
AD/A-002 279

AN INTERACTIVE PROGRAM VERIFICATION
SYSTEM

Dona. d I . Good , et al

University of Southern Calif or ni

Prepared for:

Advanced Research Projects Agency
National Science Foundation
Texas University

October I 974

DISTRIBUTED BY:

mi]
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

StCuPi ■ v CL»SSiric*TiON or THIS PAGE (Whtn Dim Cnifd)

REPORT DOCUMENTATION PAGE
1 REPO*T NUMBEB

ISI/RR-74-22
l OOVT ACCESSION NO.

4 T\J\.t 'and Subllllm)

AN INTERACTIVE PROGRAM
VERIFICATION SYSTEM

Donald't. Good, U of Texas at Austin & ISI
Ralph L. London, ISI
W. W. Bledsoe, U of Texas at Austin

READ INSTRUCTIONS
BEFO»E COMPLETING FORM

3 RECIPIENT'S CATALOG NUMBE«

AT>M- nn3,1,79
8 TYPE OF «EPCHT » PEdlOD COVERED

Research Report
• PERfORMING ORG. PEPOPT NUMBER

• CONTRACT rR GRANT NUMBERC»;

DAHC 15 72 C 0308

» PERFORMING ORGANISATION NAME AND AOORESS

USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90291

10 PROGRAM ELEMENT. PROJECT, TASK
AREA • WORK UNIT NUMBERS

ARPA Order No. 2223

II CONTROLLING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

Ti MONITORING AGENCY NAME » AODRESSO' dltltrmnt »root Conrrolllnf Oltlc»)

II. REPORT DAT!

(Scto^er 1974
O NUMBER OF PAGES

31
IS SECURITY CLASS, (ot l»l» nporl)

None
tSa. OECLASSIFICATION/OOWNORADING

SCHEDULE

1« DISTRIBUTION STATEMENT (ol M« Riporl)

Distribution unlimited. Available from National Technical
Information Service, Springfield, Virginia 22151.

17 DISTRIBUTION STATEMENT (ot Ihm mhtirmn ttffd In Block 10, It dllloronl from Koport)

li SUPPLEMENTARY NOTES

If KEY WORDS rConilnu» on rtvrt* mid» It nocftary mnd löanllly tiy block nimibmr)

Program verification, theorem proving, program proving,
correctness, simplification, reliable software, Interactive
system.

20 ABSTRACT (Conilnuo on rovorf »Id» It Tcoatary *nd idmmtlr by block numbor)

(OVER)

RMprortuc»d by
NATinNAL TECHNICAL
INFORMATION SERVICF

U S Department of Commerc«
SpnnRfielrt VA 2?i^\

DD 1 JANETS 1^73 EDITION OF I NOV6S IS OBSOLETE
S/N 0102-014- 6601

x SECURITY CLASSIFICATION OF THIS PAOE (Whan Data Bnlatad)

JlCuHlTY CLASMf lOTiow OF THIS POGE^WTun Data EnlaraifJ

ABSTRACT

This paper is an initial progress report on the development
of an iuferactive system for verifying that computer programs
meet given formal specifications. The system is based on the
conventional inductive assertion method: given a program and its
specificcfions, the object is to generate the verification con-
ditions, simplify them, and prove what remains. This system
addresses two aspects of software improvement of extreme
importance to the military: increase in the quality of software
and decrease in the cost of producing high-quality software. The
important feature of the system is that the human user has the
opportunity and obligation to help actively in the simplifying
and proving. The user, for example, is the primary source of
problem domain facts and properties needed in the proofs. A
general description is given of the overall design philosophy,
structure, and functional component of the system, and a sample
sorting program is used to illustra .e both the behavior of major
system components and the type of user interaction the system
provides.

'%-
ICCUNITV CLASSIFICATION OP THIS PAaifWhan Data tnlaraO

■ -- - ■ ■

Donald I. Good
University o(Te«as at Austin

and USC/lnformation Sciences Institute

Ralph L. London
USC/lnformation Sciences Institute

W. W. Bledsoe
University of Was at Austin

ARPA ORDER NO. 2223

ISI RR-7422
Off» .■ I')7J

A;. Interactive Program Verification System

INFORMATION SCIENCES INSTITUTIi

CSIVUKSITY OF SOUTHERN CALIFORNIA mr 4676 Admhiilty VCa)/Mariu.idel Re)/Calif(•m/a Onj'H

(2ti)822-nn

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED

 —^-»—.

r—r

This research is wholly supported at USC Information Sciences Institute by the
Advanced Research Projects Agency under Contract 0AHC15 72 C 0308 and is
supported at the University of Texas at Austin by the National Science
Foundation under Grants GJ-36424 and GJ-32269. The views and conclusions
contained herein are those of the authors and should not be interpreted es
necessarily representing the official policies, either expressed or implied, of
the sponsors or the United States Government.

