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Problems of information processing and optimal survetllance in a false target
environment are investigated with ASW aprplications in view. The information
processing procedures, among other things, make use of adaptive estimation
techniques {n order to fdentify uncertain system parameters. Procedures are
presented for computing real-time estimates of tae target location probability
distribution i{n realistic tactical scenarios involving moving targets and fulse sensor
responses., The procedures are applied to a variety of illustrative examples per-
taining to the processing of responses obtained from a fixed sensor field in barrier
end area surveillance scenarios,

The optimal allocation of ASW search resources in a false target environment
I8 investigatod in an exploratory analysis of an ideallzed surveillunce 'situation,
Several allocation policles are formulated including one based upon some concepta
of information theory. This "maximum information gain'" policy is shown by
rumerical examples to have very desirable characteristics. In order to further
establish the relevance nf the information-theoretic approach to the survelllance
problem, the latter is formulated as a type of sequential statistical experimental
design problem which has been studied extensively using information-theoretic
conoepts,
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This is a report to Naval 'Analysis Programa, Office of Naval Research
(Code 431), undor Montraot No, NOGO14-71-C~0309, It presents methods of
processing information from ASW sensors in the presence of false targets and
for planring s2urveiiianoe actions based on such proceasing, The methods are

© presented (n ways that are suitable for real-time computer assistance to ASW

surveillance operstions and have in fact been motivated by actusl applications of
this nature, Related prior applications have also included computerized assistance

" to search and rescue operations by the Coast Guurd,

We should 1ike to express appreciation for the sponsorship and splendid
coope ration that has been given to this work from Mr, J. Randolph Simpson of
. Naval Analysis Programs, ONR, and through him, Mr, Robert J. Miller, Director,
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SUMMARY

This report addresses problems pertaining to ASW information processing
and optimal surveillance in a false target environment. The objective is to
provide useful concepts and practical approaches for answering the question,
"Where is the target ?'', Potential applications include continuous broad
localization of the target through intermittent application of ASW search at
selected times and places. No ASW action other than target location is considered,

The results on ASW information processing are given in Chapter II, and the
results on optimal surveillance are given in Chapter III, Chapter I provides a
brief introduction, and Appendices A and B support the material presented in
Chapters II and III.

The first two sections of this summary disocuss Chapters I and OI, The
third section discusses the appendices,

ASW Information Processing

Chapter II presents methods for processing ASW information in order to
compute real-time estimates of the target location probability distribution, An
illustrative ASW setting is used to demonstrate the potential applications of the
processing concepts, and extensive numerical results are given, The method~
ology is discussed in computer programming oriented language in the final
section of Chapter II and in greater generality in Appendix A,

The target location probability distributions are computed by monte-carlo
simulation and are expressed discretely in terms of grid cell probabilities, It
is assumed for {llustrative purposes in Chapter II that a fixed sensor field
provides the scurce of real-time input to the processing system,

The term sensor response is used to indicate that a decision has been made
that the sensor output contains a sufficient number of target-related cues so that
the hypothesis that the target is present is preferred to the alternative hypothesis
that the target is not present, A false response Is a response generated by a
non-target-related mechanism. The causes of false responses are dealt with
from a declision-theoretic point of view in au predecessor report (reference [ a ]);
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the present report adopts an operational point of view and focuses on overcoming
the adverse effects of false targets.

The methods of Chapter II and Appendix A have been applied without false
target considerations in Coast Guard search and rescue (S8AR) cases (see
reference [b ]) and in certain ASW situations. In each instance, successful
implementation of the methods has depended upon exploitation of the unique
aspecte of each application and construction of a mathematical model having a
levei of detail and realism consistent with the quality of the data and with the
constraints imposed by computer memory size and computation speed. In view
of this, the results in this report are intended to point the way rather than to
give a comprehensive treatment which would cover all possible circumstances,

Among other things, Chapter Il shows how to make use of adaptive estimation
techniques (see reference [¢ ]) in order to identify uncertain system parameters,
In a sense, one begins with a family of models and the "correct” model is
identified adaptively on the basis of observational information.

For example, the particular stochastic process underlyirg target motion is
not assumed to be known, Rather, several possible processes ("'scenarios'!) are
postulated and each one is given an a priori probability (''ocredence'). The
processing system revises the credences in accordance with the input sensor
responses, Those scenarios which are moat in agreoment with the sensor
resporses eventually develop the highest credences,

Similarly, the single-sensor, single-glimpse probabilities of detection and
false alarm are treated as unknown parameters. They are, however, related
through a known ROC relationship. The probabiiity of detection is initially
assumed to be a random variable with a uniform distribution between known limits
and the processing system adaptively revises this distribution in accordance with
the sensor responses,

Table S~1 indicates illustrative results of the adaptive estimation procedures.
In all cases, the scenarios for target motion are considered a priori to be equally
likely, The true detection probability PD = .8 is not known; it is assumed that
Pp is a particular value of a random variable Pp which is uniformly distributed
in the interval from .5 to .9. The expected value of this prior probability
distribution is .7. ThLo estimated detection probabilities given in Table S-1
after incorporating sensor field responses are the expected values of the
posterior distributions for Pp. The processing algorithms make use of the
entire distribution for Py, however, and not just the expected value,

Table S-1(a) pertains to a target patrolling station and is based on the results
shown in Table II-1 of Chapter II. The correct scenario for target motion in this
example is Scenario 2, and Table S-1(a) shows that the credence assoclated with
this scenario rises to .95 as a result of processing all the sensor response

informatiou for four fleld glimpses. The estimated detection probability is . 77,
comparaed to the actual value of . 8.

IO
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TABLE §-1 ]
SUMMARY OF ADAPTIVE ESTIMATION RESULTS {

|

Notes: (1) This table indicates illustrative results of adaptive
estimation of target scenario and detection probability,

(2) The correct target scenario is circled, and in all ' |
cases the true single-gensor, single-glimpae .

detectlon probability is Pp, = . 8, ¥
1
(&) Target Patralling Station (see Table II-1) ‘ :
Estimated Single-Sensor, !
Single~-Giimpse Detection P
Probability .
Scenario Credences (true value is , 8) -
1 @ s
No Sensor Information Used .83 .33 .34 .70 k.
All Sensor Information Used ,00 .95 .05 77 ;
(868 hours into mission--4 field glimpses) .
() Target tn Transit (see Table II-2) !
i
Estimated Single-Sensor, N
Single~-Glimpse Detection -
Probability L4
Scenario Credences {true value is , 8) L
.
O G s 4 s -3
No Sensor Informmtion Used 2 .2 .2 .2 .2 .70
All Sensor Information Used .7 .18 .01 .03 ,03 .73 o
(48 hours into mission~-3 field glimpses) ’
All Sensor Information Used .33 .60 .00 .02 .05 .78 .

(96 hours into mission--5 fleld glimpses)

(c) Target Out of Grid Area (sce Table II-3)

Estimated Single-Sensor 1
Single-Glimpse Detection

Probability ]

Scenario Credences (true value is , 8) 3

§

1 2 3 4 @ :

No Sensor Information Used 2 .2 .2 .2 .2 .70 '
All Sensor ‘nformation Used .02 .08 ,07 .08 .77 .88

(96 hours into mission--5 field glimpses) )
vil




Table S-1(b) pertains to a target in transit and is based on the results shown
: in Table II-2. In this illustration, the target is assumed to be a late Scenario 1
or an early Scenario 2. That is, the true target's position falls midway between
: the mean positions prescribed by Scenarios 1 and 2. Table S-1(b) shows that as
g a result of processing five field glimpses, the total credence associated with the
3 two closest scenarios is , 93 and the estimated detection probability is . 78.

Table S~1(c) pertains to a target which is out of the grid area, that is, during
the period of observation considered there has been no transit by the target through
the areu of interest, The true scenario in this {llustration is Scenario 5 and as a
, result of processing five field glimpses, the credence asscciated with this scenario
i rigses to .77, The estimated detection probability is ,83.

Figure S-1 shows selected probability distributions for the cases considered
in Table S~1(a) and 8~1(b), It should be noted that only probability which falls
within the grid is shown and thus the numbers need not add to one, The
probability digtributions on the left are based upon the a priori scenario and make
use of no sensor information. The probability distributions on the right are
based upon use of all sensor information available,

It i8 evident from Figure S-1 that processing of sensor response information N )
by the methods described in Chapter II and Appendix A results in considerable |
concentration of the target location probability distribution,

‘ ! Optimal Surveillance : {

Chapter III {s addressed to optimal surveillance in a false target environment,
An exploratory analysis is presented for the purpose of gauging the effectiveness :
of a surveillance policy based upon maximization of the expected information gain ' a
in the target location probability distribution, Here, the term information is used
in the technical sense of communications theory (see, for example, reference {d ]). o

The concepts presented in this chapter are expressed in terms of rather
idealized assumptions and further development is required before application can :
be made to large-scale practical problems, The objective of this chapter is to N
demonstrate through examples that the concepts of information theory are relevant
to oertain kinds of search and surveillance problems, particularly when false ]
| targets are considered, _}

T; It is assumed that the performance of an ASW search system is idealized in ;
terms of a J ® J response array (J is the number of search cells), ~

'i R = (R(ilj))’

viii
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3 FIGURE §-1 .

THE INFLUENCE OF SENSOR RESPONSES
ON THE TARGET LOCATION PROBABILITY DISTRIBUTION

- Note: Only probability inside grid is shown and thus numbers need not add to one.

(a) Target Patrolling Station (See Figures I1-6 and II-6)

.02 .06 } .03 | .02 .01
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H (968 hours into mission~~0 field glimpses) (96 hours into mission--4 field glimpses)
: 1 2 3 4 5 8 1 2 3 4 5 8 1
li A |
H B 02 |.05 | .02 B P
” cj.o1 | .13 [.16 | .06 | .04 LTargdt cC .01 Jrersd
3
¢
1 D .04 1,09 | .18 ¥08 | .01 D 49 348 1
i _ :
. E 01,01 | ,05 (.03 E i
EL 3
P ’
9 4 (b) Target In Transit (See Figures 1[-9 and II-10)
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where R(i, }) is the probability that an increment of search effort applied to the
jth cell will result in a response given that the target is located in the ith cell,
The desired modification of the target location probability distrihution is
accomplished by the sequential application of search in seiected cells, The
surveillance is carried out in stages, and at the end of each stage one is reguired
to estimate which cell contains the target. For all policies examined, the
selection rule at the end of a stage is to pick the cell having the highest target
location probability distribution based upon evaluation of the search rosults,

The ceil searched during a stage, however, may or may not be the highest
probability cell depending upon the policy.

The measures of effectiveness are the probabilities S(k) of correctly selecting
the cell containing the target at the end of the kth stage for k=1, 2, ... . A
surveillance policy which maximizes S(k) for some particular k is referred to as
a k-optimal surveillance policy and a surveillance policy which maximizes S(k)
for all k > 1 is referred to as a uniformly optimal surveillance policy, Within
the framework of our analysis, k-optimal policies are guaranteed to exist since
the set of all possible policies is finite; however, existe wce of uniformly optinial

surveillance policles is not guaranteed.

When target motion is considered, it is assumed for illustration to be Markovian,
This is not essential, however, and target motion could equally as well be described
by the non~-Markovian processes considered in Chapter Il and Appendix A, The
J X J transition matrix D for the Markov process is assumed for illustration to be
given by, for some 0< 6 < 1,

' J=1 5 o]
1520030
o d-1 5 )
it J)G’Ej" ' 3
D =
. :‘
o
o & @=1
e .
\ /

This transition matrix depends upon a single parameter 5, here referred to as the
dispersion constant, The initial distribution for the process is denoted d.

The problem of finding an optimal surveillance policy can be formulated in
terms of a stochastic control problem, and this 18 discussed briefly in Chapter III,

X




Visualizing the problem in this way, it seems apparent that k~optimal plans may
be found by dyaamic programming, but we do not develop these solutions in this
report. Our interest is in the entire time behavior of the success function 8
rather than the value of the function at some fixed stage,

Four surveillance policies are examined in Chapter III using a variety of
assumptions about the false target environment and about the prior target
location probability distribution and target motion charanteristics. To do this,
let (for a given stage) Py(j) be the before-search probability that the target is
located in the jth cell for 1 < j < J. Let pA(r,i,j) be the conditional after-search
probability that the target is located in the ith cell given that the jth cell was
searched and result r was obtained, Here, r = 1 indicates a target-like response
and r = 0 {indicates a non-target-like response. The four policies examined are
as follows:

I, The optimal single~stage look-ahead policy, The optimal
single-stage look-ahead policy is to search in the cell which, based

upon the estimated vector PB, maximizes the prsobability of correctly
selecting the target cell at the end of a singlu stage, This is & gener-
alization of the optimal whereabouts plan formulated in reference [e ]
for searches without false responses, If

B() = max{PB() K(,)) : 1< 1< J} + max{Pp@) [1-RKL)) : 1< 1<},

then it is shown fa Chapter III that the optimal single-stage lcok-ahead
poliny is to search in cell j* for which

BG* > BG) forigicd.

II, The maximum information-gain policy. The maximum infor-
mation-gain policy is to search in the cell which maximizes the expectad

information content (or, equivalently, minimizes the expected entropy)
of the posterior after-search target location probability distribution.

For any discrete probabﬁii:y distribution P over J cells, the
entropy H(P) is defined by

J
HP). = - jZ‘.] P@) In P(@).

xi
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E The expected entropy U(j) of the posterior target location probability g .
distribution given search in cell J is shown Ir Chapter III to be given ‘ o
. ‘.' by

J 4
Ug) = - £ PBO (R I pA® L) + 1-RG,1) In pAO.L I} 4

g The maximum information~gain policy is to search in any cell j* ‘
for which

UGgH < Uf) forlg <.,

II, The highest probability cell policy. The highest probability
cell policy 18 to search in the cell with the highest probability, that is, ‘

to search in any cell j* for which o
Pp(*) > Pp@j) forlgjsgd. .

Once Pp is determined from the search results of the previous stage, ’
this plan does not make further use of the response matrix R. 3

IV, The uniform surveillance policy, The uniform surveillance
policy is to search systematically through all search cells in a fixed _ [ %

q rotation, that is, one searches the J cells in order and then repeats
as often as required, This plan does not make use of the target .
3 location probability distribution nor of the response matrix, \

Figure 8-2 illustrates the behavicr of the above-mentioned surveillance
: policies in one of the cases (Case I(a)) considered in Chapter IIl. The target is
. B assumed 1o be stationary with a uniform prior distribution, i.e., d(1) = .33,
3 d(2) =, 33, and d(3) = ,34, For all cells, if the target is in the cell searched,
i then the probability of response is ,8, The probability of false response is .7
, | in the first cell and the probability of false response is .1 in the second and third
ot cells, This means that very little information is gained by a search in the first
cell since the probabilities of correct response and false response are nearly
t equal,
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Figure S~2 indicates that in the earlier stages of search, there is little
difference between the maximum information-gain policy and the optimal aingle~-
stage look~ahead policy, Asymptotically (1.e., for large k), the maximum infor-
mation-gain policy appears to have a slight advantage, The uniform surveillance
policy (Policy IV) also does well in this example, but the highest probability cell
policy (Policy III) is not particularly attractive,

Figure S-8 shows the influence of target motion on probability of success for
the maximum information-gain policy., In this case (Case I(b)), the response
matrix R is the same as in Figure 8-2, but the prior distribution is non-uniform
with d(1) = .75, d(@) = .15, and d(8) = .10, The three examples shown correspond
to values of the dispersion constant, 6 = 0, 6 = .3, and 6 = 1, The case where
6 = 0 corresponds to no target motion, and, consequently, this curve is the same
as that given in Figure 8-2 for this policy. The case where 6 = 1 corresponds
t0 complete dispersion of the target location prohability distribution to a uniform
distribution at each stage. The first transition of the Markov process is made
at the end of the first stage, Therefore, S(1) is identical for all three values of
the disperaion constant, When 0 < 6 < 1, the curves do not appear to approach 1
asymptotically, In these cases, it appears that equilibrium is reached for large
values of k in the sense that the information gained by search is balanced by the
information lost by dispersive target motion.

