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ABSTRACT 

This paper is an initial progress report on the development 
of an iuferactive system for verifying that computer programs 
meet given formal specifications. The system is based on the 
conventional inductive assertion method:  given a program and its 
specificcfions, the object is to generate the verification con- 
ditions, simplify them, and prove what remains. This system 
addresses two aspects of software improvement of extreme 
importance to the military:  increase in the quality of software 
and decrease in the cost of producing high-quality software. The 
important feature of the system is that the human user has the 
opportunity and obligation to help actively in the simplifying 
and proving. The user, for example, is the primary source of 
problem domain facts and properties needed in the proofs. A 
general description is given of the overall design philosophy, 
structure, and functional component of the system, and a sample 
sorting program is used to illustra .e both the behavior of major 
system components and the type of user interaction the system 
provides. 
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/iBSTH/ICT 

This paper is an initial progress report on the development of an 
interactive system for verifying that computer programs meet given formal 
specifications. The system it based on the conventional inductive assertion 
method: given a program and its specifications, tr* object is to generate the 
verification conditions, simplify them, and prove what remains. This system 
addresses two aspects of software improvement of extreme importance to the 
military: increase in the quality of software and decrease in the cost of 
producing high-quality software. The important feature of the system is that 
the human user has the opportunity and obligation to help actively in the 
simplifying and proving. The user, for example, is the primary source of 
problem domain facts and properties needed m the proofs. A ger ral description 
is give i of the overall design philosophy, structure, and functio. 'I components 
of the system, and a simple sorting program is used to illustrate both the 
behavior of major system components and the type of user interaction the system 
provides. 
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INTRODUCTION 

In many computer application areas, the consequences of a program not 

performing as intended can be quite costly or damaging. The goal of this 

research is to develop an interactive system for proving that program« art 

consistent with precisely stated specifications. A proved program, therefore, 

will always perform correctly if the specifications are an adequate reflection 

of the actual intent of the program. The purpose of the verification system 

described here is to provide an integrated set of automatic and interactive 

facilities that make it possible to construct a proof that a program I« 

consistent with given specifications. The human user of the system, rather than 

the system itself, retains primary responsibility for the proof of his program. 

It is assumed that the user is highly knowledgeable in the domain of the problem 

that hi« program is to solve, m programming, and in the method« of proof 

supported by the system. 

Previous experience with actual proofs of a variety of program« and with 

various experimental program verification systems seem« to «upport thre» 

preliminary conclusions. First, proofs of significant program« are oossible. 

Second, au'.omttic program verifier« can be of considerable help in proving reel 

programs. Third, program proof methods ca., best be exploited if the proof can 

be approached on a segment-by-segment basis that reflects the structure of the 

program. Probably the single example that most strongly support« the«* 

conclu«ion« is the proved verification condition generation program of Ragland 

[1973]. The entire program consists of 203 procedures, most of these occupying 

ess than one page including assertions. Two factors contributed «ignificently 

to   the   completion   of   thi«   proof.     First,   the   program   was   written   a«   a   large 
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collection of small procedures so that the proof could be done one procedure at 

a time. Second, an automatic verification condition generator [Wang 1973] wee 

used to construct the lemmas that were sufficient for a proof. Although all of 

these lemmas were proved manually, a subjective evaluation indicated thet about 

701 of them were sufficiently simple to have been proved automatically. 

Further support for the three preliminary conclusions is provided by the 

achievements of several existing program verification systems (see Waldmger and 

Levitt [1973] and references therein). Programs such as sorting, pattern 

matching, unification, array rearrangement, and finding primes via a sieve have 

been verified with various amounts of effort, either with no humen assistant« or 

with very little assistance. The statement by Waldinger and Levitt [1973, p. 

169] that "there is no shortage of interesting work related to our own" also 

applies to us. 

This paper is an initial progress report on the development of a 

verification system whose ultimate goal is to be an effective tool In 

constructing rigorous proofs of significant programs. The design philoaophy of 

the system is based on the belief that large parts of the total proof of ectual 

programs can, and should, be done automatically, but also that, In the 

foreseeable future, some parts will have to be done by human«. This seems a 

proper response to the genuinely open-ended nature of fact«, theorem«, and 

deductions needed to verify realistic programs. Thus our design strategy ha« 

been to provide automatic capability for the proof process where practical, and 

to rely on interaction for manual intervention otherwise. If a program can be 

verified with no human assistance, then we shall applaud the system's 

achievement. We will be quite pleased, however, if the system provide« 
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I 
»uffici.nt    •ssistanc«   so   t-i.t   th*   v.rif.c.t.on   can   be   competed    with   minimal 

human hints or proof stepr. 

