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ABSTBACT OF THE DISSEBTATIOH 

Nonlinear Statistical Estimation 

with 

Numerical Maximum Likelihood 

by 

Gerald  Gerard Brown 

Doctor of Philosophy  in   Management 
University  of California,   Los Angeles,   197U 

Professor Glenn  W.   Graves,  Chairman 

The topics of maximum likelihood estimation and 

nonlinear programming are developed thoroughly with emphasis 

on the numerical details of obtaining estimates from highly 

nonlinear  models. 

Parametric estimation is discussed with the three 

parameter Weibull tamily ot densities serving as an example. 

A general nonlinear programming method is discussed for both 

first and second order representations of the maximum 

likelihood estimation, as well as a hybrid of both 
approaches. k      new      class       of     constrained     parametric 
estimators  is introduced  with  numerical    methods     for     their 

determination. 

Structural    estimation     with     maximum       likelihood       is 
examined,   and a Bernoulli  regression  technique is  presented. 
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CHAPTER  I 

STATISTICAL  iSTIMAJIOIl 

AJI   INTBOEÜCTION   TO   THE   DISSERTATION 

H 

x 

This dissertation is concerned with a class of problems 
of basic iniportdnce in applied statistics - the estimation 
of pardineters in a complicated model where simple closed 
form estimators do not exist and it is necessary to resort 
to numerical methods. Many existing numerical approaches 
prove to be of little practical value in the context of 
these actual cases because of convergence problems. The 
main purpose is to develop new numerical techniques by 
combining recent developments in the theory and practice of 
optimization with statistical theory and to demonstrate the 
efficacy of these methods by application to the special 
class of complicated, hignly nonlinear problems arising in 
statistical estimation. The applications are addressed 
primarily to maximum likelihood estimation, and the new 
methods are compared where possible to previous results. 
The general numerical technicjae developed is also used to 
solve a new class of estimation problems with iioniinear 
constraints on the parameters. The numerical approach is 
further utilized to provide an alternative to least s^uaree 
regression, especially for problems with discrete dependent 
variables. 

The present chapter reviews the mathematical foundation 
for statistical estimation for ooth density functions and 
structural models, and provides justification for use of 
maximum likelihood estimation. Chapter II presents a 
history of nonlinear programming with both search and ascent 
methods, with emphasis on numerical performance for highly 
nonlinear     objective    functions.     Cnapter  III  introduces the 

MMMM -■MMMMMI 
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maximum likelihood estimation problem for the parametric 
Weibull family of density functions. The new techniques of 

the dissertation are developed and demonstrated. A new 
class of constrained maximum likelihood estimators is 

proposed with sample problems. Chapter IV addresses a class 
of regression models in which the dependent variable is a 

Bernoulli observation, develops a statistical theory for 

solutions of the model and gives a  numerical example. 
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B, INTRODUCTION TO STATISTICAL ESTIMATION THEORY 

A classical area of intense interest in statistics is 

the art of using sampling information to make valid 

inferences atout unknown parameters in the distxribution of a 

population under study; this body of technique, motivated by 

the mathematical theory of statistical estimation put forth 

by Fisher[86]# can be applied in several ways to any given 

sample producing various estimates of the parameters, and 

leaving us with the problem of selecting a "good" estimate 

from among the possibly infinite number of competitors. 

» 

An investigator is apt to feel that a "good" estimate 

is obviously that which is closest to the true parameters. 

However since the estimator is a mathematical function of 

the sample ( a statistic ) it is itself random from sample 

to sample, so that the attractiveness of a particular 

randomly distributed estimator will depend upon the long run 

char, .teristics described by its sampling distribution. For 

instance, if the sampling distribution of an estimator for a 

parameter vector has a great deal of its probability 

concentrated in a very small neighborhood of the true 

parameter, and a competing statistic does not, we would 

probably find the former estimator to be "better" than the 

latter for purposes of valid inference. That is, the 

probability cf an estimate being close to the true parameter 

is higher in the former case, so we use that particular 

method with cur sampling information. unfortunately, there 

is seldom a guarantee that a statistic will be "good" for 

every sample, or even that it will produce useful or 

intuitively acceptable estimates. Therefore, one must 

choose an estimator on the basis of its long run properties 

relative to those of feasible alternative estimators and in 

the context of each application. 
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In     order    to    formalize    some    of     these    concepts    of 

"goodness,'•    let    us    define    the     j observation    of      an 

o-dimensional vector, X  ,  as 

X    =   {  x    ,   ...#   x      )   ,   1=1,2,   ...,n  ; 
j jl DB 

with X    row  j of X,   the observation data  matrix, 
j 

It should be made clear at the outset that if the 

successive observations in X are not random, then we must 

know the precise nature of the sampling procedure which 

leads to this non-randomness for the observations, or very 

little inference is possible. For this reason, X is assumed 

here to result from random sampling from a population with a 

single set of parameters,  T. 

For purposes of parametric estimation, we must knew, or 

have assumed hypothetically, the precise mathematical fore 

of the distribution of each observation of the parent 

population.     Iherefoire,  let 

VV1' ' 
represent this density, with 

T= (t, •••# t) , 
1       k 

a set of   1: columns of unknown  parameters to be estimated and 
f     non-negative over the region  of  admissible ranges     of X 

j j 
and T. 

miiiifiin limn. n in...in. i ,m^^^^uum 
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Point estimation, then, is the interpretation of a 

statistic, T, computed from X as a vector of constants which 

can be assumed as the inferred value of T; interval 

estimation is the specification of an interval such that a 

known proportion of such intervals contain the parameter T. 