The principal conclusion of Chapter III is that the maximum information-gain
policy appears to have very desirable characteristics in the idealized surveillance
scenario considered. In all cases considered, it is the best or nearly the best
of all the plans considered, Moreover, for each alternative policy, there is at
least one case gliven where the maximum information-gain policy is
much better, This conclusion appears to be at variance with some previous
investigations into the value of information theory in search problems; these
other investigations are reviewed briefly in the final section of Chapter III,

Appendices

Appendix A provides a generalized treatment of the information processing
oconcepts described and applied in Chapter II. Knowledge of the mathematical
structure of these information processing procedures makes it possible to carry
out deeper investigations of their characteristics and scope. An understanding of
Appendix A, however, is not required in order to undertake the development of
new processing systems; the last section of Chapter II should suffice for this
purpose,

Appendix B formulates the search and surveillance problem as a statistical
sequential experimental design problem. The purpose of this formulation is to
suggest a theoretical framework for applying information theoretic concepts to

xiv
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surveillance problems. In particular, the maximum information-gain policy of
Cheptor IT is shown to correspond to Lindley's approach (see reference [f ]) in
sequential experimental design, It is also shown that the problem of which cell
. to search at eacl: stage of a surveillanoce operation may be viewed as & game
: batween the search planner and nature in which the payoff to the search planner
is measured in terms of the information he gnins about the true state of mature,

(1 i S e -
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ASW INFORMATION PROCESSING AND OPTIMAL
SURVEILLANCE IN A FALSE TARGET ENVIRONMENT

INTRODUCTION

Thie report addresses problems pertaining to ASW information processing
and optimal surveillance in a false target environment, 1'he objective i8 to
provide useful concepts and practical approaches for answering the question, F
"Where is the target ?"'. Potential applications include centrai-site processing -
ol data from fixed surveillance systems, VP mission planning and analiysis at ]
Tactical Support Centers (TSCs), ocean surveillance, and processing of diverse
kinds of ASW-related information by computerized command and control systems
(ASWCCS, WWMCCS, ete.).

In this report, the term sensor is used to denote the entire sensing mystem
consisting of transponder, processor, display, and human operator, A target-like
sensor response results from a decision based upon the inputs to the sensing system in
favor of the hypothesis that the target is present as opposed to the alternative
hypothesis that the target is not present, A target-like rusponse may be gencrated -
by the target (a true response) or by some other non-target-related mechanism (r
false response),

A predecessor report (rcference [ & ) deals axtensively with the causes of 1
ialse responses and, among other things, provides quantitative models for 4
including fals» respcnses in ASW computer simulations,

The present report assumes that the occurrence of false responses is an
unavoidable cperational fact of life and focuses on the problem of what to do about
them,

We are interested in utilizing the information provided by sensor responses
for the purpose of making target location predictions, In parts of an operating
area where there are few false response stimuli, such as those produced by shipping or
biolngical activity, a target-like response conveys considerable information about
target presence, In other areas which abound in false response stimuli, a single
target-like response has less meaning and importance.




For our purposes, search is defined as the act of acquiring response/no
response data from the sensors. In most treatments of search theory, the
objective of search is target detection, i.e., achleving a state where the target's
location (e.g., & cell in a search grid) can be stated with absolute certainty,
Unfortunately, this state is seldom reached with non-visual sensors because
of the possible occurrence of false responses. Thus, new approaches are
required to deal realistically with these situations,

In this report, in fact, the detection state is not observable, That is, in this
report it is assumed that the decision maker can never state ""We have detected
the target," He can only become increasingly confident that the information provided
by his sensors is consistent with a partioular target location or motion hypothesis.

Even within the narrow confines of ASW search and surveillance, there are
a wide variety of tactical situations which might arise and which might involve
many different typeas of ASW units, sensors, and systems, In order to treat this
diversity, we have decided to emphasize concepts rather than details, Our
intent is to show the potential usefulness of certain ideas rather than to present
detailed algorithms for the Lmplementation of these ideas in specific situations,

Chapter II discusses methods for centralized processing of diverse kinds of
sensor data and general intelligence. These methods have been applied without
false target considerations in Coast Guard search and rescue (SAR) cases (see
reference [b ]) and in certain ASW situations. The discussion is based upon an
idealized tactical setting where a fixed distributed field of sonsors provides the
response data, These responses and subjective a priori information about target
information are input to the processing syatem; the output of the processing system
provides the answer to the question, '"Where is the target ?" in the form of target
location probability maps, Illustrations are given for the cases of targets
patrolling on station, targets in transit, and targets out of the area of interest
entirely, In the latter case, all sensor information is false response information,

In Chapter II the subjective input takes the form of scenarios for target motion
together with associated credences, The ''weighte scenario' idea was introduced
by Dr. John P. Craven during the Moditerranean H-bomb search in 1966 and used
to develop an a priori probablility target location distribution for that operation,
The weighted scenario approach was used subsequently in the 1968 search for the
submarine Scorpion (see reference [ g ]) and is presently incorporated in the
operational computer-assisted search and rescue planning (CASP) systom of the
Copst Guard,

The methods {llustrated in Chapter II also permit the input of probability
distributions rather than single-valued estimates, for parameters whose values
are uncertain; the "true' values of these parameters are estimated from the
sensor observatic.i data concurrent with the determination of the target location
probability distributions, Appendix A supports the material in Chapter II witha
more general and abatract disacussion of the information processing concepts,
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Chapter IiI is concerned with optimal utilization of the Information given by
the target location probrbility distributions, and the analysis in this chapter is
intended primarily to demonstrate the potential applications of information theory .
to ASW surveillance in a false target environment, In this kind of eivironment, [
sensor responses do not necessarily indicate target presence,but they do provide
& certain amount of information, Our results indicate that this information may
be quantified, analyzed mathematically, and usefully applied in terms of the
concepts of Information theory,

The tactical setting considered in Chapter III is an idealized ASW surveillance
situiiion in which one is interested in finding the sequential assignment of ASW
search which will maximize the number of times that the target's position is
correctly specified over an extended period of time. Four surveillance policies
(L. e., sequential allocations of search effort) are compared using monte-carlo
simulation. The policy which maximizes the expected information gain in the
posterior target locution probability distribution is found to provide the best overall
results in the cases examined,

Previous studies (in particular, references [h), [1], and [ ) ]) of the
connections between search theory and information theory have reached negative
conclusions, These previous studies are reviewed in the final section of
Chapter III and some reasons for the apparent disagreement are offered.

Information theoretic approaches have been used extensively in statistics (see,
for example, reference [k ]); Appendix B relates these statistical methods to the
surveillance problem from the point of view of sequential experimental design
and hypothesis testing.
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CHAPTER 1I

ASW INFORMATION PROCESSING IN A FALSE TARGET ENVIRONMENT

Thie chapter present:s procedures for processing ASW information in a false
target environment for the purpose of predicting target location. The procedures
are computer-oriented and suited for use in command centers which have access
to diverse kinds of ASW sensor data and intelligence. Questions pertaining to the
utilization of the target location predictions are deferred to Chapter III,

The methods indicated in this chapter are Bayesian and are addressed primarily
to answering the question, '"Where is the target ?", The results are displayed in
terms of target location probability maps which are based upon subjective target-
mission scenarios and upon observed sensor response data, The maps express
the target location probability distributions in terms of grid-cell probabilities,

Other useful results such as the probability distributions for target course and
speed could be displayed if desired but are not treated in this report.

Each ASW situation has its own peculiarities, and discuasion of the information
processing meth>ds in a way which would cover all contingencies would, it is
believed, obscure the basic principles, Therefore, our main purpose is to
demonstrate the potential usefulness of the concepts in terme of specific examples
and to provide a mathematical framework for further applications.

Successful implementation of the methods will depend to & large measure upon
one's ability tv exploit the specifics of each application (target mission objectives
and patterns of operation, own systems characteristics, crew proficiency, etc,)
and to construct a mathematical model having a level of detail and realism
consistent with both the data quality and the constraints imposed by computer memory
size and computation speed.

As mentionad above, the information processing methods discussed in this
chapter are Bayesian, Briefly described, one begins by generating a large
collection of "constructs!' ey, ..., eN. Each construct specifies a complete target
track as well as any parameters of the mathematical model which are not assumed
to be known exactly, For each construct ey, there is specified a prior probability
pp that the nth construct is correct. The prior probabilities reflect the validity
of the constructs before any information is obtained from the various ASW sensors,
Usually, pp = 1/N when the constructs are generated by monte-carlo simulation.

-5-
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Sensor information is used to update the prior probabilities for the constructs
in the form of a posterior distribution., This is done as follows, Let

- pp|#ensor response patterns cbserved  |the nth construct
W throughout the time period of interest is correct

If p;l denotes the posterior probability for the nth construct, then according to .
Bayes's formula

q
pl'.l = = nPn forn-1,,..,N,

Zn=1 9mPm

The first section illustrates the information processing methods by applying .
them to hypothetical ASW situations. The recond section presents the details of
the mathematical procedures used to compute the illustrations, Appendix A
provides a generalization of the information processing methods to more general
situations.

Nlustrative ASW Applications

This section illustrates the resulte of applying certain methods for processing .
subjective target motion scenario information and ASW sensor response data in
order to obtain estimates of the taxget location probability distribution and of certain
other parameters of interest. The methods themselves are postponed to the second .
section, The iarget location probability distribution permits one to determine the
probability that the target is contained within specific geographical regions. These

probability distributions are of central importance in ASW, .
In this report, the target location probability distribution is exprossed in terms ' l
of grid-cell probabilities as illustrated in Figure [[~1, Charts such as Figure II-1 o

are often referred to as target location probability mapa, In the case shown, there
is a 20% chance that the target is in cell C-3 and & 70% chance that the target is in {
the region covered by cells B-3, C-2, C-3, C-4,and D-8, Target location )
probabilities associated with other regions may be obtained by summing the appropriate

probabilitiea. i

Although tactical use of the target location probability distribution is not
discussed in this chapter, a comment on contact investigation is in order. The
usual objective of contact investigation is to detect and further localize the target, h
To a large extent the target location probability distribution consolidates all of the
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relevant information needed to pursue this objective. The probability map
displays the information pertaining to sensor contacts combined with the equally
important information pertaining to target-mission objectives and patterns of
target operation. In many cases, therefore, it is better to investigate areas
assoclated with updated target location probabilities rather than to investigate
points associated with the individual contacts. The usefulness of the latter
investigation usually decreases rapidly as "time late' increases.

The first subscction below introduces the sensor response assumptions,
The three subsections which follow the first provide the illustrative numerical
examples, Thede are separately addressed to the cases where the target is
(1) patrolling station, (2) in transit, and (3) out of area.

Sensor assumptions, Figure II-2 shows the sensor field which will be used
in all of the examples given in this section. The sensors are arranged in a
fixed rectangular array with 60-mile spacing between rows and columns.

The term "'sensor response' will be used to indicate that a decision has been
made that the sensor output contains a sufficient number of target-related cues
so that the hypothesis that the target is present is preferred to the alternative
hypothesis that the target is not present. A decision-theoretic discussion of this
determination is given in detail in Chapter IV of reference [a ], and we will not
be concerned further with theae details,

Sensor response decisions might be made by an individual in charge of a
sengor team or, perhaps, by the programming logic of an automatic classification
device, The information processing methodology presented in this chapter may be
particularly useful in the latter case because the programming of an automatic
classification device requires the explicit statement of classification decision
rules, Such explicit rules are much easier to deal with analytically than are the
less explicit ruler underlying human decision making,

A "'detection' is defined to he a sensor response caused by the target and a
"false response' is defined to be a sensor response caused by something other than
the target,

The distributed sensors are monitored at the end of 24~-hour intervals. Each
monitoring event 18 treated as a ''single glimpse. ' Continuous field observations
could also be modeled but would require more complex algorithms than those
developed to compute the examples in this section,

It is assumed that each sensor has a maximum detection range of 60 miles
and that the single-sensor, single~glimpse detection probability is Pp = . 8 if the
target comes within this range of a sensor. Probability of detection is assumed
zero outside of 60 miles, The single-sensor, single-glimpse probability of false
responJe i8 PA = .8 regardless of target location, Thus, if the target is within
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60 miles of a sensor, then the probability of response is 1 - (1-Pp) (1-P,) = . 86,
and if the target is not within 60 miles of a sensor, then the probability of
rogponse is Pa = .3,

It is assumed for illustration that all sensor responses are statistically
independent in space and time. More complex assumptions could be made if
desired in a real application. The values Pp = .8 and PA = .3 are assumed unknown
o _the information processor, What is known, however, is that detection probability
and false-response probability are related by an ROC (receiver operating
characteristic) relationship

PAp = f(Pp)
where, for some fixed o > 0,
fip) = p¢ for0<p<l,

Note that P4 increases with Pp and that PA = 0 when Pp = 0 and PA = 1 when
Pp =1, The true values of Pp and P4 will be estimated from the operationally
derived data as part of the processing.

Any function relating PA and Pp could be used without significantly increasing
the complexity of the processing algorithms, In fact, it would not be difficult to
devige an algorithm which would permit postulation of an entire family of possible
ROC relationships when there is uncertainty as to which relationship is correct,
The correoct relationship could then be inferred from the operationally derived data.

The above assumptions are made in order to illustrate the information
processiug ideas within the framework of a simple and easily understood mathematical
model. They are not necessarily recommended for real-world applications.
Alternstive models for detection are provided, for example, in references [l ],
{m), [n], [o], and [p ); reference [a ] provides an hierarchy of decision-theoretic
models which treat detection and classification in a unified manner,

False responses result from complex interactions involving, among other
things, the sensor system, the environment, and hwnan factors (see reference
[a ]). At the present time, these interactions are not well understood and many
of the factors which are involved (e.g., command aititudes and individual motivation)
are not physically observable or measurable. Any estimate of false-response
probability, therefore, cculd be in errvor by a significant amount, For this reason,
it is important to develop information processing procedures which do not require
exact knowledge of false-response probabilities and which are adaptive in the sense




that initial estimates of these probabilitics can be modified by observed sensor
responses,

In order to reflect initial uncertainty about target characteristics, sensor
capabilities, and environmental conditions, therefore, we shall assume a uniform
probability distribution (known to the information processor) for Py on the
interval between .5 and .9, The oxpected value of this probability distribution is
.7 and PA is determined from PD by means of the ROC func¢tion, (See references
[q Jand [ r] for related analyses when the target is stationdry and sensor capa-
bilities are not known precisely. )

Example 1 -- target patrolling station, This example applies to the case of
a target patrolling station, It is assumed that scenarios cah be postulated for
target motion based upon past observations of similar targets or knowledge of
the present target's mission objectives, Associated with each scenario ig a credence
which expresses the scenario's relative plausibility. In the present example, a
scenario specifies a probability distribution for the target's location at equally
spaced points in time, The target is assumed to move along legs with constant
course and speed between leg endpoints, Monte=-carlo procedures are used to
obtain a large number of sample target tracks for each scenario specified (more
details are given in the second section), The number of trdcks generated for each
scunario is proportional to the associated credence, A particular target track is
generated by randomly drawing the endpoints of each track leg from the specified
endpoint probability distributions,

Figure II-3 presents the scenarios chosen for this example, Scenario 1 with
credence . 33 desoribes a target patrolling in a clockwise direction beginning in
the south and moving west, then north, and then east, All track-leg endpoint
probability distributions are assumed to be circular normal with 30-miie standard
deviations. Scenario 2 with credence .33 describes a target which also is
patrolling in a clockwise direction, but beginning in the north and moving east
and then south and west, The endpoint probability distributions are also normal
with 30-mile standard deviations. Scengirio 3 with credehce . 34 describes a
target which is patrolling in the center of the area without a regular pattern of
motion, For scenario 3, all track-leg endpoint probability distributions have
identical normal distributions with 60-mile standard deviations.

Figure [I-4 shows the time history of responses from the distributed fleld
simulated by a single replication of monte carlo. The target is assumed to follow
Scenario 2 and its position as a function of time ir also shown in Figure II-4,

The positions were chosen to coincide with the means of the Scenario 2 distri-
butions, A 60-mile radius circle indicating sensor detection range is drawn about
the target's position so that the responses outside this circle (necessarily false)
may easily be identified,
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THE HISTORY OF SENSOR RESPONSES
SXAMPLE 1 (TARGET PATROLLING STATION)

Notes: (1) Target follows Scenario 2 of Example 1,
(2) Detection probability is . 8 and false-response probability is . 3.
() x indicates target position (note 60 mi detection circle),
@ indicates a sensor response, and N
O indicates no sensor response. t
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Figures [I-5 and II-6 show the target location probability distributions before
and after processing the sensor response patterns shown in Figure II-4 (500
monte-carlo replications* were used to produce these distributions), Figure [I-5
shows the target location probability distributions based only upon the weighted
scenarios; no sensor response information is incorporated, Figure II-8 shows
the distributions which result from incorporating sensor response information,
Figure II-56(a) shows the target location probability distribution for the target
24 hours along its track based solely upon the scenario formulations with no
incorporation of the sensor response patterns., Note that the target actually lles
on the boundary between cells B-3 and B~4 and that the sum of the probabilities
in these two cells is 27%.

