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Hydrodynamics of a

Body of Revolution with Fairwater

and Rudders at a constant
angle of attack

ABSTRACT

An investigation is made of the hydrodynamic forces and moments
on a submerged body of revolution, resulting from the addition of an
asymmetric fairwater and hull-control surfaces, and the results of their
interaction. Experimental, flow visualization, numerical, and analytical
approarhes are described. The work described herein is also presented
in the author's MIT Eugineer thesis ""Hydrodynamic Forces and Moments
on a Submerged Body of Revolution Resulting from a Fairwater and

Control Surfaces',
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I. INTRODUCTION

In March 1971, a technical proposal was submitted by the
Department of Naval Architecture and Marine Engineering, ncw
the Department of Ocean Engineering, Massachusetts Institute
of Technology, to the General Hydrcdynamics Research Program
of the Naval Ship Research and Development Center to investi-
gate huit-control surface inivcractlions on submerged bodies,
to include the effects imposed on the body by the fairwater
and rudders (1), This proposal was divided into two problem
areas: the constant yaw angle case, and the unsteady (time
dependent) state cas». This thesis will cover investigation
performed in the first problem area of the project, that of
the steady angle of attack in the horizontal plane, Particular
items of interest are:

A. The geometry of the tralling vortex sheet shed from
the fairwater when operating at an angle of attack. Where 1s
the sheet with reépect to the hull, and control surfaces
downstream, such as the rudder? What velocities are induced
on the hull and rudder by the trailing vortex sheet, and
what forces and moments result from this interaction?

B. The 1lift generated on the fairwater due to side (sway)
velocity when operating at an angle of attack. Besides the
external trailing vortex sheet described above in A, an image

system of tralling vorticity is required within the hull
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surface to satisfy the boundary condition of zero velocity
normal to the hull surface, and Kelvin's theorem of conser-
vation of circulation. A net circulaticn around the hull of

a submersible, aft of the falrwater, is implied by thls reas-
oning. The combination of thls net circulation and sway
velocity leads to a net 1lift on the hull. This resultant 1lift
resolves itself into a heave force and pltch moment excita-
tion, which must either be compensated for by the vehicle
control system, or result in an unanticipated coupling between
yaw, heave and pitch motinns of the vehicle. Nonsymmetric
design of most submersibles, caused by the single fairwater,
also ccmbines with this resultant side force (lift ccomponent)
into a roll moment on the vehicle,

Quantitative assessment of these forces and moments were
investigated by experimental, analytical and numerical pro-
cedures. Experimental results were necessary to determine
actual forces and moments experienced on a submerged body, to
visually observe resulting hydrodynamic effects, and to be
used as a basis of comparison for numerical results. To
satisfy the primary objective of the project, a general and
useable motion control predictlion model, both analytical and
numerica’ modeling were used.

Experimencal results are presented for a fairwater mcdel

and a sutmersible model of different configurations.
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Theoretical results, based on another part of this GHR
project in which Newman and Rodriguez investigated a linearized
low-aspect ratio slender body theory, are compared with the
applicable experimental results of this project.

Some numerical results are presented also, but are not
final. Continuing modifications are being made to the computer

program for the most realistic results, before a final project

report is submitted to the Navy in early fall 1973.
Dr. Damon E. Cummings was the project supervisor and

L Dr. J. N. Newman was a participating faculty member through-

out this investigation.
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II. BACKGROUND

The design of submersible veh:.cles has changed drastic-
ally since the first successful American military submarine
was built in the 19th century by the Holland Torpedo Boat
Comp~ny. This first vessel, the HOLLAND, had many basic
design features which eventually were reinstituted into pres-
ent day researéh and military submersible designs, especially
since the development and design of the ALBACORE in 1950.
This latter vessel was designed purposely to maximize sub-
merged features at the expense of surface capabilities, emp-
hasizing high submerged sreed and maneuverability.

Particular hydroiynarmic points of interest of HOLLAND
to this investigaticn are:

l. A body of revolution hull form;

2. Little superstructure and no fairwater (sail), to

minimize submerged resistance;

3. Stern planes and rudder surface located at the

vertical centerliine; and

4. Forward hydroplanes not employed.

The oniy features in military submarine and some research
submersible design which have not returned to the HOLLAND
configuration are the retention of the fairwater (sail) and
forward hydroplanes, which are presently located on the fair-

water (sail planes) for both military and hydrodynamic per-
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formance purposes. Some résearch and test aubmersible vehi-
cles have returned to the basic HOLLAND design in all aspecti
in an attempt to achieve an optimum submersible design.

Drag force components on & submersible resulting from

appendages such as control surfaces, fairwater, shafts, and

. struts are of extreme 1ﬁportance when chtaining propulsion

requirements for a particular vessel, but are of relatively
minor importance when investigating stability and control.
Much effort has been placed in this area for the last two

decades to obtain an efficient design. This aspect will not

be pursued in this report.

Present day submersible design has put an extraordihary
requirement qn‘stability and control. Although the military
and research submersibles have vastly different performance
capabilities, particularly the speed spectrums, the require-
ments of precise control and retention of stabllity remain.

In particular, this is true for motions in the vertical piane,
where a submersible must have the abllity to operate, at slow
or high speeds, within a relatively narrow vertical range. |
Full employment of a vessel's depth capabllities is desirable,
but accidental penetration of depths beyond its maximum oper-
ating depth might lead to disaster. Nor 1is accidentéi
broaching of the surface of the water a desirable maneuver in

both the military and the research submersibles. Although
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the horizontal plane is usually not as narrow ranged as the -
vertical, horizontal motions are important, especially in
restricted waterways.

In the vertical (and horizontal) plane there aré basic-

ally four performance criteria: (2)

1. Ability to maintain constant depth (course) with
minimum plane movement and. minimum depth (course)
error;

2. Ability to enter into a maneuver as rapidly as pos-
sible;

3. Abiliiy to exit from a maneuver as rapidly as pos-
sible;

4, Ability to return to equilibrium as quickly as pos-
sible when the controls are returned to zero.

An additional performance criterion only in the horizontal
plane is the ability to execute a steady-turning maneuver

with minimum tactical diameter, advance, cransfer, loss of
speed, and with minimum cross-coupled motions such as roll.

Most recent submarines have been equipped with falr-

water (sall) planes, rather than bow planes, to reduce noise,
alleviate the requirement for retraction, and to gain larger
span dimensions within the submarine block dimensions. . It
has been shown on operational submarines that the drag of
the fairwater planes compares favorably with previously used

bow planes, even though fairwater planes have about 75% more

fo—
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relative area. This same comparison shows 85% more relative
vertical force, although only 20% more moment for fairwater
planes than bow planes, because of the reduction in 1énsth
of the momént arm (2).

For high speed maneuvering, forward hydroplanes are re-
dundant. Depth changes can more readily be obtained by adjus-
ting the angle on the stern planes, rather than applying a
force close to the center of gravity. At low speeds, forward
hydroplanes do meke depth control somewhat easier.

Forward hydroplanes are desirable to help compensate
for the nonsymmetrical hull form in tne veftical plane, re~-
resulting from the fairwater, and to create a hydrodynamic
vertical force and hydrodynamic moment in the vertical plane.

The hyérodynamic effects caused by asymmetry occur even
when the hull body axis is parallel to the inflow velocity
due to drag on the fairwater. 1In order to compensate for this
effect and maintain constant depth, a hull angle of attack
and a stern plane angle must be present, and are referred to
as neutral angles of a particular vessel. These angles depend
on the size of the fairwater and inflow veloclity vector. If
inflow velocity is assumed to be maintalned horizontal, these
angles introduce a pitch angle on the vessel equal to the
hull angle of attack. This pitch angle in turn introduces

a speed-dependent longitudinal metacentric moment, which 1is
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the reason why the hull angle of attack and stern plane angle
are speed-dependent. A critlcal range occurs at very slow
speeds, in which the required angles for constant depth are
too great to be accomplished by the stern planes only. Forward
planes become a necessity at this time to reduce the magnitude
of the requirements on the stern planes.

