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ABSTRACT

This paper 15 an initial progress report on the development of an
interactive system for verifying that computer programs meet given formal
specifications. The system is based on the conventional inductive assertion
method: given a program and its specifications, tr.» object is to generate the
verification conditions, simplify them, and prove what remains. This system
addresses two aspects of software improvement of extreme importance to the
military: increase in the quality of software and decrease in the cost of
producing high-quality software. The important feature of the system is that
the human user has the opportunity and obligation to help actively in the
simplifying and proving. The wuser, for example, is the primary source of
problem domain facts and properties needed in the proofs. A gerral description
is given of the overall design philosophy, structure, and functio. ! components
of the system, and a simple sorting program is used to illustrate both the
behavior of major system components and the type of user interaction the system
provides.
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INTRODUCTION

In many computer application areas, the consequences of a program not
performing as intended can be quite costly or damaging. The goal of thls
resesrch is to develop an interactive system for proving that programs are
consistent with precisely stated specifications. A proved program, therefore,
will always perform correctly if the specifications are an sdequate reflection
ot the actual intent of the program. The purpose of the verification system
described here is to provide an integrated set of automatic and interactive
facilities that make it possibla to construct a proof that a program s
consistent with given specifications. The human user of the system, rather than
the system itself, retains primary responsibility for the proot of his program.
It is assumed that the user is highly knowledgeable in the domain of the problem
that his program is to solve, in programming, and in the methods of proof

supported by the system.

Previous experience with actual proofs of a variety of programs and with
various experimental program verification systems seems to support three
preliminary conclusions. First, proofs of significant programs are possible.
Second, autometic program verifiers can be of considerable help in proving real
programs. Third, program proof methods ca. best be exploited if the proof can
be approached on a segment-by-segment basis that reflects the structure of the
program.  Probably the single example that most strongly supports these
conclusions is the proved verification condition generation program of Rugland
(1973). The entire program consists of 203 procedures, most of these occupying

less than one page inciuding assertions. Two factors contributed significantly

to the completion of this proof. First, the program was written as a large




collection of small procedures so that the proof could be done one procedure at
a time. Second, an automatic verification condition generator [Wang 1973] was
used to construct the lemmas that were sufficient for a proof. Although all of
these lemmas were proved manually, a subjective evaluation indicated that about

707 of them were sufficiently simple to have been proved automatically.

Further support for the three preliminary conclusions is provided by the
achievements of several existing program verification systems (see Waldinger and
Levitt [1973] and references therein). Programs such as sorting, pattern
matching, unification, array rearrangement, and finding primes via a sieve have
been verified with various amounts of effort, either with no human assistance or
with very little assistance. The statement by Waldinger and Levitt [1973, p.
169) that “"there is no shortage of interesting work related to our own" also

applies to us.

This paper is an initial progress report on the development of o
verification system whose ultimate goal is to be wn effective tool In
constructing rigorous proofs of significant programs. The design philosophy of
the system is based on the belief that large parts of the total proof of actuel
programs can, and should, be done automatically, but also thet, in the
foreseeable future, some parts will have to be done by humans. This seems o
proper response to the genuinely open-ended nature of facts, theorems, end
deductions needed to verify realistic programs. Thus our design strategy haes
been to provide automatic capability for the proof process where practical, and
to rely on interaction for manual intervention otherwise. If a program cen be
verified with no human assistance, then we shall applaud the system's

achievement. We will be quite pleased, however, if the system provides
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sufficient assistance so tyat the verification can ba completed with minimal

human hints or proof stept.

SYSTEM STRUCTURE

The system is based on the conventional inductive assertion method of
proving properties of programs, and consists of five major components: a
standard text editor, a prcgram and assertion parse- for Pascal programs, a
verification condition generator, a simplification and substitution packege, and
an interactive theorem prover. Some preliminary work has also been done on an
interpreter that is capable of running programs on both actual and symbolic
data, but the interpreter has not yet been exploited in any significant way.
The entire system is Lisp-based and runs as a large program on a PDP-10
computer. The system is implemented primarily in Reduce [Hearn 1971), a

Lisp-based symbolic mathematical system, but certain components are written

directly in Stanford Lisp 1.6.