For simplicity of exposition, let us assume that i = f 
" j 

for all j, and momentarily that k - 1.  Then, let t(n) be a 

statistic  to be used as an estimator of t based on a random 

sample of size n.  It is reasonable to assume that the cost 

I • of  obtaining  the sample  is  some monotonic increasing 

function of n, and thus that the economic  justification of 

t(n)  depends upon how "good" it is as a function of n.  In 

this context some of the following measures cf desirability 

I f of estimators are proposed as functions of sample size, and 

thus cost. 

1. Existence 

It is always necessary to be able to demonstrate that a 
particular statistic exists with its attendant 
properties for a given sample space, probability 
distribution,   and so  forth. 

2.   Simple Consistency 

A statistic is simply consistent if for any arbitrarily 
small positive constants c and d there is a sample size 
N  such  that 

A 
Pr[|t(n)   -  t|   <;  c] >   1  -   d  , n>N   . 
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3.  Squared Error Consistency 

A statistic is saic to have squared error consistency 

if for any arbitrari.y saall constants c and d and some 

positive integer nr 

A      2 
Pr[ (tfa) - t)  < c] > 1 - d , n>N 

Soue probabilists view  these consistency  properties    as 
special      cases       of      stochastic      convergence      under 
particular    noras.      Both    types    of    consistency      are 
desirable    in     the    sense    of    early  discussion in this 

A 
chapter,   producing with  high probability  values of  t (n) 
in    a    snail    neighborhood    of    t,     but     consistency is 
achieved  at  possibly high cost. 

4. eias 

A 
The bias,. b(n)/ of the statistic t(n) is defined 

b(n) = E[t(n) - t] , 

with  E  the expectation operator.  If b (n) =0 for all 

E[t(n) ] =  t 

A 
and t(n)   is said to be  unbiased. 

If   b(n)   approaches zero  as n  increases,     then     t(n)     is 
said to  be asymptotically unbiased. 

Unbiasedness    is      an       intuitively      desirable      point 
property,     but  should  not be confused  with neighborhood 

-—-—" m 
-  -■ ---'  
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properties such as consistency;   neither   property 

inplies tne  other.   Further,  b(n)  can sometimes be 
A 

determined, or estimated, and removed from t(n). 

5. Variance 

Tae  variance  of  a statistic  t(n)   is defined 

V[t(n) ]  =  E[ t(n)    ] -   E [t(n) ] =   E[ (t (n)   -   t  -   b(n))    ] 

This       may,     or    may     not,     be    analytically     available 
A 

depending upon the mathematical form of t(n) and f, but 

it is a characteristic of the sampling distribution of 

t (n) and thus describes long range behavior of t(n). 

6. Mean Squared Error 

The mean squared error of t(n) is defined as 

M.S.E. = E[ (t(n) - t) ] = V[t(n) ] ♦ b(n) 

We see that the M.S.E. and variance are identical for 

unbiased statistics, and that for biased statistics, 

the M.S.E. exceeds the variance. 

7. Likelihood 

A 
For     independent observations the  likelihood of t(n)   is 

defined by Pisher[86 3 as 

L(X,t)   =  f(X   .t)".f(X   ,t)    , 
1 n 

■■■ ■ MMMMMMMMÜ "■ 



pp^^pp^pipi^BiBpjp^. iiiijihij»!^^ -■-■-.■r-^.rw^w».'v-.Bj..^.v'..'»w^'i-l'":''v,'i^ -ww,..«,,...».«, w+i ^m 

and is regarded as proportional to the probability of 

the occurrence of the vector, X, given paraneter t. 

8. Sufficiency 

A statistic, t(n)# is said to be sufficient if it can 

be shown that the conditional probability distribution, 

h, of any other statistic, t (n), given t (n) does not 

depend upon the parameter t : 

IV A 
h( t(n) | t (n) ) not a function of t . 

Sufficiency  for  t(n)  iar-lies  that  all  the sample 
A 

information concerning t has been exhausted by t(n). 

Such statistics exist for a very important family of 

density functions including the exponential, binomial, 

chi-sguare, gamma, and normal distributions. As ve 

shall see, a straightforward algorithm may be used to 

identify sufficient statistics 

9. Completeness 

Let  s(X )  be  a  continuous function  of   X .    If 
j j 

E[s(X ) ]=0     for  every  admissible  t  implies  that s (X ) =0 
j j 

for  all  X then  f (X  ,t)   is a  complete  family of    density 
j 

functions. 

MMMHHM ^mmmmmmmm ..-:.,-.■..-^ jmaaMiMB 
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10.   HiniBum  Wean  Squared  Error 

It has been shown by Rao[ 196 ] and CratnerC 56 ] that under 

assumptions of reqularity the lower bound for a.S.E. 

of  any  statistic  is 

2 2 2 
M.S.E.   =   -(1   ♦   db/dt)   /E[^  ln(L)/K    ]   . 

The regularity assumption disallows discontinuities in 

f that depend upon t. This bound may or may not be 

achievable. 

For an unbiased statistic, this lower bound for 

variance  is 

s2 ,2 
M.V.   =   -1/E[ ö ln(L)/dt    ]   . 

11. Squared Error Efficiency 

A statistic,  t (n),  is  relatively  efficient  it its 

H.S.E.  is less than that of a competitor, t (n), for a 

given sample size: 

A       2      A/       2 
M (t(n) - t) ] < E[ (t(n) - t) ] . 

We can also treat this as an asymptotic property of an 

estimator.  If the inequality ultimately holds for any 
A 

competitor we simply say that t(n) is asymptotically 

efficient. 