ii

MMBB

/iBSTH/ICT

This paper is an initial progress report on the development of an
interactive system for verifying that computer programs meet given formal
specifications. The system it based on the conventional inductive assertion
method: given a program and its specifications, tr* object is to generate the
verification conditions, simplify them, and prove what remains. This system
addresses two aspects of software improvement of extreme importance to the
military: increase in the quality of software and decrease in the cost of
producing high-quality software. The important feature of the system is that
the human user has the opportunity and obligation to help actively in the
simplifying and proving. The user, for example, is the primary source of
problem domain facts and properties needed m the proofs. A ger ral description
is give i of the overall design philosophy, structure, and functio. 'I components
of the system, and a simple sorting program is used to illustrate both the
behavior of major system components and the type of user interaction the system
provides.

in

M^^MM

ACKSOWLEDCMENTS

Many people have contributed in various ways to the development of this

system. We are especially indebted to Raymond Bates, Peter Bruell, Lawrence

Fagan, Anthony Mearn, Shigeru Igarashi, David Luckham, Donald Lynn, David

Musser, and Mabry Tyson.

iv

■ -——'—i..-^.. —t-^-^-^■--^—.. , _...^._ . -.

INTRODUCTION

In many computer application areas, the consequences of a program not

performing as intended can be quite costly or damaging. The goal of this

research is to develop an interactive system for proving that program« art

consistent with precisely stated specifications. A proved program, therefore,

will always perform correctly if the specifications are an adequate reflection

of the actual intent of the program. The purpose of the verification system

described here is to provide an integrated set of automatic and interactive

facilities that make it possible to construct a proof that a program I«

consistent with given specifications. The human user of the system, rather than

the system itself, retains primary responsibility for the proof of his program.

It is assumed that the user is highly knowledgeable in the domain of the problem

that hi« program is to solve, m programming, and in the method« of proof

supported by the system.

Previous experience with actual proofs of a variety of program« and with

various experimental program verification systems seem« to «upport thre»

preliminary conclusions. First, proofs of significant program« are oossible.

Second, au'.omttic program verifier« can be of considerable help in proving reel

programs. Third, program proof methods ca., best be exploited if the proof can

be approached on a segment-by-segment basis that reflects the structure of the

program. Probably the single example that most strongly support« the«*

conclu«ion« is the proved verification condition generation program of Ragland

[1973]. The entire program consists of 203 procedures, most of these occupying

ess than one page including assertions. Two factors contributed «ignificently

to the completion of thi« proof. First, the program was written a« a large

1

MBM

wm^vm^m

collection of small procedures so that the proof could be done one procedure at

a time. Second, an automatic verification condition generator [Wang 1973] wee

used to construct the lemmas that were sufficient for a proof. Although all of

these lemmas were proved manually, a subjective evaluation indicated thet about

701 of them were sufficiently simple to have been proved automatically.

Further support for the three preliminary conclusions is provided by the

achievements of several existing program verification systems (see Waldmger and

Levitt [1973] and references therein). Programs such as sorting, pattern

matching, unification, array rearrangement, and finding primes via a sieve have

been verified with various amounts of effort, either with no humen assistant« or

with very little assistance. The statement by Waldinger and Levitt [1973, p.

169] that "there is no shortage of interesting work related to our own" also

applies to us.

This paper is an initial progress report on the development of a

verification system whose ultimate goal is to be an effective tool In

constructing rigorous proofs of significant programs. The design philoaophy of

the system is based on the belief that large parts of the total proof of ectual

programs can, and should, be done automatically, but also that, In the

foreseeable future, some parts will have to be done by human«. This seems a

proper response to the genuinely open-ended nature of fact«, theorem«, and

deductions needed to verify realistic programs. Thus our design strategy ha«

been to provide automatic capability for the proof process where practical, and

to rely on interaction for manual intervention otherwise. If a program can be

verified with no human assistance, then we shall applaud the system's

achievement. We will be quite pleased, however, if the system provide«

2

- - - - ■ ^JMMeMMaMHMi

I
»uffici.nt •ssistanc« so t-i.t th* v.rif.c.t.on can be competed with minimal

human hints or proof stepr.

SYSTEM STRUCTURE

The system is based on the conventional inductive assertion r..ethod of

proving properties of programs, and consists of five major component«: a

standard text editor, a program and assertion parse- fo. Pascal program«, a

varification condition generator, a simplification and substitution package, and

an interactive theorem prover. Some preliminary work has also bean dona on an

interpreter that is capable of running programs on both actual and symbolic

data, but the interpreter has not yet been exploited in any significant way.

The ent.re system is Lisp-based and runs as a large program on a PDP-10

computer. The system is implemented primarily m Reduce [Hearn 1971], «

Lisp-based symbolic mathematical system, but certain component« are writtan

directly in Stanford Lisp 1.6.

One of the un.que features of this system is the extent to which wa nava

been able to use previously writtan and highly developed program« as major

«y«tam component«. First of all. Reduce, in addition to its powarful,

wall-doveloped algebraic manipulation capability, has served as rn affactivo

language for system implementation, and will permit the system to be as portable

as Reduce .tself. Our PDP-10 .mplementation of Reduce also has a built-in link

to a text editor, and this provides the editor for the verification system. The

Pascal parser, developed at USC Information Sciences Institute, wa« writtan in

Reduce. The verification condition generator is essentially the Paacal

3

■•^UB^^B» —^—^___

generator of Igarashi, London, and LucKham [1973], ciginally developed at

Stanford but now existing in Lisp 1.6. The simplification and substitution

package was developed at ISI, drawing, in part, on the algebraic manipulation

capability of Reduce. The theorem prover is a variation of the prover described

by Bledsoe and Bruell [1973]. The prover ong'nally was developed at the

University of Texas at Austin m UT-Lisp, and was translated into Stanford Lisp

1.6 for incorporation into the system. Although the prover has been modified to

make it more effective on the types of theorems encountered in proving program«,

its basic structure and interactive philosophy remain valid and unchallenged.