One of the unique features of this system is the extent to which we have
been able to use previously written and highly developed programs as major
system components. First of all, Reduce, in addition to its powerful,
well-daveloped algebraic manipulation capability, has served as an effective
language for system implementation, and will permit the system to be as portable
as Reduce itself. Qur PDP-10 implementation of Reduce also has a built-in link
to a text editor, and this provides the editor for the verification system. The
Pascal parser, developed at USC Information Sciences Institute, was written in

Reduce. The verification condition generator is essentially the Pascal
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generator of Igarashi, London, and Luckham [1973], originally developed at
Stanford but now existing in Lisp 1.6. The simplification and substitution
package was developed at ISl, drawing, in part, on the algebraic manipulation
capability of Reduce. The theorem prover is a variation of the prover described
by Bledsoe and Bruell [1973) The prover originally was developed at the
University of Texas at Austin in UT-Lisp, and was translated into Stanford Lisp
1.6 for incorporation into the system. Although the prover has been modified to
make it more effective on the types of theorems encountered in proving programs,

its basic structure and interactive philosophy remain valid and unchallenged.

Currently, the normal mode of using the system is to invoke interactively
the system components in the following sequence: create the program end
specifications, parse them checking for syntax errors, generate verification
conditions, simplify them, and prove those that do not simplify to TRUE. The
user also can descend directly into Reduca or Lisp. The following sections
describe the main ideas of each of the major system components and illustrete

their use In proving the sorting program shown in Figure 1,




FUNCTION LOCMAX(A:INTARRAY;|,JINTEGER):INTEGER;
ENTRY | LE 5
EXIT (I LE LOCMAX(A,,J)

AND (LOCMAX(AL,J) LE J)

AND (A[LOCMAX(A,l,J)] = AMAX(A,L));

FUNCTION SORT(A:INTARRAY;N:INTEGER):INTARRAY;
ENTRY N GE 1;
EXIT ALL 1{ (1 LE ) AND (i LE N) IMP
SORT(AN)[1] = AMAX{SORT(AN),1,1))
AND APERM(SORT(AN)A,1,N);
VAR B:INTARRAY;
BEGIN
B = A;
K :=N;
ASSERT ALL I {(K+1 LE 1) AND (I LE N) IMP B[1] = AMAX(B,1,1))
AND APERM(B,A,1,N)
AND (K GE 1) AND (K LE N);
WHILE K > 1 DO
BEGIN
B := ASWAP(B, LOCMAX(B,1,K), K);
K:=K-1;
END;
SORT := B;
END; .

Figure 1. Sample sorting program with specifications.
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PROGRAMS TO BE VERIFIED

The system proves assertions that have been inserted into Pascal programs.
The srecific choice of Pascal is not an essential point; what matters is that
the language features adopted in Pascal seem important and (with some
exceptions, of course) representative of those in commonly-used programming
lanjuages. We believe that extensive subsets of other languages could be made a
part of the wverification system by using an appropriate parser, and either

writing an additional veritication cn~dition generator or modifying the current

one.

The language subset of Pascal considered so far allows programs to be
constructed from the following syntactic units: assignment, conditional, while,
repeat, for, compound, go-to, and null statements; recursive procedure and
function definitions and calls; one-dimensional arrays; arithmetic, relational,
and Boolean expressiors; and labels. Pascal has been extended to allow certain
types of operations that are not ordinarily possible. For example, in the
program in Figure 1 the functions SORT and ASWAP each return complete Integer
arrays as values; furthermore, array-valued assignments such as B (=
ASWAP(B,LOCMAX(B,1,K),K) are permitted. These operations are a simple means of
introducing modularity and abstraction into a program. This typc of programming

is discussed in more detail by Good (1974)

