

and right descendants of A respectively. (Note: either or both of B and C

may be NULL nodes).

93



We assurne a recursive tree walking program, TW which operates as

follows. When TW is invoked, a pointer to a node, say A, is passed as an

argument. TW thus performs the following sequence of steps:

" Call a program associated with the node type of A, say PROG-A-l.
(PROG-A-l may be NULL in which case this call is skipped).

" Extract the pointer to B. If not NULL, call TW with the pointer
to B as argument.

" Call a second program associated with node type A, say PROG-A-2,
(PROG-A-2 may be NULL, in which case this call is skipped).

" Extract the pointer to C. If not NULL, call TW with the pointer
to C as argument.

" Call a third program associated with node type A, say PROG-A-3.
(PROG-A-3 may be NULL, in which case this call is skipped).

The activity of the entire code generation phase can be considered

the result of a single call to TW with a pointer to the base of the entire tree

as argument.

Note that in the above sequence of steps, TW does not take into account

any state information. All tests of state and changes of state are handled in the

programs PROG-A-i, PROG-A-2 and PROGIA-3. Also note that there are
relatively many distinct such programs, possibly as many as three for each

node type, which would correspond to three for each syntactic element of the

language. It is certainly most likely that the- will be at least one non-null

program for each node type. We will next look at the functional elements of
each such program.

Each node type related program consists of a machine independent

part and a machine dependent part. The machine independent part interrogates

information available at the node and state information; branches are taken

and state information may be updated. Each flow path of the machine inde-

pendent part may lead to a distinct machine dependent part. The machine

dependent parts set up parameters specific to the outputting of object code

which constitutes the final compiled version of the program being compiled.

The specific object code that is generated depends on the state information

set up by the machine independent part, as well as the specifics of the target

machine for which the output code i. intended. It is these machine dependent

parts of each ncde type related program thatn can be implemented by means of

one of the three methods listed in Section 1.

94



In sunmary, the machine independent part is (generally) implemented

as direct code involving conditional branching, testing of state information,

and updating state info:rmation. * The machine dependent part is implemented

in one of three ways (direct code, macros, table driven interpreter). It tests

state information and causes the desired output code to be generated.

3. Directly Programmed Code Generators

If the machine dependent parts of the node type related programs are

implemented as direct code, then each such part of this code will consist

of a sequence of steps as follows:

" Set up parameters

* Call Object Code Output primitive.

" Set up parameters.

" Call Object Code Output primitive.

" Set up parameters.

* Call Object Code Output primitive.

Note that there is a single primitive invoked several times with different

parameters.

The principal advantages of this method is the simplicity of preparing

the machine dependent parts of the program. There is no requirement to
inrface with a Macro processor; consequently, it is not necessary to be

concerned with the special problems associated with the use of distinctly

different Macro language (rather than the language in which the rest of the

c:ompiler is coded). Furthermore, the computer time required to run the

compiler code through the Macro processor is saved. Overall, the direct

code method should be less expensive to use in implementing a compiler

and the resulting compiler shouid have a corresponding lower development

cost.

The principal disadvantage of the direct code method is that the

resulting compiler is much harder to retarget. Consequently, if several

: It is technically feasible to implement the machine independent part as
a table driven interpreter, which behaves as a finite state machine. How-
ever, the study fotmd no examples of such an architecture in actual use.

95



equivalent compilers are desired for different target machines, then the total

development cost for the group of compilers will be considerably greater for

the direct code method as compared with either of the other two methods.

4. Macro Organized Code Generators

If the machine dependent parts of the node type related programs

are implemented as Macros, then each distinct occurrence of a set up para-

meters step followed by a call to the Object Code Output primitive, as presented

in Section 3, is -eplaced by a specific Macro call. Thus, this method requires

the creation of (generally) as many Macro functions as there are distinct invoca-

tions of the Object Code Output primitive in the direct code form of the code' generator.

As far as the performance of a compiler using a Macro organized code

generator, as compared with a compiler using a Directly Programmed Code

Generator, there should be virtually no difference, since the resulting object

forms of the compilers should be (almost) identical. The principal disadvantage
of the Macro mt.thod is that the compiler implementor has to code in a Macro
language to define the expansions of the Macros, and to run a Macro Processor

to obtain the object form of a compiler. These additional requirements can

result in increased debugging time and increased computer costs in developing

the compiler.

The principal advantage is simply that al the machine dependent parts

of the compiler are isolated into a fLe of Macro definitions. This can greatly

facilitate retargeting the compiler.

5. Table Driven Code Generators

In a table driven code generator, the machii-e dependent parts of a

node type related program are each implemented as a call to a table driven

interpreter. That is, for each sequence of set up parameters, call Object

Code Output primitive pairs, as presented in Section 3, which occurs in a

distinct flow path of the machine dependent part, there is a single call o

the interpreter. This interpreter uses the state information set up by the

MACi- ...ependnt. part to refernce a fixed hbe. Th.- entries in this table
will be the required data to generate the appropriate sequence of output lines.

96



In principle, there might be some space/time trade-offs in the per-

formance of a compiler using a table driven code generator, as compared

with the other two methods. However, in practice, this choice of method

should not result in a significant variation in performance. The principal

advantage of the table driven code generator is that it is an alternative

method for isolating the machine dependent part of the compiler to the Macro

method. The Macro method uses a file of Macros definitions to represent

the machine dependent requirements, and the table driven method uses a

table. Consequ-ently, one should consider only the comparison of the table

driven and Macro methods. For table driven code generators, it is some-

what more difficult to plan in advance the form of Macro calls required for

a variety of target computers with very different hardware architectures.

However, in comparing the advantages and disadvantages of these two methods,

the most general conclusion would likely be that the evaluation depends on

the point of view of the implementor -- he will most likely prefer the method

with which he has had more experience.

A 97



CHAPTER 8

HOW TO COMPARE COMPILERS IN THE SAME ENVIRONMENT

1. Introduction

In this chapter, a detailed discussion is presented of the results

of our investigation .;f the same environment question:

How can two compilers with the same features
and operating in the same environment be
compared ?

This chapter will include:

" . A discussion of each step taken in the investigation
the same environment question.

" A discussion of desirable related work beyond the
scope of the present study.

" A discussion of how the results of the present study,
together with the indicated related work could be used
to assign a dollar value to the differences in performance
between two compilers due to differences in the compilers'
architecture and algorithms.

Steps taken in this study. The following is a list of the steps

taken in the study of the same environment question.

* A list of language 3lements was prepared for use in
generating User Profiles. (See Section 5. )

* For each of five catego. . of language elementz,
methods were establis'ed for generating test programs
to be used in evaluatir-g compiler performance with
respect to the languag, elements in the category.
These methods are discussed in Chapter 9.

Each of these two steps will be liscu3sed in further detail in Section 2.

Related work. The "desirable related work" to be discussed in

Section 3 consists of:

* Investigating methods for collecting data to be used for
generating static and dynamic User Profiles.

* Investigating methods of reducing such collected data
by automatic means so as co facilitate the generation
of static and dynamic User Profiles.

98



* Prepare test programs b Lhe methods described in
Chapter 9 and use these programs to generate Compiler
Performance Profiles.

* Use User Profiles to establish "Gibson mix" for users.

Using the results. In Section 4, a discussion is presented of

how the results of the investigation of the same environment question

can be used to assign a dollar value various aspects of using a compiler.

2. o-sof the Study of the Same &nvir:nrent Question

For each of the two steps taken in the study of the same environ-

ment question, u diectssion is presented below. This discussion

includes a description of the objectives for the step and the techniques

used to fulfill the objectives.

Create list of language elements. The objectives that 'he list

was intended to fulfill are listed below:

0 To be as complete as possible (within the budgetary
constraints of the project).

* To avoid an organization that will result in one element
representing a very large fraction of language forms in
users' programs.

0 To have the list represent language elements which are
not only useful for describing the manner in which high
level language is used, but also those about which
statistics comprising a User Profile can be collected by
some relatively simple means, for example, instrumenting
a compiler.

The techniqu .i used to generate a list of language elements

fulfilling the above objectives are listed below.

" Review papers and reports whiCh discuss the relative
frequency of occurrences of high level language
syntactic forms.

" Organize the list into a number of convenient categories
and sub-categories, so that very rarely occurring cases
can be grouped together statistically.

* Break down highly used syntactic forms into a number of
separate cases in order to have a more detailed
characterization of a User Profile. Hopefully, the level
of detail should be such that no single language element
(syntactic form) should represent more than approximately
ten percent of the total cases.

4 99



Generating methods for preparing test programs. The objecti3

to be satisfied by the methods for preparing test programs are listed

below.

* Isolate the effect of the language element for which the
test programs are generated.

* Keep the number of test programs required to measure
performance with respect to a single language to as
few as possible.

* Keep each tes program as simple structurally as
possible. The generation of test programs could
possibly become automated provided they are kept
structurally simple.

* The methods should be easy to understand and to put
into practice.

* The procedure to calculate a performance measure for
the language element in terms of data collected from
compiling and executing the test programs should be
sinle and straightforward.

The techniques used in developing the desired methods for

generating test programs are listed below. These techniques are

discussed in more detail in Chapter 9.

* Define a test program whi.Ch can b,  used to measure a
reference or base value for the language element.
This base program will riot use the language element
under consideration. Then estaolish a measurement
for 1 (or n, occurrences of the language element,
The dzsired performance me-asurer'-it is found by
taking the difference (divided oy n) of the meastired
performance "between the second and base test
programs.

* Establish a sequcnce of test programs containing nl,
?, , rn c -currences of the language feature

under consideration. The measLrnd performance
values for each test program are plotted as functions
of nk . The slopes calculated for the least mean
square line fitting the test data will be. used as the
calculated performance values for the language
feature.

* Same as the preceding, except that the intercept for n = 0
is calculated. This is compared with the base performance
volue as determined above. If very different, this
indicates gross non-linearity of performance with
number of occurrences of the language element.

100



3. Desireable Related Work

There are a number of important problems related to the evaluation

of compiler performance that are beyond the scope of the preseL study.

Several such problems are discussed below.

Collecting data for User Profiles. There are several obvious

methods which might be useful for collecting the data in terms of which

a User Profile may be generated. Listed below are several methods

that are wor'hwhile to investigate concerning the possibility that User

Profile data can be collected cheaply by automatic methods.

Examples of methods which might be investigated for collecting

static User Profile data are the following:

* Build instruments into selected mod.,les of a compiler
which can count the occurrences o! syntactic forms
processed by the module.

0 For modules which are used for a single syntactic form,
a trace mechanism could count the occurrences of calls
to this module.

* Build simple finite state machine procedures to count
the occurrences of specific language elements.

Examples of methods which might be investigated for collecting

dynamic User Profile data are the following:

" Build into the code generator of a compiler the changes
required so that each statement (or branch of a conditional)
when executed causes a counter to be incremented. Also
build instruments to collect static data statement by
statement. The counts derived during execution can be
used as weights to combine with statement level static
data to produce a dynamic User Profile.

* Build into the compiler changes required to count each
execution of a block of code. Also build instruments
to collect static profile data for each such block. The
counts and block prof-ie data can b- ;:ombined as above.

One further aspect of the language elemcnts for User Profiles

deserves special attention. It is obvious that executable statements

nested within FOR loops will contribute by sor ic multiplicity to th;

time of execution of the object code generated by the compiler. However,

101



such a statement still should contribute (approximately) the same as a

similar statement, not in any FOR L'op to the compilation time of a

program. If oue is only interested in ccznpi'er execution performance,

then no effort is required te calculate or estimate an appropriate object

code execution multiplicity !actor for statements within FOR loops. i

object code execution performance is of interest then it is necessary to

make such a calculation or estimate.

The only way a corpletely accurate multiplicity factor can be

determined is by collecting dynamically execution counts for contiguous

sequences of executable code as suggested above. It is easy to see that

thz results of such an instrumentation method would readily permit a

highly accurate dynamic User Profile to be established.

Failing the availability of the above instrumentation in a compiler,

the list of language elements for User Profiles presen.ed in Section 5

include the following:

4 A histogram of the number of occurrences of nested
FOR loops of depth N.

0 Histograms of the number of executable source
language forms nested N levels deep within FOR
loops.

At the present time no specific recommendation is made of how tiesc *6&t"c

data should be used to estimate the desired multiplicity factors. However,

as experience accumulates in collecting these data for actual stalc User

Profiles, methods for estimating the multiplicity factors should s iggest

themselves.

Automatic generation of User Profiles. 1 the raw User Profile

can be collected automatically by one or more of Lie above methods,

the data could be stored n one or more files in a form suitable for later

processing. Then, the raw data as contained in the file could be

subsequently processed to calculate for each language element the

folljwing:

* The average number of static occurrences of the element
in a program comprising the user's environment.

102



*' The average number of e..ecutions of the language element
in the user's environment. (T-is average should take
i-ntj account the relative frequency with which different
programs or biocks -re executed.)

Generate actal Cznpilcr Performance Profiles. Up to this

point, all the preceding discussion indicated b.ow User Profiles might

be generated for the language elements listed in Section 5. These

suggestions are based solely on theoretical considerations. in order to

- determine the usefulness of the methods described in this chapter,

actual Compiler Performance Profiles should be generated ly the

methods described in Chapter 9. Oniy fron Uhe accumulati.n of

experience with actual Compiler Performance Profiles, 'an valuahbe

insights be gained as to what changes are desirable in the language

elements used for delining both User Profiles and Compiler Profiles,

and ultimately, the .erforma.ace values that are appropriate to assign

to a paitictlar compiler in a particular user applicatinn environment.

Other uses of a User Profile. Besides combining User and

Compiler Performance Profiles, a User Profile might have other uses.

One such other use that might be worth investigating is the possibility

of using a User Profile as the basis for establishing a "Gibson mix"

definition of the user's applications environment. This "user Gibson mix"

would be used to evaluate the relative speed and size characteristics

of different computers and operating systems for supporting he user's

I application programs to be executed.

4. Using the Results to Calculate Dollar Valuations of Compilers
in the Same Environment

Introduction. It is a.ssume,i for the purposes of this section

that one has compiled a User Profil1, by the x,.tthods discussed in this

chapter, and that one has also written, comriied, and executed test

programs by the ineth',AIs described in ,Cha:otr 9 to obtain a Compiler

Performance Profilf, These results are ten used as follows:

* Combine the User Profile and Compilcr Ferformance
Profile to obtain four figure of merit evaluations
related to a "typical" user program. These evaluations
constitute the Compiler Evaluation Profile.

103



0 Combine these figures of merit with additional
administrative data to calculate useful dollar
valuations of the compiler.

The method to be used to combine the User Profile and Compiler

Performance Profile is described below, together with an interpretation

of the four resulting figures of merit. Finally, the calculation of dollar

valuations is discussed.

Combining profiles. Ultimately, the combination of the User

Profile and Compiler Performance Profile should give a figure of

merit for each of four criteria for a "typical" user program. The four

criteria are.

* Time to compile.

* Partition space required.

* Time to execute.

* Size of executable program.

The time to compile a "typical" user program is calculated in a

simple, straightforward manner. For those elements whose time to

compile performance data indicate a linear performance curve, simcply

multiply the Compiler Performance Profile time to compile coefficient

by the number of occurrences indicated in the corresponding static User

Profile element. For non-lhiiear performance cases, the characterizatio-.

of the non-linear curve is combined with the number of occurrences

indicated. The grand total for ali the language elements is the desired

time to compile a -typical" user program.

The partition space required to compile a "typical" user prograrri

could be calculated in the same manner as above. However, it is likely

that the average or typical space requirement is not as useful as, say,

Lhe ninetieth, nindty-fifth, and ninety-ninth percenti.e data. These later

figures would indicate the space required to compile 900o, 95%, 99%,

etc. oi the user's programs. By means of these figures and knowledge

of the actual quantity of space available, one could interpolate to

104



KI

compiled in the available space. Presumably, the remaining fraction of

programs would have to be reprogrammed into smaller programs in

order for them to be compiled. The manner in which these percentile

figures might be determined is another problem involving User Profiles

that might be profitably investigated in a separate study.

The time to execute a "typical" user program would be determined

in the same manner as the time to compile, except the dynamic User

Profile data would be used instead of the static User Profile.

The size of executable program for the "typical" user program

would also be determined from the dynamic User Profile combined with
the Compiler Performance Profile, except that for each language element

the "size oi object program as assembled" data would be used in the

Compiler Performance Profile.

Dollar Valuations. If we assume that the User Profile and

Compiler Performance Profile data have been combined, then the

results would include four figures of merit as follows:

0 Time to compile a "typical" user prograi..

* Either:

0 Partition space required to cornrIe a
"typical" user program,

Or:
* Fraction of user programs that cannot

be compiled in the avail.:ble space.

* Time to execute a "typical" user program.

• Size of "typical" user program.

Now assume that the following additional administrative data is also

available:

• Number of compilations expected annually (or ior life of
computer/compiler).

* Number of program executions expected annually (or for
life of computer/compiler).

c....f....-. ... .. % *-lt A. .

4 Cost of unit of partition space.

105



* Cost of reprogramming a typical large usrr program.

* Operating zystem overhead.

The following dollar figures could then be calculated:

* Annual (or lifetime) dollar costs for compiling user programs.

* Annual (or lifetime) dollar costs for executing user programs.

* Expected cost (if any) for reprogramming existing user
programs so that they can be compiled in the available
space.

These dollar figures can be used in conjunction with procurement cost

of the compilers under consideration to achieve the best cost/benefit

result.

5. A List of Language Elements to be Used for Generating a User
Profile

Introduction. This section presents a list of source language

elements with respect to which a compiler's performance can be

measured. Included are features which are relevant to many program-

ming languages, but most importantly the A:D language (since AED is

representative of a good systems development language) and also to the

JOVIAL/J3B language (since J3B is a representative of a user oriented

language).

The list is organized into the following five categories:

* Lexical elements.

* Declarative elements.

, Scope definition elements.

• Program control elements.

* Data manipulation and compulational elements.

For each of these categories, an outline organized sub-section of language

elements is presented. The listed elements are described in terms of

the statistic that would be collected to represent this element in a User

Profile. For each element, Chapter 9 presents a description of how test

programs could be prepared to test compiler and object code performance

with respect to the element. In combination, the results of accumulating

data from these test compilation and object code ececutions comprise a

Compiler Performance Profile.
106



7-j

1. Lex:cal elements.

A. Features involving lines, statements, characters applicable

to comments, declarative, and executable text. (Features

to be measured for each of comments, declaratives, and

executable text separately.)

1. Number of Source Lines.

2. Number of Source Statements.

3. Number of Blank Lines.
4. Number of Blank Characters.
5. Number of Non-blank Characters.

6. Number of Blank Sequences of Length n (Histogram).

B. Token features applicable to declarative and executable text.

(Measures to be made for declarative and executable text

separately.)

1. Punctuation (number of references to each).

2. Keywords (number of references to each).

3. User declared tokens of Length n (Histogram of number.

of references to token of length n).

C. Number of .1NSERT (AED)/COMPOOL (J3B) Statements. (Note:
These statements cause the compiler to editorially insert postsibly

large files into the compiler input stream. What is desired is

to measure the compiler's performance in making this insertion

as a function of file size.)

II. Declarative elements. (Note: A through D constitute independent

dimensions of element classes. That is, each element has an attribute in

each category A through D. However, not all combinations in the

Cartesian produce space to AxBxCxD are meaningful. Category E are

special declarative elements that do not have all the attributes of A

through D. Statics are to be collected for both the number of declarations

of ah D.aanfc a obieille, cd oe hL th nber of dfrclart to a

variable with such a declaration.)

107

lofOt



A. Scope and Storage Class.

1. Static internal.

a. Number declared at Scoping level n (Histogram).

b. Number &t level n replacing previously declaration
for token at lower (numerical) level.

2. Static external.

3. Automatic (internal).

a. Number declared at Sccping level n (Histogram).

b. Number at level n replacing previously declaration
for token at lower (numerical) level.

4. "Based" (Beads and Bead Components in AED only).

5. Parameters.

a. By-value type*.

b. By-reference type.
B. Structure Type.

1. Scalar (That is: a simple variable).

2. Array.
a. 1-dimensional (AED and J3B).

b. 2-dimensional (J3B only).

3. Table (J3B on!.y) (Histogram over number of items in
Table) (Note: Items within the table have data types;
the table itself does not.)

4. Table Item (J3B only).

a. Bit,

b. Byte.

c. Half word.

d. Full word.

e. Other.

5. Bead (AED only) (Histogram over number of components
in Bead) (Note: Components within a Bead have data
types; the Bead itself does not.)

6. Bead Component (AED only).

a. Bit.

b. Byte.

c. Half word.

d. Full word.

C. Other.*Note: Current versions of AED and J3B do not have by-value type
parameters. However, they are p~a-ined for future versions.

108



C. Data Type.

1. Integer of length n (Histogram). (In AED also used

for Bit operations.)

2. Real.

3. Character String of length n (Histogram in J3B
only -- in AED character string variables are
always variable length. )

4. Bit String of length n (Histogram). (J3B only)

5. Boolean. (AED only)

6. Pointer. (AED only)

7. LabeL(Parameter in AED cniy or in ALD and 33B
as a component of a switch declaration which is,
in effect, an Array of Label variables. For switch
declarations, a histogram should be collected of
the number of switches having n labels.)

S. Procedure. (Parameter in AED only)

D. Initial Values.

(Note: What is desired here is to determine the compiler

performance (and the performance of the executable code)

when declaring (and referencing) variables with initial values.

For each data type, certain initial values are of particular

interest since they are likely to occur with high frequency,

and a compiler might be designed to handle these values with

greater efficiency.)

1. Integer.

a. 0 (Zero). (Note: Default initialization)

b. 1.

c. Other.

2. Real.

a. 0 (Zero). (Note: Default initialization)

b. 1.

c. Other.

109



3. Character String.

a. Blanks. (Note: Default initialization)

b. Other.

4. Bit String.

a. 0's. (Note: Default initialization)

b. Other.

5. Boolean. (AED only)

a. FALSE. (Note: Default initialization)

b, TRUE.

6. Pointer.

a. NULL. (Note: Default initialization)

b. Other.

E. Procedures and Functions.

(Note: In AED, internal procedures are not required to be

declared. In J3B, an internal procedure must be deciared

before it is CALLED. Function declarations are "valued-

procedures and have a data type (See C above). It is

desired to measure the compilers performance for each

type of procedure/function declaration. Histograms for

each type are to be collected over the number of parameters

of type by-value* or by-reference.)

1. Number of internal procedures with n parameters.

2. NIumber of internal procedures with n by-value
parameters.

3. Number o internal procedures %ith n by-reference
parameters.

4. Number of external procedures with n parameters.

5. Number of external procedures with n by-value
parameters.

6. Number of external procedures with n by-reference
parameters.

* See previous footnote for by-value parameters.

110



- -________7. Nu of internal. functions_,_____________________ .... _ .. -with n .....

7. Number of internal functions with n parmeters.
J 8. Number of internal functions w.ith n by-value parameters.

9. Number of internal functions with n by-reference
parameters.

10. Number of external functions with n parameters.

11. Number of external functions with n by-value parameters.

12. Number of external functions with a by-reference
parameters.

II!. Scope definition elements.

',. Number of DEFINE PROGLDURE... END statement pairs.

B. Nmnber of BEGIN... END staement pairs. (Note: BEGIN

is a scoping bounda.ry in AED but not in J3B. )

C. ,INI (AED)/TERM (J3B) -- single statement acting as

logical end-of-file.

D. Maximum number of declaration levels (Note: Maximum at

most 2 in J3B).

E. Histograms for n-th level of scoping* (The zero-th level is

outside any procedure or BEGIN-END block - For each

procedure or BEGIN-END block the level is incremented.

by 1.)

1. Number of declaration stateinents at level n.

2. Numnber of executable statements at level n.

3. Number of user tokens declared at level n.

4. Number of user tokens declared at level n which
are already declared at a lower (numerically) level.

5. Number of BEGIN-END blocks initiating a new block
at a level n (AED only).

6. Number of Procedure Definitions initiating a new
block at level n.

7. Number of labels defined at level n.

I:- '!ese histograms only meaningful for AED since J3B does not
pt- rmrit more than levels 0 and 1.

II



IV. Program control elements.

A. IF Constructions.

(Form of IF is:

IF X THEN S1 [ELSE SZ]

X represents a Boolean (AED) or Bit (J3B) variable or expression.

Thus, X may be a variable, a primitive expression, or a com-

puund expression. It is desired to determine the distribution of

X forms among these three categories. The various detailed

forms of X are outtined in Section V under-Boolean Expressions.

SI and S2 represent statements. It is desired to consider the

configuration of particular statement forms for SI and SZ

separately.)

1. General Form of X.

a. Boolean (AED) or Bit (J3B) variable.

b. Simple Predicate Form.
(A predicate B. Predicates are , >, <, >=, <=)

c. Compound Boolean Expression.

-I

11



TU-

Z. Forms of SI.

a. BEGIN.

b. CALL.

c. FOR.

d. IF.

e. GOTO.

f. Assignment.

.. Forms of SZ.

a. BEGIN.

b. CALL.

c. FOR.

d. IF.

e. GOTO.

f. Assignment.

B. FOR Constrictions.

1. General Forms of FOR Statements.

al. FOR I=E Step F UNTIL G DO S (AED)
a2. FOR I (E BY F WHILE X); S (J3B)

(Note: a2 more general than al. If X has the form
I-*=G, then these forms are equivaleit.)

bl. FOR I=E WHILE X DO S (AED)

bZ. FOR I (E WHILE X); S (J3B)

c. FOR I=E 1 , E2 ... , En DOS (AED)

d. FOR I=I/Q 1 /, /Q 2 /, ... , /Qn/ DOS (AED)
where:

.n>1,

* /Qi/ is either of the form Ei or of the
form Ei STEP Fi until Gi, and

. at least one /Qi/ ;s not of the form Ei.

i. WHILE X DO S (AED)

e2. WHILE X;S (J3B)
It is desired to determine the relative occurrence of each
form, including histograms over n for forms c and d.

113



Z. Forms of I.

a. Simple Integer.

(Note: The following are allowed only for AED)

b. Subscripted Integer Array Element.

c. Integer Bead Component.

d. Simple Real Variable.

e. Subscripted Real Array £lement.

f. Real Bead Coraponent.

g. Simple Pointer Variable.

h. Subscripted Pointer Array Element.

i. Pointer Bead Component.

j. Simple Boolean Variable.

k. Subscripted Boolean Array Element.

1. Boolean Bead Component.

3. General Form of E (or E), F (or Fi), or G (or Gi).

(Statistics for three forms to be collected separately)

- . Single literal, or non-subscripted variable with
the same data type as I. (AED or J3B - in J3B
must be integer data type.)

b. Other (AED or J3B - in J3B must be an integer
expression.)

(Note: Other forms are treated in detail as arithmetic
or Boolean expressions in Section V.)

4. Form of X.

a. Simple Boolean (AED) or Bit (J3B) variable.

b. Other.

(Note: The non-simple forms of X are treated in detail
as Boolean expressions in Section V.)

5. Form of S.

a. BEGIN.

b. CALL.

c. FOR.

d. IF,

e. GOTO.

f. Assignment,

6. Histogram of the number of FOR loops nested n level deep.

114



C. Other (simple) program control elements

1. Label Definition.

2. GOTO.

a. Simple label.
b. Switch.

V. Data manipulation and computatioptal elements.

A. Environmental Elements.

i. Assignmi, r- Statement.

E fcrm in FOR Statement.

3. F form in FOR Statement,I, G form in FOR Statement.
5. X form in FOR Staterent.
6. X form in IF Statement.

7. Subscript.

8. Argument to Procedure or Function Call.

B. Nesting 'Histograms.

1. Number of simple variable or literal references occurring

at a FOR loop nesting depth o( n.

2. Number of references to parameters at nesting depth of n.

3. Number of references to external data at nesting depth of n.

4. Number of references to global internal data at nesting

depth of n.

5. Number of references to local static data at refere-ce

depth of n.

6 Number of references to local automatic data at reference

depth of n.
7. Number of reference to automatic data at reference depth

of n which is declared in a containing Begin or Procedure

Definition block (AED only).

8. Number of si'ngle subscripted array references at nesting

depth of n.

9. Number oif double subscripted array references at nesting

depth of n. (AED only)

115



10. Number of Bead component (AED) or Table Items (J3B)

references at nesting depth of n.

11. Number of arithmetic operations at nesting depth of n.

a. +

b. -

C. ' 
i

d. !

12. Nu.-iber of data type conversions at nesting depth of n.

a. To integer.

b. To real.

c. To pointer.

13. Number of function calls at nesting depth of n•

a. Functions with no arguments.

b. Functions with single argument.

c. Functions with two arguments.

d. Functions with more than two arguments.

14. Number of procedure cals at aezting depth of n.

a. Procedures with nc arguments.

b. Procedures with single argument.

c. Procedure with two arguments.

d. Procedures with more than two arguments.

15. Total number of arguments to called functions or

procedures at nesting dept of n.

16. Number -f assignment. statements at nesting depth of r.

7. Nuvnber ol IF--TiEN's aL iwseng depth 0" n.

I. Nun!)er of EiSE's at nesting depth of n.

1II. .;unber of GOTO's at nesting depth of n

a. To label.

b. To switch.

C. Form of Left Hand Side of Assignment Statement.

(Note: Details of expression forms used as subscripts are

1. Simple variable.

2. Single subscripted variable with literal subscript.

116



3. Single subscripted variable with variable subscript.

4. Single subscripted variable with expression subscript.

(Note: 5-10 valid in AED only. )

5. Double subscripted variable with two literal subscnipts.

6. Double subscripted variable with one literal and one variable

subscript.

7. Double subscripted variable with two variable subscripts.

8. Double subscripted variable with one literal and one

expression subscript.

9. Double subscripted variable with one variabie and one

expression subscript.

10. Double subscripted variable with two expressioi, s. bscripts.

11. Bead component (AED) or Table Item (J3B).

D. Forms of Arithmetic Expression:..

1. Literal. (Special values depending on Data Type)

a. 0 (integer, real).

b. I (integer, real).

C. TRUE. (Boolean - AED only)

d. FALSE;. (Boolean - AED only)

e. NULL. (PoinLer)

f. O's. (bit string - J3B only)

g. Bi.3nks (char,&cter string - J3B only - tis case
requires lenyth of Blank string litet; to ecual the
length of i,1-'. variable in assignment ti,eir.ent).

h. Othc r.

2. Variable including subscriptin, parameter, Bead com-

ponent, table item).

(Note: character of variables withir reference and data type

conversions are handled in d-tail in the histograms above --

see V. B. 12)

117

I,



4'M

3. Function cal'.

4. Variable OPERATOR Literal.

a. A+1.

b. A-Z,

C. A'*2.

d. A/A.

f. A OPERATOR Other Literal,

5. Literal OPERATOR A.

a. 1+A.

b. 1-A.

C. 24-A-

d. 1 /A.

e. e'-*A (e =2.71828...)

f. "Cher Literal OPERATOR A.

6. Vari o!. OPERATOR Varaible.

b. A -B.

C. A *B,

7. Other expres-sions.

a. Number of -Is.

b. Number of -'s.

(Ignore unitary -1) (Note occurren~ces Df unitary mninus

separately from binary operator).

C. Numnber of '

d. Number of I's,

C. Number of **Is.

f. Number of Literals.

9. Number of Variables.

h. Number of function calls

i. Number of occurrences of ABS function.

118



j. Number of o..currences of .RS, (AED) or

SHIFTR( ) (J3B).

k. Number of occurrences of .LS. (AED) or
SHIFTL( ) (3B).

1. Number of occurrences of .A. (AED only)

m. Number of occurrences of . V. (AED only)

n. Number of occurrences of .N. (AED only)

8. Histograms of expressions with more than 1 operator.
a. Number of expressions occurring with n operands.

b. Number of expressions occurring with a variables.

c. Number of expressions occurring with n literals.

d. Number of expressions occurring with n function
calls.

e. Number of expressions occurring with n pairs of
parenthesis (explicit only).

f. Number of expressions occurring with n pairs of
parenthesis including implicit parenthesis for
precedence changes. (For example: a*b+c*d has
Z implicit pairs of parenthesis: (a*b) + (c*d).)

E. Forms of Boolean Expressions.

(Note: Boolean Forms not involving Boolean OPERATORS

are considered simple. All others are called compound.)

I. Literal.

Z. TRUE.

b. FALSE.

z. Variable (including subscripting, parameter, bead

component, table item).

(Note: Character of variables within reference and

data type conversions are handled in detail in the

histograms under section B above.)

119



3. Single Predicate Form.
a. Variable PREDICATE Literal.

(1) Predicates,

(a) EQUAL.
(b) NOT EQUAL.
(c) LESS THAN.
(d) GREATER THAN.
(e) LESS THAN OR EQUAL.
(f) GREATER THAN OR EQUAL.

(2) Literals. (depending on Data Type of Variable)

(a) 0 (integer, real).
(b) 1 (integer, real).

(Note: Literals (c) through (g) apply only to
EQUAL and NOT EQUAL.)

(c) Blanks. (character string, J3B only)
(d) 00...0 B. (bit string, J3B only)
(e) NULL. (pointer)

(f) TRUE. (Boolean (AED) or Bit (J3B))
(g) FALSE. (Boolean (AED) or Bit (J3B))
(h) Other Integer or Real Literals.
(i) Other non-numeric Literals (EQUAL and

NOT EQUAL Only).

b. Variable PREDICATE Variable.

(Predicates as a. (1) above)

(Note: The above categories I through 3 are all simple ex-

pressions. The categories to follow (4 through 6 are all

compound expressions.)

4. Use of Unary Boolean NOT.

a. Preceding single Boolean Variable.

b. Preceding simple Predicate Form.

c. Preceding Variable within an expression.

d. Preceding simple Predicate Form within an expression.

e. Preceding an expression.

f. Other.

1
120



5. Binary Boolean Operators.

a. AND.

b. OR.

c. EQUIVALENT. (AED Only)

d. IMPLIES. (AED Only)

e. EXCLUSIVE OR.(J3B Only)

6. Use of Boolean OPERATOR.

a. Variable OPERATOR TRUE.

b. Variable OPERATOR FALSE.

c. TRUE OPERATOR Variable,

d. FALSE OPERATOR Variable.

e. Variable OPERATOR Variable.

f. Simple Predicate OPERATOR TRUE.

g. Simple Predicate OPERATOR FALSE.

h. TRUE OPERATOR Simple Predicate.

i. FALSE OPERATOR Simple Predicate.

j. Variable OPERATOR Simple Predicate.

" k. Simple Predicate OPERATOR Variable.

1. Simple Predicate OPERATOR Simple Predicate.

m. Compound Expression OPERATOR TRUE.

n. Compound Expression OPERATOR FALSE.

o. TRUE OPERATOR Compound Expression.

p. FALSE OPERATOR Compound Expression.

q. Compound Expression OPERATOR Variable.

r. Variable OPERATOR Compound Expression.

s. Compound Expression OPERATOR Simple Predicate.

t. Simple Predicate OPERATOR Compound Expression.

u. Compound Expression OPERATOR Compound
Expression.

12-



CHAPTER 9

HOW TO WRITE TEST PROGRAMS FOR GENERATING COMPILER
PERFORMANCE PROFILES

1. Overview

This chapter first describes the generalized approach to constructing

and evaluating tests. In particular, the concept of isolating separable

sub-costs associated with the cost of a statement is explained. This is

the major goal of the series of tests presented in Sections 2 - 6.

Five separate series of tests designed to evaluate elements

which could be processed differently by two compilers are outlined.

These include:

0 Lexical elements.

• Declarative elements.

* Scope definitions.

• Program control elements.

• Data manipulation and computational elements.

Separability of statement sub-costs. The prime objective of

constructing test programs is to isolate separate statement sub-costs.

There are three sub-costs associated with the cost of a statement

containing one or more sub-expressions:

(1) The cost of each expression compiled and executed in
isolation.

(2) The cost of the statement form itself (invariant,
regardless of the form of expression used).

(3) The residual interactive cost of each expression as
used in the context of the particular type of statement
form.

A major goal of the test series is to determine items (1), (2), and (3)
separately for various statement forms, However, the three sub-costs

are, in general, not separable. In most cases, the total cost of a state-

mnent-for-m. dctctrmced u"-g the simplest possible expres sion forms,

and as many as possible separable expression costs (sub-cost (1))

122



determined and subtracted from the total. This process provides a

"base cost", which is then used for comparison purposes with other

forms of expressions used with the statement being tested.

For example,

IF expression 1 THEN expression 2

is the IF-statement form in AED. If F( ) (subroutine call) is used as

expression 2, then, since F( ) is compilable and executable in isolation,

sub-cost (1) is separable by subtracting the cost of the subroutine call

from the cost of the total IF-statement. However, the cost of the

interaction b.tween the THEN and the subroutine call (F( ) as used in

the context of THEN) cannot be determined this simply.

Some statements canm however, be made about sub-cost (3),

after tests have been run on several different types of statement forms,

each using the same set of sub.-expressions. Specifically, the difference

betwe-n the cost of one statement form using the same set of expressions

can be compared to the comparable cost using another statement form.

If this difference is negligible this indicates that sub-cost (3) is

negligible for all statement types examined, since the type of statement

in which the expression was embedded had no apparent effect on its cost.

For example, consider the statement forms:

Set 1:

IF expression THEN (Call) (a)
IF expression THEN (Assignment) (b)
IF expression THEN (Loop) (c)

Set 2:

FOR expression WHILE expression DO (Call) (d)
FOR expression WHILE expression DO (Assign.) (e)
FOR expression WHILE expression DO (Loop) (f)

If the total cost difference between items (b) and (a) (or (c) and (a)) is the

same as the cost difference between items (e) and (d) (or (f) and (d)),

then the residual interactive cost (sub-cost (3)) is negligible for calls

and assignment expressions (or calls and loop expressions) as used in

IF and FOR statements.

123

4 * -



Approach to test construction. To determine the actual cost of

various language constructs, each test series in the total set begins with

a skeleton program which represents a simple (minimal) set of statemuents.

This is intended to allow as many overhead costs as possible to be

subtracted from the observed test figures before plotting and analyzing

them. The skeleton program contains just the source statements not

related to the test to be performed (statements necessary to make the

test program compilable or executable), plus all sub-expressions which

are compilable in isolation (sub-cost 1). The skeleton test is compiled

(and executed where necessary) in order to obtain a base cost figure to

be subtracted from the results of the various test runs.

Succeeding test programs add or modify the basic setup, and

performance figures are measured against the base values. it is

anticipated that most (ii not all) such comparison figures will be an

incremental amount larger than the base figures, and that this increment

is a measure of the difference between the test program and the base. In

some instances, the test data values may be smaller thnn the base, showing

that the base is not a true minimal case, but the performance measure-

ment comparisons are still valid even in this unusual case.

Each set of tests is written as a series of programs in which the

feature to be tested is repeated many times. The first test program in

the set repeats the feature LOW times, the next program adds STEP

repetition to the previous number, and so on until HIGH repetitions are

reached in the final program in the test series. The integer val "ts

assigned to LOW, STEP, and HIGH depend upon the software and hardware

measurement facilities available on the particular computer and operating

system being used for the '-sts.

Evaluating test series results. After subtracting the base value

from the test figures, the results of the test runs are plotted, and a

slope which graphically shows the cost of the statement of interest is

determined. The slope of this graph represents the basic cost of

the feature, and -h- shape of the ... ph shows whet-her or not a fixed

cost may be assoc*ated with each occurrence of the feature. If the

124



-X ... V_0M MW 'R ., '---

graph is linear, the cost for each occurrence of the form being tested

is a fixed amount; if the graph is non-linear, the cost is effected by the

number of repetitions which preceded it in the source program.

In the present study we have made the working hypothesis that

all such graphs should be of the linear type. If the results of the test

series are sen to be inconsistent with this hypotbesis, then further study

would be required to determine the reasons underlying the failure of

our hypothesis of linearity.

Categories of efficiency. There are four basic compiler evaluation

efficiency measures of interest, broken down into two classes:

Class 1: Compiler Operation.

Measure 1: Computer Time Efficiency. (Processor Time)

Measure 2: Computer Memory Usage. (Core, Drums,
Disks, etc.)

Class 2, Resulting Object Code.

Measure 3: Execution Speed.

Measure 4: Execution Memory Usage.