Currently, the normal mode of using the system is to invoke interactively

the system components in the following sequence: create the program and

specifications, parse them checking for syntax errors, generate verification

conditions, simplify them, and prove those» that do not simplify to TRUE. The

user also can descend directly into Reduce or Lisp. The following sections

detenbe the main ideas of each of the major system components and illustrate

their use in proving the sorting program shown in Figure 1.

- — —

FUNCTION LOCMAX(A:INTARRAYil>J:INTEGER):INTEGER;
ENTRY I LE J;
EXIT (I LE LOCMAXiA.I.J))

AND (LOCMAX(A>l,J) LE J)
AND (A[LOCMAX(A,l,J)] - AMAX(A,l,J));i

FUNCTION SORT(A:INTARRAY;N:INTEGER):INTARRAYi
ENTRY N GE 1;
EXIT ALL l((1 LE I) AND (I LE N) IMP

SORT(A,N)[l] - AMAX{SORT{A,NU,l))
AND APERK^SORTiA.NDAl.N);

VAR BHNTARRAY;
BEGIN

B :- A;
K :- N;
ASSERT ALL I ((K*l LE I) AND (I LE N) IMP B[l] - AMAX(B,1,I))

AND APERM(B>A>1>N)
AND(K GE 1) AND(KLE N);

WHILE K > 1 DO
BEGIN

B :- ASWARB, LOCMAXiB.l.K), K)i
K :- K - li

END;
SORT :- B;

END;.

Figure 1. Sample sorting program with specifications.

- - - - —>—^—

PROGRAMS TO BE VERIFIED

Th« system proves assertion« that have been inserted into Pescel programs.

The srecific choice of Pascal .s not an essential point; what matters is that

the language features adopted in Pascal seem important and (with some

exceptions, of course) representative of those in commonly-used programming

languages. We believe that extensive subsets of other languages could be made e

part of the verificat.on system by using an appropriate parser, and either

writing an additional verificat.on mrdition generator or modifying the current

one.

The language subset of Pascal considered so far allows programs to be

constructed from the followng syntactic units: assignment, conditional, while,

repeat, for, compound, go-to, and null statements; recursive procedure end

function definitions and calls; one-dimensional arrays; arithmetic, reletionel.

and Boolean expressions; and labels. Pascal has been extended to allow certain

types of operations that are not ordinarily possible. For example, in the

program in Figure 1 the functions SORT and ASWAP each return complete Integer

•rreys as values; furthermore, array-valued assignments such as B :-

ASWAH(B,LOCMAX(B,l,K),K) are permitted. These operations are a aimple mean« of

introducing modularity and abstraction into a program. This type of programming

is discussed in more detail by Good [1974].

A second extension to Pascal allows ENTRY, EXIT, and ASSERT statement*,

which are the means of stating the speci'i'ations to be proved about the

program. A proof shows that the ENTRY assertion always implies the EXIT

aaaertion if the program terminates. The ASSERT statements supply the

iMMMHiaHakM

If1-« " "

mtermednt» assartionc for a proof by inductiv« assertions, and «ach loop in a

program mutt contkin at least one ASSERT statement. To ensure this the system

requires an ASSERT statement to a. pear (a) before every WHILE and before every

FOR statement, (b) as either the first or last statement of the repeated

statements in a REPEAT statement, and (c) after every label. Otherwiae, the

placement of assertions is optional. {Thä assertion before a WHILE or FOR

statement is considered to be just before the "test" in each case.) The

expressions following the ENTRY, EXIT, and ASSERT statements are Boolean-valued

expressions of Pascal augmented by implication, logical equivalence, and

quantification. Because function calls are permitted in expressions (which

thereby also permits arbitrary predicates with appropriate parameters), this

assertion language allows us to express, in principle, all the* is needed. In

practice it is somewhat limited, nontransparent, and inelegent, jut not ovfirly

burdensome. Extensions and additional notations are planned.

in the SORT function example the EXIT assertion specifies e sort into

ascending order. The function AMAX(A,I,J) denotes the value of e maximum

element in the array segment A[l . . . J], and APERM(A,B,I,J) states that array

segment A[l . . . J] is a permutation of B[l . . . J]. The system has no

built-in knowledge about these functions, and appropriate facts about them will

be supplied interactively during the proof. The system does have some built-in

simplification rules for ASWAP(A,I,J) which swaps elements I and J in array A.

Notice also, in this example, that ENTRY and EXIT assertions have been stated

for the user-supplied function LOCMAX without giving its actual cod«. In

proving SORT, all we need to Know about LOCMAX(A,l,J) is the specification that

it returns the locution of a maximum element in tha array segme.-t A[l . . . J]

I
- ■ -■■—

r!^^

(which spvcification w* hav* s.parataly provad for »avaral varaion« of cod« for

LOCKMX). This facility parmits tha top-down daaign and top-down proof of

programs.