This is a very appealing relative measure of the 

"goodness" of a statistic. It seems reasonable to 

assume  that  the  cost  associated  with  an  error in 

MMHIWiMlMMlM ••   i    'in i      III'  m aaMMj 
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estimation is an increasing nonlinear function of the 
sizt of the error. For example, the effect of a small 
error might well be unimportant. A large error, on the 
other hand, might lead to significant costs due to 
incorrect decisions based on the estimate. The precise 
cost-error relationship would be most difficult to 
specify mathematically. Assuming that the cost is a 
guadratic function of estimation error gives a cost 
function that is tractable mathematically, and weights 
larger estimation errors more heavily than small 
errors. Thus, with this assumption, a choice of 
estimators on the basis of relative efficiency becomes 
a  choice of  minimum  expected cost. 

12.   uniqueness 

For purposes of inference, it is desirable but often 
impossible to demonstrate that the statistic used 
uniquely satisfies its own definition. 

13.   Asymptotic Normality 

An estimator is asymptotically normal if its sampling 
distribution approaches normality with increasing 
sample size. This property gives a statistical 
foundation for making the probability assertions 
required for interval estimation; it obviates the need, 
case-by-case, to treat a statistic as a mathematical 
transformation applied to the random variables in each 
sample    and     attempt    to use statistical  transformation 

A 
methods to derive a sampling distribution for t(Z,n) in 
closed form. In fact, such an analytic derivation is 
frequently mathematically  impossible. 

10 
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To use the property of asymptotic normality for 

interval estimation, we require knowledge ot the first 

two moments of the estimator so that the parameters of 

the norBdl distribution may be obtained^u ]. In some 

instances these cannot be obtained dnalytically, as is 

shown by Mann, Schäfer, and Singpur walla[ 16 1, p. 263 ]. 

14. Best Asymptotic Normality 

i \ 

A    statistic,     t (n),     is     best    Asymptotically     Normal, 
A 

B.A.N., if it is simply consistent and t (n) - t 
approaches a normal distribution with zero mean and a 

variance less than that of any competitor with 

asymptotic normality over the same open interval for t. 
(In his introduction of B.A.N. estimators, Neyman[172] 

c;ives a more general set ot existence conditions in the 

context of continuous data qrouped into classes.) Note 
that B.A.N. estimators are not necessarily efficient, 

or unique, but that they are asymptotically unbiased, 

and of course offer the advantages of asymptotic 

noraality  previously discussed. 

Finally, with suitable notation adjustments, all these 

characteristics of point estimators generalize to the 

multidimensionaJ estimation case, k > 1. For instance, the 
variance should       be       notationally       replaced        with      a 

variancti-covariance matrix,   f. 

A A 
?  =   E[ (T (n)-T)    (T(n)-T) • ] 

11 

^iM-B1 



iife'^miimmmmmmmm^mmmi^^'-^^-mm^mmmmmm^mfmmmmmmmm «WH «kW* 

C.    CHOICE  OF   ESIIMATOB...DENSITY  FUNCTIONS 

The art in statistical estimation is as much the choice 

of an estimator as its mathematical derivation ror a given 

problem. Although a myriad of estimation techniques have 

been proposed in the literature, only those generally 

applicable to the problems to be considered here are 

introduced. Noted by their absence are Bayes estimators, 

formulated from his idea[15] of using prior information, but 

which do not apply to a const&nt vector, T, and exist only 

for very restricted choices of prior muitivariate density 

for T, and Minimum Chi-Square estimators, M.C.S., discussed 

at length by Rao[196]r which apply to continuous data 

grouped into classes, and are very similar in both 

determination and asymptotic properties to the maximum 

liKelihood  estimators,   which  are presented  shortly. 

• 
Moment    Estimators,   T{n),  proposed  by  Pearson[ 1 33 ],  are 

formed    Iry    equating     the     sample    moments     of    X     with    its 

theoretical    moments    stated     in  terms of  the parameters, T. 

The  solution  for T(n)   may   not  be possible  in closed  form for 

• 
many    density    functions,   and T(n)   is  not  necessarily   unique 

for  any  given sample,   however    Pearson     introduced     a     large 

faPixly    of    special    distributions which   yield  solutions for 

T(n).     Moment estimators  are  usually  consistent  in   both    the 

simple    and     squared  error  sense,  asymptotically  normal,   but 

not  b.A.N.,     and can  be   efficient only  when   the  variance    of 

X     dominates  higher  moments  of f,   as  is true  with  the   normal 

• 
distribution.     In  general,     T(n)     has     few     advantages    over 

common    competitors    for  any   particular density  function,  f, 

12 
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diiu th^ distnrbin>j habit of frequently producing 
outcageou.ily bad estimates, even inadmissible ones. The use 
of inomtirt estimatots by Pearson and others has been largely 

restricted to the more specialized problem of choosing both 
a luathematical form for f when none is known, and estimation 

of   resulting parameters. 