In the horizontal plane, the performance criterion that
a vessel have the abllity to execute a steady-turning man-
euver with minimum tactical diameter, advance, transfer,
loss of speed, and, in particular, minimum crosscoupled motions
is of extreme importance and will require the major portion
of this investigation for a valid understanding.

Of particular interest are the effects that a fairwater
has on the above performance criterion concerning the steady-
turning maneuver. The fairwater causes an increase in roll
angle during a turn. One reason for this effect lies in the
positions of the center of gravity (G), and center of buoy-
ancy (B) of the vessel with respect to the axis of revolution
of the hull body. When a submersible with a body of revolu-
tion, whose metacenter (M) is at the axls of symmetry because
of wrap-around ballast tanks, is submerged completely, the
waterplane area disappears. When this occurs, the location
of the center éf buoyancy (B) shifts from a position below
the center ot gfaVity (G) to one above. The location of the

center of gravity (G), which has always been located below
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the metacenter for the surfaced situation, is lowered even
more by the added ballast. This low center of gravity, al-
though increasing the roll stability of the vessel, intro-
duces an asymmetry when the body of revolution is acted upon
1 by hydrodynamic forces, in particular during a steady-turning
' meneuver. This occurs whether a fairwater is present or not,

although it is more pronounced with a fairwater.

A r——— .

Fairwaters are located forward of the center of gravity;
therefore, the hydrodynamic effects resulting in the hori-
zontal plane during a steady turn are both stabilizing and
destabilizing. Since the fairwater 1s essentially a 1lifting
surface, 1t develops en effective 1ift force which 1is directed
towards the turning circle center. This force, when combined
with the vessel's velocity vector components, tends to de-
crease the angle of attack, which would be a stabilizing
effect.
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a' = a-falrwater effect
Yet, when this force is combined with the distance forward

of the center of gravity, the resulting moment is destabilli-
zing. It tends to increase the yas moment on the vessel in

the horizontal plane, thus effectively reducing the turning

diameter, which is desirable. However, in the roll-heave

plane, the point of action of the lift force on the fairwater
induces a roll moment on the vessel that is undesirable. The
total roll moment experienced by the submersible is not
entirely due to the fairwater, Part of this roll moment re-
sults from the hydrodynamic side force acting on the body of
revolution above the center of gravity (G), which 1is belcew
the body axis, for stability reasons. Table 5 of reference
2 reports of a model tested with a falrwater at a speed of 20
knots, rudder angle of 35 degrees and in a steady turn, which
resulted in an angle of heel of 1l1.3 degrees. When this same
model was tested without the fairwater, the angle of heel
was reduced, but still present at 2.5 degrees. It was also
shown during these tests that removal of the fairwater increased
the turning . lameter by about 25 per cent.

Although this investigation 1s pursuing the hydrodynamic

effects at constant angles of attack, a brief statement on
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the transient phenomenon of "snap-roll" is of interest.
Snap-roll describes what occurs shortly after the initiation
of a turn, corresponds to the amplitude of the first half
cycle of roll and is believed to be an overshoot phenomenon.
After the snap-roll occurs, the roll angle decreases to the
steady-roll value. Values for snap-roll in the model tests
described in the last paragraph were 39 degrees for the model
with fairwater, and 12.5 degrees when the falrwater was
removed. As before, the effect of the 1location of the center
of gravity below the axls of symmetry is svident (2).

Since snap-roll is sc immediate and of such a large
magnitude on high-speed submersibles, control response time
and knowledge of a submersible's particular characteristics
are of extreme importance. When the snap-roll occurs, 1in
combination with a rudder angle on for the turn. a cross-
coupling results in an effective diving attitude for the
vessel. Although this effect can be alleviated by Jjudicious
handling of available control surfaces, a problem of over-
shoot can arise. As previously mentioned, snap-roll only
lasts for a relatively short period of a turn, after which
the steady-turn phase is incurred. As a result, the effective
diving attitude decreases. If the correction imposed for
snap-roll is not reduced accordingly, the vessel's attitude
will be one of decreasing depth, with an extreme result of

broaching.

. S . . oo com cm M’
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III. HMETHODOLOGY

The purposes of the experiments reported on in this
project were to investigate the hydrodynamic forces and mom-
ents that act on a submerged vody in a steady flow both on
a symmetrical slender body and on one to which appendages
were added,

Possible methods were also investigated to redistribute
the forces and moments to alleviate undesirable hydrodynamic
effects caused by asymmetry, which 1s present in most sub-

mersible designs.

Measurement of Hydrodynamic Effects

Tests were conducted in the Variable Pressure Water
Tunnel (see Appendix A) located in the Hydrodynamics Labora-
tory at M.I.T., see FPigure 1. Measurement of the forces and
moments on a particular model is accomplished through the
dpplication of a dynamometer which has six degrees of freedom,
see Figures 2 and 3. These six degrees of freedom can be
measured with respect to any point along the helght of the
test area. A computer program is used to deduce the three
forces and three moments on the model being evaluated (see Ap-
pendix B). Por the model tests covered in this project, co-
ordinate systems were located at the center of the test area,

along the axis of revolution of the submersible model,
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see Figure 2, and at the tunnel wall, base of the fairwater

model, see Figure 3.

Hydrodynamic Notation of Dynamometer Coordinate System

(With respect to model, about end of shaft)

2

Surge - applied force on longitudinal axis

FY

Heave

applied force on vertical axis

FZ - Sway - applied force on transverse axis

MX - Roll - moment applied about the longitudinal axis
MY - Yaw - moment applied about the vertical axls
MZ - Pitch - moment applied about the transverse axis

Note: FXO, MXO, FZ0, MZO, FYO, MYO are s!multaneously-computed
hydrodynamic effects from "general" dynamometer program
fer evaluation of model test in which results are

- desiged with respect to water tunnel flow (free stream
flow).

Experimental Models
Two differeat models were designed and built to measure

the hydrodynamic forces and moments on a submerged body after
symmetry to tunnel water flow is iost by the addition of
appendages (fairwaters, control surfaces) and increased angle
of attack (anéular difference between free stream flow and
body of appendaée line of symmetry).

The two models include:
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A) A streamlined body of revolution (tear-drop uﬁape),
with detachable fairwater sail and stern section, see Figures
la, 5a and 6, to investigate the interaction effects of
hydrodynamic forces and moments between a submersible hull,
fairwater and control surfaces at various angles of attack
and velocities (model hull and fairwater were constructed out
of lucite; stern section and con;rol surfaces were constructed
out of brass’.

The hull was constructed with a length (L) of 24.5
inches, a maximum diameter (D) of 3.5 inches occurring at a
distance of 9.8 inches from the bow, resulting in a L/D
ratio of 7.0. This slenderness and a fine stern should prevent
most separation, and also enhance the applicability of slender
body theory. The support shaft was located at a distance,
from the bow, of 40 per cent of the model length; and

B) A fairwater with detachable and independent control

surfaces, see Figures 4b, 5b, 6 and 7.
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Construction of Fairwater and Control Surfaces

In conjunction with both model experiments, foll shapes
were required for fairwater and control surfaces, The lucite
fairwater (submersible model) and planes (fairwater model)
were produced on a manual milling machine, from offsets
developed from a computer program for this particular project
(see Appendix C). This computer program is in a general form
to meet any particular designs of thickness, chord length,
taper, setback and foll design (NACA___ ). This program cal-
culates steps of thickness along the length of chord and span
to be milled. These depths of cut are determined by foil
geometry, end mill size and step size between milling runs,
After milling of the step functions, the foil is finished by
hand. '

The stern control surfaces (submersible model) were
produced on the Gugger Profile machine, located in the {as
Turbine laboratory shop of Building 31 (Sloan Laboratories).
This machine requires a 4:1, plus 1/2 inch, scale model of
aﬁrface to be developed, and is limited in the width of
model fed between cam follower surface. Extra 1/2 inch is
added on to compensate for abrupt changes in model shape
(trailing edge).