VERIFIC/mON CONDITION CENEK/ITOR

Tha vanficat.on condition generator It an implementation of th* axioma and

ruloa of inference which constitute the axiomatic definition of Pascal (Hoar*

and Wirth [1973], and Hoare [1971]). By invoking these semantic rul.a, the

consistency question between program and specifications is reduced to proving a

set of mathematical lemmas sufficient to show that the ENTRY assertion of th«

program always implies the EXIT assertion.

The use of an axiomatic definition of a programming language as the basis

of a verification condition generator has been described with numerous examples

by Igarashi. London, and Luckham [1973]. Essent^lly. the idea is to implement

the axioms and rules of inference in such a way that for each type of program

statement, exactly one axiom or rule of inference is applicable to the type. It

is then possible to generate recursive subgoals determinittically, i.e., to

compute without search, sufficient lemmas to imply the desired prcoortiot about

the program. For example, the ENTRY assertion of SORT always implies the EXIT

•saertlon if the three lemmas in Figure 2 are satisfied. Theae verification

conditions are the actual output of the verification condition generator.

Verification condition generators have, of course, been constructed in

other ways. Both the present subgoaling and the backward substitution can be

8

•^MBMMMaMBBH j

i-w '—

r.pl.c.d by vrious methods. Furthrmor.. other form.li.m. b..id,. .Kiom.tJC

definifon«. .uch .s st.te vector .ppro.chas. c.n b. the be.i. for g.nr.ting

th. lemm... Although the re.ult. of the v.riou. method, m.y be .up.rficl.lly

diffr.nt in eppe.r.nce. the results ere loglc.lly equlv.lent. ... 0f eour...

they must be.

Tb«r. i, ,|,o ,n ,|tern,tiv. venf.ction condition gener.tor in the

.y.t.m. WrUten by Musser .nd b.sed on forw.rd symbolic .v.lu.tlon. It

proc... cerfin Reduce progr.ms. The p.rs.ng of these Reduce progr.m. i. don.

by the regul.r Reduce tr.nsl.tor. Further det.ils .nd ex.mpl.s .re in London

•nd Musser [1974].

__aaa_aaaaBai

-_

VC1:

NGE 1
IMP ALL I ((N*l LE I) AND (I LE N) IMP A[l] - AMAX(A, 1, I))

AND APERM(A(A, 1, N)
AND N GE 1
AND N LE N

VC2:
ALL I ((K*l LE I) AND (I LE N) IMP B[l] - AMAX(B, 1, I))

AND APERM(BI A, 1, N)
AND KGE 1
AND K LE N
AND K>1

IMP 1 LE K
AND (1 LE LOCMAX(B. 1, K)) AND (LOCKMX(B, 1, K) LE K)

AND B^OCMAXiB, 1, K)] - AMAX{B> 1, K)
IMP ALL I (((K-l)* 1 LEI) AND(ILEN)

IMP ASWARB, L0CMAX(8. 1, K), K)[l]
- AMAX(ASWAP(B) LOCMAXCB. 1, K), K), 1, I))

AND APERM(ASWAP(B> LOCMAX(B> 1, K), K), A, 1, N)
AND K-l GE 1
AND K-l LE N

VC3:
ALL I ((K*l LE 1) AND (I LE N) IMP B[l] - AMAX(B, 1, I»

AND APERM(B, A, 1, N)
AND K GE 1
AND K LE N
AND NOT (K>1)

IMP ALL l((l LE I) AND (I LE N) IMP B[l] - AMAX(B, 1, I))
AND APERM(B, A, 1, N)

Figure 2. Verification conditions (lemmas) for SORT in Figure 1.

10

SIHPLIFIC/IT^S AND SUBSTITUTION

Th« first step m proving the verification conditions is the application of

a simplification and substitution package. Each verification condition is

assigned a unique name and is processed individually under interactive control.

The package consists of (a) a symbolic evaluator that applies reduction rules to

expressions within the verification condition and (b) an interactively

controlled substitution routine that is triggered by equalities in the mein

hypotheses of the verification condition. Working together, the evaluator and

substitution routine achieve many of the simple proofs and reductions that

typically arise in proving programs.

Symbolic evaluation is performed on the integer-valued operators ♦ (n-ery),

- (unary and binary), « (n-ary), OIV, MOD. EXPT (power), MAX (n-ary), and MIN

(n-ary). Expressions are represented in pref x form throughout the evaluation,

and each is evaluated to a standard form. Associative operators are represented

in n-ary form, and the arguments of commutative operators are placed in a

standard order. For example, both MAX(B,MAX(A,C)) and MAX(C.A.B) become the

prefix expression (MAX A B C). The algebraic manipulation also collects

constant terms insofar as possible, so that, for example, (K*l) -l reduces to K.

Thi« is the kind of simple reduction that can remove a great deal of the clutter

often found in verification conditions.

