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Abstract 

The datacomputer system is being designed as a large-scale 

data storage utility to be accessed from remote computers on 

the Arpanet and, potentially, on other networks. The develop- 

ment is phased, with each successive release of the system 

offering increased capabilities to users.  During the present 

reporting period, the second release of the system became 

operational. This release, while still primitive in many 

respects, is beginning to provide experience with actual 

applications and user programs.  The present document is the 

final technical report under Contract No. DAHC04-71-C-0Q11. 

The project is continuing under Contract No. MDA903-74-C-0225. 
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1. Overview 
1.1 Review of Basic Concepts 

The goal of the project continues to be the development of 
a shared, large-scale data storage utility, zo  serve the 
needs of the Arpanet community. 

The system under development will make it possible to store 
within the network such files as the ETAC Weather File or 
tne NMO Seismic Data File, which are measured in hundreds 
of billions of bits, and to make arbitrarily selected parts 

11 of these files available within seconds to sites requesting 
the information. The system is also Intended to be used as 
a centralized facility for archiving data, for sharing data 
among the various network bjsts, and for providing inexpensive 

j-j on-line storage to sites which need to supplement their local 
11 capability. 

Logically, the system can De viewed as a closed box which 
is shared by multiple external processors, and which is 
accessed in a standard notation, "datalanguage" (see Fig. 1). 
The processors can request the svstem to store information, 
change information already stored in the system, and retrieve 
stored information. To cause the datacomputer to take action, 
the external processor sends a "request" expressed in data- 
language to ehe datacomputer, which then performs the desired 
data operations. 

From the user's point of view the datacomputer is a remotely- 
located utility, accessed by telecommunications.  It would be 
impractical to use such a utility if, whenever the user wanted 
to access or change any portion of his file, the entire file 
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Figure 1. Logical View of Datacomputer 
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had to be transmitted to him. Accordingly, data management 

functions (information retrieval, file maintenance, backup, 

access security, creation of direct and inverse files, main- 

tenance of file directories, etc.) are performed by the data- 

computer system itself. The user sends a "request", which 

causes the proper functions to be executed at the datacomputer 

without requiring eatire files to be shipped back and forth. 

The hardware of the system is shown in overview in Fig. 2 

and in greater detail in Fig. 3. 

The program for the system processor handles the interactions 

with the network hosts and is designed to control up to three 

levels of storage: primary (core), secondary (disk), and 

tertiary mass storage.  Currently, the CCA facility is operating 

with primary and secondary storage only, with the addition of 

tertiary storage planned for 1975.  Installation of a tertiary 

storage module will leave datalanguage unchanged, and will 

therefore be imperceptible to users of the system (except 

insofar as it affects performance and the total storage capacity 

available for data). 

In addition to using the dedicated equipment at CCA it is 

planned that datacomputer service will also make use of 

hardware resources located at NASA/Ames, using CCA software. 

The two sites will provide mutual backup for one another, 

thereby guarding against accidental loss of data and providing 

for satisfactory uptime of the overall service. 

1-3- 
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Figure 2. Hardware Overview of System 
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1.2 Status of Project 

The presei.t reporting period brings the datacomputer project 

to the end of its first phase, under Contract No. DAHC04-71- 

C-0011, during which an initial operating capability was 

achieved. The next phase of the work is Deing performed under 

Contract No. MDA903-74-C-0225. 

During this reporting period, Version 0/9.7 of the datacomputer 

system was completed. This is the second version of the 

system to offer datacomputer services on the Arpanet.  In this 

new version the most serious restriction of the previous version 

has been lifted, namely the restriction that elementary data 

elements must conslsc of fixed-length ASCII strings. Version 

0/9-7 allows variable-length data and binary data. In addition, 

it includes an optimized file load technique.  New features 

are described in more detail in Section 3. 

Version 0/9-7 is an "intermediate" release, 

on Version 0/10, the next major release. 

Work has continued 

0 
Currently, only disk storage is available to the system. A 

Calcomp Dual 230 disk was installed during the fourth quarter 

of 1973. This increases the total disk storage of the CCA 

installation from 9 x 10 bits to 2.3^ x 109 bits. The additional 

disk was necessary in order to keep all of the data currently 

stored on the datacomputer on-line. 

Plans call for the addition of tertiary storage in 1975- 

Since datalanguage is device-Independent, these increases in 

storage capacity will not affect the user programs running on 

network hosts. 

I - 
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Under the new contract, the datacomputer project now enters 

Phase II of its development. Phase II has t*o goals: (1) the 

operation of a large-scale data utility service for the 

Arpanet, based on previous developments in the project and 

(2) a continuing program of research and development In network 

data handling, with emphasis on enhancements to the service. 
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2. Design Activities 

2.1 Datalanguage 

Work on a major design iteration of datalanguage continued. 

This design effort incorporates new ideas that have developed 

as a result of experience gained in implementation and service, 

through further study of user requirements and work with 

potential users, and through investigation of other work in 

the data management field. 

The design activity resulted in Datacomputer Project Working 

Paper No. 8, "Further Datalanguage Design Concepts", dated 

December 15, 1973 (see Appendix). This paper presents the 

concepts and preliminary results of the current datalanguage 

design effort.  It discusses global considerations for an 

expanded datalanguage desipn, specific issues which have been 

addressed by the design team, and presents a working model for 

the new language which was developed using the ELI language. 

The working paper discusses such data description issues as 

the specification of basic and aggregate data objects, general- 

ized relationships between data objects, virtual data objects, 

and the representation of ordered sets.  Issues of internal 

representation, language mechanisms for data reference, control 

of program flow, and the basic operations used for manipulating 

data objects are outlined. The problems of data integrity and. 

privacy are also addressed. 

The emphasis in the working paper is on solutions and options 

of solutions.  It does not contain a completed design. Work 

continues toward a detailed specification for the new data- 

language . 

1-8- 
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2.2 Software System 

The current design of the software system basically corresponds 

to the design documented in Working Paper No. 5 (February 29, 

3972). 
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3. Software Implementation 

During this period, Version 0/9.7 of the datacomputer system 

was completed and began offering service on the Arpanet. 

Work on Version 0/10, the next major release, was in progress. 

The main features of each of these systems are described in 

this section. 

i  i 

3.1 Request Handler 

Version 0/9.7 handles a larger range of data and file formats 

than the previous version.  In addition to 7-bit ASCII, the 

simple data types now include 8-bit ASCII and uninterpreted 

bytes or byte strings. The user specifies a byte size less 

than or equal to 36.  A string may be variable-length with 

either a preceding one-byte count or, if it is in a PORT, a 

trailing "punctuation" character (i.e., end-of-record, end-of- 

block or end-of-flle marker).  In Version 0/10, a variable- 

length string can be terminated by a user-specified delimiter. 

A file or port may now be any aggregate or simple data type; 

formerly a file or port was required to be a list. 

A login command is provided in Version 0/9.7.  It provides a 

context for recognition of container names.  In Version 0/10, 

a file-level security system will be integrated with the login 

command. 

Version 0/9.7 includes several optimizations that were not 

in previous versions. One of these is the deferred mode for 

loading or updating files which have inversions.  First, the 

update of the base is completed.  (The base is the part of the 

file which contains only the user's data.) Then, inversion 

update entries are sorted, thus minimizing disk accesses to 

inversion pages. 

T -10- 
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Two optimizations that result in faster execution time were 

added to the compiler.  It should be noted that this kind of 

optimization reflects the bias in datacomputer development 

towards handling large files, where compilation time is rela- 

tively insignificant and efficient execution is essential.  One 

of these optimizations results in run-time handling of a number 

of containers as a single container when there Is no need to 

parse them individually. The second optimization is the addition 

of the IG (Instruction Generator) module, which scans the tuple 

table and assembles PDP-10 code which will simulate tuples. The 

tuple code has been written to facilitate simple optimization 

by IG. This includes suppressing some redundant loads of 

temporary registers, "de-indexing" indexed XCT's (and de-XCTing 

them), eliminating extraneous transfers (eligibility indicated 

in the tuple code by the use of the 'JUMPA' Instruction, instead 

of 'JRSTV), and suppressing all run-time conditional jumps and 

skips based on information available at IG-time. 

D 

In Version 0/10 members of inner level lists will be valid 

in boolean expressions.  It will also be possible to invert 

members of inner level lists. However, only EQ can be evaluated 

using the inversion; evaluation of NE will still require a 

sequential search of the data. 

3.2 Services 

The datacomputer can now use a 3330-type disk as its storage 

medium.  It is treated as special disk, that is, disk that is 

completely under datacomputer control rather than Tenex control. 

A JSYS has been added to Tenex for l/O to the 3330. However, 

the disk is not part of the normal Tenex page space. 
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The directory data structures have been changed. Indirect 

pointers were deleted, and the name blocks were simplified. 

This is largely in preparation for adding security features 

in Version 0/10. 
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4. Network Service 

4.1 User Programs 

At the end of the previous reporting period, the datacomputer 

system achieved its initial operating capability on the Arpanet. 

Two user programs for accessing the datacomputer in datalanguage 

from Arpanet hosts were provideJ by CCA. 

One of the user programs' is SMART, which allows a user at a 

terminal to access the datacomputer.  SMART has information 

about datacomputer files assembled into it.  It generates data- 

language for outputting subsets of these files.  It also handles 

all datacomputer protocols, Network communication and terminal 

I/O.  It was used during this reporting period to access two 

ETAC files, one a file of weather observations, and the other 

a station library. 

FORPAC is a set of subroutines that give FORTRAN programs 

access to the datacomputer.  Like SMART, it has information 

about datacomputer files, and it uses this information to 

generate datalanguage for retrieving subsets of the files. The 

calling FORTRAN program can then operate on the data.  FORPAC 

was used on an experimental basis by ETAC for a precipitation 

study. 
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Appendix 

Working Paper No. 8, ''Further Datalanguage 

Design Concepts", December 15, 1973 
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1.1 The Datacomputer System 

The datacomputer 1s a large-scale data utility system, offering data 
and data management services to other computers. 

storage 

The datacomputer differ» from traditional data management systems in several 
ways. 

First, 1t is implemented on dedicated hardware, and 
computing system specialized for data management. 

comprises a separate 

Second, the system is implemented on a large scale. Data is intended to be 
stored on mass storage devices, with capacities in the range of a trillion 
bits. Files on the order of one hundred billion bits are to be kept online. 

Third, it is intended to support sharing of data among processes operating in 
diverse environments. That is, the programs which share a given data base 
may be written in different languages, execute on different hardware under 
different operating systems, and support end users with radically different 
requirements. To enable such shared use of a data base, transformations 
between various hardware representations and data structuring concepts must 
be achieved. 

Finally, the datacomputer is designed to function smoothly as a component of 
a much larger system: a computer network. In a computer network, the 
datacomputer is a node specializet* for data management, and acting as a data 
utility for the other nodes. The Arpanet, for which the datacomputer is 
being developed, is an international network which has over 60 nodes. Of 
these, some are presently specialized for terminal handling, others are 
specialized for computation (e.g., the ILLIAC IV), some are general purpose 
service nodes (e.g., MULTICS) and one (CCA) 1s specialized for data 
management. 

1.2 Datalanguage 

Datalanguage is the language in which all requests to the datacomputer are 
stated. It includes facilities for data description and creation, for 
retrieval of or changes to stored data, and for access to a variety of 
auxiliary facilities and services. In datalanguage 1t is possible to specify 
any operation the datacomputer is capable of performing. Datalanguage 1s the 
only language accepted by the datacomputer and U the exclusive means of 
access to data and services. 

IMA ■ft 
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1.3 Present Design Effort 

Page  2 

We are now engaged in developing complete specifications for 
this is the second iteration in the language design process. 

datalanguage; 

A smaller, initial design effort developed some concepts and priniciples 
which are described in the third working paper in this series. These have 
been used as the basis of software implementation, resulting in an initial 
network service capability. A user manual for this system was published as 
working paper number 7. 

As a result of experience gained in implementation and service, through 
further study of user requirements and work with potential users, and through 
investigation of other work in the data management field, quite a few ideas 
have been developed for the improvement of datalanguage. These are being 
assimilated into the language design in the iteration now in progress. 

When the language design is complete, it will be incorporated into the 
existing software (requiring changes to the language compiler, but having 
little impact on the rest of the system). 

Datacomputer users will first have access to the new language during 1975, 

1.4 Purpose of this Paper 

This paper presents concepts and preliminary results, rather than a completed 
design. There are two reasons for publishing now. 

The first is to provide information to those planning to use the 
datacomputer. They may benefit from knowledge of our intentions for 
development. 

The second is to enable system and language designers to comment on our work 
before the design is frozen. 

1.5 Organization of the Paper 

The remainder of the paper is divided into four sections. 

Section 2 discusser tne most global considerations tor language design. Tms 
comprises our view of the problem; it has influenced our work to date and 
will determine most of our actions in completion of the design. This section 
provides background for section 3, and reviews some material that will be 
familiar to those who have been following our work closely. 

Section 3 discusses some of the specific issues we have worked 
emphasis is on solutions and options for solution. 

on. The 

* 
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In sections 2 and 3 we are presenting our "top-down" work: this is the 
thinking we have done based en known requirements and our conception of the 
desirable properties of datalanguage. 

We have also been working from the opposite end, developing the primitives 
from which to construct the language. Section 4 presents our work 1n this 
area: a model datacomputer which will ultimately provide a precise semantic 
definition of datalanguage. Section 4 explains that part of the model which 
is complete, and relates this to our other work. 

Section 5 discusses work that remains, both on the model and in our 
analysis. 

top-down 

!   ! 
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2.1 Introduction 

Data management is the task of managing data as a resource, independent of 
hardware and applications programs.  It can be divided it into five major 
sub-tasks: 

ill I)  creating databases in storage, 
.2) making the data available (e.g., satisfying queries), 
(3) maintaining the data as" information is added, deleted 
modified, 
(4) assuring the integrity of the data (e.g., through backup 
recovery systems, through internal consistency checks), 
(5) regulating access, to protect the databases, the system, 
the pTTvacy of users. 

and 

and 

and 

These are the major data-related functions of the datacomputer; while the 
system will ultimately provide other services (such as accounting for use, 
monitoring performance) these are really auxiliary and common to all service 
facilities. 

This section presents global considerations for the design of datalanguage, 
based on our observations about the problem and the environment in which it 
is to be solved. The central problem is data management, and the 
datacomputer shares the same goals as many currently available data 
management systems. Several aspects of the datacomputer create a unique set 
of problems to be solved. 

2.2 Hardware Considerations 

r 

2.2.1 Separate Box 

The datacomputer is a complete data management utility in a separate, closed 
box. That is, the hardware, the data and the data management software are 
segregated from any general-purpose processing facilities. There is a 
separate installation dedicated to data management. Datalanguage is the only 
means users have for communicating with the datacomputer and the sole 
activity of the datacomputer is to process datalanguage requests. 

Dedicating hardware provides an obvious advantage: one can specialize it for 
data management. The processor(s) can be modified to have data management 
"instructions"; common low-level software functions can be built into the 
hardware. 

A less obvious» but possibly more significant, advantage is gained from the 
separateness  itself.  The  system can be more easily protected.  A 
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fully-developed datacomputer on which there 1s only maintenance activity can 
provide a very carefully controlled environment. First, It can be made as 
physically secure as required. Second, it needs to execute only system 
software developed at CCA; all user programs are In a high-level language 
(datalanguage) which 1s effectively interpreted by the system. Hence, only 
datacomputer system software processes the data, and the system 1s not very 
vulnerable to capture by a hostile program. Thus, since there 1s the 
potential to develop data privacy and Integrity services that are not 
available on general-purpose systems, One can expect less difficulty 1n 
developing privacy controls (Including physical >nes) for the datacomputer 
than for the systems It serves. 