Figure I-6(a) shows the target location probability distribution for the same
time as Figure [I-5(a) but updated by incorporation of the sensor response pattermns
shown in Figure [[-4(a), Note that the sum of probabilities in the cells B-3 and B~4,
which include the target, remains about the same (28%) but that the probability
distribution has become more concentrated. It should be noted from Figure [[-4@8)
that there were 9 false responses from the 23 sensors heyond detection range of the
target. This is somewhat higher than the 6 or 7 false responses expected based
upon the assumed value of PA = .3 for the false-response probability,

Figure II-5(b) shows the target location probability distribution for the target
at 48 hours along its track based solely upon the scenario formulations with no
Incorporation of any sensor response patterns, The sum of probabilities in the
cells B-4 and B~5 oontaining the target is 22%.

Figure II-8(b) shows the updated target location probability distribution at
48 hours along the track, incorporating the sensor response patterns shown in
Figure [I-4(a) and in Figure II-4(b). The sensor response pattern given by
Figure II-4(b) {8 the result of very '"bad luck.'" Many false responses were obtained
in the areas occupied by targets following Scenarios 1 and 3 while at the same time
few responses were obtained in the area occupied by targets following Scenaric 2,
The actual target (following Scenario 2) was detected only once out of two
opportunities,

As a result, the sum of probabilities in the cells B-4 and B~5 containing the
target decreases to 3%, Action based on the results at this stage would not have
much chatice of success,

Figure II-5(c) shows the target location probability distribution for the target
at 72 hours along its track based solely upon the scenario formulations, The
sum of probabilities in ceils C~4 and C~6 containing the tavget {s 35%.

*  For operational real-time applications, & much larger number of ruplications
is suggeated, In past utilization of similar systems, 2, 000 to 10,000
replications have heen employed routinely.
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Figure [ -6(c) shows the corresponding updated target location probability
distribution incorporating all the sensor response patterns up to and including
thoso shown in Figure II-4(c), The sum of probabilities in cells C-4 and C-5
is now seen to increase dramatically to 86%. Apparently, a sufficient number
of patterns have been processed at this point for the updated target location
distribution to begin to converge on the target's actual location,

Finally, Figures II-5(d) and II-6(d) provide the before and after comparisons
corresponding to the target at 96 hours along its track, Without use of sensor
response patterns, the sum of the probabilities in cells D-4 'and D~5 containing
the target is 26% as given in Figure [I-5(d)., After use of all sensor response
patte%ns shown in Figure II-4, the sum of the probabilities in cells D-4 and D-6
is 97%,

Table II-1 shows the influence of the sensor responses on the scenario
credences and the mean detection probabllity, Recall that initially the scenario
credences were assumed equal; the sensor detection probability was assumed
uniformly distributed between , 6 and , 9 with mean value of ,7. Processing of
the sensor response patterns at 24 hours and 48 hours decreases the credence
associnted with Scenario 2 from , 330 to , 211 and , 044, respectively. The
results improve as the response patterns for 72 hours and 86 hours are incorporated,
'The updated weight for Scenario 2, the actual scenario, rises to ,952 following
incorporation of the sensor responscs obtained at 96 hours,

The mean detection probability ﬁp before processing is .7, In the present
example, the actual but unknown detection probability is Pp = .8, After
processing all the sensor responses, the updated mean detection probability is .77,

Thus, in spite of an unknown and relatively high false-response probability,
the processing algorithms produce (in this example) a very accurate indication
of the true target scenario and single-sensor detection probability, Moreover,
after processing the sengor response patterns, the target location probability
distribution becomes quite concentrated about the true location of the target.

Example 2 -- target in transit, 'This example considera the problem of
locallzing a target as it transits through an arsea covered by the distributed sensor
fleld, The target (If it shows up) 18 expected to begin its transit through the area
between time 0 and time 72 hours, but the exact time of transit is unknown, It is
desired to use the sensor response patterns to detect the target's presence in the
area and to localize it as it moves through.

Figure II-7 presents the scenarios formulated for this example, Once again,
the location of the target at the endpoint of each leg is specified by a normal
probability distribution. The distributions are elongated in the east-west direction,
however, in order to represent the uncertainty in the target's location across &
“front." The standard deviation in the cast-west direction is 60 miles and the
standard deviation in the north-south direction is 30 miles,
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TARGET LOCATION PROBABILITY DISTRIBUTIONS : l
EXAMPLE 1 (TARGET PATROLLING STATION) - NO SENSOR INFORMATION USED .
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I FIGURE I1-8
TARGET LOCATION PROBABILITY DISTRIBUTIONS
l EXAMPLE 1 (TARGET PATROLLING STATION) - ALL SENSOR INFORMATION USED
Notes: (1) Target follows Scenario 2 of Example 1,
' (2) Detection probability is . 8 and false-response probability is . 3.
(8) x indicates target position (note 60 mi detection circle),
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TABLE_Il-1
| ‘ : THE INFLUENCE OF SENSOR RESPONSES ON ESTIMATED PARAMETER VALUES f
§ EXAMPLE 1 (TARGET PATROLLING STATION) -
Notes: (1) Target follows Scenario 2 of Example 1, '
;' (2) True single-sensor, single-glimpse
' detection probability is . 8 and
b false-response probability is . 3,
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FIGURE =~ 7

SCENARIOS FOR TARGFT MOT:ON
EXAMPLES 2 AND 3 (TARG NSIT

Notes: (1) lillipses iidicate the 20 -uncertainty in target position at ]
the endpoints of each leg, §
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Scenarios 1 through 4 differ only in the assumed time of entry into the area,
i.e., Scenarios 1 through 4 are based, respectively, on the target reaching the
midpoint of the first row of cells at 0 hours, 24 hours, 48 hours, and 72 hours.
Scenario 5 (not shown) is included to cover the contingency that there is no target
transit during the time of interest. The initial credences for all five scenarios
are cqual,

In certain cases, the processing algorithms will produce good results even
when the actual target motion does not conform to any of the scenarios specified,
In order to demonstrate this fact, the target is assumed actually to begin
penetration at 12 hours. This {8 midway between the assumptions of Scenario 1
and Scenario 2.

Figure [I-8 shows the targoet's actual position and the sensor response
patterns at 24-hour intervals. The sensor responsc assumptions are the same
as those used in Example 1.

Figures [1-8 and [[-10 are based on b00 monte-carlo replications,

Figure -9 shows the target location probability distributions when no sensor
response patterns are processed by the system, Probabilities associated with
locations outside of the grid are not shown, These probability distributions are
based solely upon the initial acenario formulations, Note that the actual turget's
position lies within a cell with probability , 03 throughout the transit. In order
to demonstrate the flextbility of the algorithms, the computation of this cxample
was based upon the assumption that the endpoint probability distributions are
correlated so that the simulated target tracks through tho area will be straight
lines (no zig zags), This nccounts for the fact that the target location probahility
distributions in Figure [I-9 have the appearance of a single distribution sliding
through the area,

Figure I1-10 shows the target location probability distributions resulting from
processing all sensor responsc patterns, Note that the target 18 located in cells
having relatively large probabilities and that the probability distributions are
much more concentrated than was the case in Figure [[-9, It is also of interest

to contrast the probabflity that a transit has begun (given in tho notes corresponding

to each time period) with the Initinl probabilities based on the scenarios only
(given by the first general note). Once the target nctually penetrates the area,
these probabilities are substantially higher than the corresponding probabilities
based upon the initial scenario assumptions alone. For example, at 24 hours,
the probability is .40 that a transit has begun basod upon the sconarios only,
The corresponding probability making use of the sensor responses is | 92,

It is also interesting to contrast Figure [I-10(e) with Figure I1-9(e). The
target has completed transit of the area at this time; this is quite apparent in
Figuvre II-10(e) which shows only 2! probability of tho target being in the area,
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Table [[-2 shows the influencs of the sensor responses on the scenario
credences and the mean detection probability, Recalling that the target enters
the grid area midway between the times specified by Scenarios 1 and 2, we see
that at times corresponding to 24 hours and thereafter, Scenarios 1 and 2
together account for more than 90% of the total scenario probability. The sum
of initinl credences for these scenarios is , 40,

As in Example 1, the mean of the detection probability distribution appears
to be converging towards the true value . 8,

Example 3 ~~ target out of grid area. This example is based upon the same
scenarios as Example 2 but corresponds to the case where no target penetrates
the area, i.e., where Scenario 5 is the correct scenario. As in Examples 1
and 2, 500 monte~-carlo replications are used,

Figure II-11 shows the patterns of sensor responses which, under the
present assumptions, are all false, No target location probability distributions
were computed for this example,

Table {[-3 shows the influence of the sensor responses on the scenario
credences and the mean of the detection probability distribution, The shaded
aroa in the table corresponds to scenarios specifying that the target has not yet
entered the area., Note that as more sensotr response pattorns are proceesed,
the probability tends to shift towards the "shaded" region and that at the end of
968 hours the largest scenario credence is associnted with Scenario §~-the
correct scenario,

As in Examples 1 and 2, the mean of the detection probability distribution
appears to be converging towards the correct value of .8, Use of the ROC curve
permits detection probability to be estimated from false-response data when the
target is not in the area.

Information Processing Procedures

This section describes the information processing procedures used to obtain
the results given in the examples in the preceding section, A more general
treatment is given in Appendix A, Our purpose here is to explain the conoepts
in terms of the simple model used in the preceding section so that the reader may
construct suitable models for other applications,

The processing system consists of two information input files, SCENE and
DETECT, two state informatton files, UFILE and WGHT, and four computer
programe, START, MAP, TRANS, and OBSERV, which operate on the state
information files. These files and computer programs are discussed in the
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( FIGURE 11~-8

i TIME HISTORY OF SENSOR RESPONSES

: EXAMP ARGET TRANSIT

Notes: (1) Target is a 12-hour late Scenario 1 or a 12-hour early Scenario 2 of Example 2.
(2) Detection probability is .8 and false~response probability is .3,
(3) x indicates target position (note 80 mi, detection circle),

A @indicates a sensur response, and .

I Oindicates no sensor responge. T
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(e) 96 hours
Note: Target outside grid,
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EIGURE 11-98_

ARGET ) { P DISTRIBUTIONS .
EXAMPLE 2 (TARGET IN TRANSIT) ~ NO SENSOR INFORMATION USED
Notes: (1) Assumed prior probabilities that target transit has begun:
Time (hrs): 0 24 48 72 96
A Probability: .20 .40 .60 .80 .80
S (2) Only probabilities within the grid are shown,

"i'- (3) x indicates target position, 4
(8) 0 hours N (b) 24 hours
: Note: Target is north of grid, [
E 1 2 3 4 65 6 1 2 3 4 5 8
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FIGURE_11-10 }l

AR (9) BUTION
XAMPL, TARGE T - ALL SENSOR INFORMATION USE ‘
Notes: (1) Assumed prior probabilities that target transit has begun: 1 ]
Time(hrs): 0 24 48 72 96
Probability: .20 .40 ,60 .80 .80 :
(2) Only probabilities within the grid are shown, N
(3) x indicates target position,

‘ (3) 0 hours {(b) 24 hours ' |
; Notes: (1) Tairget is north of grid. N Note: Estimated probabiiity that .
, (2) Estimated probability that transit has begun is , 82. '
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| FIGURE 11- 10 (continued
| 1
) (e) 96 hours ]
“ Notes: (1) Target is south of grid,
(2) Estimated probability that
“ transit has begun is , 95, i
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b FIGURE I1-11

N LIME HISTORY OF SENSOR RESPONSES
- EXAMPLE 3 (TARGET OUT OF GRID AKEA)

Notes: (1) Target ig out of grid area covered by sensors,

. (2) All responses are false, The false response
3 probability is , 3,

5 ‘ (3) indicates a sensor response, and

indicates no sensor response,
(a) 0 hours (b) 24 hours
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11 FIGURE U-1l(continued)
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TABLE_II-2 SN

THE INFLUENCE OF S&NSOR RESPONSES ON ESTIMATED PARAMETER VALUES !
EXAMPLE 2 (TARGET IN TRANSIT) _

Notes: (1) Target i a late Scenario 1 or an
{ early Scenario 2 of Example 2,

(2) True single-sensor, single-glimpse
detection probabllity is .8 and
false-response probability is . 3.

Mean of Single=Sensor, .
Scenario Credences Single~-Glimpse Detection i
Probability Distribution -
Soanarioc: 1 2 3 4 B (true value i8 , 8) K
Tnitial Assumptions .20 .20 .20 .20 .20 .70 1
0 hrs 73 .07 ,06 ,0T .08 .67
24 hre .86 .07 .01 .04 .03 72
Time :
of . .
Fleld 48 hre 5 .18 .01 08 .03 .13
Response .'
72 hrs .46 .46 ,00 .06 .04 LT
98 hrs .33 .60 .00 .02 .08 .78




l TABLE I[-3

THE INFLUENCE OF SENSOR RESPONSES ON ESTIMATED PARAMETER VALUES 1
EXAMPLE 3 (TARGET OUT OF GRID AREA) o

Notes: (1) Target ia out of grid area (Scenario 5 of Example 3).
All gensor responsos are false responses,

(2) True mingle-sensor, single-glimpse detestion
probability is .8 and false-response probability is . 3.

(3) Shading indicates scenarios placing target out of
area at the specified times.

Mean of Single-Sensor,
Scenario Credences Single-Glimpse Detection "
Probability Distribution ; ,
Scenario: 1 2 3 4 B (true value is , 8) b
Initial Aasumptions .20 .20 .20 .20 .20 .70
. i
: oo ‘ S, ‘ i
0 hre 20 (2177887 107,11, 87 ‘
. e , ’ , . ’/ | | . i
2z | .81 30 26 89 !
Time N ‘
0‘ ./"’ L T ‘
Field 48 hra 00 ,04 37 -..aa ".I_zfﬂ . 86 N
Response ' L ]
72 hrs 00 .03 .41 ,17].39 84 -
96 hrs 02 .06 ,07 08 [.77 .83 B .
o |
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following subsections. A processing system flow chart is provided in Figure .
O-12, The file UFILE coutains the "constructs' mentioned in the heuristic

description given at the beginniag of the chaptey. The file WGHT containa

numbers ("'weights'') which are proportional to the posterior probabilities of

the conatructs,

Files SCENE and DETECT, All scemario information is stored in the
information input file SCENE. This information consists of the value of the
credence ¢ for the 1th scenario for all 1 < 1< I, the time § specified for the
target to complete each of the K single logs, and the parameters for the track-
leg endpoiut probability distributions Aj(k) for 0 < k< Kand 1 ¢ { < I, Here,
ké indicates the endpoint time and 1 indicates the scenario,

The information input file DETECT provides the known parameters
characterizing the dutection mechanism (i.e,, the bounds on Pp and the parameters
of tho ROC function,

WGHT, The file UFILE contains Ny records which
provide the samples from the monte-carlo simulation of taryget position and
other parameters, The contents of UFILE vary with ime aud, therefore, it ic
convenient to let UFILE () denote the contants of UFILE at simulation thme t,
Each of the Np records in UFILE (t) contains statistical eample values for the
following random variables:

z;(t) = target's latitude (degrees) at time ¢
Ez(&) = targot's longitude (degrees) at time ¢ i
Elct) = target's velocity component (degrees/hour)
in the north-south direction
85 = target's velocity cowponent (degrees/hour) ' :

in the eapt-weut directivn
i = target's scenario index i

Pp = target's probability of belng detected by a
single sonsor on a single glimpse given that
target is within detection range of the sensox,

WGHT(t) denotes the contents of fille WGHT at simulation time t and contains
Ny records, each providing the "weight" for the corresponding recoxd of UFILE ).
The weights are caloulated using Bayes's formuls and indicate the extent to which
the records of UFILE{t) are consistent with the observed sensor field responses.
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FIGURE [I-12
PROCESSING SYSTEM FLOW CHART

(a) initial Processing Step
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Large weights correspond to a high degree of consistency, The method of
computing the weights i3 discussed below,

START. The computer program START creates UFILE (0) and
WGHT(0). To do this, it uses the data in the scenario input fille SCENE and the y
data in the detection characteristics input file DETECT.

The records of UFILE (0) are oreated one after the other. To create a 3
glven record (say, the nth record), a sample scenario index '® is drawn in
aoccordance with the preacribed credences,

For the nth record, the values Q‘l‘(O) and Q;(O) of the random variables '2'1(0) B
and z3(0) are found by sampling from the probability distribution A4n(0).

. The speed components ’3“1‘(0) and ﬁn(O) corresponding to the random variables
81(0) and 8,(0) are found by sampling from Aqm(l)to obtain Q?(o) and Q‘z‘(é) and
then computing !

[

Osl

o = ;3 @e -0 1

[

i3

5O = 3 (&) - . .