The evaluator also has a limited capability for symbolic manipulation of

arrays. Currently, there are three operations involving arrays, all written ee

functions: referencing an array element (ASUB), changing the value of e single

element (ASET). and swapping two elements (ASWAP). Examples of array reductions

are

11

ASUB(ASET(A.IIX)>I) reduces to X

ASUB(ASWAP(API(J),I) reduces to ASUB(A,J)

where ASUB(A,I) denotes A[l] and ASEKA.I.X) denotes A after doing A[l) :- X.

Normally, -vjst of the symbolic evaluation of a verification condition is

involved with Boolean-valued operators. These include AND (n-ery), OR (n-ery),

NOT, IMP (impl.es), EQV (logical equivalence), SOME (there exists), and ALL (for

all), as well as the relational operators < (less than), LE (less then or

equal), > (greater than), GE (greater than or equal), -, and NE (not equel).

Any expression of the form "x operator y" whose operator is <, LE, >, or GE is

reduced to an equivalent prefix form (LE 0 z). Equalities x - y er« reduced to

(- 0 x-y) and similarly for NE. The Boolean AND operator checke for

inconsistencies among conjunctions of reletional expretaione, elimlnetee

redundencies, and converts certain inequalities to equalities. For example, (N

< I) AND (I LE N*l) is converted to I - N*l. The evaluator currently does not

perform any Kind of transitivity analysis on the relational expressions.

The evaluator reduces verification conditions (and implications in general)

to the form (HI AND . . . AND Hn) IMP (01 AND . . . AND Cm). Once in this form,

conclusions that match hypotheses are eliminated automatically. Conclusions

that are relational expressions are negated and ANDed into the hypotheses. If a

contradiction is attained, the relational conclusion is proved and consequently

eliminated. Equalities that are hypotheses in the top-level implication of the

verification condition invoke possible substitutions. Certein types of

equalities cause automatic substitution throughout the verificetion condition,

while others allow for interactive control of the substitution. An example is

12

T ■

in \'C2 of SORT where the substitution

SUB: B[L0CMAX(B.1,K)] :-AMAX(B,1,K) ?

is proposed. The user may respond to go ahead with the substitution M

proposed, reverse .ts d.rection. not do it, or exam.ne the equality for oth«r

post.ble substitutions. The user may also spec.fy that the substitution be made

m hypotheses only or conclusions only. Substitutions in the hypotheses MUM

the equality that triggered the substitution to be eliminated.

Because substitutions may require interaction, it is important that a

smooth user-system interface be provided. Toward this end. the evaluator end

the subst.tution routine have been designed to give an optional runnmg

commentary of their operation so that the user can be Kept in proper context.

Considerable effort has been made to print expressions in a readable, pleasing

form. Also, a special optional CRT display package and interaction capability

has been developed for observation and interaction. The CRT screen is split

into two parts, one containing the express.on being processed and the other a

scrolling workspace for the user-system dialogue. The evaluator and th.

substitution routme are also designed so that they can be manually interrupted

•nd restarted or redirected.

The simplified verification cond^ions SVCl. SVC2. and SVC3 for SORT are

shown in Figure 3. These represent a useful simpl.f.cat.on over the ongineis.

(In SVC2 the interactive response to the proposec substitution was NO.) It is

these s.mphf.ed verification conditions that are passed on to the theorem

prover.

13

H^w^i^^" ~^i. — ■ ■'■■■■ ■■ ■• ■■" ' ■" " ;

SVC1:
1 LE N

IMP APERM(A, A. 1, N)

SVC2:
(HI) 1 LE LOCMAX(B> 1, K)
(H2) AND LOCMAX(B, 1, K) LE K
(H3) AND K LE N
(H4) AND 2 LE K
(H5) AND APERM(BI A, 1, N)
(H6) AND ALL I ((I LE N) AND (K<l) IMP B[l] - AMAX(B, 1,1))
(H7) AND B[LOCMAX{B> 1, K)] - AMAXIB, 1, K)
(CD IMP APERM(ASWAP(B> LOCMAX(B, 1, K), K), A, 1, N)
(C2) AND ALL I ((I LE N) AND (K LE I)

IMP ASWAP(B, LOCMAXiB, 1, K), K)[l]
- AMAX(ASWAP(B, LOCMAXCB, 1, K), K), 1, I))

SVC3:
APERM(B> A, 1, N)

AND ALL I ((I LE N) AND (K<l) IMP B[l] - AMAX(B, I, I»
AND K LE N
AND 1-K

IMP ALL I ((I LE N) AND (1 LE I) IMP B[l] - AMAX(B, 1. I))

Figure 3. Simplified verification conditions for SORT.

14

'—

It .hoold b* pomttd out th.t th«r. „ curr.ntly some ..gnif.c.nt ov.rl.p

between the t.sks performed by the simplification p.ckege end those don« by th«

theorem prover. An appropnate divisien between these two components remain. •

subject for further study. Also, it is worth noting that the Pascal

verification condign generator does not use the s.mplification package during

the generation process, as is done by other verifiers and also b> Musser's

verification condit.on generator. Interestingly enough, the separation of these

two components was ong.nally expected to cause problems, but so far it has not.