Ln Measure 4, this figure includes the actual object code size as well as

addltio:al space required for library support called in as a direct

ret.vt of the source code statements used (number conversions, sub-

routine call linkage mechanisms, etc.).

These four measurements can be taken either on "typical programs",

which use a mix of statements and operations rypical of the application

for which the compiler is to be used, or on individual statement and

phrase forms, which require many more test programs, but which are

independent of the specific application. The test programe discussed

in this chapter are of the latter form; i. e. . they test efficiency of

individual staftement formc without regard for the relative importance

of each form or the relevant compiler application. While most of the

tests specified in this chapter concern primarily Measures 1 and 3,

the method presented is also directly applicable to Measures 2 and 4,

125



2, Lexical Elements

Introduction. The class of lexical elements tests exercises the

lexical and table look-up functional elements of the compiler as well as

input processing support in the CPU. These tests are designed to

measure compie time efficiency and execution time efficiency in the

following areas:

* Formatting features -- number of source lines, source
statements, blank lines, blank and non-blank characters,
lengths of blank character sequences.

* Punctuation, keywords, and tokens.

* External program elements.

Some tests are designed to be compiled only; others both compiled

and executed. This difference is discussed with each set of tests. Also,

skeleton programs resulting in base values to be subtracted from the

test run figures are discussed with each set of tests.

Wherever appropriate, the tests are performed separately on

three different types of statements:

a Comments.

0 Non-executable declaration statements.

* Executable statements.

These three distinctions are not necessarily those known to actually

represent differences in performance among different compilers (or

different implementations of the same compiler) but, rather, are

intended to provide a complete set of tests for lexical elements. The

structure of the tests is simple enough to permit them to be generated

by a program, if desired.

Basic overhead costa. A base or skeleton program is constructe6.

ani run to determine a "base cost" figure to be subtracted from the

results of the various test runs. This program contains only those

source statements which are necessary to make the program compilable

(or executable, ---here n^#tCd and w.hich arc not relat -C to 1.1he test t.

be performed. The particular lexical elements tests consist of a series

126



i______---_____"_____-__ - ---.-- lil-------il .,

of programs repeating the statement form to be tested. The statement is

repeated LOW times, and the number of repetitions is increased by

STEP until HIGH number of ntatements is processed.

The skeleton program for the tests which are compiled only in

AED, takes the form:

BEGIN
INTEGER DUMMY;

EXTERNAL DUMMY;

END FINI

The dashed lines indicate the position where the additional test program

statements are to be added.

Formatting features. This set of tests is designed to measure

the overhead costs of formatting features:

0 Number of source lines.

0 Number of source statements.

0 Number of blank lines.

I Number of blank and non-blank characters.

* Lengths of blank character sequences.

Each formacting feature is tested on comments, declaration staf;ements,

and executable statements. Some of these tests serve as skeleton tests

for other features and are discussed where applicable.

Number of source lines. To evaluate the compiler's performance

with a varying number of source lines, construct three separate sets of

tests to process:

* Comments.

• Declaration statements.

* Executable statements.

~I. 127



First, examine the effect of a varying number of source lines in
a comment. Construct a non-null comment and add it to the skeleton

program. In AED comments take two forms:

1. COMMENT xxxxxxx;

2 ... xxxxxxx//

* The first of these two forms is referred to as a comment, the second as

a remark. They represent however, equivalent ways to express the

character string xxxxxxx as a piece of non-processing, descriptive text

within an AED program.

After compiling the test program first with a one-line comment

and then with a one-line remark and recording the processing time,

then increase the length of each so that it extends over more than one

line. Repeat this process until the desired number of tests has been

compiled (by STEP until HIGH number is reached). After subtracting

off the time required to compile the skeleton program, the results of

these test runs can be plotted and analyzed.

Next, construct a representative set of declaration statements

which are formatted one statement per source line, and add the set to

the skeleton program. in AED, this could take the form:

INTEGER A;

POINTER ARRAY B;

BOOLEAN C;

Again, compile the test program with the set of declaration statements,

and record the processing time. Add replications of the same set,

recompile, and record the processing time (by STEP until HIGH number

is reached). After subtracting off the time required to compile the

skeleton program, the results of thebe test runs can be plotted and

analyzed.

Lastly, to evaluate the compiler's performance with respect to

the number of source 14,ies, cons truct a representative set ofexctal

statements which are formatted one statement per source line, and add

it to the skeleton program. Include a declaration of each different

128



;M. 7"71.

variable contained in an executable statement. Perform the same

repetitive process as just described and, again, plot the results. Note

that even though the set of executable statements is repeated, the

dec.laration statements need appear only once in the test program.

Number of source statements. To evaluate the compiler's

performance with a varying number of source statements, construct

three separate sets of tests to process:

" Comments.

* Declaration statements.

* Executable statements.

The tests for this series are designed so as to make the effects due to

the number of lines as close as possible to those measured in the previous

set, so that they may be factored out from the observed compilation

times.

First, to ex,-mine the effects of a varying the number of comment

source statements, construct a single source line which consists of as

many comments (AED comments, remarks, or both) as will fit on the

one line. Add the line to the skeleton program, compile it, and record

the processing time. Again, repeat the process by increasing the

nurmbe.' nf replications of the commented line, and record the results.

AlternaLively, start with the largest "single comment" as used for the

first set of source line tests. Gradually break it into successively

smaller comments until each is packed at its maximum density. Again,

record the results.

Next, examine the effects of a varying number of declaration

source statements, Construct a representative set of declaration

statements packed together as closely as possible. This may include

several differevt declaration statements per line as, for example:

INTE GER A1, AZ, A3 ; POINTER B1, B2, B3 ; INTEGER ARRAY
C1,C2,C3

BOOLEAN Dl,D2,D3,D4 ;REAL El, EZ, E3,E4;

129



Add the set to the skeleton program, compile it, and record the processing

time. Again, repeat the process by increasing the number of replications

of the set of declarations and record the results.

Lastly, examining the effects of a varying the number of executable

statements. Replace the set of tested -eatures in the previous test series

with a representative set of executable statements packed together as

closely as possible. Perform the same repetitive testing process. Note

that even though the set of executable statements is repeated, the

declaration statements need appear only once in the test program

Number of blank lines. To evaluate the compiler's performance

with a varying number of blank lines, construct four separate sets of

tests to process blank lines occurring:

0 Between statements.

* In comments.

* In declaration statements.

* In executable statements.

First, to examine the effects of a varying number of blank lines

between statements (null statements), add LOW number of blank lines

to the skeleton program. Compile it, subtract off the time required to

compile only the skeleton program, and plot the results. Then add

STEP number of additional blank lines, and repeat the process until

M-IGH number of replications is reached. The results which are plotted

should indicate the effects of blank lines on a compiler's performance.

The last test program in this set will be referred to as an "empty

sheet" program and will be used in other tests.

To examine the effects of a varying ,sumber of blank lines in

corrmmen(, construct the same series of tests as described for a varying

number of source comment lines but incluce only null comments.

Repeat the process and record the results.

130



To examine the effects of a varying number of blank lines in

declaration statements, add a single declaration statement to the skeleton

prograrrm, compile it, and record the results. Then repetitively stretch

the comment over several lines and repeat the process. For example:

INTEGER AI,A2,A3; ... TEST 1I
INTEGER Al ... TEST 2, LINE 1//

A2, A3 ... TEST 2, LINE 2//

TEST 2, LINE 3//

Lastly, to examine the effects of a varying number of blank lines

in executable statements, repeat the "stretched-out" process just

described but replace the declaration statement with an executable

statement.

Number oi blank and non-blank characters. To determine the

compiler's performance as a function of the percentage of the source

language program devoted to blank and non-blank characters, construct

three sepn'.ate sets of tests to process the characters occurring:

0 In comments.

• In declaration statements.

* In executable statements.

First, to examine the effect of a varying number of non-blank

characters in commetts, take the largest extended blank comment

described for testing a varying number of blank lines in comments.

This statement takes the form:

Line Number Contents

1 COMMENT

2

N

Consider this test to be the skeleton test. Now add a group of non-blank

characters to the test, compile, and record the results. Continue this

process, adding groups of non-blank characters until the desired number

of repetitions is reached. If the language places an upper limit on the

131



number of non-blank characters in a string within a comrnrit, start a

new string as soon as the maximum length is reached. The results of

the skeleton test should be subtracted from each test in this set and the

results plotted.

Next, examine the effect of a varying nun.ber of blank characters

in declaration statements by taking one of the densely-packed tests for

the number of declaration source statements as the skeleton program.

Now add a single blank at every position of the program at which inclusion

is permissible, compile the program, subtract off the time required to

compile the skeleton program, and record the results. Then repeat

this process, adding another group of blanks at the same places until

the desired number of replications is reached (STEP until HIGH), compile

the programs, subtract off the time to compile the skeleton program,

and plot the results. Drop statements at the end as necessary to maintain

the program size at the same number lines for each test,

Lastly, to examine the effects of blank characters in executable

satements, replace the declaration statement tests just described with

executable statements and perform the same testing process.

Lengths of blank character sequences, To determine the compiler's

performance with varying lengths of blank character sequences, construct

three separate sets of tests to process blank characters occurring:

* in comments.

* In declaration statements.

* In executable statements.

First, to examine the effect of a varying number of blank characters

in a comment, take the largest non-blank long comment statement tested

for th. number of non-blank characters in conmer.ts and consider it to

be the skeleton test program. After ecc.- char;,ctOr in the connent

insert a blank, compile the program, subtracc -;ff the time to compile

the skeleton program, and plot the results. Tie- -repeat this process,

adding another group of blanks at the sa.me pla. nd ,il the desired

number of replications is reached (STEP until hIGH). Drop characters

132



-- _ I ll .* : . . .. I 1

from the end of the comment as needed to maintain the program size- at

a fixed numbar of lines.

Next, ex&.nine the effect of a va. ying number of blank characters

in declaration statemen s, take the largest declaration source statements

test program and consider it to be the skeleton test prograirn. Place a

single blank at every position of the program at which it is permissable,

compile the program, subtract off the time to compile the skeleton

program, and plot the results. Then, as in the comment test just

described, repeat the process, adding another group of blanks at the

same places until the desired number oi replication is reached (STEP

until HIGH). Drop statements off t-e end of the program as is necessary

to maintain tile program size at the same number of lines for each test.

Lastly, to examine the effects of blank characters in executable

statements, replace the declaration statements tests just described with

executable statements and perform the same testing process.

Punctuation, keywords, and tokens. This series of tests is

designed to measure the performance of --he compiler as a function of

the number of references to specific vocabulary elements (punctuation

and keywords) and to user-declared tokens of varying s2ze. All tests in

this series are to be constructed using the "empty sheet" test program

earlier described. This "empty sheet" program serves as a skeleton

program. It differs from the skeleton program described at the outset

of this section in that the "empty sheet" contains a (generally) large,

predetermined number of blank lines while the skeleton contains only

the minimal amount of information necessary for compilation but no

extra blank lines.

To evaluate the compiler's performance on punctuation characters,

select one punctuation character, write a legal statement containing that

character, and add the statement to the "empty sheet" program. Then

either compile the program or compile and execute the program, depending

O* on whether the stataonint is a decla-ration or an exctal sate~ment.
After running the program, subtract off the time to run the "empty

sheet" program and plot the results. Continue %o perform this process

ii 133



while increasing the number of usages of the punctuation character until

the "empty sheet" is filled up. Then select, another punctuation character

and, again, repeat the testing process. Examples of AED punctuation

characters include:

+ -, $ $=$//$/$ ".

Next, to evaluate the compiler's performance on keywords, perform

the same tests as just described but repeat usage of a keyword. Some

examples of AED keywords are:

ABS

&N D

COMMON

DO0
POINTER

PRESET

UNTIL

WHILE

To evaluate the compiler's performance on user-defined tokens,

construct two separate sets of tests to examine:

* Declaration statements.

* Executable statements.

For user-defined tokens in declarations, construct a test program

consisting of declarations of symbols one character in length,, compile

the program, subtract off the time necessary to compile the "empty

sheet" program which serves as a skeleton, and plot the results. Repeat

this process, gradually increasing the symbol length to the maximum

permitted by the language. Before constructing the first test, leave

. enought blank space at the end of the program so that as the symbol

length increases, the program does not exceed the capacity of the

"empty sheet.

134



To evaluate the . "1ect of user-defined tokens in a program containing

both declarations and executable statements, construct a test program

consisting of the declaration of a symbol and a single executable statement

referencing the symbol. In AED, this could take the form:

BEGIN

INTEGER A;

EXTERNAL A;
A=2;

. - ...

END FINI

Compile and execute the program, subtract off the times necessary to

compile and execute tbs "'mpty sheet" program which serves as a

skeleton, and plot i"he results. Repeat the process, replicating the

executable statement until the "empty sheet" is filled. Perform this

test for symbols varying in length from one character to the maximum

permitted by th! language.

Inclusion of external program elements. This series of tests is

designed to measure the performance of the compiler including external

program elements. In AED, this take the form of a . INSERT file while

in J3B this takes the form of a COMPOOL file. These tests evaluate:

* Number of included clements.

* Size of included elenent.

Construct a program containing a mix of both declaration and

executable statements. In AED, this could take the form:

BEGIN

INTEGER Al, AZ; ... LINE1 //

EXTERNALAI; ... LINEZ//

BOOLEAN B ; ... LINE3 //

Bl = TRUE; ... LINE4/!

Al =4; ... LINE5 //

END FINI

Consider this program to be the skeleton program for this series.

Compile it and record ihe time.

135



Now, to evaluate the number of included elements, move the

first line of the program after the BEGIN to a .INSERT file, calling it

LINE1. The test would take the appearance:

BEGIN

.INSERT LINE1; ... LINE1//

EXTERNALA1; ... LINE2//

BOOLEAN Bl; ... LINE3 //
B1 = TRUE; ... LINE4//

A1=4; ... LINE5//

END FINI

Compile the new program, subtract off the time necessary to compile

the skeleton, and plot the result. Repeat the testing process, placing

each additional line in a . INSERT file until every indented line in the

above example has . INSERT before it.

Next, evaluate the size of the included element. Use the same

skeleton test as above. Place the first line in a .INSERT file, calling

it LINE 1 as above, for example. Then add the next line, LINE2, to the

same . INSERT file and repeat the testing process. Continue adding

successive lines to the same NSERT file until all program lines a?

contained in the .INSERT file (LINE 1 through LINE5) while the main

program contains only:

BEGIN

.INSERT LINE ;

END FINI

A similar series of tests may be constructed for the inclusion

of external elements into a 33B program by means of a COMPOOL file.

However, this series would have to conform with the J3B restrictions

that COMPOOL elements must contain only declaration statements and

that the program including them must contain only one COMPOOL

statement (it can specify several file names).

135a



3. Declarative Elements

The class of declarative elements test exercises the declaration

processing functional element of the compiler. This includes all forms

of declarations as vwell as references to declared variables. The declara-

tion portion includes declaration of other types of program elements such as

proceedures and labels. Reference tests are performed only on variables,

not on references to other forms of program elements. (Procedure calls,

GOTO's, etc., are tested elsewhere.)

There are four basic factors which influence the cost of declarative

elements:

0 Scope and Class: Includes local, global, or external scope;
static, automatic, or "based" variable class; procedure
argument scope and class.

0 Structure: Includes single word, array, table, component,
partial word component. (Switches are arrays of labels.)

* Data Type: Includes procedure, label, integer, real,
Boolean, pointer, character types.

* Initial Value: Includes all forms of statemento used to set
the initial value of a variable (PRESET in AED).

In compilers featuring block structuring, the cost of declarations also

depends upon whether or not the declarations override global declarations

for the same speUirg or built-in declarations. Similar costs are incurred

on compilers without the block structure feature which allow re-declaration.

The tests displaying the costs of declarative elements are run on

the compiler only, for declaration statements, and on both the compiler

and the executable object code, for the reference tests.

Basic overhead costs. The term "Declaration Statement" us

used here, includes all forms of statement used to set the four above-

mentioned factors of a user-defined identifier. In any particular language,

the source language used to set these factors may be contained in a

single statement, o: spread out among various seperate statements. The

meaning of the stat3ment may also depend upon its context. For example,

the position in the source program at which a type declaration is placed

136



may determine its scope. It is the purpose of this set of tests to

illustrate how each of the four basic declaration factors may be tested,

using the AED source language for illustrations. Other source languages

would contain sixrlar tests.

To determine the actuel cost of various constructs, each test

series in the total set begins with a skeleton base program which represents

a simple (minimal) set of declarations. Succeeding test programs add

or modify the basic setup, and performance figures are measured against

the base values, It is anticipated that most (if not all) such comparison

figures will be an incremental amount larger than the base figures, and

that this increment is a measure of the difference betweenthe test program i
and the base. In some instances, the test data may be smaller than the

base, showing that the base is not a true mini,-nal case, but the performance

measurement comparisons are still valid even in this unusual case.

Each declaration f:ature test is written as a seies of programs I
in which the feature to be tested is repeated many times. The first test

program in the set repeats the feature LOW times, the next program adds

STEP repetition to the previous number, and so on until HIGH repetitions

are reached in the final program in the test series. The integer values

assigned to LOW, STEP, and HIGH depend upon the software and hardware

meas-trement facilities available on the particular computer and operating

system being used for the tests.

After subtracting the base value from the test figures, the result3

of the test compilations are plotted, and a slope determined. The

slope of this line represents the basic cost of the feature, and the

shape of the slope 1inear or non-linear) shows whether or not a fixed

cost may be associated with each occurrence of the feature.

Minimal base declaration program set. Construct a set of

programs containing repetitions of the data type declaration statement:

INTEGER A

137



Include sufficient framework to permit the program to compile. In

AED, this program takes the form:

BEGIN

INTEGER DUMMY;

EXTERNAL DUMMY;

INTEGER Al;

INTEGER A2;

INTEGER An;

END FLNI

Since these tests are for the compiler operation only (not object code

efficiency), the program need not be executable, only compilable. The

use of the variable DUMMY in the above program is intended to permit

compilation, and has no other purpose.

Declaration string test. Construct a comparison set of programs

in which all data types of the A's are declared in a single declaration

(-INTEGER Al, AZ, ... An") instead of in separate statements. Spread

out the declaration list over the same number of lines as in the base

program, so that input/output and lexical processing costs are essentially

equivalent. Comparing the two sets of data shows the basic cost of

processing the INTEGER declaration repeatedly versus a string of

declarations in which the INTEGER mechanism is invoked only once and

given a list of names.

Scope and class tests. Construct a series of test which is similar

to the base skeleton program, but modifies the scope of the variable in

the following ways:

* Insert a BEGIN - END around the list of repeated statements
so that they lie within an inner block.

* Redo both test series, adding anEXTERNAL declaration
statement listing all of the A's, thus increasing the scope
of the variables.

138

__ _



" Construct a test series based upon the base program set,
but making each declared "A" a procedure argument (e. g.,

DEFINE PROCEDURE F(Al, A2, ... , An)

WHERE INTEGER Al ; INTEGER AZ;

... INTEGER An TOBE...)

" Construct a test series based on the previous set, but each
"A" use automatic storage (e.g,, in AED,
DEFINE RECURSIVE PROCEDURE ... )

Structure tests . Construct a series of tests which show the

declaration cost astiociated with different structures. Using the base

program described above, replace the word "INTEGER" everywhere

by the word "INTECER ARRAY" and then by the word "INTEGER

COMPONENT". Compile and plot these test results, after subtracting

off the same base cost figures from both test series.

Redo the INTEGER COMPONENT test four times adding a packing

statement for each "A", using the packing:

* Single bt.

0 Byte.

* Half word.

* Other (non-standard machine sub-word configuration).

Redo the four sets of tests, replacing the multiple PACK statement by

a single statement which lists all of the "A's". The comparison will

show the cost of processing individual PACK statements versus processing

the basic declaration data.

Lastly, redo the INTEGER COMPONENT tests with no PACK

statements, but using the offset statement to assign the data to different

word locations (the AED $=$ operator). First assign the component to
"$=$0, " then "$="1", and lastly to "$=$-1". It is assumed that all

offsets greater than 1 will have a similar cost to the "$=$I" case.

1.

'1 139



Initial value tests. In most compilers, all variables have aa

initial value assigned to them when the object program is loaded into'

memory in preparation for a run. If no specific value is assigned in

the source program, a default value is used. For example, in AED,

all integer and real variables are set to 0, all pointer variables arts set

to NULL, and all Boolean variables are set to FALSE. This series of

tests examines the compiler's performance in setting initial value:;

specified in the sour'ce program,

Construct a beries of tests based upon the base program, but

adding the statement

PRESET An = 0;

for each "A" in the program. Re-compile the tests using:

0 PRESET A = 1 ; (non-zero)

0 PRESET A = -1 ; (negative)

* PRESET A = 1 $/$2"; (partial w.,rd)

Other structare. scope, data type and initial value tefits. To

this point, the INTEGER data type has been tested with variat1kns in

structure, scope, and class of variable. After compiling the above tests,

some impression of the performance of the compiler regarding declaration

statement processing should emerge.

It does not appear obvious that these individual actors are

separable for measuirement purposes. For example, the cost of processing

identifiers which have external scope (availability outside the compilation)
may differ for various data types ox structure, and the sub-costs due to

scope, class, structure, initial value and data type may not be easily

separable by source program testing alone (various internal compiler

modifications may be required to separate these costs). Therefore, it
is recommended that various combinations of data type, scope, class,
initial value and structure be attempted and these test results compared

with previous tests o determine if patterns become evident which would

140



allow conclusions to be drawn regarding individual cost factors. The

lists of factors under each declaration category are given at the beginning

of this section, and can be used as a basis for these additional tests.

The test sets should be patterned after the above INT.GOER tests, using

combinations of factors which illustrate compiler performance features

of interest, and which are comparable to other test set results.

Referent tests. Previous tests in this series have considered

various forms of declaration statements. The cost of accessing or

referring to the data in various contexts is coupled to the declaration,

and is considered here.

Unlike the declaration statements which are only of interest in

relation to compilation costs, references to data have both a compilation

and an object code execution cost. Therefore, all tests in this series

are designed to be compiled and executed.

When considering how to construct a series of referent tests, it

becomes clear that the costs of data references are in general not

separable from the t;tatements in which the references occur. For

example in the statement "A=A+B ;", the cost of accessing the value

for B is difficult to isolate. The cost of "A=A ;" can be determined by

compiling this portion of the statement in isolation and subtracting the

resultant cost data trom the cost of the complete statement. However,

this leaves the cost of "+B" which cannot be further broken down and

compiled in ir-)lation to determine the cost of the addition operator

versus the cost of accessing Lt-- value of variable B.

The series of referent lists are constructed in the form of a base

program plus a series of test programs that build upon the base. Each

test repeats the statement form of interest, increasing the number of

repetitions with each test program, just as in the declaration series of

tests discussed above. Each group of tests in the series varies some

factor of the referent being tested, and a comparison of the test results

*measures performance as related to the base as well as related to the

other tests 2n the series.

141



As a base program, construct a series of test programs which

repeats the statement:

~A=A•

Repeat the program for LOW to HIGH repetitious of the statement. The

cost of the compilation and execution of the object code of these tests

provides the base fCgures to be subtracted from all referent tests.

The referent test programs are constructed as follows. Each

test is built upon the base test by repeating a statement of the form:

A=A 2 (referent);

The tests for various referents include:

2referent

+ integer and real literals

+ integer and real variables, arrays, and
components

AND Boolean literals

AND Boolean variables, arrays, and components

For components, use all of the forms of packing as well as positive and

negative offsets described under the declaratior. test set, above. Repeat

all tests for the variables of the classes static, automatic, and procedure

arguments (non-recursive as well as recursive).

To measure referent costs in the procedure call context,

construct a test set which uses as a base, the program which repeat,

A = F(B);

To corz,uruct the test series, replace the procedure argument B by all

forms of permissable referent (integer, real, Boolean, component,

procedure, etc.), including all array forms and packing and offset

options. Also test the case where B is an argument of an output pro-

cedure, making thi, outer procedure first non-recursive and then

recursive.

142



The output of these tests clearly includes several sub-costs, but

the difference between comparable format tests measures changes in

referent cost only, and therefore gives ; measure of referent performance.

4. Scope Definition Elemento

Introduction. The class of scope definition elements tests exercises

the parsing and the machine independent and dependent code generator

and optimization functional elements of the compiler. These tests are

designed to measure compile time efficiency and execution time efficiency

in the following areas:

* Procedure definitions.

* Parallel scoping ranges.

" Compilation boundaries of multiple programs.

• Declaration levels.

" Embedded scoping ranges containing different types
of statements.

Some tests are designed to be compiled only; others both compiled

and executed. This difference is discussed with each set of tests.

Also, skeleton progzams resultirg in base values to be subtracted from

the test run figures are discuse'ed with each set of tests.

All tests in this class are intended to be set up to have the same

number of lines; blank lines should be inserted wherever necessary.

This restriction is designed to neutralize lexical processing aspects of

the compiler which are most strongly reflected as a "cost per line" of

compilation. To mnake the restriction easy to follow, some of the tests

are based on the "empty sheet" program introduced in the lexical test

series.

Basic overhead costs. A base or skeleton piogram is constructed

and run to determine a base cost figure to be subtracted from the results

of the various test runs. This program contains only these source

statements Which are necessary to - ,ake the programn compilable (or

executable, where noted) and which are not related to the test to be

performed. The particular scope definition elements tests consist of a

143



series of programs repeating the statement form to be tested. The

statement is repeated LOW times, and the number of repetitions is

increased by STEP until HIGH number of statements is processed.

The skeleton program for the tests which are compiled only

in AED, takes the form:

BEGIN

INTEGER DUMMY;

EXTERNAL DUMMY;

END FINI

The dashed lines indicate the position where the additional test program

statements are to be added.

Procedure definitions. This set of tests is designed to measure

the overhead costs of a procedure definition. Construct a set of programs

containing repetitions of the AED null procedure definition:

DEFI.NE PROCEDURE An TOBE

Since, in AED, the above statement does not generate code, this set of

tests needs only to be compiled and takes the form:

BEGIN

INTEGER DUMMY;

EXTERNAL DUMMY;

DEFINE PROCEDURE A1 TOBE;

DEFINE PROCEDURE An TOBE;

END FINI

-o. :ruct all procedure definitions tests such that each contains the same

number of lines, in conformance with the "empty sheet" concept

discussed in connection with the lexical elements tests.

144



Parallel scoping ranges. This set of tc.-ts is designed to measure
the overhead costs of a scoping range. Conetruct a set of programs
containing repetitions of the AED null 'copmng range. This feature takes
the form of the following pair of statements:

BEGIN END ;

Since, in AED, the above statements do not generate code, add repetitions
of the BEGIN - END pair of statements to the compi? .:-only skeleton
program. Construct all parallel scoping range tests suck that each
contains the same number of lines, in conformance with --he "empty sheet"
cO'Icept discussed in connection with tr-e lexical elements tests.

In certain other higher level programming languages, PL/I for
example, BEGIN - END pairs of statements, in addition to procedure
definitions, define the retention range for the compiler's allocation of
automatic storage locations. Tn evaluating the performance of such a
compiler, the set of tests constructed would have to be both compilable
and executable, and both the compilation time and the efficiency of the

" generated code would have to be evaluated.

Compilation boundaries. This set of tests is designed to measure
the overhead cost of splitting a single program into two or more separate
compilations. Construct a set of programs containing re: etitions of
the AED empty program definition statements:

END FINI BEGIN

As in the two previoas sets of tests, the above statements do not generate
code, add repetitions of the END FINI - BEGIN pair of statements to the
compile-on , skeleton program so that it takes the form::1 BEGIN ... PROGRAM A I

INTEGER DUMMY ;7' EXTERNAL DUMMY

END FINI

BEGIN ... PROGRAM An //
f INTEGER DUMMY;

EXTERNAL DUMMY;
*END FINI

,' 145



Construct all compilation boundaries tests such that each contains the

same number of lines, in conformance with the "empty sheet" concept

discussed in connection with the lexical elements tests.

The facility to compile a sequence of programs without reinitializing

the compiler is not present on all AED compilers. The test methods

described here is applicable to the AED compiler on the Control Data

6600 but not to AED compilers on either the Univac 1108 or the IBM 360.

Declaration levels. The two sets of tests described here are

designed to measure the overhead cost of embedded scoping ranges (or

declaration levels). The first set examines empty scoping ranges; the

second non-empty.

Construct a set of programs containing embedded repetitione of

the AED null scoping range pair of statements:

BEGIN END;

Again, because the above statements do not generate any code, add

repetitions of Lhe BEGIN - END pair of statements to the compile-only

skeleton program so that it takes the form:

IBEGIN

INTEGER DUMMY;

EXTERNAL DUMMY;

BEG ... LEVEL 1//

BEGIN ... LEVEL 2//

BEGIN ... LEVEL n/.

END; ... LEVEL n//

END; ... LEVEL 2//

END; .. LEVEL //

END FINI

Construct all tests such that each contains the same number of lines, in

conformance with the "empty sheet" concept discussed in connection

with the 'ca1 elements tests.

146



Next, to test embedded scoping ranges over non-null statements,

construct a compile-only skeleton program with a predetermined number

of declaration statements:

BEGIN

INTEGER DUMMY;

EXTERNAL DUMMY;

INTEGER AO;

INTEGER Al;

INTEGER A n;

END FINI

Place a BEGIN - END pair of statements around the last declaration

statement (INTEGER An ;), and recompile. Then place another

BEGIN - END pair of statements so as to include both the next-to-last

declaration and the pair just added, axd recompile again. Continue this

process until only the first declaration lies in the outermost BEGIN-END

block of the program and takes the following form:

BEGIN

INTEGER DUMMY;

EXTERNAL DUMMY;

INTEGER AO ;

BEGIN ... LEVEL 1/f

INTEGER Al;

END;

.....e o ......e

BEGIN ... LEVELn //

INTEGER An;

END

END FINI

Again, construct all tests such that each contains the same number of

lines.

1
; 147

4__



Embedded scoping ranges nontaining different types of statements.

These tasts are designed to evaluate the performance of the compiler in

relation to processing embedded scoping ranges where the innermost

range contains different groups of the same type statement, some

executable and some only compilable. While the previous sets of tests

concentrate on the effect on the program of imposing additional scoping

levels, these tests attempt to isolate any effect of outer scoping levels

on statements at an inner level.

Specifically, these tests examine:

* Declaration statements.

* Executable statements.

. User tokens.

* User tokens redeclared.

* Nested procedure definitions.

0 Labels.

These tests use, first, the skeleton program discuosed earlier

under basic overhead costs. To this skeleLon each set of tests adds,

successively, an increasing number of sirnilr statements. Then one

or more (LOW as explained in Section 1) ntun .oz of vbedded levels

of declarations is added to the skeleton progr.m, and in increasing

number of similar statements is again added. The nuraber of levels of

declarations is increased (by STEP until HIGH -.umber is reached, as

described earlier), and an increasing number of sirrailar statements is

added. Thus, these tests vary first the number of similar statements

and then the number of embedded levels of declaratioas.

To test the compiler's performance with a varring number of

declaration statements within embedded scoping ranges, construct a

group of declaration statements of the form

INTEGER Al;

INTEGER A2;

INTEGER Am;

148



and add these to the innermost embedded scoping range of both the

skeleton test and the tests with increasing levels of embedded scoping

ranges. These tests need be compiled only, since no object code is

generated by the AED compilcr for any construct tested.

To test the compiler's performance with a varying number of

executable statements within embedded scoping ranges, replace the

group of declaration statements in the previous test set with a group

of executable statements. These take the form:

A =A

Add repeated instances of the above assignment statement to the innermost

embedded scoping range of both the skeleton test and the tests with

increasing levels of embedded scoping ranges. The same statement

A=A;

may be repeated as many times as desired since AED makes no restriction

on this language usage. It is however necessary to declare A and this

should be done in the outermost block. The last test in this set should

take the form:

BEGIN

INTEGER DUMMY;

EXTERNAL DUMMY;

INTEGER A;

BEGIN ... LEVEl //

BEGIN ... LEVEL 2//

BEGIN ... LEVELn //

A= A; ... ASSIGNMENT I//

A=A; ... ASSIGNMENT 2//

A =A; ... ASSIGNMENTm //

END; ... LEVELn //

END; ... LEVEL Z//

END; ... LEVEL 1//

END FINI
149



Since these tests contain executable statements, they must be compiled

and executed, and both the compilation time and efficiency of the resultant

object code evaluated.

To test the compiler's performance with a varying number of user

tokens within embedded scoping ranges, replace the group of statements

in the basic test set with a single declaration statement of increasing

number of tokens (items being declared) of the form:

INTEGER Al, AZ, ... Am ;

Repeat the process just described. These tests need only be compiled,

since no ojbect code is generated by the AED compiler for any construct

tested.

Note that this set of tests differs from the varying number of

declarations statements tests in that the number of variables is considered

significant, rather than the number of statements.

Construct a set of tests similar to the set just described but

have each variable declared in both the innermost and outermost scoping

ranges to evaluate the compiler's performance with a varying number of

redeclared user tokens. Any observed dIfferences between the previous

set of tests and this set may be attributed to the fact that the variables

had already been declared.

To test the compiler's performance with a varying number of

nested procedure definitions add an increasing nuinber of nested

procedure definition statements to the skeleton test program. The last

test in this set should take the form:

BEGIN

INTEGER DUMMY;

EXTERNAL DUMMY;

DEFINE PROCEDURE Al TOBE BEGIN

DEFINE PROCEDURE A.2 TOBE BEGIN

. .. •.... ...

DEFINE PROCEDURE AN TOBE BEGIN

END; ... PROCEDURE An/I

150



I -

END ... PROCEDUREAZ/

END ; ... PROCEDURE Al //

END FINI

This set of tests needs only to be compiled, since no object code is

generated by the AED compiler for any construct tested.

=Lastly, to test the compiler's performance with a varying number

of labels, perform the set of tests described for executable statements

but assign a label to each statement. The features tested for inclusion

to the skeleton test take the form:

Li: A=A;

LZ: A=A;

Ln: A=A;

Compile and execute this set of tests and then compare the results with

those from the executable statements tests. The differences in per-

formance may be attributed to the presence of the labels.

5. Program Control Elements

Introduction. The class of program control elements tests

exercises the parsing and machine independent and dependent functional

elements of the compiler. These tests are designed to be compiled and

executed.

Program control elements play an important role in overall

compiler performance. This role is more or less important depending

upon the specific application for which the compiler is being used. For

example, a "system" program (compiler program, file system program,

etc.) in general makes heavier use of conditional expressions and Boolean

operators than a "scientific" application program (riumberical analysis

and data reduction, avionics programs, etc. ), which makes heavier use

. of loops and arithmetic operators. In all cases, however, program

control statement efficiency is an important -,,easure of compiler

performance.

151



Basic overhead costs. To make the plot of the graphic output

more sensitive, as many overhead costs as possible are subtracted from

the test figures before plotting. To determine the overhead base cost

to be subtracted, an overhead skeleton program is constructed which

contains just the source statements not related to the test to be performed

(statements necessary to make the test program compilable), plus all

sub-expressions which are compilable in isolation (sub-cost (1)). These
skeleton programs are compiled and executed in order to obtain a "base

cost" figure, as discussed above.

For example, in AED, an overhead skeleton program might be:

BEGIN

DEFINE PROCEDURE MAIN TOBE

BEGIN

INTEGER A;
A=A;

A=A;

A=A

END

END FINI
The above skeleton corresponds to the test program:

BEGIN

DEFINE PROCEDURE MAIN TOBE

BEGIN

INTEGER A;
IF TRUE THEN A=A;
IF TRUE THEN A=A;

IF TRUE THEN A=A;

END
END FINI

where the underlined phrases (simple IF -- THEN) are the forms being

tested.

152



Types of IF tests. IF statement tests are broken down into tests

of the IF -- THEN and IF -- THEN -- ELSE statement forms, and tests

of the various THEN and ELSE clause forms. The same set of tests is

intended for testing both compiler and resulting object code efficiency,

and therefore include whatever source statements are necessary to permit

their convenient execution, as well as the basic syntax necessary for

compilation.

The description of each test program contains three integers:

LOW, STEP, and HIGH, which represent the number of times a particular

construct is to be repeated in the test program. It is anticipated.

depending upon the clock accuracy and consistency of results from

repetition of the same test runs, that these LOW, STEP, and HIGH

integers will need to be varied, depending upon the specific computer

and operating system on which the testing is conducted.

In each case, the tests are designed to test the parser and code

generator portions of the compiler. The costs of reading input, per-

forming lexical analyses on the input characters, and writing compiler

output are not of interest here, and these costs are included in the base

cost determined from the skeleton program and subtracted from the

test program results.

Conditional statement forms (IF). This category covers the

basic "conditional" class. AED statements are used as illustrations,

below.

The form of an IF construction in AED is:

IF X THEN 51 ELSE SZ

where X is any Boolean variable or phrase, and Sl and SZ are variables,

constants, or phrases whose type depends upon the particular form of

IF construction used. If the IF is used in its "non-valued" form, $Q and

U must have the type "statement"; if the IF is used in its "valued"

form, iUand bU must be of the same type, and may take on whatever

form is required by the larger statement in which the IF is nested. For

153



example, in AED, the following statements illustrate some of the "valued"

uses of IF:

Pointerl = IF Bool1 THEN Pointer2 ELSE Pointer3

GOTO IF BoolZ THEN Labell ELSE Label2

A = A + IF Bool3 THEN 1 ELSE 2

In the tests described below, the "valued" form of IF is ignored, since

it is not basically a program control construct and is not common among

compiling languages. (For example, it is not available in J3B.) Only

the non-valued I.F form is examined here.

Tests for IF clause forms. The IF--THEN statement has two

sub-expressions, with their associated sub-costs:

IF expressionl THEN expression2 ;

* where exoreisionl is of type Boolean and expression2 is of type state-

*ment. Since expression2 is of type statement, it can be compiled in

Iisolation, and therefore sub-cost (1) resulting from expression2 can

be determined. However, expressionl cannot be compiled in isolation,

and there is therefore no way to separate out its contributed sub-cost.

Also, since the IF statement will not compile unless expressionl and

expression2 are given, there is no way to determine the invariant cost

Iof the IF-statement form (sub-cost (2)).

I, Consequently, the test procedure to be used in this case is as

follows. First construct a program containing LOW number of state-

ments of the form

IF TRUE THEN statement;

where statement is any executable statement which will cause the IF

statement to be compilable and executable (e. g., A=A). Construct a

series of test programs, incrementing the number of these statements

by STEP until a program containing HIGH number of statements. Compile

*and execute each test program thus generated. Repeat the same set of

tests with the IF FALSE form, so that statement is never executed, and

154



all that is measured is the mechanism used to test and branch between

statements. Of course, the overhead figure subtracted from this second

set of test runs does not include the repetative statement execution.

Repeat the above test series, replacing the IF TRUE with (1) IF FALSE,

and (2) IF Boolean variable, and tbLn (3) with the expression var == var2

(simple EQL comparison). The test set need not be run using the other 5

forms of comparison operator, since it is assumed that the difference in

efficiency between the various comparison operators is a separate topic

covered by a separate set of tests, and is not coupled to the IF statement

efficiency.

To complete the IF clause test set, compile and run the same

series of tests using the compound expression form Booll AND BoolZ

for the variable. Again, as with the individual comparison operators,

it is assumed that differences in efficiency between operators and com-

binations of operators (OR, NOT, Booll AND NOT Bool2, etc.) can be

separated from IF statement efficiency tests; the operator efficiency

question is covered by another set of tests.

Goal of THEN and ELSE clause tests. The goal of this series

of test! is to determine the interaction costs (sub-cost (3)) of the six

permissable forms of THEN clause: BEGIN, CALL, FOR, IF, GOTO,

assignment. A separate overhead skeleton program for each of the six

permissable forms is generated, to subtract off the effect of the form of

THEN- clause used and thus leave the effect of the IF -- THEN portion

only, For example, the overhead skeleton for the CALL form is:

BEGIN

DEFINE PROCEDURE MAIN TOBE

BEGIN

CALL( ) ;

CALL() ;

CALL( );
END

END FINI

155



* '*7*-cz, *-J p

This skeleton corresponds to the test program:

BEGIN

DEFINE PROCEDURE MAIN TOBE

BEGIN

IF TRUE THEN CALL(j;

IF TRUE THEN CALL();

IF TRUE THEN CALL(
END

END FINI

where the underlined portion is the construct to be tested,

THEN and ELSE clause tests. Construct a series of tests,

beginning with LOW number of statements and increasing this number

by STEP until HIGH for each of the six forms of THEN clause: BEGIN,

CALL, FOR, IF, GOTO, and Assignment. Set the IF variable to TRUE.