Onl

n The nt? recard of UFILE (0) is completed by determining the sample value
ﬁD for the random variable Pp. This is done by taking the minimum value A
and the maximum value B for Py from the input file DETECT and computing

A A
PR = A+ {(B-A)

where, here and in what follows, ? denotes an independent draw from a uniform :
distribution on the interval [0, 1]. .

The file WGHT(0) is generated by program START so that all weights are i
equal to unity, i,e,, iIf wi(0) denotes the content of the nth record of WGHT(0), !
then

wl0) =1 forl<ng Np. (II-1)
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Equation (II-1) reflects the fact that all rccords of UFILE(0) are considered to be
equally likely a priori, The weights will change, however, whenever information
is obtained by observing the sensors,

TRANS, The computer program TRANS updates file UFILE to
reflect target motion in accordance with the scenario information provided in
the scenario input file SCENE. No change in file WGHT {8 made by TRANS
since no new sensor information is input to the system during this operation,

In order for TRANS to update UFILE, it {s assumed that the tracks between
leg endpoints are straight when expresaed in coordinates of latitude and

longitude. That is, if t1 and tp are times corresponding to target positions on
the same leg, then for! = 1 and 2 and fort; < t < ty»

- ta-t f—tl
zy(t) = Ez_:T zl(tl) + 2 zl(tz)

Suppose that TRANS is to update UFILE from simulation time t, to simulation
time t. For the nth record of UFILE(t), let u and v be chosen 8o that u6 < t; < (utl) §
and v <€ tgp < (v+1)6 .

If v = i, then the target has not moved to another leg; consequently, for ! = 1 and 2
A A
My = Aty + -ty By
and
A A
87(ty) = 8y (ty).

If v = u+1, then the target has moved to the next leg and one muat sample
?om the prxbability distribution Afp(v+1) in order to obtain the target's position
z‘ll(v6+6), n(vé +6)) at time (v+1)6 Since, for v = y+land/ = 1 and 2,

W) = Dty + (v8-ty) BP¢,),

tho target's position at time v as well as (v+1) 6 18 known, and, therefore, the
velocity components on the leg between times vé and (v+1) 6 can be computed.
Thus, for! = 1 and 2,
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- N Pvs+8) - vs)
n .

! - (I1-2)
and target position at time t, is given by

An A A

Z)t)) = Z)(v8) + (by - v) B (ty). (11-3)

3 Finally, if v > p+2, then the target's position at time t, is statistically
¥ independent of the target's position at time t;. The velocity and position of the
b target at time {3 are found by sampling the probability distributions Agn( v6) and

a(v &+ 06) to determine Qn(vé) and Q“(vd +8) for I = 1 and 2 and then by using

L equations (II-2) and (II-3),

K. Program OBSERV. The computer program OBSERV updates file WGHT to

L reflect information gained from the sensor field. Suppose that WGHT(tq) i8 to

. be updated to time t5. Let Tyr eeon T dencte the times at which the sensor

fleld is observed between times t1 and t, and assume that t; < 7, < 7, < +++ « ™ <o,

Lett' =t; and v' = 7y, The first step is to update UFILE(t') to time 7', This is
done using the program TRANS described above, Then the updated file UFILE ("),
file WGHT(t'), and file DETECT are input to program OBSERV, The weight

(r') corresponding to the nth record of WGHT(r') is determined from Wi(t')
corresponding to the nth record of WGHT (') by multiplication by the conditional
probability of observing the actual field responses. That is, \Qn('r') is computed
by the formula (essentially Bayes's formula without normalization)

ey = Ay [1- B4 - PRy - BN‘2 (BL)48 11- 1 - Bya- P4 (-

A
- where the detection probability Prﬁ § taken from the n'P record of UFILE (™
L and the false-response probability R = f( B) s determined from B by use of
- the "ROC" function f. In our examples, f is defined for simplicity by f(p) = p%;

..‘. ' the parameter « describing { is obtained from the input file DETECT.

The expouents ty, ..., L4 depend upon the position of the target ({L\X-I(T'), Qg('r’))
glven in the nth record of UFILE(T"), The exponents are defined as follows:
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¢ty is the number of non~responding seusors which
are beyvond detection range of the target,

Lo is the number of non-responding sensors which
arc withia detection range of the target,

L, is the number of responding sensois which
are beyond detection range of the target, and

L4 is the number of re: ponding sensors which
are within detection range of the target,

Once files UFILE (T, -1) and WGHT(7,,-1) are completed for any 2¢ v £ n,

files UFILF(r,) and WGHT(7,,) are obtained by repeating the procedure deseribed
above witht' =T,y and 7' =7 ,.

When files UFILE (-rn) and WGHT (. ) are obtained, the computation is
complete if t = Ty, Wty > Ty, then the final update consists of using TRANS to
operate on file YVFILE ('r.n) in order to generate UFILE(y). Since no new
observations occur between times ™ and t;, WGHT(t) is 4 replica of WGHT (-r,q).

Program MAP and other output, Let the random vector U(t) be defined by

UM = (21t 2p(t), 5,0), 50, K, Pp).

Ap An An . Ap An An An
Each record U™(t) = (z1 (), zp(t), sl(t), sz(t), k", PD) of UFILE (t) is then an
independent sample of U(t).

Any probability statement associated with the random variable fJ(t),
conditioned upon observation of the sensors, may be estimated using filesa UFILE((t)
and WGHT(t) and the formula (B is a set representing an event)

T W)
nc [(B)
N
r
T Wh)
n=1

Pr{ i-J(t) €D | sensor observations} = (I1-5)

A
where I(B) = {n| Un(t) € B} . For example, the computer program MAP operates
on files UFILE (t) and WGHT ) to produce a probability map for the target's location,
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A !
; E
q To do this, MAP accepts inputs which define a grid over the geographical region 2 "
o of interest, Thir grid might consist, for example, of cells each covering one
_li degree of latitu: 3 a=d ons de 'vee of longitude, Do
) Let the grid cells b denuted (%) for 1 < } < J and let the corresponding ‘
X target location probabilities dete: mined by MAP from files UFILE(t) and WGHT ()
3 - be denoted % (t) for 1 < j < J. Ther the values of tj are computed by MAP for B
-3 defined by \ i
: ;{ }4 .
f,. ‘:‘ ! .
B = {(by, ..., bg)| by by e Gyl |
N !
--.,‘ The updated cradence for the ith scenario is given by equation (II-5) for B ' [‘i
] defined by P
K B = {{y, ..:, bg)|by = 1} Y
) ’ = 1r ce e 6) 5 . : Il
1 3
Finally, the mean of the updated probability distribution for detection probability LY
is computed by .
] Nr A 4
1 ) g
Exp[i’D | sensor observations] = E%————— . (11-8)
s r
_.( z wn(t) [} 1,
v 9 =1 :
;
f 4
i." |
v . ‘
i ! 3
i
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CHAPTER_ III

THE APPLICATION OF INFORMATION THEORY TO OPTIMAL SURVEILLANCE
IN A FALSE TARGET ENVIRONMENT-~AN EXPLORATORY ANALYSIS

This chapter examines in an exploratory way the application of Information
theory to optimal allocation of surveillance resources in a false target
environment, The objective here is to investigate methods of allocating ASW
resources for the purpose of shaping the target location probability distribution
to serve certain tactivally useful purposes. The preceding chapter provides
methods for updating the target location probability distribution to incorporate
the sensor information resulting from these allocations.

We have been motivated by a strong heuristic attraction to policies which
build up the information content of the target location probability distribution,
We are aware, however, that much of this attraction is due to semantios (. e.,
the fact that the language of information theory is so suggestive in the prasent
context) and we have tried to exhibit more substantive reasons why further
development of "maximum information-gain policies" may be desirabie from
an operational point of view,

The term "optimal' is used in the title of this chapter to ruflect a desire
rather than to state un accomplishment, We desire to find the baest surveillance
policy within the context of our tactical scenario, and, to this end, we formulate
severul policies and examino their properties. The policy based on maximizing
the information content of the target location probability distribution appears to
be close to entimal (among those plans considered) in all cases examined,

Further work is required, however, before more precise statements can be made,

The investigation is appreached numerically and theoretically, I'he numeriocal
work is kased upon monte-carlo simulation of the properties of selected
surveillance policies. These resulis are presented in this chapter, The theoretical
work has been directed towards establishing the connection between the application
of information theory to surveillance and the application of information theory to
statistical hypothesis tosting, The latter applications have an extensive literature,
The results of this theoretical work and review are rather technical and are
presented in Appendix B,
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From both perspectives, numerical and theoretical, we feel that the definition
of information used in information theory has the promise of providing a useful
measure of effectiveness for judging the utility of alternative allocations of diverse
ASW resources in certain kinds of surveillance missions,

The first section presents the tactical setting and basic assumptions under-
lying the numerical analysis. The surveillance policies considered are described
in the second section, and the numerical results are given in the third section,
The fourth sectlon presents conclusions and provides a brief review of related
analyses which have appeared in the operations research literature. The related
statistical literature is discussed in Appendix B.

Tactical Setting and Basic Assump ..ons

We shall assume that there are J search cells, one of which contains the
target, The target may move from cell to cell in the course of the search, and
target motion is modeled as a Markov process as described below. The
surveillance procedure consists of assigning ASW search effort to a selectad
grid cell and then estimating the target's location (designating the cell containing
the target) based upon the search results, This is similar to the ""whereabouts"
gearches discussed in reference [e ].

The surveillance operation is carried out sequentially in stages where each
stage consists of agsighing search effort to a single cell, evaluating the search
results, and then estimating the target's location. Changes in target position
only take place between stages,

As an example of a potential application, consider a VP operation where each
day one or more flights are sent to an area specified for that day. At the end of
the day, the search results are evaluated, the area for the next day's flight is
determined, and the best estimate of the iarget's location (specified by a grid
cell) is passed to the operational commander,

Sensor-response assumptions, If a sensor response is obtained in a cell
searched, this does not nccessarily mean that the target is located in that cell,
Because of the possibility of false responses, one never knows with certainty
that the target has beer detected,

It {s assumed that the performance of the ASW search system is idealized
in terms of a J X J responge array,

R - (Ra,)),
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where R(i, ]) is the probability that an increment of search effort applied to the
jth cell will result in a response, given that the target is located in the ith cell,
Here, as usual, i is the row index and j is the column index, As in Chapter II, '
a response is a decision, based upon the available information, in favor of the

hypothesis that the target is present as opposed to the alternative hypothesis
that the target is not present,

At the end of each stage, a cell is selected to contain the target, For all K
policies examined in this report, the cell selected is the one having the highest
target location probability based upon evalustion of the search results,

The problem is to determine a surveillance policy (a procedure for assigning
search effort and estimating target location) which will maximize effectiveness
over an extended period of time,

Measure of effectiveness. In order to measure surveilincee effectiveness,
let 8(k) denote the probahility of correctly selecting the cell containing the target
at the end of the kih stage, The function § is called tho "success function," A
surveillance policy which maximizes 8(k) is called a "k-optimal" surveillance
policy and a surveillance policy which maximizes S(k) for all k > 118 referred to
as a "uniformly optimal'' survsillance policy.

A success occurs if the correct cell is selected, although this fact can
never be confirmed, since any sensor rosponse is possibly due to a non-target
cause, Confidence in the specified target locations can only be obtained by an
accumulation of evidence, no single item of which is decisive.

Target motion assumptions. Target motion is assumed to be & Markov
process described by an initial probability row vector d and a transition
matrix D, The resulting target motion stochastic process may or may not be
a stationary process, depending upon whether or not d is the stationary vector
for the process. In more general non-Markovian situations, the methods of ‘
Chapter II can be used to model the motion of the target. ;

For this illustration, it will be assumed that D is a circulant matrix (see,
for example, page 51 of relerence [s]) having the form

b - ‘ a , (I-1)




T L

where 0 < 0 < 1. The process with transition matrix I) givon by equation (IfI-1)
depends upon a single parameter & and is stationary if and only if d is the uniform
distribution d(j) = 1/J for j = 1, ..., J.

It dX denotes the target's distribution over the J cells after the kth transition,
then it is not difficult to show that for j=1, ..., J,andk =1, 2, .,,,

dhg) = 5+ a-of [dm - }]

Thus, each component in the target distribution veotor convergas monotonioally
to the uniform vector, We shall call 6 the dispersion constant, Note that if
§ =0, then the target i3 motionless, and if 5 = 1, then the target distribution
disperses to the uniform distribution in one step,

The object of the tracking policy is to overcome the dispersive effects of
random target motion by the expenditure of search effort,

Formulation in terms of stochastic control, It is useful to look at thia
surveillance problom as a problem of controlling a Markov process (for back-
ground in stochastic control see, for example, reference [t }).

Consider a dynamic system whose state {8 the probability vector P for the
target's location, We are particularly interosted in this vector at the beginning
of cach stage. Except for the first stage where P {8 assumed known, P depends
upon random sensor observations, and, therefore, P is itself a random variable,
In faot, the time behavior of P is Markovian when d, D, and R are assumed known
without error. For three cells (J = 3), it is possible to visualize P as a point
(P(1), P(2))1in the plane since Efﬂ P{j) = 1, Figure I[I~1 shows the state spaco
for P based upon this intorpretation,

The object of the tracking policy 18 to provide information which wlll permit
one to correctly seleot the cell containing the target at tho ond of cach stage,
Since the predete rmined selection rule is to piok the cell with the highest posterior
probability as detormined by the search results obtained during the stage, we can
consider the state space of P to be the union of three disjoint (oxcept for boundaries)
reglons laboled 1, 2, and 8 in Figure III-1, If the point falls in rogion § at tho end
of a stage, then the jth cell is selected as the cell containing the target.

The "control" is a decision functlion or policy which depends upon P at tho
beginning of n stage and which Indicates tho cell to be scarched during that stage.
If the target is actually in cell j during a stage, thon the target {s visualizod as
occupying the vertex determined by P(j) = 1. The purpose of the centrol is to
guide the point P as often as possible into the sot which contains the target,
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Let Py denote the vector P at the beginning of a stage, and let PA denote
P at the end of a stage, The target is assumed to move only between stages,
and the Ppg for a given stage is computed by Pg = PAD where Pj is the vector
P at the end of the previous stage und D is the transition matrix,

For the response matrix R and a decision to search cell m, the vector PA
will depend upon whether or not a response is obtained. If a response is not
obtained, then

P 1-R(,
PAG) = Bd) (1 ~R(j, m)) . fori<i<d.

z)_, Prd,m) (1-R(t,m))

If a response is obtained, thon

p Ppl) R(), m)
Ad) = 5 , forlgjcd,

21*1 Ppd,m) (1~Rd, m))

it is theoretically possiblu to design a control which will maximize probability
of sucoess S(k) at the end of the kth stage, This would be the generalization of
the single-stage look-ahond policy doscribed in the next section, In fact, by
working backwards in time, this k-optimal control oun be found by dynamic
programming, although the solution is rather complicated,

Our main Intorest, however, is in the situation where all stages are
important and where 1t is not natural to establish a fixed terminal time, In order
to gain insight into this situation, we will examine the behavior of lour decision
policies (1,e., controls); these are described in the next section, Two of the
policies, the single~stage optimal look-ahead policy (Policy I) and o control
based upon maximizing tho information content of the posterior distribution
(Policy II), are chosen for their intuitive appeal, The uther two policies, a
policy based on searching the highest probability cell (Policy III) and a policy
buged upen soarching the cells in a regular rotation, are chosen because they
are simple and easy to compute and they give us '"bench marks' for vomparison,

It should be noted that the highest probability cell policy has been mentioned
as optimal in n olosely related scenario examined in reference [ u]. In reference
[w), however, tha search stops as soon as the first response is obtained and
the search is successful if and only If the response occurs in the cell containing
the target, Our measure of effectiveness is quite difterent,
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Description of the Surveillance Policies

This section describes the four different surveillance policies considered,
These are the optimal single-stage look-ahead policy (Policy I), the maximum
information-gain policy (Policy II), the highest probability cell policy (Poliecy III),
and the uniform surveillance policy (Policy IV). They are descoribed individually
in the subasectious below.

The succese function defined in the preceding section is taken to be the
measure of effectiveness and is computed by monte-~carlo simulation, For the
kth search stage of the nth monte-carlo replication, let

1  if the target cell is correctly speocified
A
B(n, k) =

0 otherwise,

For N replications, tho kth stage succoss probability S(k) s estimated by the
formula

z

4

S ~ 3 3 Sm,k.

il 4

n=1

For each comparison, an initial target locution probability distribution d
and a transition matrix D are specified to doseribe the targot's movements and a
response matrix R is specified to deseribe the search environment and the sensor
system,

The monte-carlo calculation begins by drawing a random number to pick
the cell for the target's initinl loontion, This selection {8 made in accordance
with the initial target location probability distribution d.