2.2.2 Mass Storage Hardware 

The datacomputer will store most of Its data on mass storage devices, which 
have distinctive access characteristics. Two examples of such hardware are 
Precision Instruments' Unicon 6yo and Ampex Corporations TBM system. They 
are quite different from disks, and differ significantly from one another. 

U However, almost all users will be ignorant of the characteristics of these 
devices; many will not even know that the data they use is at the 

0 datacomputer. Finally, as the development of the system progresses, data may 
be invisibly shunted from one datacomputer to another, and as a result be 
stored in a physical format quite different from that originally used. 

In such an environment, it is clear that requests for data should be stated 
»•' in logical, not physical terms. 

fl 

D 

n h        2.3 Network Environment 
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The network environment provides additional requirements for datacomputer 
design. 

2.3.1 Remote Use 

Since the datacomputer is to be accessed remotely, the requirement for 
effective data selection techniques and good mechanisms for the expression of 
selection criteria is amplified. This is because of the narrow path through 

; .. which network users communicate with the datacomputer. Presently, a typical 
process-to-process transfer rate over the Arpanet is 30 kilobits per second. 
While this can be increased through optimization of software and protocols, 
and through additional expenditure for hardware and communications lines, it 
seems safe to assume that it will not soon approach local transfer rates 

I 4 (measured in the megabits per second). 

f A typical request calls for either transfer of part of a file to a remote 
| site, or for selective update to a file already stored at the datacomputer. 

In both of these situations, good mechanisms for specifying the parts of the 
data to be transmitted or changed will reduce the amount of data ordinarily 
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transferred. This is extremely important because with the low per bit cost 
of storing data at the datacomputer, transmission costs will be a significant 
part of the total cost of datacomputer usage. 

2.3.2 Interprocess Use of the Datacomputer System 

Effective use of the network requires that groups of processes, remote f"um 
one another, be capable of cooperating to accomplish a given task or provide 
a given service. For example, to sclve a given problem which Involves array 
manipulation, data retrieval, interaction with a user at a terminal, and the 
generalized services of a language like PL/I, it may be most economical to 
have four cooperating processes. One of these could execute at the ILLIAC 
IV, one at the datacomputer, one at MULTICS, and one at a TIP. While there 
is overhead in setting up these four processes and in having them 
communicate, each is doing its job on a system specialized for that job. In 
many cases, the result of using the specialized system is a gain of several 
orders of magnitude in economy or efficiency (for example, online storage at 
the datacomputer has a capital cost two orders of magnitude lower than online 
costs on conventional systems). As a result, there is considerable incentive 
to consider solutions involving cooperating processes on specialized systems. 

To summarize: the datacomputer must be prepared to function as a component of 
small networks of specialized processes, in order that 1t can be used 
effectively in a network in which there are many specialized nodes. 

2.3.3 Common Network Data Handling 

A large network can support enough data management hardware to construct more 
than one datacomputer. While this hardware can be combined into one oven 
larger datacomputer, there are advantages to configuring it as two (or 
possibly more) systems. Each system should be large enough to obtain 
economies of scale in data storage and to support the data management 
software. Important data bases can be duplicated, with a copy at each 
datacomputer; if one datacomputer fails, or is cut erf by network failure, 
the data is still available. Even if duplicating the file is not warranted, 
the description can be kept at the different datacomputers so that 
applications which need to store data constantly can be guaranteed that at 
least one datacomputer is available to receive input. 

These kinds of failure protection involve cooperation between a pair of 
datacomputers; in some sense, they require that the two datacomputers 
function as a single system. Given a system of datacomputers (which one can 
think of as a small network of datacomputers), it is obviously possible to 
experiment with providing additional services on the datacomputer-network 
level. For example, all requests could be addressed simply to the 
datacomputer-network; the datacomputer-network could then determine where 
each referenced file was stored (i.e., which datacomputer), and how best to 
satisfy the request. 
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Here, two kinds of cooperation in the network environment have been 
mentioned: cooperation among processes to solve a given problem, and 
cooperation among datacomputers to provide global optimizations 1n the 
network-level data handling problem. These are only two examples, especially 
Interesting because they can be Implemented in the near term. In the 
network, much more general kinds of cooperation are possible, 1f a little 
farther in the future. For example, eventually, one might want the 
datacomputer(s) to be part of a network-wide data management system, 1n which 
data, directories, services, and hardware were generally distributed about 
the network. The entire system could function as a whole under the right 
circumstances. Most requests would use the data and services of only a few 
nodes. Within this network-wide system, there would be more than one data 
management system, but all systems would be interfaced through a common 
language. Because the datacomputers represent the largest data management 
resource in the network, they would certainly play an important role in any 
network-wide system. The language of the datacomputer (datalanguage) is 
certainly a convenient choice for the common language of such a system. 

Thus a final, albeit futuristic, requirement imposed by the network on the 
design of the datacomputer system, is that it be a suitable major component 
tor network-wide data management systems. it feasible, one would like 
datalanguage to be a suitable candidate for the common language of a 
network-wide group of cooperating data management systems. 

2.4 Different Modes of Datacomputer Usage 

Within this network environment, the datacomputer will play several roles. 
In this section four such roles are described. Each of them imposes 
constraints on the design of datalanguage. We can analyze them in terms of 
four overlapping advantages which the datacomputer provides: 

1. Generalized data mangement services 
2. Large file handling 
3. Shared access 
4. Economic volume storage 

Of course, the primary reason for using the datacomputer will be the data 
management services which it provides. However, for some applications size 
will be the dominating factor in that the datacomputer will provide for 
online access to files which are so large that previously only offline 
storage and processing were possible. The ability to share data between 
different network sites with widely different hardware is another feature 
provided only by the datacomputer. Economies of scale make the datacomputer 
a viable substitute for tapes in such applications as operating system 
backup. 

Naturally, a combination of the above factors will be at work in most 
datacomputer applications. The following subsections lescribe some possible 
modes of interaction with the datacomputer. 

iMa^M—tfitfiilliMiil-iitniiilirnn     HI T      ■■■. I. M. I iir   - 



I 
1 
I 
r? 

n 

Further Oatalanguage Design Concepts Page 8 
Considerations for Language Design 

2.4.1 Support of Large Shared Databases 

This 1s the most significant application cf the datacomputer, In nearly every 
sense. 

Projects are already underway which will put databases of over one hundred 
billion bits online on the Arpanet datacomputer. Among these are a database 
which will ultimately Include 10 years of weather observations from 5000 
weather stations located all over the world. As online databases, these are 
unprecedented In size. They will be of International Interest and be shared 
by users operating on a wide variety of hardware and 1n a wide variety of 
languages. 

Because these databases are online 1n an International network, and because 
they are expected to bn of considerable Interest to researchers 1n the 
related fields, it seems oovious that there will be extremely broad patterns 
of use. A strong requirement, then, is a flexible and general approach to 
handling them. This requirement of providing different users of a database 
with different views of the data is an overriding concern of the datalanguage 
design effort. It is discissed separately in Section 2.5. 

2.4.2 Extensions of Local Data management Systems 

We Imagine local data handling systems (data management systems, 
applications-oriented packages, text-handling systems, etc.) wanting to take 
advantage of the datacomputer. They may do so because of the economics of 
storage, because of the data management services, or because they want to 
take advantage of data already stored at the datacomputer. In any case, such 
systems have some distinctive properties as datacomputer users: (1) most 
would use local data as well as datacomputer data, (2) many would be 
concerned with the translation of local requests into datalanguage. 

For example, a system which does simple data retrieval and statistical 
analysis for non-programring social scientists might want to use a census 
database stored at the datacomputer. Such a system may perform a range of 
data retrieval functions, and may need sophistocated interaction with the 
datacomputer. Its usage patterns would make quite a contrast with those of a 
single application program whose sole use of the datacomputer involves 
printing a specific report based on a single known file. 

This social-science system would also use some local databases, which it 
keeps at its own site because they are small and more efficiently accessed 
locally. One would like it to be convenient to think of data the same way, 
whether it is stored locally or at the datacomputer. Certainly at the lower 
levels of the local software, there will have to be differences 1n 
interfacing; it would be nice, however, 1f local concepts and operations 
could easily be translated into datalanguage. 

2.4.3 File Level Use of the Datacomputer 

• ' "mmMmm 
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In this mode of use, other computer systems take advantage of the online 
storage capacity of the datacomputer. To these systems, datacomputer storage 
represents a new class of storage: cheaper and safer than tape, nearly as 
accessible as local disk. Perhaps they even automatically move files between 
local online storage and the datacomputer, giving users the impression that 
everything is stored locally online. 

The distinctive feature of this mode of use is that 
whole files. 

the operations are on 

A system operating in this mode uses only the ability to store, retrieve, 
append, rename, do directory listings and the like. An obvious way to make 
such file level handling easily available to the network community is to make 
use of the File Transfer Protocol (see Network Information Center document 
#17759 —File Transfer Protocol) already in use for host to host file 
transfer. 

Although such "whole file" usage of the datacomputer would be motivated 
primarily by economic advantages of scale, data sharing at the file level 
could also be a concern. For example, the source files of common network 
software might reside at the datacomputer. These files have little or no 
structure, but their common use dictates that they be available 1n a common, 
always accessable place. It is taking advantage of the economics of the 
datacomputer, more than anything else, since most of these services are 
available on any file system. 

This mode of use is mentioned here because it may account for a large 
percentage of datalanguage requests. It requires only capabilities which 
would be present 1n datalanguage in any case; the only special requirement is 
to make sure it is easy and simple to accomplish these tasks. 

; t 
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2.4.4 Use of Datacomputer for File Archiving 

This is another economics-oriented application. The basic idea is to store 
on the datacomputer everything that you intend to read rarely, if ever. This 
could include backup files, audit trails, and the like. 

An interesting idea related to archiving is incremental archiving. A typical 
practice, with regard to backing up data stored online in a time-sharing 
system, is to write out all the pages which are different than they were in 
the last dump. It is then possible to recover by restoring the last full 
dump, and then restoring all incremental dumps up to the version desired. 
This system offers a lower cost for dumping aid storage, and a higher cost 
for recovery; it is appropriate when the probability of needlnj a recovery is 
low. Datalanguage, then, should be designed to permit convenient incremental 
archiving. 

As in the case of the previous aDplication (file system), archiving is 
Important as a design consideration because of its expected frequency and 
economics, not because it necessarily requires any extra generality at the 
language level. It may dictate that specialized mechanisms for archiving be 
built into the system. 
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2.5 Data Sharing 

Controlled sharing of data is a central concern of the project. Three major 
sub-problems in data sharing are: (1) concurrent use, (2) independent 
concepts of the same database, and (3) varying representations of the same 
database. 

Concurrent use of a resource by multiple independent processes is commonly 
implemented for data on the file level in systems in which files are regarded 
as disjoint, unrelated objects. It is sometimes implemented on the page 
level. 

Considerable work on this problem has already been done within the 
datacomputer project. When this work is complete, it will have some impact 
on the language design; by and large however, we do not consider th's aspect 
of concurrent use to be a language problem. 

Other aspects of the concurrent use problem, however, may require more 
conscious participation by the user. They relate to the semantics of 
collections of data objects, when such collections span the boundaries of 
files known to the internal operating system. Here the question of what 
constitutes an update conflict is more complex. Related questions arise in 
backup and recovery. If two files are related, then perhaps it is 
meaningless to recover an earlier state of one without recovering the 
corresponding state of the other. These problems are yet to be investigated. 

Another problem in data sharing is that not all users cvf a database should 
have the same concept of that database. Examples: (1) for privacy reasons, 
some users should be aware of only part of the database v'e.g.» scientists 
doing statistical studies on medical files do not need access to name and 
address), (2) for program-data independence, payroll programs should access 
only data of concern in writing paychecks, even though skill inventories may 
be stored in the same database, (3) for global control of efficiency, 
simplicity in application programming, and program-data independence, each 
application program should "see" a data organization that is best for its 
job. 

To further analyze example (3), consider a database which contains 
information about students, teachers, subjects and also indicates which 
students have which teachers for which subjects. Depending on the problem to 
be solved, an application program may have a strong requirement for one of 
the following organizations: 
(1) entries of the form (student,teacher,subject) with no concern about 

redundancy. In this organization an object of any of the three types may 
occur many times. 

(2) entries of the form 
(student,     (teacher,subject), 

(teacher,subject^, 

- ■ - 
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(teacher,subject)) 
(3) entries of the form 

(teacher,    subject,(student...student), 
subject,(student...student), 
subject,(student...student)) 

and other organizations are certainly possible. 

One approach to this problem is to choose an organization for stored data, 
and then have application programs write requests which organize output in 
the form they want. The application programmer applies his Ingenuity in 
stating the request so that the process of reorganization Is combined with 
the process of retrieval, and the result is relatively efficient. There are 
important, practical situations in which this approach is adequate; 1n fact 
there are situations in which it is desirable. In particular, If efficiency 
or cost is an overriding consideration, it may be necessary for e^ery 
application programmer to be aware of all the data access and organization 
factors. This may be the case for a massive file, in which each retrieval 
must be tuned to the access strategy and organization; any other mode of 
operation would result in unacceptable costs or response times. 

However, dependence between application programs and data organization or 
access strategy is not a good policy in general. In a widely-shared 
database, it can mean enormous cost in the event <,f database reorganization, 
changes to access software, or even changes in the storage medium. Such a 
change may require reprogrammlng in hundreds of application programs 
distributed throughout the network. 

As a result, we see a need for a language which supports a spectrum of 
operating modes, inclüüuig: (1) application program is completely independent 
of storage structure, access technique, and reorganization strategy, (2) 
application program purametrically controls these, (3) application program 
entirely controls them. Fcr a widely-shared database, mode (1) would be the 
preferred policy, except when (a) the application programmer could do a 
better job than the system in niakn.g decisions, and (b) the need for this 
increment of efficiency outweighed the benefits of program-data independence. 

In evaluating this question for a particular application, it is important to 
realize the role of global efficiency analysis. When there are many users of 
a database, in some sense the best mode of operation is that which minimizes 
the total cost of processing all requests and the total cost of storing the 
data. When applications come and go, as real-world needs change, then the 
advantages of centralized control are more likely to outweigh the advantages 
of optimization for a particular explication program. 

The third major sub-problem arises in connection with Item level 
representations. Because of the environment in which it executes, each 
application program has a preferred set of formatting concepts, length 
Indicators, padding and alignm-nt conventions, word sizes, character 
representations, and so on. Once again it is better policy for the 
application program to be concerned only with the representations 1t wants 
and not with the stored data representation. However, there will be cases in 
which efficiency for a given request overrides all other factors. 

-':-i.'rfi.*l»iii« 
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At this level of representation, there 1s at least one additional 
consideration: potential loss of information when conversion takes place. 
Whoever initiates a type conversion (and this will sometimes be the 
datacomputer and sometimes the application program) must also be responsible 
for seeing that the Intent of the request is preserved. Since the 
datacomputer must always be responsible for the consistency and the meaning 
of a shared database, there are some conflicts to be resolved here. 