Since the rudders used for the submersible were of foil

shape, with no taper or setback, a simplified model (cam) was
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made of an NACA foll shape, see Figure 8. Extended lengths
of the foll shape can he produced and divided into varlous
lengths of span. Cam followers are adjustable, so foll
chord and thickness dimenslons can be varied within limits,

while using the same model (cam),




Figure 1 Variable Pressure Water Tunnel control

and test section.
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Figure 3 Fairwater Coordinate System
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a, Streamlined body of revolution (tear-drop shape)

(1) without fairwater
(2) with fairwater

{Tunnel watler
f1low)

(1) (2) /<°( ‘/(3)
4

(Tunnel watg; flow)

" b, Fairwater design

(1) without control surfaces

(2) with control surfaces, at same angle of attack (o’)

(3) with independent control surfaces, port side
positive, and starboard.stbd) side negative.angle

of attack (o<').
Figure 4 Model orientation
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a.0blique view without b.Side view without fair-
" fairwater (Clean Hull). water (Clean Hull).

c.0blique view with fair- d.Side view with fairwater.
water.

Figure 6 Submersible model
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a.Side view of fairwater, without control surfaces. (Note
support and guide locations used with control surfaces)

o

b.Oblique view, with control c.Front view, with control
surfaces at o' = 00, surfaces at &' = T 200,

% . N oy

d.Oblique front view, with e.0Oblique rear view, with
control surfaces at ' = control surfaces at o' =
% 200, $ 200,

Figure 7 Fairwater model
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IV. SUBMERSIBLE MODEL EXPERIMENTAL RESULTS

To experimentally investigate the hydrodynamic forces
and moments on a submergeq body of revolution, anl how these
effexts are altered by the addition of appendages, the follow-
ing different model configurations were tested:

L g ey

1. clean hull (no appendages)

it s

2. with fairwater

3. with fairwater and upper rudder

4, with fairwater, upper rudder and lower rudder.
Flow velocities of 10, 15 and 20 feet per second were used,
: and angles of attack in the yaw-sway plane were varied be-

tween ¢ 25 degrees for tests evaluated at 10 feet per second,

and + 15 degrees for tests'evaluated at 15 and 20 feet per
second.
E -Caution musp be used when interpreting the experimental
results obtained during this investigation. All phc¢*ographs
and graphical displays of the results are shown according to
the coordinate system previously des:ribed. Therefore, it
must be kept in mind at all times that the model and results
are inverted, since the model 1s mounted upside down on the
top of the tunnel.

The support shaft used during the submersible model
testing was evalvated by testing a bare shaft to determine

C e A ——
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the forces and moments it would experience in the water
tunnel. These effects were then deducted from the model
test, to obtain results representing only the model. The
interactions caused by the shaft on the hull and control sur-
faces were not investigated, but must be considered when
interpreting the experimental results. Also, the lower pres-
sure at the exposed end of the base shaft, caused by the flow

pattern past the shaft, was not considered.

Tunnel
Flow

Srn————
ST —e——
EmE————
SEet—
:::: Lower Pressure

Heave Force (FYO)

l. Shaft Effect

Although the heave force on a bare support shaft, verti-
cal and perpendicular to the flow, should have a constant
value with respect to angle of yew, the results obtained
fluctuated and decreased for negative =ngles, see Figure 9.
This is most likely a result of measuring accuracy of the
dynamometer load cells used. An approximation was made to
obtain a constant value of heeve to be deducted from each

model results, to alleviate the shaft effect. These values

" —————REEES. i
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were:
1) 1 1b, for a velocity of 15 ft/sec
2) 1.7 1b, for a velocity of 20 ft/sec

2. Model Resuits

When configuration 1 (clean hull) is tested, an initial
negative heave force 1s registered at zero angle of yaw.
According to the coordinate system used, this would appear as
a downward force if the model were right side up. As the
model 1s adjusted for both positive and negative angles of
yaw, a symmetrical increasingly more positive result occurs,
see Figures 10 and 11. There should not be any heave force
on this symmeprical model configuration, but the results could
possibly be caused by the model not being perfectly aligned
in che tunnel test area, or suppprt shaft interaction with
the flow around the body.

Configuration 2 (with fairwater) induces a drastic
change in the pattern of the heave force imposed on the model.
The results follow that of cpnfiguration 1l up to + 5 degrees
yaw. After + 5 degrees, the slope decreases rapidly, re-
versing and producing a heave force at + 10 to + 15 degrees
yaw comparabie to that experienced at zero angle of yﬁh, see
Figures 10 and 11. Thus it would appear that the addition of
the fairwater and its resulting trailing wake induces a cir-

culation and velocity on the hull body which generates a
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decreasing slope of heave force per degree yaw in the coord-
inate system used. This is comparable to an increasingly
large force downward, if the model were in an upright position.

The sensitivity of the results can be seen from Figure
12, in which results of tests 3 and 5, conducted on different
days, were compared to see if they were compatible. The
magnitude of test 5 varied, but the curve followed the same
characteristic pattern as test 3. This difference in magni-
tude could result from a small difference in model alignment
in the water tunnel or variation in the calibration of the
dynamometer system on different days.

When configuration 3 (fairwater and upper rudder) and
configuration 4 (fairwater plus both rudders) were tested,
there appeared to be no effective change from the result of
configuration 2, see Pigures 13 and 14. The circulation
and trailing wake off the rudders did not have any afterbody

on which to induce a heave force component.
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Pitch Moment (MZ)

1. Shaft Effect

Since the pitch moment on the base shaft should decrease
with increasing angle of yaw (g), the reduction factor (cos a)
can be assumed to be unity'for the fange of deflection at
which the shaft was evaluated (zero to + 15 degrees). There-
fore, the reduction for the shaft effect is assumed to be
constant, and a mean value of the experimental results, at
different velocities, can be deducted from the model test
to arrive at values of pltch moment, for the different model
configurations, which approach that of a non-supported model.
The resulting mean values were:

1) 40 in-1b, for a veloclty of 15 ft/sec, and

2) 71 in-lb, for a velocity of 20 ft/sec, see Figure 15.

2. Model Results

Pitch moment on the various model configurations followed
the same pattern of results obtalned for heave force. Con-
figuration 1 (clean hull) produced a negative moment at zero
angle of yaw and a steadily increasing moment, with a de-
creasing slope, as yaw angle is increased, see Figures 16
and 17. The nggative moment at zero angle of yaw could be
caused by model alignment, or shaft interactions. The flow
past the shaft éauses a high pressure area at the forward

stagnation point and a low pressure area on the aft portion
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of the circumference. Fairwater drag would also produce a
similar effect, but the magnitude of the negative moment was
equivalent to that obtained for configuration 1 (clean hull).

Conriéuration 2 (with fairwater) produced an increasing
moment, which followed the results of configuration 1 between
about + 5 to + 10 degrees, after which the pitch moment de-
creased, as fast as 1t nad increased, see Figures 16 and 17.
This result would be comparable to a submersible, in an up-
right position, experiencing an initial bow up pitch moment
at zero angle of yaw. This 1s due to shaft-hull interaction,
a minor model misalignment in the vertical plane, or possibly
miscalibration of equipment. This is followed, with increas-
ing angle of.attack, by a bow down pltch moment, caused by a
1ift force on the hull aft of the fairwater. This 1s finally
succeeded by a bow up pitch moment, resulting from the drag
component of the falrwater, and the circulation and induced
veiocity from the fairwater on the aft section of the hull
body.