A second extension to Pascal allows ENTRY, EXIT, and ASSERT statements,
which are the means of stating the speci‘i~ations to be proved about the

program. A proof shows that the ENTRY assertion slways implies the EXIT

assortion if the program terminates. The ASSERT statements supply the




intermediaste assertions for a proof by inductive assertions, and esch loop In @
program must contsin at lsast one ASSERT statement. To ensure this the system
requires an ASSERT statement to a pear (a) before every WHILE and before every
FOR statement, (b) as either the first or last statement of the repeated
statements in a REPEAT statement, and (c) after every label. Otherwise, the
placement of assertions is optional. (The assertion before a WHILE ¢r FOR
statement is considered to be just before the “test” in eack case.) The
expressions following the ENTRY, EXIT, and ASSERT statements are Boolean-vaiued
expressions ©0f Pascal augmented by implication, logical equivalence, and
quantification.  Because function calls are permitted in expressions (which
thereby also permits arbitrary predicates with appropriste parameters), this
assertion language allows us tc express, in principle, all tha' is needed. In
practice it is somewhat limited, nontransparent, ard inelegant, out not overly

burdensome. Extensions and additional notations are planned.

In the SORT function example the EXIT assertion specifies a sort into
sscending order. The function AMAX(AlJ) denotes the value of a maximum
element in the array segment A[l ... J], and APERM(AB)J) states that array
segment A[l ... J] is a permutation of B[l ... J. The system has no
built-in knowledge about these functions, and appropriste facts about them will
be supplied interactively during the proof. The system does have some built-in
simplification rules for ASWAP(A,,J) which swaps elements | and J in array A.
Notice also, in this example, that ENTRY and EXIT assertions have been stated
for the wuser-supplied function LOCMAX without giving its actual code. In

proving SORT, all we need to know about LOCMAX(A|lJ) is the specification that

It returns the locution of a maximum element in the array segmeri A[ll ... J]




(which specification we have separately proved for sevaral varsions of code for
LOCMAX).  This facility permits the top-down design and top-down proof of

programs.

VERIFICATION CONDITION CENERATOR

The verification condition generator is an Implementation of the axioms and
rules of inference which constitute the axiomatic definition of Pascal (Hoare
and Wirth [1973], and Hoare [1971)). By invoking these semantic rules, the
consistency question between program and specifications is reduced to proving e
set of mathematical lemmas sufficient to show that the ENTRY assertion of the

program always implies the EXIT assertion.

The use of an axiomatic definition of a programming language as the basls
of a verification condition generator has been described with numerous examples
by lgarashi, London, and Luckham [1973) Essentially, the idea is to implement
the axioms and rules of inference in such a way that for each type of program
statement, exactly one axiom or rule of inference is applicable to the type. It
is then possible to generate recursive subgoals  deterministically, ie., to
compute without search, sufficient lemmas to imp'y the desired properties about
the program. For example, the ENTRY assertion of SORT always implies the EXIT
assertion if the three lemmas in Figure 2 are satistied. These verification

conditions are the actual output of the verification condition generator.

Verification condition generators have, of course, been constructed in

other ways. Both the present subgosling and the backward substitution can be




replaced by various methods. Furthermore, other formalisms besides axiomatic

definitions, such as state vector approaches, can be the basis for generating

the lemmas, Although the resuits of the various methods may be superficlally

different in appearance, the results are logically equivalent, 8s, of course,

they must be.

There is also an alternative verification condition generator in the

system.  Written by Musser and based on forward symbolic evaluation, it

processes certain Reduce programs. The parsing of these Reduce programs Is done

by the regular Reduce translator. Further details and examples are in London

and Musser [1974].