To summarize, 1t seems that the result of wide sharing of databases is that a 
larger system must be considered in choosing a data management policy for a 
particular database. This larger system, in the case of the datacomputer, 
consists of a network of geographically distributed applications programs, a 
centralized database, and a centralized data management system. The 
requirement for datalanguage is to provide flexibility in the management of 
this larger system. In particular, it must be possible to control when and 
where conversions, data re-organizations, and access strategies are made. 

2.6 Need for High Level Communication 

All of the above considerations point to the need for high level 
communication between the datacomputer and its users. The complex and 
distinct nature of datacomputer hardware make it imperative that requests be 
put to the datacomputer so that it can make major decisions regarding the 
access strategies to be used. At the same time, the large amounts of dsta 
stored and the demand of some users for extremely high transmission 
bandwldths make it necessary to provide for user control of some storage and 
transmission schemes. The fact that databases will be used by applications 
which desire different views of the same data and with different constraints 
means that the datacomputer must be capable of mapping one users request unto 
another users data. Interprocess use of the datacomputer means that 
datasharing must be completely controllable to a^old the need for human 
intervention. Extensive facilities for ensuring data integrity and 
contolling access must be provided. 

2.6,1 Data Description 

Basic to all these needs 1s the requirement that the data stored at the 
datacomputer be completely described 1n both functional and physical 
parameters. A high level description of the data is especially important to 
provide the sharing and control of data. The datacomputer must be able to 
map between different hardware and different applications. In its most 
trivial form this means being able to convert between floating point number 
represenatations on different machines. On the other extreme it means being 
able to provide matrix data for the ILLIAC IV as well as being able to 
provide answers to queries from a natural language program, both addressed to 
the same weather data base. Data descriptions must provide the ability to 
specify the bit level representations and the logical properties and 
relationships of data. 

■•»•'»»■".«WB&Ht 
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2.6.2 Data Integrity and Access Control 

In the environment we have been describing, the problems of maintaining data 
Integrity and controlling use of data assume extreme Importance. Shared use 
of datacomputer files depends on the ability of the datacomputer to guarantee 
that the restrictions on data access are strictly enforced. Since different 
users will have different descriptions, the access control mechanism must be 
associated with the descriptions themselves. One can control access to data 
by controlling access to its various descriptors. A user can be constrained 
to access a given data base only through one specific description which 
limits the data he can access. In a system where the updaters of a database 
may be unknown to each other, and possibly have different views of the data, 
only the datacomputer can assure data integrity. For this reason, all 
restrictions on possible values of data objects, and on possible or 
neccessary relationships between objects must be stated 1n the data 
description. 

n 

h 

2.6.3 Optimization 

The decisions regarding data access strategy must ordinarily be made at the 
datacomputer, where knowledge of the physical considerations is available. 
These decisions cannot be made intelligently unless the requests for data 
access are made at a high level. 

For example, compare the following two situations: (1) a request calls for 
output of al]_ weather observations made in California exhibiting certain wind 
and pressure conditions, (2) a series of requests is sent, each one 
retrieving California weather observations; when a request finds an 
observation with the required wind and pressure conditions, it transmits this 
observation to a remote system. Both sessions achieve the same result: the 
transmission of a certain set of observations to a remote site for 
processing. In the first session, however, the datacomputer receives, at the 
outset, a description of the data that is needed; in the second, it processes 
a series of requests, each one of which is a surprise. 

In the first case, a smart datacomputer has the option of retrieving all of 
the needed data in one access to the mass storage device. It can then outter 
this data on dis« until tne user is ready to accept it. In the second case, 
the datacomputer lacks the information it needs to make such an optimization. 

The language should permit and encourage users to provide the information 
needed to do optimization. The cost of not doing it is much higher with mass 
storage devices and large files than it is in conventional systems. 

2.7 Application Oriented Concern« 

In the above sectons we nave described a number of features which the 
datacomputer system must provide. In this section we focus on what is 
necessary to make these features readily available to users of  the 
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datacomputer. 

2.7.1 Datacomputer-user Interaction 

An application Interacts with the datacomputer in a session. A session 
consists of a series of requests. Each session Involves connecting to the 
datacomputer via the network, establishing Identities, and setting up 
transmission paths for both data and datalanguage. Datalansage 1s 
transmitted in character mode (using network standard ASCII) over the 
datalanguage connection. Error and status messages are sent over this 
connection to the application program. 

The data connection (called a PORT) is viewed as a bit stream and is given 
its own description. These descriptions are similar to those given for 
stored data. At a minimum this description must contain enough information 
for the datacomputer to parse the incoming bit stream. It also may contain 
data validation information as well. To store data at the datacomputer, the 
stored data must also have a description. Th* user supplies the mapping 
between the descriptions of the stored and transmuted data. 

~l 

STORED 
DATA 

DATA 
DESCRIPTION 

USER 
REQUEST 

DATALANGUAGE    PATH 

DATA 

PORT 
DESCRIPTION 

___) 

PATH 

APPLICATION 
PROGRAM 

DATACOMPUTER NETWORK 

Figure 2-1 
A Model of Datacomputer/User Interaction 
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2.7.2 Application Features for Data Sharing 

In using data stored at the datacomputer, users may supply a description of 
the data which 1s customized to the application. This description 1s mapped 
onto the description of the stored data. These descriptions may be at 
different levels. That 1s, one may merely rearrange the order of certain 
Items, while another could call for a total restructuring of the stored 
representation. So that each user may be able to build upon the descriptions 
of another, data entitles should be given named types. These type 
definitions are of course to be stored along with the data they describe. In 
addition, certain functions are so closely tied to the data (In fact may be 
the data In the virtual desclptlon case — see section 3), that they must 
also reside In the datacomputer and their tie with the data Items should be 
maintained by the datacomputer. For example, one user can describe a data 
base as made up of structures containing data of the types latitude and 
longitude. He could also describe functions for comparing data of this type. 
Other users, not concerned with the structure of the latitude component 
Itself, but interested in using this information simply to extract other 
fields of interest can then use the commonly provided definitions and 
functions. Futhermore, by adopting this strategy as many users as possible 
can be made insensitive to changes in the file which are tangential to their 
main interests. For example, latitudes could be changed from binary 
representation to a character form and if use of that field were restricted 
to its definitions and associated functions, existing application systems 
would be unaffected. Conversion functions could be defined to eliminate the 
impact on currently operating programs. The ability of such definitional 
facilities means that groups of users can develop common functions and 
descriptions for dealing with shared data and that conventions for use of 
shared data can be enforced by the datacomputer. These facilities are 
discussed under extensibility in Section 3. 
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Figure 2-2 
Multiple User Interaction with the Datacomputer 

2.7.3 Communication Model 

We intend that datalanguage, while at a high level conceptually, will be at a 
low level syntactically. Datalanguage provides a set of primitive functions, 
and a set of commonly used higher level functions (see section 4 on the 
datalanguage model).  In addition, users can define their own functions so 
that they can communicate with the datacomputer at a 
close to the application as possible. 

level as conceptually 

There are two reasons for datalanguage being at a low level syntactically. 
First, 1t is undesirable to have programs composing requests Into an 
elaborate format only to be decomposed by the datacomputer. Second, by 
choosing a specific high level syntax, the datacomputer would be Imposing a 
set of conventions and terminology which would not necessarily correspond to 
those of most users. 
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Figure 2-3 
Datacomputer/User Working Environment 

2.8 Summary 

In this section we have presented the major considerations which have 
Influenced the current datalanguage design effort. The datacomputer has muc*. 
1n common with most large-scale shared data management systems, but also has 
a number of overriding concerns unique to the datacomputer concept. The most 
Important of these are the existence of a separate box containing both 
hardware and software, the control of an extremely large storage device, and 
Imbedding 1n a computer network environment. Data sharing 1n such an 
envlrcrvment is a central concern of the design.  Both extensive data 
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description facilities and high level co;ünun1cat1on between user and 
datacomputer are necessary for data Integrity and for datacomputer 
optimization of user requests. In addition, the expected use of the 
datacomputer Involves satisfying several conflicting contraints for different 
modes of operation. One way of satisfying various user needs 1s to provide 
datalanguage features so that users may develop their own application 
packages within datalanguage. 
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3. Principal Language Concepts 

This section discusses the principal facilities of datalanguage. specific 
details of the language are not presented, however, the discussion Includes 
the motivation behind the Inclusion of the various language features and also 
defines, in an informal way, the terms we use. 

3.1 Ba^'c Data Items 

Basic data are the atomic level of all data constructions, they cannot be 
decomposed. All higher level data structures are fundamentally composed of 
basic data items. Many types of basic data items will be provided. The type 
of an item determines what operations can be performed on the item and the 
meaning of those operations. Datalanguage will provide those primitive types 
of data items which are commonly used in computing systems to model the real 
worl 1. 

The 'ollowing basic types of data will be available in datalanguage: 
poinL numbers, floating point numbers, characters, booleans, and bits. 

f i xed 
  _  ._._       __ these 

pes of items are "understood" by the Hatacomputer system to the extent that 
operations are based on the type of an item. Datalanguage will also include 
an uninterpreted type of item, for data which will only be moved (including 
tr smitted) From one place to another. This type of data will only be 
un<- rstood i"\ the trivial sense that the datacomputer can determine if two 
1tecs of the uninterpret--! type are identical. Standard operations on the 
basic types of items will be available. Operations will be included so that 
the datacomputer user can describe a wide range of data management functions. 
They are not included with the intent of encouraging use of the datacomputer 
for the solving of highly computational problems. 

3.2 Data Aggregates 

Data aggregates are compositions of basic data items and possibly other data 
aggregates.  The types of data aggregates which are provided allow for the 
-__-__..__.__ -x __.„.___*__, „_,.„___u_. -x  _.__     x__  aggregateS  "'---

u aggregates^   ... _„r_  ..   -„_.-., 
construction of hierarchical relationships of data. The aggregates which 
will definitely be available are classified as structs, arrays, strings, 
lists, and directories. 

A struct is a static aggregate of data items (called components). A struct 
is static in the sense that the components of a slfucT cannot be added or 
deleted from the struct, they are inextricably bound to the struct. 
Associated with each component of the struct is a name by which that 
component may be referenced relative to the struct. The struct aggregate may 
be used to model what is often thought of as a record, with each component 
being a field of that record. A struct can also be used to group components 
of a record which are more strongly related, conceptually, than other 
components and may be operated on together. 

.__ _- - -I __i____i __-—., ■.-_-,.,-_-___,._-t____^_ a___| 
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Arrays allow for repltltlon 1n data structures. An array, like a struct, 1s 
a static aggregate of data Items (called members). Each member of an array 
1s of the same type. Associated with each member 1s an Index by which that 
member can be referenced relative to the array. Arrays can be used to model 
repeating data 1n a record (repeating groups). 

The concept of string 1s actually a hybrid of basic data and data aggregates. 
Strings are aggregates 1n that they ar« compositions (similar to arrays) of 
more primitive data (e.g., characters). They are, however, generally 
conceived of as basic in that they are mostly viewed as a unit rather than as 
a collection of items, where each item has Individual importance. Also the 
meaning of a string is highly dependent on the order of the individual 
components. In more concrete terms, there are operations which are defined 
on specific types of strings, for example, the logical operators (and, or, 
etc.) are defined to operate en strings of bits. However, there are n? 
operations which are defined on arrays of bits, although there are operations 
defined on both arrays, in general, and on bits. Strings of characters, 
bits, and unInterpretted data will be available in datalanguage. 

Lists are like arrays in that they are collection of similar members. 
However, lists are dynamic rather than static. Members of a list can be 
added and deleted from the list. Although, the members of a list are ordereH 
(in fact more than one ordering can be defined on a list), the list is not 
intended to be referenced via an index, as is the case with an array. 
Members of a list can be referenced via some method of sequencing through the 
list. A 11st member, or set (see discussion under virtual data) of members, 
can also be referenced, by some method of identification by content. The 
11st structure can be used to model the common notion of a file. Also 
restrictive use of lists as components of structs provides power with respect 
to the construction of dynamic hierarchical data relationships below the file 
level. For example, the members of a list may themselves be, in part, 
composed of lists, as in a list of families, where each family contains a 
list of children as well as other information» 

Directories are dynamic data aggregates which may contain any type of data 
item. Data items contained in a directory are called nodes. Associated with 
each node of a directory is a name by which that data item can be referenced 
relative to the directory. As with lists, items may be dynamically added to 
and deleted from a directory. The primary motivation oemnd providing the 
directory capability is to allow the user to group conceptually related data 
together. Since directories need not contain only file type information, 
"auxilliary" data can be kept as part of the directory. For example, 
"constant" information, like salary range tables for a corporation data base; 
or user defined operations and data types (see below) can be maintained in a 
directory along with the data which may use this infoaiation. Also 
directories may themselves be part of a directory, allowing for a hierarchy 
of data grouping. 

Directories will also be defined so that system controlled information can be 
maintained with some of the subordinate items (eg. time of creation, time of 
update, privacy locks, etc.). It may also be possible to allow the data user 
to define and control his own information which would be maintained with the 
data. At the least, the design of datalanguage will allow for parametric 

L*.*.-'^^..-^-±.-~ 
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control over the Information managed by the system. 

Directories are the most general and dynamic type of aggregate data. Both 
the name and description (see below) of directory nodes exist with the nodes 
themselves, rather than as part of the description cf the directory. Also 
the level of nesting of a directory Is dynamic since directories can be 
dynamically added to directories. Directories are the only aggregate for 
which this 1s true. 

Datalanguage will also provide some specific and useful variations of the 
above data aggregates. Structs will be available which allow for optional 
components. In this case the existence of a component would be based on the 
contents of other components. It may also be possible to allow for the 
existence to be based on information found at a higher level of data 
hierarchy. Similarly, components with unresolved type will be provided. 
That 1s the component may be one of a fixed number of types. The type of the 
component would be based on the contents of other components of the struct. 
It is also desirable to allow the type or existence of a component to be 
based on information other than the contents of other components. For 
instance, the type of one component might be based on the type of another 
component. In general, we would like for datalanguage to allow for the 
attributes (see below) of one item to be a function of the attributes of 
ether items. 

We would also like to provide mixed lists. Mixed lists are lists which 
contain more than one type of member. In this case the members would have to 
be self defining. That is, the type of all member would have to be "alike" 
to the degree that information which defines the type of that member could be 
found. 

Similar to components whose type is unresolved are Arrays with unresolved 
length. In this case, information defining t>ie length of the array must be 
carried with the array or perhaps with other components of an aggregate which 
encompasses the array. 

In all of the above cases *he type of an item is unresolved to some degree 
and information which totally resolves the type is carried with the Item. It 
is possible that in some or perhaps all of these cases the datacomputer 
system could be responsible for the - *»1nance of this information, making 
it invisible to the data user. 

3.3 General Relational Capabilities 

The data aggregates described above allow for the modeling of various 
relationships among data. All relationships which can be constructed are 
hierarchical. 

Two approaches can be taken to provide the capability of modeling 
non-hierarchical relationships. New types of data aggregates can be 
introduced which will braoden the range of data relationships expressable in 
datalanguage.  Or, a basic data type of "pointer" can be introduced which 
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will serve as a prlm't 
would be a data type 
item to another. That 
another.  Providing 
necessitate the Introd 
dangerous step.  For 
personnel file could c 
each record of the 
pointer Is an Item of 
another Item. 

ve out of which relations can be represented. Pointer 
' hlch establishes some kind of correspondence from one 
is, 1t would be a method of finding one Hem, given 

thr.   ability to have Items of type pointer does not 
;t1on of the concept of address which we deem to be a 
example, an Hem defined to point to a record In a 
tain a social security number which 1s contained In 

file and uniquely Identifies that record. In general a 
1rFormat1on which can be used to uniquely Identify 

While the pointer approach provides the greater degree of flexibility, it 
does this at the price of relegating much of the work to the user as well as 
severely limiting the amount of control the datacomputer system has over the 
data. A hybrid solution 1s possible, where some new aggregate data types are 
provided as well as a restricted form of pointer data type. While the 
approach to be taken 1s still being studied, the datalanguage design will 
Include some method of expressing non-hierarchical data structures. 