TUKORKM PROVER

Those verification cond.t.ons that do not simph,, to TRUE are passed on to

the interactive theorem prover. Briefly speaking, the prover is a naturel

deduction system that proves theorems by subgoalmg (splitt.ng). matchmg. and

rewriting. It also utilizes semantic tables to help d.rect its search. The

theorems (and subsequent subgoals) are shown on the user terminal in a natural,

easy to read form, and the user is provided with several interact.ve commands

for communicating with the prover.

The way in which this prover incorporates user interaction is the

characteristic that makes it particularly well suited for provmg verification

conditions denved from real programs. The prover ,5 based on natural

deduction, as opposed to a "less natural" process such as resolut.on. For

example, deductions are earned out directly in terms of the operations given In

the verification condition rather than in term» of equivalent clauses composed

of ANDs. ORs. and NOTs. When the human user desires to interact with the

15

MMBMH mm

m

proper, the dialogue K expressed in terms that are natural and convenient for

the hurran instead 3f in those more convenient for a computer. In other word«,

the computer supports the human rather than vice versa.

The interactive policy of the prover is based on the premise that !♦ the

prover can construct a proof automatically, tt will do it 'lirly quickly. For

each theorem or subgoal, a time limit is set; if a proof has no been

constructed m that time, the prover stops and waits for intftractive direction.

The user then has available a number of commands for displaying the theorem and

the details of what tne prover has done so far. Using these commands, the user

isolates the difficulty and then can allocate more time, direct the prover into

a new line of re mg, supply additional information, or simply assume that

the current subgoal is true and go on to another part of the proof. Typically,

proofs of verification cond.tions will fail initially because they do not

contain enough information for a rigorous proof. A very useful feature of the

prover is that this additional information need not be stated initially, but

rather can be supplied at the point m the proof when it is realized that thia

is necessary. This prevents the cunous spectacle of the user having to prove

the theorem himself before he asks the prover to do so, in order to determine

what additional theorems and oefimtions will be needed.

To make the prover more useful in proving verification conditions,

additional facilities have been added for handling relational expressions

(involving <, LE, etc.) and proofs by cases. For variables that appear in

relational expressions, both upper and lower bounds are computed. When e

relational expression u discovered, as a hypothesis, the bound« on these

variables are updated accordingly. This interval information represent« the

16

.

I

"state of the world" for these variables at that time and serves as additional

hypotheses to the theorem or subgoal being considered. For example, if a

contradiction such as J IN [K, K-l] occurs, this represents a fait« hypothesis

and successfully terminates the proof. Also, if the bounds I IN [N*l, INFINITY]

are already established and the hypothesis I LE N*l is discovered, the updated

bound is I IN [N*l, N*l], and this is treated as the equality I - N*l. The««

bounds are used not only to prove conclusions that are relational expressions,

but also, more importantly, to g e partial retulti that initiate proofs by

cases. For example, suppose we have a theorem of the forr.i

H

AND (I IN [K+l, N] IMPC)

IMP C

and we Know tnat I IN [K, N]. The prover will recognize that it can «stabliih r

partial result for the theorem in the case for I IN [K + l, N]. Then, by

comparing the interval [K*l, N] with the bound [K, N] for I, it will conclude

that the remaining case is I - K and attempt to reprove the theorem for that

case. This type of situation frequently arises in proving assertions that are

loop invariants.

The following summary of the proof Of the three simplified verification

conditions in Figure 3 indicates the general character of the prover and its

policies toward interaction. A detailed view of the prover (being applied to

topology theorems rather than verification conditions) it given by Bledsoe and

Bruell [1973], and a complete descnptior of variable bounding methods and

proofs by cases, which have been added for program verification, is given by

Bledsoe and Tyson [1974a,t].

17

SVC1, SVC2, and SVC3 ar« passaa to the provar on« at a fima at th«

discretion of the user. For SVC1 there is nothing the prover (or e human

prover, for that matter) can do without further information about APERM. What

APERM(A,A.1,N) says is that A[l . . . N] is a permutation of A[l . . . N], end

the user must recognize that this is a universal f.ct ebout APERM. This problem

domain fact is given to the prover In the form of a reduction rule similar to

those used by the symbolic evaluator for built-.n operations:

(Rl)« APERM(AIA,1.N) reduces to TRUE.

The actual sequence of events is (a) SVC1 is passed to the prover, (b) it tries

to prove it and fails, (c) the user supplies the new reduction rule, and (d) the

prover tries again and succeeds.

SVC2 comes fron the loop of the SORT function, and its proof is the moat

involved. The prover first automatically breaks the proof into two aubgoals,

one for conclusion Cl and the other for C2. The prover fails on Cl until the

user supplies an additional hypothesis that gives conditions under which

swapping array elements preserves permutation:

APERM(B1A,R,S)

AND R LE X AND X LE S

AND R LE Y AND Y LE S

(AMI) IMP APERM(ASWAP(BPX,Y),A,R,S).

•Rl is stated directly in terms of A to improve readability. We could juat aa
wall have used APERM(X,X,Y,Z). This same approach is used in thia paper for
subsequent inputs to the prover.

■■

 m\

Once this it giv.n, th* prover realizes that it could use the conclusion of AH1

to prove the mam conclusion Cl if it can prove the hypothesis of AH1, which

amounts to

APERM(BA1,N)

AND 1 LE L0CMAX(B>1>K) AND LOCMAXO.l.K) LE N

AND 1 LE K AND K LE N

The prover auiomatically proves these new subgoals from H5 and from H1-H4 which

have been c. .erted to the form

LOCMAX(B1lIK) IN [l.K]

N IN [K, INFINITY]

K IN [MAX(2I LOCMAX(B>l,K)), N].