As in the heave force results, pitch moment did not seem
to be affected by the addition of the upper rudder (configur-
ation 3), see Figures 18, 19 and 20, or when tested with both
rudders attached (configuration 4), see Figures 19 and 21.
Their induced velocities have very little effect on the hull,
which precedes them in the fluid flow, and thelr wakes have

no afterbody to affect elther.
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‘SIDE YORCE (FZ)
1. Shaft Effect

The side force on the bare shaft, although relatively
small, was a linear function, and increased with angle of yaw
and flow velocity, see Figure 22, The slopes of the lines
obtained experimentally were:

A. 1.5 1b/10 degrees = .15 1lb/degree, for 15 ft/sec,

"B. 2.4 1b/10 degrees = .24 1lb/degree, for 20 ft/sec.
An approximation of .05 1lb/degree was made for the slope

expected for a velocity of 10 ft/sec.

2. Model Results

Every madel configuration tested resulted in a side
force that increased linearly with angle of yaw and flow
velocity. The total side force on a configuration was due to
appropriate contributions of side force on the symmetric body
of revolution, the falrwater and the rudders, see Figure 23.
The side force on the body of revolution results from viscous
effects, changes in the crossflow pattern along the length of
the model, separation of the flow past the body, and inter-
action with the fairwater. The falrwater and rudders are
essentlally l1lifting surfaces that generate a side force com-
ponent when ﬁlaced at an angle of incldence to the flow.

The r:suiting slopes for the configurations tested

were:




-

Configuration Velocity Slope Reference Figure Number
- (ft/sec) (1b/degree) C

1 15 .50 24
1 20 1.05 25
2 15 1.70 24
2 20 3.20 25
3 15 1.90 27 §
3 20 3.30 28 |
4 .10 .94 26 |
4 15 2,00 27 ?
4 20 3.40 28

Although the addition of the fairwater (configuration 2) é
resulted in a step increase of the side force from that ot
the clean hull (configuration 1), the addition of the upper
rudder (configuration 3) and the lower rudder (configuration
Ii) resulted in relatively no increase of the side force on
the body. The reason for the latter result was found by
investigation of the flow past the body. A flow visualiza-
tion method was used in which the hull body, fairwater and




T T T —_— -

=45=

rudders were tufted, in order to observe and photograph the
flow at various angles of yaw, see Figures.29, 30, 31 apd

32. The flow past the forward portion of the model showed
the increasing crossflow component resulting from increasing
angle of yaw as seen by the angle of deflection of the tufts
from the body axis., Yet, the flow past the aft portion of
the model appears as that observed for a reduced angle of yaw.
The difference between these two sections 1s the location of
the fairwater. The change in the flow pattern,resulting from
the fairwater shedded wake and its induced velocity, reduces
the effective angle of yaw on the upper rudder. The upper
rudder 1s defined as that which is on the same side of the
submersible as the fairwater.

The lower rudder, on the opposite side from the falrwater,
experiences a similar effect due to the presence of the
support shaft, but the magnitude 1s not as great. The flow
visualization test was performed at three water tunnel velocl-
ties - 10 ft/sec, 15 ft/sec, and 20 ft/sec - and until separ-
ation on the fairwater and both rudders occurred. The flow
patterns and initiation of separation on the 1lifting surfaces
did not depend on flow velocity, but only on angle ;f yaw. The
initiation of separation occurred at different angles of yaw

for each of the three lifting surfaces. Separation on the

fairwater was observed at an angle of yaw equal to 16.5 degrees.

At this angle, nei’her of the rudder surfaces showed any

s il
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signs of separation. Separation on the lower rudder appeared
when the body of the model was placed at 20 degrees yaw
angle. The upper rudder still showed no signs of separation.
The angle of yaw was increased until separation was observed
at a model yaw angle of 29 degrees, see Figure 32¢. Figure

324 was included to show the flow pattern along the model at

a negative angle of yaw (15 degrees).
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i ROLL MOMENT (MX)

The roll moment or a submerged body of revolution at an
angle of yaw, with and iithout appendages, is a direct result
of the sice forces (FZ) previously reported and the relative
location of their concentrations with respect to a reference
point. For an actual submersible, the reference point would
be the center of gravity, which would be below the body axis
of symmetry. The reference point for the model tested was at

the origin of the coordinate system, which is on the body axis

of symmetry. i

1. Shaft Effect
F The roll moment obtained on the base shaft decreased with é
b an increasing angle of yaw and increasing flow velocity in a
linear fashion, scze Figure 33. When a linear result was ap-
proximated, the slopes of the lines formed were:
A. Slope = -7 in. 1b/10 degrees = -.7 in. lb/degree,
for a velocity of 15 ft/sec.

4 B. Slope = -13.5 in. 1b/10 degrees = -1,35 in. lb/degrees, é
for a velocity of 20 ft/sec.

2. Model Results
Model configuration 1 (clean hull) is symmetrical in all
respects, unlike an actual suomeisible of comparable configur-

ation, whose center of gravity is belzit The body axis, for
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roll stability. This caused an experimental result of zero
roll moment for the clean hull at all angles of &aw and all
velocitlies evaluated, see Figures 34 and 35. 1In actuality,
a roll moment would occur on a submersible, due to the
asymmetry described above. This fact 1s reflected in the
results of all subsequent configurations, in the form of a
difference in total .agnitude of roll moment.

With the addition of the fairwater (configuration 2), an
increasing roll moment 1s encountered with both increasing
flow velocity and increasing angle of yaw, see Figures 34 and
35. The increase was approximately linear with the following
slopes:

A. Slope = 28 in. 1b/10 degrees = 2.8 in. 1lb/degree,

for a velocity of 15 ft/sec.

B. Slope = 54 1n..1b/10 degrees = 5.4 in. lb/degree,

for a velocity of 20 ft/sec.
A decrease in the magnitude of the roll moment and a reversal
of slope was noticeable when the model was placed in a yaw
angle of about 15 degrees. This was caused by the separation
on the fairwater, and the resulting loss of side force (lift
component).

Configuration 3 (with fairwater and upper rudder) pro-
duced very little change in the roll moment on the model, see
Figures 36 and 37. This is a result of a decrease in the

effective angle of yaw on the rudder by the perturbations in
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the flow due to the fairwater and its shedded wake, see
Pigures 29, 30, 31 and 32 for flow visualization. A decrease
in moment, caused by separation on the fairwater, was experi-
enced again ét about 15 degrees yaw ang;e.

Configuration 4 (with fairwater and both rudders) de-

' creased the magnitude of the roll moment, but only slightly,

see Figures 36 and 37. A greater reduction in roll moment
should have been obtained for the lifting surface added, but
as in configuration 3, the effective angle of yaw on the
1lifting surface (rudder) in question was reduced. In this
case, the support shaft sheds a wake, which interacts with the
in-flow velocity on the lower rudder. A similar loss of lift
on the fairwater, as in configurations 2 and 3, was obtalned

for configuration 4.
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YAW MOMENT (MYO)

l. Shaft Effect
No shaft effect was, or should be, obtained for yaw
moment, as this moment 1s measured about the shaft axis of

symmetry.

2. Model Results

Configuration 1 (clean hull) produced a linear result
that increased with increasing angle of yaw and flow velocity,
see Figure 38. Yaw moment components resulted from form drag
and changes in the cross flow pattern along the length of the
model. The resulting slopes for the two velocities evaluated
were: _

A. Slope = 43 in. 1b/10 degrees = 4.3 in. 1lb/degree,

for 15 ft/sec,

B. Slope = 80 in. 1b/10 degrees = 8.0 in. 1b/degree,

Tor 20 ft/sec.