.1 
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3.4 Ordering of Data 

Lists are generally viewed as ordered. It 1s possible, however, that a list 
can be used to model a dynamic collection of similar Items which are not seen 
as ordered. The unordered case Is Important, 1n that, given this Information 
the datacomputer can be more efficient since new members can be added 
wherever it 1s convenient. 

There are a number of ways a 11st can be ordered. For Instance, the ordering 
of a 11st can be based on the contents of Its members. In the simplest case 
this Involves the contents of a basic data Item. For example, a 11st of 
structs containing Information on employees of a company may be ordered, on 
the component which contains the employee's social security number. More 
complex ordering criteria are possible. For example, the same 11st could be 
ordered alphabetically with respect to the employee's last name. In this 
case the ordering relation Is a function of two Items, the last and first 
names. The user might also want to define his own ordering scheme, even for 
orderings based on basic data Items. An ordering could be based on an 
employee's job title which might even utilize auxilliary data (i.e. data 
external to the list). It is also possible to maintain a list in order of 
insertion. In the most general case, the user could dynamically define his 
ordering by specification of where an item is to be placed as part of his 
insertion requests. In all of the above cases, data could be maintained in 
ascending or descending order. 

In addition to maintainance of a list in some order, it is possible to define 
one or more orderings "imposed" on a list. These orderings must be based on 
the contents of a list's members. This situation is similar to the concept 
of virtual data (see below) in that the list is not physically maintained 1n 
a given order, but retrieved as if it were. Orderings of this type can be 
dynamically formed (see discussion of set under virtual data), imposed 
orderings can be accomplished via the maintainance of auxilliary structures 
(see discussion under internal representation) or by utilization of a sorting 
strategy on retrievals. Much work has been done with regard to effective 
implementation of the maintainance and imposition of orderings on lists . 
This work is described in working paper number 2. 

3.5 Data Integrity 

An important feature of any data management system is the ability to have the 
system insure the integrity of the data. Data needs to be protected against 
erroneous manipulation by people and against system failure. 

Datalanguage will provide automatic validity checks. Many flavors need to be 
provided so that appropriate trade-offs can be made between the degree of 
insurance and the cost of validation. The datalanguage '.-ser will be able to 
request constant validation: where validity checks are made whenever the data 
1s updated; validation on access: where validity checks are performed when 
data is referenced but before it is retrieved, regularly scheduled 
validation: where the data is checked at regular intervals; background 
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validation: where the system will run checks in Its spare time; and 
validation on demand, constant validation and validation on access are 
actually special cases of the more general concept of event triggered 
validation. In this case the user specifies an event which will cause data 
validation procedures to be Invoked. This feature can be used to accomplish 
such things as validation following a "batch" of updates. Also, some 
mechanism for specifying combinations of these types would be useful. 

In order for some of the data validation techniques to be effective, it may 
be necessary to keep some data validation "bookkeeping" information with the 
data. For example, information which can be used to determine whether an 
item has been checked since it was last updated might be used to cause 
validation on access if there has not been a recent background validation. 
The datacomputer may provide for optional automatic maintainance of such 
special kinds of information. 

In order for the datacomputer system to insure data validity, the user must 
define what valid is. Two types of validation can be requested. In the 
first case the user can tell the datacomputer that a specific data item may 
only assume one of a specific set of values. For example, the color 
component of a struct may only assume the values 'red', 'green', or 'blue'. 
The other case is where some relation must hold between members of an 
aggregate. For example, if the sex component of a struct is 'male' then the 
number of pregnancies component must be 0. 

Data validation is only half of the data integrity picture. Data integrity 
involves methods of restoring damaged data. This requires maintenance of 
redundant information. Features will be provided which will make the 
datacomputer system responsible for the maintainance of redundant data and 
possibly even automatic restoration of damaged data. In section 2 we 
discussed possible uses of the datacomputer for file backup. All features 
which are provided tor this purpose win also oe available as methods of 
maintaining backup information for restoration of files residing at the 
datacomputer. 

3.6 Privacy 

Datalanguage will have to provide extensive privacy and protection 
capabilities. In its simplest form a privacy lock is provided at the file 
level. The lock is opened with a password key. Associated with this key is 
a set of priveleges (reading, updating, etc.). Two degrees of generality are 
sought. Privacy should be available at all levels of data. Therefore, 
groups of related data, including groups of files could be made private by 
creating private directories, also, specific fields of records could be made 
private by having private components of a struct where other components of 
the struct are visible to a wider (or different) class of users. We would 
also like the user to be able to define his own mechanism. In this way, ^/ery 
personalized, complex, and hence secure mechar.isms can be defined. Also 
features such as 'everyone can see his own salary4 might be possible. 
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3.7 Conversion 

Many types of data are related In that some or all of the possible values of 
one type of data have an "obvious" translation to the values of another. For 
example, the character '6' has a natural translation to the Integer 6, or the 
six character string 'abc ' (three trailing blanks) has a natural 
translation to the four character string 'abc ' (one trailing blank). 
Datalanguage will provide conversion capabilities for the standard, commonly 
called for, translations. These conversions can be explicitly invoked by the 
user or implictly invoked when data of one type is needed for an operation 
but data of another type is provided. In the case of implicit Invocation of 
conversion of data the user will have control over whether conversion takes 
place for a given data item. More generally we would like to provide a 
facility whereby the user could specify conditions which determine when an 
item is to be converted. Also, the user should be able to define his own 
conversion operations, either for a conversion between types which is not 
provided by the datacomputer system or to override the standard conversion 
operation for some or all items of a given type. 

i ■* 
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3.8 Virtual and Derived Data 

Often, information important to users of data is imbedded in that data rather 
than explicitly maintained. For example, the dollar value of an individual's 
interest in a company in a file of stock holders. Since the value of the 
company changes frequently, it is not feasible to maintain this information 
with each record. It is useful to be able to use the file as if information 
of this type was part of each record. When referencing the dollar value 
field of a record, the datacomputer system would automatically use 
information in the record, such as percentage of ownership in the company, 
possibly in conjuction with information which 1s not part of the record but 
is maintained elsewhere, such as company assets, to compute the dollar value. 
In this way the data user need not be concerned with the fact that this 
information is not actually maintained 1n the record. 

The set, which is a specific type of virtual container 1n datalanguage, 
deserves special mention. A set is a virtual list. For example, suppose 
there is a real list of people representing some population sample. By real 
(or actual) data we mean data which is physically stored at the datacomputer. 
A set could be defined to contain all members of this 11st who are automobile 
owners. The set concept provides a powerful feature for v1ewii;'.i data as 
belonging to more than one collection without physical duplication. Sets are 
also useful, in that, they can be dynamically formed. Given an actual 11st, 
sets based on that list can be created without having been previously 
described. 

As mentioned above, virtual data can be very economical. These f.-conomles may 
become most important with respect to the use of sets. Savings are found not 
only in regard to storage requirements, but also in regard to processing 
efficiency. Processing time can be reduced as a result of calculations being 
performed only when the data 1s accessed. The ability to obtain efficient 
operation by optimization becomes greater when virtual data is defined in 
terms of other virtual data. For sets, large savings may be realized by 
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straight forward "optimization" of the nested calculations. 

The above ideas are made more clear by example. Having created a set of 
automobile owners, A, a set of home owners, HA, can be defined based on A. 
The members of HA can be produced very efficiently, in one step, by 
retrieving people who are both automobile owners and home owners. This 1s 
more efficient than actually producing the set, A and then using it to create 
HA. This is true when one or both pieces of information (automobile 
ownership and home ownership) are indexed (see discussion under internal 
representation) as well as when neither is Indexed. 

The same gains are achieved when operations on virtual data are requested. 
For example, if a set, H, had been defined as the set of homeowners based or. 
the original list of people, the set, HA, could have been defined as the 
Intersection (see discussion on operators) of A and H. In this case too, HA 
can be calculated in one step. Use of sets allows the user to request data 
manipulations in a form close to his conceptual view, leaving the problem of 
effective processing of his request to the datacomputer. 

Another use of virtual data is to accomplish data sharing. An item could be 
defined, virtually, as the contents of another item. If no restriction is 
placed on what this item can be, we have the ability to define two paths of 
access to the same data. Hence, data can be made subrodinate to two or more 
aggregate structures. Stated another way, there are two or more paths of 
access to the data. This capability can be used to model data which is part 
of more than one data relationship. For example, two files could have the 
same records without maintaining duplicate copies. 

It will also be possible, via data sharing to look at data in different ways. 
Shared data might behave differently depending on how (and ultimately by 
whom) it is accessed. Although, the ability to nave multiple paths to the 
same data and the ability to have data which is calculated on access are both 
part of the general virtual data capability, datalanguage will probably 
provide these as separate features, since they have different usage 
characteristics. 

Derived data is similar to virtual data in that it is redundant data which 
can be calculated from other information. Unlike virtual data it is 
physically maintained. The user can choose between virtual and derived data 
as a result of considering trade-offs based on: estimated cost of 
calculation; frequency of update; estimated cost of storage; and frequency of 
access. For example, suppose a file contains a list of budgets for various 
projects in a department. The departmental budget can be calculated as a 
function of the individual project budgets. This information might be 
defined as derived data since it is expected to be updated infrequently 
(e.g., once a year), while it is expected to be accessed relatively often. 

Options will be provided which give the user control with regard to when the 
calculation of derived data is to be done. These options will be similar to 
those provided for control of data validity operations. The data validation 
and derived data concepts are similar in that some operation must be 
performed on related data. In the case of data validation, the information 
derived is the condition of data. 
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3.9 Internal Representation 

i| To this point, we have discussed only the high level, logical, aspects of 
[j data.  Since data, at any given time, must reside on some physical device a 

representation of the data must be chosen. In some cases it 1s appropriate 
j j to  leave this choice to the datacomputer system.  For example, the 
I representation of Information which 1s used in the process of transmlting 

other data, but which itself resides solely at the datacomputer may not be of 
any concern to the user. 

However, it is important that the user b* capable of controlling the choice 
of representation. In any application which requires mostly transmission of 
data rather than interpretation of the data by the datacomputer, the data 

' I should be maintained in a form consistent with the system which communicates 
with the datacomputer. With respect to basic types of data, datalanguage 
will provide most representation commonly used in systems with which It 
interacts. For some types (e.g., fixed point) this will be accomplished by 
providing for parametric (e.g., sign convention, size) description of the 
representation. In other cases (e.g., floating point) specific 
representations will be offered (e.g., system 360 short floating point, 
system 360 long floating point, pdp-10 floating point, etc.). 

Another aspect of the internal representation problem regards aggregate 
structures. The method chosen to represent aggregate structures may largely 
affect the cost of manipulating the data. The user must have control over 
this Presentation since only he has any idea of how the data is to be used. 
Datalanguage will provide a variety of representational options which will 
allow for efficient implementation of data structures. This includes the 
availability of auxilliary structures, automatically maintained by the data 
computer system. These structures can be used to effect efficient retrieval 

i of subsets of data collections based on the contents of the members (i.e. 
the common concept of indicies), efficient maintainance of orderlngs on a 
collection of data, maintainance of redundant information for the purpose of 
data integrity, and efficient handling of shared data whose behavioral 
characteristics are dependent on the path of access. It should be noted here 
that, the datalanguage design effort, will attempt to provide methods whereby 
the data user can describe the expected use of his data, so that details of 
internal representation can be left to the datacomputer. 

3.10 Data Attributes and Data Classes 

The type of an item determines the operations which are valid on that item 
and what they mean, data attributes are refinements on the type of data. 
The data attributes affect the meaning of operations. For example, we would 
like to provide for the option of defining fixed point items to be scaled. 
The scale factor, in this case, would be an attribute of fixed point data. 
It effects the meaning of operations on that data. The attribute concept 1s 
useful in that it allows information concerning the manipulation of an item 
to be associated with the item rather than with the invocation of all 
operations on that item. 

IMPH minim  mm^^mmr'Ym-mmimmmmmmtmt       ....,^„.  ,...,.^^^ 



0 

a 
i! 

a 
o 
a 
o 

Further Datalanguage Design Concepts Page 28 
Principal Language Concepts 

The attribute concept can be applied to aggregate as well as basic data. For 
example, one attribute of a 11st could define where a new member 1s to be 
Inserted. Options might be: Insert at the beginning of the list; Insert at 
the end of the list; or Insert 1n some order based on the contents of the 
member. Adding a new member to a list with one of the above attributes could 
be done by Issuing a simple Insert request without having to specify where 
the new member is to be inserted. 

The data class concept is actually the inverse of the data attribute concept. 
A data class is a collection of data types. The data class concept allows 
for definition of operations, independent of specific type of an item. For 
example, by defining the data class arithmetic to be composed of fixed point 
and floating point types of data, the comparison operators (equal, less than, 
etc.) can be defined to operate on arithmetic data, independent of whether It 
is fixed or floating point. Also the concept of data aggregate can be seen 
as a class encompassing directories, lists, etc. As there are operations 
defined on arithmetic data, there are also operations defined on arbitrary 
aggregates. 

The inverse relationship between data classes and data attributes is yery 
strong. For example, the concept of list can be seen as a data class, 
encompassing all types of lists (e.g., lists of integers, lists of character 
strings, etc.), independent of the types of their members. The type of a 
lists members (e.g., integer, character string, etc.; are tnen seen as 
attributes. Data attributes and classes are also relative concepts. While 
the concept of list can be viewed as a data class, it can also be seen as an 
attribute; relative to the concept of data aggregate. 

3.11 Data Description 

A data description is a statement of the properties (see discussion of 
attributes) o? a" data item. Examples of properties which are recorded in a 
description are: the name of an item; its size; its data type; its internal 
representation; privacy information; etc. 

Datalanguage will contain mechanisms for specifying data descriptions. These 
descriptions will be processed by the data computer, and used whenever the 
data item is referenced. The user will be able to physically create data 
only by first specifying their descriptions. The properties of a description 
can be divided into groups according to thier function. Some have the 
function of specifying details of representation, which will not be of 
interest to most users, while others, such as the name are of almost 
universal interest. 

All user data is a part of some larger (user or system) data structure. The 
structures containing data establish a path of access to the data. In the 
process of following this path the datacomputer system must accrue a complete 
description of the data item. For example, the description of a data Item of 
a directory may be found associated with that node of the directory. Members 
of a list or array are described as part of the description of the list or 
array. We must dispose of two seeming exceptions. First, while aspects of 
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data may (on user request) be left to the system, those aspects are still 
described, they are described by the system. As discussed above, some data 
will be, to some degree, self describing (eg. members of mixed lists). 
However, It 1s fully described In some encompassing structure, 1n that a 
method of determlng the full description Is described. 

It 1s worth noting here that the sooner a complete description 1s found 1n 
the path of access, the more effective the datacomputer Is likely to be 1n 
processing requests which manipulate a data Item. However, the ability to 
have data whose complete description does not exist at high levels of the 
access path provides greater flexibility in the definition of data 
structures. 