Thus, the proof of Cl is done automatitAily with the addition of one

user-supplied hypothesis.

The proof of conclusion C2 requires two different, user-supplied

hypotheses. With the addition of these two, AH2 and AH3, the theorem to be

proved becomes

(AH2) ALL CAX.Y (U NE X AND U NE Y IMP ASWAP(C,X,Y)[U] - C[U])

{AH3) AND ALL C.U.V,X,Y (U LE X AND X LE V AND U LE Y AND Y LE V

IMP AMAX(ASWAP(C,X,Y),U,V) - AMAX(C,U,V))

(HI) . ND 1 LE L0CMAX(B,1,K)

(H2) AND LOCMAX(B,l,K) LE K

(H3) AND K LE N

(H4) AND 2 LE K

(H5) AND APERM(B,A,1,N)

(HI) AND ALL I (K*l LE I AND I LE N IMP B[l] - AMAX(B.1,I))

(H7) AND BCL0CMAX(B.1,K)] - AMAX(B,1,K)

19

W".'l '

{C2) IMP ALL I (K LE I AND I LE N)

IMP ASWAP(BIL0CMAX(B,1,K),K)[I]

- AMAX(ASWAP(B(LXMAX(B,1,K).K),1,I).

(Actually, the quantified variables are replaced by Skolem variablea. but that

need not concern us here.) AH2 gives conditions under which array aubacriptlng

is insensitive to swapping elements, and AH3 gives similar conditions for AMAX.

Once AH2 and AH3 are supplied, the prover eventually adopts

proof by cases, one case for I IN [K*l, N] and the other for I -

for I IN [K*l, N] requires establishing a chain of equalities

conclusions of AH2, AH3, H6, and C2. Although the prover nas the

building th.s chain, it does not invoke it automatically

cham-buildmg process is combmatorially explosive. The user,

explicitly direct it to try to build an equality chain. Once

directs, it builds the chain noting the hypotheses of AH2 and AH3

proved in order that the chain be valid These hypotheses are

I NE L0CMAX(B,1,K)

AND I NE K

from AH2,

1 LE L0CMAX(B,1,K) AND LOCMAX(a,l,K) LE I

AND 1 LE K AND K LE I

from AH3, rid

«♦1 LE I AND I LE N

from H6. These conditions are required to hold only for the case

and are easily proved automatically.

a strategy of

K. The proof

involving the

machinery for

beceuae the

however, ten

the user to

that must be

IN [K*l, N]

20

wm

The proof of C2 for th« case I - K begins with tho eutometic substitution

of K for I. C2 then becomes

ASWAP(B, LOCMAXiB.l.K^K^K]

- AMAX(ASWAP(B,L0CMAX(B.1,K),KU>K)

which automatically is reduced to

(02') B[LOCMAX(B>l,K)]

- AMAX(ASWAP(B>L0CMAX(B.1.K),K),11K)

by a call to the symbolic evaluator. Again the prover is interactively directed

to try an equality chain, which it succeeds in building using C2', AH3, and H7.

Once again the chain is conditional, requiring from the hypothesis AH3 the new

subgoals

1 LE LOCMAX(B,l,K) AND L0CMAX(B,1,K) LE K

AND 1 LE K AND K LE K.

These are proved automatically and the proof of SVC2 is complete.

The proof of SVC3 begins with the automatic substitution of 1 for K, giving

1 LEN

AND APERM(B,A,1,N)

AND ALL I (2 LE I AND I LE N IMP B[l] - AMAX(B,1,1))

IMP ALL I (1 LE I AND I LE N IMP B[l] - AMAX(B,1,I)).

The prover then automatically considers two cases, I IN [2,N] and I ■> 1. The I

IN [2,N] case follows immediately, and the I - 1 case requires only the

user-supplied reduction rule

(R2) AMAX(B,X,X) reduces to B[X],

and the proof of SVC3 is complete.

21

It should be noted that although some interaction has been necessary to

direct the prover m its selection of strategy, most of the interaction was used

to supply three additional hypotheses and two new reduction rules about APERM

and AMAX. This amount of interaction seems quite tolerable considering that no

information whatsoever about either APERM or AMAX was available to the prover,

or any other part of the system, pnor to the interaction. We anticipate that

this example is typical of real programs in this regard, and that the main use

of interaction will be to supply the prover with these additional fact« about

the problem dc.r.ain.

CONCWSION

This has been an initial progress report on the development of en

interactive program venfiiat'On system whose ultimate goal is to be an

effective tool in proving programs that solve significant, real problem«.

Certainly the sorting program proved here is not a large, complex progrem.

Nevertheless, we believe that its proof is, in two significant way«, typical of

the proofs that will be necessary for much larger programs. First, we believe

that, if we are to be able to prove large programs, such programs and their

$p«cifieationt must be expressed in sufficiently abstract terms «0 thet their

proofs can be carried out in terms of intellectually manageable segment«.