The search policy specifies a search coll for each stage based upon the
current before~search target locution probability distribution Pg; then the
search results are simulated in accordance with the target's actunl location and
the probabilities given by the response array R, Next, the after-search target
location probability distribution PA is determined from the simulated search
results, and, finally, the after-search highesi probability cell (based upon PA)
is selected as the target cell, The target position is then updated in acoordance
with the target motlon transition inatrix D at the end of the stage and a new
estimate of the before-search probability distribution Py is obtained by computing
Pp = PoD, The process is then repeated,

~45=




The optimal single-stage look-ahead policy (Policy I). The optimal single-

stage look-ahead policy is to search in the cell which, based upon the estimated
vector PB, maximizes the probability of correctly selecting the target's cell

at the end of the stage, This is a generalization of the optimal whereabouts plan
formulated in reference [e ) for searches without false responses,

More precisely, at the beginning of any stage, let PR(l) denote the before-
search probability that the target is located in cell 1 and let R be the response
matrix, Let pa(r,i,}) be the conditional after-search probability that the target
i8 located in the ith cell given that the jth cell was searched and result r was
obtained. Here, r =1 indicates a target-like response and r = 0 indicates no
target-like response. Let Q(r,1,j) denote the probability of obtaining search
result r given that the target is in cell | and that cell j is searched, Then

R{,)) forr=1

Qryi,j) =
1-Rd,§) forr=0,

The probability function pa is determined from Py and Q hy the equation

Ppil) Q(r,1, )
pAC L) = —y :
b PB(m) Q(r. m, j)
m=1

Lot X(r, )) denote the cell selected to contain the target given that cell j was

gsearched and result r was obtained, In view of the selection rule, which states that

the c¢ell with the highest target location prohability should be chosen, we have

PA(YX(r, j)y 1) 2 PA(R, ) for1< i< d.

Let B(k) denote the before-search probability that if the kth cell is searched,

then the target cell will be correctly selected based upon the search results, If
1 ifx=1
€x) =

0  otherwise,
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J 1
Z I Pgd)Rri,})) el -X(,}))
i=l r=0

B(J)

i

1
rfo PB(X(I', j» Q(l‘. x‘ro J)n j)

max{Pg() R(l,§) : 1 < 1 < J} + max{Pp) [1~R(,{)] : L g i< J}.
The optimal single-stage look-ahead policy is to search in coll j* for which
B(J*) > B(j) forlg <,

If more than one cell qualifies, then from the qualifying cells the cell with
the highest probability acoording to Pp {8 chosen. If more than one cell still
qualifies, then the search cell is selected randomly from the qualifying cells
according to a uniform distribution.

The maximum information-gain policy (Policy II). The maximum information-
gain polioy is to search in the cell which maximizes the expeoted information

content (or equivalently minimizes the expected entropy) of the posterior after-
search target location probability distribution,

More procisely, let Pg(j) and p, (v, 1, ) be dofined as above, and let the

entropy (see reference [ d ]) H(P) of any probability vector P ov. » J cells ko
defined by

J
HP) = - & P() In Py).
=1

Intuitively speaking, as the entropy of a distribution increases, the distribution
flattens, It is well known (see, for examvle, reference [d ]) that meximum
entropv*lu attained by the uniform distribution. The information content of a
distribution P is defined to be ~H(P) + C whore C is some fixed constunt, We are

interosted only in changes in information and, hence, the value of C is not important,

The expected entropy U(j) of the posterior target locution distribution given
gearch in cell j 18 glven by

*  This result holds for probability distributions on a finite number of points
but not for probability distributions on a countably infinite number of points,
In this latter case, a uniform probability distribution is not defined.
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1

J 1
ug) z I Pgl) Qi §) Hipa(r,-, ))

i=1 r=0

n

J 1
- 2z )] pB(i) Q(r, L) ln[pA(r, iy j”-
i=1 r=0

The maximum informstion-gain policy is te search in any cell j* for which
UM ¢ Ug) forigig

Thia corresponds to a Lindley procedure (see reference [ f ]) for sequential
experimcutal design as discuessd in Appendix B, If more than ove cell satisfles
the above {nequality, then the search cel' is selected randomly frown the yualifying
cells according to a uniform diatribution,

The highest probability cell policy (Poligy ill). The highest probahility cell
policy is to search in the cell with the highest before-swgich probability., That is,

if at the beginning of a stage Py(J) is the betore-search prohability that the target
is located in cell §, thon the higheat probability cell policy is to search in any oell
j* for which

Pp(j*) 2 Pg() forlxjxd,

If more than one cell qualifies, then the search cell 18 selocted rundomly from
the qualifying cells ascording to a uniform distribution,

It is Interosting to noto that the before-searoh target location probability
distribution is identical to the expectation (with respect to Pg) of the after-searoch
target location probability distribution regardless of the cell searched. In order
to show this, let £(i. j) denote the expected aftur-senrch probability that the
target is located in oeil i, glven that cell j is searched, Then

J 1
I £ PpQ,n,j)pa,i,j)
n=1 r=0

i)

J 1 Pp() Q, 1, )
I I PpmQr,n,j)
n=1 r=0

i

3 PB(m) Q(r,m,j)
) me=1

- X Pgl) Qr, 1, )
0=0

B

b

PB(I).
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The uniform surveillance policy (Policy IV), The uniform surveillance
policy is to search systematically through all search cells in a fixed rotation,

In mathematiocal notation, the J*P cell is searched during the kth stage where
ja1l+ (k=1) (mod J) fork =1, 2, ..., and J equal to the number of search cells.
That is, one searches the J cells in order and then repeats the search as often
as required,

If the target does not move, it is not difficult to prove that the success
function for this policy will converge to 1 whenever the rows of the response
matrix are distinct (the usual case).

Numerxical Comparison of Surveillance Policies

This section provides a numerical comparison of the four surveillance
policies desceribed in the preceding section., Five surveillance cases are
considered corresponding to different assumptions about d, D, and R. In order
to reduce complexity and make it easier to interpret the results, the search grid
is limited to three cells in the first four cases and nine cells in the fifth case.
Moving targets are considered only in the first case,

Three response matrices are examined, The first is

. .1 1
R = .7 08 .1 (III"z)
7 .1 .8

and is uned in Cases I, II, and III, Recall that R, J) 1s the probability of
obtaining a response from a search of cell j given that the target is in cell i,
This particular form oi R 18 chosen in order to simulate a situation where search '
in one cell (the first) produces very littie information gain, In this cell, the
true-response and false-response probabilities are nearly equal (.8 and . 7,
respectively),

P

Three {nitial target location probability distributions are used with the .
response matrix of equation (III-2); these are a uniform distribution (Case I)
given by d(1) = , 33, d(2) = , 33, and d(3) = . 34, a "highly" non-uniform distribution
(Case II) given by d(1) = , 75, d(2) = .16, and d(3) = .10, and a "moderately" non-
uniform distribution (Case III) given by d(1) = .5, d(2) = .3, and d(3) = .2.

.

The second response matrix,

T




.8 .6 .3
R=[.6 .8 .6 | (Im-2)
.3 .6 .8

corresponds physically to a situation where the three cells are arranged in a row
and where the response probabilities inorease the "closer' one gets to the target
cell, The uniform target location probahility distribution is used with the
response matrix given by equation (III-3) in Case IV,

‘The thir4 response matrix,

.8 Ve .8 .1
.S LI I ‘8 '2

' (LII-4)
08 [ 08 .9

is considered in Cose V and has some features in common with the response
matrices given by equations (I[I-2) and (I1I~3). It is similar to the response
matrix given by equation (II[-2) in that little information is gained from

searching certain cells, Equation (lIl-4) represents an extreme case in which

no information is gained from searching cells 1 through 8, It is similar to the
rosponse matrix given by equation (III-3) in that one may think of cells 1 through 9
arranged in a row with the probability of a responsc from a search of cell 9
increasing with decreasing disianve from the target,

The initlal target location probability distribution used in Case V is ]
d(l) = .2andd(j)= .1 for 2 < j < J, i

The numerical results are given in tho following subsections. In Cases I
through [V, 400 monte~carlo replications arc used for each curve, and in
Case V, B0 replications are used,

Case I(a) ~- stationary target, As mentionod above, there are three grid
cells and the initial target looation probability distribution is uniform, The
response matrix is given by equation (IllI-2). Tor all cells, if the target is in
the cell searched, then the probability of response is ,8, The probability of
false response i ,7 in the first cell and the probability of false responge {s ,1
in the second and third cells. These false-response probabilities do not
depend upon the location of the target,
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Figure IlI~2 provides the estimated probability of response curve for

| Palicies [ through IV, Notice that the success probability for the maximum
information-gai: policy (Policy II) approaches 1 asymptotically. In the earlier
stages of search, there appears to be no statisticelly eignificant difference
, between the maximum information-gain policy and the optimal single-stage look-
e ahead policy (Policy I), Asymptotically, however, the maximum information-

' zain policy appears to have a slight advantage. It is interesting to note that the

uniform surveillance policy (Policy IV) also does well in this example, The

\ highest probability cell policy (Policy III) is not particularly attractive in contrast
o to the other policies,

. A problem with Policy [ occurs when the target locotion probability distribution
becomes very concentrated, When this happens, the ufter-search estimate of
target location will not depend upon the cell searched nor upon the sea:ch resuits.
Since only one stage is considered, all sesrch cells appear equally attractive and
the before~search highest probability cell is chosen. This can lead to trouble as
we shall see in Case V, Table IlI-1 digplays the detai}: ' . ne of the monte-carlo
replications for Policy [ in order to illustrate this point, Notice that the state of
indeterminacy is reached at the third search stage.

Case I(b) -~ moving target, 'The same lnitial targot location probability
distribution and sensor response assumptions are made as in Case I(2). In the
present case, however, the target is permitted to move between stages according
to a Markov process specified by the dispersive transition matrix given by
equation (IJI-1), The comparison is limited to Policies II and IV,

Figure Mi-3 shows the {nfluence of target motion on probability of success
when the maximum information-gain policy (Policy i) {8 used, Three examples
are considered corrcaponding to values of the dispersion constant, 6 = 0, 6 = .3,
and 6 = 1, The example where 5 = 0 corresponds to no target motion, and,
therefore, this curve is the same ay that given in Figure III-2 for Policy II. The
example where 6 = 1 corresponds to complete dispersion of the target location
probability distribution to o uniform distribution at cach stage. Herc, even if
the target's position is known with certainty at the end of a stage, the ensuing
motion will produce a uniform disteibution for target location at the beginning of
the next stage.

The first transition of the Markov process is made at the end of the first
stage, Therefore, S(1) is identical for all three valuvs of the dispersion constant,

Figure IlI-4 shows the influence of turget motion on probability of sucoess
when the uniform surveillance policy is used. Resulis are shown for the same
values of the dispersion constant as used in Figure II~3. The striking irregularity
of the curves given in Figure [1I-4 is due to the fact that the uniform surveillance
policy considered here is a regular rotation of search through the three cells in
the grid. As noted hefore, Cell 115 a particularly poor cell to search because of
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the high probability of false response in this cell, The dips in the curves
correspond to search of Cell 1 at stages 3k+L for k=0, 1, 2, ... ., These dips
become increasingly pronounced as the dispersion constant increases,

As in Figure II[-3 the curves coincide at the first stage since there has heen
no target motion up to this point,

It should be noted that if the uniform surveillance policy were implemented oo
by selecting the search cells at random according to a uniform distribution, .
then the curves would be smoother and would not exhibit the periodic dips, A
This would not, however, improve the average performance of the policy.

Case II, In this case the initial target location probability distribution is g
non-uniform with the highest probability assigned to the first cell, i.0,,
d1) = .75, d(2) = .15, and d(8) = .10. The response matrix ig the same as in
Case I.

This case is presented to illustrate a situntion where searching the highest
probability cell is clearly not a good policy. Here, the first cell has a very high
initial target location probability but very little is learned from a search of this i
ocell because of the high false-response probability. .

Figure [I-5 provides the estimated probability of success curves for Policies [
through IV, As anticipated, the highest probability cell policy does not appear to
be very good, In fact, it is only slightly better than the trivial policy which would
select the target cell ot random in accordance with the initial target locatlon
probability distribution d and reselect the same cell at each stage. In this case X
the trivial policy would select the first cell with probability . 75, the second with
probability .15, and the third with probability , 1.

Once again, Policy I does very well, and as one might expect, Policy I ]
initially does better than Polley I with the latter catching up in the latter stages, [
Once again, we note that S for Policy IV will always converge to one when the
target is stationary and the rows of the response matrix nre distinet.

Cage IIl. As in Case I, it is assumed that the initial target location
probability distribution is non-uniform and given by d(1) = .5, d(2) = .3, and
d(3) = .2, Figure [II-6 provides the estimated probability of success curves for
Polioles I through IV,

Once again, we see that Policy II, the maximum information-gain policy, J
appears to be better than the others,

Case IV, In this case, the Initial target location probability distribution is
uniform, i.,e., d(1) = .33, d@) = .33, and d(3) = . 34, and the response matrix
is given by equation (II1-3). Here, Cells 2 and 3 have relatively high false~
response probabilities in contrast to the previous cases.
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Figure III-7 provides the probubility of success curves for Policies [
through IV, In contrast to the other cases considered thus far, there appears
to be little difference in the probability of success curves,

Case V, The purpose of this case is to examine a situation where the
maximum information-gain policy (Policy II) is definitely superior to the other
plans considered, It is assumed that there are 9 search cells and that the initial
target location probability distribution d is given by d(1) - .2 and d(j) -- . 1 for
J=2,...,9. The response matrix is given by equation (IlI-4), The results are
shown in Figure III-8 for Policies I, II, and IV, Policy III is extremely poor iu
this ouse and is not shown, It continually picks the first cell for search and its
probability of success functlon remains constant with a value of , 2,

According to this response matrix, no information is gained by searching in
Colls 1 through 8, Since the uniform surveillance policy (Policy [V) rotates
search through all cells, a considerable amount of time will be lost when this
plan is used, Although the probability of success function for Policy IV is
guaranteed to converge to 1, the convergence will be slow,

The optimal single-stage look-ahead policy will also have difficulty in this
case, and, in fact, the probability of success function for this plan does not
appear to converge to 1, The reason for this is that a state of indeterminacy is
eventually reached by this plan; this behavior was previously noted in Case I and
illugtrated in Table [II-1, When the before-search target location probability
distribution Pg is driven to the state where the after-search selection of the
target cell is the same regardless of which cell is searched or what response
is obtained, then the cell with the largest before-search probability is searched,
However, if tho highest probablility cell 1s among the first 8, then no information
1s gained by the search and the after-scarch probability distribution is the same
as the before~search probability distribution. This means that the same cell
will be searched continually in succeeding stages and progress will stop.

Conclusions and Related Operations Regearch Studies

The principal conclusion based upon the numerical examples in the preceding
section is that the maximum information-gain policy (Policy II) appears to have
very desirable characteristics in the idealized surveillance scenario considcred,
Among these characteristics (a8 measured by the success funotion) are good
initial behavior in the early stages and good asymptotic behavior in the later
stages, The initial behavior is measured principally by comparison with the
optimal single-stage look-ahead policy (Policy I) which is designed to be good
in the early stages. The asymptotic behavior is measured principally by
comparison with the uniform surveillance policy (Policy IV) which, for a
statlonary target, is guaranteed to converge to 1 as the number of stages increases
indefinitely (provided the rows of R are distinct).
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i Wea conjecture that Policy II will also perform well in cases where an
: incorrect prior distribution d is used, i,e., that Policy II is robust with respect
to errors in d. More analysis is needed to verify this conjecture, however,

. Policy I appears to have very good behavior until the "saturation'' period is
{ reached (see Table III-1) where the search cell can no longer be uniquely chosen

by picking the ceil which maximizes the value of the single-stage success

probability function B, The ad hoc rule of choosing the highest probability cell

al this point produces poor asymptotic performance in some situations (see

b Casge V) and a better rule should be employed, Switching to rundomized uniform

surveillance at the saturation point would be an improvement,

Even better, perhaps, would be the extension of Policy II to optimal mulil-
stage look-ahead policies, In this regard, tue theory of optimal stochastic
contro]l might offer some useful insights,

The highest probability cell policy (Policy III) has little to commend it, in
general, although in certain special cases (e.g., Case IV) it may preduce
satisfactory results, Its poor behavior, in general, results from the fact
that it does not make good use of the intormation in the response matrix.