Compile and exe-:ute these tests, as well as the overhead skeleton

program corresponding to each test program. Subtract the effect of the

overhead from each test, to obtain the desired performance measure.

Repeat the same series of tests, replacing each statement of

the form

IF variable THEN statement

by the statement

IF variable THEN statement ELSE statement

Note that the overhead skeleton programs need not be re-compiled or

re-run for these second ELSE clause tests, since the desired overhead

numbers can be obtained directly from the first set, based upon the

number of statements executed. Run this set of tests twice, first with

variable aet to TRUE, and then with variable set to FALSE. This will

show any differences in performanc:e beteen the THEN and the ELSE

portions of the statement. Use the same expression for both statements

(THEN and ELSE).

156



FOR Statements. The FOR statement (looping statement) has the

following forms in AED:

Form 1: FOR index variable = initial value WHILE continuation
condition DO loop body ;

Form 2: FOR index variable = initial value STEP increment value
UNTIL termination value DO loop body ;

Form 3; FOR index variable = value, value, value, ... , value
DO loop body

Form 4: WHILE continuation condition DO loop body;

An elaboration on Form 3 allows any value in the list to the right of the =

to be any of the following three phra3es:

* initial value WHILE continuation condition

* initial value STEP increment value UNTIL termination value

* initial value STEP increment value WHILE continuation condition

The goal in running the tests on FOR statements is to determine

t.e efficiency of the FOR loop mechanism used to accomplish the various

forms of loops. To do this, tests are constructed to determine the

efficiency of each form of FOR statement, working with each permissable

form of initial value, index variable, increment value, continuation

condition, termination condition, and loop body.

Tests for Variations in Loop Statement Operands. Construct a

set of tests with LOW to HIGH repetitions of each of the looping statement

forms, using the simplest convenient form of operands. In AED this

corresponds to the four sets of statements:

FOR I=1 WHILE I LEQ 1 DO I=I+1;

FOR I=I STEP 1 UNTIL 1 DO I=1+1;

FOR I=I,I DO I=I+1 ;

WHILE I LEQ 1 DO I=I+l;

where I is declared to be of type INTEGER. Since the AED compiler

initializes all integer variables to 0, each loop statement causes the DO

portion (I=I+1) to be executed twice; thus each set of test results may

be compared to each other set to determine relative efficiency of the

equivalent construct.

157



Next, determine the base value to be subtracted from each set of

tests. This is done by compiling and executing a series of programs

containing n*2 repetitions of the statement "I=I+l" (the DO expression),

where n is the number of loop statements in the test program, plus n

repetitions of the statemeiat I=I", (the FOR expression). The STEP,
UNTIL, and WHILE expressions are not separable.

To test various other forms of operands, next vary each operand

according to the following sequence. Consider the statement forms:

FOR i=e STEP f UNTIL g DO s;

FOR i=e WHILE x DO s;

FORi=e1,e, en.. enDO s;

WHILExDO ;

Each of the lower-case letter codes represents an operand class that is

to be varied to gather 'erformance measurements:

Lett.-r Code Variations Tested

i Structure and Data Type

e, f, g Literal/Variable Structure Type

x Boolean Data Type

s Statement Type

Construct a series cf tests for each of the four loop itatement forms,

using the following variations, one at a time, in place of the correspond-

ing letter code shown above. For all but the single letter code being

examined, use the basic (simplest) case employed at the beginning

of this section.

Forms of "i" Structure and Data Types:

a. Simple integer.

b. Subscripted integer array element.

c. Integer bead component.

d. Simple real variable.

e. Subscripted real array element.

f. Real bead component.

158



g. Simple pointer variable.

h. Subscripted pointer array element.
, i. Pointer bead componeat.

j. Simple Boolean variable.

k. Subscripted Boolean array element.

1. Boolean bead component.

General form of 'let' (or "ei"), "f" (or "fi"), or
it (or ",gi") literal or variable:

a. Single literal, or non-subscripted variabl, w-.th the same
data type as i.

b. Other.

Form of "x" boolean data types:

a. Simple Boolean.

b. Other.

Form of "s" statement types:

a. BEGIN.

b. CALL.

c. FOR.

d. IF.

e. GOTO.

f. Assignment.

Tests of loop execution efficiency. The above test series

examines the cost of the various forms of operands used with looping

statements. The run-time cost of the loop mechanism itself is determined

by constructing a series of tests containing a single loop statement,

3pecifying an increasingly larger number of iterations around the loop

(e.g., UNTIL 10, UNTIL 100, UNTIL 1000, etc.). Subtract the base
value derived from the test run which contained the proper number of

repetitions of the stat-,nent 'I=4+1I" to isolate the cost of the loop action.
Run the tcts for all '.ur forms of loop statement, and for all forms of

operand listed above. _i '.his series, the only meaningful efficiency

measure is on the code ,;nerator output (data resulting from the run,

not the compilati-On).

I: 159



Procedure and function call mechanism tests, To test the

procedure and function call mechanisms of the compiler, construct the

following series of tests. Repeat the simplest form of procedure and

function call LOW to I-UGH times, creating two series of test programs

and a resultant graph showing the slope of the individual test program

results. The "simplest" forms are

F();

for v. procedure, and

A=F(

for a function call.

Use a program format containing only the minimum number of statements

required to permit compilation and execution of the test series, and

subtract the cost of the skeleton version of this program as a base value.

Compile and run the tests using the simple form and then the recursive

form of procedure and function definition. Rerun the test series using

all other permissable forms of calls (Fortran and COBOL compatible

forms, internal versus external forms, etc. ),

More complex tests of function and procedure calls used with

various language constructs and environments are not considered here;

they are discussed in relation to each individual context (IF--THEN,

FOR, etc. ). Also, tests of procedure and function argument and output

value transmission are convered under the test series discussed in

Section 6.

Other program control tests. Unconditional transfer stazements

comprise the final set of program control statements to be tested. These

include labels, transfer statements (GOTO in AED), and switches. Unlike

the conditional (IF) statement and the loop (FOR) statement which are

tied to Boolean phrases of various types, unconditional transfers are

completely separable from other language forms.

0

. . .



To construct an efficiency test for unconditional transfer statements,

write a series of test programs as follows:

Write a test program containing transfers to the next
statement:

GOTO LI;

Ll: GOTO LZ;

LZ : GOTO L3;
(etc)

Include enough of these to permit sufficient compiling
and execution time to be measurable.

Compile and run this test, subtracting the overhead
skeleton cost. Continue to increase the number of
transfers and run tests until a pattern is evident.

* Write a second series of tests based on the first, which
includes a single executable statement (such as "tA=A")
before each transfer statement. (This should detect
control sequence optimization.) Compiler and run these
tests, subtracting off the overhead.

* Repeat the entire series of tests described above,
replacing the simple transfer statements with switch calls
which have the same logical effect. Use integer literals
in the switch calls. For example, in AED, the repeated
statements of the first test set would be:

SWITCH W = Ll, L2, L3,

GOTO W(1);

Li : GOTO W(2);

L2: GOTO W(3);

(etc)

* Repeat the preceding switch tests by replacing the integer
literals by all other legal forms, such as integer components,
arguments, etc.

0 Construct a series of tests for transfer statements used as
*procedure arguments. This test is accomplished by

lefining two procedures and transferring control back and
forth between the two programs. For example, in AED
this would be:

161



DEFINE PROCEDURE MAIN TOBE

BEGIN

PROC(L 1);

Li : PROC(LZ);

L2 : PROC(L3);

(etc)

DEFINE PROCEDURE PROC(L) WHERE LABEL L TOBE
GOTO L;

Include sufficient numbers of these call/transfer sequences
to provide significant timing data. Compile, execute, and
subtract overhead values from these tests. Rerun the
tests passing the target label through 2, 3, 4, etc., levels
of nest depth. Lastly, rerun the tests using recursive
procedure forms, rather than the simple procedure
mechanism.

Finally, it is desired to test the non-lexical performance features

of labels (lexical features are examined in Section 2). The major such

performance feature involves the code generator logic employed in its

machine register usage memory. In the simplest logic design, each

label occurrence causes all register memory in the compiler to be

cleared, so that code must be generated to load a register the next

time a particular value is needed in the register. A more sophisticated

code generator performs sufficient flow analysis to determine that

certain register memory need not be cleared, and, if a needed value

was already in a particular register, it need not be re-loaded because

of the occurrence of the label.

To test this code generator feature, construct a test program

which repeats the pattern

LO : X = COMP(P) ;

Li : X = COMP(P) ;

(etc)

Repeat this labeled statement forra LOW to HIGH time, k ;-nd

run thi teat series, and thcAn rc~cornpile a'id re -r-.i -e id efl!,i%

programs, except remove all statement labels. Subtract the ba-c;

162



values obtained by compiling and running a program cont.ziing the same

number of repetitions of the statement

X=X;

The difference between the labeled and non-labeled versions of the test

illustrate the desired code generator performance measure.

1

1 163



6. Data Manipulation and Computation Tests

The class of data manipulation and computation tests exercise a

portion of the parsing and code generation programs of the compiler.

The tests measure performance in handling the various data manipulation

operators, as used in variods environment. All tests are designed to

be compiled and executed; skeleton programs resulting in base values

to be subtracted from the test run figures are discussed with each set

of tests.

Arithmetic assignment operator. The simplest form of arithmetic

data manipulation is the assignment statement A = B;. The first series

of tests examines the efficiency of this simple assignment form. For

this series of tests, we are interested only in the various means

employed by the code generator for storing arithmetic data. In particular,

we are interested in the interaction between the 11=" operator and the

right-hand side (B). Therefore, the series of tests is based upon

variations of B which may cause variations in the code generated for

the assignment operation, such as a "store zero" instruction to implement

the statement A = 0;. (The left-hand side of the "=" is tested in a

separate set of tests, described later in this section.)

The tests consist of a series of programs repeating the statement

form to be tested. The statement is repeated LOW times, and the

number of repetitions is increased by STEP until HIGH number of

statements.

The first set of tests examines all forms of literals. The specific

statement forms to be tested are:

0 A=0 ; (integer)

* A=I ; (integer)

0 A= -1 ; (integer-negation)

0 R=0 ; (real)

* R=1. ; (real)

0 R= -i ; (real-negation)

0 B=TRUE ; (Boolean)

164



a B=FALSE ; (Boolean)

SP=NULL ; (Pointer)

• Other.

where the class "Other" includes any other special forms peculiar to the

compiler being tested (e. g. O's in bit strings, blanks in character

strings, etc.).

A single overhead skeleton program is used for all of the above

tests, which consists of the minimum required for compilation and

execution. In AED, this is:

BEGIN

DEFINE PROCEDURE MAIN TOBE

BEGIN

INTEGER A;

A=0;
END;

END FINI

Construct a second series of tests similar to the above set, except

using all other permissible structure and data types of variable instead

of literal on the right of &ht "=".

This includes the foliowing forms:

* A=B (all types, integer, Boolean, real, pointer, etc.)

* A=AR(l) (all types of array, using both an integer variable
and a literal for I, and including as many levels of
subscripting as permitted)

* A=COMP(P) (bead or table item of all types, positive and
negative offset and packing)

rest the above forms for B, AR, I, COMP, and P as local variables,

arguments of procedures, and arguments of recursive procedures.

For any single test, make only one item an argument, to isolate the

effect of the mechanism.

I

165

i



Function call test. Construct a series of tests to examine the

cost of storing the result of a function call. This test is the same as the

above set, except that the form A=F ( ); is repeated in each test program,

and the base value subtracted from the test set includes the repeated

calls on F (F(); F( ) ; etc. ) to isolate just the cost of the A storage

mechanism. Use all legal types for A and F (integer, real, etc.) and

make A of the same type as F.

Right hand side bivaz-y operator test. Next, test the cost of binary

arithmetic operators used on the right hand side of the "=". Construct the

following series of tests, beginning wi~i LOW number of repetitions and

increasing the number by adding STEP new repetitions until HIGH. Use the

minimum basic form of program which wiU allow the test to be compiled and

executed. In AED, this would be:

BEGIN

DEFINE PROCEDURE MAIN TOBE

BEGIN

INTEGER A;

A =A A;

A A op A;

A A op A;

END

END FINI

The overhead skeleton program for these tests replaces the

A A op A;

by the form

A=A;

This skeleton program base value subtracted from each test program

thus leaves the cost of opA, which inclides the three sub-costs: the

cost of evaluating A, the inva:iant cost of the 2p, and any residual

t;rpe of A.

166



- - --- _-_ _.--_ _ _._ _ _-.. ..

The specific test programs to be compiled and executed are:

0 Five sets of tests, of the form A = A 9. A, with op being +,
-, *, / and **. Use an integer variable name for A.

0 A second set of five tests of the same form as above,
using a real variable name for A instead of integer.

0 A third set of tests of the same form, using other types
of variables for A. In AED, this would include a small
set of pointer arithmetic constructs; in other languages
it might include bit-arithmetic, etc.

0 A series of tests of the same form using other, special
forms of binary operator for . This set includes the
operators for shifting (R. S. and L.S. in AED, SHIFTR
and SHIFTL in J3B) and logical masking and combining
(.A. for AND, .V. for OR, etc.)

. Asetof tests of the formA = B 2P C, using special
literal,, such as i and 2 for B and C. (The code generated
for manipulating these particular literals may be quite
unique).

Include tests for the following specific forms:

e A+ 1, and 1+A.

e A-2, and 1-A.

e A * Z, and 2 *A.

* A/2, and 1/A.

* AA*2, and e**A (e=Z. 71828...).

o A op Other Literal, and Other Literal 2.a A.

Use first integer and then real A and, lastly, any other type of variable

which produces a legal construct in the language (e. g., P = P + 1,

with P of type pointer).

In all of the above tests, the base value to be subtracted is

obtained by creating a skeleton program which repeats the statement of

the form A = A. Note that a different skeleton program must be

generated for each data type used for A. In tne final test series invol% .ng

tliterals, the same base value is used for both permutations (e. g., the

same base value derived by repeating A = A, is used for both A + 1
and I + AI thus lutrting C re -"'c- of "-.r- g 6-i- of&%

operands.

167



Left hand side of assignment statement. Construct a series of

tests to examine all legal forms of referent permitted on the left hand

side of an assignment statement, thus illustrating the parsing and code

generation actions performed for the "=" operator. Include the following

*forms:

* Simple variable (A= ).

* Subscripted Variable (AR(I) =, AR(Literal) =, AR(expression)

* Bead or Table Item Component ( COMP(PTR) =

If multiple subscripting is available, the subscripted variable form is

elaborated to show all possible combinations of variable, literal, or

expression for each subscript.

For each test in the set, repeat one of the above forms LOW number

of times, increasing by STEP until HIGH. For the right hand side of the

statement use the simplest form that permits compilation and execution

of the test (A=A, AR(I) =A, etc.).

The statement form left-expression = right-expression is not

separable, for purposes of obtaining a base value. That is, neither
left-expression nor right-expression can be compiled in isolation.

Therefore, the skeleton program for this set of tests consists of the

required compilation framework plus a single "A = A" statement to

permit the skeleton program to compile and execute. The skeleton

program, in AED, is:

BEGIN

DEFINE PROCEDURE MAIN TOBE

BEGIN

INTEGER A;
A=A;

END;

END FINI

Repeat this set of tests for the following cases:

* All data types of variable, array, and component
(integer, pointer, real, etc.).

168



0 All forms of COMP offset and packing.

0 All combinations of non-recursive and recursive procedure
arguments (for AR, I, COMP, etc.).

If permitted by the language being tested, also test the forms

F=

and

F()=

for setting the values of functions.

Strings of arithmetic operations. So far, the test programs have

examined only single occurrences of a particular operator. For example,

the statement A = A + A has been examined, but the effect of a string such

as A = A + A + A, or A = A + A + A + A, etc. has not been examined.

It is true that in some instances, using some particular computer hardware

designs, a compiler might take advantage of the fact that a string of

operators is specified, and thus compile a more efficient object code

sequence. Indeed, sequences involving "*" and "/" quite frequently

result in interesting patterns of object code, since products and dividends

commonly occur in separate hardware registers, and the opportunities

for compiler object code optimization are clearly evident, especially

taking into account the commutivity of source code operator /operand

sequences.

However, the set of tests to evaluate these types of operator

strings and sequences is beyond the scope of the present effort, especially

in light of the fact the "system-type" applications (compilers, file

systems, etc.) make very little use of arithmetic operator strings, and

the evaluation of their efficiency for system programming applications

, is of little impo.rtance compared to other forms of evaluation considered

here. Arithmetic operator strings are therefore not included in the set

of tests described here, but are left for future follow-on efforts to

consider.

169



Boolean expression tests. The set of Boolean expression tests

closely parallels the arithmetic expression tests described above. The

Boolean tests are intended to examine the compiler's parsing and code

generation handling of Boolean forms of assignment and data manipulation,

using both literals and variables as operands. As in the arithmetic tests,

we are interested primarily in the handling of the Boolean operators,

both as a fixed cost for each operator and as the expense of the inter-

action between the operator and its environment. The cost of different

forms of data referencing and retrieval are not considered here; these

costs are covered in a separate set of tests.

As in the case of the arithmetic tests, a series of Boolean test

programs is constructed, where each program repeats a statement to

be tested a certain number of times. The first test contains LOW number

of repetitions, and these are increased by STEP number of repetitions for

each succeeding test, until HIGH number of repetitions is reached. A

"base value" is determined by writing one or more overhead skeleton

programs and compiling and executing these skeletons. The base value

thus derived is then subtracted from the figures determined from each

test compilation and run. A plot of these final figures then shows a slope

(expected to be linear in most cases) which characterizes the cost of

the feature being tested.

Use of single Boolean literals. The first series of tests evaluates

the cost of the Boolean literals TRUE and FALSE. To test these literals,

construct a series of tests containing LOW to HIGH repetitions of the

statement A = TRUE, where A is a Boolean variable. Since neither

A nor TRUE are cornpilable in isolation, the overhead skeleton

program for this series of tests consists of just the basic statements

necessary to permit compilation and execution. In AED, this is

BEGIN

DEFINE PROCEDURE MAIN TOBE

BEGIN

BOOLEAN A;
A TRUE;

170



END;
END FINI;

Note that, in AED, at least one executable statement is required to permit

compilation, and the skeleton program therefore, contains the single

statement "A = TRUE".

Repeat the above test set, replacing A = TRUE by A = FALSE

to determine the assignment of a Boolean variable to FALSE. The

results of this test may be compared to the TRUE test, to determine

any differences in cost (one of the two forms may take advantage of a
"store zero" operation, for example).

Use of Boolean Variables. Repeat the above series of tests,

replacing the repeated statement by A = B where B is a Boolean

variable. Construct tests to show the cost of the assignment operator for

each of the following forms of Boolean variable, B:

* A = B (simple variable).

* A = BA (I) (Boolean array element -- use variable and
literal for 1, and use as many subscripts as permitted.

* A = COMP (P) (Boolean component or table item),

Conduct series of tests for all legal data types for B, BA, and COMP

(integer, real, pointer, etc.) and for B, BA, I, COMP, and P as

simple and as recursive procedure arguments. Make only one item

at a time an argument to isolate the desired cost. Use the sam- skeleton

program base value as for A = Literal in all cases.

Boolean operator tests. The series of Boolean operator tests

is designed to determine two costs: the invaziant cost of the use of

the Boolean operator itself, and the interactive cost of using the operator

with its right and/or left context, in various environments. Use of the

operator in conjunction with loops and conditionals (IF and FOR) is not

covered here; those tests are diacussed in Section 5.

171



The following forms of Boolean operator are covered by the

tests:

* Predicates (e.g., A> 5).

*0 Unary operators (e. g., NOT A).

* Binary Operators (e.g., A AND B).

As in the cas6 s, arithrnetic operators, strings of operators (e.g.,

A AND B OR C AND NOT D) are somewhat more common in system

programs than arithmetic operator strings, they are still not of

major importance, and the complex series of tests which would be

required to test all possible strings of Boolean operators of interest,

is clearly beyond the scope of the present study.

Con-noa form for all boolean operator tests. All Boolean

operator tests (.redicate, unary, and binary operators forms) employ

the same form of repetitive assignment statement, which is repeated

LC W times in the first test program, and repeated an additional STEP

times for each succeeding test until HIGH number of repetitions is

reached. The repeated statement takes the form:

A = (form to be tested

and uses the ipeated form:

A =A

for predicate forms, and for all other forms in the overhead skeleton

program, to obtain the base value to be subtra, ted from the test results.

Predicate tests. The predicate form includes all comparisons

between variables and literals of all types. In ALD, this class of

statement takes the form:

A = A predicate literal;

or
A = A p I .v - ,,

172



By using the base value derived from a skeleton program containing

repetitions of the statement A = A;, the test results give the cost of

predicate literal or predicate variable. More specifically, this cost

represents:

(1) The cost of accessing the literal or variable value.

(2) The invarient cost of the predicate.

(3) The cost of the interaction between the predicate and the
literal or variable in the given context.

(4) The cost of the interaction between the left hand bide
and the predicate (the cost of the A predicate interaction)
in the given context.

These four cost factors are not separable, since none of the portions of

the statement c-an be further broken down and compiled in isolation.

To create a set of data results representing the sum of these

four costs, construct a series of test program.A containing from LOW

to HIGH number o& repetitionb of th- statement form:

A = A. predicate ,variable or literal);

Use the predicate !orms:

= = (EQL).

0 - =(NEQ).

• < (LES).

* > (GRT).

i > = (LEQ).
* > = (GEQ).

Construct a set of tests using all legal types oi variable for A (integer,

real, pointer, etc. ) as compared to all legal literal forms (0, 1, NULL,

TRU 1' FALSE, etc. ) and all legal variable structure and data type
forms. The variable forms include:

* A (Simple variable'.

* AR(l) (array).

* COMP (P) (component or table item).

173



for all types of these variables (integer, real, etc.) and using the local

procedure argument, and recursive procedure argument form for A,

AR, I, COMP, and P.

Unary operators. The only Boolean unary operator is NOT.

This series of tests is designed to test the pa:-sing and code generator

performance of the NOT operator in all of the various contexts in which

it is properly used.

Since NOT always precedes a completa Boolean expression, it

is possible to separate its cost from the remainder of the statement in

which it appears. More specifically, consider the statement

A = NOT B;

Subtracting the effect of the statement

A=B;

leaves the following costs:

(1) The invariant effect of the use of NOT.

(2) The interactive cost of the NOT operator in its
context between the "=" and thae "B".

These two subcosts are not sepavable. However, if the use of NOT in

several other contexts exhibits an essentially identical cost, the inter-

active context cost ( (2), above), can be considered to be negligible.

To test the NOT operator, construct a series of tests beginning

with LOW repetitions of the NOT statement to be exanined and -increasing

the number of repetitions by STEP until HIGH. Use

A = expression;

for the repetitive statement, using the following expressions:

* NOT A (Preceding a Boolean variable).

0 NOT AR(I) (Preceding an array element).
0 NOT COMP (P) (Preceding a componcit or a table item).
• NOT (I = = J) (Preceding a predicate phrase).

* NOT B AND A (Preceding a variable within an expression).

174



U/

* A AND NOT (B : : C) (Preceding a predicate in an expression).

• NOT (A AND B) (Preceding an expression).

* NOT F ( ) (Preceding a Boolean function).

0 Any other legal construct using NOT.

For the array form, use both a variable and a literal for the index, and

repeat te tests for multiple subscripts, using all combinations of

variable and literal subscript values, up to the maximum number of

subscripts permitted. Repeat the entire set of tests, using both non-

recursive and recursive procedure arguments for each variable used in

the phrase following the NOT.

Binary Operator Tests. The class of binary Boolean operators

includes:

. AND.

* OR (Inclusive).

* XOR (Exclusive).

* EQV (Equivalence).I IMP (Implication).

On a given compilex, not all of these may be available, but tests shouldI be run on as many as are permitted.

To obtain the desired test data, compile and execute a set of

repetitive statement is:

A = expression OPERATOR expression;

where OPERATOR is one of the above, and the expression3 ire various

combinations of Boolean literal, variable, predicate, and compoun±d

expression forms designed to provide varying contexts for the use of

OPERATOR. The overhead skeleton program repeats the statement:

A = TRUE;

to obtain a single base value to be subtracted from all tests. Using this

base valuie, the test results, therefore, provide a total cost which

includes:

175

- - - = '+ + _ -+ + -. . .- ,



(1) The incremental cost of evaluating the left hand expression
as opposed to evaluating TRUE.

(2) The invariant cost of OPERATOR.

(3) The incremental cost of the interaction between the left-hand
expression and OPERATOR.

(4) The incremental cost of the interaction between OPERATOR
and the right-hand expression.

(5) The cost of evaluating the right hand expression.

To obtain these costs in a wide variety of environments compile
and run a series of tests, using each of the follow repetative right-hand-

side forms:

Variable OPERATOR TRUE.

Variable OPERATOR FALSE.

TRUE OPERATOR Variable.

FALSE OPERATOR Variable.

Variable OPERATOR Variable.

Simple Predicate OPERATOR TRUE.

Simple Predicate OPERATOR FALSE.

TRUE OPERATOR Simple Predicate.

FALSE OPERATOR Simple Predicate.

Variable OPERATOR Simple Predicate.

Simple Predicate OPE RATOR Variable.

Simple Predicate OPE..ATOR Simple Predicate.

Compound Expression OPERATOR TRUE.

Compound Expression OPERATOR FALSE.

TRUE OPERATOR Comnpound Expression.

FALSE OPERATOR Compound Expression.

Compound Expression OPERATOR Variable.

Variable OPERATOR Compound Expression.

Compound Expression OP1.RATOR Simple Predicate.

Simple Predicate OPERATOR Compound Expression,

Compound Expression OPERATOR Compound Expression.

where "componund expre ,"." includes the unary and binary operaior forms.

176

-. - -



For each "Variable", use the forms

* Variable name (real, integer, pointer, etc. where
permissable in the language).

* AR (I) (all types oi arrays and subscript forms).

" COMP (P) (all types of components and table elements).

Run the tests for static, procedure argument, and recursive procedure

argument forms for "Variable".

Argument transmission tests. For modular software, procodure

argument transmission performance is an important consider - -" his

series of tests examines the argument transmissiO - r.. of the

compiler's parsing and code gener, r.. ecr.-,iA- , for all forms of

argument transmission. Arguriern accessing is not considered here;

that topic is covered under data access tests, which examines all forms

of data references.

The forms of argument transmission considered here include all

forms of argument permitted in a procedure call statement. In AED,

this statement takes the form:

F(argl, argZ, ... , argn)

The cost associated with argument transmission includes:

• The cost of parsing the argument list.

• The cost of generating the basic argument transmission
cost and register loading instructions.

* The cost of accessing the value of each argument.

* The cost of creating the data item to be passed for each
argument and placing it in the transmission area.

These various costs are, in general, inseparable, and the tests described

* below make no attempt to separate theni. The technique used to obtain

performance data is the same technique used with other language features

in this area: a series of programs is constructed, which repeats the

language feature of intcrest, LOW to HIGH times. A base value is

subtracted from the measured cost of each compilation and execution,

to eliminate as much of the overhead as possible, anid the resulting test

data is plotted. The slope of the resulting graph is used to measure the

performance of the feature being te-ted.

177



The base value for the argument transmission tests is obtained by

compiling and running a test program of the form, in AED:

BEGIN

DEFINE PROCEDURE MAIN TOBE

BEGIN

F();

F()

F();

END;

END FINI

This test therefore represents the cost of passing no arguments, but

includes the calling mechanism and other overhead costs.

To test the argument transmission feature, construct a series of

test programs which repeat the statement:

F(arg) ;

where "arg" is set to the following forms, one at a time:

* Simple variable (integer, real, pointer, procedure,
label, etc.).

* Structure type variations.

AR(I) (array, for I as both a literal and a variable
and using from one to the highest number of permissable
subscripts).

COMP(P) (based variable (component in AED)).

* Expression "A + B" (if this form is available in the
compiler).

Use all permissible data types for A, B, AR, and COMP. For the

COMP(P) form, use both packed and unpacked COMP forms, as well

as positive and negative offsets from P.

It is anticipated that the small cost of parsing an argument string

(argl, argZ,... ) versus the single argument form discus.-ed above

(f(arg)) is only of academic interest, and not worth the effort to construct

a separate test series. That is, the parsing cost of processing the

comma string is a very small portion of the four cost items discussed

above. 178

I 4'178



It should be note that the "expression" form (A+B) is the simplest

form which shows the cost of calculating an argument value, not just

accessing a piece of data. This form includes additional code generator

cost during compilation and during execution of the object program, and

therefore exercises a portion of the code generator not tested elsewhere

(except possibly in the case of a packed COMP argument). However,

any more elaborate forms of expression merely add the cost of expression

evaluation, and are not directly related to argument transmission costs.

I

:" 179

$ ___



CHAPTER 10

HOW TO EVALUATE ENVIRONMENTAL DIFFERENCES

1. How the Environment Equalizing Question was Studied

Introduction. In Chapter 2 an overview was presented of how the

environment equalization question was studied. In this section, this topic

will be discussed in further detail. For convenience, the full statement of

the cwtstion is repeated below.

If two compilers with the same features operate

in different environments, how can their measured

differences in performance be allocated to environ-

mental differences vs. compiler differences ?

The main thrust of the approach to this question was to test the

feasibility of using the elements of a high level language in which com-

pilers are written as a basis for establishing a "compilcr Gibson mix".

The investigation was very limited in scope. Static and dynamic Compiler

Demand Profiles were constructed from the AED source language modules

and execution behavior of two compilers: an AED compiler and a J3B

compiler. The static Compiler Demand Profiles are presented in

Chapter 11 and the dynamic profiles are presented in Chapter 12. Details

ef the methods used to generate these profiles will be presented later in

this section.

Before the data had been generated from which the profiles were

calculated, it had been expected that the static AED and J3B profiles might

exhibit differences which would be reduced in the dynamic profiles. Had

this turned out to be the case, this result would have been interpreted as a

partial demonstration that compilers (perhaps of a specified class) all have

substantially similar dynamic profiles, and, therefore, a typicti profile

can be established which would be used to define the desired "compiler

Gibson mix". The results of the study produced static and dynamic

profiles, both of which established an overall impression of great similarity

between the AED and j3B profiles. However, the static profiles showed

significantly greater overall similarity than the dynamic profiles. From

this result we concluded that the particular method used to generate the

180



dynamic profile introduced statistical anomalies for reasons discussed in

Chapter 1Z.

The principal conclusion drawn from the overall similarity between

the profiles of the AED and J3B compilers adequately was that they satisfied

the intended partial demonstration that compilers are essentially similar

with respect to their Compiler Demand Profiles, and that a "compiler Gibson

mix" can be defined on the basis of a suitably established "typical" profile.

The profiles presented in Chapters 11 and 12 are used in Section 2 as an

illustration of such a "typical" profile, and a "compiler Gibson mix" based

on these profiles is defined as an example. In the absence of better data,

based on a more elaborate study than the present one, it is recommended

that the example "compiler Gibson mix" defined in Section 2 be used as a

basis for "equalizing environments" until better data becomes available.

Steps used to generate Compiler Demand Profiles. The steps

listed below were followed in generating static and dynamic Compiler

Demand Profiles for the AED and J3B compilers.

1. A list of AED language forTis were prepared which
were used more-or-less as a basis for the profiles.
This list was approxi;nately a subset of the list of
languagf. forrr. for a User Profile which was pre-
sented in Section 5 of Chapter 8.

. An AED compiler was modified to collect statistics
on the occurrences of ianguage forms in the modules
being compiled. Due to the nature of this AED com-
piler, the placement of the instruments was most
conveniently made in such a fashion that the statistics
were actually gathered on the tree structure representa-
tion of the language forms, which were not exactly
isomorphic with the forms in the list established
during Step 1. Details of the instrumentation of the
AED compiler are presented in Appendix 1.

3. All AED source language modules of an AED and
J3B compiler were compiled using the instrumented
AED compiler create'l in Step 2. For each procedure
of each module, a table was printed out containing
counts of occurrences of the language forms found
by the instrumentei compiler. tppendix 3 presents
samples of these raw data tables, together with an
explanation of how the raw data is interpreted.
(Note that some source language modules of the two
compilers were written in assembly language, and

these did not contribute to the statistics. Also, AFD
library routines used by both compilers were not
included in the statistics.)

181



4. Two J3B source language programs were selected from a
collection of such programs used for acceptance testing of
the J3B compiler. These programs in combination exhibited
most of the language forms in the list generated at Step 1.
The programs were modified so that two corresponding AED
programs could be prepared which were as syntactically
identical to the J3B programs as we could make them. These
four test programs (two AED and two J3B) are presented in
Appendix 2.

5. Modified version of both the AED and J3B compilers were
created which would count the number of calls executed to
each procedure in each compiler.

6. The modified compilers created at Step 5 were used to
compile the corresponding pairs of test programs produced
at Step 4. The results of these compilations were counts
of the number of tines each procedure of each compiler was
called in compiling each of two test programs. The counts
generated from the pairs of test programs were added
together to create weighting factors for each procedure of
each compiler.

7. A program was written which would combine the tables
generated at. Step 3 with weighting factors. The elements
of each table were multiplied by the weighting factor for the
table (correspondig to a procedure). Then the resulting
tables were added together to produce a summary table
for each compiler. This program was used twice for each
compiler: once with all weighting factors set to 1, and once
using the weighting factors generated at Step 6. The resulting
tables constituted the raw data for the static and dynamic
Compiler Demand Profiles respectively.

8. The tables produced at Step 7 were analyzed manually to
produce the tables and bar charts which represent the static
and dynamic Compiler Demand Profiles in Chapters 11 and
12 respectively.

2. How to Generate a "Compiler Gibson Mix"

Introduction. In this section a methodology is established for

defining a "compiler Gibson mix" from a typical Compiler Demand

Profile. This methodology is illusnra-ed by actually defining a "compiler

Gibson mix" in terms of the static Compiler Demand Profiles for the

AED and J3B compilers described in Chapter 11. The static profiles

were used rather than the dynamic profiles because the AED and J3B

static profiles were more similar than were thie corresponding dynamic

profiles. (Possible reasons for this result ire suggested in Chapter 12.)

182



The form the "compiler Gibson mix" takes is a system of AED

statements with weights specified for the following constituents:

* Individual statements.

0 Individual statements within a category or sub-category of
statements.

* Sub-categories of statements within a category of statements.

* Categories of statements.
0 All stat,.m.ents.

The choice of individual statements, sub-categories, and categories and

the weights assigned to these constituent elements, were based on data

presented in the bar graphs of Figures 15 through Z6 in Chapter 11.

In order to use the "compiler Gibson mix" as defined in this

section, each constituent element must be assigned a performance

value interpreted as the execution time of an "average" instance of the

constituent in the computer environment being "equalized". The pro-

cedures to be used to generate actual performance timing values for

individual statements are discussed in Section 3. How these values are

combined with the assigned weights is described in this section. Ultimately,

the result of this calculation of weights combined with values yields a

performance value for the "all statements" constituent. This value thus

represents the following single characteristic number for the environ-

ment:

* The execution time of an average compiler statement.

Main constituents of a "compiler Gibson mix". Presented below

is a list of main categories which define the "compiler Gibson mix".
For these main categories and for one individual statement, a single

underlined letter is used to represent the measured or calculated

prormance value for the particular constituent.

0 Z : all statements.

0 A : assignment statements.

0 C : procedure calls.

. G : GOTO statements.

0 F : FOR statements.

183

L%' rd.~ .



SI : IF statements.

* T: the single statement X 0; (where X represents an
integer variable).

The categories of statements zepresented by A, C, G, F, and I

will be defined later in this section. Their definitions will be established

in such a way that these variables will represent the execution time of

an average number of the respective category plus the e.ecution time

represented by T.

These categories are awrigned the weights appearing as coefficients

in the following equation:

Z = .38A +.25C +.25I G . G+.0?F - 1.00T (1)

The weights for A, C, I, G, and F were approximately determined from

the bargraph of Figure 15. Note that the I weight is a combination of the

IF-THEN and IF-THEN-ELSE frequencies. The weight -1. 00 for T is

chosen because each of the other constituents is defined to include a

value of T, and in combination contribute a combined value equal to the
value of T.

Thus, the variable Z can be calculated from Equation 1, provided

values can be assigned to each of the six variables on the right hand side.

However, as will be shown below, only the values for the variables A,

C, G and T will be dLrectly derivable from values for individual state-

ments. The variables I and F are defined in terms of other constituent

categories, including the category represented by Z and 1. I will be

calculated by Equation 2, and F will be calculated byEquation 3, and both

of these equations include the variables Z and I on the right hand side.

Thus, to arrive at a value for Z, Equations 1, 2, and 3 will have to be

solved simultaneously.

T : the statement X = 0. The assignment of values to individual

statements is discussed in Section 3. Thus this individual stacement is

assigned a value by a method described in that section.

184



A : assignment statements. Assignment statements are represented

by the 23 statements listed in Table 1. In these statements, X, Y, Z,

and W all represent integer variabl,3s. For each statement a weight is

presented. The sum of all weights is 800. Thus, the value of the

variable A is calculated as 1/800 the weighted sum of the values of the

23 individual statements. The assignment of values to individual assign-

ment statements is discussed in Section 3.

The assignment of weights to the 23 statements were based on the

data presented in the bar charts of Figures 19, 20, and 23. (The literal

17 was arbitrarily chosen to represent a literal other than 1. ) Since the

data did not separately count "+" and 'I-", it was assumed that these

operators should appear equally. The operators * and/were excluded

because their frequency appeared to be relatively insignificant. The

statements with a single operator are represented two ways:

* X X i (variable or literal).I X = Y ± (variable or literal).

Since no counts were available to distinguish these forms, and since their

values might be significantly different on some computers, equal weights

were arbitrarily assigned to them.

One further observation is important to note. The weight assigned

to X = 0 includes both the relative weight of 60 as a constituent representative
of all assignment statements, but also an additional weight of 400 so that
the total value assigned to A includes the average of all constituent

assignments plus the single asbignment represented by the variable T.

185



Table 1. Weights for Assignment Statements in "Compiler Gibscn Mix"

Aosignrnent Form Weight

X = 0 460

X = 17 100

X = Y 160
X=X+I 5

X=Y+l 5
X=X-1 5

X=Y-1 5

X=X+Y 5

X=y+Z 5

X=X -y 5

X=Y-Z 5

X=X+17 4

X=Y+17 4

X=X-17 4

X=Y-17 4

X=(Y+Z)+1 2

X =(Y - Z) + 1 2

x=(Y+Z)-1 2

X=(Y-Z)- 1 2
X=(Y+Z)+W 4

X=(Y-Z)+W 4

X =(Y +Z) -w 4

X =Y -Z)-W 4

TOTAL 800

186



C procedure calls. Procedure calls are represented by the 6

statements listed in Table 2. In these statements, Y1 , Y 2 , Y 3 1 Y4 ,

and Y5 represent integer variables, and F represents a procedure name.

It is assumed that procedure F consists of the single executable statement

X = 0, where X is an integer variable. In this way, the single execution

of any of the 6 statements representing the procedure call category

automatically includes execution once of the statement represented by

the variable T.

For each statement in Table 16, a weight is presented. The sum

of all weights is 100. Thus the value of the variable C is calculated as

as 1/100 of the weighted sum of the values of the 6 individual statements.

The assignment of values to individual procedure call statements is

discussed in Section 3.

The assignment of weights to the 6 statements was based on

approximating the data presented in the bar graph of Figure 25.

Table 2. Weights for Procedure Calls in a "Compiler Gibson Mix"

Procedure Call Form Weight

F( ) 15

F (Y 1 ) 35

F (YI, Y2 ) 25

F (Y 1 , Y2 9 Y3 ) 15

F (Y1 , Y2 Y3 , Y4 ) 5
F (Yit Y2 ' Y3 1 Y4 , Y5 ) 5

TOTAL 100

187



G: GOTO statement. The GOTO statement category is represented

by the single statement GOTO labelname, where labelnar..e is defined as

the label of the executable statement X = 0. in this way, the value

measured for the GOTO staterrient will also include the execution of the

statement represented by the variable T. The assignine:t of values to

the individual GOTO statement is discussed in Section 3.