When the fairwater (configuration 2) was added, there
appears to be no effect until a yaw angle of 4 degrees is
reached. Then, the yaw moment Increases at a greater rate
until the fairwater incurs sepdration {about 15 degrees yaw
angle) and the yaw moment decrcvases until it reaches the
magnitude obtained for the clean hull at that angle of yaw,
see Figure 39.

When corfiguration 3 (with fairwater and uprer rudder)
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was tested, the magnitude of the yaw moment was decreased
8lightly due to the opposing yaw moment component from the
upper rudier, see Figure 40. The yaw component from the
rudder would have been larger if the fairwater had not caused
any interaction, as previously described, to reduce the side
force on the rudder. This configuration follows the same
pattern as configuration 2; it incurs a rapid change in slope
when the falrwater separates, but at a lower magnitude.
Configuration 4 (with fairwater and both rudders) pro-
duced a very powerful effect on reduction of yaw moment, see
Figure 41. The side force developed by the addition of the
lower rudder, combined with its moment arm, produces a yaw
component that eventually supercedes that caused by the fair-
water and férward portion of the body of revolution. When
this model configuratioﬁ was tested at an extreme yaw angle
of 25 degrees, in both directions, and a flow velocity of
10 ft/sec, the resulting yaw moment was zero. The result for
positive angles of yaw can be seen in Figure U42. Negative

angles of yaw produced symmetrical results.
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V. FAIRWATER MODEL EXPERIMENTAL RESULTS

The second set of experimen’s conducted in the M.I.T.
Variable Pressure Water Tunne’ ‘sted of testing the fair-
water model, without control surfaccs and then with control

surfaces attached. The control surfaces were attached to the

fairwater by means of a shaft through both the control surfaces

and the fairwater. The shaft was used for transferring hydro- |
dynamic forces and moments on the control surfaces to th<
fairwater, in effect, to the body of the submersible. To
control and rniintain particular angles of attack of the control
surfaces, a gulde pin was instailed on each of the two separate
control surfaces, between the location of the shaft and trail-
ing edge. Guide holes were placed on each side of the falr-
water for angles of attack to be evaluated, see Figure T7a.

The particular angles of attack of the control surfaces (g')

©, +15°, ana +20°.

tested were: 0°, i5°, +10
Six different tests (configurations) were conducted on

the above model, and consisted of:

Test 1 - falrwater clean. no control surfaces, see Figure T7a;

Test 2 - falrwater, with control surfaces at o' = 0°, see
figure Tb;

Test 3 - falrwater, with control surfaces at opposite angles
of attack, a' = + 5°;

[
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Test 4 - fairwater, with control surfaces at opposite angles
of attack, o' = + 10°;
Test 5 - falrwater, with control surfaces at opposite angles
of attack, o' = + 15°%;
Test 6 - falrwater, with control surfaces at opposite angles
of attack, a' = + 20°, see Figures Tc - e.
Each test considered fairwater angles of attack (a)
from 0° through stall on both sides of the falrwater, to cover
the full spectrum of possible configurations, see Figure 43.
The purpose of these tests was to determine the hydro-
dynamic effect of using falrwater control surfaces independent
of each other to generate side forces and moments to help
alleviate the roll-moment (MZ) and side forces (FZ) caused by
angle of attack (a) in yaw of the fairwater, which is the same
as that of the submersible. These control surfaces are located
as close as possible to the fairwater tip, contrary to usual
practice on current submersible design.
These tests were developed into more meaningful results
by transforming the side forces (FZ) and roll moments (MZ)
of the fairwater to the center of an imaginary submersible,
tc evaluate only the effects of a fairwater and control sur-
faces on a submersible.
An imaginary submersible moment arm, in the vertical
plane, was obtained by scaling the falrwater model with that

of an actual submersible. The resulting roll moment:
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Net Roll Moment = MX + (FZ)-(R),

where: MX = roll moment at falrwater base

FZ = side force at fairwater base

N R = imaginary submersible moment arm = 6.3", :
= = ]
o 'H-—O-Fz
e b '
'[ MX “ R
"R 1 ' |
\ /)
\\s —”

The results were: for an increasing angle oi attack ( o)
of the control surfaces, the effective angle of attack (a) of
the falrwater (submersible) in yaw is reduced. For a maximum
angle of attack (a') of #+ 20°, the reduction is approximately
4.5° for the first serles of model test, see Figures 44 - 49,

Thls first series of tests of the fairwater used control
surfaces with non-taperec¢ tips. A second series of tests was
perfor:ied with tapered end tips added, to alleviate some of
the possible drag of the flat-ended configuration of the con-
trol surfaces. The results of this second series of tests
showed an increase in desired effect, or a decrease in effec-
tive angle of attaca of the fairwater from the first series of
tests. This difference in the second test was approximately
aC beyond the first, see Figures 50 and 51.

Compatible results for 1lift (FZ0 - component perpendicu-

lar to tunnel flow) and drag (FXO - compcnent parallel to

B
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tunnel flow) on the falrwater model for the flat tip and
tapered tip fairwater control surfaces are given in Figures

52 - 59, and Figures 60 - 63 respectively.
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VI. THECRETICAL BASIS FOR NUMERICAL MODEL

In developing a numerical method for predicting the flow
characteristics, and eventually the forces and moments, on a
submerged body of revolution, it was necessary to use poten-
tial flow as the basic theory. Therefore, simplifying assump-
tions of an ideal fiuld were initlally required of the flow:
inviscid, incompressible, homogeneous, and irrotational. The
submerged body, in thils case a slender body of revolution, is
approximately represented by the combination of twe different
appropriate distributions. To model the flow along the longl-
tudinal body axis, a distribution of sources and sinks was

constructed along this axis to form the closed body.
Y STAGNATION

U
/ p— POINT

SOUARCE

\— DIVIDING STREAMLINE
In order to setisly the crossflow along the body, result-

ing frcm an angle of incidence between the body axis and free

stream, a dictribution of doublets was similarly placed along

the body axls.
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| BODY SURFACE
The basis of the approach used for lifting surface cal-

culations was the linearized two-dimensional hydrofoil theory
for a thin foll and the law of'Biot-Savart, which is a gov-
erning relationship for an induced velocity in space by a
three dimensional vortex.

Using the linearized two-dimensional hydrofoll theory
for a thin foil with the required assumptions of no separa-
tion, and the Kutta condition imposed on the trailing edge,
the 1ift force and moment resulting from the hydrodynamic
pressure can be obtained. This result, Kutta-Joukowski
theorem, states that for a two-Gimensional body, moving with
constant velocity in an unbounded inviscid fluid, the hydro-
dynamic pressure force (1ift) is directed normal to the veloc-
ity vector and is equal to the product of the fluid density,

velocity, and the circulation around the body.
L = pUr' = 1ift/unit length of span
Circulation (I) is defined as the integrated tangential

velocity aroqnd the closed contour, in this case a lifting

surface, in a fluid, With the standard hydrodynamic reference
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orientation used: !’
Sep— ﬁu
N
X,U X,
Z,W Z W
Circulation, T -jphdx, where u = horizontal perturbation

velocity component

U = free stream velocity
component

The hydrodynamic moment about the y-axis is represented

by the pressure integral:

M= pr uxdx

The coordinate system used during the experimental portion
of this project required the above system to be rotated 180
degrees in the horizontal plane, to be compatible with the
water tunnel construction and dynamometer program.