It should be noted that none of the policies considered make non-trivial use of the
; information in the Markov transition matrix D, It seems worthwhile to formulate
and evaluate surveillance plans which anticipate torgot motion by explicit
consideration of D or, more generally, consideration of whatever stochastic
mechanism s used for updating target location,

|
. |
- ! In the results presented in this chapter, it has been assumed that the
| response matrix R is known exactly, Since this is unlikely to be true in practice, 1
it would be useful to relax this assumption and develop policies which ostimate R {
and target location simultancously. This kind of adaptive esvimation (see
reference [ o ]) is illustrated in the examples in Chapter II (without optimization
. considerations, however); thoro the single-glimpse probability of detection Pp
g is treated as a random variable and estimated from the sensor observations.

In view of the good performance of Policy II based upon maximizing the _ i
expected Information gain in the after-search target location probability
distribution, it is somewhat surprising that there has been so little utilization 4
of information theory in search and surveillance problems in operations research, |
In fact, the relevant work which has been carried out and reported in the literature
has not reflected favorably upon the use of information theory us a tool for the
analysis of these problems,

One of the earliest readily accsssible papers on the subject (reforence [ 4]
which appeared in 1961) discusses the connection botween information theery and !
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search theory and concludes with the statement "Thus, search theory should he
considered in connection with the general theory of statistical decisions rather
than witl) information theory.!" This statement is repeated and reaffirmed with
further examples in reference { i ] which appeared in 1971,

Both references [h] and [ i ] examine the search plans which maximize
expected information gain, As discussed below, we believe this is the correct
approach for surveillance but not for search,

In reference [ j | which appeared in 1968, it is stated that "Ever since the
mid-nineteen-forties when the theories of information and of search became
subjects of general interest, attempts have been made to apply the theory of
information to problems of search, These have proved disappointing; neither
the formulas nor the concepts of the former theory have found a place in
olarifying the problems of the latter, "

Why do our results convey the opposite impression? The answer, we belleve,
is that one must make a clear diatinction between search where the objective ia
detection of the target,and surveillance ,where the objective is knowledge of the
target's location, The concepis of information theory can be applied to both
types of problems but in different ways.

For the search problem (but not the surveillance problem treated in this

chapter), we believe that the proper way to draw the connection between information

theory and search theory is to think of an optimal search plan as one which
maximizes (rather than minimizes) the entropy of the posterior target location
probability distribution, Viewed this way (which is different from the approach of
references [h jand [ 1 ]), search effort is used to extract information from the
distribution rather than to add information to the distribution,

For the surveillance problem, however, it seems appropriate to maximize
the information gain (minimize entropy). This is especially true in multi-stage
scenarios, such as those we have examined in this chapter, where success can
be uchieved without detection of the target in the usual sense, The scenarios
discussed in references [h ] and [ 1 | are limited to a single stage and thus the
time behavior of the search policies is not apparent, Another point of difference
between our analysis and those of references {h ], [1 ], and [} ] i8 that the latter
do not consider the possibility of false responses,

Reference [ v ] makes use of information theory concepts to consider the
optimal distribution of reconnaissunce effort against targets in the presence of
decoys. This analysis is addressed to aerial reconnaissance against land
targets and {8 closely related to our present study. There is, however, an
important point of difference which is discussed below,

-83-




Part I of reference [ v | has the most in common with our present study, o
Part II considers questions related to enemy hindrance of the operations--a
problem which we do not consider.

The basic agsumption in reference [ v | is that there are J reglons (cells)
and that in the ith region there are '"Npossible objects' with a priori probabilitics ‘
pjl. s pNis sublect to the constrrint ol
I§ pl 1 fory 1 N (111-5) :
n n 1 n Eal LR IR ) .

For example, in one important case, N = 3 and the objects are a missile
installation, a decoy, and nothing of interest,

The uncertainty in the | th roglon is dofined in reforence { v to be

N
U"(pjl. coen p{q)-“ -c! nfl p;,' log pg

whore oj iy somoe positive constant, ‘I'ho uncertoanty in the entiro map is
dofinoed to be

i 1 J J T 1] J
U(pl. RN VLTI PO pN) L (p.l. ey pN). (1=

j1

Reference [ v ] Introduces and discusses assumptions pertaining to the optimal
allocation of reconnaissance offort in order to minlmize the uncertainty given
by oyuation ([II-6) subject to the constraint given by cquation (I1-5),

Although closely related to our problom, a critical difforence is that we also
make use of the knowledge that thore 18 a single target prosent in the area of
Internst. This is an extromely important piece of information for it allows
sonsor responsges and othor information obtained on scene to be correlated with
targoet motion considerations,

In tho scheme of reference [ v |, the case where it is known that thore is a
singlo torget present correasponds to N 2, where p-i s the a priorl probability
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that the target is present in the jth cell and p?,_' =1= pjz. The complication ariges

from the additional constraint that

This constraint is necessary and important in our tactioal setting but,
unfortunately, it traunsformns the separable aliocation problem considered in
reference [ v ] into a non-separable problem. [u general, non-separable problems
are much tnore diffiouit io solve than scparable problems, In this chopter, we
have avoided this difficult allocation problem by restricting the search policy to
examination of a ringie cell at each stage, Further work is needed to devise
efficient computational algorithms for obtaining optimal multi-cell allocations
which maximize the expected information gain,
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JPENDIX A

GENERALIZED TREATMENT OF THE INFORMATION PROCESSING SYSTEM

This appendix presents a generalized treatment of the mathematical technique
used to calculate the examples in Chapter I, The general mathematical model is
preaented and discussed in the first section, The second section specializen the
analysis to Markov models, Among other things, this specialization ieads to the
development of recursive computational procedures, The next section discusees
the mathematical model of Chapter II in terms of the more general formalism
presented in this appendix, This is followed Ly two sections addressed, respectively,
to reduction of state space dimensionality and numerical computation,

Gencral Mathematioal Model

In this section the term "model" will be used to refer to the LM-dlmenstonal
vector-valued procoss M - (ml, vees m } whose components comprise all of the
stochastic processes which are relevantlvo the information processing sitsation under
consideration,

The probability structure for the model is given by the triple (Q, ¢, Pr) where
2 is the probability space, ov is u o ~field* of subsets of Q, and Pr is a prohability
distribution (a meusure) defined on «v, Thus,
M(t)y: @ =8

for 0 < t < where the "state spuce” 8 is an Ny ~dimensional Euclidean space.
The o ~fleld of Borel sets uf § is denoted by B.

The model M consists of "oshservable' and "non-observahle" stochastic
processes which we explain in turn,

* Al random variables are v-measurable funotions (perhaps vector-vulued)
defined on Q. When explicit dependence oh w ¢ @ is shown, w will uppear
ud the last argument on tho right, o, g,, M(t, @) is abbreviated as M(t).




An observable process is associated with a physical phenomenou whose
characteristics can bo expreased in quantitative terms and can be assumed
known to the processing system, The response processes of acoustic and non-
accustic sensors are specific examples of observable processes which are of
particular interest in ASW, In simplest terms, sensor responses may be treated
as (0, 1)-valued processes whore 1 denotes u response and 0 denotes no response,
The specification of a 0 or 1 for n sensor at any particular time might be the
result, for example, of a human judgment or the output of an automatic classitication
device.

In more complicated formulations, the observable processes might correspond
to more basic quantities such as voltages generated by the sensor hydrophones,

Regardless of complexity, however, the probability structure (@, o, Pr) must
he established explicitly so that, among other things, one may compute the
probabilities associated with the events associated with the mutual interactions
of stochastic processes within the model,

The nonobservable stochastic processes consist both of "physical processes"
which desribe, for example, target radiated notse, position, course, and speed,
and "non-physical processes' which are required to insure that the model is
logicully seli-consistent and possesses certain desirable mathematioal properties,
The non-physical processes are not susceptible to physical measurement and
verification in tho woay that the physiocal processes are, but nevertheless pluy an
essential role in the operation of the information processor,

An example of & commonly used non-physical process is the time-correlated
stochastic procoss ofton introduced in models to represent random fluctuations
in the slgnal-to-nc¢.sr. ratio of acoustic sensors (see reference [p]). This time-
correlated prooess is o logical necessity in cuses where sensors are observed
continuously since otherwise unreasonable results are obtained, e, g., if one
assumes the random variables of the flnctuation process are mutually statistically
independent in time (white noise),

The processes of the model M are ordored so that M ({J, V), where tho non=
observabls processes of M are collected into one Nyj~-dimensional vector-valued
procees U (“1’ ceu UN ), and the observable processes are collected Into one
Ny ~dimengional vootorwvulued process V (Vl' oae ,va)

At timos it will be usetul to write § as the Cartesian product of the Ny~
dimensional space 81 and the Ny-dimensional Euclidean spuce 8%, Lo, to
writes 8lxs2, A supcrsorlpwd gymbol for a point or u sel w 111 indicate
membership tn 81 or $2, Points and sets without supersoripts will [,enerully
be ussooiated with 8, ~For example, we might write ALC 1, A2C 82, und
A AlxA2(C g1 xs4,




o It is assumed that cthe observable processes are monitored at discrete time

instants 7, < 7, < .., and that T, > 0. Continuous observations over intervals
| of time are not considered here, 1but with somewhat more effort they could be
included within the geneial processing framework under discussion,

o Let o, be the sub o ~field of__r.v where o, 18 generated by the collection of

: ' observable random variables { V(m) 7 < t} . Events in ¢, correspond to

F observations which have occurred at or before time t, In the most abstract terms,
E .

we are interested in calculating the conditional probabilities (Pc denutes a nonditional
probability operator)

& i l _pr{AMB}

Pe{A|B} - - (A-1)

: { whenever A ¢ o, B¢ g, and Pr{B} > 0. More generally, ifp, { Al 0, } denotes
, the conditional probability of A ¢ & given the o -field g,, then py{ Al 9t} is & g,-
measurable function and

ittt
.

F

IR |

o Pr{AMNC} :fcpo{Alot} d Pr, j
f

for all C € g4. This formulation pe{ A[ 0t } of conditional probability is required,
for example, in cases where Pr{B} - 0 in equation (A-1),

It is not usually necessary to compute Pc{ A | B} (or po{ Al 6, })for all A ¢ o. ﬁ
Substantial reduction of computing cost and computer memory can be achieved f
if events A are restricted to smaller o -fields, Eventually, in fact, we will
restrict attention to computation of Po{ A| B} for A ¢ ¢, where ¢, i8 the sub

o -field generated by the non-observable random variable Ut). Notice that ¢,
v\ . pertains only to events which ure associated with Uata single time t.

- I T

Markov Models

. .

In order to develop efficient reoursive computational procedures, it is useful
. to structure M as a Markov process, This is not as restristive as it may seem,
L since in many cases what appears to be a non-Markov process can be transformed
into a Markov process by enlargement of the state space and by other devices,

Let us assume that M {8 Markoviun and that G(0, ) denotes the initial probability
measure of M induced on the state space 8 and that I' denotes the Markov transition
function, Lett; and t, denote two instants of time (t; < ty). The transition
function has lhe following properties by definition: !

1 A-3 i




(1) T(t1,X ;ty,*) is a probability distribution on g-measurable
subsets of 8 for X ¢ 8,

() T(t;:* ity, A) i8 4 g-measurable function on 8 for each
measurable subset A of S,

(3) T satisfies the Chapman~Kolmogorov integral equation,
le., ift;< t' < ty, then

I'(ty, X i ty, A) fs It X5 t,dY) T, Y 5 t5, A).

Let G(t,*) denote the probability distribution induced on 8 by M(t) conditioned
upon the observations which have taken place at times up to and including t, i,e,,
glven events in the ¢ ~field O

For sets in 0y of the form {w : V(Tl,w) € Af,.. ..V(Tn,w) ¢ A?] and
0T <Tg< i €T < t }, the Markov structure permits exprossbon of G(t, B)
explicitly in terms of Bxe funotions G(0,+) and I', Letting Aj slx AJ forjy 1,...,m,

G(t, B) is given by

fS fAl' o fAn G(O,dxo) ro, xo; Tlo dxl) oo o I T'q -1 txn _137 odxn) F(Tn sx-n'»tr B)

’ (A-2)

fs'fAl' . fAn fs G0, dXg) T(0,Xgi myy dXg) e+ Ty 10 Ky Ly Mgy dX)
where the denominator is asgumed to be non-zero (this ig always true in our

applications).

In most situations of interest, equation (A-2) does not lend itself to easy

computation, There are tv.o principal problems. The first ig that the state space
8 has very high dimension, and the second reason ts that the functions G(0, «) and

' I' are not usually conveniently expressed in terms of mathematical formulas,
For example, the transition function 1" might be expressed in terms of soenarios
which specify the stochastic assumptions for target behavior in the mission under
consideration, As in Chapter I, these statements are most directly translated into
monte-oarlo computer programs, rather than into "analytical formulas' suitable
for substitution in equation (A-2).

The Model of Chapter 11

In order to motivate the introduction of additional mathematioal structure for
the purpose of overcoming the two problems stated above, the following three
. subsections will describe, in the formalism of this appendix, the model used to
caloulate the examples given in Chaptor 11,
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digtributions for target location making use of target-motion scenarios and sensor
response data, To do this, the components of the obgservable process

V= (v;,..., V), ) are defined to be (0, 1)-stochastic processes which describe

the time history of the sensor responses, i,e., for 1 <n < NV'

“ The principal objective in Chapter II is to compute and update the probability

1 if the nth sensor is responding at time t, and

| Tylt) =
‘ ' 0 otherwise,

'§

i

‘ : Target motion assumptions, Let Z; and Z, denote the stochastic processes
i o for target latitude and longitude, respectively. In the model used in the examples,
!

{

1

!

{

!

!

the two-dimensional target location stochastic process (Z;, %y) by itself is not
i Markovian, However, by addition of the target velocity stocﬁaatlc process

(51, 8,) and the scenario random variable k, the augmented five-dimensional

‘ 2 = (2, %y, 8,, 85, k) bocomes Markovian, In other words, given Z(t), the future
! {Z¢t" g5 ¢ 8 statistically independent of the past { Z(t') },, <t

S U P S T -0 A o)

The transition function for Z is specified in terms of the scenario descriptions
( | and is realized by monte-carlo simulation (see the discussion of program TRANS I
- in Chapter II),

g et e &

. Sensor-response assumptions, This subsection presents the sensor-response
oo assumptions for the model of Chapter I,

The single-sensor, single-glimpse probability of detection and false response
ure assumed in Chapter II to he themselves random variables. This {8 done to
call attention to the fact that in most ASW situations there is not sufficient
information about target characteristics, sensor performance, and environmental
conditions (including non-turget shipping) to provide high confidence inputs to a ‘
deteotion or false-response calculution, Using the methodology presented in
‘ Chapter i1, one begins with an initial probahility distribution for the uncertain
- . parameters and thon modifies this distribution adaptively by utilizing the information ;

' obtained from the sensor responses. In the language of systemns theory (see
reference [c]), this s an example of adaptive state estimation and system ideniification,

o

In the illustrative model, the sensor response (0, 1)-random variables
{v (iforieng Nyandl<ksgn } are assumed to be mutually statistically
independeat, conditioned upon knowledge of the target looation and the detection and
false-responge probabilily random variables 1'51) and P A+ That ig*,

* £ (no tilde) denotes a specific value of a random variable £
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{’n(Tn) = Vp(Tp) Vimo for1<i< Nyandl<k<n,

Pe

for 1 <ang NV and zl(Tn ), 22(711)’ ﬁA’ ﬁD

Ny
= 1 Po{Vn(ry) = Vylro) | £)(q), Zy(ry), By, By} (A-3)

'Thus, knowledge of the target position at time 7., and of the probabilities of
detection ard false response make the current obeervation random variables
mutually statistically independent and independent of their past values,

The observable process V by itself is usually not Markovian because, among
other things, the sensor responses depend upon the target's position which s
not observable. However, when the unobservable process 1} is also specified,
the model M = (0, V) is Markovian even though V is not,

The unobservable process, The unobservahle provess for the model of
Chapter II is defined by

Uty = (10, Bx(t), 3, 0), Byt &, By = (Z, Bp).

The process 1J (but not the observable process \7") is Markovian, since, as we
have noted, if %(t) is known, then the statistical properties of Z(t') are
determined for all t' > t and do not depend upon values of Z before time t,
The random varinbles k and "I'JD are not time dependent and, hence, constitute
trivial Markov processes,

Reduction of State Space Dimensionality

The agsumptions in this seotion are made in order to reduce stute apace
dimensionality., Large state space dimensicnality ia one of the problems previously
montioned concerning the evaluation of equation (A=2).