Sufficient statistics, T(n), have been demonstrated by 
Firhoi[ab] and Neyman[17U] to exist for any density for 

which  the  likelihood  function  may be partitioned  into 

v 
L(X,I)    =   H(T(n),T)   K(X) 

with   H an exclusive  nontrivial  function of T(n)   and T,   and K 
free  of  terms    or     constraints    involving    T.       A     condition 

v 
iraplyinq    existence of  a safficient statistic,  T(n)f   is  that 

f  belong  to  the Koopman-Pitman    exponential     taraily[1U 2,18b ] 

such  that f  may be  stated 

f(X  ,T)   =  exp[p{T)m(X )   +  s{X.)   +  g (T) ] 
j j D 

with   p(T)   a  nontrivial continuous function of T,     s (X   )     and 
j 

m(X  )      continuous  functions  of  X  ,  dm/dX     *  0,   and   the  range 
j j j 

of  X     independent  of  T. 
j 

Sufficient statistics are of strong intuitive appeal 
since they demonstrably use all of the sample information 
available. The algorithm for finding a sufficient statistic 

is straightforward, leading immediately either to the 
estaDlir.haent of such a statistic, or a proof that no 

sufficient       statistic       exists [128,p.231, 141,p.26]. 
Unfortunately,     sufficient     statistics    are    not necessarily 

consistent,   unbiased,   or  efficient. 

13 
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Any nontrivial one-to-one transformation of T (n) is 

also sufficient for T. Therefore, whenever possible we 
choose an estimator from this infinite family of sufficient 

statistics in order to achieve one or more additional 
desirable properties such as consistency, minimum variance, 

or  most   often unbiasedness. 

A       Minimum       Variance     Unbiased    Estimator,     H.V.U.E., 

discussed    by    Rao[195]    and     Dlackwell[ 24 ],     is     alwajs       a 
function    of    the    sufficient statistic,   and  is  found  as  the 

conditional  expectation  of   any  statistic  which    is     unhxased 
v 

for     T,   given the  sufficient  statistic,  T(n),     The   M.V.Ü.E., 

when  it   can  te derived  via   the conditional density   required, 

is     necessarily    simply    and  M.S.E.  consistent,  and  the most 

efficient unbiased statistic  for   any sample  size.       Further, 
if     the     density     function     is     complete,     the    M.V.Ü.E.     is 

unique[ 128,p.229].     The mathematical  details  of  deriving  the 

M.V.U.E.       are    arduous,     but     the    statistic    is     desirable 
especially  fcr small samples  where bias    and/or    M.S.E.     are 

high    for    most    competitors.       A    minimum     M.S.E.   statistic 

provides a  tradeoff by  minimizing  the sum     of    variance    and 
squared     bias,     and    can be  preferable to  the M.V.U.E.     when 

unbiassedness is not absolutely     essential.       Unfortunately, 
minimum     M.S.E.     statistics     are     only    rarely derivable  for 

finite  sample sizes,  and when  found often  correspond   to    the 
M.V.U.E.     result.       For     instance,     the    sample    mean   from a 

normal  distribution can  be   shown   to be both  a    M.V.U.E.     and 

minimum   M.S.E.   statistic. 

Maximum Likelihood    Estimators,     H.L.E.,     suggested     by 
Fisher[86],     are   found  by  maximizing  the  likelihood   function 
L(X,T)      ty    choice    of    T.        These      intuitively       appealing 
estimators,     T(n),     can    often     te derived  in closed   form by 
differential    calculus,     and       dlways      exist       under       mild 

A 
regularity    conditions.       Although T(n)   is  frequently   Liased 
for  small samples,   it is    asymptotically     unbiased,      B.A.N., 

14 
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and simply and squared error consistent as shown by 
Wald[225,224 ]. It is also asynptotically efficient, 

ultimately achieves the Minimum variance bound, and can be 
shown to be a function of the sufficient statistic, if one 
exists. Even for relatively small samples, the M.L.E. can 

be more efficient than the M.V.U.E., as has been shown by 

Brown  and   Buteiniiler[ 31 ]. 

M.L.E. also have ^n important invariance property. For 

any non-trivial function of T, u(T), with a single-valued 

inverse, 

A A 
u(T)    =   u(T(n))    . 

For  example,  invariance permits transformations to reduce 

bias without sacrifice of other desirable K.L.E. properties. 

This property is an indispensable tool in mathematical 

modelling. Since parametric estimation is usually performed 

only as a preliminary part of a larger investigation, 

invariance is crucially important, permitting M.L. point 

estimates to be unconditionally introduced into any 

admissible function of the associated parameters, with the 

function directly inheriting all the desirable M.L. 

properties. This permits analysis of complex hierarcnical 

systems to be conducted in a straightforward manner. 

t / 

Asymptotic normality for all M.L.E. makes them very 
useful for interval estimation, especially in the 

multivariate sense. Unfortunately, M.L.E. can not, in 
general, oe guaranteed to be unique, although uniqueness can 
be established on a case-by-case basis. Although numerical 
determination of M.L.E. can at worst be exceedingly 

difficult in practice, the "good" properties of these 
estimators make them so singularly attractive in the general 

field     of     statistical    estimation    as       to       motivate       the 

15 



*IW<W.< UIU>HHIII»   immJI'MHIIIIIMl I '»■(.■i|l"JH»J»W»o>IJ»imi™,  i.«.)l»ll,»JJ -,—,-.--, ,    niji.,,^!^, MtU    i ,Jr,'7n^p»F^^v^WB^^,<r>^v!^rwWF^i7-ti^wn 

investiqation  in  this  thesis, 
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D. CHOICE OF ESTIMATOR... STRUCTURAL MODELS 

« 

Suppose we examine a model in which the population mean 

is not strictly a function of T, but rather a particular 

matheoiatical function of the population parameters, T, and 
some observed constants, X. If we define our sairpling 
process to be the measurement, with some random errcr, of 
observations, Y, from populations whose parameters depend on 
X and T, then a problem which results is the estimation of 
the  parameters,  T,   based on   tne sample 

{Y   ,   1}   , 

by  use  of  the  relationship 

I =   Tf (T,   X,  e) , 

and known information about the nature of the error, e. 