SYSTEM STRUCTURE 

The system is based on the conventional inductive assertion r..ethod of 

proving properties of programs, and consists of five major component«: a 

standard text editor, a program and assertion parse- fo. Pascal program«, a 

varification condition generator, a simplification and substitution package, and 

an interactive theorem prover. Some preliminary work has also bean dona on an 

interpreter that is capable of running programs on both actual and symbolic 

data, but the interpreter has not yet been exploited in any significant way. 

The ent.re system is Lisp-based and runs as a large program on a PDP-10 

computer. The system is implemented primarily m Reduce [Hearn 1971], « 

Lisp-based symbolic mathematical system, but certain component« are writtan 

directly in Stanford Lisp 1.6. 

One of the un.que features of this system is the extent to which wa nava 

been able to use previously writtan and highly developed program« as major 

«y«tam component«. First of all. Reduce, in addition to its powarful, 

wall-doveloped algebraic manipulation capability, has served as rn affactivo 

language for system implementation, and will permit the system to be as portable 

as Reduce .tself. Our PDP-10 .mplementation of Reduce also has a built-in link 

to a text editor, and this provides the editor for the verification system. The 

Pascal parser, developed at USC Information Sciences Institute, wa« writtan in 

Reduce.       The     verification     condition     generator     is     essentially     the     Paacal 
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generator of Igarashi, London, and LucKham [1973], ciginally developed at 

Stanford but now existing in Lisp 1.6. The simplification and substitution 

package was developed at ISI, drawing, in part, on the algebraic manipulation 

capability of Reduce. The theorem prover is a variation of the prover described 

by Bledsoe and Bruell [1973]. The prover ong'nally was developed at the 

University of Texas at Austin m UT-Lisp, and was translated into Stanford Lisp 

1.6 for incorporation into the system. Although the prover has been modified to 

make it more effective on the types of theorems encountered in proving program«, 

its basic structure and interactive philosophy remain valid and unchallenged. 

Currently, the normal mode of using the system is to invoke interactively 

the system components in the following sequence: create the program and 

specifications, parse them checking for syntax errors, generate verification 

conditions, simplify them, and prove those» that do not simplify to TRUE. The 

user also can descend directly into Reduce or Lisp. The following sections 

detenbe the main ideas of each of the major system components and illustrate 

their use in proving the sorting program shown in Figure 1. 

-    — — 



FUNCTION LOCMAX(A:INTARRAYil>J:INTEGER):INTEGER; 
ENTRY I LE J; 
EXIT   (I LE LOCMAXiA.I.J)) 

AND (LOCMAX(A>l,J) LE J) 
AND (A[LOCMAX(A,l,J)] - AMAX(A,l,J));i 

FUNCTION SORT(A:INTARRAY;N:INTEGER):INTARRAYi 
ENTRY N GE 1; 
EXIT   ALL l( (1 LE I) AND (I LE N) IMP 

SORT(A,N)[l] - AMAX{SORT{A,NU,l)) 
AND APERK^SORTiA.NDAl.N); 

VAR BHNTARRAY; 
BEGIN 

B :- A; 
K :- N; 
ASSERT ALL I ((K*l LE I) AND (I LE N) IMP B[l] - AMAX(B,1,I)) 

AND APERM(B>A>1>N) 
AND(K GE 1) AND(KLE N); 

WHILE K > 1 DO 
BEGIN 

B :- ASWARB, LOCMAXiB.l.K), K)i 
K :- K - li 

END; 
SORT :- B; 

END;. 

Figure 1.   Sample sorting program with specifications. 

- -   -    -   —>—^— 



PROGRAMS TO BE VERIFIED 

Th« system proves assertion« that have been inserted into Pescel programs. 

The srecific choice of Pascal .s not an essential point; what matters is that 

the language features adopted in Pascal seem important and (with some 

exceptions, of course) representative of those in commonly-used programming 

languages. We believe that extensive subsets of other languages could be made e 

part of the verificat.on system by using an appropriate parser, and either 

writing an additional verificat.on mrdition generator or modifying the current 

one. 

The language subset of Pascal considered so far allows programs to be 

constructed from the followng syntactic units: assignment, conditional, while, 

repeat, for, compound, go-to, and null statements; recursive procedure end 

function definitions and calls; one-dimensional arrays; arithmetic, reletionel. 

and Boolean expressions; and labels. Pascal has been extended to allow certain 

types of operations that are not ordinarily possible. For example, in the 

program in Figure 1 the functions SORT and ASWAP each return complete Integer 

•rreys as values; furthermore, array-valued assignments such as B :- 

ASWAH(B,LOCMAX(B,l,K),K) are permitted. These operations are a aimple mean« of 

introducing modularity and abstraction into a program. This type of programming 

is discussed in more detail by Good [1974]. 