We observe that in principle the label used in the GOTO statement

could be local, a switch, or a parameter of a procedure (non-local GOTC).

However, no counts are available to distinguish these three cases in the
data. Sin..e a spot check of source language modules showed that the

local label .ase was by far the most common, it was decided to ignore

the contributions of the other two cases.

F : FOR statements. The FOR statement category is represented

by a single example combined with values obtained for other categories.

The single FOR statement is:

FORI = ISTEP 1UNTIL 10 DOX = 0

where the number of iterations, 10, was chosen arbitrarily, since no

data was available on the number of tmes FOR loops were iteratively

executed. The number 10 was chosen because the number of iterations

was thought to be significantly greater than 1, perhaps one order of

magnitude, and there was no baais to assume that it might be as much

as 100 (i. e. two orders of magnitude).

Let D represen the value calculated for the above statement by

the methods described in Section 3. We then calculate F by the following

equation.

F =D - 9T + 10 (.58B +.02C +.20A +.201) (Za)

where B represents the value of a BEGIN-END block of statements

following "DO". The coefficients of B, C, A andI approximate the

respective non-zero bars of both AED and J3B profiles in the bar chart

of Figure 18. The factor 10 in the equation is the number of iterations

spexilied for the FOR loop. The term - 9T reduces D by the proper

188



amount so that F includes in its value a contribution for one execution

of the statement corresponding to T.

The value of the variable B is calculated from the following

equation:

B = N X Z (2b)

where N represents the average number of executable statements in a

BEGIN-END block following "DO". No specific data was available on the

actual distribution of statemenm categories in such a BEGIN-END block,

and it was arbitrarily assumed that they each may be represented by the

average compiler statement with a corresponding value of Z. N is

c ?,lculated from the equation:

.58 N + .42 = 3.31 (2c)

The factor . 58 and the term .42 are derived from the same considerations

used to determine the coefficients within the parentheses of Equation 2a.

The right hand side of 3. 31 represents the average number of executable

statements nested in FOR loops, as deterr.aLed from the data in the bar

graphs of igures 13 and 14. 4 is found to be 4. 8. Combining this

result and Equations 2a and Zb yield the following single equation for

evaluating the variable F:

F =D -9T + 19 Z +. 2 C + ZA + 21 ()

Note that in this equation, the only right hand side variables not directly

derived from combinations of values for single statements are Z and I.

I : IF statements. The IF statement category is represented by

two sub-categories:

. IF expression THEN U = 0

. IF expression THEN U = 0 ELSE V =O

where U and V are integer variables.

189



Let the variables I, and 12 represent the values calculated for

these rwo sub-categories respectively. Then, the value for the variable

I is calculated from the following equation:

I =.75 (1 1 +.48B+.16 C +.16G +.16A+.04T) (3a)

+ .25 (2 + .28B + . 12C + .04G + .20A + .361) - .67T

where B is interpreted as in Equations Za and 2b. This interpretation of

B assumes that the BEGIN-END block following "THEN" and "ELSE"

contain the same average distribution of constituents as the BEGIN-END

block following 'DO". This assumption is made arbitrarily in the

absence of any better data on the structures of BEGIN-END blocks in

different contexts. The coefficients .75 and . 25 are derived from the

data for the IF-THEN bars and ELSE bars in the bar chart oi Figure 15.

The coefficients it. e parentheses were derived from approximations

of the data in Figures 16 and 17. The term -. 67T is included to subtract

off the net contribution for the statement X =0 contained in the values

of the variables C, G, A and I.

Combining the value for N of 4. 8 with Equations Za, Zb, and 2a,

and simplifying, the foliowing equation results:

I =.751 1 +. Z5 12 - .67T +. 15C +. 13G +. 17A + .1Zl + 1. 26Z (3)

Note that in this equation the only right hand side variables not directly

derivalile from combinations of values for single state.nonts are Z and I.

The single statements that comprise the two sub-categories are

formed by using one of the 17 Boolean expressions listed below in

Table 3. For each Boolean expression a weight is given, which

represents the weight to be assigned the IF statement in either sub-

category using that Boolean expression. The sum of all the weights is

200. Thus each oi the two variables I1 and 12 is calculated as 1/200 of

the weighted sum of tLe values assigned to the 17 individual statements

comnpritng their respective sub-categories,

190



Table 3. Weights for Boolean Expressions in IF

Statements in a "Compiler Gibson Mix"

Form of Boolean Expression
Used in an IF Statement We3ight

B 50

X ==Y 20
X,=Y 20
X == 0 20
X ,=0 20

X == 17 20
X -=17 20

X ==Y OR Z ==W 2

X==YORZ -,=W

X -=YORZ ==W 2

X =Y OR Z =W 2
X ==Y AND Z -W 2

X =YANDZ -=W 2
X -= AND Z ==W 2

X -=Y AND Z -=W 2

X +Y 17 7

X-Y=17 7

TOTAL 200

191

iA



In Table 3, B represents a Boolean variable, and X. Y, Z, and W

represent integer variables. Weights assigned to each Boole.an e: pression

are based on approximations of the data in the bar charts of Figures 21

and 22.

The assignment of values to ndividual IF statements is discussed

in Section 3. Note that in Table 3, the literal 17 is used to represent

an arbitrary literal other than 0.

3. How to Equalize Environments

Overview. In this section a discussion is presented on how a
"compil.r Gibson mix" (such as the one defined as an example in

Section 2) might be used to "equalize." environments. We note that the
"compiler Gibson mix" of Section 2 is based on 65 individual statements

in the following categories:

0 23 assignment statements (including the special statement
X = 0 alone comprising a main category).

* 6 procedure CALL statements.

. 1 GOTO statement.

* 1 FOR statement.

* 17 IF statements without an ELSE clause.

• 17 IF statements with an ELSE clause.

A procedure will be described below for assigning a performance

value to a statement which is applicable to all 65 statements. The per-

formance value will represent the CPU time required by a particular

cmputer /operating system environmenc to execute the functionality

represented by the statement. The 65 values lerived, one for each

statement, may then be combined in the manner described in Section 2

to arrive at a value for the variable Z. This derived value for Z will

represent the CPU time required by the computer/operating system

environment to execute the functionality represented by an "average"

AED statement used in writing a compiler in the AED language.

Let us suppose that a series of test programs (as described in

Chapter 9) have been compiled with compiler 1 in computer/operating

system environment El, and the same test programs are compiled with

192



compiler 2 in environment E 2 . Let us suppose further that the compiler

execution times of these test compilations have been measured, and that

the results have been organized into two Comroiler Performance Profiles,

say P, and ?. respectively, using the methods described in Chapter 8.

Then, the two Compiler Performance Profiles can be normalized for

their respective environments (i. e. their environments can be "equalized")

by dividing each component of P 1 by the Z value derived for environment

E1 and dividing each component of P 2 by the Z value derived for environ-

ment E2 . The resulting normalized profiles now reflect the periormance

of the compiler in a "standard" environment.

We note that the procedure described above "equalizes" environments

with respect to processor speed, instruction set (see below), and one

aspect of operating system support (see below). However, no account

has been taken of differences in memory size. In the course of this study

it became clear that the performance of zompilers on similar c:,mppters

with different memory sizes was in general very complex, and would

require as much additional study as that undertaken in the present study

for 'equalizing" what is primarily processor speed and instruction set.

The investigation did suggest the following observations:

0 A one-pass corapiler either fits in core or it does not. If it
does, then the available core not occupied by the compiler
code ad fixed data structures will place a flmit or.. the
size .program that can be compiled. There are no other
perf-.-mance trade-off considerati ns for a one-pais cc mpiler.

* A r-ulti-pass compiler, such as that described in Section 4
of Chapter 3, can be organized to operate in a minimum
quantity oi core, by using a relatively large number of
ybases. In such an environment, the throughput of a.
compilation will depend on the I/O channel and device
operational time used for overlays in addition to CPU

t time.

* It is theoretically possible to balance the space/time trade
off in architecting a multi-pass compiler in fewer phases
that are used in the architecture of Section 4 of Chapter 3.

Jnt. ui.. , t differencesae takIe n into acront by the method

in which performance values are assigned to individual statements.

This method is discussed below. The one aspect of operating system

193



support taken into accoun-t is the mechanism used for a standard calling

sequence iaterface in procedure or function calls. Other aspects of
operating system support will be discussed briefly in Section 4.

Assigning values to statements. The following method can be

used to assign a peiforn..-ce value to a statement which will represent
the CPU time requiried in a particular environment for executing the
functionality represented by the 'catement. This method is applicable
to all 65 statements listed at-ave. However, certain special considera-

tions are important to take into account for IF, GOTO, ;.nd call statements.

These special considerations are discussed later in this section.

First choose two integers n and m, (say D > n) which will be
used in the inanner described below. Then have a gooa coder code the
functionality represented in the statement in assembly language as
efficiently as he possibly can. This use of a good coder and assembly

Language will enable the functionality to be executed using the full power
of the available instruction set, thereby "equalizing" for instruction

set as well as for processor speed. Next two assembly programs are
produced which are identical except for the inclusion in one o! n replications
of the coding for the statement, and in the other of m replications of this

coding. (If labels appear in the coding, then newlabels will of course
have to be introduced for each replication. ) These assembly language
programs will include whatever declarations and initializations of
variable used that are required, and whatever other special assembly

language elements are required to create programs that will assemble
executable object code.

It is obvious that the difference in execution times of the two
programsr ,ill reflect m-n executions of the statement. Therefore 1/
(rn-n) of this difference is the performance value to be assigned to the
statement. In order to get meaningful time measurements, m and n must
be sufficiently large, and m must be sufficiently :larger than n for the

granularity of the clock used in the measurements; to be insignificant.
Generally m should be at least 2 n, and probably 3 n to 10 n would be
better. T]. e reason two runs are used, one each for n and m replications,

194



rather than a Ongle run to eliminate any overhead appearing in the

program for such functions as ,  catio:i of work space, initialization,

etc.

IF statements. In ,--igning values to IF statements, several

different pairs of runs should be made for each statement. Each of the

pairs of runs (having n and rn replications) would use different combina-

tions of initializations for the variables B, X, Y, Z and W. Since no

data is available as to the r-lative frequency, the Boolean expressions in

IF statements evaluated to TRUE or FLASE, arbitrarily the combinations

of initializations should be such that TRUE and FALSE eval-lations

occur equally often. The value assigned to an IF statement would be

derived from the average of the values for each pair of runs.

GOTO statements. In order to avoid po3sible peculiar execution

patterns resulting from the chaining of GOTO statements, each GOTO

statement should specify a label of a statement of the form X = 0, as

follows:

GOTO labelname;

labelname: X = 0;

It is the assembly language code for this pair of statements that

is rplicated n and m times. Then the value assigned to the GOTO

statement is calculated as:

.2. = (1/(m-n_)) (tm - tn)

where tm and tn represent the measured execution times for the programs

with m and n replications, respectively. This definition includes the time

to execute the statement corresponding to T in the valuation of G.

CALL statements. In coding the call statements, the coder must

take the following considerations into account.

S a convention is estabished for calling sequences in

procedure and function calls which is to be followed by
the object code of a compiler operating in the environment
being "equalized" then this convention must be followed
in coding the six CALL statements listed in Section 2.

195



* For each CALL statement, a separate prcgram must be
coded. This program will consist of an assembly language
version of a procedure with the appropriate number of
arguments, following all established conventions for
parameter passing, and consisting of the assembly language
version of the single ctecutable statement X = 0. Each
occurrence of the procedure call in the pair of test

programs (with n and m replications of the procedure call)
will be a call to the spocial assembly language procedure
described above,

4. Timing Data and "Equaliz'ng" Environments

Introduction. Ii addition to the development of static and dynamic

Compiler Demand Profiles, ar, described in Chapters 11 and 12 and

generated as d 1escribed in Section 1, a parallel activity was followed to

explore the possibility of establishing timing data as components of

dynamic profiles. The results of this parallel activity were such that

no useful timing comr'a:isons were possible between the AED and TJB

compilers, since certain bottleneck routines in the AED support library

(used by both compilers) had been rewritten for J3B to be more efficient.

The procedure followed in collecting the timing data is described below,

and a few inte:esting observations on the resulting data are summarized

at the end of this section.

Collecting timing data. One test program was compiled by

modified versions of the AED and J3B compilers. These modified

compilers used the computer's 13 microsecond clock to measure the

total time spent in each procedure of the compilers and library routines

used by the compilers. The test program was the smaller of the two

programs "sed to generate dynamic Compiler Demand Profiles as

described in Chapier 12. The listings of these test programs are

included with Appendix 2 of this report.

The timing measurements were output to a file which were

processed by a separate program to produce a suitably formatted report.

Interoretinu the timing data. The reports aenerated in the marnner

described above were further analyzed by hand calculations. The

following interesting patterns were found.

196



I
" Input and output related CPUJ p.:-ocessing of characters

occt.:ied about 40% of the total ::PU time used to compile
the test program by both the AFD and J3B compilers. In

the AED compiler, this bzoke ,own as 20% input and 20%

output; in J3B, it was 15% input and 25% output.

" Dynamic core management usel an additional 20% of the
CPU time in AED, and 1519 of the time in J3B.

* Intermediate nput/outpr. betwec,, compiler passes used
only 2-3% of the total time.

Included in input/output of characters is tirre spent in conversion between

internal and external formats and chara :ter transmissi.x codes, as well as

buffer management, etc. It was discovered that the reduced time for

input in J3B was due to the rewriting for J3B of the library routines

used to perform thzse functions in the AED compiler. The high fraction

of time for output in J3B was due to an increased quantity of output

generated by this compiler, inclu'ing set/used listings, environment

listbgs, etc., which are not output by the AED compiler.

Due to the significant rework of several support functions for

J3B for compiler efficiency, it was therefore determined that the above

data was not useful for "equalizing" envtreinrents considerations. How-

ever, the large amounts of ti.e spent in character input/output, the

significant saving3 that can be accomplishe,- by using specially

programmed support subroutines in these areas, and the relatively

small time spent in intermediate (between passes) input/output, should

be of interest to compiler designers and implementors. In this light,

it should also be noted that the time spent in dynamic core management

could be significantly less in a compiler with a fixed core utilization

scheme, but this type of design leads to a large, fixed sized, rigid

compiler.

Cne final observation is relevant heie. Since there appears to be

a significant function of time spent performing these functions, further

study appears to be desireable to determine how differences in the

operating system support of character string 1/0 and dynamic core

management might be "equalized" between envirorments.

197



CHAPTER 11

STATIC COMPILER DEMAND PROFILE DATA

1. Overview

This chapter presents all static data gathered from the AED and

JOVLAi./J3B compilers. The next chapter entitled "Dynamic Compiler

Demand Profile Data" (Chapter 12) contains a parallel set of data in

which dynamic weighting factors are applied to tahe static information.

The two chapters taken together present a summary of all non-timing

data gathered during the project.

The information is grouped into three major sections as follows:

* Tables of the AED and J3B compilers' usage of AED
language forms.

* Bar chart representations of various histograms of
usage patterns.

0 Bar chart of Une relative percentage of urage of various
AED language forms.

Each of the tables presents a logical group of data about the

t-p-- ,of- and form of AED statements used in the two compilers. Numbers

presented in the tables were derived by' compiling each individual source

program module of each cc.p!ler through a !tpecial "instrumented' AED

compiler which tested for certain pr-tdefined language constructs and
which generated output totals for each mo.!iale. A second, stunmation

program was later run on these sub-totals to calculate grand totals

for each of the two compilers. (The details cf the data collection and

reduction methods used a, , ,resented in Appendix I , Each compiler

contains about 450 procedures, with J3B being the larger of the two.

Library support routines are not included in the statistics.

Each of the tables presents the number of occurrences of various
statement and clause types in the context of uthcr statement and clause

types. In addition, the number of occurrences of various arithmetic

and Boolean operators, and various forms of arithmetic and Boolean

expressions are also presented. The following is a list of the subje:ts

of the tables presented in Section 2.

198



* Staternei~t types and total arithmetic and Boolean operators

and labels.

* Assignment statgiaeaLt forms,

• Forms of statements used with conditionals and loops.

* Form- of loop statement clauses.

* Forri.s of integers used in loops.

0 Forms of arithmetic phrases.

* F c-. of Bc. iean phrases.

The bar chart histograms of usage patterns are presented in

Section 3. They consist of a series of histograms showing the number

of occurrances in thie compiler of a particular AED language form

h1vii..g E. ocLcurrences of a particular constituent component. The follow-

ing is a list of the forms and constituents for the hi:tograms:

• N-nbe o p-oeedure calls having n arguments.

e Number of -issignment statemerts having n R.H.S.(right.-nand-sde) opetators.

* Number of bcole,-, expressicns in IF clauses containing n

operators.

* Number of FOR statements nested! n deep.

* Number of executable statements nested n r:eep
in FOR loops.

In Section 4, the relative percentage bar charts are presented.

These bar charta shcw the relative percentage of occurrences of

various statement and clause types, alone and in specified contexts.

In particular, histograms are presented which show the percentage of

occurrences of a statement or clause type with n occurrences of a

specific constuent component. The following iz. list of the subjects

of the bar charts presented in Section 4.

• Jo of Use of Statement Types.

a 1 of Statement Types used following 'TEN'.

a Il of Statement Tvpes used following 'ELSE'.

a % of Statement Types used following 'DO'.

, % of Use of Arithmetic Operators.

* % of Use of Arithmetic Forms.

199



. % of Use of Boolean Operators.

* % of Use of Boolean Forms.

* ~% of Arithmetic Assignments Used with n RHS Operators.

* % of Boolean Expressions in IF Claus;es used with n
Operators.

•~ % of Procedure and Function Calls used with n Arguments.

*~% of Executable Satements used Nested n Levels Deep
in 'FOR' Loops.

Further details are given in Sections 2, 3, and 4. Conclusions

and other textual discussion is presented with each individual table and

bar chart, are also summarized in Chapter 14.

2. Tables of Static Usage of AED Language Forms in the AED
and J3B Compilers

Li this section, seven tables are presented ;vhich show the
comparacive static usage by the AED and J3B compilers of various

statement and clause types, and the forms of arithmetic F&nd Boolean

expressions of the AED language. The subject matter '. h which the

tables deal were listed in Section 1. With each table, interpreldve

information is presented to explain the contents of the table. In

addition, observations are offered concerning the pattern of nunerical

results presented.

Statement types, operators, and labels. Table 4 bumm2.rizes

for both the AED and J3B compilers. The number of occurrences of

of each of five statement types (assignments, IF, FOR, calls of

procedures or functions, and GOTO). Also, the t-tal number of

arithmetic operat. 's and Boolean operators occurring and the total

number of la~e-.j de ined are also summarized.

The statement count was gathered by counting occurrences of

the statement terminator symbol ";" (or the equivalent (1$, ":). Since

this statement ter'minator is not always required (such as preceedini

the block-termination symbol "END"), the ccunt is somewhat low, but

non-theless comparable between the two compilers. The Boolean

operation count is also somewhat low, since it includes only those

200



'Ioen -~rtn M
in N -

93 v m%,0 N ON ~ o tr-Io (n 0~- N WL -

4)..O.

U-

IA z
0

uz
> z

I4) z

0.0

zL



Boolean forms following an "IF", and not those forms used in Boolean

assignment statements (e.g. "BOOLl = BOOLZ AND BOOL3"). However,

the great majority of the use of Boolean operators de follow an "IF"&

and the count presented should be quite close to the actual total.

It is evidert from the numbers presented that the two compilers

are remarkably close in all categories shown. Assignment statements

and call statements are the most heavily used statement type, whereas

loop!-ig ("FOR") statements are rarely used as compared with the

condiiional ("IF") forms. Also, arithmetic operations are used much

less frequently than Boolean operations. This is to be expected with a

"system program" such as a compiler. In scientific and engineering

applications, on the other hand, Knuth has found that among a large

number of FORTRAN programs, arithmetic forms are much more

common than Boolean forms.

Assignment statement forms. Table 5 sunnarizes the static

usages of selected sub-categories of a: signment statements. It is

particularly interesting to note the extremely heavy use of the form

"A = B" an compared to all other fozns. It should be noted that this

sub-category includes all combinations of such constructions as

"COMPI (PTR) = COMPZ (PTR)", "COMP3 (PTR) = X" etc. These

constructions are leavily used in both the AED and J3B compilers for

manip.lating the compiler's data structures. However, even in compilers

without thie pointer structure capability, the simple assignment

category is expected to be very heavily used. In general, the profile

of usage by sub-categories is remarkably similar between the two

compilers.

Statement types used with conditionals and loop~s. Table 6 presents

a summary of the static usages of five statement types (BEGIN,

procedure call, FOR, IF, GOTO, acsignment) in the three cortexts
*in-mediately following 'Le three AID key-ords: TIEN,L, and DO.

THEN and ELSE are, of course, keywords which begin conditionally

executed clauses; DO establishes the iterative loop of a FOR statement.

202



M M

10 a %.

InI

~!

o In

i Ii
0

0 z

0

0
.i4

W P4

00



--

co a, o JOD

440 z

0 N .4 0 t') c

4 v V I

(60

I
'C(

0~

204



The numbers preaented in Table 6 again show the high degree

of profile similarity betwveen the AED and J3B compilers. The following

is a list of observable attributes of the two profiles:

• Compound statemen-ts (BEGIN) most frequently follow
THEN and DO in both profiles.

* The form ELSE IF shows significant prominence. It
exceeds the number of occurrences of BEGIN in 33B
(165/78) and approximates the BEGUq's ,I AED
(109/130). This suggests the general popularity of
using chains of IF - THEN - ELSE - IF combinations
to express complex conditions. In comparison, the
1' - THEN - IF form is usel much less frequently,
s g~.sting thai Boolean phrases (e. g. BOOLI AND
BOCL2_ OR BOOL3) are commonly used to select
the precise THEN condition when needed,

a Little if any use is made of loops (FOR) following
THEN ELSE or DO, although they may be hidden from
our statiatics by being written witld .k BEGIN - END
blocks.

FOR statement sub-types. Table 7 presents the number of

occurrev.les of each of the following four sub-types of FOR statements:

* Using UNTIL clauses.

* Using WHILE clauwes.

. Using multiple iteration lists.

* Other.

The AED and J3B px'ofiles are again seen to very similar. Note

that the UNTIL clause, which tests for a specific numeric value of the

index variable, is the most pcpular form, even though the more general

WHILE clau.se could be used to handle all UNTIL conditions, although

with slightly more work by the user. Multiple iteration lists come in

a poor third, showing that loops are seldom controlled by lists of

multiple conditions.

Integer forms in FOR statements. Table 8 presents the number

of occurrences of four forms that are used in each of three integer
Tvariable (or expression) positions that occur in FOR statement con-

structions. The four integer forms are:

j 205



olc N a.%In
HL

.0

%4
0

0z

U F4

20



~.77- T .

n-- N

0 in

Z4

eno
C,- 0

144 i

4)4

"4

.0

C4 F

a4

H.4

*07



* The literal 1.

* Literals other than 1.

* An integer variable (represented as "A").

" Integer expressions.

The Lhree contexts with FOR statements in which the integer forms occur

are the following:

* Left of STEP. This context specifies the first value of
the index variable to be used in the loop.

• Right of STEP. This context specifies the increment
(assumed positive) which is added to the index variable
for each successive iteration of the loop.

* After UNTIL. This specifies the limit valve of the
index value used in the loop. (Note thaL a GREATER
THAN test is made, and this limit value might be
exceeded by the last increasing of the index value.
Thus the limit value might not be used in the loop.

Here, the AED and J3B profiles show some clear differences,

although there is also evident significant similarities. In J3B, the

initial value of the index variable ij most commonly a literal not equil

to 1 (25/6), while in AED the split between 1 and other literals is even

(18/18). In both compilers, the incrementing value (RIGHT OF STEP)

is almost always 1. The terminating test value (AFTER UNTIL) is

usually a variable (16 in J3B, 20 in AED). For the second most

common form AFTER UNTIL, an expression (10), while AED makes

more use of a literal (14).

Arithmetic forms. Tab)e 9 presents the number of occurrences

of ten ai dhmetic forms that appear in arithmetic expressions. Each

form involves one of the following three groups of operators:

• + (plus) or - (minus),

* 0 (multipled by), or

1 / (divided by).

The ten arithmetic forms are listed below. In these forms, "A" and

"B" denote arithmetic variables. In collecting the data, the actual

data type of the variables were ignored. However, L-i spot checking

208



<IN-4 N -

r~n- N4 -4%

04 tn 0 N - L 0 (n "

OQ I (Q 0 CO n -400

>IN4 N
4

0 0

- w

.144

a., 0.~~b4. 0 4 0 4 0 0 "40

-. 4 ~- w l1

0 -4 U"4E-4

- E-4

.0-

209



the source language programs we found only integers used in arithmetic

forms. The ten forms are:

(1) A operator specific literal (1 or 2). The particular literal
depends upon the operator used in the form: 1 is used with
+ and -; 2 is used with * and /.

(2) Specific literal (1 or 2) 2perator A. Here I is used
wil. :, -, and /; 2 is used with *.

(3) A operator literal other thaxn the specific literal used
in (1) above.

(4) Literal (other than that usee i (2) above) operator A.

(5) A onerator B.

(6) Arithmetic expression operator specific iteral (1 or 2).
The literal valuer are as Ln () above.

(7) Specific literal (1 or 2) operator arithmetic expression.
The literal valuea are as in (2) above.

(8) Arithmetic expression operator literal other than that
used in (6) above.

(9) Literal (other than that used in (7) above) o2,ator
arithmetic expression.

(10) Other fnrms than the abxuve.

The following three specific lorms are seen to be by far the most

frequently used:

0 AfI,

0 A j literal other than 1, and

A AiB.

PI ,The inverse form oi the last two (1 + A or other literal +A) are

rarely used, indicating that most programmers write expressions of
Sthe form "A :k 1" and A ± n rather than "l A" and n A even though

both forms are logically equivalent.

The fourth most frequently used form is the "OTHER" uses of

the + operator. The "OTHER" form includes all forms not specified in

forrns (1) thrugh (10). However, probably the forna most irequently

used in this category is:

o Arithmetic expression operator arithmetic expression
(e. g. (A+B) * (C+D).)

210



The form EXPRESSION - 1 also receives high asage, although usage of

the form literal (other than 1) ± A exceeds this in the J3B compiler. f
Note also that * and / are rarely used as compares with + or -. Tb1-

is to be expected in system programs in contrast with scientifi:. or

engineering prograns.

Overall, is again evident that the AED and J3B profiles are

very similar.

Boolean forms. Table 10 pre.erts the number of occurrences of

ton Boolean forms that appear in Boolean expressions within IF state-

ments. Ea ch form involves one of the following four groups of predicates

or the Boolean connectives AND or OR:

* Equals ( ).

- Greater han, or not less than (> or >=).

* Less than, or uct greater thrn (<or <=).
0 Not equal(- =).

The ten Boolzan forms are listed below. In these forms, "A" and "B"

denote variables. Spot checking of the use of variables 'with predicates

found no examples other than arithmetic integer data types. When

used with a Boolean connective, AND or OR, "A" and "B" denote Boolean

variables. Forms (1), (2), (6) and (7) are not applicable to the AND

and OR connectives. The ten forms are:

(1) Variable predicate %^.

(2) 0 predicate variable.

(3) Variable predicate ilteral other t.an 0, or Boolean
vaL..ole predicate Boolean litetal (TRUE or FALSE).

(4) Literal (other than 0) predicate variable, or Boole.n
literal (TRUE or FALSE) predicate Boolean variable.

(5) Variable predicate vaiable, or Boolcan variable
connective (AND or OR) Boolean variable.

(6) Expression predicate 0.

(7) 0 predicate expression.

(8) Expression pedicat.e literal other than 0, or Boolean
expression connective (AND or OR) Boolean iiteral
(TRUE or FALSE).

211



F~r''4
oo ,- o o o o '0 00

0 - 0 N o 0 o n

-4 '0 -- I.

10

-i

-4

tdH

[-, -1Z L., Z Q "

0 A t74 00 a,

U412

r- o ,t o -n ~.



(9) Literal (other than 0) predicate expression, or Boolean
literal (TRUE or FALSE) connective (AND or OR)
Boolean expression.

(10) Other forms than the above.

Forms (1), (3, and (5), especially using the predicate are

seen to be by far the most freq,..ntly used'. However, J3B appea-s to

use the form A == literal (other than 0) much more frequently than

A == 0 or A == B, and AED uses these three forms in roughly the sasme

numbers. These results again indicate a stylistic preference for the

form A == 0 rather than the functionally equivalent 0 == A.

Form 10 (OfHER) involving predicates uses these predicates in

a roughly equivalent fashion (numbers range from 9 to 29), except for

an AED preference for the == predicate (48 occurrences). These

"OTHER" forms would probably be most frequently represented by the

form:

0 Expression expression;

(e. g. (A+B) (C+D)).

Forms (6) and (S' receive some slight use and again the use of
these forms with the iour groups of predicates are all roughly equivalent

except for a few cases: AED prefers the forms expression == 0 (43

occurrences) and expression -, = 0 (42 occu -'encas). While J3B prefers

the form expre!ssion == literal other than 0 (44 occurrences), and to

some extent the form expression == 0 (27 occurrences).

In form 10, the uses of AND and OR are used roughly equally by

both AED and J3B; AED preferring AND (188 to 110) and J3B preferring

OR (176 to 103). J3B has almost no ether use of these connective and

AED has a comparativl! modest use with form (5). A spot check of the

source language code shows that the most frequent use of AND and OR

are in expressions like the following examples'

* A I3 AND C == D,

A B OR C z D.

Other predicaLes t-an occuar in these forms, ad B and/or D are frequently

replaced by lile,'als.

213

I_



By far the most frequently used predicate is == in both com'uilers

with the second most frequent, . =. The other two predicates are used

somewhat less and are more-or-less used vi.th approximately equal

frequency.

The surprising lack of any usage whatsoever of certain forms

prompted a review and retest of the data gathering tools to insure their

proper functioning. The results of this activity confirmed tha; the tools

were operating correctly and that the complete lack of usage of these

forms is correctly reported. In particular, it was noted that ihe only

vuse of the operators AND and OR out of all the forms tested (except

form 10) was the form "variable OR variable" and "variable AND

variable '.

Overall, Table 10 again shows the AED and J3B profiles to have

a great deal of similarity with a few differences of a stylistic character.

3. Bar Charts of Histograms of Static Usage Patterns in the AED
and ."3B Compilers

i this section five histograms are presented which show the

comparative static usage by the AED and J3B compilers of a variable

number, n, of constituent components within five ctegories of state-

ments. The subject matter with which these histograms deal were

listed in Section 1. With each histogram interpretive information is

presented to excplain the data in the histogram. In addition, observaticns

are offered concerning :ie patterns shown in the histograms.

Procedure and function calls usin. n arguments. This histogram

(Figure 10 ) shows that the great majority of procedure caL3 have five

or fewer arguments, with one argument being the most common. Calls

to functions as well as procedures are included in the data. The overall

impression is clearly one of great similarity between the AED and J3B

profiles with respect to the. use of arguments within procedure calls.

214



0.0

00

t- z I

A 0

0 4)

urn

- t u

o

o~~~~ M

'0 N

215



Assignment statements with n right hand side operators. The

data presented in this histogram (Figure 11 ) counted only the arithmetic

operators (+, - *. and /) in assignment statements. However, a spot

check of the source language code found very few examples of other
operators used in assignment statements. There were some occurrances

of the form:

0 A-F(...),

Where a function call is invoked on the right hand side (R. H. S. ) and the

returned value is assigned to th variable on the left hand side. Occurrences

of this form would be countered as 0 R.H.S. operators, but they are very

rare compared to the forms:

* A = litera', and

* A=B.

This histogram clearly irhows the overwhelming preponderance

of simple assignment statements, having no R. H.S. operators. In

fact, very few statements have more than one operator. The two corn-

pilers show very similar profiles with respect to this category.

Boolean expressions with n operators. The Boolean expressions

counted in the data shown in this histogram (Figure 12 ) were all in IF

clauses. However, a spot check of the source language programs
showed other occurrences of Boolean expressions (for example in

assignment statements) to be very rare in comparison to the counted
occurrences. The operators countered were six predicates (=, ,

<=, >, >=, -1 =) and two cor.ictives (AND, OR).

Here again the AED and J3B profiles are seen to be very similar.

An interesting pattern of heavier usage of odd numbers of operators

(1, 3, 5, etc. ) is evident. This is reasonable, considering the fact that

many Boolean expressions are of the forms:

* IFA B (lGup)
* IF0 (3Op5)

e FA ==BORC .=D OR E-=F (5ops)
etc.

216



,* .1 ..
, "4

caa

4)

U)

*0

Cs, &
Us

0

0

00 0 0 0 0 C o
V 000 0 0 0 0%N ".

217



0

4)

U 4

00

~42

Z 4bo 4

o 0 0 0 0 0 0 0

SNQISaIdX3 MVar1OOE2 aO IagNnN

218



The histograms also show that by far the greatest number of expressions

are of the two forms:

" IF A (0 operators)

* IF A OP B (1 operator)

with the second form (1 operator) being the most common. From the

data presented in Section 2, it is clear that the operator used here is

a predicate, and most usually ==.

FOR loops and executable statements nested n deep. Both

histograms dealing with FOR loops (Figures 13 and 14 ) show clearly

that multiple nesting of loops is very rare in both compilers. Both

J3B and AED contains a few nested loops of level Z; J3B contains one

3-level nest, and AED contains none. Another observation seen by

comparing the t~o histograms with each is that there are about three

executable statements on the average in a FOR loop.

Both histograms again show a great similarity in the AED and

J3B profiles.

4. Bar Charts of Frequency Histograms of Relative Static Usage
of AED Language Forms

In this section twleve bar graphs are presented which show the

comparative percentage of ntatic usage for various AED language

elements in the source language code of AED and J3B compilers. Four

of the bar graphs (Figures 15, 16, 17, and 13) show the percentage

of static usage among groups of statements and clause types alone and

in contexts. The next four bar graphs (Figures 19, 20, 21, anrd

22) show the percentage of usage of arithmetic and Boolean operators

and forms. The last four bar charts (Figures 23, 24, 25, and 26)

present histograms of the percentage of static usage of four AED

language contexts involving a variable number, n, of a sp6cified

constituent. The twelve subject matters with which these twelve bar

charts deal were listed in Section 1.

219



l4q-" - '

bol

220



.44

N4-

w S5
0

V)

'5

*D

in 0 t Ln 4

I- M *I-

sdooi 'oj i smawavi~ arqviioax ao'ti*6i

221-



to 7
I

0

E-4

z

V4

* 0

I -I

'20

z

+ 

I-,4 * ,-

ii,,

NZ



:12
0

z

0 I4
0

44

14

al

in en

2Z3,



* ID

z

- 0

Ei4

0

0

224b



IJ

In,

44

z 0

C4

8

0

0

"

,
4

2.5



Statement types. This bar graph (Figure 15 ) shows the relative

frequency of occurrence of the six statement types: asdignment.

prouedure or function call, IF-THEN, GOTO, IF-THEN-ELSE, FOR.

The IF-THEN constructions were counted separately from the IF-THEN-

EISE constructions. The overall impression iq one of extreme matching

between the AED and J3B profiles.

Statements following "THEN", "ELSE", or "DO", The bar

charts (Figures 16 , 17 , and 18 ) show the relative frequency cf six

statement types (listed below) following one of the keywords, THEN,

ELSE, or DO respectively. The keyword THEN occurs in both the

IF.-THEN and IF-THEN-ELSE constructions. DO occurs in FOR

statements to introduce the loop to be iterated. The six statement types

are:

* BEGIN (beginning a BEGIN-END block)

0 CALL (a procedure call)

* GOTO

• Assignment

* IF

* FOR

After "THEN". As expected, a t.equence of statements in a

BEGIN-END block (BEGIN) usually follow "THEN". This statistic may

be slightly exaggerated by the stylistic habit of some programmers who

always use a BEGIN-END construction following a THEN, even though

a single statement is used within the block (in which case the BEGIN-END

is not needed). The use of this block form causes a different and more

distinctive format of printout from the AED reformatting processor

(PRALG), and is preferred by some. Also, if later corrections add

statements following the THEN, the editing task is simplified if a

BEGIN-END already exists in the source program.

The use of call, GOTO, and assignment statements foilowing rHEN

appears to be used with about equal frequency, wirh AED showing more

calls than J3B; IF statements are used somewhat less. FOR is almost

never used in AED, and never in J3B.

226



After "ELSE'. The 3tatement types following El 5E (Figure 17

show a significant different in their usage pattern from 1.e THEN case.

Compound statements are much less dominant, and the IF form is

much more popular. This is prob-Lbly caused by the popular techliique

of testing for a condition in a THEN, and then continuing to refine the

choice in the ELSE clause, resulting in IF-THEN-ELSE-IF sequences.

Another usage difference shown in Figure 17 is that instead of being

approximately equal in usage, assignments, calls, and GOTC's are

used in that order of popularity.

Overall, the profiles shown in Figure 17 are seen to be very

similar, but there are a few noticeable differences. J3B appears to

have a higher preference for the IF-THEN-ELSE IF construction than

AED uses, and AED has a preference for IF-THEN-ELSE BEGIN which

is not used as frequently by J-3B.

After "DO". In Figure 18, it is seen that the statement types

following "DO" show a very heavy use of assignments in 13B and a very

heavy use of IF in AED. This lack of agreement in the AED and J3B

profiles is probably because there are only a few FOR loops used in

both compilers. Thus, a relatively small number of one form has a

major effect on the percentage profile. If this explanation is correct,

then the importance of the profile component shown in Figure 17 is

relatively unimportant, and wo-ld contribute little to the overall

performance factor calculated for an environment in which a compiler

is being evaluated.

The complete absence of the use of FOR following DO shows

that multiple nerting of loops is used only within a BEGC2'.i--tD

(compound statement) block, and never as the simple loop-,%ithin-loop

form.

Arithmetic operators. This bar chart (Figure 19 ) shows the

*rel--tive use of th Uhree ca-oies of arithirnetir operators!

* + or = (plus or minus),

* * (r.ultiplied by), and

S/ (divided by).

227



I
0

4

et)

$4
0

4J

$4

/

'44$40

0

U
".4

:2
I
:1

+

0
$4

.44
~Z4

0 4'

0 0 0
0'. 00 '.0 In ~J4 N v~4

2Z8



Tue overall impression is one of extreme similarity between the AED

and J3B profiles. Figure 19 also shows that * and / are very rare in

comparison to + and -, and that * and / are used about equally.

Arithmetic forms. This bar chart (Figure 20 ) shows the

relative use of the following six categories of arithmetic forms:

.0 A OP 1, 2 -- variable operator specific literal (1 or 2
depending on operator used -- see Section 2).

" A OP B -- variable operator variable.

" A OP L* -- vari.able operator literal other than 1 or Z
as specified above.

* E OP 1, 2 -- arithmAetic expression operator specific
literal (1 or 2 as above).

* E OP L* -- arithmetic expression operator literal
other than 1 or 2 as specified above.

* OTHER -- all other arithmetic forms.

A spot check of the so-.krce language found that the OTHER category was

almost exclusively the form

• Arithmetic expression operator arithmetic expression

such as (A+B) * (C+D), although a small number of other forms were

also seen.

The overall impression from Figure 20 is that this aspect of

the profiles again find significant similarity between the AED and J3B

compilers. However, there are some noticeable stylistic differences.

AED has a slight preference for the A OP 1, 2 form over the forms

A OP B and A OP L which are used about equally. On the other hand,

T3B uses the forms A OP B, A OP 1, 2, and A OP L in a definite

decreasing pattern. The AED and 33B use of the OTHER form is

similar, with J3B using it somewhat more. The use of the forms

E OP 1, 2 and E OP L are comparatively rare in both AED and J3B,

and are used about equally in both compiler i.

2z. 1;



~ 4

0 0

of0

'-4o

4

230



Boolean operators. This bar chart (Figure 21) shows the

relative use of four categories of predicates (listed below) and the

Boolean connectives AND and OR. The predicate catego:ies are:

0 EQL (==)

0 NEQ (-10,

• GEQ+GRT (> and >), and

* LEQ+LES (< and <).