3.12 Data Reference 

Data cannot be manipulated unless it can be referenced. In the same way that 
data cannot exist without its being described, it cannot exist unless there 
is a path of access to the data. The method of data reference is to define 
the path of access to the data. As mentioned above, there is a method of 
referencing any item relative to the data aggregate which contains it. Nodes 
of directories and components of structs are referenced via the name 
associated with the node or component. Members of arrays are referenced via 
the index associated with the member. Members of lists are referenced via 
some method of specifying the position of the member or by uniquely 
identifying the member by content. To reference any arbitrary data itim the 
path of access must be fully defined by either explicit or implicit 
definition of each link in the chain. In the case of virtual data there is 
an extra implicit link in the chain, that being the method employed to obtain 
the data from other data items. It should be noted also that if pointers are 
provided (see discussion on general relational capabilities) they can also 
serve as a link in the chain of access to an item. 

The design of datalanguage will ease the problem (and reduce the cost) of 
referencing data items by providing methods whereby part of the access path 
can be implicitly defined. For example, datalanguage will provide a concept 
of "context". Durir.g the course of interacting with the datacomputer, levels 
of context can be set up so that data can be referenced directly, in context, 
for example, on initiating a session the user may (in fact will probably be 
required) to define a directory which will be the context of that session. 
All items subordinate to this directory can be referenced directly in this 
context. Another feature will be partial qualification. Each level of 
struct need not be mentioned in order to reference an item imbedded in a deep 
nest of structs. Only those intermediate levels which are sufficient to 
uniquely identify the item need be specified. 

3.13 Operations 

In this section we discuss the bull tin functions of datalanguage which are of 
central importance in manipulating data. Functions which operate on items, 
functions which operate on aggregates, primitive functions and high-level 
functions are discussed. 
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Of the primitives which operate on items, those of most interest are 
assignment, comparisons, loglcals, arithmetics and conversion functions. 

Primitive assignment transfers a value from one item to another; these items 
must be of the same type. When they are of different types, either 
conversion must be performed, or some non-primitive form of assignment is 
Involved. 

The comparison operators accept a pair of items of the same type, and return 
a boolean object which Indicates whether or not a given condition obtains. 
The type determines how mar.y different conditions can be compared for. A 
pair of numeric items can be compared to see which is greater, while a pair 
of unlnterpreted items can be compared only for equality. In general, a 
concept of "greater than" is builtin for a datatype only if 1t is a very 
widely applied concept. The comparison operators are used in the 
construction of inclusion conditions when defining subsets of aggregate data. 

The result of a comparison operation is a boolean item: one whose value is 
either TRUE or FALSE. Logical primitives are provided and generalized 
boolean functions can be constructed from them. With logical and comparison 
operators, complex conditions for inclusion of objects in sets can be 
specified. 

Arithmetic operators will be available for the manipulation of numeric data. 
Here, we are not interested in generalized computation, but in applications 
of arithmetic in data selection, space allocation, subscript calculation, 
iteration control, etc. 

Conversion is an important part ot generalized data translation, and we are 
interested in providing a substantial builtin conversion facility. In 
particular, we will want to provide an efficient system routine for each 
"standard" or widely-used conversion function. Of particular importance are 
conversions to and from character string data; in character string 
representation of, for example, numeric items, there are many possible 
formats corresponding to a single data type. Conversion between character 
sets and dealing with padding and truncation are viewed as conversion 
problems. 

There are two principal classes ot primitive operators defined on aggregates: 
those related to data reference (see previous section) and thos which add and 
delete components. Changing an existing component is accomplished through 
assignment, and is an operation on the component, not the aggregate. 

Addition and deletion of components is defined only for aggregates which are 
not inherently static in composition. Thus one can add a component to a 
LIST, but to an ARRAY. To specify deletion it is necessary to specify which 
component is to be deleted, and from which aggregate (in the case that it is 
shared). Addition requires soeciflcation of new component, aggregate, and 
sometimes auxiliary information. For example, some aggregate types would 
permit addition of new components anywhere in the structure; in these a 
postion must be indicated, relative to any existing components. 
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Often it is desirable to operate on some of the members of a list, or to 
treat a group of members as a list in its own right. For example, it might 
be common to transmit to a remote program for analysis, the medical history 
of patients developing heart disease before the age of 30. These may be just 
a few of the members of a large list of patients. 

In this case, the operation to be performed is transmission to the remote 
system; this operation is performed on a several members of the list of 
patients. The ones to be transmitted are thought of as a set; the set is 
specified as containing all the members of a given list satisfying two 
conditions: (1) age less than 30, and (2) h?.s heart disease. 

Sets can be defined explicitly, or implicitly simply with appropriate 
1 • reference mechanisms. Definition of a set is distinct from identification of 

membership, which is distinct from access to membership. Definition Involves 
specifying the candidates for set membership and specifying a rule by which 

Li members of the set can be distinguished from non-members; for example, an 
inclusion condition such as "under 30 with heart disease". Identification 
involves effective application of the rule to all candidates for membership. 
When the membership has been identified, it can be counted, but the data 
itself has not necessarily been accessed. When a member or member is 
accessed, its contents can be operated on. 

Primitives to accomplish each of these operations on a set will be provided; 
however, it will ordinarily be optimal for the datacomputer to determine when 
each step should be performed. To enable users to operate at a level at 
which the datacomputer can optimize effectively,, h'gher-level operators on 
sets will be provided. Some of these are logical OJP ators, such as union 
and intersection. These input and output sets. Also available 1s an 
operator which complements a set (since the definition establishes all 
possible candidates» a set always has a well-defined complement). 

These higher level operators can be applied to any defined set; the set 
i        members need not be identified or accessed. The system v'l'i perform such 

operations without actually accessing members if it can. 

Some of the other operators on sets are counting membership, partitioning a 
set into a set of sets, uniting a set of sets into a set. A set can be used 
to reference another set, providing there is a well-defined way to identify 
members of the second set giver, the first set. For example, a set C may 
contain all the children doing poorly in school. A set F may be defined, 
where the members of F are the racords about families having a child in set 
C. 

Some other useful operations on sets are: adding all the members of a set to 
an aggregate, deleting all the members of a set (frequently such a massive 
change can be performed far more efficiently than the same set of changes 
individually requested), changing all the members of a set in a given way. 

A set can be made into a list, by actually accessing each member and 
physically collecting them. 
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Some of the operations on lists are: concatenation of lists into larger 
lists, division of a list into smaller lists, sorting a list, merging a pair 
of ordered lists (preserving order). 

This is not intended to be a full enumeration of high-level operations, but 
to be suggestive. We are planning to build in high-level functions for 
operations which are used Mery commonly, and can be implemented within the 
system significantly better than they can be implemented by users in the 
language. For most of the functions mentioned here, considerable knowledge 
is accumulated on good implementations. In ^articular, the techniques used 
for inverted file access provide many set operations to be performed without 
actual access to the data. 

3.14 Control 

The control features of datalanguage are to the basic operations as data 
aggregates are to the basic data items. Control features are used to create 
complex requests out of the basic requests provided by datalanguage. 

Conditional requests allow the user to alter the normal request flow by 
specifying that certain requests are to be executed under certain conditions. 
In general datalanguage will provide the ability to chose at most one of a 
number of requests to be made based on some set of conditions or the value of 
some item. In its simplest form the conditional allows for optional 
execution of a given request. 

Iterative requests cause e request (called the body) to be executed a fixed 
or variable number ot times or until a given condition is met. Datalanguage 
win provide iterative requests that will allow for similar manipulations to 
be performed on all members of some aggregate structure as well as the 
standard type of iterative request based on counters. By providing a 
capability of directly expessing manipulations on aggregates which require 
processing all of the items subordinate to the aggregate, the datacomputer 
can be more efficient in processing user requests. For example, a user 
defined conversion process which operates on character strings, can be 
implemented far more efficiently if the datacomputer is explicitly informed 
that the process requires sequential processing of the characters. 
Datalanguage will also provide for parallel iteration. For example, the user 
will be able to specify operations which require sequencing through two or 
more lists in parallel This would be done if the contents of one file wer 
tu be updated based on a file of correction information. 

compound requests are collections of requests which act as one. They are 
primarily provided to allow for the conditional performance of or iteration 
on more than one statement. Compound requests also provide request reference 
points which can be used to control the request processing flow. That is, 
compound reque-ts can be "named". The datalanguage user will be able to 
specify control information which will conditionally cause a compound request 
to be exited. By providing naming, the user may cause any number of 
previously entered compound requests to be exited. 
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We do not Intend to provide the traditional goto capability. By not 
including a goto request, the chances for efficient operation (via 
optimization) of the datacomputer are increased. We also hope, in this way, 
to force the datalanguage user to specify his data manipulations in a clear 
style. 

Two forms of the compound request will be provided, ordered and unordered. 
In the unordered case the user is informing the datacomputer that the 
requests can be performed in any order. This should allow the datacomputer 
to perform more efficiently and might even allow for parallel processing. 

During a session with the datacomputer it is likely that a user will find a 
need for temporary data. That is, data which is used to remember, for a 
short term, information which is needed for the processing of requests. This 
short term might be a session or a small part of a session. Datalanguage 
will provide a temporary data facility. Temporary data will be easy to 
create, use, and dispose of. This will be accomplished by allowing the 
system to (optionally) make many decisions regarding the data. For example 
the representation of a temporary integer item will often be of no concern to 
the user. Some features which are provided for permanent data will be deemed 
irrelevant with regard to temporary data. 

Temporary data will be associated with a collection of requests in what will 
be called a block. A block will be no different than a compound request with 
the exception that data is defined with the requests which compose it and is 
automatically created on entrance to the block and destrtoyed on exiting the 
block. 

3.15 Extensibility 

The goals of datalanguage are to provide facilities of data structure at two 
levels. At one level the user may take advantantage of high level data 
capabilities which will do much of his data management work automatically and 
which allows for the data computer to operate more effectively in some cases 
since it has been given control of the data. At another level, however, 
features are provided which allow the user to describe his application in 
terms of primitive concepts. In this way the datacomputer user may compose a 
large variety of data constructs and has great flexibility with respect to 
the manipulations he can perform on his data. Also by interacting with the 
datacomputer at the primitive level, the user can exercise a good deal of 
control over tno methods employed by the datacomputer which may result in 
more effective usage of resources for non-standard applications. 
Datalanguage will provide features which allow the user to create an 
environment whereby the datacomputer systems appears to provide features 
especially tailored to his application. 

The control features discussed above allow the user to extend the operations 
available on data by appropriate composition of the operations. Datalanguage 
will provide a method cf defining a composite request to be a new request 
(called a function). In this way a new operation on specific data can be 
defined once and then used repeatedly. In order that the user may define 
general  operations, datalanguage will provide functions which can be 
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parameterized. That is, functions will not only be able to operate on 
specific data but may be defined to work on any data of a specific type. 
This capability will not be limited to basic data types (eg. integers) or 
even specific aggregate types (eg. array of integers) but will also include 
the ability to define functions which operate on classes of data. For 
example, functions can be defined which operate on lists Independent of the 
type of the list members. Also provided, will be the abiltiy to expand and 
modify existing functions as well as creating new functions. This includes 
expanding the types of data for which a function is defined or modifying the 
behavior of a function for certain types of data. 

As with operations, the data aggregates discussed above allow the user to 
extend the primitive data types by appropriate composition. For example, a 
two dimensional array of integers can be created by creating an array of 
arrays of integers. The situation for data types is analogous to that of 
operations. Datalanguage will provide the ability to define a composition of 
data to be a new data type. Also the capability of defining general data 
structures will be provided by essentially parameterizing the new data 
definition. This would allow the general concept of two dimensional array to 
be defined as an array of arrays. Once defined, one could create two 
dimensional arrays of integers, two dimensional arrays of booleans, etc. As 
with functions there is also a need to expand or modify existing data types. 
One might want to expand the attributes which apply to a given data type, in 
that he might want to add new attributes, or add new choices for the existing 
attributes. 

The control features can be extended also. Special control features might be 
needed to process a data structure in a special way or to process a user 
defined data structure. For example, if a tree type data structure has been 
defined in terms of lists of lists, the user might like to define a control 
function which causes a specified operation to be performed on each item of a 
specified tree. As with data types and functions, there is a need to be able 
to modify and extend existing control features as well as the ability to 
create new ones. 

Datalanguage will provide the ability to treat data descriptions and 
operations in much the same way that data is treated. One can describe and 
manipulate descriptions and manipulations in the same way that he can 
describe and manipulate data. It is impossible to talk about data types 
without consideration of operations and equally as impossible to talk about 
operations without an understanding of the data types they operate on. In 
order for the user to be able to effect the behavior of the datacomputer 
system, the design of datalanguage will include a definition of the 
operational cycle of the datacomputer. Precise definitions of all aspects of 
data (data attributes, data classes, relationship of aggregates to their 
subordinate items, etc.) in terms of their interaction with datalanguage 
operations will be made. In this way the datacomputer can offer tools which 
will give the datacomputer user the ability to be an active participant in 
the design of the datalanguage which he uses. 
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4. A Model for Datalanguage Semantics 

For the purpose of defining and experimenting with language semantics and with 
language processing techniques, we are developing a model datacomputer. 

The principal elements of the model are the following: 
(1) A set of primitive functions 
(2) An environment in which data objects can be created, manipulated and deleted, 

using the primitives 
(3) A structure for the representation of collections of data values, their 

descriptions, their relationships, and their names. 
(4| An interpreter which executes the primitives 
v, A compiler which inputs requests in a very simple language, performs binding 

if        and macro expansion operations, and generates calls to the internal semantic 
primitives. 

I "i 
(If our modeling efforts are successful, the model will evolve until it accepts a 

;'      language like the datalanguage whose properties we have described in sections 2 
[        and 3 of this paper. Then the process of writing the final specification will 

simply require reconciliation of details not modeled with structure that has been 
[ •I modeled. One rather large "detail" which we may never handle within the model is 

syntax; in this case reconciliation will be more involved; however, we firmly 
believe that the semantic structure should determine the syntax rather than the 

I :j      opposite, so we will be in the proper position to handle the problem. 

By constructing a model for each of the elements listed above, we are 
"implementing" the language as we design it, in a very loose sense. In effect, 
we work in a laboratory, rather than working strictly on paper. Since we aren't 
concerned with the performance or usability of the datacomputer we are building 
in the laboratory, we are able to build without becoming involved with some of 
the most time-consuming concerns of an implementor. However, because we are 
building and tinkering, rather than simply working on paper, we do get some of 

I •• the advantages that normally come with the experience of implementing one's 
ideas. 

I .. The model datacomputer is a program, developed in ECL, using the ELI language. 
Presently we are interested in the process of developing the program, not running 

■ «• it. uur primary requirement is to nave, in advance of the existence of 
datalanguage, a well-defined and flexible notation in which to specify data 
structures, function definitions and examples. ELI is convenient for this. 
Having a program which actually works and acts like a simple datacomputer is 
really a by-product of specifying semantics in a programming language. It is not 
necessary for the program to work, but it does provide some nice features. It 
enhances the "laboratory" effect, by doing such things as automatically compiling 
strings of primitives, displaying the state of the environment in complicated 
examples, automatically discovering inconsistencies (in the form of bugs^), and 
so on. 