A   second   extension   to Pascal   allows   ENTRY,   EXIT,   and   ASSERT   statement*, 

which   are   the   means   of stating   the   speci'i'ations   to   be   proved   about   the 

program.     A   proof   shows that   the   ENTRY   assertion   always   implies   the   EXIT 

aaaertion    if    the    program terminates.      The    ASSERT    statements    supply    the 
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mtermednt» assartionc for a proof by inductiv« assertions, and «ach loop in a 

program mutt contkin at least one ASSERT statement. To ensure this the system 

requires an ASSERT statement to a. pear (a) before every WHILE and before every 

FOR statement, (b) as either the first or last statement of the repeated 

statements in a REPEAT statement, and (c) after every label. Otherwiae, the 

placement of assertions is optional. {Thä assertion before a WHILE or FOR 

statement is considered to be just before the "test" in each case.) The 

expressions following the ENTRY, EXIT, and ASSERT statements are Boolean-valued 

expressions of Pascal augmented by implication, logical equivalence, and 

quantification. Because function calls are permitted in expressions (which 

thereby also permits arbitrary predicates with appropriate parameters), this 

assertion language allows us to express, in principle, all the* is needed. In 

practice it is somewhat limited, nontransparent, and inelegent, jut not ovfirly 

burdensome.   Extensions and additional notations are planned. 

in the SORT function example the EXIT assertion specifies e sort into 

ascending order. The function AMAX(A,I,J) denotes the value of e maximum 

element in the array segment A[l . . . J], and APERM(A,B,I,J) states that array 

segment A[l . . . J] is a permutation of B[l . . . J]. The system has no 

built-in knowledge about these functions, and appropriate facts about them will 

be supplied interactively during the proof. The system does have some built-in 

simplification rules for ASWAP(A,I,J) which swaps elements I and J in array A. 

Notice also, in this example, that ENTRY and EXIT assertions have been stated 

for the user-supplied function LOCMAX without giving its actual cod«. In 

proving SORT, all we need to Know about LOCMAX(A,l,J) is the specification that 

it   returns   the  locution  of   a  maximum  element   in  tha   array   segme.-t   A[l . . . J] 

I 
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(which spvcification w* hav* s.parataly provad for »avaral varaion« of cod« for 

LOCKMX). This facility parmits tha top-down daaign and top-down proof of 

programs. 

VERIFIC/mON CONDITION CENEK/ITOR 

Tha vanficat.on condition generator It an implementation of th* axioma and 

ruloa of inference which constitute the axiomatic definition of Pascal (Hoar* 

and Wirth [1973], and Hoare [1971]). By invoking these semantic rul.a, the 

consistency question between program and specifications is reduced to proving a 

set of mathematical lemmas sufficient to show that the ENTRY assertion of th« 

program always implies the EXIT assertion. 

The use of an axiomatic definition of a programming language as the basis 

of a verification condition generator has been described with numerous examples 

by Igarashi. London, and Luckham [1973]. Essent^lly. the idea is to implement 

the axioms and rules of inference in such a way that for each type of program 

statement, exactly one axiom or rule of inference is applicable to the type. It 

is then possible to generate recursive subgoals determinittically, i.e., to 

compute without search, sufficient lemmas to imply the desired prcoortiot about 

the program. For example, the ENTRY assertion of SORT always implies the EXIT 

•saertlon if the three lemmas in Figure 2 are satisfied. Theae verification 

conditions are the actual output of the verification condition generator. 

Verification    condition    generators    have,    of    course,    been    constructed    in 

other   ways.     Both  the  present  subgoaling  and  the  backward  substitution  can  be 

8 
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r.pl.c.d by vrious methods. Furthrmor.. other form.li.m. b..id,. .Kiom.tJC 

definifon«. .uch .s st.te vector .ppro.chas. c.n b. the be.i. for g.nr.ting 

th. lemm... Although the re.ult. of the v.riou. method, m.y be .up.rficl.lly 

diffr.nt in eppe.r.nce. the results ere loglc.lly equlv.lent. ... 0f eour... 

they must be. 