In order to satisfy the presence and the effects of 1lift-
1ng‘surface appendages (fairwater and rudders) and the dis-
continuity in pressure, pressure loading across these surfaces

was modeled by a distribution of vorticity. The axis for each

distribution of vorticity is on the center plane of the
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representative 1lifting surface and normal to the incoming
flow, and this vorticity is referred to as a bound vorticity
distribution. To fulfill continuity of vorticity, an
additional distribution of vorticity, whose axis 1s on the
representative 1lifting surface and parallel to the incoming
flow, was required. This latter distribution is referred to
as trailing vortices, or more commonly, trailers. Trailing
vortices extend to infinity in the wake formed behind each
respective lifting surface, while the effects of the bound
vortices are only experienced on the 1lifting surface itself.
The thickness of the lifting surfeaces described above
could be represented by a distribution of sources and sinks
of appropriate strength, but were defined as being of zero

thickness.

Effective Span of Lifting Surfaces

Since the lifting surfaces are each connected to the hull,
essentially a curved ground board, an effective span length
must be calculated for a valid modeling. This was accomplished
using a relationship from Milne-Thomson (3), in which a
distance from the body axis to the new effective basewls
generated. ‘This distance is equal to the ratio of the actual
hull radius, at the mid-point of the actual base of 1ifting

surface, squared, divided by the maximum radial distance from

S e a—

.
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the body axis to the lifting surface tip.

FAIRWATER EXAMPLE:

{ 77777
EFFECTIVE
LIFTING /
//SIIRF‘ACE / HULL SURFACE
? RSL (1) RHS RWIS _-..~.-"‘-\
; , RWIS= (RHS)Z
RSL (1)

Effective Span of Fairwater = SPNS = RSL(1) - RWIS

s G o

The image system is based on the theory that when a pair of
two dimensional vortices of equal and opposite strength are
located on the same radial line, there is no normal induced
velocity on a circle of radius RHS, if RSL 1s equal to the

radius of the outer vortex, and RWIS the radius of the lmage

vortex.
‘f 1 | O r

% RSL (1)
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By using this image system for the fairwater and rudder(s),
the so0lid boundary condition of the hull 1s satisfied.

The technique used, distribution »f vorticity, is similar
to a method developed by Fa %ner for 1lift distribution of
wings (4, 5, 6, 7, 8). A continuous distribution of bound
and trailing vortices 1s replaced by a discrete element
approximation, in which a lattice uf horse-shoe shaped dis-
crete vortex lines are used. The lifting surface 1s divided
into a series of finite rectangular elements in which the
1ift 1s considered to be constant within each element, and
each element is a horse-shoe of the total lattice, see Figure
64. As the number of elements chordwise and spanwise is
increased, the approximation to the actual surface 1s refined.
The trailling vortex sheet formed is assumed, as a first approxi-
mation, to remain a flat sheet to infinity downstream while
the sheet angle to thae vehicle longitudinal axis is adjustable.
A selecved minimum number of control points are then system-
atically located chordwise and spanwlse midway between vortices
on each lifting surface. At the control polnts, the induced
velocity by each horse-shoe lattice element is determined by

integration using the Biot-Savart law:
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Figure 64 Vortex Lattice
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where I' = vortex strength

S = vector distance from vortex
element to contrcl point

dl = vector element of distance
along the vortex

x|
"

vector-induced velocity of an
element.

% The bound vortex strength of each element is first

| numerically solved using 2 modes of distribution spanwise

i : and 2 modes chordwise; one of a flat plate and the other for
f camber over the various chord lengths along the length of the
E : effective span.

| To insure zero slope, but not necessarily zero value of
the circulation at the actual hull surface, an approximated
series form for the bound circulation was taken from Kerwin

and Leopold (9). This series:

J
: 1
3 nondimensional 2
circulacion = G(q) = (1 - q°) E a,q (23 - 2)
J =1
E
: r-r
where q =
l - rh

r = radius of image vortex (RWIS,RWIR)

r, = radius of hull (RHS,RHR)

R e s ©
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aJ = unknown coefficient to
be determined from
modal distributlions

Since the strength of a trailing vortex of an element is
equal to the difference in bound circulation between adjacent
bound vortices, as a vortex may not end in a fluid, the

vortex strengths are readily calculated also.

Using the law of Blot-Savart, and the bound vortex
strengths just calculated, the induced velocities of each
element on each of the control points of the 1lifting surface
are calculated. Then, the same method is repeated for the
induced velocities resulting from the trailing vortices.

The number of control points used should be a minimum,
yet retain-accuracy, to reduce the size of the resulting mat-
rix of inauced velocities that 1s eventually developed for
each lifting curface, to reduce computation time. Although
accuracy should be improved by a greater number of control
points and smaller horse-shoe element size, a point of

diminishing return will evenvually occur, and care must be
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taken not to allow the matrix, a set of simultaneous linear
equations, to become too nearly singular to be solved numer-
ically.

Since the bound and tralling vortices do not yleld the
total induced velocity on the lifting surface, the tralling
wake of the surface in question, the hull, and other adjacent
1ifting surface wakes must also be considered and their
effects combined.

The induced velocity on the control points from the wake
of the surfaces 1s determined by the Bilot--Savart law with re-
spect to the control points. The 1nduced velocity on the
1ifting surfaces from the hull results from the singularities
used in developing the hull model and the potentlal flow around
it. The sources and sinks do not cause any induced veloclties,
but the crossflow compensating doublet distribution along
the body axis does contribute induced velocity normal to the
lifting surfaces. These velocities are developed from the
doublets distributed at the corresponding locations .. the
1ifting surfaces with respect to the body axlis, Thelr effects
on the previously-designated control points are deduced by an
equation which 1s a function of the crossflow velocity, and the
ratio of body radius and perpendicular control point distance.

from body axis at corresponding points on the body axis. This

relationship:’

15k ’

s YT




where:

WDS = induced velocity of doublet

R = hody radius at XCP (long. location of
control point)

YCP

vertical location of control point

W(x) = crossflow velocity

is the component ncrmal to the 1lifting surface of the velocity

-

due to a doublet in a uniform crossflow, and 1s found by
differentiating the potentlal of the doubiet (10).

The wake of each lifting surface connected to the body
also produces'induced velocities on all other 1ifting surfaces
and the hull. The magnitude and relative importance of each
induced velocity is based on the relative distance and loca-
tion of the wakes with respect to the other surfaces, and 1is
determined by the Biot-Savart law. In the numerical proced-

é ure developed for this proJect, (see Appendix D), the effect
of the rudder wake on the falrwater is assumed to be neglig-
lble, because of 1its relative location, and was not considered.

The combined induced velocities at each control point of
a particular lifting surface result in a set of simultaneous
linear equations, a matrix of induced velocities, which

relate:
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(1) the modal vortex strength of the lattice elements to the
lifting surface shape;
(2) wake effects;
(3) applicable effects of other lifting surfaces (wake, sur-
face); and,
(4) the induced velocity of the hull doublet distribution,

based on inflow velocity and yaw angle.

The different mode strengths for each lifting surface are then
generated for subsequent development of force and moment
calculation.

The hydrodynamic forces and moments on the hull result
from induced velocity contributions of each lifting surface
wake, the crgssflow velocity, source and sink distridbution,
and doublet distribution,

As before, the induced velocity imposed by each wake on
the hull is found by the Biot-Savart law, at each station alongz
the body axis. This externally-induced velocity i1s combined
with the crossflow, or sway, velocity to give a total exter-
nally-induced velocity at each station on the centerline.

The induced forces and moments at each station are deri-
ved using the above externally-induced velocities as a major
governing parameter. Using a relationship from McCreight
(11, 12) based on Lagally's theorem, the resulting force
on a source-distribution of constant strength per unit

length along the body axis, when subjected to the above

MK AE TSNS gimiabr s ot €1 i wmm aven Tt g o
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externally-induced velocity, is equal to:

NSTA
upE St (M)W (M)
1l
where:
U = free stream velocity
P = density of fluid

S'(M) = slope of hull surface at input point M;
M = station number

W(M) = externally induced veloclty
NSTA = number of stations

The slope of the hull surface (S'), being a measure of
the change in area per unit length, is also the source strength
at the station in question. <The moment due to the source dis-
tribution is found from the numericallye-integrated product
of the force at a station and distance from axial reference
point.