There are two major reasons that ELI is a convenient notation for specifying 
datalanguage semantics. One is that the languages have a certain amount in 
common, in both concepts and in goals in data description.  (In part, this is 

—"--  --■■■■■  •-—-^ 
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5      because ELI itself has been a good source of ideas in attacking the datalanguage 
problem). Both linguages emphasize operations on data, independent of underlying 
representation.  A second reason that ELI is a convenient way to specify 

.->       datalanguage, 1s that ELi is extensible; in fact, many primitive functions could 
\ I      be embedded directly into ELI by using the extension facilities. At times, we 
1'       have chosen to embed less than we could, to expose problems of Interest to us. 

n       So far, the model has been useful primarily in exposing design issues and 
I j       relationships between design decisions. Also, because it includes so many of the 

elements of the full system (compiler, interpreter, environment, etc.), 1t 
•j      encourages a fairly complete analysis of any proposal. 

In presenting the model in this section, we have chosen to emphasize Ideas ?nd 
examples, rather than formal definitions in ELI. This is because the Ideas are 

i j more permanent and relevant at this point (the formalisms are changing rather 
•J frequently) and because we imagine people reading the formal definitions only to 

get at the ideas. The formal definitions may be interesting in themselves when 
the language is complete; at this point they are probably of interest only to us. 

The section '.$ organized into a large number of sub-sections. The first few are 
concerned with the basic concepts of data objects, descriptions, and 
relationships between objects. We then discuss primitive semantic functions and 
present informal definitions and examples in sections 4.7 and 4.8. Section 4.9 
is a brief discussion of compilation, interpretation and the execution cycle. 
Section 4.10 provides a fairly elaborate example of how primitive functions can 
be combined to do something of interest: a selective retrieval by content. The 
last two sections wrap up with discussions of high-level functions and some 
conclusions. 

4.1 Objects 

An object has a name, a description, and a value. It can be related to other 
objects. 

The name is a symbol, which can be used to access the object from language 
functions. 

The description is a specification of properties of the object, many of which 
relate to the meaning or the representation of the value. 

The value is the information of ultimate interest in the object. 

The relationships between objects are hierarchical. Each object can be 
related directly to at most four other objects, designated as its parent, its 
child, its left sibling, and its right sibling. 

This specific concept of relationship is all that has been built 1n to the 
model to date. One of our primary objectives in the future 1s to experiment 
with more general relationships among objects. 
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4.2 Descriptions 

A description has the components name, type and type-dependent parameters. 
It can be related hierarchically to other descriptions, according to a scheme 
similar to the one described for objects in 4.1. 

The name has a role in referencing, as in the case of objects. 

Type Is an undefined, intuitive idea for which we expect to develop a precise 
meaning within datalanguage(see section 3.10 for some of the ideas about 
this). In terms of the present model, it simply means one of the following: 
LIST, STRUCT, STRING, BOOL, DESC, DIR, FUNC, OPD. Each of these refers to a 
sort of value corresponding to common ideas In programming (with the 
exception of OPD, which is explained in section 4.7), and on which certain 
operations are defined. 

Examples of type-dependent parameters are the two items needed to define a 
STRING: size option and sizeT A STRING is a sequence of characters; the size 
of the STRING is the number of characters in it. If a STRING has a fixed 
size, then size option is FIXED and size is the number of characters 1t 
always contains. If a STRING has a varying size, then size option is 
VARYING, and size is its maximum (clearly, it might also have a minimum in a 
more refined scheme). 

When the description of an object has a type of STRING, it is 
that the object is a STRING. 

commonly said 

4.3 Values 

The value is the data itself. 

An object of type BOOL can have only either the value TRUE or the value 
FALSE. 

An object of type STRING has values such as 'ABC, 'JOHN', or 'BOSTON'. 

Each value has a representation, in bits. Thus a BOOL is represented by a 
single bit, which will be a 'one' to represent TRUE and a 'zero' to represent 
FALSE. 

4.4 Some examples 

Here are some examples of structures involving objects, descriptions, and 
values. In these explanations and drawings, the objective is to convey some 
ideas about these primitive structures; considerable detail 1s omitted in the 
drawings in the interest of clarity. 
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OBJECT 

OBJECT 

NAME 

X DESCRIPTION 

DESCRIPTION TYPE 

STRING 

i/ALUE 

\ k/ALUE 

^JAME 

Y DESCRIPTION 

DESCRIPTION TYPE 

BOOL 

VALUE 

VALUE 
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Li Figure 4-1 
Two elementary objects 

f :; 

Figure 4-1 shows two objects. X is of type string and has value 'ABC 
of type bool and has value TRUE. 

Y is 
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DESCRIPTION NAME 
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^ i/ALUE DESCRIPTION 

SIBLING ^ALUE 

VALUE VALUE 

"ABC" FALSE 

DESCRIPTION DESCRIPTION 

TYPE I 
1 

fYPE 

STRING BOOL 
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Figure 4-2 
A directory with two members 

Figure 4-2 illustrates an object of type dir (a directory) and related 
objects. The directory ias name bMITH. mere are two objects entered in 
tnis directory, named X and Y. 

The idea of a dir is similar to the idea of a file directory in most systems. 
A directory is a place wnere one can store named objects, freely adding and 
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deleting them. The entries In the directory are all objects whose parent Is 
that directory. Figure 4-3 shows a more rigidly structured group of objects. 
Here we have R. * struct, and A and B, a pair of strings. Note that the 
boxes labelled 'object' 1n figure 4-3 bear precisely the same relationships 
to one another as those labelled 'object' 1n 4-2. However, there are two 
conditions which hold for 4-3 but do not hold for 4-2: (1) the value of R 
contains the values of A and B, and (2) the descriptions of R, A and B are 
all related. 

Structs have the following properties: (1) name and description of each 
component 1n the struct 1s established when the struct 1s created, and (2) In 
a value of the struct, the order of occurrence of component values 1s fixed. 

■^ ■-"--"-"»* 
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OBJECT DESCRIPTION 

NAME TYPE 

R STRUCT 

DESCRIPTION CHILD 

VALUE 

CHILD DESCRIPTION 1 

TYPE 

1        STRING DESCRIPTION 

SIBLING TYPE 

STRING 
Ü BJEC1     < 

NAME 

A 

OBJECT 

11 

DESCRIPTION 

NAME 

VALUE ■       1 
DESCRIPTION 

SIBLING 

VALUE 

SIBLING 

\ fALUE 

< 

"ABC" FALSE 

Figure 4-3 
A STRUCT with two members 
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MAME TYPE 

L LIST 

DESCRIPTION CHILD 

t/ALUE 

i 
1 

1 

FYPE 

VALUE     i STRING 

"ABC" DESCRIPTION 

"XY" 

"ZLM" 

1 
1 
1 
i 

"BBBF" 

Figure 4-4 
A LIST 

Figure 4-4 shows a 11st named L. Here a similar structure of objects is 
Implied, but because of the regularity of the structure, not all the boxes 
labelled 'object' are actually present. 

L has a variable number of components, all satisfying the description 
subordinate to L's description. 

We could imagine an 'object' box for each string in L. Each of these boxes 
would point to its respective string and to the common description of these 
strings. Instead, we think in terms of creating such boxes as we need them. 
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4.5 Definitions of types 

Following are some more precise definitions of types, in terms of the present 
model. These serve the purpose of establishing more firmly the semantics of 
our structure of objects, descriptions and values; however, they should not 
be thought of as providing a definition for the completed language 
specification. 

An object of type STRING has a value which is a sequence of characters 
(figure 4-1). 

An object of type BOOL has a value which is a truth value (TRUE or 
FALSE-figure 4-1). 

An object of type DIR has subordinate objects, each having its own 
description and value. Subordinate objects can be added and deleted at will 
(figure 4-2). 

An object of type STRUCT has subordinate objects, each of which has a 
description which is subordinate to the STRUCT's description, and a value 
contained in the STRUCT's value. The number, order and description of 
components is fixed when the STRUCT is created (figure 4-3). 

An object of type LIST may be thought of as having Imaginary subordinate 
objects, whose existence is simulated by the use of appropriate techniques in 
processing the LIST. Each of these has the same description, which 1s 
subordinate to the description of the LIST. Each has a distinct value, 
contained in the value of the LIST. In fact, only the LIST object, the LIST 
and component descriptions, and the values exist, (figure 4-4) 

An object of type DESC has a description as its value. This value is the 
same sort of entity which serves as the description of other objects. 

An object of type FUNC has a function call as its value. We will be able to 
say more about this after functions have been discussed. 

An object of type OPD has an operation descriptor as its value, (see 4.7 for 
details). 

4.6 Object environment 

There are three categories of objects in the model datacomputer. 
p/objects, t/objects, end 1/objects. 

These are 

P/objects are permanent objects created explicitly with language functions. 
They correspond to the idea of storeci data in the real datacomputer. 
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Figure 4-5 
STAR and p/objects 

T/objects are temporary objects, also created explicitly with language 
functions. However, these correspond to user-defined temporaries, both local 
to requests and "top-level" (I.e. not local to any request, but existing 
until deletion or logout.) 
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OBJECT 

r viAME 

BLOCK DESCRIPTION 

DESCRIPTION rYPE 

DIR 

\ ,/ALUE 

OBJECT ' 

MAME 

TOP/LEVDL DESCRIPTION 

DESCRIPTION rYPE 

DIR 

SIBLING 

:HILD ALL BLOCKS AND 
LUtML   l/UBJCUia 

' 
ALL GLOBAL 

T/OBJECTS 

n Figure 4-6 
BLOCK, TOP/LEVEL and t/objects 

I/objects are internal, system-defined objects whose creation and deletion is 
implicit in the execution of some language function. 

There are three special objects. These are special only in that they are 
created as part of initializing the environment, rather than as the result of 
executing a language fuction. These are named STAR, BLOCK and TOP/LEVEL. 
All three are of type DIR. 

An object is a p/object if it is subordinate to star; it is a t/object if it 
is subordinate to BLOCK. TOP/LEVEL is subordinate to BLOCK, (see figures 
4-5 and 4-6). 
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I/objects are hung directly off of function calls (objects of type FUNC), and 
are always local to the execution of s'ich function calls. They correspond to 
the notions of (1) literal, and {c, compiler- or interpreter-generated 
temporary. 

ii 
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Figure 4-7 
Effect of assignment 
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4.7 Primitive Language Functions 

Here we discuss the primitive language functions presently implemented in the 
model and likely to be of most interest. In this section, the emphasis 1s on 
relating functions to one another. Section 4.8 contains more detail and 
examples. 

Assign operates on a pair of objects, called the target and the source. The 
value of the source is copied into the value of the target. Figure 4-7 shows 
a oair of objects, X and Y, before and after execution of an assignment 
having X as target and Y as source. Presently, assignment is denned only 
tor objects or type üUUL and objects of type STRING. The objects involved 
must have identical descriptions. 

A class of primitive functions for manipulating LISTs is defined. These are 
called 1istops. All listops input a special object called an operation 
descriptor or OPD. 

To accomplish a complete operation on a LIST, a sequence of listops must be 
executed. There are semantic restrictions on the comDOsition if such 
sequences, and it is best to think of the entire sequence as one large 
operation. The state of such an operation is maintained in the OPD. 

Refer back to figure 4-4. There is one box labelled "object" in this 
picture; this box represents the list as a whole. To operate on any given 
member, we need an object box to represent that member. Figure 4-8 shows the 
structure with an additional object box; the new box represents one member at 
any given moment. Its value is one of the components of the LIST value; its 
description is subordinate to the LIST description, 
ojbect is M. 

In 4-8, the name of this 

In 4-8 we have enough structure to provide a description and value for M, and 
this is sufficient to permit the execution of operations on M as an item. 
However, there is no direct link between object M and object L. The 
structure is completed by the addition of an CPD, shown in figure 4-9. 
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Figure 4-8 
LIST and member objects 
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Figure 4-9 
OPD, LIST and member 
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The OPD establishes the object relationship, and contains Information about 
the sequence of primitive Ustops In progress. When sufficient Information 
1s maintained in the OPD, we have 1n 4-9 a structure which Is adequate for 
the maintenance of the Integrity of the LIST and of the global 11st 
operation. In addition to LIST and member pointers, the OPD contains 
information indicating: (1) which suboperations are enabled for the sequence, 
(2) the current suboperation, (3) the instance number of the current LIST 
member, (4) an end-of-11st Indicator. The suboperations are add/member, 
delete/member, change/member and get/member. All apply to the current 
member. Only suboperations which have been enabled at the beginning of a 
sequence may be executed during that sequence; eventually, the advance 
knowledge of intentions that is implied by this will provide important 
information for concurrency control and optimization. 

Presently, an OPD relates a single member object to a single LIST object. 
This imposes an important restriction on the class of operation sequences 
which can be expressed. Any LIST transformation requiring simultaneous 
access to more than one member must be represented as more than one sequence. 
(And we do not yet solve the problems implied in concurrent execution of such 
sequences, even when both are controlled by one process.) 

Any transformation of a LIST can still be achieved by storing intermediate 
results in temporary objects; however, it is certainly more desirable to 
incorporate the idea of multiple current members into the semantics of the 
language, than it is to use such temporaries. An important future extension 
of the 11 stops will deal with this problem. 

There are six listops: listop/begin, listop/end, which/member, end/of/list, 
open/member and close/member. 

Listop/begin and listop/end perform the obvious functions of beginning and 
terminating a sequence of listops. Listop/begin inputs LIST and member 
objects, an OPD, and a specification of suboperations to enable. It 
initializes the OPD, including establishment of the links to LIST and MEMBER 
objects. After the OPD-LIST-member relationship has been established, it is 
only necessary to supply the OPD and auxiliary parameters as input to a 
listop in the sequence. From the OPD everything else can be derived. 

Listop/end clears the OPD and frees any resources acquired by listop/begin. 

Which/member establishes the current member for any suboperations. This Is 
either the first LIST member, the last LIST member, or the next LIST member. 
This listop merely identifies which member is to be operated on; it does not 
make the contents of the member accessible. 

Open/member and close/member bracket a suboperation. The suboperation 1s 
indicated as an argument to open/member. Open/member always establishes a 
pointer from the member object to the member value; close/member always 
clears this pointer. In addition, each of these listops make take some 
action, depending on the suboperation. 

The details of the action would be dependent on the representation of the 
LIST  in  storage, the size of a LIST member, and choices made in 
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Implementation. 

Between execution of the open/member and the close/member, the data is 
accessible. It can always be read; 1n the case of the add/member and 
change/member suboperatlons, 1t can also be written Into. 

End/of/list tests a flag in the OPD and returns an object of type BOOL. The 
value of the object is the same as the value of the flag; it 1s TRUE if a 
get/member, change/member or delete/member would be unsuccessful due to a 
which/member having moved "beyond the end". This listop is provided so that 
1t is possible to write procedures which terminate conditionally when all 
members have been processed. 
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Figure 4-10 
Effect of GET/STRUCT/MEMBER 

mm m^äHmUi afettMAh. .r ■■ I ■, i V :,*..-.. ....... J.-.-> :.^>-    .....,:-. .,,,-. >,H.S.^*K.:.      ■■■■■(* JAjM 



1 
n 
D 
n 

Further Datalanguage Design Concepts 
A Model Datacomputer 

Page 53 

■ ' ' 

Get/struct/member provides the ability to handle STRUCTs. Given a STRUCT 
object which points to the STRUCT value, it will establish a pointer from a 
given member object to the member value. (The pointer it establishes is 
represented by a dashed line in figure 4-10). 

The primitives discussed so far (assign, listops, and get/struct/member; 
provide a oasic facility for operating on structures of LISTs, STRUCTs and 
elementary items. Using only them, it is possible to transfer the contents 
of one hierarchical structure to another, to append structures, to delete 
portions of structures, and so on. To perform more interests? operations 
facilities for control and selection are needed. 