Tb«r. i, ,|,o ,n ,|tern,tiv. venf.ction condition gener.tor in the 

.y.t.m. WrUten by Musser .nd b.sed on forw.rd symbolic .v.lu.tlon. It 

proc... cerfin Reduce progr.ms. The p.rs.ng of these Reduce progr.m. i. don. 

by the regul.r Reduce tr.nsl.tor. Further det.ils .nd ex.mpl.s .re in London 

•nd Musser [1974]. 
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VC1: 

NGE 1 
IMP        ALL I ((N*l LE I) AND (I LE N) IMP A[l] - AMAX(A, 1, I)) 

AND APERM(A( A, 1, N) 
AND N GE 1 
AND N LE N 

VC2: 
ALL I ((K*l LE I) AND (I LE N) IMP B[l] - AMAX(B, 1, I)) 

AND APERM(BI A, 1, N) 
AND KGE 1 
AND K LE N 
AND K>1 

IMP        1 LE K 
AND (1 LE LOCMAX(B. 1, K)) AND (LOCKMX(B, 1, K) LE K) 

AND B^OCMAXiB, 1, K)] - AMAX{B> 1, K) 
IMP        ALL I (       ((K-l)* 1 LEI) AND(ILEN) 

IMP    ASWARB, L0CMAX(8. 1, K), K)[l] 
- AMAX(ASWAP(B) LOCMAXCB. 1, K), K), 1, I)) 

AND APERM(ASWAP(B> LOCMAX(B> 1, K), K), A, 1, N) 
AND K-l GE 1 
AND K-l LE N 

VC3: 
ALL I ((K*l LE 1) AND (I LE N) IMP B[l] - AMAX(B, 1, I» 

AND APERM(B, A, 1, N) 
AND K GE 1 
AND K LE N 
AND NOT (K>1) 

IMP        ALL l((l LE I) AND (I LE N) IMP B[l] - AMAX(B, 1, I)) 
AND APERM(B, A, 1, N) 

Figure 2.  Verification conditions (lemmas) for SORT in Figure 1. 
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SIHPLIFIC/IT^S AND SUBSTITUTION 

Th« first step m proving the verification conditions is the application of 

a simplification and substitution package. Each verification condition is 

assigned a unique name and is processed individually under interactive control. 

The package consists of (a) a symbolic evaluator that applies reduction rules to 

expressions within the verification condition and (b) an interactively 

controlled substitution routine that is triggered by equalities in the mein 

hypotheses of the verification condition. Working together, the evaluator and 

substitution routine achieve many of the simple proofs and reductions that 

typically arise in proving programs. 

Symbolic evaluation is performed on the integer-valued operators ♦ (n-ery), 

- (unary and binary), « (n-ary), OIV, MOD. EXPT (power), MAX (n-ary), and MIN 

(n-ary). Expressions are represented in pref x form throughout the evaluation, 

and each is evaluated to a standard form. Associative operators are represented 

in n-ary form, and the arguments of commutative operators are placed in a 

standard order. For example, both MAX(B,MAX(A,C)) and MAX(C.A.B) become the 

prefix expression (MAX A B C). The algebraic manipulation also collects 

constant terms insofar as possible, so that, for example, (K*l) -l reduces to K. 

Thi« is the kind of simple reduction that can remove a great deal of the clutter 

often found in verification conditions. 

The evaluator also has a limited capability for symbolic manipulation of 

arrays. Currently, there are three operations involving arrays, all written ee 

functions: referencing an array element (ASUB), changing the value of e single 

element (ASET). and swapping two elements (ASWAP).    Examples of array reductions 

are 

11 



ASUB(ASET(A.IIX)>I) reduces to X 

ASUB(ASWAP(API(J),I) reduces to ASUB(A,J) 

where ASUB(A,I) denotes A[l] and ASEKA.I.X) denotes A after doing A[l) :- X. 

Normally, -vjst of the symbolic evaluation of a verification condition is 

involved with Boolean-valued operators. These include AND (n-ery), OR (n-ery), 

NOT, IMP (impl.es), EQV (logical equivalence), SOME (there exists), and ALL (for 

all), as well as the relational operators < (less than), LE (less then or 

equal), > (greater than), GE (greater than or equal), -, and NE (not equel). 

Any expression of the form "x operator y" whose operator is <, LE, >, or GE is 

reduced to an equivalent prefix form (LE 0 z). Equalities x - y er« reduced to 

(- 0 x-y) and similarly for NE. The Boolean AND operator checke for 

inconsistencies among conjunctions of reletional expretaione, elimlnetee 

redundencies, and converts certain inequalities to equalities. For example, (N 

< I) AND (I LE N*l) is converted to I - N*l. The evaluator currently does not 

perform any Kind of transitivity analysis on the relational expressions. 