Figure 21 shows the EQL and NEQ (== and - =) are the most

common Boolean operators, with EQL being far more popular than al

others. The remainder of the operators are used about equally.

The ovei all impression from Figure 21 is again that the AED

and 33B compilert have similar profiles.

Boolean forms. This bar chart (Figure 22 ) shows the relative

use of the following five categories of Boolean forms as used in IF

clauses:

* A PR L* -- variable predicate literal other than 0.

0 A PR B -- variable predicate variablr te that a
insignificant number of forrn using AL and OR and
Boolean variables are included in this category).

* A PR 0 -- variable predicate 0 (literal),

* E PR L -- arithmetic expression predicate literal

* OTHER -- all other forms.

A spot check of the source language code showed that members of the

OTHER category are primarily of a form of which the following is a

representative example:

* A==B AND C==D

Here == often is replaced by , =, and B and D are often literals.

In Figure 22 we note the high preference of J3B for the form

A PR L*, and the more moderate preference of AED for the form

A PR B not shared by J3B. However, the overall impression from

Figure ZZ is rough similarity betweezi the AED and J3B profiles. If

231



0114

05

0

z

th

Ln 44

L17_



0,.-

o 6.

mJ 0

-4

0

'.4

in f"

2334

- l

1*
ii' 

233



the first three categories are combined, the resulting percentages would

be approximately 70% for J3B and 6Z% for AED. The regrouped profiles

using theae values would then be very similar.

% of arithmetic operators with A R. H. S. operations. This

histogram (Figure 23 ) shows that the great majority (roughly 80%0) of

R.H.S. forms have no operators. This result emphasizes the observa-

tion assignment statements are generally very simple in both compilers4.

A spot check of the forms used in arithmetic assignment state-

ments showed that they are typified by the following examples:

A=B

a A = literal

Here, A or B are frequently be,"5 components as well as declared integer

variables. It should be noted that, through an oversight in the instrumented

compiler used to gather the data, all Boolean assignment statements

were erroneously added into the "10 - RHS" left-most column, (e.g.
A = B AND C). Since all forms of Boolean assignment are very rare,

it is qui' unlikely that this introduced any sizeable error in the data

as shown, The spot check also found that the bulk of the remaining 4
arithmetic assignments (roughly 20%) were of the forms typified by the

following examples:

* A=B Il

. A = B *literal other than 1
* A=B+C

There is a clear overall impression from the histogram of

Figure 23 that the AED and J3B profiles are extremely similar with

respect to the use of operators in arithmetic assignment statements.

% of Boclean expressions with _ operators. The Boolean

expressions counted in generating the data comprising the histogram
nf Figrtie 24 -were only those occurring in an IF clause, However,

all other occurrences of Boolean expressions are extremely rare in

the two compilers. The Boolean operators counted included six predicates

(==, - <, <= >, >=) ax d the two connectives AND and OR.

234



-9 .',

.9

4

I.

'4

0
A

.'14

S

U

.9-I

1'
.94

$4

'94
0

U
.94

Y-4~

'.4
0
o

I N

-s _______________________________ 0
$4

00

C C

o 0 0 0 0 0 0 0

9~~ I
235'I



00

2' 0

0

223



Note that approximately 88%/ of all Boolean expressions in both

compilers occur with 0 or 1 operators. A spot check of the source

language programs found for the 0 operator case only the form IF A,

where A was a Boolean variable. For the 1 operator case, the spot

check found only the form IF A predicate B, where A and B were integer

arithmetic variables, and predicate was usually == or -,=. Boolean

expressions involving 2 or more operators are seen to be very rare.

The overall impression from Figure 24 is again a significant

degree of similarity between the AED and J3B profiles.

% of procedure and function calls with n arguments, The

histogram presented in Figure 25 shows that approximately 90/6 of

all procedure and function calls have three or fewer arguments for

both the AED and J3B compilers. The overall impression in Figure 25

is again a high degree of similarity between the AED and J3B profiles.

of executable statements nested n deep in FOR loops. The

"istogram of Figure 26 shows that almost all executable statements

cccur outside of FOR loops. This is easily understood since there are

relatively few FOR statements used in the ALD and J3B compilers, and

it has been observed (Section 2) that on the average only three executable

statements appear in each FOR loop. This result of ccurse causes the

AED and J3B profiles to be very similar with respect to this category

of AED language usage.

237



4A

00

L

0

4 U-

444

-4

4 o

0

0

be

238

"' ,...



00

0 w

e-

oo

0 0 0- in , N

.4 239



CHAPTER 12

DYNAMIC COMPILER DEMAND PROFILE DATA

1. Overview

This chapter, together with the companion chapter entitled

"Static Compiler Demand Profile Data" (Chapter 11), presents a summary

of all non-timing data gathered during the project. Dynamic data is

presented in this chapter in the same form as was the static data in

Chapter 11. It is suggested that the reader should first become familiar

with the static data discussion before preceding with a review of the

information presented in this chapter.

The dynamic data was obtained using the results of the static

data gathering effort as a basis. Static data counts for each source

language procedure in each of the AiL. and J3B compilers were multiplied

by a weighting factor to obtain comparable dynamic values. The weighted

counts for each procedure were then 3ummed, to obtain grand total

weighted counts for each compiler.

The weig'Iting factors applied to each procedure were derived

by running a version of each compiler which was modified to keep a

record of the nmnber of times each program in the compiler was entered.

Each compiler was run twice, using two specially devised test programs

as compiler input. (These test programs are presented in Appendix 2.)

The total number of calls for each compiler program was printed, and

the sum of the number of calls for the two tests was calculated as the

desired weighting factor. Thus, if procedure A were called forty times

during test 1 and sixty times during test 2, and procedure B were called

once during test 1 and never during test 2, then A would be assigned a

weighting factor of 100, and B would be assigned a weighting factor of 1.

Thus each static data count for procedure A would have 100 times the
im..ortance of ninc-''r B gmiw*nd- &.. Lot-ls he

dynamic compiler demand profiles.

It should be noted that this weighting factor technique has several

features which influence the interpretation of the dynamic profile results:

240



" Frequently, not all statements of a program are executed
once, each time it is executed. A loop may cause one
set of statements tu 1re executed several times ior one
execution of thet proccdure, nr a GOTO RETURN, IF-THEN-
ELSE (or other form of conditional statement) may cause
a set of statements never to be executed at all. The
weighting technique used does not take these factors into
account.

" All error diagnostic, recovery, and print programs are
eliminated from the statistics, since both test cases were
designed to compile correctly with no errors, and t s
caused the weighting factor to be 0 for all error-handling
programs in each compiler.

* The weighting factor is a direct consequence of the style
and contents of the two test cases. It is believed that a
reasonable mix of statements and programming styles were
used in writing the two test5, but it should be noted that
any langc'age feature which was not employed in either test
and which is the only cause for calling a particular compiler
subroutine, results in that particular subroutine to have a
weight of 0.

In the following pages, the dynamic data is grouped into tables

and bar charts in exactly the same form as the static data appears in

Chapter 11. The reader should compare the corresponding static data

table or bar chart with its dynamic counterpart to see how the results

are effected by applying the dynamic weights. In general, the dynamic

data shows the same general results as was seen in the static data,

except au noted in the text accompanying each table or bar chart.

2. Tables of Dynamic Usage of AED Language Forms in the AED
and J3B Compilers

In this section seven tables are presented which are the dynamic

data counterparts of the tables of static data presented in Section 2

of Chapter 11.

Statement types, operators, and labels. Table 11 is the dynamic

counterpart of Table 4.

The relative dynamic usage of various statement and operati aL

forms is very similar to the static figures. In both compilers, call

statements dropped slightly in importance, while IF and GOTO statements

241



4)
m0 %4 N %0 a, 0 NO0

IC7 Y O V N D - Ln ( (n(f

-,o a , - -4 0 N

S L I 0

4) IA ' - 0 1~' ,- 'l

N . -4 r- 0 "

4

Ha 

a,

4)

oc

z

0
-H-4 z

%64H H - 0

'U)

1-4 2



increased. Usage of Boolean operations remained far ahead of arithmetic

operations. Th,. increase in the importance of IF and GOTO in the

dynamic evaluation tends to indicate that these forths are used more

frequently in the repetitive portion of the compilation process, whereas

they are less frequently used in the initialization and error reporting

areas.

Assignment statement forms. Table 12 is the dynamic counterpart

of Table 5. Here again, very small changes in relative importance are

noted between the static and the dynamic data. In both compilers, the

forms "A = B" and "A = EXPRESSION" assumed slightly more importance

in the dynamic data, while "A = FUNCTION (... )" assumed less

importance. The later effect verifies the slight drop in function call

importanse noted "In Table 9 on dynamic usage of statement forms.

Statement types used with conditionals and loops. Table 13 is

the dynamic counterpart of Table 6, Most of the variation from the

static data introduced by the dynamic use of weighting factors is seen

to be generally unimportant. Increases or decreases shown in one

compiler are offset by the opposite trend in the other compiler. The

exceptions are:

* The BEGIN category (compound statement form) decreased
in both THEN and ELSE categories, but increased in e
DO category. This was a trend in both compilers.

* GOTO increased in both the AED eond J3B compilers for
the THEN clause, and decreased slightly in the ELSE
category.

0 In the DO case, IF decreased and assignment statement
usage increased in both compilers.

There is no apparcnt rationale for these slight changes, except forf statistical anomalies that are possibly introduced by the factors listed

in Section 1.

FOR statement sub-tvnes. Table 14 is the dynamic counternart

of Table 7. The UNTIL and WHILE forms of loop termination varied

dramatically between the static and dynamic figures. In the J3B compiler

the relative importance of the two forms was reversed, with WHILE

243



'1w

- 0 U - - - -*0
46b

N 0 0 -V V-4 q44

.Im~ N oo4

1bc

co ~ ~ ~ y 0o I a n

.244



%D 0 -, '

'- 0 It v 00c t

0 e4 0 n . N Ir

-T m' 00g 0'
en4 en

0%0

0 Ol -4 Ln -4

InC vO~ N

en j' O0~ %D '0 %0

rn 0'- C

00 C A 00

oI
a H-4 0 0 tA t- LA O

0 ~ 0 0 9.4 CO en~ c
0 ~N '0 N a, t- N

00 m~ 00 N a, Ns

44

0

>

zz

U)

00

245



N 0 N
N~~ L-4 z Itn~I

W 44)

N o

4J

be
0

246

k.



dominating the dynamic data and UNTIL dominating the static data. No

such reversal was avident in AED. It can only be concluded that an

insufficient number of FOR loops within too few source language modules

were reflected in the weighting factors and that the results are therefore

distorted by the inadequacy of the statistical sample.

Integer forms in FOR statements. Table 15 is the dynamic

counterpart of Table 8.

The set of data shown in Table 15 also suffers from too small a

sample to perform an adequate evaluation, as was also the care for the

static data in Table 8. From the numbers shown, the dynamic results

show substantially the same patterns as the static data of Table 15.

That is, the initial index variable is usually set to a literal or variable;

the step increment is almost always 1, and the terminating value is

usually a literal (not 1) or a variable.

Arithmetic forms. Table 16 is the dynamic counterpart of

Table 9.

Table 16 shows the same overwhelming use of + or -, and the

rare use of 'W' and "/P' that was evident in Table 9. The very small

total number of *" and "ill operators in the two compilers makes

this classificaticn too small a sample for determining good static/

dynamic trend comparisons. In examining the individual forms of

arithmetic phrases, no clear trend is obvious. Most increases in

dynamic data ior J3B are offset by decreases in the sane category for

AED and vice-versa. The category "A" OP D" remains the most

commonly used form for the "+" and "-" cperators; "EXPRESSION OP

LITERAL" and "A OP LITERAL" are the most commonly used arithmetic

forms using the "W* or "P" operators.

247



-4

CO -0 o

C Oo L n

0r-a' o r--t

0 m

;4

a 3

o
4 0.) L

03 0

-44

C-44

P44

x4 z

00

~~Z4 '-4 1 4

248



mf tn o o o o m Ln

Na~ wf N

en iA7I

0

?X Io' 0 0l 0- 0 %-0e~ s

N v c0 4'-no

04 '

Q0t 0 0 0n %0 t- I e

0 i qt' V- %oNm

7"44

00

N ' '' -40 0 'CA N

0 0 w 0 0 '
t-44

0fO~v n 0 ' 0 A i '4 N

ol "1 'A 0 P4 n- X .

$24



Boolean forms. Table 17 is the dynamic counterpart of Table 10.

The dynamic data shows the EQL (==) operator still by far the

most commonly used, with the other operators showing no significant

trend in the dynamic versus static comparison. In comparing the

dynamic use of various forms of Boolean expressions, thd forms
"A OP LITERAIL" and "A OP B" are seen to be the most commonly

used, as was also the case in the static data.

3. Bar Ch'arts of Histog 'ams of Dynamic Usage Patterns in the
AED and'53B Compilers

In this section five histograms are presented which are the

dynamic counteiparts of the histograms presented in Section 3 of

Chapter 11.

Procedu:-e and function calls using n arguments. The histogram

presented in Figure 27 is the dynamic counterpart of the histogram

presented in Figure 10.

The weighted statistics shown in the histogram of Figure 28

show that the majority of procedures are called with three of fewer

arguments, as was also seen in the static histogram (Figure 10). The

most noticeable change in the static versus dynamic histograms is a

sizeable increase in the calls using 1 and 2 arguments in J3B, with an

oppozite, leveling out effect in AED. This indicates that procedures

with fewer arguments are called in the heaviest used J3B compiler

programs, while the opposite is true for AED. There is no apparent

explanation for thi3 result except for the statistical anomalies that are

possibly introduced by the factors listed in Section 1.

Assignment statements with n right hand side operators. The

histogram presented in Figure 28 is the dynamic counterpart of the

histogram presented in Figure 11.

T-he number of assignment statements having no right hand side

(R. H. S. ) operators remain, dominant using the weighted data. The

static and dynamic histograms show very little effect in any area

caused by the use of dynamic weighting factors.

250



0 0 00 0 1 0%

0 0 o 0 0 M,0 0 0 I
tN N I

C. 0 0 o A %n 0 0 aI '1
QI - fn 4

%n NI 0,
N 0

z 0 0 0D 1 0~

01 00 o 00 'o-4 0 0 0 U
V-I . -4 0. '-O In

M VI ; ; W1

N N- 4'

r 0 0- 0 Ln ) 0 ,L 0 C' 1-

in m- 0 o 0

0 t- C1 ' I 0 00 0

NZ Ln 10
N N '-4

in 0 N cIn 0 00 t

oI -4 co No v N0

-4. AA 4 0 V 0 N 0 0- 0 0

0n t , -4 a%

v n o a n 0 0 i
In 0n 0' t'0--

'dIN. It' r-
4 N LN

0 In N 1 -4

'o Cl
' , 4 0 (1. e1 0' M

(d t0 n N -4 00

0 Z0

044 tQ0
(A"

Nt n0 0 C 0 -



44

0 
bG

it to

'A

4

to

00 n N 03 0 f

Ma~lHoiali) s-i-vz, ao -aavnN

ztz



!N"!,V-TB7W MWT-

0<

uo

0 t
Z,%

1.4

0

V-4

16 ~14

L (aIOI~M) ~Na~.LS 253



Boolean expressions with n operators. The histogram presented in

Figure 29is the dynamic counterpart of the histogram presented in Figure 12.

The application of the dynamic weight8 had very little effect on the

data shown in this histogram, except that the 0 argument case was reduced

in importance for the AED compiler. The 0 and 1 argument forms are seen

to be dominant in the dynamic histogram, as was also the case in the static

histogram.

2

2-54



00

1: -4
0
0

~inIz
* ~ 54

0~4~

it

0

Co C0 0 0 0 0o 0 0) L n )
-A M N~ '4

(GaIHoIM) StNOISb'TddXa N~rIQ0g JQ 'd~~l

255



FOR loops and executable statements nested n deep. The histograms

presented in Figures 30 and 31 are the dynamic counterparts of the

histograms presented in Figures 13 and 14 respectively.

The dynamic weights caused the AED statistic for use of FOR loops

at a nesting depth of Z to be greatly increased, while the J3B statistics were

relatively unchanged due by the weighting effect. The loop at a nesting

depth of 3 seen in the static data had its weighted count reduced to 0, since

the program containing this loop was never entered in either of the two

J3B tes . cases processed.

The reason for the odd change in the AED statistic 5s the fact that

FOR loops are used rarely and that the few procedures in AED using FOR

loops were called with a relatively high frequency, thereby resulting in a

high weighted count.

In comparing Figures 31 and 14, we see th.-- t when the number of

executable statements is taken into account, the unusual height of the AED

2 level bar in Figure 14 no longer shows up in the histogram of Figure 31.

On the other hand, a new separation of the AED and J3B profiles "s sean in

the level 1 bars, where the J3B bar increases substantially as compared

with the AED bar. The reasons for this odd behavior is probably again

due to the inadequacy of the statistical samplk fc- FOR loops.

256



*~w - --

5.4

%4
0

4)
$4

.40

W4)

04)

-4~~ 00L Y
4 1)

257



0

.0

0 0

0

(Or

00

;4z

00

Ln~~~- .n 0 -.1

M~

WaIH~~~iam) SdmI)If U
si.Nawaivis~~.w* aJJfox a,--wi

253I



.Mir

4. Bar Graphs of Frequency Histograms of Relative Dynamic Usage
of AED Lano-aage Forms

In this section twelve bar graphs are presented which are the

dynamic counterpqrts of the bar charts of static data presented in Section 4

of Chapter 11.

Statemenit types. The bar graph presented in Figure 32is the

dynanic counterpart of the bar graph presented in Figure 15.

In Figure 32, the dynamic weighted data show a slight leveling

effe,;t in comparison with Figure 15, its static equivalent. Aszignment and

ca'L statements, which comprised about two-thirds of all statements used

statically, dropped to about sixty percent usage when the dynamic .eights

are included. Correspondingly, the IF, GOTO, and ELSE c .cegory which

comprised about one-third of all statements used static:Aly rose to about

forty percent usage.

A

i2

i 259

it,



'4X

i ~ li 0

0

0

C4

~z

260



Statements following 'THEN', 'ELSE', and 'DO'. The bar graphs

presented in Figures 33, 34, and 35 are the dynamic counterparts of the bar

graphs presented in Figures 16, 17, and 18 respectively. 3
After 'THEN'. Figure 33 shows that the compound statement (BEGIN)

category remains the most heavily used, with the CALL, GOTO, and Assign-

ment statement group being about equally used, in second place. IF state- 4

ments are of less importance, and FOR almost never follows THEN. The

dynamic weighting increased the relative frequency of occurrence of the

CALL, GOTO, and assignment group, but overall left the picture very

sirnilar to the static case.

2

1!

F!

261

- -'----



q -
41-

01
0

r

I,. 0-%

CV)

o

jlum

".

II

?C

:'-

26



After 'ELSE'. The dynamic bar graph (Figure 34) shows the same

relative usage patterns that appeared in the static bar graph (Figure 17).

Assignment statements in the AED compiler gained the most in relative

frequency of occurrence due'to the dynamic weighting.

~263



0

iz

s -

264



After 'DO' In Figure 35 it is seen that the major effect resulting

from applying the weighting ±.ctors is to level off the differences between

the AED and J3B profiles iz. the ASSIGNMENT and IF categories. For

example, the fewer number of aesignment statements in FOR loops are

3xecuted in the AED compiler more frequently than in the 33B compiler.

It should be noted that the weights were determined by the number of times

the procedure containing the FOR statement was entered, rather than by the

the number of times the loop was actually executed; therefore, the number

of statements actuatly executed inside loops is probably under represented

in the data shown in the bar graph.

II

4' 1

?.6 5



in
0

14)

oo

LnH

26o



Arithmetic operators. The bar graph pre3ented in Figure 36 is the

dynamic counterpart of the bar graph presented in Figure 19 .

The application of weighting fae.',-s produced very little effect in

the relative frequencies of use of arithmetic operators. L- both the dynamic

bar graph (Figure 36 ) and the static bar graph (Figure 19 ), the operators
"-+1" and "-" occur with a frequency of about ninety percent for both the AED

and J3B profiles.

26
I

II 267



L 44

~26



Arithmetic forms. The bar graph presented in Figure 37 is the

dynamic counterpart of the bar graph presented in Figure 20 .

In Figure 37 the dynamic bar graph ehowv an increasing frequency

of occurrence of the form A OP B, while the forms A OP 1,2 and A OP L*

are reduced in frequency of occurrence z s compared with the static bar

graph of Figure 200.

(See corresponding sub-section of Section 4 in Chapter 11 for an

explanation of the noxation used for labeling the bars of this bar graph.)

269



I"A

w4

P41

0

S4

.,X-

LAII

~,--.-.-. 0

0 
C)0

2704

270

-~ ..- ~. 4



Boolean operators. The bar graph presented in Figure 38 is the

dynamic counterpart of the bar graph presented in Figure 21

There are no noteworthy changes in the differences between the

dynamic and static bar graphs of the use of Boolean operators.

I

*11

I

N!

r.



CYr
snl w

-i Ii
+

~z1

<

0t
Cz0

0

W d

2
U-4

0
I?

0

o

0

| A , ,z ... , . ,,-- ..,,

)oaD
?"S

272.



Boolean forms. The bar graph presented in Figure 39 is the dynamic

counterpart of the bar graph presented in Figure 25 .

There are no noteworthy changes in the differences between the

dynarric and static bar graphs of the use of Boolean forms.
4

(See corresponding sub-section of Section 4 in Chapter 11 for an

explanation of the notation used for labeling the bars of this bar graph.)

Z73



0

~J0

P4

%4

0

274)



% of Arithmetic operators with n A. H.S. operators. The histogram

presented in Figure 40 is the dynamic counterpart of the histogram presented

in Figure 23 .

There are no noteworthy changes in the differences between the

dynamic and static histograms of occurrence.s of arithmetic assignment

statements with n arithmetic operators.

275

- - - - _



1.4

4

0

41

0)

"44

0

-4bD

0 0 0 tn 00 0

C, OD -LA I

276'



16 of Boolean expressions with & operators. The histogram pre-

sented in Figure 41 is the dynamic counterpart of the histogram presented

in Figure 24.

The dynamic histogram shows both significant increase in the occur-

rences of Boolean expressions with I operator, and a reduction in the occur-

rences with 0 operators, as compared with the sta'-ic histogram. This

indicates that forms such as IF A == B (1 operator) are used in procedures

that ara called frequently, such as, for example, in input reading and code

generation procedures. On the other hand, the form IF A (0 operators)

occurs more fre(.uently in rarely called procedures such as, for example,

initialization, error handling, etc.

4

12
I

, 277



0

0
0

CO 9

0
04

0

No tn

278



% of procedure and function calls with n arguments. The histogram

presented in Figure 42 is the dynamic counterpart of the histogram presented

in Figure 25 .

There are no noteworthy differences between the dynamic and static

histograms of the occurrences of procedure or function calls with n

arguments.

Z79



I l

-4

t 4

0

280



76 of executable statements nested n deep in FOR loops. The histo-

gram presented in Figure 43 is the dynamic counterpart of the histogram

presented in Figure 26.

There are no noteworthy dIfferences between the dynanic and static

histograms of the occurrences of executable statements nested n deep in

FOR loops.

8

I

281



J

%-4~0
ca

0

$40
f-4

00

f-4

0 0 Cl 0 0 

oo o1 it 0le 0 0 0

282



CHAPTER 13

HOW TO EVALUATE SPECIAL FEATURES

1. Introduction

In this chapter a brief discussion is given on how special features

might be evaluated. A more detailed discussion would require an

investigation beyond the scope of the present study. Section 2 discusses

the specia: features question with respect to ease of use features, and

Section 3 discusses the question with respect to case of maintenance

features.

2. Ease of Use Features

Ease of use features are matters of human engineering -- that

is, such features are included in a compiler in order to make a compiler

easier to use.

Examples of such special features are:

0 Diagnostics that are easier to use ior debugging
purposes.

* Error detectors in compiled code which are data
I dependent.

* Procedure interfaces that check for proper parameter/
argument data type matching.

0 Detecting (nearly) all synti-tic errors during one
compilation. (This requires very good error recovery
mechanisms during the parsing phase of computation.)

* Hooks for assisting the debugging of software:

* Traces.

' * Breakpoints.

* Symbolic debugging.

1 Patching.

The benefits to be derived from such features are:

* Reduce the number of debugging compilations per
I" p-ogramming tasks.

. Reduce the programmer time required to generate
debugged programs.

283



I

* Reduce the experience required of the progranmers
for obtaining equivalent work output.

* Increase reliability of programs believed to be
debugged.

Each of these factors can, in principal, be given a dollar value, although

for most of these factors, there are no techniques avaelahle to evaluate

quantitativeiy these features with respect to the above benefits.

The only research method that suggests itself for assigning a

dollar benefit valuation to these features is an elaborate series of

psychological experiments. These experiments would be designed to

determine quantitatively to what extend the benefits indicated above

would actually occur from the presence of an ease of use feature in a

compiler. Once this information can be obtained, then dollar values

can be assigned to these featur# s on the following basis.

• Each debugging compilation represents a dollar cost
for the use of the computer facilities to perform the
compilation, and in addition for the labor cost of the
programmer in setting up and interpreting results
from a debugging run.

• A reduction in programmer experience requirements
is reflected in reduced programmer salaries.

* Increased program reliability reduces maintenance
costs.

The above considerations indicate how future research might be

directed at providing a basis for determining the dollar benefit to be

associated with ease of use features. The cost of including these

features in a compiler is much harder to evaluate. For this reason,

our reccmmendation is to use a contractural approach to quantify the

cost side of the analysis. In particular, we recommend that a vendor

be required to provide separate prices for the inclusion of these features.

However, it is inappropriate to make such requirements for the separate

pricing o' features before the dollar benefit data are available.

284

L



3. Ease of Maintenance Features

The following topics are concerned with special features of the

compiler which facilitate maintenance functions.

* Portability (changing host machine).

* Retargetability (changing target machine).

• Maintenance (bug fixing).

* Enhancability (adding features).

It is our opinion that the si-nplest way to handle the cost/benefit

evaluation of ease of maintenance features is by means of including the

requirement of providing for options in Requests for Proposals. For

example, if the buyer considers portability important, then the possibility

of wanting an additional compiler to run on a specific second computer

should be firmly established. Then, the RFP would require the vendor

to provide an option price and option execution price for the second

compiler. If the vendor normally uses an architecture that makes

portability easy, the option price will likely be very low (perhaps zero)

and the option execution price will reflect the degree of portability of

his architecture. (That is, a poorly portable compiler would result in

an option execution price similar to that of the original compiler -- an

easily portable compiler would have a much smaller option execution

price. ) If the vendor would normally use a high ,erformance architecture

(to gain incentive profits), then the option price might be fa.a:rly expensive

since vendor might chcose a inore portable architecture which would

reduce his expectations of incentive profits.

Retargetability can be handled exactly in the same manner as

portability. Enhancability can be handled by specifying optons for

specific features that are anticipated would be added later to an easil.y

enhancible compiler. Maintenance (bug fixing) can be handled by means

of warranties and options on warranties.

285

4



CHAPTER 14

CONCLUSIONS

1. Introduction

This chapter presents a summary of the conclusions reached as

a result of the present study. For each indicated conclusion, cross

references arc provided to the relevant sections of this report which

contain supporting material for the conclusion.

Section 2 presents conclusions for the study as whole. Sections

3, 4, 5, and 6 present the conclusions from studying respectively the

architecture 'algorithms question, the same ei Aronment question, the

environmen. equalizing question, and the special features question.

(A full statement of these four questions is presented in Chapter 1.)

2. Conclusions from the Study as a Whole

Listed below the conclusions reached from the study as a whole.

* The main technical objective for the study was to develop
criteria that should be used in measuring the performance
of compilers. This objective was achieved by the study.
(See Chapter 15 for a summary of the criteria. )

* The criteria developed by the study satisies the application
objectives presented in Chapter 1. That is, the criteria
are useful in selecting off-the-shelf compilers, for
preparing RFP's for compilers and providing a basis
for acceptance test design, and for choosing computer
haidware where compilers are to be purchased either
as a package with the hardware, or separately. (See
Chapter 2 for an overview of these uses. )

3. Conclucios from Studying the Architecture/Algorithms Question

Listed below are the conclusions reached from studying the

archit,= ture /algorithms question.

* The specific secondary technical objective of the study
was to determine the answer to two specific questions:

* Is there a particular parsing scheme that is most
efficient for all languages and user types, or is each
language better suited by a unique parsing system?
The study determiner! the answer to both parts toHi be No 1 (See Chapter 5.)

z28'



0 Is there a relationship between table searching
methods and the type of language which is being
compiled? Tht study determined the answer to
this question to be No ! (See Chapter 4. )

0 The full statement of the architecture/algorithms question
is: Can an:.lysis of a compiler's architecture and
algorithms provide a basis for making valid judgements
about the performance that should be expected from a
compiler ? The conclusion reached in the study is
that this question should be answered No! (This
conclusion is supported by the entire study of this
question as described in Chapters 3, 4, 5, 6, and 7.)

0 From the study of architectural choices in compiler
design (Chapter 3), the following conclusions were
reached:

* With respect to compiler architectures, one-pass
compilers are faster and larger than multi-pass
compilers.

* Multi-pass compilers permit more extensive
optirmizations, and therefore can produce more
efficient object code.

* Choices of algorithms for parsing and code
generation are generally made for other than
performance reasons. Generally, the reasons
relate to cost of development of the compiler.

* Some generalizations on the relative efficiency of
table look-up algorithms are possible, but such
generalizations are mainly related to specific internal
architectural purposes for the table rather than
external factors such as the language being compiled.

* Optimization methods are highly varied, and no
useful quantitative generalization was found which
could relate compiler performance and object code
quality for a particular individual or class of
optimizatior-s.

* From the study of table look-up algorithms (Chapter 4),
it was concluded that each algorithm has performance
characteristics that favor its use for particular types
of compiler tables. The types of table.s that match
these special performance characterir tics relate to
areas of compiler activity rather than to types of
languages.

* From the study of five categories of parsing techniques
(Chapter 5): the following conclusions were reached:

287



* For most pa' sing techniques in common use.
differenced in implementation overshadow
differences in technique in impact on performance.

* Fo: one technique category ("general techaiques"),
-which is not commonly used in compilers, the 5
performance expected would generally be poor
due to the generality of the technique. This
expected poor performance is probably the reason
the technique is not commonly used in compilers.

* The reasons a particular technique is selected for
use in a compiler are generally distinctly independent
of performance considerations.

• Aside from performz, nce considerations, it is
possible to mr-ke some general statements about

various advantages or disadvantages one parsing
technique would be expected to have in comparison
to the other techniques. (See Section 4 of Chapter 5.)

0 The study of optimization algorithms (Chapter 6)
considered 19 machine independent optimizations and
9 machine dependent optimizations. This subject is
so broad that no general conclusions seem appropriate.
All optimizations -.re intended to trade an improvement
in object code quality for a reduction in compiler speed.
Some are applicable to single pass compilers and some
to multi-pass compilers, and some to both. (See
Chapter 3 discussion of optimizations and how they fit
into architectures.)

0 The study of code generation algorithms (Chapter 7)
reached the general conclusion that there is no
definite advantage or disadvantage in comparing
three different methods of organizing and implementing
code generators.

4. Conclusions from Studying the Same Environment Question

Listed below are the conclusions reached from the study of the

same environment question.

• In Chapter 8, criteria are defined for evaluating compilers
in the same environment having the same special
features. These criteria involve the uqe of User
Profiles and Compiler Performance Profiles, both
based on a list of language elements such as those
listed in Section 5 o! Ch;Apter 8. These profiles can
be combined to provide cornparab!e dollar valuations
of such compilers by methods discussed in Sectio. 4
of Chapter 8.

Z88



IF r

* The list of language elern2eutJ for Use. Profiles preseated
in Section 5 of Chapter 8 satisfy tbe objectives for the
lis.. These objectives are-

The list is ae complete as ie reasonable to expect
%rithin scope of the study.

* The list incorporates sufficient detail so that it
is reasonable to expect that no item in the list
could likely occur with an excessively high
frequency in user application programs. (The
proof of this conclusion requires the actual
generation of User Profiles.)

* It seems plausible that the collection of User
Profile data for the list could be automated.
(Several idea- on how this might be done are
discussed in Section 3 of Chapter 8.)

* Chapter 9 presents methods for geuerating test programs
to be used in collecting Compiler Performance Profile
data (for the elements of the list of User Profile language
elements). These methods satisfy most of the objectives
for such methods. These objectives are:

0 The effects on compiler petformance due to the
individual elements of the list are reasonably
well isolated from each other.

* The number of test programs which the methods
require for the language elements should be
small. However, for some language elements,
the number becomes rather large. On the other
hand, the methods are sufficiently simple that the
generation of test programs could be automated.

* Th,, -nethods are easy to understand and to put
int.o practice.

0 The measuring procedures spei:ified (for
c'slculating performance measured from the
raw data collected from compiling and
executing the test programs) are sirple and
straightforward.

5. Conclusions from the Study of the Environment Equalizing
Ques tion

jListed below are the conclusions reached from studying the

environment equalizing question.

* It is reasonable to expect that different compilers
should have similar Compiler Demand Profiles.
(See Chapters i1 and 12. )

289



0 A typical Compiler Demand Profile can be used as a
basis for defining a "compiler Gibson mix". (See
Section 2 of Chapter 10.)

* A "compiler Gibson mix" (established by the methods
described in Section 2 of Chapter 10) can be used to
"equalize" environments. (See Section 3 of Chapter 10.)

6. Conclusions from Studying the Special Features Question

The conclusions reached 1rom studying the special features

questions are listed below,

* Assigning dollar benefit valuations to ease of use features
reqaires data not a present available. Psychological
studies (described in Section 2 of Chapter 13) might be
useful for developing these data.

* Assigning dollar cost valuations to ease of use features
might be handled contracturally. (See Section 2 of
Chapter 13.)

* The cost/benefit analysis of ease of maintenance factors
could be facilitated by suitable use of contractural
methods, provided a valid method of determining a
dollar valuation of the pe:formance of a compiler is
developed. (See Section 3 of Chapter 13.)

29

290



CHAPTER 15

RECOMMENDATIONS

1. General Recommen .ions

Listed beiow is a summary of suggested general recommendations

for using the results of this study.

a The criteria developed in this study for measuring the
performance of compilers should be used as a basis
for a number o$ compiler purchase activities. These
activities are:

* Purchasing off the shelf compilers.

* Preparing RFP's for compilers and designing
acceptance tests with respect to performance
standards.

* Choosing computer hardware and compilers as
a package.

* Choosing computer hardware when ;ompiiers

are to be purchased separately.

(The criteria are summarized in Section 2. How these criteria can be

used is discussed in Section 3.)

* The metheds for measuring compiler performance
(including effects due to environmental factors) should
be used experimentally to establish their practical
suitability and to determine how they should be
modified to improve their usefulness. (Th;ese methods
are described in Chapter 8.)

* The methods described in Chapter 10 should be used
experimentally to normalize the performance measures
derived by the Chapter 8 methods for environmental
differences. That is, experimental use of the Chapter
10 methods should be undertaken to determine their
practical suitability in "equalizing" environments.

0 Further studies should be pursued to determine data
needed to properly assign dollar benefit evaluations
to ease of use features. (See Section 2 of Chapter 134

0 Contractural methods should be developed to permit
dollar cost/benefit analysis to be used in evaluating
ease of maintenance features.

291

*tw--



"77

0 A number of specific experimental studies should be
explored involving the use of the methods developed
in this study (Chapters 8 and 10) to refine the methods
and to further determine their usefulness. (These
suggestions for further studies are presented in
Section 3. )

2. Criteria Developed in the Study

The criteria for measuring the performance of compilers developed

in the present study are the following:

" The basic criteria to be used in evaluating a compiler
is the dollar cost of the compiler, and the dollar benefit
of the compiler. Other criteria presented below
constitute source information or derived combinations
of source information which contribute to an assignment
of a dollar benefit valuation to various aspects of a
compilers performance. (See Section 4 of Chapter 8.)

* The corrpiler's Compiler Performance Profile -- the
performance of a compiler wit% respect to elements
or constructions of the language operated on by the
compiler. Four performance measures 'the "directly
measureable factors") for each element are to be
determined:

0 How the compiler's tir..e to compile is effected
by occurrences of the element in source prngrams
being compiled.

4 How the compilers space requirements (partition
size) is effected by occurrences of the element.

* How much CPU timc is required to execute the
object code created by the compiler for an
occurrence of the element.

* How much space is required for the object code
resulting from ar. occurrence of the element.

* The user's applications programs' User Profile -- the
relative number of occurrences of an element or
construction of tne language operated on by the
compiler in the ae:'s application source language
programs. (This iL the static User Profile. ) Also,
the number of executions of eccurrences of the
element is normal use of a user's application
programs. (This the dynamic User Profile.)

292



* The compiler's Compiler Evaluation Profile -- a
combination of User Profile and Compiler Performance
ProfiLe representing performance measures for each of
the four "directly measureable factors" with respect
to a "typical" user prognam.

" The perfo-,!mance of a computer/operating systemn
environment with respect to a "compiler Gibson mix".
(See Chapter 10 for a detailed discussion of this
criterion.)

* Administrative data defining the average degree of
re-use of user applications programs. This
information in combination with the Compiler
Evaluation Profile can contribute to calculations
of a number of useful dollar ialuations for a
compiler. (See Section 4 of Chapter 8.)

3. How the Criteria Can Be Used

Compiler acquisition situations. The results of our investigations
should be useful in the acquisition o" hardware and compilers in the

following situations:

* Hardware selection.

* Buying off-the-aheuf compilers.

s Preparing RFP's for compilers and designing acceptance
tests for the delivered product.

With respect to hardware selection there are two cases:

0 Buying computer hardware with the intention of
acquiring compilers separately.

* Buying r'omputer hardwaro and compilers as a
package.

Our investigation of the environment equalizing queation (Chapter 10)

supports the feasibility of establishing a "compiler Gibson mix". Such

a "mix" is defined (Chapter 10) in terms of the static Compiler Demand

Profiles for AED and J3B presented tn Chapter 11. Further work is

required to develop the assembly language representation of the elements

of the "compiler Gibson mix" for one or more computers. Once all

be compared in terms of their relative degree of support for compiler

a. tivity.

293



In addition to generating and using the "compiler Gibson mix",

a compiler purchaser should also generate and use a "user Gibson mix"

based on a User Profile, which would characterize the user programs

to be compiled and/or executed on the new installation. If it is known

what fraction of the time the installation will be performing compilations

as executions of compiled program, then the degree of compiler suppurt

can be suitably weighted and combined with the support expected for

User Programs to give an overall dollar benefit valuation for the

computer.

If hardware and compiler are to be acquired as a package, the

results of our investigation of the same en",ironment question are

directly applicable. A Compiler Performanc . Profile could be generated

for each hardware/compiler pair which, when combined with the User

Profile. would provide directly a Comipiler Evaluation Profile for the

combination. This figuie of rnerit would characterize the performance

of the combination with respect to compiling and executing a 'typical"

user program.

If different compilers under consideration have different features

which would contribute to ease of use and ease of maintenance, additional

information derived from considerations of the special feature question

would have to be taken into account.

With respect to buying off-the-shelf 'ompilers, the results of

our investigation of the same env.ronment question should also be

directly applicable. The generation of a Compilez Performance Profile

for each compiler, combined with the Oser Profile will provide directly

a Compiler Evaluation Prctle ior each compiler's performance with

respect to a "typical" user program.

Preparing RFP's constitues the most complex problem of

determining how to use the results of the present study. If a compiler

for the desired language already exists on a currently used machine,

different from the host machine, 01he. A Comlr-n a uto rfl

could be used to define the performance for the current machine and

294



compiler. Then, the performance of the computer,'operating system with

respect to tLe defined "compiler Gibson mix" could be used to calculate

how an "equw,- Lntly perfor'ing compiler" would perform on the host

machine. The result of such a calculation would provide a base line of

performancc to be expected from ;% compiler acquired in response to cn

RFP. These expectations could he included in the RFP specifica..ons,

and could also be used to determine whether the delivered p-oK'uct

performed adequately well during acceptance testing. Contr'.-tj entered

into using these procedures should probably include incentives (and/or

penalties) for performance better (or worse) than the base line as

determined in the above manner. The possibility of using incentives

discussed further below.