Since the doublet distribution does not contribute a
force when an induced velocity 1s imposed, we are only inter-

ested in its moment contributions. Using a method introduced
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by von Karman (1930) for crossflow past airships and the

assumptions:

1) uniform crossflow in the transverse plane; and,

2) body and flow radius do not change drastically along the
body axis;

the crossflow effect can be represented by the flow past a

circular cylinder in which the doublet strength is equal to:

y (x) = - % r? (x)W(x)

where:

r(x) = body radiis at cross-section

W(x) = externhally induced velocity (crossflow)

Since the doublets with a vertical axis are in a horizontal
uniform velocity stream U, the moment is equal to -4mpy (x).
When this moment is integrated over the length of the body

axis the resulting integrel is formed:

M=2 wpUSrz(X)W(X)dx
X

This is numefically approached by calculating the
surface crea at each station and knowing the crossflow

velocity W(x) at each station.




-112-
Since the above two models, of sources and doublets,
do not account for viscous effects - separation of flow

around the body and crossflow drag -
BODY SURFACE

SEPLRATION W(x)

consideration and provisions must be made to compensate for
thls failure, as the effects are significant with respect to
some of the hydrodynamic forces ani resulting moments acting

on a submerged body in the steady state case. A first approxi-
mation is made by adjusting with a linear distribution factor
(FAC) along phe portion of the body length aft of the coordi-
nate system reference point. This adjustment is accomplished
by a factor which increases the force and moment effect of

the sinks, and decreases the moment due to the doublet dis-
tribution aft.

The forces on the 1lifting surfaces are found by numeric-
ally integrating the four spanwise modal circulation effects
to obtain the circulation along the effective span, and, in
accordance with the Kutta-Joukowski theorem, datermine the
11ft (side force) caused by the fairwater and rudder(s) separ-
ately.

The moments resulting from these lifting surfaces are




FT ey ety v

~v———————— s

-113-
determined from the numerically integrated product of the
spanwise modal circulation effects and the apprOpriaté chord-
wise moment arm, based on the center of pressures for the -
flat plate and camber modes along the chord.

The total force and moment experienced on the submerged
body is obtained from the vector summation of each individual

component calculated.

Total Side Force = Rudder(s) Side Force + Fairwater Side
Force + Source Side Force
Total Moment = Rudder(s) Moment + Fairwater Moment +

Source Moment + Doublet Moment

An atfempt to model heave force and pitch moment is made
by taking the induced éirculation around the hull caused by
the strength of the traller-forming wake off the external
portion of the actual fairwater span. The Kutta-Joukowskil
theorem again is used to determine “he heave force and pitch

moment .
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VII. COMPARISON OF EXPERIMENTAL SUBMERSIBLE RESULTS

A. NSRDC Model Test

A model test was conducted at the Naval Ship Research
and Development Center (NSRDC) to investigate the forces and
moments on a submerged body of revolution for various rudder
aspect ratios. The final results of this investigation have
nuc been completed, and only preliminary results of the clean
hull configuration were comparable with tliese experimental
results. Lateral force coefficients and yawing moment co-
efficients were calculated and plotted for all submersible
model configurations for comparison when the firal NSRDC
results are abailable, see Figures 65 - 71. The clean hull
results obtained for thié experiment were about 40 per cent
higher for lateral coefficients, but showed only minor dif-

ferences for yawing moment coefficients.
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B. Newman-Rodriguez Results

Theoretical results obtained by Dr. J. N. Newman and
Neptune Rodriguez from an investigation of a linearized low
aspect ratio slender body theory are presented for comparison
with experimental results, see Figures 72 and 73, taken from

(13).

Lift Coefficlent = C, = L
L 2.2
p by, Uarm

where:

[
]

1lift force, perpendicular to flow
fluild density

o
©
] L]

radial distance to tip of fairwater

<
]

flow velocity

o = yaw angle,

Configuration 2 (with fairwater)

[0)
— = .35“
b0
b
e
o}

Cp, (experimental) = .33, using Figure 74
CL (Newman-Rodriguez) = .375
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Configuration 3 (with fairwater and upper rudder)

r

0
— = v35u
bO

= 417

ol

CL (experimental) = .445, using Figure 75
Cp (Newman-Rodriguez) = ,270

Configuration 4 (with fairwater and both rudders)

r
Q
— 035“
bO
b .
t
e 0417
bO

Cp, (experimental) = .497, using Figure 76
CL (Newman-Rodriguez) = .475

The greater difference in 1lift coefficients for configur-
ation 3 results from the fact that the downwash from the fair-
water, although decreasing the effective angle of attack of
the rudder, does not cause the {low to become parallel to the
body axis. ;n the linear theory, the tralling vortex sheet

passes directly over the upper rudder, thereby decreasing the
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ruddaer angle of attack. Experimentally and in the numerical

model, the trailing vortex system misses the rudder,
Therefore, more 1ift is generated by the rudder than
would appear in the linearized theory used by Newman and
Rodriguez.
The experimental and theoretical values of CL are
actually in better agreement than presented, since the experi-

mental 1ift coefficients calculated included a minor component

of 1lift resulting from the support shaft, which was not de-

ducted before calculation.
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The axi-symnetric body wich asymmetric tail fins and one
upstrean fin.

Pigure 72
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b., l”' S —T—

b.YUO -— - aum

L

be/bow.16

T IO

Life coefficiert of the axi-symmetric body with asysmetric fins
shown in Figure 72 The upper fanily of curves (—————) are for
s sysmetric tsil configuration (bjT ™ b2r) , and the lower

family of curves ( ) are for a single upper tail fin
(dy7r = 0) . The curve bar/bg = 0 1is for a body without tail
fins. Note that the symmetric tail fii. carries a positive lifc
force, vhereas the upper tail fin experiences a negative lift
force due to the effects of downwash.

Figure 73
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C. Numerical Prediction

Numerical procedure results for a submersible

with:

l. fairwater and upper rudder

2. Angle of yaw = 10 degrees

3. flow velocity = 15 ft/sec; therefore, free stream

velocity = 14,77 ft/sec, side velocity = 2.6 ft/sec
4. wake angle = 10 degrees (free stream)

were:

f Rudder side force = 1.025 1lb

1 Fairwater side force = 11,754 1b

1 Source side force = 1,394 1b

3 Total side force = 14.173 1b
Rudder yaw moment = 1,0947 ft.1b

Fairwater yaw moment = -0.8960 ft«1lb

Source yaw moment = 7,2101 ft<1b
E Doublet yaw moment = -9,0152 ft-lb
b
! Total yaw moment = -1.064 fte1b

Heave force on body = -5.0780 1b
j Pitch moment on body = 3,5585 ft<lb

- 3 . ~ B vl Innd & e o
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Comparable averaged experimental results were:

Test 4 results Test 5 results

18.0 19.0 Side force (FZ) 1b
-3.75 -4.0 Yaw moment (MYO) ft+1b
-1.7 =2.7 Heave force (FYO) ft

3.0 0 Pitch moment (MZ) ft:1b
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Numerical results were also compared with preliminary
results from NSRDC for the base hull configurations. Bare
hull configuration for the numerical program was accomplished
by reducing the span length of the fairwater and rudder,
measured from the body axis of symmetry to the radius of the

hull surface at the appropriate points on the hull. The

results were:

Rudder side force = 0.012 1b
Fairwater side force = 0.003 1p
Source side force = 2,990 1b
Total side force (FZ) = 3.004 1p