The evaluator reduces verification conditions (and implications in general) 

to the form (HI AND . . . AND Hn) IMP (01 AND . . . AND Cm). Once in this form, 

conclusions that match hypotheses are eliminated automatically. Conclusions 

that are relational expressions are negated and ANDed into the hypotheses. If a 

contradiction is attained, the relational conclusion is proved and consequently 

eliminated. Equalities that are hypotheses in the top-level implication of the 

verification condition invoke possible substitutions. Certein types of 

equalities cause automatic substitution throughout the verificetion condition, 

while others allow for interactive control of the substitution. An example is 

12 
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in \'C2 of SORT where the substitution 

SUB: B[L0CMAX(B.1,K)] :-AMAX(B,1,K) ? 

is proposed. The user may respond to go ahead with the substitution M 

proposed, reverse .ts d.rection. not do it, or exam.ne the equality for oth«r 

post.ble substitutions. The user may also spec.fy that the substitution be made 

m hypotheses only or conclusions only. Substitutions in the hypotheses MUM 

the equality that triggered the substitution to be eliminated. 

Because substitutions may require interaction, it is important that a 

smooth user-system interface be provided. Toward this end. the evaluator end 

the subst.tution routine have been designed to give an optional runnmg 

commentary of their operation so that the user can be Kept in proper context. 

Considerable effort has been made to print expressions in a readable, pleasing 

form. Also, a special optional CRT display package and interaction capability 

has been developed for observation and interaction. The CRT screen is split 

into two parts, one containing the express.on being processed and the other a 

scrolling workspace for the user-system dialogue. The evaluator and th. 

substitution routme are also designed so that they can be manually interrupted 

•nd restarted or redirected. 

The simplified verification cond^ions SVCl. SVC2. and SVC3 for SORT are 

shown in Figure 3. These represent a useful simpl.f.cat.on over the ongineis. 

(In SVC2 the interactive response to the proposec substitution was NO.) It is 

these s.mphf.ed verification conditions that are passed on to the theorem 

prover. 

13 
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SVC1: 
1 LE N 

IMP APERM(A, A. 1, N) 

SVC2: 
(HI) 1 LE LOCMAX(B> 1, K) 
(H2) AND LOCMAX(B, 1, K) LE K 
(H3)        AND K LE N 
(H4) AND 2 LE K 
(H5)        AND APERM(BI A, 1, N) 
(H6)        AND ALL I ((I LE N) AND (K<l) IMP B[l] - AMAX(B, 1,1)) 
(H7)        AND B[LOCMAX{B> 1, K)] - AMAXIB, 1, K) 
(CD IMP        APERM(ASWAP(B> LOCMAX(B, 1, K), K), A, 1, N) 
(C2)        AND ALL I (      (I LE N) AND (K LE I) 

IMP    ASWAP(B, LOCMAXiB, 1, K), K)[l] 
- AMAX(ASWAP(B, LOCMAXCB, 1, K), K), 1, I)) 

SVC3: 
APERM(B> A, 1, N) 

AND ALL I ((I LE N) AND (K<l) IMP B[l] - AMAX(B, I, I» 
AND K LE N 
AND 1-K 

IMP ALL I ((I LE N) AND (1 LE I) IMP B[l] - AMAX(B, 1. I)) 

Figure 3.   Simplified verification conditions for SORT. 

14 
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It .hoold b* pomttd out th.t th«r. „ curr.ntly some ..gnif.c.nt ov.rl.p 

between the t.sks performed by the simplification p.ckege end those don« by th« 

theorem prover. An appropnate divisien between these two components remain. • 

subject for further study. Also, it is worth noting that the Pascal 

verification condign generator does not use the s.mplification package during 

the generation process, as is done by other verifiers and also b> Musser's 

verification condit.on generator. Interestingly enough, the separation of these 

two components was ong.nally expected to cause problems, but so far it has not. 

TUKORKM PROVER 

Those verification cond.t.ons that do not simph,, to TRUE are passed on to 

the interactive theorem prover. Briefly speaking, the prover is a naturel 

deduction system that proves theorems by subgoalmg (splitt.ng). matchmg. and 

rewriting. It also utilizes semantic tables to help d.rect its search. The 

theorems (and subsequent subgoals) are shown on the user terminal in a natural, 

easy to read form, and the user is provided with several interact.ve commands 

for communicating with the prover. 

The way in which this prover incorporates user interaction is the 

characteristic that makes it particularly well suited for provmg verification 

conditions denved from real programs. The prover ,5 based on natural 

deduction, as opposed to a "less natural" process such as resolut.on. For 

example, deductions are earned out directly in terms of the operations given In 

the verification condition rather than in term» of equivalent clauses composed 

of   ANDs.   ORs.   and   NOTs.     When   the   human   user   desires   to   interact   with   the 
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proper, the dialogue K expressed in terms that are natural and convenient for 

the hurran instead 3f in those more convenient for a computer. In other word«, 

the computer supports the human rather than vice versa. 