VCl:

N GE 1
IMP ALL T ((N+1 LE 1) AND (I LE N) IMP A[I] = AMAX(A, 1, 1))
AND APERM(A, A, 1, N)
AND N GE 1
AND N LE N

vC2:
ALL I ((K+1 LE 1) AND (I LE N) IMP B[I] = AMAX(B, 1, I))
AND APERM(B, A, 1, N)
AND K GE 1
AND K LE N
AND K>1
IMP 1 LEK
AND (1 LE LOCMAX(B, 1, K)) AND (LOCMAX(B, 1, K) LE K)
AND B[LOCMAX(B, 1, K)] = AMAX(B, 1, K)
IMP ALL | ( ((K-1) « 1 LE I) AND (I LE N)
IMP  ASWAP(B, LOCMAX(B, 1, K), K)[1]
= AMAX(ASWAP(B, LOCMAX(B, 1, K), K), 1, 1))
AND APERM(ASWAP(B, LOCMAX(B, 1, K), K), A, 1, N)
AND K-1 GE 1
AND K-1 LE N

VC3:
ALL I ((K+1 LE I) AND (I LE N) IMP B[I] = AMAX(B, 1, 1))
AND APERM(B, A, 1, N)
AND K GE 1
AND K LE N
AND NOT (K>1)
IMP ALL 1 ((1 LE 1) AND (I LE N) IMP B[I] = AMAX(B, 1, I))
AND APERM(B, A, 1, N)

Figure 2. Verification conditions (lemmas) for SORT in Figure 1.




SIMPLIFICAT "N AND SUBSTITUTION

The first step in proving the verification conditions is the application of
a8 simplification and substitution package. Each verification condition s
assigned a unique name and is processed individually under interactive control.
The package consists of (a) a symbolic evaluator that applies reduction rules to
expressions  within the verification condition and (b) an interactively
controlled substitution routine that s triggered by equalities in the main
hypotheses of the verification condition. Working together, the evaluator and
substitution routine schieve many of the simple proofs and reductions that

typically arise in proving programs.

Symbolic evaluation is performed on the integer-valued operators + (n-ary),
- (unary and binary), s (n-ary), DIV, MOD, EXPT (power), MAX (n-ary), and MIN
(n-sry). Expressions are represented in pref«x form throughout the evaluation,
and each i1s evaluated to a standard form. Associative operators are represented
in n-sry form, and the arguments of commutative operators asre placed in e
stendard order. For example, both MAX(B,MAX(A,C)) and MAX(C,A,B) become the
prefix expression (MAX A B C). The algebraic manipulation also collecta
constant terms insofsr as possible, so that, for example, (K+l) -1 reduces to K.
This is the kind of simple reduction that can remove a great deal of the clutter

often found in verification conditions.

The evalustor also has a limited capability for symbolic manipulstion of
srraya.  Currently, there are three oparations involving arrays, all written ee
functions: referencing an array element (ASUB), changing the value of e single
element (ASET), and swapping two elements (ASWAP). Examples of array reductions

are
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ASUB(ASET(A,,X),) reduces to X
and
ASUB(ASWAP(A,1,J),)) reduces to ASUB(A,J)

where ASUB(A,l) denotes A[i] and ASET(A,iX) denotes A after doing A[l] := X,

Normaily, ~Jst of the symbolic evaiuation of a verification condition s
invoived with Boolean-valued operators. These include AND (n-ary), OR (n-ary),
NOT, IMP (imphes), EQV (iogical equivalence), SOME (there exists), and ALL (for
ali), as well as the relational operators < (less than), LE (less than or
equal), > (greater than), GE (greater than or equal), =, and NE (not equal).
Any expression of the form “x operator y" whose operator Is <, LE, > or GE Is
reduced to an equivalent prefix form (LE O z). Equalities x = y are reduced to
(= 0 x-y) and similarly for NE. The Boolean AND operator checks for
inconsistencies  among  conjunctions of  relational expressions, eliminates
redundancies, and converts certain inequalities to equalities. For example, (N
< 1) AND (I LE N+1) is converted to | = N+l. The evaluator currently does not

perform any kind of transitivity analysis on the relational expressions.