This technique is known as regression. 

One  example of  such  a  model  is  classical  linear 

regression, where 

Y = XT + e . 

Since Y-XT (n) is the sample estimation error in the model 
rv 

for  the   estimator T(n) ,  the  usual  approach  to  this 

estimation is  to assert  a  quadratic cost function and 

minimize the scalar sum of squared deviations 

(Y-XT) • (Y-XT) 

by choice of T. This technique was first suggested for use 

in interpolation of planetary data oy Legendre[150 ]. 
Provided  that  X»|  is non-singular,   which    requires     n     >     k, 

17 
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this quadratic objective function  has  a uniyue solution. 

T(n)   =   (X'X)        X'Y . 

This Least Squares, L.S., estimator is attractive to use for 

linear models. The L.S. solution is the best linear 

unbiased estimator, B.L.Ü.E., in the sense that among all 
unbiased linear combinations of I this estimator has minimum 
variance regardless of the distribution of e. Gauss[95] has 

shown that when e is normal the L.S. solution always 
maximizes the  joint density 

f(y IX ,T)   •••  f(y   IX ,T) 
11 n     n 

This remarkable demonstration both anticipates the later 
discovery of H.L.B. and shows that in the normal case, the 

linear model has a single solution which is both L.S, and 
M.L.E. The distributional theory for interval estimation in 

the linear model is presented by Cochraa[51], and is based 
on the unique class properties of the multivariate normal 

density, which is closed for affine transformations, 
convolutions, and linear mixtures of normals, and the class 
of chi-square distributions of quadratic normal forms, which 
is closed  for convolutions. 

The assumption of normality for e and linearity are 

crucial to the L.S. approach, since for non-normal, or 
non-linear models the distributional results tail. In fact, 

the specification of a quadratic cost criterion for L.S. 
minimization is not necessarily justifiable in all 
applications; for instance, mean deviation, or minimax 
(Tchebycheff)     deviation might sometimes  be  more  reasonable. 

A     general     M.L.E.     approach    tc       reqression       focuses 

attention     on     the    density     of     e to  specify the   likelihood 

18 
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function 

L(III#T)   , 

which     is    maximized   by choice  of T.      It is  not necessary  to 

derive  L(I|X#T)   from  1(1,  X,  e)   if one  can  state the  density 
!$ directly    as  in the case of  Bernoulli   regression examined in 

Chapter   IV.     The  M.L.E.    solution    has    all     the    properties 
under    conditions    mentioned    previously,     regardless  of  the 

form of   the  model,   although   those  that     are     asymptotic    are 
$ achieved       more    slowly    for    highly     non-linear    models    or 

extraordinary      distributions for e. Sprott        and 
Kalbfleisch[ 217]    have examined  for some specific models  the 
robustness of   the assumption of     asymptotic     normality    made 

- for several  finite  sample  sizes. 
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E.   iUMMAfiY:   JUSTIFICATION  OF   M.L.E. 

As we have seen, the M.L.E. usually have, for large 

samples, all the desirable properties of an estimator. They 

almost always exist under very mild regularity conditions, 

asymptotically they are consistent, unbiased, efficient, 

B.A.N., achieve the Cramer-Rao minimum variance bound, and 

they are sufficient statistics whenever such statistics 

exist. They can often be derived in closed form by 

differential calculus, and in other cases, the estimator may 

be solved  for by  numerical techniques. 

When point estimates of functions of parameters are 

required in a mathematical model, it is pointless to choose 

estimators for their "good" properties unless the function 

will also possess those properties. In practice, the M.L.E. 

are the only available estimators with so many desirable 

properties       that      are        all invariant under such 

transformations. As mentioned earlier, this invariance 

property of M.L.E. is vital in complicated problems where 

parametric estimation is only the first step of 

investigation. 

Best of all, M.L.E. provide a distributional basis for 

interval estimation which does not depend upon simplifying 

assumptions such as those required for the L.S. approach. 

This is fortunate, since in models which are non-normal, 

non-linear, or, more often, both, the M.L.E. provide the 

only reasonable estimation alternative. Also, for the 

classic linear normal model, the M.L.E. provides the L.S. 

solution. 

For small samples, the M.L.E. have many of the good 

estimator properties, and are often the best statistic 

available.       Their    M.S.E.     is    frequently    the    best     among 
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competitors, even for very snail sample sizes. The K.L.E. 
are extremely useful in small sample estimation as a 

starting point for seeking better statistical estimators for 
particular density functions. The M.L.E. are always derived 
by exactly the same method, requiring less intuition, skill, 

or plain luck than the intricate schemes leading sometimes 

to, for instance, an M.V.U.E. In some statistics texts, in 

fact, M.L.E. are the only estimators introduced since they 

are generally easy to find and usually produce better 
estimates than other  methods[ 156,p. 162 ]. 

Among alternative estimators for any given problem, the 
M.L.E. nearly always provide a very good property set that 
gets betttr very guickly with increasing sample size, and 

becomes asymptotically best. For those cases in which the 

M.L.E. must be determined numerically, a potentially 
difficult nonlinear  programming   problem  results. 