A rudimentary control facility is provided through the primitives if/then, 
if/then/else, till and while. All of these evaluate one primitive function 
call, which must return a BOOL. Based on the value of this BOOL some action 
is taken. 

Let A and B be function calls. If/then(A,B) will execute B if A returns 
TRUE. F/then/els(;(A,B,C) will execute B if A returns TRUE; it will execute 
C if A returns false. The while and till operators iterate, executing first 
A then B. While terminates the loop when A returns FALSE; till terminates 
ehe loop when A returns TRUE. If this happens the first time, B is never 
executed. 

So far, we have mentioned one function which returns a BOOL: the listop, 
end/of/list. Two other classes of functions which have this property are the 
booleans and the comparisons. There are 3 primitive booleans (and; or, not) 
and six primitive comparisons (equal, less/than, greater/than, not/equal, 
less/than/or/equal, greater/than/or/equal — only equal is implemented at 
time of publication). 

of The booleans input and output BOOLs; the comparisons input pairs of 
elementary objects having the same description and output BOOLs. Expressions 
composed of boo^ans ant comparisons on item contents are one of the 

* " T   J  used in selectively referencing data in data management principal 
systems 

tool 

With the booleans, the comparisons, and the primitives identified earlier, we 
can perform selective "retrievals". That is, we can transfer to LIST B all 
items in LIST A having a value of 'ABC. In fact, we now have a 
(semantically, general ability to perform content-based retrievals and 
updates on arbitrary hierarchical structures. We can even program something 
as complex as the processing of a list of transactions against a master list, 
which is one of the typical applications in business data processing. 

Of course, w; would not expect users of datalanguage to express requests at 
the level of listops. Further, the listops defined here are not a v«ry 
efficient wey of oerforming some of the tasks we have mentioned. To get good 
solutions, we need both higher-level operators and other primitives which use 
other techniques in processing. 

In addition to those already discussed, the model contains functions for: (1) 
referencing an object by qualified name, (2) generating a constant, (3) 
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generating data descriptions, (4) writing compound functions and blocks with 
local variables, (5) creating objects. 

The facilities for generating constants and data descriptions (which are a 
special case of constants) are marginal, and have no features of special 
Interest- Obviously, data description will be an important concern in the 
modeling effort later on. 

Object referencing functions permit reference to t/objects and p/objects 
(these terms are defined in 4.6). A p/object is referenced by giving the 
pathname from STAR to it. A t/object is referenced by giving the pathname 
from the block directory in which it is defined to it. 

Compound/function permits a sequence of function calls to be treated 
syntactically as a single call. Thus, for example, in if/then(A,B), B is 
frequently a call to compound/function, which in turn calls a sequence of 
other functions. 

Create takes two inputs: a superior object and a description. The superior 
must be a directory. The new object is created as the leftmost child of the 
directory, its name is determined by the description. 

4.8 Details of primitive language functions 

This section provides specifications for the primitives discussed in the 
previous section. We are still omitting details when we judgt them to be of 
no general interest; the objective is to provide enough information for the 
reader to examine examples. 

Most of the primitives occur at two levels in the model. The internal 
primitives are called i/functions and the external, or language primitives 
are called l/funct1ons. The relationship between the two types are explained 
in 4.9. In this section we discuss 1/functions. 

L/functions input and output forms, which are tree structures whose terminal 
nodes are atoms. The atoms are such things as function names, object names, 
literal string constants, truth values and delimiters. Calls to 1/functions 
are also expressed as forms. 

Any form can be evaluated, yielding some object. A form which is an 
1/function call yields the value returned by the 1/function: another form. 
In general, the form returned by an 1/function call will, when evaluated, 
yield a datalanguage object (that is, the sort of object we have been 
representing by an "object box" in the drawings). 
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4.8.1 Name recognition functions 

These return a form which evaluates to an object. 

L/TOBJ 

Input must name a temporary object subordinate either to TOP/LEVEL or a block 
directory. 

L/POBJ 

Input must name a permanent object (i.e., an object subordinate to STAR). 

Typical calls are L/P0BJ(X.Y.Z) and L/T0BJ(A). 

4.8.2 Constant generators 

Each of these inputs an atomic symbol yielding a value for a constant to be 
created. Each returns a form which will evaluate to an object having the 
specified value and an appropriate description. 

LC/STRING - a typical call is LC/STRING('ABC') 

LC/BOOL - a typical call is LC/B00L(TRUE) 

4.8.3 Elementary item functions 

These input and output forms evaluating to elementary objects (objects which 
can have no subordinate object--in effect, objects whose value is regarded as 
atomir). Eventually all the comparison operators will be implemented. 

L/ASSIGN 

Inputs must evaluate either to STRINGS or BOOLs. Outputs a form which 
transfers tie value of the second to the first. Typical call: 
L/ASSIGN(L/TOBJ(A),LC/STRING('XYZ')) 

The output form, when evaluated, will copy 'XYZ' into A's value. 

L/EQUAL 

Inputs a pair of forms evaluating to objects, which must have identical 
descriptions and De buULs or aiKiNGs. Returns a form evaluating to an object 
of type BOOL. Value of this object is TRUE if inputs have identical 
descriptions and values; otherwise it is false. Typical call: 
L/EQUAL(L/TOBJ(X),LC/STRING('DEF')) 
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L/AND, L/OR, IL/NOT 

The standard boolean operators. Inputs are forms evaluating to BOOLs; output 
is a form evaluating to a BOOL. L/AND and L/OR take two inputs; L/NOT takes 
one. Typical call: 
L/AND( L/EQUAL(L/TOBJ(X),LC/STRINt('DEF')), 

L/EQUAL(T/TOBJ(Y),LC/STRING('GHI')) ) 
The form returned will, when evaluated, return TRUE if buth X has Value 'DEF' 
and Y has value 'GHI'. 
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4.8.4 Data description functions 

These all return a form evaluating to a description (i.e.  that which is 
represented in our drawings by a box labelled "description"). 

LD/STRING 

Inputs 3 parameters specifying the name, size option and size for the string. 
Typical call: 
LD/STRING(X,FIXED,3) 

This call returns a form evaluating to a description for a fixed-length 
3-character string named X. 

LD/LIST 

Inputs two forms. The first is the name of the LIST and the second evaluates 
to a description of the LIST member. Typical call: 
LD/LIST(L,LD/STRING(M,FIXED,3)) 

Creates the structure shown in figure 4-11, and returns a form evaluating to 
the description represented by the upper box. 
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Figure 4-11 
LIST and member descriptions 

LD/STRUCT 

Inputs a form to use as the name for the STRUCT and one or more forms 
evaluating to descriptions; these are taken as the descriptions of the 
members. Typical call: 
LD/STRUCT(R, 

LD/STRING(A,FIXED,3), 
LD/B00L(B) ) 

produces the structure shown in 4-12; returns a form evaluating to the top 
box. 

•■-• ■- -■ ■      - in  ill  Hi—"•"———■——— -,, .,, 



I 
1 
I 
at 

n 

I ; i 

I -l 

Further Datalanguage Design Concepts 
A Model Datacomputer 

DESCRIPTION 

NAME 

TYPE 

STRUCT 

CHILD 

DESCRIPTION 

NAME 

TYPE 

STRING 

PARAMETER 

SIBLING 
i 

Page   58 

DESCRIPTION 

. 

Figure 4-12 
STRUCT and member descriptions 

LD/BOOL, LD/DIR, LD/OPD, LD/FUNC, LD/DESC 

Each inputs a name and produces a single description; 
evaluating to the description produced. Typical call; 
LD/B00L(X) 

each returns a form 

4.8.5 Data creation 

L/CREATE 

Inputs two forms and evaluates them. First must yield an object of type DIR; 
second must yield a description for the object to be created. Creates the 
object and returns a form, which, when evaluated, will generate a value for 
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the new object. A simple example: 
L/CREATE(L/TOBJ(X),LD/BOOL(Y)) 

OBJECT 

NAME 

DESCRIPTION 

CHILD 

OBJECT    \ 

NAME 

DESCRIPTION 

VALUE 
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DESCRIPTION 

TYPE 

DIR 

DESCRIPTION 

TYPE 

OPD 

OPD 

Figure 4-13 
X and Z before creation of Y 

Figure 4-13 shows the directory X before execution of the above call. It 
contains only an OPD. After execution, the directory appears as in 4-14. 
Creation of a value for Y occurs when the form returned by L/CREATE is 
evaluated (covered in section 4.9). 
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Figure 4-14 
X, Y and Z after L/CREAFE 
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4.8.6 Control 

L/IF/THEN, L/IF/THEN/ELSE 

Used to request conditional evaluation of a form. Typical call: 
L/IF/THEN(L/EQUAL(L/TOBJ{A),LC/STRING('ABC'), 

L/ASSIGN(L/TOBJ(B),LC/STRING('DE'))) 
The form returned will do the following, when evaluated, if A has value 
'ABC, then store 'DE' in the value of B. 

L/WHILE, L/TILL 

These iterate conditionally, as explained in the previous section.  Examples 
appear later. 

L/CF 

Compound function: it inputs one or more forms and returns a form which, when 
evaluated; will evaluate each input in sequence. Typical call: 
L/CF(L/ASSIGN(L/TOBJ(R.A),LC/STRING('XX')), 

L/ASSIGN(L/TOBJ(R.B),LC/STRING('YY'))) 
When the output of L/CF is evaluated, it will assign new values to R.A and 
R.B. 

4.3.7 Listops 

These primitives are executed in sequences in order to perform operations on 
LISTs.  With the exception of L/END/OF/LIST these functions output forms 
which are evaluated for effect only; that is, the output forms do not 
themselves return values. 

L/LISTOP/BEGIN 

Inputs forms evaluating to: (1) a LIST, (2) an object to represent the 
current LIST member, (3) an OPD. Also, inputs a list of atomic forms whose 
values are taken as suboperations to enable. Typical call: 
L/LISTOP/BEGIN(L/POBvUF),L/TOBJ(R), 

L/T0BJ(0PF),ADD,DELETE) 
This returns a form that will initialize a sequence of listops to be 
performed on F. Caller has previously created R and OPF. He intends to ADD 
and DELETE list members. 

All subsequent calls in this sequence of listops need specify only the OPD 
and auxiliary parameters. 

L/LISTOP/END 

Inputs a form evaluating to an OPD. Outputs a form which, when evaluated, 
i.Tears OPD and breaks relationships between OP;  „1ST and member objects. 
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L/WHICH/MEMBER 

Inputs two forms. First evaluates to an OPD; second is one of FIRST, LAST, 
NEXT. The form output, when evaluated, will establish a new current member 
for the next suboperation. Note: this does not make the value of the member 
accessible, it simply identifies it by setting the instance numoer in the 
OPD. A typical call: 
L/WHICH/MEMBER(L/TOBJ(OPF).NEXT) 

When a which/member causes advance beyond the end of the list, a flag is set 
in the OPD. 

L/END/OF/LIST 

Inputs a form evaluating to an OPD. Outputs a form which, when evaluated, 
returns a BOOL. This has value TRUE if the end of list flag in the OPD is 
on. 

L/OPEN/MEMBER 

Inputs a form evaluating to an OPD and a form which must be one of ADD, 
DELETE, GET, CHANGE. Outputs a form which, when evaluated, will initiate the 
requested suboperation on the current LIST member. The suboperation always 
establishes the pointer from the member object to the current n.ember value 
instance. In addition, in the case of ADD this value must be created. 
Typical call: 
L/OPEN/MEMBER(L/T0BJ(0PF),ADD) 

L/CLOSE/MEMBER 

Inputs a torm evaluating tu e.n uru. uutpui* a Torw WHICH, wnen evaluated, 
will complete the suboperation in progress. A typical call: 
L/CL0SE/MEMBER(L/T03J(0PF)) 

Always clears the pointer from member object to member value. In addition. 
■In the case of DELETE, removes the member value from the LIST. In the case 
of ADD enters the member value in the LIST. Makes the member added the 
current member, so that a sequence of ADDs executed without intervening 
which/members will add the new members in sequence. 

An elaborate example, involving listops and several other primitives, appears 
in section 4.10. 

4.9 Execution cycle 

The model datacomputer has a two-part execution cycle: it first compiles 
requests, then interprets them. A "request" is an 1/function call; 
"compilation" is the aggregate result of executing all the 1/function calls 
involved in the request (typically this is many calls, as there are usually 
several levels of nested calls, with the results of the inner calls being 
delivered as arguments to the next level of calls). Usually, the process of 
executing an 1/function involves a simple macro expansion, preceded by some 
binding, checking and (eventually) optimization. 
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The compiled form consists wholly of atomic symbols and 1/funct1on calls. 
The 1/funct1ons are Internal primitives which input and output datalanguage 
objects (the entities represented by the boxes labelled "object" in the 
drawings). 

Each of the 1/functions discussed compiles into a single i/function; thus the 
macro expansion tspect of compilation is presently trivial. However, this 
will not be true in general; it is only that these are primitive 1/functions 
that makes it true now. 

The decision to use a comp1le-and-1nterpret cycle calls for some explanation. 
The way to understand this, is to think in terms of the functions that would 
be performed in a strictly interpretive system. There would still be a 
requirement to perform global checks on the validity of the request in 
advance of the execution of any part of it. This 1s because partial 
execution of an incorrect request can leave a database in an inconsistent 
state; if this is a large or complex database, the cost of recovery will be 
considerable. Thus it pays to do as much checking as is possible; when the 
system is fully developed, this will include a certain element of simple 
prediction of execution flow; in any case, much more than syntactic checking 
is implied. 

Since any such global checks will be performed in advance of actual 
execution, they are effectively not part of the execution itself, for any 
given form. By performing them as part of a separate compilation process, we 
only formalize a modularity which already effectively exists. 

There will still be cases, however, in which checking, binding and 
optimization functions must be executed during interpretation, if at all. 
This will occur when the information needed is not available until some of 
the data has been accessed. When practical, we will provide for such 
occurrences by designing most functions so that they can be executed as part 
of either "half" of the cycle. 

As the model develops, we expect to get a better feel for this problem; it is 
certainly reannable to end up with a structure in which there are many 
cycles of compilation and interpretation, perhaps forming a structure in 
which nesting of cycles within cycles occurs. 4.10 Examples of operations on 
LI5Ts Here we develop an example of an operation on a LIST using primitive 
1/functions. We first show the function calls required to create a LIST 
named F and give U a few member values. We then selectively copy certain 
members to a second LIST G. 

To create F: 

L/CREATE("STAR",LD/LIST(F, 
LD/STRUCT(«, 

LD/STRING(A,FIXED,2), 
LD/STRING(B,FIXED,2)))) 

Thiä crtates F as ü member of the permanent directory STAR(see section 4.6 
for details about STAR). The symbol STAR has a special status in the 
"language", in that it is one of the few atomic symbols to evaluate directly 
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to an object (recall that most permanent objects are referenced through a 
call to L/POBJ; reserving the symbol STAR 1s equivalent to reserving STAR as 
a name and writing L/POBJ(STAR). The solution we choose here is easier to 
write.) Execution of this call builds the structure shown in 4-15 (except for 
STAR, which existed in advance of the call). The value initially created for 
F is an empty LIST--a LIST of zero members. 
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Figure 4-15 
F immediately after creation 

To add members to F, we need to use listops, and for this we must create two 
more objects: an object to represent the current member and an operation 
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descriptor (OPD). These are temporaries rather than Dermanent objects; they 
are also "top level" (I.e., not local to a request). Temporary, top level 
objects are created as members of the directory TOP/LEVEL.  The calls to 
create them are: 
L/CREATE(L/TOBJ(TOP/LEVEL), 

LD/STRUCT(M, 
LD/STRING(A,FIXED,2), 
LD/STRING B.FIXED.2))) 

L/CREATE(L/TOBJ(TOP/LEVEL),LD/OPD(OPF)) 
We create M to represent the current member; It's description 1s the same as 
the one Input for a member of F (see the call which created F). The proper 
way to accomplish this is with a mechanism which shares the actual LIST 
member description with M; however, this mechanism does not yet exist in our 
model. 