The evaluator reduces verification conditions (and implications in general)
to the form (HI AND ... AND Hn) IMP (C1 AND ... AND Cm). Once in this form,
conclusions that match hypotheses are eliminated automatically,  Conclusions
that are relational expressions are negated and ANDed into the hypotheses. If a
contradiction is attained, the relational conclusion is proved and consequently
eliminated.  Equalities that are hypotheses in the top-level implication of the
verification  condition invoke possibie  substitutions. Certain  types of
equalities cause automatic substitution throughout the verification conditlon,

while others aliow for interactive control of the substitution. An example Is
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in \'C2 of SORT where the substitution

SUB: B[LOCMAX(B,!K)) := AMAX(B,1,K) ?
is proposed. The user may respond to go ahead with the substitution as
proposed, reverse its direction, not do it, or examine the equality for other
possible substitutions. The user may also specify that the substitution be made
in hypotheses only or conclusions only. Substitutions in the hypotheses cause

the equality that triggered the substitution to be eliminated.

Because substitutions may require interaction, it s important that g
smooth user-system interface be provided. Toward this end, the evaluator and
the substitution routine have been designed to give an optional running
commentary of their operation so that the user can be kept in proper context.
Considerable effort has been made to print expressions in a readable, pleasing
form. Also, a special optional CRT display package and interaction capability
has been developed for observation and interaction. The CRT screen is split
into two parts, one containing the expression being processed and the other o
scrolling workspace for the user-system dialogue. The evaluator and the
substitution routine are also designed so that they can be manually interrupted

and restarted or redirected.

The simplified verification conditions SVCl, SVC2, and SVC3 for SORT are
shown in Figure 3. These represent a useful simplification over the originals.
(In SVC2 the interactive response to the proposed substitution was NO.) It is
these simplified verification conditions that are passed on to the theorem

prover.

e R s B % o P R T e .



SVCl:
1LEN
IMP APERM(A, A, 1, N)

SvCe2:
(H1) 1 LE LOCMAX(B, 1, K)
(H2) AND LOCMAX(B, 1, K) LE K
(H3) AND K LEN
(H4) AND 2 LE K
(H5) AND APERM(B, A, 1, N)
(H6) AND ALL | ((I LE N) AND (K<I) IMP B[I] = AMAX(B, 1, 1))
(H7) AND B[LOCMAX(B, 1, K)] = AMAX(B, 1, K)
(Cl) IMP APERM(ASWAP(B, LOCMAX(B, 1, K), K), A, 1, N)
(C2) AND ALL I ( (I LE N) AND (K LE 1)
IMP ASWAP(B, LOCMAX(B, 1, K), K){!]
= AMAX(ASWAP(B, LOCMAX(B, 1, K), K), 1, 1))

SVC3:
APERM(B, A, 1, N)
AND ALL | ((I LE N) AND (K<I) IMP B[] = AMAX(B, 1, I))
AND K LE N
AND | =K
IMP ALL I ((1 LE N) AND (1 LE 1) IMP B[I] = AMAX(B, 1, I))

Figure 3. Simplified verification conditions for SORT.
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It should be pointed out that there is currently some significant overlep

between the tasks performed by the simplification Package and those done by the
theorem prover. An appropriate divizion butween these two components remains a
subject for further study. Also, it is worth noting that the Pascal
verification condition generator does not use the simplification package during
the generation process, as s done by other verifiers and also b, Musser’s
verification condition generator. Interestingly enough, the separation of these

two components was originally expected to cause problems, but so far it has not.

THEOREM PROVER

Those verification conditions that do not simpli, to TRUE are passed on to
the interactive theorem prover. Briefly speaking, the prover is a natural
deduction system that proves theorems by subgoaling (splitting), matching, and
rewrniting. It also utilizes semantic tables to help direct its search. The
theorems (and subsequent subgoals) are shown on the user terminal in s naturasl,
easy to read form, and the user s provided with severasl interactive commands

for communicating with the prover,

The way in  which ths prover incorporates wuser interaction s the
characteristic that makes it particularly well suited for proving verification
conditions derived from real programs. The prover is based on natural
deduction, as opposed to a “less natural® process such as resolution. For
example, deductions asre carried out directly in terms of the operations given In
the verification condition rather than in tarms of aquivalant clsuses composed

of ANDs, ORs, and NOTs. When the human user desires to intersct with the
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prover, the dialogue is expressed in terms that are natural and convenient for
the human instead 2! in those more convenient for a computer. In other words,

the computer supports the human rather than vice versa.