21 
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CHAPTER  II 

ÜSflJSIfiii HCHHIflOJS OF  ESTIH1TIOH 

A.   INTRODUCTION  TO   NONLINEAR   NUMERICAL   ESTIMATION 

In the previous chapter we have proposed a 

statistically desirable nonlinear estimation method, M.L.E., 

which leaves  us with  the  problem 

MAX{   L{T)   j 
T 

The    form of  L depends  upon the model   used.     Estimation 

of   density  function  parameters ior f  gives 

L(I,T)   =  f(X   .^•••f(X   ,T)    , 
1 n 

and estiaaticn of  parameters  for a  structural model gives 

L(I|X,T)   =  f(Y|X  fT)—»f (Y|X   ,T)    . 
1 n 

In either case, L is known to be a highly nonlinear function 

of the decision variables, T. Since X and Y are treated as 

constants in these two models, they will not be included in 

the further notation of this chapter, so that both 
estimation models  may  be treated at once.     Thus 

L(T)   =   f   (T)»««f   (T)   . 
1 n 

Mathematical       constraints       may     be     ^resent     for    the 

parameters. These       may       be      simple       numerical      range 

22 
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constraints, upper anä lower bounds, for instance 

1  <t <u  ,i=1#...,k, 
i   i   i 

or     more    complicated     joint     functions       of       T,       equality 
constraints  of  the  form 

g1 (T) = o , 

or   inequality  constnints  such as 

g   (T)  < 0 
2 

The set  of  both  types of constraints  is  referred to 

collectively as 

g.(T) = (gJ(T)f g^(T)) , 

g(T) < 0 . 

We  refer  to the  conditioned set of all values of T which 

simultaneously satisfy the  constraint  set,  g (T),  as the 

feasible  region  tor  T, and values of T within that region 

are called feasible points.  A particular constraint that is 

exactly satisfied by T (a row of g (T) exactly equal to zero) 

is said to be active.  If, for all possible  pairs  of two 

feasible points, T  and T , the convex comüination 
1 2 

T  =   aT     +   (1   -  a)T     ,   0   <   a  <   1   , 
1 2 

is  also  feasible,   then  the  feasible region  is called  convex. 

For       M.L.E.     problems,     there    are     frequently     simple 
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numerical bounds placed on T. These ace usually included to 
insure the definition of a valid density function, f. 

However, general mathematical constraints are seldom 

present. For this reason we will initially emphasize the 
unconstrained N.L.E. problem and the techniques available 

for  its solution. 

The first step in formulating an N.L.E. problem for 
solution is usually the replacement of the likelihood 

function, I, by its logarithm, ln[L]. It is easy to see 

that 

MAX{  L(T)   )    ,   and  MAX [  ln[L(T) ]  }    , 
T T 

are both achieved by the same value of T, since the 

logarithm is a monotonic increasing function of its 
argument.    The log-likelihood  function becomes 

ln[L(T)]=  ln[f   (T) ]+...-Hn[f   (T) ]  , 
1 n 

This reformulation usually gives an alias for L(T) which is 

a mathematically simpler function. For instance, members of 
the Koopman-Pitman family of density functions are 

remarkably easier to deal with in this form. This is 

advantageous for both analytic and numerical work. For 

instance, since L(T) is the product of n sample likelihoods, 
its value for many problems, especially for large n, can 

numerically violate the expressible range of floating point 
representation on  a particular digital computer. 

He henceforth treat L(T) as the objective function, in 
either the likelihood, or aliased log-likelihood form. 

Further, we assume where necessary that L(T), and thus f (T), 
are continuous, twice differentiable functions of T at 
interior points.     This is a   very weak restricting  assumption 
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for M.L.E. models, which very seldom have discrete 

parameters, T, and rarely have non-differentiable density 

functions (poles, etc.) for realistic problems in which M.L. 

estimation is attempted. It is not necessary in a 

mathematical programming sense to emphasize the statistical 

relationship of the n.L.E. and sample size, so it is assumed 

notationally that 

A   A 
T = T(n) . 

A  stationary   point  of   L (T)   is characterized!; 21 ]  by     the 
A 

necessary condition that  the  gradient   vanish at T, 

VL(T)   =   Hcn/^T   I     A  =  0   . 
T=T 

Necessary conditions  for a   local   maximum  are that 

?L(T)   =   0   , 

and   that  the symmetric  Hessian matrix. 

H   =   {h     )   =    {^ L(T)/at ät     }   , 
JO i     j 

be negative semidefinite at a stationary point, T; that 

for any vector z not identically zero. 

is. 

Z'H (T)z   < 0   . 

A  vanishing gradient  and  negative definite  Hessian 

A A 
7L(T)«0     6   z'JJCnz   <  0   , 

provide sufficient conditions for a local maximum of L, 
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If the Hessian can be shown to be negative definite for 

all feasible points T, then L is said to be concave[19 ], and 
A 

a stationary point, T, is the unique global saxioun. Other 
characterizations of stationary points of L are possible; 

these other cases are of little general use and usually 

require further assumptions for identification of Daxima, 

such as  higher-order derivatives[208]. 

Characterizations of extrema of L(T) in the presence of 
equality constraints requires that the gradient vanish while 

all the      equality      constraints      simultaneously       hold. 

Lagrange[147] expressed these conditions by introducing an 
r-dimensional    vector    of    arbitrary     multipliers,     a   ,    and 

augmenting  the objective function ot  the problem to    include 

the constraints,  giving 

MAX{L(T)   -   U'q   (T)}   , 
T,u 1   1 

which, as previously shown, is stationary if 

r.       A A 

V     [L(T) - u'g (T) ]«0 C r < k , 
T,U 11 

and a local maxima under conditions for the Hessian similar 
to those for the unconstrained problem, but modified by the 
dimensionality adjustment. John[135], and later Kuhn and 

Tucker[146], have generalized the necessary conditions to 
inequality constraints as follows,  letting  u    be a   vector of 

multipliers associated with  g   (T): 

7T[L(T)   - u^g2{T) ]=0   , 

with 
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A A 
g (T) $0, u £0,   \i'q   (T)=0 . 
2        2     2 2 

The  last  condition is  referred  to  as  cooplementary 

slackness. 