The interactive policy of the prover is based on the premise that !♦ the 

prover can construct a proof automatically, tt will do it 'lirly quickly. For 

each theorem or subgoal, a time limit is set; if a proof has no been 

constructed m that time, the prover stops and waits for intftractive direction. 

The user then has available a number of commands for displaying the theorem and 

the details of what tne prover has done so far. Using these commands, the user 

isolates the difficulty and then can allocate more time, direct the prover into 

a new line of re mg, supply additional information, or simply assume that 

the current subgoal is true and go on to another part of the proof. Typically, 

proofs of verification cond.tions will fail initially because they do not 

contain enough information for a rigorous proof. A very useful feature of the 

prover is that this additional information need not be stated initially, but 

rather can be supplied at the point m the proof when it is realized that thia 

is necessary. This prevents the cunous spectacle of the user having to prove 

the theorem himself before he asks the prover to do so, in order to determine 

what additional theorems and oefimtions will be needed. 

To     make     the     prover     more     useful     in     proving     verification     conditions, 

additional facilities     have     been     added     for     handling     relational     expressions 

(involving <,    LE,   etc.)    and    proofs    by   cases.      For    variables   that   appear    in 

relational expressions,   both   upper   and   lower   bounds   are   computed.     When   e 

relational expression    u    discovered,    as    a    hypothesis,    the    bound«    on    these 

variables are    updated    accordingly.      This    interval    information    represent«    the 
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"state   of   the   world"   for   these   variables   at   that   time   and   serves   as   additional 

hypotheses    to    the    theorem   or    subgoal    being   considered.      For    example,   if    a 

contradiction   such   as   J   IN   [K,   K-l]   occurs,   this   represents   a   fait«   hypothesis 

and   successfully   terminates   the   proof.     Also,   if   the   bounds   I   IN   [N*l,   INFINITY] 

are   already   established   and   the   hypothesis   I  LE  N*l   is   discovered,  the   updated 

bound   is   I   IN   [N*l,   N*l],   and   this   is   treated   as   the   equality   I   -   N*l.     The«« 

bounds   are   used   not   only   to   prove   conclusions   that   are   relational   expressions, 

but     also,    more     importantly,    to    g   e    partial    retulti    that     initiate    proofs    by 

cases.    For example, suppose we have a theorem of the forr.i 

H 

AND (I IN [K+l, N] IMPC) 

IMP C 

and  we  Know  tnat  I  IN [K, N].    The prover will recognize  that   it  can «stabliih  r 

partial    result    for    the    theorem    in   the   case    for    I    IN    [K + l,    N].      Then,    by 

comparing   the   interval   [K*l,   N]   with   the   bound   [K,   N]   for   I,   it   will   conclude 

that   the   remaining   case   is   I   -  K   and  attempt   to  reprove   the   theorem   for   that 

case.      This    type   of   situation   frequently   arises   in   proving    assertions   that    are 

loop invariants. 

The following summary of the proof Of the three simplified verification 

conditions in Figure 3 indicates the general character of the prover and its 

policies toward interaction. A detailed view of the prover (being applied to 

topology theorems rather than verification conditions) it given by Bledsoe and 

Bruell [1973], and a complete descnptior of variable bounding methods and 

proofs by cases, which have been added for program verification, is given by 

Bledsoe and Tyson [1974a,t]. 
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SVC1, SVC2, and SVC3 ar« passaa to the provar on« at a fima at th« 

discretion of the user. For SVC1 there is nothing the prover (or e human 

prover, for that matter) can do without further information about APERM. What 

APERM(A,A.1,N) says is that A[l . . . N] is a permutation of A[l . . . N], end 

the user must recognize that this is a universal f.ct ebout APERM. This problem 

domain fact is given to the prover In the form of a reduction rule similar to 

those used by the symbolic evaluator for built-.n operations: 

(Rl)« APERM(AIA,1.N) reduces to TRUE. 

The actual sequence of events is (a) SVC1 is passed to the prover, (b) it tries 

to prove it and fails, (c) the user supplies the new reduction rule, and (d) the 

prover tries again and succeeds. 

SVC2   comes   fron  the   loop  of  the  SORT  function,  and  its   proof   is  the   moat 

involved.      The   prover   first   automatically   breaks   the   proof   into   two   aubgoals, 

one   for   conclusion  Cl   and   the  other  for  C2.     The   prover   fails  on  Cl   until   the 

user     supplies     an     additional     hypothesis    that     gives    conditions     under     which 

swapping array elements preserves permutation: 

APERM(B1A,R,S) 

AND R LE X AND X LE S 

AND R LE Y AND Y LE S 

(AMI)    IMP APERM(ASWAP(BPX,Y),A,R,S). 