Incentives. Consider the problem of epecifying in an RFP the

required performance of a compiler. If the r.-quirements are too

restrictive, vendors will be discouraged frcm bidding. If requirements

are too loose, the compiler bought will not perform as well as may be

possible with existing technology. Consequently, we believe dhe

possibility of performance incentives should be considered. An approxina.te

base-line for the expectad performance can be derived in the manner

discussed above. If a vendor supplies a compiler which performs better

from this baseline, this difference in performance can be assigned a

dollar value. !;or example, if a compiler ru-as ten percent faster than

the baseline, this results in a ten percent sa vings in computer expenses

for the usefal life of the compiler. Some fraction of this saving could
be returned to thc vendor as a perforr.ance incentive. It will require

some care in establishing the baseline and in the incentive formulas to

use to get the best performing compilers for each dollar expended, but

it is likely that this approach will improve this desired end result as

experience is gained. With this approach, it is nct critical that the

baseline be as accurately determined as a set of specifications for a

fixed price procurement without incentives. If the baseline is made
looser, then one should expert that the base price bid will- he smaller.

since the vendor can expect to make higher profits from the incentives.

Z95



4. Suggested Topics for Future Study

Listed below are some topics whose study would contribute to

the establishing of well defined procedures in evaluating and procuring

compilers. These topics are offered in the light of the present study,

and results from exploring these topics are directly related to the

criteria established by the present study for evaluating compilers.

* More C'ompiler Demand Profiles shoulQ be determined
(by the methods described in Chapters 10, 11, and 1Z).
In developing these profiles, information related to
more elements and constructions of the source language
in which the compiler is written should be included.
The purpcsc of the study should be the improvement
of the "compiler Gibson mix" tentatively defined in
Chapter 10, basod on the present preliminary stud) of
how such a "mix" should be defined.

* The methods presented in Chapter 8 for automating
the collection of User Profile data should be explored.
Actual User Profiles should be developed. These
profiles should be based on the list of language
elements presented inSection 5 of Chapter 8 as a
point of departure. Also, test programs for determining
the performance of a compiler should be prepared
using the methods presented in Chapter 5. These
test programs should be compiled and executed,
and Compiler Performance Profiles should be
generated. The purpose of such studies would be to
confirm the practical usefulness of the methods
presented in the present study, and to acquire an
accumulation of experience in the use of these
methods that would provide the basis for improving
them.

0 Psychological studies, as discussed in Ch.pter 13,
are necessary to develop data to provide the basis
of assigning dollar benefit values to various ease
of use features.

296

==LA -- ~ -~ -



7"' 7r --

LIST OF REFERENCES

The references are organized below by chapters. For each chapter
heading, the listed references were reviewed in conjunction with the study's
activities that were related to the subject matter discussed in the chapter.

Chapter 4

Amble, Ole, and Knuth, D. E., Ordered Hash Tables, Stanford University
Computer Science Department Report STAN-CS-73-767 (June 1973).

Batson, Alan, "The Organization of Symbol Tables, " Comm. ACM 8, 4
(Feb 1965), 111-112.

Bell, J. R., et. al., "The Linear Quotient Hash Code," Comm. ACM 13, 11
(Nov 1970), 675-677.

Byrom, S. J. et. al., "Representation of Sett on Mass Storage Deviation
Information Retrieval Systems, " Proc. AFIPS Nat. Computer Conf.,
(1973), 245-250.

Clampett, H. A., Jr., "Randomized Binary Searching with Tre,.-
Structures," Comm. ACM 7, 3 (March 1964), 163-165.

Glass, Robert L., "An Elementary Discussion of Compiler/interputer
Writing, " Computing Surveys 1, 1 (March 1969), p. 55.

Gries, David, Compiler Construction for Digital Computers , Wiley, N.Y. (1971)

Knott, Gary D., "A Balanced Tree Storage and Regrieval Algorithm,"
Proc. 1971 Symp. on Information Storage and Retrieval, 175 -196.
Knuth, D. E., The Art of Computer Piogramming, Vol 3: Searching and
Sorting, Chapter 6, 309-569.

Lum, V. Y., "General Performance Analysis of Key-to-Address
Transformation Methods Using an i6bhtxact File Concept, " Comm. ACM 16,
10 (Oct 1973), 603-612.

Lurie, D. and Vandoni, C., "Statistics for FORTRAN Identifiers and
Scatter Storage Techniques, " Software Practice and Experience 3,
2 (1973), 171-177.

Maurer, W. D., "An Improved Hash Code for Scatter Storage,"
Comm. ACM 11, 1 (Jan 1968), 35-38.

Morris, Robert, "Scatter Storage Techniques,' Comni ACM 11, 1
(Jan 1968), 38-43.

Peterson, W. W., "Addressing for Random Access Storage, " IBM Journal
(April 1957), 130-146.

Price, C. E., "Table Look-up Techniques," Computing Surveys 3, 2
(June 1971), 49-65.

* ~ ~ ~ ~ r 11r,~-~- C ."M- TT.-, -;,, Res P~rh, " Comm.~ ACM 13, 2
(Feb 1970), 103-105.

Scidmore, A. K. and Weinberg, B. -. , "Storage and Search Properties of
a Tree-organized Memory System," Comm. ACM 4, 1 (Jan 1963), 28-31.

297



Stanser, A. J., "Bracketing Technique in Elastic Matching, " Computer

Journal 16, Z (May 1973), 132-134.

Sussenguth, E. H., Jr., "Use of Tree Structures for Processing Files,"
Comm. ACM 6, 5 (May 1963), 272, 279.

Chapter 5

Colmeraur, A., "Total Precedence Relations, " Jour. ACM 17, 1
(January 1970), 14-30.

Conway, M. E., "Design of a Separable Transition-Diagram Compiler. "
Comm. ACM 6, 7 (July 1963), 396-408.

DeRemer, F. L., Practical Translators for LR (k) Languages, Project
MAC M. I. T., (October 24, '1969), Available from DDC No. AD699501.

Eanes, R. S. and Goodenough, J B., Interim Report: Language Proces-
sing Technology, submitted to Frankford Arsenal unde;" Contract
DAAA Z5-7ZC 0667, SofTech, (October 1, 1972).

Earley, J., "An Efficient Context-Free Parsing Algorithm,"
Comm. ACM 13, 2 (February 1970), 94-102.

Floyd, R. W., "Syntactic Analysis of Operator Precedence,"
Cour. ACM. 10, 3 (July 1963), 316-333.

Gray, J. A. and Harrison, M. A., "Single Pass Precedence Analysis,
Symp. Automata and Switching Theory, (1969).
Ichbia, J D. and Morse, S. P., "A Technique for Generating Almost

Optimal Floyd-Evans Productions for Precedence Grammars,"
Comm. ACM 13, 8 (August 1970), 501-508.

Knuth, D. E., "On the Translation of Languages From Left to Right,"
Information and Control 8 (1965), 607-639.

Lalonde, W. R., An Efficient LALR Parser Generator, Technical
Report CSRG-2, Universit of Toronto, (April 1971).

Lewis, P M. I and Stearnes, R. E., "Syntax Directed Transductions,"
Jcur. AC, 15, 3 (July 1968), 465-488.

McKeemar, W. M. et.al., A Compiler Generator, Prentice Han, (1970).

Wirth, N. and Weber, H., '"FULER: A Generalization of ALGOL, and
Its Formal Definitions: Part 1, " Comm. ACM 9, 1 (January 1966), 13-25.

Chapter 6

Aho, A. V. and Ullman, J. D., "Transformations on Straight Line
Programs, " Conf. Record Second Annual ACM Symp. on Theory of
Computing, (May 1970), 136-140.

Allard, It W., Wolf, K. A., and Zemlin, R. A., "Some effects of the
6600 computer on language structures, " Comm. ACM 7 2 (Feb. 1964),
112-119.

Allen, F. E., "Program optimization, " Annual Review in Automatic
Programming Vol. 5, Pergamon, New York, (in press).

298



Allen, F. E., "Control Flow Analysis," ACM SIGPLAN Notices 5, (1970).

Allen, F. E. and Cocke, J., "Graph Theoretic Constructs for Program
Control Flow Analysis, " (Unpublished paper).

Anderson, J P., "A Note on Some Compiling Algorithms,"
Comm. ACM 7, 3 (March 1964), 149-150.

Apperson, Jerry L., Proposal for a Thesis on Optimal Evaluation Order
for Expressions with Redundant Subexpressions, Computer Science
Department, Carnegie-Mellon University, Pittsburgh, PA.

Bagwell, J. T., Jr., "Local Optimization," ACM SIGPLAN Notices 5, 7
(1970).

Beatty, James C., "An Axiomatic Approach to Code Optimization for
Expressions," Jour. ACM 19, 4 (Oct.'ber 1972), 613-640.

Busam, V. A. and Englund, D. E., "Optimization of Expressions in
Fortran, " Comm. ACM 1, 12 (December 1969), 666-674.

Cocke, John and Miller, Raymond, 'Some Analysis Techniques for
Optimizing Computer Programs, " Proc. Second Intl. Conf. of Systems
Sciences, Hawaii, (Jan. 1969).

Cocke, John, "Global Common Subexpression Elimination, " Proc. ACM
SyMp. on Compiler Optimization, 'July 1970), 20-24.

Cocke, John and Schwartz, J. T., Programming Languages and their
Compilers, Courant Institute of Mathematical Sciences, New York
University, New York, (1970).

Day, W. H. F., "Compiler Assignment of Data Items to Registers,"
IBM Systems Journal 9. 4 (1970), 281-317.

Finkelstein, M., "A Compiler Optimization Technique," The Computer_
Journal 11, (1968), 2Z-26.

Gear, C. W., "High speed compilation of efficient object code,"
Comm. ACM 8, 8 (August 1965), 483-488.

Haynes, J R., An Optimizing Compiler for an Extended Version of the
Floyd-Evans Production Language, TRM-12, Computation Center, The
University of Texas, Austin, Texas, (March 1969).

Hecht, M S. and Ullman, J. D., "Flow Graph Reducibility, " SIAM Jour.
of Computing 1, (1971).

Heller, S. B., The Design of Software Systems by Iterative Optimization,
TSN-3, Computation Center, The University of Texas, Austin, Texas,
(March 1969).

Hill, V., Langmaack, J., Schwarz, H. R., and Seegrniiler, G., "Efficient
Handling of Subscripted Variables in ALGOL 60 Compilers, " Proc. of the
Rom Symp. on Symbolic Languages in Data Processing, Gordon and Breach,
New York, (1962). 331-340.

Horwitz, Karp, Miller, and Winograd, "Index Register Allocation,"
Jour. ACM 13 1 (January 1966), 43-61.

299



Juskey, H. D., and Wattenburg, W. H., "Compiling TechniqLes for Boolean
expressions and conditional statements in ALGOL 60, " Comm. ACM 4, 1

(January 1961), 70-75.
Johnson, R. K., A Survey of Register Allocation, Dept. of Computer Science,
Carnegie-Mellon University, Available from DDC No. AD761529.

Kennedy, K., "A Global Flow Analysis Algorithm, " Intl. Jour. of Computer
Mathematics 3, (1971).

Kieir, R. L. and Ramamoorthy, C. V., "Optimization Strategies for
lMicroprograms," IEEE Transactions on Computers C-20, (1971), 783-794.

Lowry, E., and Medlock, C. E., "Object Code Optimization,"
Comm. ACM 12, 1 (January 1969), 13-22.

Luccio, F., "A Comment of Index Register Allocation, " Comm. ACM 10, 9
(September 1967), 572.

McKeeman, W. M., "Peepihole Optimization, " Comm. ACM 8, 7 (July 1965),
443-444.

Nakata, Ikuo, "On Compiling Algorituns for Arithmetic Expressions,"
Comm. ACM 10, 8 (August 1967), 494-92.

Nievergelt, J., "On the Automatic Simplification of Computer Programs,"
Comm. ACM 8, 6 (June 1965), 366-370.

Prosser, R. T., "Applications of Boolean matrices to the analysis of flow
diagrams," Proc. Eastern Joint Computer Conf., Spartan Books, New York,
(December 1959), 133-138.

Ramamoorthy, C. V., "Analysis of Graphs by Connectivity Considerations,"
Jour. ACM 13, 2 (t.966), 211-222.

Redziejowski, R. R., "On Arithmetic Expressions and Trees,"
Comm. ACM 12, 2 (February 1969), 81-84.

Ryan, J. T., "A Direction-independent algorithm for determining the
foz ¢-'-rd and backward compute point for a term of subscript during
compilation, " The Computer Journal 9, 2 (August 1966), 157-160.

Schneck, P. B., "Automatic Recognition of Parallel and Vector Operations in
a Higher Level Language, " Proc. ACM National Conf. (1972), 772-779.

Schneck, P. B. and Angel, E., "A FORTRAN to FORTRAN Optimizing
Compiler," The Computer Journal 16, (Nov. 1973), 322-330.

Schneider, V., "On the Number of Registers Needed to EvaluateArithmetic Expression, " BIT 11, (1971).

Sethi, R. and Ullman, J. D., "The Generation of Optimal Code for Arith

Arithmetic Expressions, " Jour. ACM 17. 4 (October 1970), 715-728.

Yershov, A. P., "ALPHA - an automatic programming system of high
efficiency, " Jour. ACM 13, 1 (January 1966), 17-24.

300



Chapter 8

Fleiss, J. E. and Phillips, G.W., "A Statistics Gathering Package
for the JOVIAL Language, " Contract Report, Cortract Number
F30602-73-C-0062, RADC.

Knuth, D.E., "An Emperical Study of FORTRAN Programs", Software
Practice and Experience 1. 2 (April-June 1971). 105-133.

Melkanoff, M.A. and Presser, L., "Software Measurements and Their
Influence Upon Mach, e Language Design, " AFIPS Conf. Proc. S3CC 34,
(May 1969).. 733-737.

Chapter 11

Knuth, D. E., "An Exnperical Study of FORTRAN Programs, " Software
Practice and Ex.erience I, 2 (April-June 1971), 105-133.

301



APPENDIX 1

INSTRUMENTS USED TO GENERATE
COMPILER DEMAND PROFILES

As the term is used here, "instruments" are primarily counters

of the specific forms of language elements and the associated logic to detect

those forms. These instruments could hav. been installed in several

different points w-ithin the AED compiling syrtem: just afier the lexical

processing phase, a+. the parsing phase or at the code generation phase.

Our choice was the code generation phase since, at this point, most of

the bookkeeping for ldxical analysis and parsing is out of the way, the

semantics of the program have been determzied, and most importantly,

al of the significant processing passes through one major system module

(COMPILE) which can be instrumented in a simple manner.

Since the source program has at this point been transformed into an

intermediate representation, a few language elements such as parentheses

and parentheses nesting are absent and can Y.- longer be measured. Con-

versely, many other language elements become extremely simple to

measure, especially those which have fairly local context.

To see why this is so we must examine somewhat mrore closely the

form of the AED intermediate representation, which is a tree structure,

bearing in mind that this form though widely used is not a universal one.

The AED system module COMPILE is called within the hierarchy.

302



- MAIN

COMPILER
_CONTROL

TREE-
WALKER

F COMPILE[ 0
I _

I I

STATISTICS

GATHERER I
i_. - - _ _

The compiler control box represents the code generation phase.

The tree walker represents the ro. tines which systemnatically (recursively)

moves through tree structure representation, and calls COMPILE for each

node in the tree. The COMPILE module calls the instrumentational module

(the statistics gatherer), with appropriate parameters, each time it is

called, (once each time the tree walker passes a node). It is this node-

by-node processing wbich makes the co~llection of statistics on a local

context ba3is easy to implement. In addition, all relevant program logic

and variables for counters are maintained in the' statistics gathering

routine and require little additional suport froni the AED compiler.

After the return from the statistics gatherer, COMPILE then dispatches

control to nw %trous routines which actually emit code for the node being

processed.

303



Without going into excessive detail, we can present a useful

description of the AED tree stiucture format, node types, branches, and

4 the traversal scheme used by the tree walker. It is easiest to do this

throngh actual examples of iairly simple program constructions. Consider

the phrase A + B + C. The AED compiler builds an interval tree for this

irhrase. which may be revresented as follows:

A+B+C Legend:

A+B+-- 
- .. m inor pointer

+ left context pointer

"- C
+ C right context pointer

*/\
SA B major pointers

operator node

304



In the above diagram, the tree walker is brought to the lowest level

node of the subtree for A+B+C via a ninor pointer originating at some node

higher in the tree. This node is then passed to COMPILE which generates

code for 'A+Bl after first allowing the statistics gatherer to examine the

node and classify it. The variables 'A' and 'B' are pointed respe ctively

by the left and right context pointers of the '+' node. A return i3 made by

COMPILE to the tree walker which then takes the major Vointer to the

4 next '+' node. The bi-directional arrow indicates that thl s major )ointer

for the lower '+' matches with the left context pointer of the higher 1+'.

Another call is made to COMPILE (and subsequently to the statistics

gatherer and code is generated to add 'C' to 'A+B'. On return, the major

pointer for the uppc-: node is used to reach the node next in the logical

program sequence.

Consider the second example represented by the diagram below,

for the statement A = 0:

A=O

A

This rather simple subtree is reached via a minor pointer to the "=" node.

The statistics gatherer (reached via COMPILE) examines the left and right

context and then records an occurrence of an assignment statement.

As a third example, consider the statement

IF I EQL J THEN A = B ELSE A = C. This is reI resented by the following

tree:

305



IFIEQL3 THENA B ELSEA ZC

ELSE

IFI

A C

NIL

EQL

It B

This third eyample has four minor pointers which are used to

traverse the tree i& the fo1,-m-irig sequence: IF 1 , EQL, IF,, THEN I , =,

THEN2 . ELSE I , =, ELSE., where the subscript indicates the first or

second passage of the node, and absence of any subscript signifies the only

passage. The statistics gathere, in the course of the tree travereaI

collects counts for the IF-THEN-ELSE construction and its constituent

parts.

306



APPENDIX 2
TEST PROGRAMS USED TO GENERATE

COMPILER DEMAND PROFILES

1. Description of Tests

Section 2, elow, presents a .isting of the two test programs plus
all external data declaration files used by the two programs for use in

the dynanic corapiler testing effort, Listings of both the J3B and the

AED versions of the programs and data files are included.

The two groups of test files are listed in the following order in

Section 2:

File Name Te Data Files Referenced

Group 1 (J3B)
1. FILE N. KFNUP J3B program FILE NRBGNAV

2. FILE C. PNIIT J3B program FILE CPNOWN

FILE CNDDATA

FILE NRBMAST

FILE NRBAUX

FILE NRBGNAV
FILE CPNCONST

3. FILE CPNOWN J3B data declarations (No.ie)

4. FILE CNDDATA J3B data declarations (None)
5. FILE NRBMAST J3B data declarations (None)

6. FILE NRBAUX J3B data declarations (None)
7. FILE NRBGNAV J3B data declarations (None)

8. FILE CPNCONST J data declarations (None)

Group 2 (AED)
1. N. KFNUP AED AED program NRBGNAV AED

2. C. PNHIT AED AED program CPNOWN AED

CNDDATA AED
I NpRMAST AED

NRBAUX AED
NRBGNAV AED
GPNCONST AED

307



File Name Type Data Files Referenced

Group 2 (AIED) (continued)

3. CPNOWN AED AED data declarations (None)

4. CNDDATA AED AED data declarations (None)

5. NRBMAST AED AED data declarations (None)

6. 14RBAUX AED AED data declarations (None)

7. NRBGNAV AED AED data declarations (None)

8. CPNCONST AED AED data declarations (None)

The two programs (N. KFNUP and C. PNHIT) were chosen to illustrate

different types of compiler usage, as can be seen from a quick perusal of

the listings. In particular, the following features may be observed:

Program Eeaturev

N.KFNUP 1. Sort program

2. Heavy use of "FOR-loops"

3. Heavy use of "IF-statements"

C.PNHIT 1. Long program, including several remotely
in2erte , COMPOOL/INSERT iiles of data
declarations.

2. Heavy use of switches and GOTO's,

3. Heavy use of logical bit-operations with
masks (AND, OR, XOR, etc.)

All files have been carefully edited to prepare AED and J3B

versions of the cest programs which are as identical as possible. For

example, the phrase "ELSE BEGIN" now occurs on the same line in both

versions, whereas the original author of the J3B program had chosen to

insert the two words on separate lines, and the original author of the

AED version used a single line. Also, the same remarks and comments

occur in both versions in the same format.

308



2.Programs ; ,nd Data Files for J3 Version of Tests

FILE NKFNUP

START
COMPOOL (NRRGNaV) I

itI

I'POSITION UPDATE P'R0GRAM

DE RCNKPU(NKPSiNFGtX

SEGIN

ItDEFINITION OF FORMAL P4kA'mETEPoS

ARRAY NKFPMATx(IfH()) F " ICOVARIANCF MATOIX ARRAY"
ARRAY NKFKi~Ar'IX(38) F i"KALMAN GAIN ARRAY"

%to ~ ENTRY TO POSITION UPDATE PROGRAM o
of I

FOR NKFI (0 By 1 WHILE NKFI <= 1) " IX AND Y UPDATE",
BEGIN
NKFS -NKFCOLMN(NKFI)+NKFJ
NKFKGD = NKFP"A4TXcNKFS)+NKFRMATX
FOR NKFJ (NKFj 8JY 1 WHILE. NKFj <= NK?:STANO) I

B~EGIN "CALCULATE KALMAN4 GAIN"I
NKFS = NKFCLMN(NKFj)+NKFI;
NKFKGANX(NKFI-.NKFJ) =NKFP'4AIX(NKFS)/NKFK'j

IF NKFI 1 "KALMiAN GAIN FOP Y UPDATE"
NKFKGANX(1*0) =NVFPMATxC1)/NKF- GD ;

FOR NKFJ (NKFI,1 BY 1 WHIILE NKF.J <= KFSTANO)
14EGIN "1UPDATE COVARIANCE MATRIX"
NKFS =MKFCOLMN(NKFI)+NKFJI
FOR NKFI4 (NKFJ BY 1 WHILE NKFH <= NKFSTA' O)

BEGIN
NKF7 NKFCOLMN(NKFj*NKFH
NKFPMATX(NKFT) =N,(FPMATX(WKFT)-MiKF'(GANX

CN4KFINKFH)*NKFPMATX(NKFS) I
ENn

FOP NKF~J CNKFI BY I Wh;.F. NKFJ <= NKFSTANO)
ilEGIN "1UPDATE COL 1 (IQ ? OF"

"COVAPIA.'CE MAT"
NKF5 N'KFCOLMN(14KFI)*NKFJ I
NKFPMATX(N,FS) =NKFRMATX*NKFKGANX(NKFI+*IKFJ)I
FND I

IN.KI <> 0 3 "X UPDATE"
BEGIN "UPDATE COL 1 FOP Y' UPDAIE"l
1JKFPMATx(oi NrFPMATX(0)-NKFPAATX(1).NKKGiANX

(1.0)1
FOR NKFJ (2 BY 1 WHILE NKFJ <= NKFSTANO)

BEGIN
NKFPMATX(NKFJ) =NKFPMATX(N'KFJ)-1NKFtq3ANX

ENnI
NKFPMATx(1) NKFKd3ANX(I,0)*NKFkMATX I

* RFT JH'3

Fijn I
T FP'A

309



.....

FILE C9PNHIT

START
COtIPOOL CCPNOWN9

CND )A TA9
144894ASTs
NRBAUXI
NRBGNAV9
CPNCnNST);

REF PROC C.PNVACK (S "FIkST BYTE",9S "INO HYTES"1) 8 32
"PACKED"

REF PRflC C.PFXRCD (S "FIXED PT VARBL"9S '$NO. BYTER") I
4 0EF PROC C.PNHIT()

REGIN
"DEFINE THE SWITCH NUmHER BRANCH"
SWITCH CPNHRNCH=(

"1 03'1HITCOUNT9
oI VSLU9
H211SLU,
of33"SLU9
14:"'SLUl
of5:"tSLU,
$6"HITCOUNT9

8A:"ALTSELCT,
to flnSPSELCTv

"110:"STN' ODEt

1#11 :"FASTFwu,

'S 130: "E VESE9
114: 'IF AST RE Vs
"15:11HITCOUNT,
1#16:"ACCEPT9
"17:1"HEJECT9
18" AL TELEVY

"1IQ: "AUT OMAN,
"120: "LANOSEA,
"021 :"INSISEL,
"27?1INSIDIT9
0923:"INS2SEL,
"124: "TNS20IT9
"125 "DEAOSLCT9
"026,"ADDkH
"?27:"HI ICOUNTo
j1e:"HITCOUNTo

"291111NS IENSL 9
"030: $$1NS2EN8L,
'if31:,,H ITCOUNT)I

1'OEFINF ALT/LLEV ALT CAL MODE BR~ANCH"
SWITCH CPNAEBN2(

01O:"ACMOAND59
1 IVACMIANU29

"1 ?:"ACMIAND2,
ll 32"ACM3-,
"0 4"1ACM49
i5:11ACMOANDS)l

310



FILE COPNHIT

ANYHITS IFJ CPNHTTU)) 0 1
REFTURNI

ELSE REGIN $$OBTAIN THE NEXT HIT"
CPNT1aCPNHIT(CPNHIT(0)) I
CPNSWCHUCPNTI1
$$IS THE NEW STATUS OFF'@
IF CPNTIl < 0 1

111S TI*. HIT A POSITION SWITCH"l
IF CPNTI1 < -28
OR (CPNTI1 > -14 AND CPNTII <m -11)
OR CPNTI1 >x -5

CPNTII=-CPNTIII
E.LSE "IF NUT' IGNONF"I

bOTO HITCOUNT ;
"INOW BRANCH ON THE SWITCH NUMBER"
GOTO CPNHRNCH(CPNTIl)

FLYTO: "IF THE FLY TO REQUEST IS AN OAP... if

IF CMXTYPE(CPSXPTR) 6 1
GOTO HITCOUNT 2"IGNORE THE REQUEST"s

ELSE BEGIN "1TURN ON TmE ILY TO LIGHT"
CPNOUT13=CPNOUTl3 OR KMASK19
CPNFLYTO =1 ; "SET FLYTO FLAG"
GOTO ZEROCLOK I

ENDI
ALTSELCT 3 "'REVERSE HSL AND HK LIGHT STATuS"l

CONOUTl3=CPNOUT13 XOR X'00006000t I
CPNHSL=CPNOUT13 AND X1000060001 I "ISU HSL/HR FLAG"

GOTO ZEROCLOK I
SLU : SFT OESET INDICATED SLU STATUS "o

CPNSLU(CPNTI 1)=CPNSWCH I
GOTO HITCOUNT ;

DSPSELCT I "CYCLE THE LIGHT TEMPLATE"
CPNDIS=SHIFTLCCPNDIS,1)
IF CPNOIS ANI) KMASK15 I

CPNDIS =KMASK19 ;
IF CPNDIS ANn KMASK17 " 4IS THE NEW MODE NV"I

"#STOP THE BLINK TIMER"
CPNUCLOK =0 1

ELSE "RE-START THE BLINK TIMER"s
CPNL)CLOK = 1

CPNOUT14 =CCP"'OUT14 AND X'FFFFOFFFI) OR CPNI)IS
"LIGHT APPROPRIATE SEGMENT AND SET THE"l
"lmODE FLAG"
CPNDSLR 2SHTFTHCCP14DIS913) I
GOTO 7EROCLOK ;

STRMOUE I "lRFVERSE STEFH MODE LIGHTS AND FLAG"I
CPNOUT13 zCPNOU113 XOR X'OOOOOCOO' I

CT EOLICPNSTR8 z SHIFTR(CPNOIJ7U1 AND X'OOOOOCOO',11)

FASTFWD I "SET FWO/RLV RELEST FLAG"$
CPNFWrGRV =t 10 1
GOTO FWOI4VOFF

jFORWARD i CPNFWDRV x 1 I
G0TO VWDRVOFFI

R LEVERSE ! CP'JF1DRY -1 1

311



FILE CoPNHIT

GOTO FWOIVOFF I

FASTREV 3 CPmFWDRV x -10 1
FWDRVOFF I RIF THE NEW STATUS IS OFF* OR IF THE

XHAIR MODE yS jD,,
°

IF CPNSWCH < 0 Ok CPSID <> 0
CPNFWDHV a 0 I "REMOVE FwD/REV REQUEST FLAG"

GOTO ZEROCLOK I
ACCEPT oOTGNORE UNLESS ALTITUDE CALIRRATION"

"MODE IS 4"°

IF CPNACN x 4 $
HEGIN

"°SET ALT CAL COMPUTE FLAGAND PRFPARE
TO RECEIVE KALMAN VEQDICTS"
CPNACC 2 CPNACS
CPNACM = 5 ;
NKFARJTM = 0 3
fKFARJTA a 0 4

ENU L
GOTO HITCOUNT $

REJECT i "IGNOPE IF ALT CAL MODE IS So OTHERWISE"
"END ALT CAL"°

IF CPNACM = R
GOTO mITCOUNT I
ELSE siEGIN

CPNOUT14 x CPNOUTI4 AND X'FFF9FFFF' I
CPNOUT9 = CPNOUT9 Ok X'OFFFFFF' 4
CPNACM • 0 1
CPNHAC = 0 4

LND I
GOTO mITCOUNT 3

ALTELEV "BRANCH ON ALI CAL MODE"
GOTO CPNAEHN (CPNACM) I

ACN1ANO:2 "TURN OUT ELFV LIGHT9PULL HIGH ALT CAL"
"FLAG DOWN"
CPNOUT14 a CPNOUT14 AND KHMASK13"|

ACM4 S CPNHAC x 0 1
CPNACM x 3 ;
IF NCRAL1OK = 0 "ARE THE RADAR ALTIMETERS DOWN"

"IS THE FL UNAVAILABLE"
IF CPFLROt = 0 1

BEGIN "1TENMINATE ALT CAL"
CPNOUT9 = CPNOUT9 OR X'OOFFFFFF# I
CPNOUT14 = CPNOUT14 AND KRMASK14 I
CPNACM = 0

END I
ELSE BEGIN "SET HIGH ALT CAL FLAG AND ZERO

THE DELTA BUFFER"
CPNHAC x 1
CPNDELTA 0
ENn ;

GOTO HITCOUNT I
ACM3 I **RECOPD WHICH NAV SYSTEM VAS USED FOR"

"ALT CAL"
CPNACc z CPNNS
CvNOU'l= CPNUoU14 OR KMASK14 I "ADVANCE TO MODE 4"

322



FILE COPNHIT

CPNAcm a 4
ACMOANDS I AOT0 I4IrCOUN7
AMTMAN 3 "REVLRS. LIGHTS AND MOF(J. INITIALIZE"

"4SYSTFMt REUUEST"B
CONOUTl4zCPNnUT14 XOH X'OCOOOOOO' I
CPNMANHftSHIFTR(CPN0UTI4 AND A'OCUOOOOO',t7) I
CPNNNSR=NCPRNV
GoTo mITCOUNT I

LANDSEA : 14REVERSE LAND/SEA MODE"
CPN4LA840H a CPNLANOH XUR X060000000t I
GOTO HITCOLINT I

INSISEL : "REQUFST INS101
CPNNMS =4 3
GOTO HITCOUNT I

INSIOIT I "IF IN MANUAL MODEv CYCLE LIGHT AiND
TENTATIVE HEOUEST. RESET DISPLAY CLOCK
Tn ALLOW ONE SECONU MODE SET DELAY"1
IF CPNMAN =0

tiEGIN
CPNMD)ITZSHIFTL(CPNADIT,1);
IF CPNMUIT AND KMASK?7 I

CPN'401T=KMASK31I3
CPNOUT4CPNOUT4 ANIl XIFFFFFSFF#

OH SHIFTL(CPN4DIT.S)
CPNCLOCK-'13 I

ENOI)
GOTO HITCOUNT 3

INS2SEL : CPNNMS a2 ;
GOTO HITCOUNT

INS20IT : IF CPNMAN:O
BEGIN

CPNADIT xS~iIFTL(C.FNADIT*1) I
IF CPNADIT AND KMASK27 I

CPP;ADIT =KMASK31
CPNOUTO =CPNOUTO AND XIF8FFFFFFI

OH SHIFTL(CPNADIT24)
CP'NCLOCK = 13 3

END I

GOTO HITCOU1NT
oEAOSLCT ',"SET RE'jUEST FLAG To DEAD RECKON"1

CPNNM.S 2 1 1
GOTO HITCOUNT I

ADOROR 3 "RVVERSE Dk/AD REQUE.ST FLAG"
CPNDIDSn CPNuflS8 XON X0000000031 I
GOTO HITCOUNT ;

INSlEN6L 3 "SET INS ENARLE FLAG TO APPROIPRIATE"l
"VALUE"
CPNINSI = CI'NSWCPI
GnTO HITCOUNT I

INS2ENL 3 CPNINS2 = CPNSWCH ;
GnTO HTTCou?,jr
~I"ALL HRANCHES, RETUkN HERE"l

ZER(OCLOK I is SET THE DISP'LAY CLOCK TO ZERO Of
CPNCLOCK =0 1

313



FILE CNDUATA

ARRAY CPNHIT .7, S 31 3 "THE NAV PROGR&M HIT TARLE"
ITEm CPSID • S ill "ID MODE FLAG
ITEM CPFLWON S 311 "'OPWAQD LOOKING RADAR ON
ITEM CMALTCAL S 311 "NEXT VEST. AN ACT CAL
ITEM CPKALICL S 311 I1KB ALT CAL OEQUEST
ITEM CPKTNFLV F I 1K1 TERRAIN ELEVATION "
ITEM CPSNUIP S 31; $'POSITION UPUAT . IN PROGRESS
ITEK CmCSTP S 311 "STEER POINT FLAG
ITE CMCSPID .rf 31; "SrEER POINT TYPE o,
ITE" CMCSPSN S 31 1 "SqTEER PT. SEo. NO."

ITEM CAFFDTF P 32o1 "FLT )R ENGD/AUTO TF FLAG
ITEM CAFSMOnF H 3?1 "FLIGHT UIRECTOR MODE
ARRAY CPHI'D(7) A4 3; °SCD ARRAY o,
ARRAY CMXLAT (7) F
ARRAY CMXLON, (7) F I
ARRAY C4XELEV (7) F I
ARRAY CMXJUAL (7) S 313
ARRAY CNXSQ40 (7) S 313
ARRAY CmXTYPF (7 S 31;
ITEM, CPSXPTR S 31; "POINTL. INTO CMXHAIR
ITM'M NCRALTnK S 31; "RADAR ALTITUDE OK "t

ITEM NCRALT F 1 "NAI)AH ALTITUDLqFEET o"
ITEM NCALTP F I "PRIME ALTITUOEFT."
ITEM NSITG F I "TIME TO OESTINATIONSEC"
ITEM NSRNG F I "RANGE TO DESTINATION"
ITEM NLAT F I "DISPLAY LATRA'IANS"
ITEM NLONG F '"DISPLAY LONG, RADIANS"
ITEM NVGND F I "DISPLAY GND SPEED.FTiSFC"
ITEM NHGT F I 0oGROUNO TRACKoRADIANS"
ITFM NTHEAD F I "TRUE HEADINGORADIANSo'

ITEM NWHEAD F "WIND HEAOING RADIANS"1
ITEM NWIND F I "WIND SPEF.{' FT/SEC "

ITEM NHOfISP F "HEIGHT AF4OVE SEA LEVELFT"
ITEM NflRMOOF S 31: "DEAD RECKON MODE "

ITEM NCDOPCUT S 313 "DOPPLER CUT-oUT FLAG ",
ITEM NCAALCOT S 311 'INS2 UP"
ITEM NCMALCPT S 311 "INSI UP"
ITEM NVFSTRT S 311 "DEAD RECKON RESTART FLAG"

ITEM NKFARJTH S 31; "INS1 ALT CAL REJECT FLAG"
ITEM NKFARJTA S 311 1INS2 ALT CAL REJECT FLAG"
ITEM NCAVAILM B 321 "1INSI OIT AVAILABLE FLAG"
ITEM NCAVAILA 8 32; "INS2 DIT AVAILABLE FLAG "

ITEM NCmDIT R 323
ITEM NCADIT B 321
ITE': NCPRNV s Ib "PRIME SYSTEM FLAG"

GOTO ANYITS I
END ;

END I "OF HIT PROCEDURE DEFINITION"

TERM

314



FILE CPNOWN

ITEMs CPN'4T!MF S 31 1*"WISSION TIME IN MAJOP FRAMES's
ITFm CptITImR H 32 " #RIT mAUv- FOR MISSION TJME "1
ITEM CPNCLOCK S 31 $ "nISPLAY CLOCK--A IAOD 16 COUNTER$$
ITEM CPNCLOKR Hi 32 1 "PIT NAME FOR THE DISPLAY CLOCK"
ITEM CPNHSL 8 32 9 '1HR/HSL FLAG$$
ITEM4 CPNOCLnK S 31 1 "NISPLAY SELECT 8LItJK TIMER"
ITEM cp~flI3 h4 32 ;1 "DISPLAY SELECT TEMPLATE"
ITEM4 CPNACM S 31 1I "ALT CAL M~OE o
ITEM CPNMUTT H4 32 1 "INSI DIT RF.UUEST FLAG,"
ITEM CP'JAUIT H4 32 1 "rINS2 OTT REIOUEST FLA6,"
ITEM4 CPS4TI1 !; 31 1"TE.MPI"
ITEMl CPN~Tk41 8 32 ;"TE.MP11"
ITEM CPNTFI& F I "*TEMPIt
ITE"4 CPNT12 S 31 1 "TLMPP?"
ITEM CPNT$4a 8 32 1 "TE1MP?"
ITEM CPNTF? F ;"TEMP76"
I'VA'RIASLFS LnCAL To C.PNHIT
ITEM CPNSwCH S 31SSIACTIVE HIT SWITCH NO./STATUS"
ITEM CPf"ACS S 311"1NAV SYSTEM USPO FOR ALT CAL"
"DATA LOCAL TO C.PNOISOOO
ITEM4 CPNiPPI)nx S 31;"PPESL1T POSITION LIATA OK FLAG
ITEM CPNSFLN sj 31;1"iFLECIEJ Flo SEQ NO.
ITEM CPNUPR.1 N 320"UPUATC WLJECT LI~hT TEMPLATE
17EM CPR14Ac,1 S 311;"SFLECTEO POINT MAGWHEFL TIMFN
ITEM CPMSLTYP 8 32;"SELECTED POINT TYPE
ITEM4 CPNTNEIV F ;"TERRAIN ELEV.9FEET
ITEM CP&ISELOmI F P'SELFCTEn POINT LONG sRAnIANS
17FM4 CPNSELAT F 1"SELECTED 1 9INT LAT 9WAI)IANS
ITEM CPNSLELV F I"SFLECTEO PO:NT ELEV*FEET
ITEM4 CPNSTRNn s 310"STFE.H POINT SFQ NO.
ITT# CPNMACG? S 311"STFEk PtOINT MAGWHIEEL TIMER
LTzm cpNSTTYP S 31;"1STEER POINT TYPE
ARRAY CPNSLPOS(1) F11"SFLFCTE) POINT POSITION
ARRAY CPNTAP (1) Fs"TTME AND RANGE TO SELECTED PT
ARRAY CPNMCOnE(9) 8 32:

"1THE FOLLOWIKIG ARE 8 32 NAMES FOR THE AB4OVE
OUTPUTS To THE PANEL"

ITEMd CPNOUTO h 32 1
ITEM CPNOUT; 8 32
ITEM CPNOUT2 8 32 1
ITEM CPNOUT'1 8 32 1
ITEM CPNOUT4 8 32 1
ITEM CPNOUTS 84 32 A
ITF'4 CPNOUT6 5 32 1
ITEM CPNOUT7 B 32 ;
htEm CPNOUTM 8 32 1
ITEM CPNOUTQ B 32 1
ITEM CPNOUT~n 8 321
ITEM CPAIOUTI1 B 32 ;
ITEM CPNOUTI? 8 32 1

4ITEM CPNnUT13 8 32 ;
jITEM CPNOUT14 8 32 ;

ITEM CPNOtJTIS 81 .2 1
"THE FOLLOWING IS AN APRAY NAME FOR THE
OUTPUT Tfl THF P,&NELSIS

315



FILE CFNOWN

*APPAY CPPIOUTA(IS) 8 3 2 "i

"THE F0I.L OWING VARIBLES ARE REFERENCED 13Y OTHER PflOGRAMS"
ITEM CpNST~rR S 311 "STEER MODE 0--TRK 1--D!R of
ITEM CpNSToR d 32; $'IT NAME FOR STEER MODE I
ITEM CP?,FWDQV S 318 "FORWAR4D REVERSE REQUEST of
ITEM CPNROLL S 31; "FORWANO REVERSE COMMAND I
ITEm CPMACC S 311 "IALT CAL COMPUTE t
ITEM4 CPNHAC S 311 "HI,:i ALT CAL REQUEST to
ITEM CPNMAN S 31; "AUTO/MAN MODE FLAG t
ITEM CPNMANA e 321 "OHIT NAME FOR AUTO/MAN FLAG of

ITEM CPNLAN) S 31; "LANO/SEA FLAG to
ITEM CPNLANlR A 321 "HIT NAME FOR LEND/SEA FLAG of

IT~m CPNNP4S 5 311 "NAY SYSTEM SELECT t
ITEM CPNNMSR R 32; "HIT NAME FOR NNIS

'ITEM CPNDOS S ill "ODR/ALDDR REQUEST
ITEM CPNDDSR Ft 321 "HIT NAME FOR O)R/AnnQ '

ITI" CONINS1 S 311 "OINSI ENABLE/DISARLE
ITEM CPNINSZ 5 311 "INS2 ENARLE/DISAKLE
ITE% CP'JSLUA S 31; "OAFT
ITEM CPHSLIUL -1 31* "1LEFT PYLON
ITEM CPNSLIUR S 31; "IRIGHT PYLON SLU ENARLE"
ITEM CPNSLkJT S 31s OfINTHM)
ITEM CPN.SLUF S 31* 16FORWARD
ITEM CPNDELTA F I "ALT CAL DELTA RUFFER
ARRAY CPNSLU(S) 5 31 1 "1THIS IS THE SLU STATUS TABLE.