The interactive policy of the prover is based on the premise that !¢ the
prover can construct a proof automatically, it will do it ‘airly quickly, For
each theorem or subgoal, a time Imt is set; if a proof has ro  Leen
constructed in that time, the prover stops and waits for interactive direction.
The user then has available a number of commands for displaying the theorem and
the details of what thne prover has done so far. Using these commands, the user
isolates the difficulty and then can allocate more time, direct the prover into
a new line of re. Ing, supply additional information, or simply assume that

the current subgoal is true and go on to another part of the proof. Typicaily,

proofs of wverification conditions will fail initially because they do not

contain enough information for a rigorous proof. A very useful feature of the
prover is that this additional information need not be stated initially, but
rather can be supplied at the point in the proof when it is realized that this
is necessary. This prevents the curious spectacle of the user having to prove
the theorem himself before he asks the prover to do s0, in order to determine

what additional theorems and definitions will be needed.

To make the prover more useful in proving verification conditions,
additional  facilities have been added for handling relaticnal expressions
(involving <, LE, etc.) and proofs by cases. For variables that appear in
relational expressions, both upper and lower bounds are computed. When a
relational expression is discovered, as a hypothesis, the bounds on these

variables are wupdated accordingly. This interval information represents the
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“state of the world" for these variables at that time and serves as additional

hypotheses to the theorem or subgoal being considered. For example, if a
contradiction such as J IN [K, K-1] occurs, this represents a false hypothesls
and successfully terminates the proof. Also, if the bounds | IN [N+1, INFINITY]
are already established and the hypothesis | LE N+l is discovered, the updated
bound 15 | IN [N+l, N+l], and this is treated as the equality | = N+l. These
bounds are used not only to prove conclusions that are relational expressions,
but also, more importantly, to give partial results that initiate proofs by
cases. For example, suppose we have a theorem of the form
H
AND (I IN [K+]1, N] IMP C)
IMP C

and we know that | IN [K, N]. The prover will recognize that it can establisn »
partial result for the theorem in the case for | IN [K+l, N} Then, ty
comparing the interval [K+1, N] with the bound [K, N] for I, it will conclude
that the remaining case i1s | = K and attempt to reprove the theorem for that

case. This type of situation frequently arises in proving assertions that are

loop invariants,

The following summary of the proof of the three simplitied verification
conditions in Figure 3 indicates the general character of the prover and its
policies toward interaction. A detailed view of the prover (being applied to
topology theorems rather than verification conditions) is given by Bledsoe and
Bruell [1973), and a complete descriptior of variable bounding methods and

proofs by cases, which have been added for program verification, is given by

Bledsoe and Tyson [1974a,t).




SVCl, SVC2, and SVC3 ars passad to the provar one at a time st the
discretion of the user. Fnr SVC1 there is nothing the prover (or & human
prover, for that matter) can do without further information sbout APERM. What
APERM(AALN) says is that A[l ... N] is a permutation of All ... N), and
the user must recognize that this is a universal fact about APERM. This problem
domain tact i1s given to the prover in the form of a reduction rule similar to
those used by the symbolic evaluator for built-in operations:

(R1)s APERM(A,A,1,N) reduces to TRUE.
The actual sequence of events is (a) SVCI is passed to the prover, (b) it tries
to prove it and fails, (c) the user supplies the new reducticn rule, snd (d) the

prover tries again and succeeds.