For naximization problems subject to mixed constraints, 

with multipliers defined 

u« = {u«r uy , 

necessary conditions  for  a  local  constrained  maximum  are; 

V [MT)   -  a«g(T) 1 = 0, 
T 

gi(T)=0#  g2(T)<0#   u2<0,   u'g2(T)=0   . 

Local sufficiency for these conditions further requires that 
the constrained objective function be locally concave, that 
all nonlinear inequality constraints be convex, and that all 
equality constraints be linear. It may be possible to 
generalize local sufficient conditions, subject to the 
Kuhn-Tucker        restrictions, for        nonlinear equality 
constraints. 

John[135] actually developed conditions requiring that 
the objective function also have a multiplier, and Kuhn and 
Tucker[146] qualified admissible constraint sets to those 
without singularities on the boundary such as an outward 
pointing cusp, or other nonlinear degeneracy; in these 
cases, the aultiplier proposed by John is positive, and can 
in fact be normalized to unity. Their development defines 
the   Lagrangian objective  function 
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^[T,u]   =  L(T)   ♦ u'g(T)   , 

A     ♦ 
and specifies that  if a stationary point   (T,u )     is     also    a 

saddle  point,  that  is 

MAX 
T 

A      * 

A      * 
that  under  the mild    assumptions,     the    point     (T,u  )     is    a 

solution to both the primal and dual problems, given 
respectively at the left and right above. This also 
suggests that methods for solution of the primal problem can 

sometimes profit from information gained by simply 

examining, cr shifting emphasis completely to the dual. We 
might interpret the primal optimization process as 

maximization subject to feasibility with respect to 

constraints and the dual optimization process as 
minimization of infeasibility, subject to a stationary 

primal  profit criterion. 

Further characterizations under varying sets of 
assumptions and useful simplifying gualifications have been 

given by Mangasarian and Fromovitz[ 159], Arrow and 

finthoven[6]. Arrow, Hurowicz and üzawa[7], Kortanek and 

Evans[ia3],   and Wilde[ 230, 231 ]. 

A 
For many likelihood functions, T may be determined in 

closed form as a stationary point of L by differential 
calculus. In such cases, demonstration of extremality and 

unigueness proceed directly by analytic means as previously 
discussed. 

In general, however, the stationary points of L must be 
derived  iteratively by the   numerical     methods    of     nonlinear 
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prograiBming. The general n.L. estimation problem has rather 
distinctive features in this respect. The number of 

decision variables, or parameters, is usually very small, 
seldom more that three for density functions and ten for 

structural nsodels. The objective function and especially 

its gradient are highly nonlinear, expensive to evaluate 
numerically, and difficult to compute precisely. These 

problems     are    exacerbated    by     large    sample    sizes. 'xhe 
constraints are usually of relatively simple form, often 

just  numerical bounds on T. 

■' 

I 
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BJ  UliHOfiS   OF   NUHEglCAL  OPTIMIZATION 

The  nonlinear  progcaooing  methods  which may  be  used  for 

H.L.       estimation    are    all    iterative    schemes      vith       the 

following    features.       An    initial    value    of T,  T   ,   mupt  be 
0 

specified or guessed by the  investigator.  An  iteration 

mechanism  then  chooses a  step-size and direction  for 

determining the sequence 

T»T» •••/ T , 
0  1        m 

such that 

L(T ) > L(T   ) , i=l#2# .. .,   m. 
i      i-1 

Finally,  a set  of termination  states  is  specified. 

Termination criteria commonly include a maximum value of m. 

A stalling criterion can  be  used  for  tolerance  of 

resolution, with d a vector of arbitrary small constants. 

|T -T   | < d . 
m  m-1 

A performance criterion can  be  employed  to insure  acceptable 

distinguishability,  or marginal  improvement. 

L (I )-L(T       )   >   minimal  gain, 
m m-1 

The  ideal    iteration    scheme    is    a     totally     automatic 
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algorithm in that the global solution is reached in a finite 
number of steps without necessitating human intervention. 
Unfortunately, no single method realistically qualifies on 
this basis, especially if we define finiteness in terms of 
exhausting a reasonable computer budget. Also, a global 
solution does not always exist in the strict sense for all 
M.L. problems. In practice, even the attainment of a local 
maximum  can  be delightful. 

A good iteration algorithm should not require excessive 
computation time for termination. Neither should it demand 
brilliant intuition, or extraordinary good fortune, on the 
part of the user. Problem specificity of good iteration 
performance is also undesirable, unless for demonstrable 
cause of an apparent nature general enough to advise prior 
choice  of  the  method. 