IT IS 'OVERLAYED' WI1TH THE SLU
STATUS WnODS AgOVE"l

=ITEMA CPNFLYTO S 311 "FLY TO FLAG
ITEM CPNOSL s 31; "D0ISPALY SELECT FLAG
ITEM CPNDSLR R 321 "HIT NAME FOR CPNOS2
"OVFRLAY DECLARATIONS FOR CPNOWN"1
OVERLAY CPPNSTEFR &CPNSTPW4I

OVERLAYf CPPIMAN MCPNMAIA I
OVERLAY CPNLANO UCPNLANUH
OVERLAY CP~fJf4S UCPNNMSH I

OVERLAY CRAIDOS WCPNDOS'I
OVERLAY CPNSLU %CPNSLUA,

CPNSLUL,
CPN4SLURO
CPNSLU19
CPNSLUFI

OVERLAY CPNmTTME ZCPNTIMH I
OVERLAY CPpCLOCK MCPNCLO(B;
OVERLAY CPNTI1 XCPNTF1 zCPNTBI
OVERLAY CPmTI2 UCPNTB2 =CPNTF2 I
OVERLAY CPNW,)SL uCPNDSLB

316



FILE NRFOMAST

ITcEM NILATm F ; I"LATITUDE(RADIANS)"I
ITF.4 NILONM F I*LONG IT UOE(RAO IANS)"
ITEM NIALTM F I "IALTITUDE(FEET)I"
ITEM NIVNM F I "OVELOCIIY NORTH(F'/SFC)"l
ITEM NTVEN F ; "'VELOCITY EASICET/SEC)"l
ITEM4 NINDOT4 F 3 "4ALTITUDE "'ATE(FT/SEC"I
ITEM NIPSITM F I tlTRUE IIEADING(,PAOIANS)'
ITEM NTPSIfmk F I 01MAGNETIC HEAUING(RAOIANS)I"
ITEM NIGRAVv F I "LOCAL GRAVITY(FT/SEC*2)"
ITEM MCMPITC F I "OPITCHCWADIANS"'l
ITEM4 NCMROLL F I "lROLL(kkOIANS)"f
ITEMs NC4YAW F 4 10YAW(RADIANS)"
ITEM NCMPUOT F I "1P CH~ IATE(RAL)/SEC)"I
ITEM NCMRDOT F 3 "1ROLL RATE(RAD/SEC)I"
ITEM NCmYDOT F ; "YAW HATE(RAD/SEC)"I

It NAVIGATION DATA COMMON TO MASTER AND AUXILIARY o

ITEM NIALFAa F " 4WANDER A-WrLE(RAflIANS)"
ITEM NIVXM F ; "AX PLATFORM VELOCITYCFT/SEC)"I
ITEM NIVYM F 3 11Y PLATFORM VELOCITY(FT/SEC)"l
VTE'l NIVZM F 1 "12 PLATFORM~ VLLOCITY(FT/SkC)"l
ITEM IJCMAX F I "1X ACCELFRnflETERCFT/SEC/FRAMF)ll
ITEM4 NCMAY F 3 11Y ACCELEROMETER (FT/SEC/FRAMF)"I
ITEM NCMAZ F ; $Z ACCELEROMETER (FT/SEC/FNAME)"l
ITEM NInVAXm F I "#DELTA X VELOCiTY(FT/sEC/FRA1'E)"I
ITEM NInVAYM F 3 "'DELTA Y VELOCITY(FT/SFC/FRA14E)II
ITEM NIflVA'.m F I "$DELTA Z VELOCITYCFT/SEC/FRAME)16

k-ITEM NIC12M F I "DIRECTION COSINE C(192)"
ITEM NIC2ZM F I "DIRECTION COSINE C(292)"
ITEM NI(1?2M F ; "DIRECTION COSINE C(392)"
ITEM NTC1311 F ; "1DIRECTION COSINE C00,)"
ITEM NTC23M F 3 'DIRECTION COSINE C(203'"
ITEM NIC33M F 3 "DIRECTION COSINE C!393)"
ITEM NTC12flm F 3 "1DERIVATIVE OF C(192)"
ITEM NIC22DH F I "$DERIVATIVE OF C(2Z.2)"
ITEM NIC3?O'4 F I "O(ERIVATIVF OF C(392)"
ITEM NICI3D'4 F 3 "DERIVATIVE OF C(193)"
ITEM NIC23ov F ; "DERIVATIVE OF C(20)11
ITEM NIC33D'M F I "1DERIVATIVE OF C(393)"
ITEM NIOMEGxm F " oEARTH RATE AHOOT XfRAD/SEC)"I
ITEM NIOMEGYM F I "EARTH RATE ABOUT YCPA'J/SEC)"I
ITEM NIOMEG7M F ; "EARTH RATE AHOUT Z(RALU/SEC),"
ITEM NIRI4OXt" F ; "CRAFT RATE AFJOUT X(RAEP/SEc)"l
ITEM NIRHOYM F I"CRAFT RATE ABOUT YCRAD/SEC)"l
ITEM NTPRXM F I"PLATFORM RATE ABOUT X(PAO/SEC)"
ITEM NIPRIM F 3 "1PIATFOR4 RATE AFIOUV Y(RAD/CSFC)"S
ITEM NTAXCII F I "CORRECTED X ACCEL(FT/SEC/FRAME)"l
ITEM NIAYCM F I "ICORRECT'D Y ACCFL(FT/SFC/FAMF.)"l
ITEM NIAZCM F I ffCORRECTVD Z ACCEL(FT/SEC/FRAME)"I
ITEM NTDAXCM F I "4X ACCEL NOISE EST(FT/SEC/FRAME)"I

ITEM NInAYCm F I "1Y ACCEL NOISE EST(FT/SEC/FRAME)"l

of KALMAN FILTER DATA o

317



FILE NR9MAST

ITEM NKFPRJTM F I 'POSITION FIX REJECT FLAG"
ARRAY NAINS4 50) F"
ITE'4 NKPo1om F "COVARIANCE ELEMENT P(191)"
ITEM NKPOZOJM F I "COVARIANCE ELEMENT P(:.91)"
ARRAY NXFPMATM(189)F I "INS I COVARIANCE MATRIX"
ARRAY tJKXHATgi(IR) F ; "INS I STATE VECTOR"
ARRAY NKYMSVM(4) F 'INS I M*.ASUREMENT VECTOP ,

318

L._ _ _ _ _ _ _



FILE NHRAUX

ITCM NILATA F I "LATITUDF(IEAOIANS)lf
ITF'4 NTLONA F* I "LONGITUDE(RAOIANS)I"
ITE'M NIALTA F I "IAL lITUDE (FEET)tl
ITEM' N!VNA F ; 14VFLOCITY NflRTHCFT/SEC)"l
ITEM4 NTVEA F I @'VELOCITY EAST(FT/SEC)"f
ITE'M NyHDOTA F I "ALTITUDE HATE(FTiSEC)"l
ITEMl NiPSITA F I "TRWUE HEADING(RAOIAANS)I
ITEM NIPSIMA F I"$MAGNETIC HFADINGURADIANS)"I
ITE'4 NIIRAVA F I O'LOCAl GRAVITY(FT/SEC**)6
ITEM NCAPITCH F ; *,PTTCH(WADlA~b)ll
ITEM~ NCAROLL F ; "ROLL(kAPIANS)"
ITEM NCAYAW F I "IYAW (RAD)IANS)"I
ITEu NCAPOOT F ; "lPITCH RATE(RAD/SEC)"O
ITEM. NCARDnT F ; "ROLL HATE (RAL)/SEC)"I
ITEM. NCAYOOT F I 4"YAW RATE(PAD/SEC)"I

"1 NAVIGATION~ DATA COMMON TO MASTER AND AUXILIARY '

ITEM NTALFAA F "NOANDER ANGLECHADIANS)"I
ITE'. NTVXA F I 4'X PLATFORM VELOCITY(FT/SEC)"t
ITEM NTVYA F ; "1Y PLATFORM VELOCITYCFT/SEC)"I
ITEMq NIVZA F ; 19Z PLATFORM VELOCITY(FT/SEC)lf
ITF'i NCAAX F I "IX ACCLLEH(nMFTEH(FT/SEC/FRAMF)fl
ITEm~ NCAAY F ;11"Y ACCELEHAP4ETER(FT/SEC/FWAME)'S
ITEM~ NCAAZ F ; 11Z ACCELEROMETER(FT/SEC/FRAMF)"I
ITE'M NIfIVAXa F "DE0FLTA X VELOCITY(FT/SEC/FAmE)s'
ITEM NTnVAYA F "DE10LTA Y VFLOCITY(FT/SEC/FRAmE)$l
ITEM NIDVAZA F I1 "DELTA Z VELOCITY(FT/SEC/FRAmE)IO
ITEM NIcI2A F ; "DINECTION COSINE C0912)"

*ITEM NTC22A F ; "DIR1ECTION COSINE C(292)"
ITFM NIC32A F " #DIRECTION COSINE CC39?)'
ITEM Nrcl3A F I "DIRHECTION COSINE C(193)"
ITEM NIC23A F ; "IDIHECTION COSINE C(2#3)"
ITEM NTC33A F '*iq,.-..TION COSINE C(393)"
ITEM~ NIC120A F ;"IDFRIVATIVE OF C(192)"
ITEM NIC22nA F I "IDFRIVATIVF OF C(292)"
ITEM NIC32DA F ; "tDERIVATIVE OF C(392)"
ITEM 44Ic13DA F I $'DERIVATIVE OF C(193)"
ITEM NTC?3nA F I "D0ERIVATIVE OF C(293)"
ITEMi NTC33flA F ; "DEFRIVATIVE OF C(393)"
ITEM NTOMLGXA F " 1EARTH RATE ABOUT X(RAD/SEC)",
ITEM NTOmEGYA F " $EARTH RATF ABOUT Y(QAU/SEC)"I
ITEM NTomEtZA F S "1EARTH RATE ABOUT Z(RAD/SEC)"o
ITEM. NTRHOXA F ; "CRAFT RATF ABOUT A(RAD/SEC)"t
ITEM NTRHOVA F I "fCRAFT RATE ABOUT YCRAO)/SECJ"l

*ITEM NTPPXA F I "PLATFORM PATL AROUT X(wAD/SEC)"l
ITEM NIPPYA F I "PLATFORM PATE A'90UT Y(RAD/SEFC)"l
ITEM NTAXCA F I "CORIIECTFD X ACCFL(FT/SEC/FPAME)"I
ITFm NTAYCA F ; "C('RPECTED Y ACCFL(FT/SFC/FRA,4E)",
ITEM NIAZCA F I "CORRECTED Z ACCEL(FT/SEC/FRAmE)",
ITEM NTDAXCA F ; "tX ACCEL NOISE FST(FT/SE.C/FRAME)"I
ITFM NIDAYCA - ; "1Y ACCEL NOISE EST(FT/SEC/FPAME)"l
!TEM NTnAZCA F 1 "Z7 ACCEL HIAS EST(FT/5EC/FkAm.E)",

of KALMAN FILTER DATA

319



I

FILE NROAUX

eOt

ITEM NKFPRJTA F.1 oPOSITION FIX REJECT FLAG"
ARRAY NAINSA( 50) F I
ITEM NKPOI|A F ; *COVARIANCE ELEMENT P(1,1)"
ITEM NKPO201A F ; "COVARIANCF ELEMENT P(2oI)"
ARRAY NKFPMATA(189)F I ooCOVARIANCE MATRIX ARRAY"
ARRAY NKXHATA(19) V I '$STATE VECTOR o0
ARRAY NKYMSVA(4) F I 1OMEASUREMENT VECTOR"

32

I

320



FILE NNRGNAV

ITEM NSCFTMP2 F I 'EPOARY ST70RAGE"

ITEM4 NKFTMP3 F I "1TEMPORAFY STOW4AGE"

ITEM POX!FNDSET S .31 1 "ONAV TABLE TA INDEX"

ITEM NKFJ S 31 1 "LOOP INDEX"

ITEM4 NreP(" S 3 1 "POSI IONDFXTP LG

ITEM NKFI S 31 1 "LOOP INDEX"I

1'TFM NKVFS S 31 1 tISUBSCHIPT",

ITEM NKFT S 31 1 "1SURSCRIPT"1

ITFM NKFKGl F I "IDEt4OMIN!T nF KALMAN GAIN"

ITEM NKFSTANO S 31 1 "$ELEMENTS IN STATF VECTOR"

"LESS 1"
ITEM NKFRATX F 1 POSITION MEASUREMENT" A

ITEMNKFRATX I "NOISE (rT**2)"

ITEM NICFAN F ; "IJORTH COMPONENT OF POS'f
"IERROq (FT)"1

ITEM NKFAE F " EAST COKPONENT OF P05"
"IERROP (FT)"1

ITEM NCFEX F I "6X TEPt4 IN P05 TEST"

ITEM NKFEY F I IYTIMIJ O ET
ITEM Nr.PRIME S 31 9 "#PRHLMZ UATA FL.AGS.

ITEM CSNiPDN F I "oNORTH POS ERRORCFT)"I

ITEM CSNPUE F I "$EAST POS ERRIOR(Ft)"

iTEM CLATPF $#PRIME LATITUU)F(RADIANS)"I
ITEM NCILAP F I"PRIME LONlGITUF'(RADIANS)"l

ITEM NLATC F I "OVERFLY CHECKPOINT"
"'LATITUUE CHAD)'I

ITEM hI.ONC F $$"OVERFLY CHECKPOINT"
"LONGITUDE (RAO)"I

ITEM CMFPUUAL S 31 $$"CHECKPOINT QUALITY INDEFX"

ITEM mnfALT F I "$DEAD RECKONING' ALtijTUDE"l

ARRAY hKFKGAINCS
8 )F 0 KALMAN GAIN M4ATRIX"i

ARRAY N~vCOLMN( is%) S 31 1 ',SYmmETRIC MATRIX POINTERS"

ARRAY KPPMATX C 2)E I "POSIUON NOISE(FTt41?)"l

ARRAY NXINITP C IA)F I "ZINIT VALUJE OF COV flTRIX"l

ITFM4 'NTNE F I "1POMTION IEST C('NST'4

ITEM KEPADIUS F S "EARTH HAD AT EQUATO'4CFT)"I

ITEM KUIELTAT F I "6FkAME TImECSEC)"

ITEM K(.QAV0 F I "GRAVITATIONAL CONSTANT"t

ITEM KrGPAVI F i "&6RAVITATInNAL CONSTANT"'

ITEM KGRAV2 F i "GRAVITATIONAL CONSTANT"$

ITEM KELPTCTV F i "EARTH ELLIPTICITY "o

ITEM K2FORE F t fl?*KELPTCTY/KE"ADIWUl"

ITEM KJORE F "1I/KENAQIUS"O

ITEM KFARIHR F i "lEAR7H RATECRA()/SEC)"

iTEM KNKl F I "INjERTIAL CONSTANT",

ITEM KNK2 F I "ItNERTIAL CONSTANT"

ITEM KnNE F I "0ONE"1

I 321



FILE CPNCNST

CONSTANT CPk'K1 F3 57?958! ; bEGPEES/RADIAN"
CONSTANT CPNKa FU.I921 I $KNOTS/(FT/SEC) H

CONSTANT KmASKO 8 32 = X1800000001
CONSTANT KMASKI B 32 x X9400000001
CONSTANT KMASK? 6 32 = X12000OOOOO
CONSTANT KMASK3 8 32 = X1000n00004
CONSTANT KMASK4 B 32 = AU080000001
CONSTANT KMASK5 B 12 x X104000000 t

CONSTANT K VSK6 B 32 u X1020000000 I
CONSTANT KMASK7 8 32 = x'U1OflOOOO
CONSTANT KMASKR B 32 = X#008000001
CONSTANT KMASK4 8 32 = X*400000'
CONSTANT KMASK10 6 32 = X00200000
CONSTANT KMASKl| 8 32 = X0010O00oI
CONSTANT KMASK12 B 32 = X1000800001
CONSTANT KUASK13 8 32 = X o000400009
CONSTANT KMASK14 B 32 = X6000200001
CONSTANT KMASKIS 8 32 = X#000100001
CONSTANT KMASK16 6 32 = X#O000800ot
CONSTANT KMASKI7 8 32 = Al0C004000t
CONSTANT KNASKJS 6 32 = X1000020004
CONSTANT KMASK19 8 32 = Xoonoloot
CONSTANT KMASK20 B 32 X10000O8001
CONSTANT KMASK21 8 32 X9000004001
CONSTANT KMASK22 8 32 = X'OOO002O
CONSTANT KMASK23 8 32 = XfOOOOU1Oo
CONSTANT KMASK?4 a 3? = X1OOOOO$U6
CONSTANT KMASK25 8 32 X00000040 t

CONiSTANT KMASK26 B 12 X900000020 t

CONSTANT KVASK?T 8 32 = X1000000101
CONSTANT KAASK2H 6 32 X0000000a t

CONSTANT KMASK29 i 32 = X900000004
CONSTANT KMASK30 8 32 = X#000000021
CONSTANT K04ASK31 8 32 = X$O0000001o
CONSTANT KRMASKO 8 32 = A7FFFFFFFO
CONSTANT KRVASK B 32 z XORFFFFFFF1
CONSTANT KRMASK? B 32 = XOFFFFFrF.
CONSTA1T KR4ASK3 B 32 = X'EFFFFFFF I
CONSTANT KR44ASK4 9 32 = XIFTFFFFFFI
CONSTANT KRMASKS B 32 = XtFBFFFFFFt
CONSTANT KR'4ASK6 8 32 = XtFDFFFFFFO
CONSTANT KRmASK? B 32 = X#-EFFFFFFI
CONSTANT KRMASK8 8 32 = X'FiTFFFFF' I
CONSTANT KRASKQ B 32 = XIFFbFFFFF I
CONSTANT KR*AASKIO 8 32 = XIFFOFFFFFi
CONSTANT KPM#ASKI 8 32 = XIFFEFFFFF
CONSTANI KPMASK12 8 32 = X'FFF7FFFFO
CONSTANT KR4ASK13 8 32 z A'FFFPFFFF'
CONSTANT KRMASK)4 B 32 z AIFFFOFFFF'
CONSTANT KR4'ASK15 8 32 = XIFFFFFFFF.
CONSTANT KPVASKI4 8 32 = X'FFFFTFFFf
CONSTANT KRMASKI7 H 12 = XFFFFfFFF
CONSTANT KPMASKI8 B 32 = XtFFFFDFFF'

CONSTANT KR'ASK19 0 32 = XIFFFFEFFVI
CONSTANT KRMASK20 8 32 r XIFFFFF7FFt

322



FILE CPNCONST

CONSTANT K4 ,ASK21 B 32 a XIFFFFFUFFO
CONSTANT KPMASK22 E 32 a XOFFFFFOFF'
CONSTANT KPMASK23 8 32 x XtFFFFEFFO

CONSTANT KRMASK24 l 32 a XFFFFFFTFI
CONSTANT KUASK?5 8 3? • XIFFFFFFBFt
CONSTANT KRUASK26 B 32 m X$FFFFFFDFI
CONSTANT KPMASK27 B 32 = XFFFFFEF
CONSTANT KkMASK28 6 32 = XIFFFFFFF71
CONSTANT KRMASK29 8 32 z XIFFFFFFFFB
CONSTANT KRMASK30 8 32 = XtFFFFFFFO'
CONSTANT KPMASK31 6 32 a X'FFF FFFEI

323

~1

IL _ _



3. Programis and Data Files for AEZD Version of Tests

N.KFNUP AZO

*INSERT NkliGNAVI

POSITION UPDATE PROGRAM

DEFINE PROCEDURE N.KFNUP(NKFPMATXNKFKGANX)

DEFINITION OF FORMAL PARAMETERS I

WhRE QEAL ARRAY NKFPMATX 4 0. COVARIANCE MATRIX ARRAY I
REAL APRAY NKFKGANX .. KALMAN GAIN ARRAY /

ENTRY TO POSITION IJPDAfE PROGRAM /

TO;HE BEGIN
FflR NKFI = O'STEP 1 WHILE NKFI <= I *.. X AND Y UPDATE I
Do IIEGIN

NKFS = NKFCOLMNCNKFI)*NKFI
NKFKGD x NKFPMArX(N(FS).NKFR,4ATX
FOR NKF~j = NKFI STEP 1 WHTLF NKFJ <= NKFSTANO
DO BEGlIN oe. CALCULATE KALMAN GAIN I

NKFS = NKFCOLMN(NKFJI.NKFII
NKFKGANX(NKFI+NKFJ) = NKFPMATX(NKFS)/NKFKGD;
END ;

IF NKFI == 1 ... KALMAN GAIN FOR Y UPOATE /
THEN NKFKG;ANX(1+0) = NKFPMATX(1)/NKFKGDI
FOR NKFJ = NKFI.1 STEP 1 WHILE NKuFJ <= NKFSTANU
DO B3EGIN ..* UPDATE COVARIANCE MATRIX /

NKFS =NKFCOLMN(NKFI).NKFJ
FOR NKFH = NKFJ STEP 1 WHILE NKFH <= NKFSTANO
DO BE.GIN

NKFT =NP.FCOLMN(NKFJ)*N(FH I
NKFPMATX(NKFT) = NKFPOiATX(NKFT)-NKFKGANX
(NKFINKFH)*NKFPMATX(NKFS)

ENI) I
ENn i

FOR NKF.I 2 NKFI STEP I WHILE. NKFJ <= FMKFSTANO
DO HEnIN ... UPDATE COL I Ow 2 OF

COVAkTANCE MAT /
NKFS = NKFCOLMN(NKFI)+NKFJ;
NKFPMATA(NKFS) = NKFRMATXON(FKGAN~X(NKFI+NKFJ)I
ENn

IF NKFI 0 .. X UFDATE /
1HEN BEGIN .9 UPDATE C01 1 FOP Y UPDATE /

NKFPMAIX(0) =NKFPMATX(0)-NKFPMATX(1)*NKFKGANX
(1+0)

FOR NKFJ = 2 STEP 1 WHILE NKFJ <= NKFSTANO
00 REGI:A

N.(FPMATXCNKFJ) =NKFPMATX(NKFJ)-NKFKGANX
1. NP.FJ) ONKF PMATX (1)

NKFPMATX(l) 2NKFKGANX(1*0)*NKFR4ATX

ENn i
END S

G0~ Pr.TI £nk-

ENO I
END FuI

324



I 'C.PNHIT LED

BEG IN

*INSERT CNOI)ATAI
, INSERT NRBMAST I
.INSERT NRPAUXI
.INSrRT NRBGNAV
SINSERT CPNCONsr
INTEGER PROCFOURE C.PNPAC. ... (FIRST BYTE9 NO. BYTES)

e 32 PACKED //
PROCEDURE C.PFXHCD 1 *.(FIAEOPTVA96LO NO. FHYTES) /
DEFINE PROCFlIFE C.PNHIT TORE

DEFINE THE SWITCH NUMBER IPANCH I

SWITCH CPNBRNCH goo. DEFINE THE SWITCH NUMBER BRANCH 1
HITCOUNT9 0.* 0 I
SLU9 .. 0 1 /
SLU9 o. 2 /
SLUI ... 3/
SLU9 goo 4

SLUO go. 5 I

HITCOJiJT9 0 0 6 /
FLYTO, *a, 7 /
ALTSELCT, *0. RAI
DSPSELCT9 0.. 9 1
STRMO)E, ... 10 .
FaSTFwn,*.11I
FflR'A~fl. too 12 I
RFVERSFt s* 13 I
FASTRFV9 goo 14 /
HITCOLJNT, *00 15
ACCEPT* ... 16 I
REJECT* see 17 /
ALTELEVO goo 18 i
AUTONIAN9 .. 0 19 /

LANOSF64 see 20 I
INSlSt *04. 21 /
INSlDl?. goo 22 1
INS2SFL9 so. 23 I
TN52DIT.* 24 /
DEADSLCT 9 . 25 i
ADDPDR, see 26 I
HTTCOU'JT, so* 27 I
HITCOUNjTt s.. 28 I
INSIENPiv so* 29 /
INS2L.NI.9 gas 30 I
XITCOUP!T *so. 31 I

00 DEFINE ALT/ELEV ALT CAL MODE 8PANCH /
SWITCH CPNAEI3N c
ACMOANfl5# so* 0 I
ACMlAN02i *.. 1 I
ACM1ANn?v ... 2 1
ACm3v ... 3 I
ACM49 9*0 4 I

ARE THERE NO PORE HITS 1

325



CPNHIT AEP

ANYHITS : '? I- XT(0) *x 0
Y- ,OTn HFTUkN

. BFGTM ... OUTAIN THE NFXT HIT //

CPNTII u CPNHIT(CPNHIT(0)) I
tPNqWCH x PNT'1 I

IS THF NEW STATUS oWF l1
IF rPNTIl U
... IS THE Hl1 A POSITION SWITCH //
THEN IF CPNT < 28

OR (CPNTI1 >= -14 ANO CPNTII <= -11)
OR CpN*' >: -t)

"HEN " z f -CPNTII

ELSE ,.. IF NOT. IGNORE //
GOTO HITCOUNT I
WOW HRPNCH ON THE SWITCH NUMBER /I

G07,T CPNHHNCH(CPNTIl) ;
FLiTn i ,.. IF THE FLY TO kEOUEST IS AN OAP..o I

IF "IXTYPE(CPSXPTR) 6
THFh 6OTO HITCOUNT ... IGNORE THE REQUEST //
EL';: W-I .. . TURN ON THE FLY TO LIGHT //

CPNOUT13 = CPNOUT13 *V, KMASKI9 I
CPNFLYTU = I i ... SET FLYTO FLAG I/
GOTO ZEROCLOK I

ALTSELCT I ,,. REVERSE HSL ANt) HR LIGHT STATUS /
CPNOUT13 = CPNOUT13 X. "00006000" 1
CPNHSL = CPNOUIT13 *A. "00006000" 4 ... SET HSL/HR FLAG I
GOTO ZEROCLOK

SLU ... SET RESET INDICATED SLU STATUS //
CPNSLU(CPNTII) CPNSWCH I
GOTn HITCOUNT

nSPSELCT e ,.. CYCLE THE LIGHT TEMPLATE //
CPNniS = CPNDTS .LS- I ;
IF CPNDIS .Ao KMASKI5 0
THEN CPNDIS = KMASK19
IF rPNDIS *A. KMASKI7 0 ... IS THE NEW MODE tJV //

THEm CPtNDCLOK = 0 ... STOP THE RLINK TIMEP //
ELSF ... RE-STAPT THE BLINK TIMER //

CPMDCLOK I t
CPNOUT14 = (CPNOUT14 A. "FFFFOFFF") ,V. CPNOIS

,. LIGHT APPROPRIATE SFGMENT AND SET THE
MODE FLAG //

CPnSLn = cPNnjS .RS. 13 1
GOTO ZEROCLOK ;

STRO4ODE : *. REVERSF STEER MODE LIGHTS AND FLAG /

CPNn'.13 : CPNOUTIJ .X. "00000C00"

CPNS dH = (CPNOUTI3 *A. "O0000COo") oRS* 11 1
GOTO ZEROCLOK I

FASTFWO :.. SET FWD /.REV REQUEST FLAG II
CPNFWI)PV = 10 1
GOTn FwDRVoFF ;

FORWARD : CPNFWDRV I I
GOTO FWOkVOFF s

REVERSE : CPNFWlRV . -1 1

326



CPNMIT AED

FASTREV i CPNFWDRV a -10 1

FWDRVOFF I ,. IF THE NEW STATUS IS OFF, OR IF THE
XHAIR MODE IS ID... //

IF CPNSWCH < 0 OR CPSIO -= 0
THEN CPNFWDRV = 0 ; ... REMOVE FWD / REV REOUEsT FLAG //

GOTO ZEROCLOK I
ACCEPT t ,. IGNORE UNLES! ALTITUDE CALIBRATION

MODE IS 4 II
IF CPNACM •4
THEm REGIN
... SET ALT CAL COMPUTE FLAGAND PREPARE

TO RECEIVE KALMAN VER)ICTS //
CPNACC = CPNACS I
CPNACM a 5 1
NKFAHJTM : 0 I
NKFARJTA = 0 1
END I

GOTO HITCOUNT ;
PEJECT : ,,. IGNORE IF ALT CAL MODE IS 5. OTHERWISE

END ALT CAL //
IF CPNACM = 5
THFM GOTO HITCOUNT
ELSE I FGIN

CPNOUT14 z CPNOUT14 .A. "FFF9FFFF" 1
CPNUUT9 a CPNOUT9 .V. "OOFFFFFF"
CPNACH a 0 1
CPNHAC a 0 1
END ;

GOTh HITCOUNT I
ALTELEV : *., ORANCH ON ALT CAt MODE //

GOTO CPNAEIN(CPNACM) I
ACMIAND2 : ... TURN OUT ELEV LIGHT. PULt. HIGH ALT CAL

FLAG DOwN //
CPNOUT14 X CPNOUT14 *A, KRMASK13 I

ACM4 S CPHAC 0 1
CPNACM = 3 ;
IF PMCRALTOK == 0 ... ARE THE RAi)AR ALTImETEPS DOWN //

99, IS THE FLR UNAVAILAHLE //

THEN IF CPFLRON == 0
THEN PEGIN ... TERMINATE ALT CAL //

CPNOUT9 CPNnUT9 .V. "OOFFFFFF" I
CPNOUT14 CPNOUT14 A- KRMASKI4 I
CPNACM x 0 I
END

ELSE NLGIN ... SET HIGH ALT CAL FLAG AND ZERO
THE DELTA HUFFFR //

CPNHAC = 1 ;
CPNDELTA 0 1
END I

GOTO HITCOUNT ;
ACM3 5 *. RECORD WHICH NAV SYSTEM WAS USED FOR

ALT CAL //

CPNACS x CPNNmS I
CP nUT14 = CPNOUT14 ,V. KMASK14 I -. AOVANrE To MODE 4 //

CPNACM 4 1

327



C*PNHIT AEn

ACM0ANU5 : Gt)TO HITCOUNT I
AUTOmAN i ... REVERSE LIGHTS AND MODE. INITIALIZE

SYSTEM REQUEST //
4 CPNoUT14 = CPNOUT14 .X. 1OCO00O0O'1 I

CPMI'ANH x(CPNOUT14 eAo 11OCOOOOO0'1) .RS, 2T
CPpoaIMSSR NCPRNV I

LANOSEA i OOHTON ... REVERSE LAND / SEA MODE /
CPNI.ANnB = CPNLANDLI .X. 11600000004t 7
GOTO HiTCOUNT i

TNS1SEL : ... REQUEST INSI /
CPNNNS = 4 $
GOTO HITCOUNT I

TNS1OIT t *,. IF IN MANUAL MOI)E., CYCLE LIGHT ANt)
TENTATIVE IEQUEST,RESET DISPLAY CLOCK
To ALLOW ONE SECOND MODE SET DELAY I

IF CPNMAN za 0
THEP, HFGIN

CPN'401T = CPPNMDIT .t.S. 1I
IF CPNMDTT *A. KMASK27 ~=0
THEN CPNmDIT = KMASK31
CPNOUT4 = CPt"UUT4 *A. "FFFFF8FF"
*V- (CPNmDIT .LS, b)I

CPNCLOCK =13
Etns

GOTO HTTCOUNT
TNS2SEL I CP'mlMs = 2 1

GOTO HTTCOUNT I
TNS201IT S IF CPNM4AN == nl

THEN REGIN
CPNADIT wCPNAOIT .LS. 1I
IF CPNAUIT *A, KHASK27 - 0
THEN CPNAnIT = KAASK31 I
CPN'OUTO =CPtOUT0 *A. 'FHFFFFFFIO
,V. (CPNAOIT .LS. 24)

CPNCLOCK =13 1
EAID I

GOTo HTTCOUNT
nEAOSLCT ... SET REoUEST FLAG TO DEAD RECKON I

CPlmM =1 1
GOTO HTTCOUNT I

ADORDR *,* REVERSE DR / AnDR RE()UEST FLAG I
CPmnDSH = CPNDUS8 .X. "wio0oooi3 4

TNSIENAL G.OrITON .. SET INS ENABLE FLAG TO APPROPRIATE
VALUE I

CPPJTNSI = CPNSWCH
('OTO HTTCJLJNt &

INS2ENI3L : CPNTNS? =CPNJSWCH ;
GOTn HITCouNT i

oe ALL RRAmJCHES RFTURN HERE I

7ERUCLOK : oee SET THE DISPLAY CLOCK TO ZERO I
CPNCLOCK =0 ;

,,1TCdIT : PH*tv CPH(w - 1

GOTO ANYHITS I

END 9
FND I ... OF HIT PROCEDURE DEFINITION l

END FIN!

328



CPNOWN LED

INTEGFR CPNMTIME s *.. MISSION TIME IN MAJOR FRAMES //
INIEGER CPNTIMB s *o. AIT NAME FOR MISSION TIME //
rNTFGFR CPNCLnCK I .. o DISPLAY CLOCK--A MOO 1G COUNTER //
!NTEGER CPNCLOKH I *.. HIT NAME FOR THE DISPLAY CLOCK //
TNTFGER CPNHSL ; ..o HR/HSL FLAG //

INTFGER CPNnCLOK I s.o DISPLAY SELECT RLINK TIMER //
INTFGER CPNOIS I .o DISPLAY SELFCT TEMPLATE II
TNTFGER CPNACM I ,.. ALT CAL MODE //
INTEGER CPNmDIT I set INSI DIT PEOUEST FLAG //
INTEGER CPNAOTT 1 .. INS2 DIT REOUEST FLAG //
INTEqER CPNTII I ... TEMPI //
INTEGER CPNTR1 t .. TEMPI/
REAL CPNTFI $ o.. TEMPI /
INTEGER CPNTT2 I D*. TEMP2 /
TNTEGFR CPNTS2 s .. TEMPZ //
REAL CPNTF2 I .o. TEMP2 1/

. VARIABLES LOCAL TO C.PNHIT //

INTEGER CPNSWCH I ... ACTIVE HIT SWITCH NO. / STATUS //
INTE.ER CPNACS 1 ... NAV SYSTEM USED FOR Al.T CAL //

... DATA LOCAL TO C.PHDISP /I

INTEGER CPNPPnOK ;..s PRESFNT POSITION DATA OK FLAG /
TNTEGFR CPNSELNO ; . SELECTED PT. SEQ NO. II
INTEGER CPNIJPRJ ; .o UPDATE REJECT LIGHT TF4PLATE /
INTEGER CPNMAGI ; .. , SELECTED POINT MAGWHFEL TIMER /
INTEGER CPNSLTYP I *.o SELECTED POINT TYPE //
REAL CPNTNE.V I ,e, TERRAIN ELEV. ,FEFT /
REAL CPNSELON I ... SELECTED POINT LONG ,PADIANS //
REAL CPNSELAT I .o* SELECTED POINT LAT ,RADIANS /1
REAL CPNSLELV $ . SELECTL) POINT ELEVFEET //
INTEGER CPNSTPNO I ... STEER POINT SEQ NO. //
INTEGER CPNMAG2 I ,*, STEFR POI!T MAGWHEEL TIMEP //

INTEGER CPNSTTYP ; .o STEER POINT TYPE //
REAL ARRAY CPNSLPOS(1) ; ... SELECTFD POINT POSITION I/
REAL ARRAY CPNTAR1) I ... TIME AtND RANGE To SELECTED PT I
INTEGER ARRAY CPNMCODE(Q) .o. MAUWHEEL DRIVER CODF //

,.o THE FOLLOWING ARE B 32 NAMES FOR THE ABOVE
oUTPUTS TO THE PANEL //

INTE ER CPNOUTO I
INTEGFR CPNOUTI I
INTEGFR CPNOUT2 i
INTEGER CPNOUT3 I
INTFGFR CPNOUT4
INTFGFR CPNOUT5 I
INTEGER CPNOUT6 I
INTEGER CPNOUT7 ;
INTFER CPNOUT8 $
INTEGER CPNOUT9 I
INTFGFR rPNOUTIU 9
INTEGFR rPNOIJT11 ;
INTEGER CPNOUT12 I
?Nsr.{Lo ,-~p.JniA ?l 2

INTEGER CPNOUJT14 I

INTEGFR CPNOUTIS I *., //
... THE FOLLOWING IS AN ARRAY NAME FOR THE

OUTPUT TO THE PANELS //

329

I



CPNOWN AEO

* INTFGER ARRAY CPN.OUTA(15) I
T14E FOLLOWING VARIABLES ARE REFERENCED BY OTHFI4 PROGRAMS I

PTTFER CPNSTEN ; *.* STEER~ MOD)E 0--TRK 1--DIR/
INTFsEk CPNSTPO I . HIT NAME FOR STEER M4ODE /
INTFSER CPNFwnRV I . FOR~WARD REVFRSE REQUEST 1
JNTEGFR CPNPOLL I *.. FORWARD REVERSE COMMAND 1
INTFInFP CPNACr ... ALT CAL compuTE //
INTF6FA CPNHAC I **. HIGH ALT CAL REOUEST I
TNTFSFR CPNMAN% ... s AUTO/MAN MOV~E FLAG //
INTESER CPNMANB I . HIT NAME FOR AUTO/MAN FLAG I
INTFc'E4 CPNt.AMD I . LAND/SEA FLAG //
INTFGFP CPNLANDH S IT NAME rOk LAND/SEA FLAG I
INIFSEW CPNNMS I * NAV SYSTEM SELECT /
TNT~EW CPNNMiS8 I . HIT NAME FOR NMS /
INTFSFR CPNDOq *.* DN/AOnk R~EQUEST /
INTFG'FR CPNnnSH ; o 811 All4AME FOR I)R/ADDR /
INTFCFR -PNINS1 I go& INSI ENABLE/DISABLE /
INTUWR CPNtNs2 ; *.. IwS2 ENAHLE/DISA3LE /
IlNTFrGIR CPNSLUIA I ... AFT //
INTEroFR CPNSLUL ; ... LEFT PYLON /
ltITFGFR rPNSLtUR ; *.. RIGHT PYLON SLU ENABLE /
If'TFGFR CPNSLUI I ... INTRMO /
INTFr.FR CPNSLUF I ... FORWARD /
RE~AL CP~flELTA *.so ALT CAL UELTA dUFFER /
INTEGFR ARRAY CPhiSLU(b) ; ... THIS IS THE SLU STATUS TABLE.