SVC2 comes from the loop of the SORT function, and its proof is the most
involved.  The prover first automatically breaks the proof into two subgoals,
one for conclusion Cl and the other for C2. The prover fails on Cl until the
user supplies an additional hypothesis that gives conditions under which
swapping array eiements preserves permutation;

APERM(B,AR,S)
ANDRLEX ANDXLE S
ANDRLEYANDYLES

(AH1) IMP APERM(ASWAP(B,X,Y),AR,S).

sR1 is stated directly in terms of A to improve readability. We could just s
well  have used APERM(X,X,Y,Z). This same approach is used in this psper for
subsequent inputs to the prover.
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Once this is given, the prover realizes that it could use the conclusion of AHI

to prove the main conclusion Cl if it can prove the hypothesis of AHl, which
amounts to
APERM(B,A,1,N)

AND 1 LE LOCMAX(B,1,K) AND LOCMAX(B,1,K) LE N

AND | LE K ANDK LE N.
The prover aulomatically proves these new subgoals from HS and from H1-H4 which
have been c. .erted to the form

LOCMAX(B,1,K) iN [1,K]

N IN [K, INFINITY)

K IN [MAX(2, LOCMAX(B,1,K)), N},
Thus, the proof of Cl is done automatically with the addition of one

user-supplied hypothesis.

The proof of conclusion C2 requires two different, user-supplied
hypotheses. With the addition of these two, AH2 and AH3, the theorem to be
proved becomes
(AH2)  ALL CUX,Y (UNE X AND U NE Y IMP ASWAP(CX,Y){U] = C[U))

(AH3) ~ AND ALL C,UV,X,Y (ULE X ANDX LEV ANDULE Y AND Y LE V
IMP AMAX(ASWAP(C,X,Y),U,V) = AMAX(C,U,V))

(K1) . ND 1 LE LOCMAX(B,1,K)

(H2) AND LOCMAX(B,1,K) LE K

(H3) AND K LE N

(Ha) AND 2 LE K

(H5) AND APERM(B,A,1,N)

(H6) AND ALL | (K+1 LEIANDILEN IMP B[l] = AMAX(B,1,1))

(H7) AND B[LOCMAX(B,1,K)] = AMAX(B,1,K)
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(C2) IMP ALL | (K LE | AND I LE N)

IMP ASWAP(B,LOCMAX(B,1,K),K)[1]

= AMAX(ASWAP(B,LOCMAX(B,1,K),K),1,)).
(Actually, the quantified variables are replaced by Skolem variables, but that
need not concern us here.) AH2 gives conditions under which array subscripting

is insensitive to swapping elements, and AH3 gives similar conditions for AMAX.

Once AH2 and AH3 are supplied, the prover eventually adopts a strategy of
proof by cases, one case for | IN [K+1, N] and the other for | = K. The proof
for 1 IN [K+l, N] requires establishing a chain of equalities involving the
conclusions of AH2, AH3, H6, and C2. Although the prover has the machinery for
building  this chain, it does not invoke it sutomatically because the
chain-building process is combinatorially explosive. The user, however, can
explicitly direct it to try to build an equality chain. Once the user so
directs, it builds the chain noting the hypotheses of AH2 and AH3 that must be
proved in order that the chain be valid. These hypotheses are

| NE LOCMAX(B,1,K)

AND | NE K
from AH2,
1 LE LOCMAX(B,1,K) AND LOCMAX(B,1,K) LE I
AND 1 LEK AND K LE |
from AH3, .nd

K+1 LEIANDILEN
from H6. These conditions are required to hold only for the case | IN [K+1, N)

and are easily proved automatically.
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The proof of C2 for the case | = K begins with ths automatic substitution

of K for . C2 then becomes
ASWAP(B, LOCMAX(B,1,K),K)(K]

= AMAX(ASWAP(B,LOCMAX(B,1,K),K),1,K)
which automatically is reduced to
(C2") B{LOCMAX(B,1,K)]

= AMAX(ASWAP(B,LDOCMAX(B,1,K),K),1,K)
by a call to the symbolic evaluator. Again the prover is interactively directed
to try an equality chain, which it succeeds in building using C2', AH3, and H7.
Once again the chain is conditional, requiring from the hypothesis AH3 the new
subgoals

1 LE LOCMAX(B,1,K) AND LOCMAX(B,1,K) LE K
AND 1 LE K AND K LE K.

These are proved automatically and the proof of SVC2 is complete.