•Rl is stated directly in terms of A to improve readability. We could juat aa 
wall have used APERM(X,X,Y,Z). This same approach is used in thia paper for 
subsequent inputs to the prover. 
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Once this it giv.n, th* prover realizes that it could use the conclusion of AH1 

to prove the mam conclusion Cl if it can prove the hypothesis of AH1, which 

amounts to 

APERM(BA1,N) 

AND 1 LE L0CMAX(B>1>K) AND LOCMAXO.l.K) LE N 

AND 1 LE K AND K LE N 

The prover auiomatically proves these new subgoals from H5 and from H1-H4 which 

have been c.    .erted to the form 

LOCMAX(B1lIK) IN [l.K] 

N IN [K, INFINITY] 

K IN [MAX(2I LOCMAX(B>l,K)), N]. 

Thus,    the    proof    of    Cl    is    done    automatitAily    with    the    addition    of    one 

user-supplied hypothesis. 

The proof of conclusion C2 requires two different, user-supplied 

hypotheses. With the addition of these two, AH2 and AH3, the theorem to be 

proved becomes 

(AH2)       ALL CAX.Y (U NE X AND U NE Y IMP ASWAP(C,X,Y)[U] - C[U]) 

{AH3)      AND ALL C.U.V,X,Y (U LE X AND X LE V AND U LE Y AND Y LE V 

IMP AMAX(ASWAP(C,X,Y),U,V) - AMAX(C,U,V)) 

(HI)        . ND 1 LE L0CMAX(B,1,K) 

(H2) AND LOCMAX(B,l,K) LE K 

(H3) AND K LE N 

(H4) AND 2 LE K 

(H5)        AND APERM(B,A,1,N) 

(HI)        AND ALL I (K*l LE I AND I LE N  IMP B[l] - AMAX(B.1,I)) 

(H7)        AND BCL0CMAX(B.1,K)] - AMAX(B,1,K) 
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{C2) IMP ALL I (K LE I AND I LE N) 

IMP ASWAP(BIL0CMAX(B,1,K),K)[I] 

- AMAX(ASWAP(B(LXMAX(B,1,K).K),1,I). 

(Actually,   the   quantified   variables   are   replaced   by   Skolem   variablea.   but   that 

need   not   concern  us  here.) AH2  gives  conditions   under  which  array  aubacriptlng 

is insensitive to swapping elements, and AH3 gives similar conditions for AMAX. 

Once   AH2   and  AH3  are  supplied,  the  prover   eventually  adopts 

proof   by   cases, one  case  for  I  IN [K*l, N]  and  the other  for  I  - 

for    I    IN    [K*l,    N]   requires   establishing    a    chain   of   equalities 

conclusions  of  AH2, AH3, H6, and C2.    Although the prover nas the 

building     th.s     chain,     it     does     not     invoke     it     automatically 

cham-buildmg    process    is    combmatorially    explosive.      The    user, 

explicitly    direct    it    to   try   to   build   an    equality   chain.     Once 

directs,   it   builds  the chain noting the  hypotheses  of  AH2  and AH3 

proved in order that the chain be valid    These hypotheses are 

I NE L0CMAX(B,1,K) 

AND I NE K 

from AH2, 

1 LE L0CMAX(B,1,K) AND LOCMAX(a,l,K) LE I 

AND 1 LE K AND K LE I 

from AH3,   rid 

«♦1 LE I AND I LE N 

from  H6.     These  conditions are  required  to  hold  only for  the case 

and are easily proved automatically. 

a strategy of 

K. The proof 

involving the 

machinery for 

beceuae the 

however, ten 

the user to 

that  must   be 

IN [K*l, N] 
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The   proof   of   C2   for   th«  case   I   -  K   begins   with   tho   eutometic   substitution 

of K for I.   C2 then becomes 

ASWAP(B, LOCMAXiB.l.K^K^K] 

- AMAX(ASWAP(B,L0CMAX(B.1,K),KU>K) 

which automatically is reduced to 

(02') B[LOCMAX(B>l,K)] 

- AMAX(ASWAP(B>L0CMAX(B.1.K),K),11K) 

by a call to the symbolic evaluator. Again the prover is interactively directed 

to try an equality chain, which it succeeds in building using C2', AH3, and H7. 

Once again the chain is conditional, requiring from the hypothesis AH3 the new 

subgoals 

1 LE LOCMAX(B,l,K) AND L0CMAX(B,1,K) LE K 

AND 1 LE K AND K LE K. 

These are proved automatically and the proof of SVC2 is complete. 