We now wish to add some data to F; each member will be 
two two-character STRINGS. 

a STL rT containing 

To begin the listop sequence: 
l./LISTOP/BEGIN(L/POBJ(F),L/TOBJ(M), 

L/T0BJ(0PF),ADD) 
This call establishes the structure shown in figure 4-16. It initializes the 
OPD, making it point to F and M and recording that only the ADD suboperation 
is enabled. 
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OBJECT 

MAME MAME 

A B 

SIBLING 

Figure 4-16 
r, UPH and M after L/btüiN/Lii>iUP 
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Next we must establish a current member. We want to add members to the end 
(in this case, adding them anywhere would get the same effect, since the LIST 
1s empty), which 1s done by making LAST the current member. 
L/WHICH/MEMBER(L/T0BJ(0P1),LAST) 

Now, to add a new member to F, we can execute the following: 
L/0PEN/MEM3ER(L/T0BJ(0PF).ADD) 
L/ASSIGN(L/TOBJ(M.A),LC/STRING('AB')) 
L/ASSIGNfL/TOBjfM.BJ.LC/STRINGC'CD')) 
L/CLOSE/MEMBER(L/TOBJ(OPF)) 

L/OPEN/MEMBER creates a STRUCT value for H. It does not affect the value of 
F. Each member of the STRUCT value is initialized when the STRUCT is 
created. The result is shown in 4-17; notice that the STRUCT member values 
are as yet unrelated to the objects M.A and M.B. 

Figure 4-18 shows the changes accomplished by the first L/ASSIGN; the pointer 
from the object M.A to the value was set up by a GET/STRUCT/MEMBER compiled 
by L/T0BJ(M.A). The value was filled in by the assign operator. The second 
assign has similar effect, filling in the second value. The call to 
L/CLOSE/MEMBER takes the value shown for M in 4-18 (with the second member 
value filled in) and adds it to the value of F. The result is shown in 4-19; 
compare with 4-16. 
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Figure 4-17 
After L/OPEN/MEMBER 
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After first L/ASSIGN 
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Figure 4-19 
After L/CLOSE/MEMBER 
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By executing similar groups of four primitives, varying only values of 
constants, we can build up the LIST F shown in 4-20. The calls required are 
shown below: 

L/0PEN/MEMBER(L/T0BJ(0PF),ADD) 
L/ASSIGN(L/T0BJ(M.A).LC/STRING('FF')) 
L/ASSIGN(L/TOBJ(M.B),LC/STRING(,GH,)) 
L/CLOSE/MEMBER(L/TOBJ(OPF)) 

L/0PEN/MEMBER(L/T0BJ(0PF),ADD) 
L/ASSIGNfL/TOBJCM.Aj.LC/STRINGCAB')) 
L/ASSIGN(L/TOBJ(M.B),LC/STRING('IJ')) 
L/CLOSE/MEMBER(L/TOBJ(OPF)) 

L/OPEN/MEMBER(L/TOBJ(OPF),ADD) 
L/ASSIGN(L/TOBJ(M.A),LC/STRING('CD')) 
L/ASSIGN(L/TOBJ(M.B),LC/STRING('LM')) 
L/CLOSE/MEMBER(L/TOBJ(OPF)) 

The add suboperation has the effect of making the member just added, the 
current member; thus no L/WHICH/MEMBER calls are needed in this sequence. 

To terminate the sequence of listops: 
L/END/LIST0P(L/T0BJ(0PF)) 
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FIGURE 4-20 
AFTER L/END/LISTOP 

A slightly more interesting exercise is to construct calls which create a 
LIST named G, having the same description as F, and then to copy into G all 
members of F having A equal to 'AB'. 
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We must first create G, an OPD and an object to represent the current member. 
L/CREATE("STAR\LD/L!ST(G, 

LD/STRUCT(R, 
LD/STRING(A,STRING,2), 
LD/STRING(B,STRING,2))) 

7^ L/CREATE(L/TOBJ(TOP/LEVEL),LD/OPD(OPG)) 
i L/CREATE(L/TOBJ(TOP/LEVEL),LD/STRUCT(GM, 

LD/STRING(A,STRING,2), 
LD/STRING(B,STRING,2))) 

We now need to initiate two sequences of 1istops, one on G and one on F. 
L/BEGIN/LISTOP(L/POBJ(F),L/TOBJ(M), 

L/T0BJ(0PF),GET) 
iJ L/BEGIN/LISTOP(L/POBJ(G),L/TOBJ(GM), 

L/T0BJ(0PG),ADD) 
L/WHICH/MEMBER(L/TOBJ(OPF),FIRST) 

i I L/WHICH/MEMBER(L/TOBJ(OPG),LAST) 

We will now sequence through the members of F; whenever the current member 
has A equal to 'AB', we will add a member to G. We then cnoy the values of 
the current member of F into the newly added member of G. When the current 
member does not meet this criterion, we do nothing with it. 

First, to write a loop that will execute until we get to the end of F: 
L/TILL(L/END/OF/LIST(L/TOBJ(OPF)),x) 

Whatever we put in this call to replace "x" will execute repeatedly until the 
end/of/list flag has been set in OPF. 

We must replace "x" with a single function call to in order to give L/TILL 
what it is looking for.  However, we will be executing "x" once for each 
member of F, and will need to execute several 1istops each time.  The 
solution is to use L/CF, the compound function function: 
L/TILL(L/END/OF/LIST(L/TOBJ(OPF)),L/CF(y)) 

We can now replace "y" with a sequence of function calls. 

Each time we iterate, we need to process a new member of F; initially we are 
set up to get the first member. The following sequence, then, is needed: 
L/CF(  L/OPEN/MEMBER(L/TOBJ(OPF),GET), 

2 
L/CLOSE/MEMBER(L/TOBJ(OPF)), 
L/WHICH/MEMBER(L/TOBJ(OPF),NEXT) ) 

The above is a compound function which will open the current member of F, do 
something to it (represented above by "z"), close it, and ask for the next 
member. 

We want to replace "z" by a function call which tests the contents of A in 
the current member of F, and either does nothing or adds a member co G, 
copying the values of the current member of F. If "w" represents the action 
of adding a member to G and copying the values, then we can express this: 
L/IF(L/EQUAL(L/TOBJ(M.A),LC/STRING('AB')),W) 
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A s-jltable way to express "add a member and copy values" 1s: 
L/CF(L/OPEN/MEMBER(L/TOBJ(OPG),ADD), 

L/ASSIGN(L/TOBJ(GM.A),L'TOBJ(M.A)), 
L/ASSIGN(L/TOBJ(GM.B),L/TOBJ(M.B)), 
L/CLOSE/MEMBER(L/TOBJ(OPG)) 

This Is similar enoug'. to the previous example so that no explanation should 
be necessary. 

Putting this all together, we get: 
L/TILL(L/END/0F/LIST(L/T0BJ(OPF)), 
L/CF( L/OPEN/MEMBER(L/TOBJ(OPF),GET), 

L/IF(L/EQUAL(L/TOBJ(A),LC/STRING('AB')), 
L/CF(  L/OPEN/MEMBER(L/TOBJ(OPG),ADD), 

L/ASSIGN(L/TOBJ(GM.A),L/TOBJ(M.A)), 
L/ASSIGN(L/TOBJ(GM.B),L/TOBJ(M.B)), 
L/CLUbL/MLMBLK^L/IUBdlUHG)) ) ) 

L/CLOSE/MEMBER(L/TOBJ(OPF)), 
L/WHICH/MEMBER(L/TOBJ(OPF),NEXT) ) ) 

To conclude the operation, we execute: 
L/LIST0P/END(L/T0BJ(0PG)) 
L/LIST0P/END(L/T0BJ(0PF)) 

The result is a LIST G whose first member has value ('AB','CD'), and whose 
second member has value ('AB'.'IJ'). With a few variations on the above 
example, quite a few LIST operations can be performed. 

4.11 Higher level functions 

While these primitive 1/functions are useful, we would not ordinarily expect 
users to operate in datalanguage at this low level. We want to make these 
primitives available to users so that they can nandle the exceptional case, 
and so that they can construct their own high-level functions for atypical 
applications. Ordinarily, they ought to operate at least at the level of the 
following construction (which is legal in the real datalanguage currently 
imolemented): 
FOR G.R.F.R WITH A EQ 'AB' 

G.R=F.R 
END 

This relatively concise expression accomplishes the same result as the 
elaborate construction of 1/functions given at the close of the preceding 
section. We could define 1/functions very similar to the semantic functions 
used 'n the running software, and write the above request as: 
L/F0P.(L/P0BJ(G)," 

L/POBJ(F),R,L/WITH(L/EQUAL(L/TOBJ(A), 
LC/STRING('AB'))) 

The differences between the l/funct1on call and the datalanguage request 
above it are principally syntactic. 

In designing functions such as L/FOR and L/WITH, the central problems have to 
do with choosing the right restrictions. One cannot have all the generality 
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available at the primitive level. Some Important choices for these 
particular functions are: (1) handling multiple Inputs and outputs, (2) when 
FORs are nested, how outer FORs restrict the options available to Inner FORs, 
(3) generality of selection functions (may then 1n turn generate FORs?), (4) 
options with regard to where processing should start (are we updating, 
replacing or appending to the output Hst(s)?). 

Fi ally, this problem Is related to the more general problem of dealing with 
sets, which are a generalization of the idea of a collection of members In a 
LIST having common properties. FOR 1s only one of many operators that can 
Input sets. 

4.12 Conclusion 

The present model, though embryonic, already contains enough primitives and 
data types to permit definition and generalized manipulation of hierarchical 
data structures. Common data management operations, such as retrieval by 
content and selective update can be expressed. 

The use of t^ii model in developing these primitives has resulted in precise, 
well-defined and internally consistent specifications for language elements 
and processing functions. Operating in the laboratory environment provided 
by the model seems to be a substantial benefit. 
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5. Further Work 

In this section, we review what has been accomplished so far in the design and 
describe what work remains to be done before this design iteration of 
datalanguage is complete. 

D 

n 

5.1 A Review 

Most important among our accomplishments, we feel that we have delineated the 
problems and presented the broad outlines of a solution to development of a 
language for the datacomputer system. Key elements of our approach are the 
primacy of data desciption in capturing all the aspects of the data, the 
separation of logical and physical characteristics of data desciption, the 
ability of users to define different views of the same data, the ability to 
associate functions with different uses of data items, an attempt to capture 
common aspects of data at every possible level, and the ability of users to 
communicate with the datacomputer in as high a level as their application 
permi ts. 

5.2 Topics for Further Research 

Although more work needs to be done in general to turn out a finished design for 
datalanguage, we can single out certain issues which in particular need further 
investigation. 

So far, only hierarchial data structures (i.e. those that can be modeled by 
physical containment) have been developed to any extent. We also intend to 
investigate and provide other typeu of data structures. We are confident that 
our language framework does not make assumptions that would prohibit such 
additions. 

Our current work on access regulation centers on the use of multiple descriptions 
for data. We need to do more work on both the technical and administrative 
aspects of access regulation. Problems of encrypting data for both transmission 
and storage will also be investigated. 

Another issue requiring further research is the protocol requirement for 
interaction with the datacomputer. 

process 

Separation of the description into independent modules needs furhter research. 
In particular, we need to look into work which has already been done on separate 
specifications of logical descriptions, physical descriptions, and mappings 
between the two. 
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5.3 Datalanguage Syntax 

We have not yet proposed a syntax for the datalanguage we are developing. 
Certainly the most difficult parts of the problem have been the semantic, and 
pragmatic issues. We are confident that various syntactic forms can be chosen 
and implemented without excessive difficulty. It may be best to develop 
different syntactic forms for the language for different types of users or even 
for the various subparts of the language itself. As discussed in section 2, the 
user syntax for the datacomputer is supposed to be at a low level. It should be 
easy for programs to generate datalanguages requests in this syntax. 

5.4 Further Work on the Datalanguage Model 

The model provides an excellent foundation on which to build up a language with 
the facilities described in section 3. Much work is yet to be done. 

For a while, emphasis will be on sets, high-level operators, language extension 
and data description. 

We expect to model sets as a new datatype, whose value is ordinarily shared with 
other objects. Some further work on binding and sharing of values is needed to 
support this. 

Sets can be regarded as a special case of generalized relations, which will come 
somewhat later. 

High-level operators such as FOR will be constructed from the existing 
primitives, and will eventually oe denned to nave one effect but several 
possible expansions. The expansion will depend on the representation of the data 
and the presence of auxiliary structures. 

Alternate expansions will be possible when the data description has been broken 
up into its various modules. This, also, requires some further research. 

We feel that the language extension problem is much more easily attacked in tne 
environment provided by the model datacomputer. In particular, we expect the 
laboratory environment to be helpful in evaluating the complex interactions and 
pervasive effects of operators in the language which extend the language. 

Data description work in the near term will focus on the isolation of attributes, 
the representation of variable structure in description, the description of 
descriptions and the development of a sufficient set of builtin data types. 

Later, we expect to model the semantics of pointers as a datatype, when the 
representation of the pointer and the semantics of the address space into which 
it points are specified in the description of the pointer. 

A large number of lower-level Issues will be attacked, including some of the 
problems discovered in the modeling to date. Some of these are pointed out in 
the discussions in section 4. 
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5.5 Applications Support 

The datalanguage we are designing is intended to provide services to sub-systems 
solving a broad class of problems related to data management. Examples of such 
sub-systems are: report generators, online query systems for non-programmers, 
document-handling systems, transaction processing systems, real-time data 
collection systems, and library and bibliographic systems. There are many more. 

The idea is that such systems will run on other machines, reference or store data 
at the datacomputer, and make heavy use of datalanguage. Such a system would not 
be written entirely in datalanguage, but a large component of its function would 
be expressed in datalanguage requests; some controlling module would build the 
requests and perform the non-datalanguage functions. 

While we have experience with such applications in other environments, and we 
talk to potential users, it will require some work to determine that our language 
is actually adequate for them. That is, we are not attacking directly the 
problem of building a human-oriented online query system; we are trying to 
provide the tools which will make it ear.y to build one. There is a definite need 
to analyze whetner the tools are likely to be good enough. Of course, the 
ultimate test will be in actual use, but we want to filter out as many problems 
as we can before implementation. 

An important component of supporting applications is that the using programs will 
frequently be written in high-level languages such as FORTRAN, COBOL or PL/1. We 
will want to investigate the ability of datalanguage to support such users, while 
the design is taking shape. 

5.6 Future Plans 

This paper has laid the foundations for a new design of datalanguage. Section 3 
provide«; an outline for a datalanguage design, which will be filled in during the 
coming months. Following the issue of a detailed specification, we anticipate 
extensive review, revisions, and incorporation into the implementation plans. 
Implementation will occur in stages, compatible with the established plans for 
development of datacomputer service and data management capabilities. 
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