Let Al be a ﬁt-measurnble subset of Si tor i~ 1and 2 (31 is the Borel field

of S‘). Assume that U 18 Markovian and that G(0, +) and T" may be expressed in
the special form

L 1, ol 42
G, Al x 4% - Jy1 L@, dXg) HEXg, A°)

and
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F(tl'xtl’ thA XA ) fAl A(tlv th'tzp dxtz) H(xtziA )

where L(0, *) and A are, respectively, the initial probability distribution and the
transition function for the unobseryable Markov process 0. The value H(x A% )
is t.he conditicnal probability that V(t) € A2 given that Uét) = . Tho function
H(XL,:) is assumed to be 2 probabillty distribution on ﬁ for every x ¢ S1and
H(, Az)cla assumed to be a ﬁ -measurable function on S! for each p2-measurable
set A2 C g2

Under the above assumptiona. it can be shown that for subsets of S of the
form Bl x S where Bl is any ﬁl-measurable subset of S!, the function G, *)
defined by equation (A-2) can be rewritten

G, BLx 8%y =k, L fgeee . T . A2 L(0, dX}) A-4
’ t ‘gl /gl g1 =1 (le j) ( 0 ( )

1 1 1,4 ol
A(o xoi Tlp dxl) ( ﬂ-l'xﬂ-l’.rﬂ odxn) A(Tn 9xnlttB )

for t > 0, where x; is a normalizing constant defined so that G(t, st x SE) =1

‘The significance of equation (A-4) is that probabilities associated with the
unobservable process U and conditioned upon the cbservable process ¥ may be
computed by integrations over the state space of 8! of U rather than by integrations
over the state space S of M as required by equation (A-2), Among other things,
this decreases the amount of computer memory required for processing the data
and usually can be expected to Increase computing speed,

Another vnntage is that equation (A-4) may be computed recursively, Let
Bl ¢ ﬁ and A} € ﬁ for1<j<n, Furtémer. lett> 0and v, = 0, For notational
convenience, Aeﬂne LAt, Bl) G(t B! x §%). Then one can show that for j < n -1

1, 1 1 2 -
L(), B - 29 fsl Jg1 L j) Al X, 1 i1 OX ) HEJ g Ay ) (A-6)
and for t > ™ (the last time of sensor observation)

L, BY) - ky 1 Ly dX]) ACT, X1, 6 BY). (A-6)

The factor xT
that L(r jﬂ’

appearing in equetion (A-6) is a normalizing constant defined so

tly

Equations (A-5) and (A-8) indicate that, In % sense, all relevant past information
about target motion and sensor response is contained in the most recent probability
distribution L(t, +) defined on sl,

A=T
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Numerical Computation

In applications of these concepts to large-scale, multi-sensor, multi-platform
operations, the conditional probabilities L(t, BJ) have been computed from
equations (A-5) and (A-GL by using monte-carlo simulation of (' and analytic
determination of H(x This section briefly outlines these computationai
procedures in terms of a!n idealized computer-processing system,

The principal advantages of the computational procedures discussed in this
section and employed in Chapter II are as follows:

(1) Realistic target motion scenarios and descriptions of sensor
behavior may be used when formulating the processing algorithms
since monte-carlo simulation reduces the need for introducing
artificial mathematical assumptions in order to ohtain closed-
form solutions,

(2) A minimum of computer core memory is required, since most
data are stored peripherally and processed sequentially,

(3) In many cases, certain expressions can be precomputed, making
use of existing models such as the large-scale ASW simulation
models APAIR and APSURV, Off-line precomputation, when
feasible, results in rapid processing, which is partioularly
useful in reai-time tactical applications,

The reader should refer to the section of Chapter II entitled "Information
Processing Procedures' for a more detailed disoussion in terms of the illustrative
model.

All information concerning past target movements and sensor responses
is contained in two external files UFILE and WCHT. The processing congists of
reading these files into the computer in parallel and updating records a pair at
a time, one from each file,

Let UFILE (t) and WGHT (t) denote the contents of UFILE and WGHT, rospectively,
at time t,

The file UFILE (t) contains N,, monte-carlo samples of Ut), and the file
WGHT(t) contains N, "weights, "' each pertaining to the corresponding record of

UFILE (t),

Let ﬁ“(t) denote the n'h simulated sample function of ((t) for 0 < tand 1 <n < <N,
here N, denotes the number of replicatlon;3 Since U is Mnrkoviu.n. Imowledge of
nt) statistlcally determines the values of D™(t') for t' > t without reference to values

A-8




Beed Quei DM

=i

of G™t" for ' < §, Fgr1<n <N, the nth weight W(5) contained in WGHT) is
the probability ! H( “(rj). A'z) hased upon the observed sensor responses,

START denotes the computer program waich creates UFILE(0) and WGHT (0).
Tho file UFILE (0) is created by generating Ny, monte-carlo samples from the
initial probabuity measure L(0, ) of U.

Since by definition r.o observations are associated with time ¢ + 0, each record 3
of the initial file WGHT(0) contains the probability 1, Thes2 weights indicate 4
that at time t - 0, all samples of UFILE (0) are considered equally likely,

Now suppose that UFILE(t,) and WGHT(t,) associated with time t; are to be
upduted to time t,. As above, the times at which observations are obtained are
denoted Toreeor Ty and ™n < ty represents the time of the most reoent observation,
Agsume that £ €7 € ove STy Sty The first step Is to update UFILE (t¢) to time 7y.

Let TRANS denote a computer prop;ram which updates UFILE by l}nplementing
the transition function A, Lett' -t, and ' - t;, The first record 0 (t'{ of
UFI1LE (t') 18 read into the computer. The probability distribution A(t', ﬁ (", v, )
ie then sampled by monte-carlo and the result (}l(-r ) becomes the first record of
UFILE (™). This procedure is repeated for each record of UFILE (t') until all
records have been updated to T,

The next step is to update the file WGH'T(t'). OBSERYV denotes the idealized
computer program for this purpose. The inputs to OBSERV include the newly
created file UFILE (t') and the file WGHT (t'); as with UFILE, updating is carried
out one record at a time. A pair of values 6"(7') and wR(t') is then used to compute
wh (') using the formula

wir) whGE) B0 (), AT)
which follows from equation (A-B).

j- 1) are completed for any 2 < j< 1, files

répeating the procedure with t'  t, , and

Once files UF' lLL('ri -1 and WGH'T (T
j=1

UFILE (7)) and WGHT(T,) are obtained by
T 1’l'htes continues until files UFILE (Ty) and WGHT(T ) are generated,

If to > T, then the finul update consists of using TRANS to operate on file
UFILE(-rn) in order to generate UFILE(l,) (see equation (A~6)), Since no new
observations oosur between times Ty ané t, WGHT (tp) is a replica of WGHT( Tn).

Any probability associated with the random variable ﬁ(tz) conditioned upon
the observed process V muy be estimated using files UFILE (tp) and WG] IT(ty)
and the formula
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Pr{ Uty) BIIV('rj) ¢ A‘f foricj<n}=

where 18Y) = {n: 0%ty ¢ BL}.
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FORMULATION OF THE SEARCH AND SURVEILLANCE PROBLEM AS A
STATISTICAL SEQUENTIAL EXPERIMENTAL DESIGN PROBLEM

by

Thomas L., Corwin

The purpose of this appendix is to suggest a theoretical framework in which
to relate information-theoretic concepts to surveillance in a false target environ-
ment, It is shown that the problem of which cell to search at each stage of a
surveillance operation may be viewed as a game between the search planner and
Nature in which the payoff to the search planner is measured in terms of the
information he gains about the true state of Nature for a particular choice of cell
to search, Two sequential design procedures are examined in this context.

In the first section the surveillance problem is stated as a problem in statis-
tical hypothesis testing, I[n the second section some fundamental concepts of the
theory of sequential experimental design and of information theory are introduced,
The third section is devoted to the discussion of a general measure of the infor-
mation content of an experiment, called the discriminator function, In the fourth
gection it [s shown that the values assumed by the discriminator function may be
viewed as the potential payoffs to the experimenter in the play of a certain type of
two-person game, Discussion of the sequential design procedures of Chernoff and
Lindley as particular examples of such games is presented in this section,

Introduction

Let a region in N-dimensicnal Euclidean space be divided into J non-null
measurable sets ¢j (the scarch cells) for 1 < j < J,

Let 0 denote the cell containing the target. In this appendix we assume
that the target is stationary. Let the parameter space be given by {1, ..., J}.
Assume also the existence of conditional probabilities R}, k) for 1 < j « J and
1 £ k £ J, where R(j, k) is the probability of a response upon searching in 6
glven the target is located in 6 B

It is then desired to test the following simple hypothesis against the attending
composite alternatives:
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for 1< j<dJdandl < i< J.
H;:j:T for some j # i

In the ensuing discussion the points of the parameter space {1, ..., J} will often
be referred to as ''states of Nature, "'

Preliminaries

Let us consider a measurable space (’l , ,Z__') [reference [ w], p. 2|, l.e.,
‘L is a basic set of elements xe ). and ¥ a c-algebra of subsets of L. We
regard L as the sample space of an experiment and 7. as the set of all possible
events made up of elements of the sample space. Now let us consider the con-
struction of J probability spaces. For each possible state of Nature j ¢ {1, ..., J},
let ¥ i be a probability measurc defined on 2, . We will assume that the probability
measures are mutually absolutely continuous and distinct, Thus, essentially we
are considering J probability spaces ()., 7, Eiyh Je {1, ..., I}

For example, in the application mentioned in the introduction, the sample
space for an experiment in which all of the cells {03:1 < § < J} are simultancously
searched over and in which J = 3, is given by ’L = %xl, Xg, ..., Xg}, Where

xy = (NR, NR, NR)
Xo ** (NR, NR, R)
X3 - (NR, R, NR)
x4 - (NR, R, R)
xg © (R, NR, NR)
Xg (R, NIt, R)
x7 * (R, R, NR)
xg = (R, R, R).

Here an '"R" in the kth entry of x; indicates a reponse in cell k and an "NR" in the
kth entry of Xj Indicates no response in cell k, for 1 < j < 8,

The measures { & Ip evos EJ} may be constructed in this case by defining the
value of =, on cach element of the sample space. The value of =jon a particular
clement of the saumple space is simply the probability that the particular sequence
ot R's and NR's will be observed given that the true swais of Nuwre is §, f,e., T =},
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(or given that the target is in cell 0;). Thus, if it is assumed that cells are
searched independently, :-‘;I in the example presented above is defined as follows:

E-"j(xl) [1=-Rg, 1] [1-R3G, 2)) 11-R(j, 3
Fi(xg)  [1-RG, D] 11-RG, 2] Ry, 3)
Fj(xg)  [1=R(, DI R(,2) [1-R0, 3)]
Ej(xg)  [1-R(, DI RG, 2) R, 3)

F6) RO, D [1-R(, 2] 11- R, 3)
Fi(xg) RO, D 11-R(,2)) Rd, 3)

Fjp) RO, ) B(,2) [1-Ri, )]

Fijlxg) - RG, 1) R(,2) R(,3) 5 for1<jc<d.

Let us now consider a sot of M random variables defined on the samplv space
7Y , denoted i’l, ey ?M . In the above example if the experimenter is allowed
to search only onc cell, wo could define a set of M - J random variables on the
sample as follows:

1 if the mth entry in xy Is an "R, "
Ym(xp)

0 If the mth eatry {n xq is an "NR, " for 1 <1 < 2'], l<mg d,

Let us now cunslder the following problem: Let us nssume that for a
particular oxperiment there are J possible states of nature. Foreach j, 1 < j <,
there exists a probabllity space ( /, S .‘F’i) and on the sample space l’ are
defined M random variables, Yy, ..., Ypr.  Now let us also assume that available
to the experimenter arce N trials in which he may observe any one of these M
random variables in order to make inference about which one of the J states of
Nature is the true onc, In the terminology of the problem stated in the introduction,
the search planner has available to him N trials in cach of which he may search
any of J cells in order to make a determination about the actual location of the
target, In this case M J, ‘The problem then is to determine which random
variable should be sampled at cach trial in order to optimize his ability to discern
the actual state of Nature it the end of N wrials,  [n the terminology of Chapter (11,
the search planner is interested in maximizing S(N),

R
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To this end, let us discuss the likelihood ratio statistic, For purposes of
simplicity, let us assume that for 1 ¢ m < M the random variable Yy is real
valued. Let us also assume that the probability measure of ¥y, 1 € m < M, is
absolutely continuous with respect to some fixed measure u defincd on the Borel
fleld of the real numbers, For each state of Nature je {1, ..., J}, letus
denote the density of the random variable ¥y, by wp, jfor 1 < m < M. Then the
likelthsod ratio statistic for testing the hypothesis that § is the true state of Nature
against the alternative that k is the true state of Nature is given by

A A N wmnvj(Ymn)

L(j. k. ml' ciay mN' Ym y ev ey Ym ) = E log [ ——
1 N n:l

Ym,, k(Ymn)

forl<j<Jdandl< kg,

where

A ~
(1) Ym_ is the sampled value of the random variable Ymn ,
the ® random variable sampled at the nth step, and

() Wmg,j() is the density of tho random variable Ym,
under the hypothesis that j is the true state of Nature,

Thus, at the nth step, the increment in tho likelihood ratio statistic is given by

A
A wmmj(Ymn)
o4, k, mp, Ym,) = log| ————"— forl<j<JdJandl < kg d.

Wi, k(Ym,)

A
Intuitively, if j is the true state of Nature, 6(j, k, mnt. Ym,) represcnts the
additional ability, obtained through sampling Ym,, at the nth step, to discriminate
between the hypotheses j and k. Roughly speaking, at the nth step one would
prefer to sample the random variable Y, +« which maximizes this increment on

the average,

In the terminology of Kullback and Lelbler, reference [k |, glven the m
random variables {?m t1< m< M} from which to choose at the nth step, the
expe1lmenter would prefer to choose that experiment which maximizes the
information number I(j, k, m) defined as follows:

B-4
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o
Id,k,m) - f_m oG, k, m, x) Wi, i(x) dp(x) forl<j<d, 1<k=dJd, l<mc< M,

(B-1)
Implicit in this definition is the assumption that j is the true state of Nature,

The Discriminator Function

Since at the nth step of any sequential scheme the expcrimenter, in general,
does not know the true state of Naiure, he is faced with the problem of choosing
one of the random variables {¥Y, : 1 < m < M} to maximize his ability to
discriminate between some cstimate of the true parameter value T and the
remaining parameters, Thus, one is led to consider maximization of analogs of
the expected increment in the likelihood ratio statistic or the Kullback-Liebler
information number presented in expression (B-1), The analogs to be considered
here have the following form:

@) Let {A{:1< i< J} bea setof real numbers such
that 0 < Ay < lforlgis_Jandz;[__l A= L

(ii) For eachme {1, ..., M}, loto(m, ) he a
density with respect to the measure u.,

Then define the "discriminator" function D as follows: p

@ J ¢ (M, X) i
Dm, ¢M,*)y Ay vy AJ) - f_m 121 )\jlog — ¢ (m, X) du(x) 3
m, }

fori<m< M, (B-2) o
Many of the important discriminator functions discussed in the literature
appear o8 special cases of the diseriminator D, for specific choices of the

function ¢ and the real numbers Ay, ..., Aj. For instance: : .

1) Let j and k be two clements of the samy o space ]
{1, ..., J}; then define the function n by ;

ng, m,x) - wm.j(x) for @ < x<®, 1<m<M, 1<j<d (B-3)




1)

and define

1 fori=Kk
wk, ) = forl<ci<Jdand1l < k< d. (B-4)
0 for i # k

Then the number Dm, n(j,m,-), wk,1), ..., wk,J)) is the
expected increment in the likelinood ratio statistic for testing
the hypothesis that j is the true state of Nature aga.ast the
alternative that k is the true state of Nature when sampling the
random variable ¥, . If i3-1 is the mode of the posterior
probabilities defined on the parameter space {1, ..., J} at
the (n-1)5t step and ij%1 is the mode of the posterior prob-
ahilities defined on the purameter space at the (n-1)8t step
restricted to the set {1, ..., J} = {ij-1), then the number
Dim, nlg.1,m, ), @lniy, 1), ...y wlpt,d)) is a form of
the discrimination number used in Chernoff's procedure A
(reference [ x |) to be discussed later,

Let us modify example (1) above slightly to produce a
different discrimination function 13, Instead of the function w
defined in (B-4), let us use a real-valued function & defined
on the sample space {1, ..., J}, satisfying

@ 0gadsgl, foric{l, ..., d}- {1 4}

®)  »lp.y) = 0
J o=
{c) Zi:‘lw(i) = 1

(d) D(m, n(

*

p-1r M)y @ (L), oay @)

inf D(m n(i*_ m .) A L }\)
(I\l,...,AJ)C A({;_l) ’ n=1'"% s Ay [IAN I4]

whero

A(k)"—{(A]) oy AJ) :OSAIS 1

J
forie {1, ..., 3}, = A -1, and p = O}, (B-5)
-1

B-6
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and define

1 fori=k
wk,l) = forl<ic<Jdandl < k<Jd,
0 fori#k

Then the number D(m, n(j,m, ), wik,l), ..., wk,d)) is the
expected increment in the likelihood ratio statistic for testing
the hypnthesis that j is the true state of Nature against the
alternative that k is the {rue state of Nature when sampling the
random variable ¥Ym . If ij.1 is the mode of the posterior
probabilities defined on the parameter space {1, ..., J} at
the (n~1)8t step and 1}*; is the mode of the posterior prnb-
abilities defined on the parameter space at the (n~1)8t step
restricted to the sot {1, ..., J} - {ip.1), then the number
Dm, ndp-1,my )y wlpe1s1), ooy wlnty,d)) is a form of
the discrimination number used in Chernoff's procedure A
(reference [ x ]) to be discussed later.