IT IS 'OVEkLAYE00 wITH THE SLU
STATUh WORDS AHOVE /

INTFEE CPNFLYT) I *. FLY TO FLAG //
piTrIPEP CPNnSI t . DISPALY SELECT FLAG /
INTFt,-FR CPNnSIH I [. FITT NAME FOW CPNUS2 /

OVERLAY DECLARATIONS FOR CPNOWN /
CPNSTPR S=S CPNSrEER I
CPN14ANS $$= CPNPAN I
CPNLIINDR S=S CPNLANU I
CPNN",SH s.=S rPNN! ;
C P N D); A %u CPNOOS I
CPNc'itIA 'r=S r.PNSI-U ( 1) ;
CPNJSLIL S=S CPNSLU(2?) ;
CP NSL OR 4 =5 CPNSI.IJ(3) I

-'CPNSLUj t=$' rPNSLU(4) ;
CPNSI OF $=S C"NSLIU(54) I
CPNTI OAK S=$ CPNmT IMEI
CPNCLOKH S=S CPNCLOCK
CPtNT~l s=S C~ihiTF] $=S CPNTII
CPNT,4? S=$ CP0TF? $=S CPPIT12 I
CPNDSLS %=5 CP'NDSL I

330



CNDDATA AED

INTEGER ARRAY CPNHIT(7) I ... THE NAV PROGRAM HIT TABLE /

INTEGER cPSID ; ... To mODE FLAG //
INTEGER CPFLRnN I ... FORWARD LOOKING RADAR ON //

INTFGER CMALTCAL ; ... NEXT DEST. AN ACT CAL /

INTEGFR CPKALTCL ; ... IKH ALT CAL REQUEST //

REAL CPKTNELV ... IKB TERRAIN ELEVATION /I

INTEGER CPSNUIP t 6.0 POSITION UPnATE IN PROGRESS If
INTEGER CMCSTP t ... STEER POINT FLAG II

INTEGER CMCSPID I ., STEER POINT TYPE //

INTEGER CMCSPSN I *.. STEER PT. SEQo NO, //
INTEGER CAFFDTF I .. FLT DR ENGO / AUTO TF FLAG I

INTEGER CAFSMODE I ,,, FLIGHT DIRECTOR MODE //
INTEGER ARRAY CPHCD(7) I ... BCD ARRAY II

INTEGFR ARRAY CMXLAT(T) I
INTEGER ARRAY CMXLONG(7) ;
INTEGER ARRAY CMXELEVt7) I

INTEGER ARRAY CMXQUAL(7)

INTEGER ARRAY CMXSQNO(7) ;
INTEGFR ARRAY CMXTYPE(7) 1

INTEGER CPSXPTR I ... POINTER INTO CMXHAIR //

INTEGER NCRALTOK I ,., RADAR ALTITUDE OK /I

REAL NCRALT I *.. RADAR ALTITUDEfFEET //

REAL NCALTP I *.. PRIME ALTITUDE9FT * II

REAL NSTTG S *.. TIME TO OESTINATIONtSEC II

REAL NSRNG I ... RANGE TO DESTINATION //

REAL NLAT ... DISPLAY LATRAUIANS //

REAL NLONG I .. DISPLAY LONG, MADIANS I/

PEAL NVGND ; .. , DISPLAY GND SPEE0,FT / SEC //

REAL NHGT ;., GROUND TRACKtRA)IANS //

REAL NTHEAD I *.. TRUE HEADINGRAt)IANS //

REAL NWHEAD I .. WIND HEADINGRAOIANS II

REAL NWIND ; ... WIND SPEEDt FT / SEC //

PEAL tJHDISP I . HEIGHT AHOVE SEA LEVEL9FT /I

INTFGFR NDRMnDE I *., DEAD RECKON MODE 1/

TNTEGFR NCDOPCUT ; ... DOPPLER CUT-OUT FLAG I/

INTEGER NCAALCPT I INS2 UP I/

INTEGER NCMALCPT W.. INSI UP I/

INTFGER NVFSTRT I *.. DEAD RECKON RESTART FLAG //

INTEGER NKFARJTM I .. INSi ALT CAL kEJECT FLAG /

INTFGFR NKFAR.ITA ;., INS? ALT CAL REJECT FLAG I/

INTEGFR NCAVAILIA .. INSI DIT AVAILABLE FLAG I

INTEGER NCAVAILA .., INS2 DIT AVAILAbLE FLAG I

INTEGER NCMDTT I
INTEGER NCADIT I
INTEGER NCPRNV I ... PRIME SYSTEM FLAU /

331



NRBMAST AEO

REAL N!LATm I ~ LATITUF)E(I4AOIANS) I
REAL NTLONM I * LONGIT(JOE(RAnIANS) /
REAL NTALTm 1 * ALTITuOE(EET) /
REAL NIVNM ; ... VEL.OCITY NORTHCFT/SEC) /
REAL NIVEM ;... VELOCITY EAST(FT/SEC) I
REAL NIHDOTH ; ... ALTITUDE 'RATE(FT/SEC) /
REAL NIPSITM ; * TRUE HEADINGCRADIANS) I
REAL NIPSIMM t so. MAGNETIC HEADING(RADIANS) I
RFAL NIGRAVM ; ... LOCAL GRAVITY(FT/SEC*4'2)
REAL NCmPITCH ; *.. PITCH(RAnIANS'II
REAL NCMROLL 9 ... ROLL(RAI)IANS) I
REAL NCMYAW ; ... YAW(RADIANS) /
REAL NCmPOOT o .. PITCH RATE(RAD/SECI /
REAL NCMRDOT s.. ROLL RArE(RAD/SEC) /
REAL NCmYDOT *.YAW RATECRAD/SEC) /

*.NAVIGATION DATA CommON TO MASTER AND AUXILIARY 1

REAL NIALFAM I*.. WANDER ANGLE(RADIANS) /
REAL NTVXM 4..X PLATFORM VELOCITY(FT/SFC) /
REAL NIVYM 4*.Y PLATFORM VELOCITY(FT/SEC) /
REAL NIVZM~ so*. Z PLAiFORM VFLOCITY(FT/SEC) /
RFAL NCMAX 1* X ACCELEROMETER(FT/SEC/FPAME) /
RFAL NCMAY I*.. Y ACCELEROMETER(FT/SEC/FPAME) /
REAL NCMAZ , ** Z ACCELEROmETER(FT/SEC/FPAMF) I
PEAL NTOVAAM ... DELTA X VELOCITY(FT/SLC/FRA4E) /
REAL NTflVAYM *ee DELTA Y VELOCITY(FT/SEC/FRAs4E)
REAL NIDVAZM I*.UELTA Z VELOCITYCFT/SEC/FRAtIE) /
REAL NTC12M I*.DIRECTTUN COSINE CC192) I
REAL NTC22M4 I *. DIRECTION COSINE C(292) /
REAL NTC3?4 so D. IRECTION COSINE C(392) I
PEAL NTC13m ... DIkECTTO14 COSItIF C(1-3) /
REAL NTC2314 I * DIREC71ON COSINE c(293) /
REAL NIC33M so,. DIRECTION COSINE C(393) I
REAL NTC12DM I... DERIVATIVE OF C(192) I
RFAL NTc220M ... DERIVATIVE OF C(29?) /
REAL NTC320M ... DERIVATIVE OF C(392) /
REAL NTC13DM , DERIVATIVE OF C(193) /
REAL NTC23Dm so. DERIVATIVE OF C(?,3) I
REAL NIc33Dm ... DERIVATIVE OF C(393) /
PEAL NJOMEGXM 4... EARTH RATE ABOUT X(PAD/SFC) I
REAL NlnMEGYM ... EARTH RATE AIqOuT Y(PAD/SFC) I
REAL NTnMEGZM ... EARTH DATE AROUT Z(HAO/SFC) I
REAL NIPHOXM ... CRAFT RATE AROUT X(RAD/SFC) /
REAL NTQHCYM I*.. CRAFT PATE AROIJY Y'PAD/SEC) i
kEAl. NTPRAM so, PLATEOWM RATE AROUT X(RAD/SEC) /
REAL NTPRYM ... PLATFORMi HATE AROUT Y(RAD/SEC) /
REAL NIAXCM 4. CORRECTED X ACCEL(FT/SEC/FkAtM) fl
REAL NTAYCM I*.. CORRECTED Y ACCEL(FT/SEC/FPAM) i
REAL NTAZCM ; ... CORRECTED Z ACCEI.(FT/SEC/FRAM) I
REAL NInAACM I so. X ACCEL NOISE ESTCFT/SEC/FRM) /IREAL NInAYCM *.Y ACCEL NOISF EST(FT/SEC/FPAM) /
REAL N!ADAZCM I ... Z ACCEL BIAS EST9FT/SEC/FRAmE) 1

KALMAN FILTER DATA I

332



NRBMAST AED

See //
REAL NKFPRJTM I o. POSITION FIX REJECT FLAG I/
REAL ARDAY NAINSH( SO) I
RFAL NWPO101M I *.o COVARIANCE ELEMENT P(191) //
REAL NKPOZ01 I *..o COVARIANCE ELEMENT P1291) I,
REAL ARPWY NKFPMATM(189) ! **o INS I COVARIANCE MATRIX I/
REAL ARRAY NKXATt4(I8) I *eo INS I STATE VECTnR //
REAL ARRAY NKYtASVM(4) * goo INS I MEASUREMENT VECTOR //

333

I u m mmmm m- w.m•••a mm



NRBAUX AED

REAL NILATA I so LATITUnE(RADIANS) //
REAL NTLONA I *,, LONGI1UDE(RAUIANS) //
REAL NTALTA I ... ALTITUDE(FEET) //
REAL NIVNA ... VELOCITY NORTH(FT/SEC) //

REAL NIVEA I so, VELOCITY EAST(FT/SEC) //
REAL NIHDOTA I ... ALTITUDE RATE(FT/SEC) //
REAL NIPSITA I ... TRUE HEAOING(RADIANS) /

REAL NIPSIMA I ... MAGNETIC HEADING(RADIANS) //
REAL NIGRAVA I *., LOCAL GRAVITY(FT/SEC.* ) //
REAL NCAPITCH I ... PITCH(RAnIANS) //

REAL NCAROLL I .,* ROLL(RAnIANS! /
REAL NCAYAW ; *** YAW(MADIANS) //
REAL NCAPDOT ; ... PITCH RATE(RAD/SEC) //
REAL NCARDOT I .., ROLL RATF(RAO/SEC) //
REAL NCAYDOT $ o,. YAW RATE(RAO/SEC) //
• ,, //

•.. NAVIGATION DATA COMMON TO MASTER AN AUXILIARY /'
2' ego//

REAL NIALFAA ; .. WANDER ANGLE(RADIAN} //
REAL NIVXA ; ... X PLATFORM VELOCITY(FT/SEC) //
REAL NTVYA S ... Y PLATFORM VELOCITY(FT/SEC) //

REAL NIVZA I ... Z PLATFORM VELOCITY(FT/SEC) //
REAL NCAAX 1 ... X ACCELEROMETER(FT/SLC/FRAME) //

REAL NCAAY ; ... Y ACCELEROMETER(FT/SEC/FRAPE) //
REAL NCAAZ I *,, Z ACCELEROMETFR(FT/SFC/FRAME) //
REAL NTDVAXA ; ... DELTA X VELOCITY(FTIEC/FRAME) //
REAL NIOVAYA I ... DELTA Y VELOCITY(FT/SEC/FRAME) //
REAL NTDVAZA ... DEL(A Z VELOCITY(FT/SEC/FRAME) //
REAL NIC12A I ... DIRECTION COSINE C(1,2) /I
REAL NIC22A ; .. DIRECTION COSINE C(292) //
REAL NTC3ZA ; ... DIRECTION COSINE C(392) //
REAL NTC13A i ... DIRECTION COSINE C(193) //
REAL NTC23A I .. DIRECTION COSINE C(293; //
REAL NTC33A ; ... DIRECTION COSINE C(393) //

REAL NIC120A I ... OFRIVATIVE OF C(192) //
REAL NIC220A ... DERIVATIVE OF C(292) //

REAL NTC32DA I ... DERIVATIVE OF C(392) //
REAL NTC13DA I ... OERIVATIVE OF C(1,3) II
REAL NTC23DA i ,.. nERIVATIVF OF C(293) //
REAL NIC330A I ... DERIVATIVE OF C(393) //
REAL NiOmEGXA ... EARTH RATE ABOUT X(RAD/SEC) //
REAL NTOMEGYA I ... EARTH RATE ABOUT Y(RAD/SEC) //
REAL NIOMEGZA I ... FARTH RATE AHOUT 7(RAI/SEC) //
REAL NTRHOXA *.. CRAFT RATE ABOUT X(RAI)/SFC) //
REAL NTRHOYA I.. CRAFT RATE ABOUT Y(RAD/SFC) //
REAL NTPRXA I ... PLATFORM RATE ABOUT X(RAD/SEC) //

REAL NTPRYA I ** PLATFORM RATE AKOUT Y(RAD/SEC) I/
REAL NIAXCA I ... CORRECTED X ACCEL(FT/SFC/FRAME) //
REAL NTAYCA I ... CORRECTED Y ACCEL(FT/SEC/FRAME) //
REAL NTAZCA I ... CORRECTED Z ACcEL(FT/SFC/FRAME) //
REAL NTDAXCA ** 00 X ACCEL NOISE EST(FT/SFC/FRAME) //
REAL NIDAYCA ... Y ACCEL NOISE EST(FT/SFC/FRAME) //
REAL NTDAZCA I ,, L ACCEL BIAS EST(FT/SEC/FRAME) //

KALMAN FILTER DATA //

334



NRBAUX AEO

REAL NKFPRJTA I.. POSITION FIX REJECT FLAG //

REAL ARRAY NAINSA( 50) 1

REAL NKP0101A 1 0., COVARIANCE ELEMENT P(lol) /1

REAL NKPO201A I ... COVARIANCE ELEMENT P(2cl) //

REA ARRAY NKFPMATA(L89) I ... COVARIANCE MATRIX ARRAY //

REAL ARRAY NKXHATA(I8) 1 .. STATE VECTOR I/

REAL ARRAY NKYHSVA(4) I ... MEASUREMENT VECTOR //

335



"0 At Nkr I P!, I ! * I H IIIIAt AI it laII

IlkAt N.%p II1 I t. P1III4All IIIIIAIIk #

1 NTF (if1 NKPFin% I .. FAV IIIA I I IN I Alit~ Ir 14 1A INIl-A
I NTFOr R NcrpnVL I , III)% I I IN F I x I YHI tN Ail /o
I NrFOFII NKFTI 1*.1 LflO1 INIIFA .4
INTrlFl NKFJ I lo IIop INI)iM //
INtrnrle Wit I g .* tn# I NIJ A I
I N f EbH Nlht' ti I. tiit~ I /1
INTF(,ER NAdFT I . sudCNIPT li
REAL NKFKGD I . DENOMINATIG OF KALMAN GAIN /
INTEGER NKFSTANO I . ELEMENTS IN STATE VECTOR

LESS 1 //
REAL NKFRMATX 11 ... POSITION MEASUREMENT

NorSE(FT**2) //
REAL NKFAN I . NORTH COMPONENT OF POS

ERROR(FT) //
REAL NKFAE i . EAST COMPONENT OF POS

FRROR(FT) //
REAL NKFEX I . X TERM IN P05 TEST I
REAL NX:FEY ; .. Y TERM IN POS TEST I
INTEGER NCPRIME I .,PRIME DATA FLAG //
REAL CSNPDN I . NORTH MEASURED POS ERROR(FT) /
REAL CSNPDE I . EAST MEASURED P05 FRRI1R(FT) /
REAL NCLATP & . PRIME LATITUOF('RADTANS) /
REAL NCLONP s . PRIME LONGITUDE(RADIAN~S) /
REAL NLATC ;*.OVERFLY CHECKPOINT

LATITUI)E(RAD) //
REAL NLONC I 9 OVERFLY CHECKPOINT

L-ONGITUDE(RAO) //
INTEGER CMFPOUAL It.. CHECK~POINT QUALITY INDEX /
REAL NflALT It*. DEAD RECKrONING ALTITUOE 1
REAL ARRAY NKFK(,AIN(38) ego. KALMAN GAIN MATRIX //
INTEGER ARRAY NKFCOLMN(18) I * SYMMETRJC MATRIX POINTER; I
REAL ARPAY KRPMATX(2) I99POSITION NOISE(FT*.2) I/
REAL ARRAY NKINITP(18) too. INITIAL VALUE OF C0O' MATRIX I
REAL KNINE 1 ... POITION TEST CONST //
REAL KERADIJS 3... EARTH RAD)IUS AT EQUATORtFT) I
REAL KnFLTAr **.. FRAME TIME(SEC) //
REAL KGRAVO I e.. GRAViTATIONAI. CONSTANT /
REAL KfRAVI I. GRAVITATIONAL CONSTANT I
REAL KGRAV2 v . GRAVITATIONAL CL..STANT I
REAL KELPTCTY 11.. EARTH ELLIPTICITY //
REAL K2FORE 11. ?*KELPTCTY/KERADIUS /
REAL KIoRE : I. /KERAnIUJS //
REAL KEARTHR . FARTH RATE('RAO/SEC) /
REAL KNK1 I.fe INERTIAL CONSTANT /
REAL KNK2 ;*of INERTIAL CONSTANT 1
REAL KONE 11 ... ONE /

33 6



CPNCONST AED

SYNONYMS 57.2958 = CPNKI ? *,, UEGREFS/RADIAN //

SYNONYMS .5921 = CPNK2 I .. KNOTS/CFT/f-FC) /
SYNONYMS "800A00000 = KMASKO I
5YNONYMS "40000000" = KMASK1
SYNONYMS "20000000" = KMASK2 I
SYNONYMS 10000000" = K'ASK3 I

SYNONYMS "08000000" = KMASK. I
SYNONYMS "104000000"0 = KMASK5 ;

SYNONYMS #'020n0000" = KMASK6 ;
SYNONYMS "101000000" = KMASX7 I
SYNONYMS "0008000001 = KMASK8 t

SYNONYMS "10040000011 = KMASK9
SYNONYMS "00?00000" = KMASK10 I

SYNONYMS "001000001 = KHASKI1 ;

SYNONYMS "OOOROOOO" = KMASK12 ;
SYNONYM; "0004CO

O " = KMASK13 ;
SYNONYMS "000200000 = K14ASK14 I

SYNONYMS "100010000" = KMASKIS

SYNONYMS "10008000" = KMASK16 ;
SYNONYMS 1100O0400IO = KMASK17 I

SYNONYMS "00002000" = KMASK18
SYNONYMS "100001*000" = KMASK19
SYNONYMS 100000800" = KMASK20

SYNONYMS t00000400" = KMASK21
SYNONYMS "0n0n0200"1 = KMASK22
SYNONYMS "00000100" = KMASK23 ;

SYNONYMS "00on000N0" = KMASK24 I
SYNONYMS "00000040" = KMASK25

SYNONYMS "00000020" = KMASK26

SYNONYMS "100000010" = KMASK27
SYNONYMS "0000000$8" = KMASK2R

SYNONYMS "00000004" = Kt4ASK29
SYNONYMS "00000002"1 = KMASK.30
SYNONYMS 14000n0001" = KMASK31 I
SYNONYMS "o7FFFFFFF" = KRMASKO
SYNONYMS "$FFFFFFF" = KRMASK1 ;

SYNONYMS 16OFFFFFFr" = KRMASK2
SYNONYMS "EFFFFFFF" = KRHASK3
SYNONYMS "F7FFFFFF" = KRMASK4 ;

SYNONIVYS "FHFFFFF" = KRmASK5 ;

SYNONYMS "FOFFFFFF" = KMMASK6 t
SYNONYMS FFrFFFF" = KRMASK7 ;
SYNONYMS "FF7FF1FF" = KNfAS ;

SYNONYMS "FFAFFFFF" = KRMASKq I
SYNONYvS "FFnFFFFF" = KH4ASKIO ;
SYNONYMS "FFFFFF=F" K #SKI1 ;

SYNONYMS "FFF7FFFF" = WRMASK12 I
SYNONYMS "FFFRFFFF" = PRMASK13 $

SYNONYMS "IFFFnFFFF" = vRMASK14 ;
SYNONYMS "FFFFFFFF" KRMASK15 I

SYNONYMS "FFFF7FFF" = K mASK16 ;

SYNONYMS "FFrF[IFFF" = KIMASK17 ;

SYNONYMS "FFFFOFFF" = KPMASKI8 I

Y . . I ... . F r' FF" =- ,,. .

SYNONYMS "FFFFF7FF" = KRMAS-120 I

337



CPNCONST AEDI I

i SYNONYMS 'FFFFFFF' z KRMASK21
SYNONYMS I#FFFFFDFFIt 8 KRMASK22 I
SYNONYMS "IFFFFFEFFO' m KRMASK23
SYNONYM' IIFFFFFF7F" 2 KRMASK24 ;
SYNONYMS 'IFFFFFFAF1 9 KRMASK25 i
SYNONYMS 'IFFFFFF)FO = KRMASK26 1
SYNONYMS "FFFFFFEFS z KRMASK27 1
SYNONYMS "FFFFFFF7" "w KRMASK28 I
SYNONYMS l0FFFFFFFHO a KRMASK29 I
SYNONYMS "FFFFFFFD' 2 KRMASK30 1
SYNONYMS 8'FFFFFFFE" z KRMASIK31

338



APPENDIX 3

SAMPLE RAW STATIC AND DYNAMIC DATA

1. Meaning of Raw Data Matrix Elements

Each of the 25 features counted by the instrumented compiler was

assigned a unique row in a 25 x 25 raw data output matrix. The meaning of

each column in the row depends upon the form of data being gathered, and

includes histogram as well as specific language forms and constructs. The

following table presents the meani .ig of each row and column in the data

matrix. (An "X" indicates tat the element has no meaning.) A further

explanation of each row is given following the table. Column 0 is the sum

of all the other columns. ,

33

II

I
t 339



XXIV xX X1 00 X .H H 0

HHHH F4 H~ [-

.4 -4 - 4

C'I X4X4X X XX X X I X-
-40 00. 0- X ao co x 00 XX

*i1 it >i ~2::: I

HHH 4 0-H ~~ H H 04

0
xn xn 

0  
00 >4-I-1

u~ + * -- 0 0 V
Vi-1it it ,X X Xi i w i w i w x 'oo Ci0 W i W f4, Cii iii x to xX

0 00 
.

'010 (4 0. 0. A1 i/V
00 Xa aX 0 xi xi xi w to to %n i C Iti 0i 0 11Ci Ai X '0 X X

f-

OH 0X 0t Ai I- >H~ 0H

X4 04 aH0 o ooooooAHr
0l H "0 " H A H r ',

'44

0'f
-z- .1 4l

-4

()

*~- -44C~

H p M 0-0 0 H H -4 .. 1* 0 0.' itA

4 X H P 4 - H F- H H 4 4 H F4

c0 C,0 000 0 00C0 00 000 0 000 0 0

cM 0

wa a 0 F4~

340



Row Label Explanation

IF Columns represent forms of statements following the
THEN in IF-THEN or IF-THEN-ELSE statements. Onli;
columns I through 7 have meaning.

ELSE Same as for IF, above, except following ELSE.

FOR Columns represent forms of FOR statement
(FOR-STEP-UNTIL, FOR-WHILE, etc.) The column
labeled "Mult" represeaxts the number of "FOR-lists".
Only columns 1 through 6 have meaning.

L-STEP Columns represent the form of FOR-loop starting value
(FOR var = value). Only columns 0 through 4 are
meaningful.

R-STEP Same as L-STEP, except for the FOR-loop increment
(FOR var = value STEP inc.)

UNTIL Same as L-STEP and R-STEP, except for the FOR-loop
iteration limit (FOR var = value STEP inc UNTIL limit).

FORMW Columns represent the form of statement following the
FOR (FOR statement). Only columns 0 and 2 through
have meaning.

PM Columns display the use of various forms of operands
used with the operators "+" and "'-. Columns 10
tb'.' igh 11 are meaningful. in addition to the numbers 1
Lnd 2, the following codes have been used for operand
forms in the above matrix:

A variable
B variable
LIT literal
E expression
F function call

M Same as PM, except for the multiplication operator.

D Same as for PM and M, except for the division operator

A Columns represent all forms of assignment statement.
Only columns 0 through 6 have meaning.

HIST Columns are a histogram of the number of operators
appearing on the right-hand side of an assignment state-
ment. As in all histogram forrm;, 25 columns are

* meaningful in addition to column 0.

BOOL Columns are a histogram of the number of operators
appearing in Boolean expressions used within
IF-statements. Boolean forms used within other state-
ments are not included (e. g. within a WHILE clause, in a

r Boolean assignment, etc.).

EQL, Columns show the use of the comparison operators with
GEQ. etc. various specific forms of operand. Colunm*n.O

through 10 are meaningful.

341



Row Label Explanation

LBL, GOTO Columns represent the number of labels, GOTO's and
switches. Only columns Z through 3 are meaningful.

PROC Columns are a histogram of the number of arguments
given in a procedure or function call.

DO.DPT Columns are a histogram of the nest depth of FOR-loops.
Although 25 columns were potentially meaningful, only
the first 4 columns showed non-zero values.

DO.STA Columns are a histogram of the number of statements
used within the FOR-loop nest depths measured by
DO.DPT.

342



Z. Examples of Raw Data Matrix Output

The two example programs below, while not of the size of most AED

or JOBIAL J3B compiler modules, do permit ui to present some concrete

and specific illustrations of some of the compiler instrumentation. The two

brief programs are virt.ally identical, consisting for the most part of one

'FOR' statement with two subordinate assignments. In the first program

the two assignment statements are simple; in the second program one of

the assignments involves somewhat more computations. These programs

and statistics can be examined below.

Counter relevant to a particular statement type are collected into

the array described above and printed out here in row form, with each row

bearing its explanatory label. Data for the form of the 'FOR' statement

appears in the rows labeled 'FOR', AL-STEP , 'R-STEP', 'UNTIL' and

'FORMW'. Column 1 of the FOR row simply counts the number of

'FOR' statements. Column 0 of the L-STEP, R-STEP arrays

count the occurrence of the forms of initial value and increment of the step

variable. Both tables have counts of '1' in these positions since both source

programs have the same form of the FOR statement. Column 2 of

the FOR, UNTIL, and FORMW rows have a 'I', since the UNTIL form is

used, the terminating value is a literal (not equaol to 1), and a BEGIN ioflows

the DO, respectively.

Similarly, the assignment statistics appear in the row labeled 'A';

in both examples a co;unt cf 2 appears in column 1 which counts the assign-

ments of variables. The row labelled 'HIST' contains a histogram of the

number of operands in a isignment statements. Here, the two examples

differ in since in the first example both assignments have only one operand,

whereas in the 3econd example one of the assignments has five operands.

The reader is invided to verify the remainder of the data output by examining

the matrix description.

For each of the two examples, the source language is presented first,

followed by the raw data matrix output produced by the instrumented compiler.

343



EXAMPLE 1

DEF I HE PPOCEDURE rIRIrI TOBE
BEG!IN
INITEGER A.P.C
INTEGEP APAY~ 000),E010):
BOOLEAN~ Z
FOR A =1 STEP I UNrIL 10
00 BEGINI

EIID
Erlo

END FiTHI

MyUMr
IF 0 0 0 0 0 0 0 0 0 0 0
ELSE 0 0 0 0 0 0 0 0 0 0 0
FOR 2 1 1 0 0 0 0 0 0 0 0
L-STEP 1 1 0 0 0 0 0 0 0 0 0
R-STEP 1 1 0 0 0 0 0 0 0 0 0
UNTkiIL 1 0 1 0 A 0 0 0 0 0 0
FP111 1 0 0 0 0 0 0 0 0 0 0
PH 0 0~ 0 0 0 0 0 0 0 0 0
m 0 p 0 0 0 0 0 0 0 0 0
A 2 0 0 0 2 0 0 0 0 0 0
AIS 2 2 0 0. 0 0 0 0 0 0 0
HISL 0 2 0 0. 0 0 0 0 0 0 0
80L. 0 0 0 0 0 0 0 0 0 0 0EOLG7 0 0 0 0 0 0 0 I
GEO 0 0 Ai 0 0 0 0 0 0 0 0

.RT0 0 0 0 0 0 0 0 0 0 0

PROC 0 0 0 0 0 0 0 0 0 0 0

DO.ST 2 2 £ 0 0 0 0 0 0 0 0

FIND 0 0 0 0 0 0 0344



EXAMPLE Z

DEFINIE PROCEDUR~E riAlti TOGE
B.EG IrN
INITEGER~ AdP.C

IrITFTCF ARRAY 0(113) E(113>

FORF~ i 1 STEP 1 UIITIL 1II
00 BEGINI

A = *B+C#C+I0

A =C

END EN

END FINI

hI 0 0 0 0 0
ELS 0 0 0 0 0 0 0 0 0 13 0

FOP 2 1 1 0 0 0 0 0 0 0 13

L-STEP i I 3 C, 0 A3 1 0 0 13 0

R-STEP 1 1 (0 0 0 0 0 13 0 0 0

L41TTL! 1 0 1 13 0 13 0 0 0 0 0

FOPI-IW 1 0 1 0 0 0 0 0 0 0 0

Pt1 2 13 0 0 0 0 1 0 0 0 1

112 2 0 13 0 0 13 0 0 0 0

00 0 0 13 0 0 13 0 0 13 1)

A2 13 03 1 0 0 0 0 0
141ST 2 1 0 0 0 1 0 0 0 0 13

COOL 13 1 0 0 0 0 0 0 0 0 0
EOL 13 0 0 0 13 0 0 13 0 03 (1

(iEO 0 13 13 1 0 0 0 13 0 0 0

LEO 0 3 .0 13 0 0 0 0 0 0 13

LEO 13 03 0 0 0 0 0 0 0 0 0

LE':' 1 0 13 1 0 0 13 0 0 0 0

liEO 13 0 0 0 0 0 0 0 0 0

AirID 0 0 3 0 0 0 13 0 13 0 0
OR 13 A3 1 0 0 0 0 0 0

L6'L,cGOrCI 31 0 0 0 0 03 0 0 0

PROC 0 1 0 0 13 0 0 0 0 0 0

30. 0P T 11 0 03 0 13 0 0 0 0 0

[DO.STA 2 2 13 0 0 0 0 0 0 0 0

34



3. Dynamic Raw Data

In order to weigh- the static data based upon the sample test runs,

two additional special compiler versions were constructed (one for AED and

one for J3B) which output statistics showing how many times each compiler

procedure was entered during the test run. Samples of the raw data

obtained by these means is given below. In each case, only the first page of

output is presented as a sample, whereas the actual output included about

8 pages for each compiler. The first example page of data is from the AED

compiler, and the second is from the J3B compiler.

346



AED

r'.:CCEDLIRE UAFLLS STAT ISTI CS FiT EX IT FRUMit PHHA5E

1-1IU1E. O.F FRI-JCEDLUf.EE. 1:CE

;'1IJII,:IE OF NRMAI.I*FL R:ETURN:S = 5:49;.-3*::

MAI N HT LLICH I ON 12000UC C_:FLLEi) 19 F:ETLINiED '3
HEI r-I I f FIT LU:CH F I ON I P.'-.F 8 CAFLLED 1 ,1JURNIHED 1
REDINI FIT LUICAFT [01 cii :C2@~E CtIILLE..D 19 WE FLIFTIE1. 1
C01r.gi-IF4a. 1-I i L l :H T1111- 1:::,eiC-I -ILLE1I 4, 14'E TUlR ED 4
FHH%.E I I-IT Luc:, I 114 N .X39 0 CAFLLLIJ 1 , FEYUR~NED 1
FE;ET H-iT LCIC:f TII 101.C.4 1 FILLED I ,RETUIIRNED 1
FG:..HMI iT LLII::FT 10- 1H j 4 cFILLED 1 R,~ETURN1ED 128
FF:EIEM NT LCAFT I ON iCB:98 C:HLLE1tI 1c. :, RE TURNED 120
FRET HT LIC:FT I Of 1 70~9C L:FLLED IW.4 RETLIRNED 1 504
FRED I LCCT I0 Oille ji:18C:HLLED 199 RETW~NED 19
SHORP:T$ I-:l LCAFT I ON 1 4i4c: CHi-LLED ipRETLII4ED 1
SET':.PL 1-11' LCH T 1 ONI -~4SLFILLED' IkTI:E
CE'i'L,.. H~T LuG.FT I ON 2±.:,40 C:ALLED 14P, FETUI4NED 14
WCIPRfFF I-IT LuC:ICT I OrN dL.L,38E LUiLLED 18,D. RETURNED '3
SET[!f1. HT LL'HC-I 101'A48 C:ALLED I , RcrLIFRI'iED I
IiITPH1 tiT LULHTIUNT 10- 2561C CAFLLEDI 1 RETUII 1
,$ZTF IR AE FT LOC'C.FIT I ON1 1 EE..34 CAFLLED 9, R:ET URIEI 2
S.ET $.T K HT LOCAITIONI 223F4 C:,-LLED I ,RETURNED 1
SETRTU*1 HT LOCAFT ION aE: 1 *,--1.: C CALLED' I , PETLRNED 1
SHR:SP I LOCATION 14111-7+ CALLED 27101 FPE TURNIED 2710
FR.EC tiT LOCAFT I iIN I .DDC CAFLLED3 27., RETURNED e716
FREE HT LOC:FT I ONl I EEC: GAFLLED 2'980 E::,ETUF.NED 2988
SETCH: viT LCHFT I ONr L4.6' L:FLLED 19 , ETUtiPNED 1
S.ET I TM FIT LUI:.FT I ON 2:A WS CAFLLEDJ I ,0MULRNED 1
TARGi 2 HT LICAT I O -'1 L'SO I..HLLED 1 K:ETLIRNED 1
Col~c: FIT Lu~l-:HT I0 OI j W:3 CAFLLED '41 RETLURNED 24
T:'T'!§--. FIT L.OC.FIN 101 26-3'* C:HLLLD 19 w ETURNED 1
W-1IST I riT LCICAT 1011 1 '- '?'2 GALLED 1PRETURN ED 1
ISITEN HYT L'CIT I CIN "-*7P24 C:ALLED 7, FETUI4IED 7
STAITE FrT LCAT 1 LINI &._E8EA8 CHLLED 9 RETURFNED 7
1Nllk RT HT -i.OLLHT I ON 11 £:3D C CAFLLED '.0 1 4, P RETURNIED 914

RFl _ t 0 LI'C FIT I ON 1 421'C CAFLLED :-"?:vP E TUR NE D 9.89
S. --.EARC Hr L00.Fi 1ON1F3' C.HLLED 13,:' RETURNED 1
3. 1-oII HFr LL'-l-.HTI I t1 C-4 10 U C.HLLED 12, RETUPIIED 12

S. kPl E.,T FIT LI"CCHT 101 3E L '3 CHLLEtI 12, FETURNED 12
*S. :.t iE:-..T HT LFC.FIT I111 )jii CALLED F:ETURN1ED 24

PHi-.i FT L.LII:FITIN4 901 A4c_8 -:FILLED 1 9 F:LTWiRNED 1
I NTFRE riT L.LIC.TION I -'E74 L:FiLLLD 4, :E TLIRtiIED 4

IEIRFE tiIT LuII_.TI101I - 1119 0 CAFLLED' L:p &ETUKIlED I-,
FF': OiT LCAFT I CIII 6 t1 C I-FILLED _'eto RETURNIED 226
RBSET FIT Luc.FiTric- al ~4 6 C L.HLLED ;. i RETUFRNED 1
!NlT i 1 i -T LL'L.HT I Ciri I tC - CA':LLED 1I , &ETUiRNED 1
I. ':..EF*.C t-IT LOICAFTION 14940. GAFLLED '5:; R:ETURNED 221
I. C.OPY i-IT L'CIT 1 COh 1 4;75C. GAFLLED *5- RETURNIED t.53
I . FIFS s -iT LIC.FT 1011 145FE L:HLLED i E2 9 RETURNED 154
I DENT H-T LOCAT I ON IB0'8S CALLED 29 iP RE TURED 29?

347



J33
* PWe(CEDUPE CALLS STA71STICS AT EXIT FROM P.EAC

NumAER OF Pi~oCFrnoWE5 TRACED) z 5
NUMAER OF CALLS TRACFU = llboo
NUMBER OF NORMAL RETURNS 116461

MAIN AT LOCATION 1464C CALLED 1,RETURNED 0
AEDINIT AT LOCATION 55A38~ CALLED 19RETURNED I
AEDIN! AT LOCATION 5C410 CALLFD 1.HETURNED I
T.COMP AT LOCATION 278R9C CALLEDO 19RETUIINED I
U.IDAT AT LOCATION ?7F4C CALLED 19RErURWE I
FREMEN4 AT LOCATION 56160o CALLEO loRFTURNE) I
QETMEM AT LOCATION 19F~e CALLED 1HRETuRNED I
IsFIL AT LOCATION 224b4 CALLED 1,HETURNE) 1
fl.INTP AT LOCATION 127AC CALLED 29HETURNEO p
rFNRH AT LOCATION b3n00 CALLED 1,HFTUNNED I
U.FREZ AT LOCATION IA484 CALLL) 1415,RETUkNEU 1415

U,,FHFF AT LOCATTON' lA9?R CALLED 104279RETURNED 11$27
Li.FI.P AT LOCATION 19F44 CALLED f.HFTURNEf 7
UAFHFT AT LOCATION IA740 CALLED 17909HETURNED) 1790
AIPNFIL AT L.OCATION 53FIoC CALLED 79RETURNE) 7
APOPEN AT LOCATIO1N 5UFb8 CALLED 11e9iFTORNED 11
MAKEFL AT LOCATIONJ 59FF8 CALLED 119RETURNE) 11
RDWROP AT LOCATION bA004 CALLED 119PFTURNED 11
OPNOSK AT LOCATION 599AC CALLED 119RETUPNEI) 11
COPYC AT LOCATION 52fl0 CALLED 1U9HFTJHNE 12
OPNCMS AT LOCATTON bD4FO CALLED) ll*RFTURNEO) 11

1J.FWFC AT LOCATION IA4bC CALLED ?o.HETUWNED ?fl
SFVMT AT LnCATION 5A?2C CAL.LED) 119PFTUkNE,.* 11
PUSHOFI AT L-OCATION 53F64 CALLED 79RETIJHNED 7
SPSITM AT LACATTON b4QOn CALLED 14*wETUNEO 14
FOPTS AT L(,CATTON 273I)C CALLED 19HETURNED I
Cr04APG, AT LOCAT1iN 'bF90 CALLED 19RFTU04NEOi 1
U.SCDA AT LO)CA7TON- IA004 CALLEiD 19HETuRNE) I
TPwHO6 AT LOCATTON 277?4 CALLED 1.RFT(UHNE) 1
T.LEX AT LnCATTON 15A$44 CALLEo 1,RFTLJPNEI) I
(EfTtIS AT LOCATION b3viDi CALLED 29IFTJ)lNEL

TIPSGr? AT LOCATION I"F7C CALLED 19HErtIRNED
FOTITLE Ar LOCATION 14?hO CALLEI) 19NFTIRNED
LINES.e AT L.OCATTON 140FC CALLED) hN~tURNE) 1
.,FlTu AT LOCAION 53680 CALLED 19RETUR~NED
TTARS AT LOCATION Id164 CALLED 19RETURNED I
I ,CO)Kf) A T LOCATION 27954 CALLED) 9*WFTlINNpr) 9
L.CSYM A T L)C AT T ON 2 f'%,C CALLP-0 1,RFTIJRNE) D
1. *LOIJS A T LOCaTION 1 60E 4 CALLED bdH9 F TONE1, 62
j.,UHAS AT LOCATION 16CF4 CALLHD I1'9,HETUNEO, IlQ'
L.FPNDS AT L-OCATION lh474 CALLED 31069HETURNED 3106

348



MISSION
Of

Rome Air Development Center

RADC is the principal AFSC organization charged with
planning and executing the USAF exploratory and advanced
development programs for electromagnetic intelligence
techniques, reliability and compatibility techniques for
electronic systems, electromagnetic transmission and

U reception, ground based surveillance, ground
communications, information displays and information
processing. This Center provides technical or
management assistance in support of studies, analyses,
development planning activities, acquisition, test,
evaluation, modification, and operation of aerospace
systems and related equipment.

Source AFSCR 23-50, 11 May 70

.. .. ......e .n ,