Although the principles of abstraction, such as those discussed by Dahl,

Dijkstra, and Hoare [1972], seem now to be fairly well accepted for program«,

little has been said of the need for abstraction in specification«. To Keep the

proof at an abstract level, though, clearly both are necessary. The APERM,

22

-

~rr^

AMAX, and ASWAP function« of fh. «ort program ar« amall. but r«pr»Mr>tatlv«,

initial atopa in thia diraction. Evan thaaa minor abatractiona Kaap tha proof

•t a highor, more abatract laval, thu« making it more euecinct though no la»

rigoroua. Sacond, wa baliava that proofs of larga program» will roquiro

information about tha domain of tha problam baing solvad, which information will

not be atatad axplicitly aithar in tha program or ita apaeificationa.

Currantly, it aaams highly dasirabla to allow this information to reside in tha

data basa of tha usar's mind and to lat him do tha ratriaval of tha ralovant

faeta aa tha need arisas, as was dona in aupplying tha additional hypotheses and

raduction rulas for tha sort proof.

Tha currant systam claarly naads considerably more work to make it an

"affactiva tool" for proving larga program«. Significant araaa in which

additional affort« ara now baing mada includa incorporation of mora faaturaa of

Pwcal, inciuaion of othar languaga«, axtanaion of tha assartion languaga,

additional ways of axploiting abstraction, improvad ayntax analyaia facllltloa,

raconaidaration of tha division of labor and dagraa of intagration among tha

major syatam components, improvad faciiitias for display of tha proof.

improvamant of tha intaractiva usar-systam intarfaca, and additional facilltiM

for managing complax proofs composed of proofs of a larga number of amall

program sagmants. Although wa now saa many ways in which tha ayatom can bo

improvad and ara vary anthusiastlc about its avantual succass. thaaa inaighta

and thia optimism ara dua ultimataly to our having baan able to bring together

savaral complax and sophisticstad, but divarsa. softwara components, and to use

tham in a highly flaxibla and dynamic axparimantal environment. It seams

23

 i ■ -.

•ppropriat« to clot* by rscalling a portion of R. W. Hamming's 1968 ACM Turing

Loctur«:

Indood, on« of my major complaints about the conputar fiald
is that whereas Nawton could say, "If I have seen a little
farthar than others it is because I have stood on the
shoulders of giants," I am forced to say, "Today we stand on
each other's feet." Perhaps the central problem we face in
•II of computer science is how we are to get to the
situation where we build on top of the work of others rather
than redoing so much of it in a trivially different way.
Science is supposed to be cumulative, not almost endless
duplication of the same kind of things. [Hamming 1969, p.

24

- - - —^

REFERENCES

W. W. Biedsoe and P. Brutll 1973. A m«n-m«chin« th«or.m-proving *yt\9m, Advane*

™r^0/ ™rd lnt9rnatU>**l Joint Conhnnc* on Artificial InfUigw,
1973, 56-65. Also Artificial Inttllifncc, 5, 1, Spring 1974, 51-72.

W. W. Biedsoe and M. Tyson 1974a. Typing and proofs by cases In program
ver.ftcation (worK.ng titl.). University of Texas at Austin Mathematics
Department Memo ATP 15 (forthcoming).

W. W. Biedsoe and M. Tyson 1974b. The sup-lnf method In Presburger arithmetic
University of Texas at Austin Mathematics Department Memo ATP 18
(forthcoming).

0.-1 Dahl. Eo W. DijKstra, and C. A. R. Hoare 197?. Sfruc.ur.rf Pragramming,
Academic Press, 1972.

D. I. Good 1974. Provable programming (forthcoming).

R. W. Hamming 1969. One man's view of computer science. 1 ACM 16 1
Jan. 1969,3-12. ' '

A. C. Hearn 1971. Reduce 2: A system and language for algebraic manipulation,
Proceediug, of the Second Sympotium on Symbolic and Algebraic Manipulation,
ACM, 1971, 128-133. Also Reduce 2 user's manual, University of Utah UCP-19
second edition, 1974. '

C. A. R. Hoare 1971. Procedures and parameters: An axiomatic approach, in
SympoMtum on Semantic» of Algorithmic Language; E. Engeler, ed..
Springer-Verlag, 1971, 102-116.

C. A. R. Hoare and N. Wirth 1973. An axiomatic definition of the programming
language Pascal, Acta Informatica, 2, 335-355.

S. Igarashi, R. L London. and D. C. Luckham 1973. Automatic program
verification 1: A logical basis and its Implementation, USC Information
Sciences Institute Report ISI/RR-73-11, May 1973. Also Acta Informatica,
1974 (forthcoming).

R. L London and D. R. Musser 1974. The application of a symbolic mathemetice!
system to program verification. Proceedings of ACM Annual Conferene; 1974
(forthcoming).

L C. Ragland 1973. A verified program verifier, Ph.D. theJs, University of
Texas at Austin, 1973.

R. 1 Waldmger and K. N. Levitt 1973. Reasoning about program«, Conforonco
f«Q loo Sympojium on Principlet of Programming Language, 1973,

Y.-Y L Wang 1973. A Nucleus verification condition compiler, MS. theals.
University of Texas at Austin, 1973.

25