Let us modify example (1) above slightly to produce a
different discrimination function D, Instead of the function w
defined in (B~4), let us use a real-valued function @ defined
on the sample space {1, ..., J}, satisfying
@ V<ol g1, foriefl, ..., I}~ {7 ¢
®  Dlpy) = 0

N
© Z_ e -1
@ D, ndp_qym, ) @), ..., DE)

inf DM, g oMy )y Ags oeep Agh
Aps e oA c Aliny)

where

AR ={QAp «r AP0 A<l

J
foric {1, ..., d}, =T A -1, lmdJ\RNO}'
=1

(B-4)

(B-5)




As will be discussed later, the discrimination number

D{m, n (i;_l. m, ), w(iail, n, ..., w(i:;:l.J)) represents the
payoff to the experimenter in a particular game outlined in
Chernofi's procedure A for his choice of random variable Y,
at the nth step when Nature may choose irom among only a
certain set of her pure strategies (sce fourth section); while
the discriminator D(m, n(ip-3,m,*), w(l), ..., OE)
represents the payoff to the experimenter in the same game
for his choice of random variable ?m when Nature is allowed
to chouse from among a wider class of her mixed strategies,

=

.5.\. (1) Let {« n'1(1) tl<ic J} be the set of posterior probubilities
i deftned on the paramoter space {1, ..., J} at the (n-1)%
g .- step, Then define the function E as follows:
N i
[P
i g’ J n"].
E». . Eta,x) = 1_2_1 v (1) Wp, 1) for -® < x < « and 1< m< M,

Then for 1 < m < M, the number D(m, E(m,*), af-101y, ..., an'l(J))
Is the expected decrease in the entropy of the posterior

probabilities on the parameter spuce at the nth step given that

: ' the experimenter samples random variable Yy,. Notice here

b that the cholce of m to optimize Dm, E(m, .), «'11), ..., «"1@y)
.8 essentially an attempt to increase the average expected

power to discriminate between the current estimate of the

o density of i‘m givon by wi]rl o n"1(1) W, i(*) and the densities

! of Yp, under the agsumption that each of the parameters

{1, ..., J} represents the true state of Nature,

= Ty n O
. . a

A number of simple results regarding the function D may be proved using thc
results of Kullback.

THEOREM B-1, Forlg<mg<M,

Dim, ¢, A, ..., }\‘) > 0. (B-6)

Proof. [n Thonrem 3.1, p. 14, of reference [ k|, Kullback shows that for
l<j<Jand 1« m< M,

-—

0 ¢ (M, x)
f_m log[mtj—&;] ¢ (m,x) dp(x) > 0,
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Thus, expression (B-6) follows from the non-negativity of the elements of
{Aj :1< j< J}, which proves the theorem,

Let D¢m,, Mo, by ALy ooy Ag) be defined by

D(mlt m2l ¢0 li, “eay AJ) =

¢(m1l xl) ¢(m2v Xz)

(o) 0 J
Joo [ jfl A;log Vg 10 W 1) ¢ (my, X)) ¢ (my, Xp) dpix,) duix,)

for1<m; < Mand 1< my < M,

where

1) 05_)\:'5_1for15j_<_JandE3T___17\j=:1 and

(i) foreachm, ¢ (m,)isa density with respect
to the measur. .,

Then let us prove the following theorem,

THEOREM B-2, Forlg<m; < Mand 1 S my< My,
I_)(mlim20¢txlloi07kJ) = D(mlld’ixlil“l¢J) +D(m29¢r11v--"¢,])'
Proof. We have

l—)(mln mzo ¢| Alo ey AJ)

1

® J [‘b(ml.xl)fb(mz.xz)

fuo fmm Z Aj log ](b(ml. X1) @ (Mg, Xp) du(xy) du(x,)
P T=® e wml.j(xl) sz'j(x2)

¢(m1|x1) du(xl)

I

R | b (my,xy) ]
) % jlog| —t b
= =1 wml,](xl)_

J [ b my, x,)

_wmz'j(xz)
= D(mlo ¢- A-ll ey )‘J) ’D(mgp ‘f’v Aln LN ) AJ)-

B-8§




Y
oy 4

e |

Thus, Theorems B-1 and B-2 show that D, as defined in (B-2), is non-ncgative
and additive in the sensn dlscussed above. Both of these results are, of course,
consequences of the nature of the log function used in the definitions of D and D.
Special cases of Thecorems B-1 and B-2 are presented in a variety of sources
such as Kullback reference { k |, Lindley reference [ f ], DeGroot reference [y |,
and Box and Hill reference [ 2.

Formulation as & Two-Person, Zero-Sum Game

The concepts of game theory were first introduced into the study of sequential
experimental design by Chernoff in reference [ X |. Here we generalize those
notions to a wider class of games between the experimenter and Nature to include
the selection procedure described by Lindley in reference ( f |.

Came formulation. At cach stage of the experimcut, we assume that the
experimenter is interested in maximizing a quantity of the form (B-2). The
number of points in the paramelor space, alternatively referred o as states of
Nature, as well as the number of experiments available to the oxperimenter,

is finite, and we formulate this prcblem as a two-person, zero-sum gamce as follows.

Let us assume that before a given trial in an experiment, the experimenter
must decide which of M random variables {Yy, : 1 < m < M} he will sample, He
also believes that deponding upon the true state of Nature the payoff to him will
vary according to his choice of random variable. Now let us gay that tho
experlmenter has decided that for 1 < j< Jand 1 2 m « M, if the true state of
Nature is "j" and he chooscs random variublo Ym- the pavoft to him will be
p(j, m) given by

p(Jj, m) f__(mn log[\{-{’%(%] ¢ (m, X) du(x),

where

1) m, j(+) 18 the density with respect to i of the random
variable Y m» Siven that j is the true state of Nature, and

(th for eachme {1, ..., M}, &(m,-) is o density with
respect to the measure u,

However, let us also assume that, in addition to cholce of a particular state
of Nature j and a particular random variable i’m. called pure strategles for each
player, the players may choose mixed strategies, A mixed strategy for Nature
is a probability function A defined on {1, ..., J} and denoted by {A,: 1< j < J}
where Aj represents the probability with which Naturc chooses parameter j at the
step in question for 1 « j < J. A mixed strategy for the experimenter is a

B-9
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probability function y defined on {1, ..., M} and denoted by {yp : 1 < m< M},
where y,, represents the probability with which the experimenter chooses the
random variable Yy, for 1 < m < M. However, in some cases, the rules of the
game may specify that either Nature or the experimenter or both may choose
only from among pure strategies,

Thus, if Nature chooses mixed strategy A, the experimenter would obviously
like to choose the random variable Yy, to maximize his expected payoff, If Nature
chooses mixed strategy A, then the expected payoff to the experimenter for his
choice of random variable Y, is given by

J
Z Ay p(j,m)
=1

I'(m)

[

D(m, ¢, Afy «..p, Ay) forlgm< M,

Thus, if the experimenter may assume that he knows Nature's strategy at any step,

his best strategy 1s to choose the random variable Y, «, where m* maximires
I over the set {1, ..., M}. In this case, the maximum payoff to the
experimenter called the value of this game is given by

<
]

' max I'(m)
me {1, ...,M}

= max D(m, ¢(m, "), Aqy ceey Ag).
me (1 gy D 1 a

If, on the other hand, we may assume that Nature chooscs a strategy from
the class of mixed strategies G in such a way as to minimize the maximum payoff,
then the value of the game to the experimenter is given by

d
max min Z Ay p(j, m)
|
me{1,...,m} (A, ...,A5¢G j=1

it

v*

i

max min D(m, ¢ (m, ), Afr v Ay).
me {1,,..,m} Ay, ..., ApcG

Chernoff's procedure A. As above, let i;_l be: the mode of the posterior
distribution of the parameters at step n~1, Then in reference [ x ] Chernoff has
suggested that the experimernter choose the random variable Y, at the nth step to
maximize the function r*‘i‘ defined on the sct {1, ..., M} as follows:

B-10
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J
rim) - inf o [dg_pp jym)  for 1< m< M,
(A1"°‘)AJ')( A(ln_l) .'1

where

(1) the function [ is defined in (B-1) and
(1) A(+) is defined in expression (B-5) above,

Chernoff has shown that this I8 equivalent to a choice on the part of the

experimenter of 4 pure strategy to maximize his payoff in a game with payoff
function Py given by

pl(j.m) - f:o log _—w;:;(_;)— Wiy, 1;—1(’() dux) forl<j<JdJandl € mg< M,

where it is assumed that Nature ls free to choosc n mixed strategy from among
all mixed strategies glving zero weight to the mode of the posterior distribution
of the parameters at step n-1, and the experimonter is frec to choose his stratogy
only from among his pure strategies. Here the value of the game at step n is
given by

J
vy - max inf oA Lt gy m).
L ome (. am) (oA Al 110 R

In terms of the discriminator function D defined in expression (B-2), Chernoft
states that at the nth step the experimenter should sanple the random variable Yy,
to maximize the function D(-, ndj-1, © *), @ (1), ..., @())) over the set {1, .

cey
Thus, the value of the ganme may also be written as

vy max D(m, n(i*_ s )y fc(l), ceey (D),
\ n-1
me{l,..,.,m

As has been stated previously, if It is assumed that Nature may choose only
from among her pure strategies, then the value of the game is given by

v max DM, G ey )y w@ L0, L, w(il ).
2 me{1,..., m ' n-1» » 7 n-1 n-1°

B-11
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[t is a simple matter to show that

<
Iv
<

Under mild restrictions, Chernoff has shown the tollowing in reference [ x |.

(The stopping rule of procedure A js not directly relevant to our discussion and
need not be defined here,)

R

LEMMA 1*, Let the stopping rule for procedure A be disregarded. Let T 5
be the smallest integer such that i,"{ =T forn » 7., Then there exist bl > 0 and
by >0 such that

2o e S

Pr{t >n} < by e™P2 forn > T, 4

While in reference [ x ] Chernoff has proved that procedure A has certain
desirable asymyptotic properties, he has also pointed out that procedure A may :
lead to "Initial bungling, " since ""At first it is desirable to apply experiments ]
! which are informative for a broad range of parameter values, Maximizing the
; Kullback-Licbler information number may give experiments which are efficient
only when 0 is close to the estimated value, "

Lindley's procedure, Lindley, reference [{ ], has suggested an alternative
approach to the sequential-experimental design problem, which, as he points out,
applies Shannon's definition of the information content of a probability distribution
to the discussion of the notion of information in an experiment, This is closely
related to the approach taken in formulating surveillance Policy II in Chapter III
as we shall see below,

i — -

Lindley defines the amount of information provided by an experiment as the 3
expected change in the entropy of the posterior probabilities of the parameters 1
as a result of performing the experiment, 1

For e¢xample, if @™ 1 is the posterior distribution of the parameters {1, ..., J) :
at the (n-1)5t step, then for 1 < m < M the Shannon information content in the {
selection of random variable ?m at the nth step is s(m) given as follows:

*  Implicit in the proof of this lemma presented in reference [ x | is the fact

that for eachme {1, ..., m} and for any pair of distinct parameter values i
and j, there cxists f¢ -f such that u(3) # 0 and fﬁ Wy, (%) dux / i W, (%) du(x).
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i s(m) = [ J_?-l fm, j&) lop,[f?n, j(X)] j-?l a” () log[a (j)] |

dJ n-1 k
‘ E @ v g0 f dut, (B-T)
B d ]
ii 1
. whera
- ’i 1
w_(x) )
E f;;lj(y) Jm,j for = < x<®, 1< < d.
|

] Z Wi, 100 "7 1q)
i=1 ’
Using Chernoff's results in reference [aa], if E is defined by

E(m, x) =

Moy

") Wy, jx)  for 1< m< Mand-® < x< ®,

=1

then it is easily shown that

s(m) = D(m, E(m, ), an'l(l), ey a'n"l(J)), for1< m< M,

Lindley in reference Lf | suggests that the experimenter choose the random
variable Y, at the nth stop to maximize the function s defined above,

N The following discussion relates Lindley's procedure to the maximum 3
BT information-gain policy formulated in Chaptor LII,
§ v

In the contoxt of Chapter I1I, o™~1 indicates the current target location A
“e probability distribution Pg and Y, indicates the outcome obtained if the mth cell

is searched, We define ¥ so that ¥y = 1 if a response is obtained and Y,y = 0

if no response is obtained, The measure y in equation (B-7) assigns weight 1 to

each of the sets {0} and {1} and u(A-{0,1}) - 0 for any measurable set A,

ot

e

The quantity wy, , 10 is the probability of obtaining an outcome r given that
cell m is searched and the target is in cell j. Here, r = 1 Indicates a response
and r - 0 indicates no response. In the notation of Chapter III, 5




TR

b

wm.j(r) = Q(r,}, m),

The probability fy, 4(r) is the probability that the targct is in cell § given
that celi m is searched and response r ir obtained. In the notation of Chapter III,

fm, j) = PA(,J,m).

If entropy of a disorete distribution P on J cells is denoted H[P], i.e.,

J
HP| = - 2 P() In PQ)
and if as in Chapter III
J 1
Um) = £ ¥ Pg() Q(r,j, k) H[PA(r, « k)],
=1 r=0
then
m - 2 [#tpaC ] 3 Ppd) Qs dm)
s(m) = - |Hlpa(r,*,m r,j,m
r=0 A F1 8

El H[P ‘! P
=0[[ Bl] (Z, PBO) QE Jom)

= ~U(m) + H[Pg].

Equation (B-8) indicates that finding the m which maximizes s(m) (the Lindley
approach) is equivalent to finding the m which minimizes U(m) (Chapter III approach),

Like the Chsrnoff procedure A, Lindley's procedure for choosing a random
variable to samosle at the nth step may also be considered within the context of
game theory, Once again, we think of Nature and the experimenter as playing a

game with a particular payoff function. In this case the payoff function is slightly

different that the one assumed by Chernoff in his procedure A. For a cholce by

Nature of the parameter j and a choice by the experimenter of the random variable
Y, Lindléy assumes that the payoff to the experimenter at the nth step is given by

B-14
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we

g w n-1 i
L ownp,ilx)w (1) 5

. @ il -
pyliym) = I log Wi, j®) i-’§1 W, i(X) a™ ) du(x)

forl<jc<Jdandl < m< M, (B-9)

Thus, the payoff assumed by Lindley in his game with Nature is significantly
different from that assumed by Chernoff. Also different is the strategy assumed
for Nature. Lindley assumes that for her strategy at the nth step, Nature chooses
the mixed strategy oB=1, That is, Nature chooses parameter j with probability
aP-1(j) at the nth step,

Consequently, assuming that Nature plays mixed strategy a1 gt step n,
if the experlmente_ar wishes to maximize his expected payoff, he must choose the
random variable Ym+* such that m* maximizes the function I",: defined as follows:

]

J
Mm) = £ a™1g)p,(,m)
2 i1 2

sm) - Dm, E, o™Xy, ..., a™1ygy), fori<me M,

Thus, the value of the game or the maximum information which the experimenter
can derive from a sample at the nth trial is given by

2 max Dim, E, o), ..., a3,
mcf{tl,,..,m

Large~sample results similar to the ones obtained for Chernoff's procedure A
in reference [x | have not yet been obtained for Lindley's procedure., However,
it is fairly obvious that since Lindley's procedure uses all the information nbout
the parameters available to the experimenter at every stage, it will not be subject
to "initial bungling" to the same extent as Chernoff's procedure A, However,
conversely, duc to its heavy reliance upen all information regarding the parameters
at each step rather than only the most likely as in procedure A, its large-sample
properties may not be as dramatic as those attending Chernoff's procedure.
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