No side force should result from fairwater or rudder; therefore,

Total side force (FZ) = 2,99 1b

Rudder yaw moment = 0.0134

Fairwater yaw moment = 0.0000
Source yaw moment = 8.,5134
Doutlet yaw moment = ~0,7262
Total yaw moment = -1.1994

No moment should result from fairwater or rudder; therefore,

Total yaw moment (MYO) = -1,2128 f¢ 1b
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Since
Y!' = 1 =F2 = Lateral Force Coefficient
3 ou2L?
N' = i MYO = Yaw Moment Coefficient
5 pu?L3
where p = fluid density

U = free stream velocity

; L model length

Y'(numerical)  =-3.41 x 10-3

N'(numerical) = -.679 x 1073 (needs a greater doublet
strength correction aft of
the fairwater)

Comparable fesults for NSRDC and this investigation were:

NSRDC Experimental
] Y' =-3.5 x 10~3 Y' =-5.92 x 10~3
N' =-1.9 x 10~3 N' ==1.8 x 10~3
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VIII. CONCLUSION

The surpose of this project was to investigate hull-
control surface interactions on submerged bodies, to include
the effects imposed on the body by the fairwater and rudders,
when the body is at a constant yaw angle.

It has been shown through experimental and numerical
models, and flow visualization, that the addition of a non-
symmetric appendage (fairwater) on a symmetrical body of
revolution has a significant effect on the hull and the control
surfaces (rudders) located downstream.

The falrwater, besides being a lifting surface and
generating a side (sway) force when at an angle of yaw, also
induces a circulation around the hull of ‘a submersible. When
this circulation and a sway velocity are combined, a 1ift is
generated on the hull. These asymmetric forces then produce
moments around each of the three coordinate axes and crosc.
coupling moments, The falrwater was also instrumental in
decreasing the effective angle of attack of the upper rudder,
located on the same side and downstream of it. The tralling
vortex sheet, shed from the fairwater, induced velocities on
this rudder and effectively changed the direction of fluid
flow meeting the rudder. This change in flow direction was
readily seen during the flow visualization experiments.

The upper and lower rudders produced relatively minor
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effects on the forces and moments at small angles of yaw.

Only at high angles of yaw, when the fairwater and support-

shaft downwashes were least effective on the rudders, did the

side (sway) force of the rudders combine with the extended
moment arm to produce a major effect. Investigation of the
effects of the rudders on the body of revolution, without

the fairwater, 1s needed for a more complete analysis.

The numerical model considered the effects of the fair-

water and although requiring refinement, the initial results

are comparable with experimental results obtained during this

investigation.
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APPENDIX A
THE M.I.T.
VARIABLE PRESSURE WATER TUNNEL
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APPENDIX A
THE M.I.T. VARIABLE PRESSURE WATER TUNNEL (14)

The M.I.T. Variable Pressure Water Tunnel was built in
1938 - 39, and provided a significant advance in propéller and
model test facilities at that time. Since then, several
modifications have been made to the tunnel to extend its
useful life, to make it more convenient to use, and to give
it additional capabilities in keeping with current research

needs.

General Features

The tunnel is a closed-return type and is approximately
a 2b-foot diameter square in shape. See Figure A-1. It
occuplies parts of the first and second'floors of Bullding 3
on the M.I.T. campus. The smallest internal diameter is
approximately 30 inches, but this gradually widens to a 60-
inch maximum before narrowing again to enter the test section.
The tunnel cross-section is circular except at the test
section and in the tapered transition section. The transition
section narrows the 60-inch circular cross-section to the

20-inch square test section.

Teating,Faci{ities

The tunnel can provide water velocities in the test

SECEH A2 S5 H s i h e A At b o et o canS i b S it e 2l
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section up to 33 ft/sec and maintain any selectea internal
pressure from atmospheric (760mm Hg) down to approximately
140 mm Hg.

The test section is accessible via any of four identical
removable plexiglas windows, The windows are 2,0 inches
thick by 13 7/16 in. by 41 15/16 in. high and cover access
holes measuring 41 15/16 by 13 7/16 in. The windows are
readily cut or drilled and are thus ideal for mounting experi-
ments. The dynamometer apparatus used allows measuring six-
degrees- of- freedom forces on 1lifting surfaces, such as
rudders or hydrofoils. Fittings are installed in the windows
to accept Pitot tubes at several locations.

The tunnel may also be operated with a free surface to
test-surface'piercing hydrofoils or to simulate a miniature

towing tank for small ship model testing.

Impeller Drive Systems

A 100 HP motor drives three DC generators. One of these,
a 60 KW shunt-wound generator, provides power for the 75 HP
DC impeller drive motor. The second, a 30 KW shunt-wound
DC generator, provides power for the 40 HP propeller drive
motor. The *hird is a 3 KW compound-wound DC generator and .
provides excitation for the other two DC generators.

A variable resistance verniér control system provides

close control of impeller RPM.

Ll . el . e =eess — ans n - S
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A device attached tofthe.impeller drive shaft provides
& 60 pulse per revolution output. The signal is fed to a
- Hewlett-Packard 5212A electronic'counter. By using 60
pulses per revolution, the counter reads directly in RPM

instead of RPS.

Water_Flow
A four-bladed bronze impeller 1s used to providé water
flow. It is located in the lower level norizontal run in the
30-inch diameter section. It 1s immediately followed by -
strailghtening vanes to remove rotation'fﬁom the wafer. |
Each 90° bend has several thin stainless steel turniné

vanes with a non-symmetrical croés—section developed from

g ' airfoil theéry. The vanes have a low power loss and the

: resoluting turbulence generated by rounding the corners 1is

fine-patterned and on the order of the turning vane spacing.
The 30-inch diameter widens out to 60 inches to slow the

water velocity and further reduce turbulence. After rounding

a 90° bend, the water is passed through a honeycomb of one-

—

inch diameter plastic tubes and 2 sections of metal screens.

J The 60-inch diameter is then smoothly constricted to flow
through the 20-inch square test section. The section area
reduction is 7.07. The constric?ion speeds up the flow
velocity and.at the same time stretches out any remaining

turbulence. A smooth flow pattern results.

PRPIIPREP. ,
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The ‘.ariable Pressure System

Any pressure in the range of atmospheric to 140 mm Hg
can be maintained by the vacuum pump. The lower limit is
dictated by the vapor pressure nf water and small air leaks
in the tunnel. Water vapor pressure at 60° F is 135 mm Hg.

Suction from the vacuum pump is taken at three points
on the tunnel: (1) from the vacuum dome; (2) from the
manho le cover over the 60-inch horizontal section; and (3),
at the last 90° bend before entering the honeycomb,

If the tunnel 1s completely filled with water, some
water may be sucked into the vacuum line to the pump. This
is trapped in a receiver tank. Suction by the pump 1s taken
from the top of the tank, while a drainline is provided at
the bottom of the tank. The drain line drops 35 feet and is
kept below water level in the building basement.

The vacuum system 1s the primary means of removing
dissolved gases from the tunnel water. Dissolved oxygen 1s
chemically removed for corrosion protection of the mild steel
walls, and other gases are removed by keeping the tunnel
at reduced pressure for several hours, If this is not done,
dissolved gases form bubbles at reduced pressure and obscure

the viewing cf experiments in the tes” section.
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APPENDIX B
DYNAMOMETER PROGRAM USED

FOR
EXPERIMENTAL MODEL TESTS
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APPENDIX C
NUMERICAL PROGRAM TO GENERATE OFFSETS
| FOR
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APPENDIX D
NUMERICAL MODEL OF A SUBMERSIBLE
BODY OF REVOLUTION
WITH |
LIPTING SURFACE APPENDAGES
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