The proof of SVC3 begins with the automatic substitution of 1 for K, giving
1LEN !
AND APERM(B,A,1,N) |
AND ALL | (2 LE | AND | LE N IMP B[I] = AMAX(B,1,)))
IMP ALL | (1 LE | AND I LE N IMP B[I] = AMAX(B,1,))).
The prover then automatically considers two cases, | IN [2N) and | = 1. The |
IN [2N] case follows immediately, and the | = | case requires only the

user-supplied reduction rule

(R2) AMAX(B,X,X) reduces to B[X),

and the proof of SVC3 is complete. |
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It should be noted that although some interaction has been necessary to
direct the prover in its selection of strategy, most of the interaction was used
to supply three additional hypotheses and two new reduction rules about APERM
and AMAX. This amount of interaction seems quite tolerable considering that no
information whatsoever about either APERM or AMAX was available to the prover,
or any other part of the system, prior to the interaction. We anticipate that
this example is typical of real programs in this regard, and that the main use
of interaction will be to supply the prover with these additional facts about

the problem dc.r.ain.

CONCLUSION

This has been an initial progress report on the development of an
interactive program verification system whose ultimate goal is to be an
effective tool in proving programs that solve significant, real problems.
Certainly, the sorting program proved here is not a large, complex program.
Nevertheless, we believe that its proof is, in two significant ways, typical of
the proofs that will be necessary for much larger programs. First, we believe
that, if we are to be able to prove large programs, such programs and their
specifications must be expressed in sufficiently abstract terms so that their
proofs can be carried out in terms of intellectually manageable segments.
Although the principles of abstraction, such as those discussed by Dahl,
Dijkstrs, and Hoare [1972], seem now to be fairly well accepted for programs,
little has been said of the need for abstraction in specifications. To keep the

proof at an abstract level, though, clearly both are necessary. The APERM,
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AMAX, and ASWAP functions of the sort program are amall, but representative,

Initial steps In this direction. Even these minor abstractions keep the proof
at a higher, more abstract level, thus msking It more auccinct though no less
rigorous.  Second, we believe thst proofs of large progrsms will require
information about the domain of the problem being solved, which Information wilil
not be stated explicitly either in the program or Ita apecificationa.
Currently, It seems highly desirable to allow thia informstion to reside In the
deta base of the user’s mind and to let him do the retrieval of the relevant
facts as the need arises, as was done in supplying the additionsl hypotheses and

reduction rules for the sort proof.

The current system clesrly needs considerably more work to make it en
“offective tool" for proving large programs. Significant aress In which
additional efforts are now being msde include Incorporation of more featurea of
Pascal, Inclusion of other languages, extension of the assertion language,
additional ways of exploiting abstraction, Improved syntax analysis facliitios,
reconsideration of the division of lsbor and degree of Integration among the
major system components, improved facllities for display of the proof,
Improvement of the interactive user-system Interface, and additionsl facliities
for managing complex proofs composed of proofs of a lIsrge number of small
Program segments. Aithough we now see many ways In which the system can be
Improved and are very enthusisstic about its eventual auccess, these insights
and this optimism are due ultimately to our having been able to bring together
several complex and sophiaticated, but diverse, software components, and to use

them in a highly flexible and dynamic experimental environment. it soome
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appropriate to close by recalling a portion of R. W. Hamming's 1968 ACM Turing

Indeed, one of my major complaints sbout the computer field
is that whereas Newton could say, “If | have seen a little
farther than others it is because | have stood on the
shoulders of giants,” | am forced to say, "Today we stand on
each other’s feet." Perhaps the central problem we face in
all of computer science is how we are to get to the
situation where we build on top of the work of others rather
than redoing s0 much of it in a trivially different way.
Science is supposed to be cumulative, not almost endless

duplication of the same kind of things. [Hamming 1969, p.
10]
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