The proof of SVC3 begins with the automatic substitution of 1 for K, giving 

1 LEN 

AND APERM(B,A,1,N) 

AND ALL I (2 LE I AND I LE N IMP B[l] - AMAX(B,1,1)) 

IMP ALL I (1 LE I AND I LE N IMP B[l] - AMAX(B,1,I)). 

The   prover   then   automatically  considers  two  cases,  I  IN  [2,N]  and  I  ■>   1.     The   I 

IN   [2,N]   case    follows    immediately,   and   the   I   -    1    case   requires   only    the 

user-supplied reduction rule 

(R2) AMAX(B,X,X) reduces to B[X], 

and the proof of SVC3 is complete. 
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It should be noted that although some interaction has been necessary to 

direct the prover m its selection of strategy, most of the interaction was used 

to supply three additional hypotheses and two new reduction rules about APERM 

and AMAX. This amount of interaction seems quite tolerable considering that no 

information whatsoever about either APERM or AMAX was available to the prover, 

or any other part of the system, pnor to the interaction. We anticipate that 

this example is typical of real programs in this regard, and that the main use 

of interaction will be to supply the prover with these additional fact« about 

the problem dc.r.ain. 

CONCWSION 

This has been an initial progress report on the development of en 

interactive program venfiiat'On system whose ultimate goal is to be an 

effective tool in proving programs that solve significant, real problem«. 

Certainly the sorting program proved here is not a large, complex progrem. 

Nevertheless, we believe that its proof is, in two significant way«, typical of 

the proofs that will be necessary for much larger programs. First, we believe 

that, if we are to be able to prove large programs, such programs and their 

$p«cifieationt must be expressed in sufficiently abstract terms «0 thet their 

proofs can be carried out in terms of intellectually manageable segment«. 

Although the principles of abstraction, such as those discussed by Dahl, 

Dijkstra, and Hoare [1972], seem now to be fairly well accepted for program«, 

little has been said of the need for abstraction in specification«. To Keep the 

proof   at   an   abstract   level,   though,   clearly   both   are   necessary.     The   APERM, 
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AMAX, and ASWAP function« of fh. «ort program ar« amall. but r«pr»Mr>tatlv«, 

initial atopa in thia diraction. Evan thaaa minor abatractiona Kaap tha proof 

•t a highor, more abatract laval, thu« making it more euecinct though no la» 

rigoroua. Sacond, wa baliava that proofs of larga program» will roquiro 

information about tha domain of tha problam baing solvad, which information will 

not be atatad axplicitly aithar in tha program or ita apaeificationa. 

Currantly, it aaams highly dasirabla to allow this information to reside in tha 

data basa of tha usar's mind and to lat him do tha ratriaval of tha ralovant 

faeta aa tha need arisas, as was dona in aupplying tha additional hypotheses and 

raduction rulas for tha sort proof. 

Tha   currant   systam   claarly   naads   considerably   more   work   to   make   it   an 

"affactiva    tool"    for    proving    larga    program«.      Significant    araaa    in    which 

additional   affort«   ara   now  baing  mada  includa  incorporation of  mora  faaturaa  of 

Pwcal,    inciuaion    of    othar    languaga«,   axtanaion    of    tha    assartion    languaga, 

additional    ways   of   axploiting   abstraction,   improvad   ayntax   analyaia   facllltloa, 

raconaidaration   of   tha   division   of   labor   and   dagraa   of   intagration   among   tha 

major    syatam    components,    improvad    faciiitias    for    display    of    tha    proof. 

improvamant   of   tha   intaractiva   usar-systam   intarfaca,   and   additional   facilltiM 

for   managing   complax   proofs  composed  of   proofs   of   a   larga   number   of   amall 

program sagmants.    Although wa now saa many ways in which tha ayatom can bo 

improvad   and   ara   vary   anthusiastlc   about   its   avantual   succass.   thaaa   inaighta 

and  thia  optimism  ara  dua  ultimataly  to our  having  baan  able  to bring  together 

savaral   complax   and  sophisticstad, but  divarsa. softwara   components,  and  to   use 

tham    in    a   highly    flaxibla   and   dynamic   axparimantal    environment.     It   seams 
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•ppropriat« to clot* by rscalling a portion of R.    W.    Hamming's  1968 ACM Turing 

Loctur«: 

Indood, on« of my major complaints about the conputar fiald 
is that whereas Nawton could say, "If I have seen a little 
farthar than others it is because I have stood on the 
shoulders of giants," I am forced to say, "Today we stand on 
each other's feet." Perhaps the central problem we face in 
•II of computer science is how we are to get to the 
situation where we build on top of the work of others rather 
than redoing so much of it in a trivially different way. 
Science is supposed to be cumulative, not almost endless 
duplication   of   the   same   kind   of   things.     [Hamming   1969,   p. 
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