The taxonomy of iteration schemes identifies direct 
search methods as those which achieve gains by experiment 
with evaluation of the objective function, L(T) . Ascent 
methods, on the other hand, require local a strinative 
information to calculate a priori where each followinq 
evaluation of the objective function should take place. 
Ascent methods may be further subclassified as either direct 
ascent, which seek immediate gains at each iteration, or 
indirect   ascent,   which seek  at     each     step     to    achieve     the 

_ necessary    conditions    for     a     maximum.       Note    that    ascent w 
methods include those using finite difference approximations 
to derivatives. Distinguishing       between      these       two 
classifications is at times most difficult, since the 
systematic experimental achievement of increases in the 
objective function, L(T), by varying the argument, T, with a 
direct search scheme is highly suggestive of cognizance of 
differential information indicative of an ascent method. 
This interminable classification problem is obviated ty the 
plausible  defense   of nomistic  innocence.     Several     classical 
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techniques of both types that are available for findiiig t(n) 
when k=1, for instance golden section search, regula falsi, 
and so forth[232,193 ],  are not discussed  here. 
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C.   DIRECT   SEARCH  METHODS 

I 

The Hooke-Jeeves pattern search method[129]# perhaps 

the simplest technique Icnown, is a maximization scheme based 

on direct evaluation of L (T).  Given a starting  point,  T , 

and stepsi'e, s , the iteration sequence proceeds by varying 

each element of T by one step in each direction and 

evaluating  the objective function, keeping each respective 

element of T at the value which lead to a maximum.  Thus, T 
1 

will  be  at  a corner of the k-dimensional hyperrectangle 

defined by I ♦S .  The scheme proceeds  similarly  until  no 
0  0 

further  gain  seems possible, in which case the stepsize is 

halved, the process repeated to no gain, stepsize halved 

again, and so forth until termination is recognized within a 

small enough neighborhood. 

• 

Several heuristic modifications have been proposed, 

including a ridge-following "memory" tor acceleration of 

stepsize when aa element of s continues step-to-step to 

exhibit no change in sign while sequential gains are 

made[ 129 ], a sequential transformation of coordinates in 

order to minimize parameter interaction and separate the 

effects of steps on the approximately orthonormalized 

problem, linear minimizations along estimated conjugate 

directions, a restart procedure for avoiding local minima 

and stalling, parallel tangent acceleration suggested by 

Shah, Puehler, and Kempthornef210 ], quadratic approximation 

with aa interpolating polynomial over the local search 

lattice, and introduction of random numbers to avoid dead 

ends for the search. Such ad hoc modifications are found in 

Fletcher[ 87],  Zangwilli. 239 ],  tiosenbrock[ 206 ], Powell[ 190 ], 

3J 
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and Daviesfbö],   who also describes response     surrace     direct 

optimization  schemes  encountered  in  experimental design. 

The simplex method, introduced by Spendley, Hext, and 
Himsworth[216 ], generalized by Neider and Headf 171 ], and 
generally referred to as the simplical scheme so as not to 

confuse it with the linear programming algorithm, uses k+1 
points defined as a simplex in the k-dimensional search 
space. At each iteration a new point is created to replace 

the point associated with the minimum value on tne simplex 

by reflection of the minimum point via a ray through the 
centroid of the other points over a distance determiner! by a 

reflection constant. A possible dimensional collapse of the 
simplex is avoided by special logic, and acceleration and 

convergence are achieved, respectively, by expansion of tne 

maximum point on the simplex on a ray from its centroid, or 
contraction of the minimum point on the simplex on a ray 

toward  the centroid. 

This ingenious technique worlcs much like the pattern 
search methods examined above, and will almost always 

terminate eventually by converging to a local maxima. 

Modifications of the scheme are possible with random 
perturbations to mitigate near linear dependencies in the 

simplex and to avoid final convergence to a local maximum. 
Numerical bounds can be accomodated on the parameters. 

UOX[27] found the simplical scheme superior to pattern 

search and Rosenbrockls[ 206] method, and introduced the 
"complex" search method, which is a generalization of the 
simplical scheme to admit a convex inequality constraint 

set. Richardson and Kaester[199] have published another 
constrained simplical program. One weakness of the iiethod 
is  the  requirement   for an interior    T   ,     but     Noh[177],     has 

further       generalized      the       complex     search    for     equality 

constraints  and non-interior  starting   points.     Box     reported 
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that tor his simple models, oojective function evaluations 

commonlY required 1000 times as lone/ as the complicated stop 
selection logic. Parkinson and Hutchinson[ 181 ] discuss tiie 

relative  merits  of  variations of  the  simplical  approach. 

Although simplical schemes seem to work in practice, 

even for difficult problems, no acceptable formal proof of 

convergence has yet appeared. The theoretical difficulty 
seems to lie in (unconstrained) counter examples which can 
be constructed and for which the method should not 

terminate. For instance, see the cases given by Shere[211] 
for the program presented by Richardson and Kaester[199 ]. 

Realistically, however, confrontation of such special cases 

is highly unlikely. On the other hand, it is true that 
dimensional collapse is a continuing theoretical and 
numerical hazard in the presence of constraints. Finally, 

it should be noted that these are scarcely substantive 
criticisms of the method when it is used for adaptive 

process  control,   as   it was  originally   intended. 

Direct search methods whicn attempt to reliably achieve 
global maxima have been proposed by Brooks[29], Bocharov .ind 
Fel,dbaum[25 ] and Page[1ö0]. These treat the objective 
functioa as an unknown but deterministic response to the 

argument, T. The optimization proceeds by sequentially 

partitioning mutually exclusive and exhaustive regions for 
interior T over which the first two moments of the objective 

function are estimated to discriminating precision by random 
sampling or numerical quadrature over a k-dimensional 

lattice, and a hypothesis test is performed to select the 
better region, which is in turn bisected on the next step. 

The iteration ceases when an acceptably small region is 

selected. 

It is important to note the difference oetween these 
area    evaluation     methods    and  simple  random  point  sampling. 
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Without the partitioning scheme and sequential area 
estimation and hypothesis tests, tnese methods degenerate to 

the infamous Las Vegas technique. 

Each        area selection      method       suffers      from       a 
non-parametric probability of excluding the region 

containing the global optimum at some intermediate decision 
step and thus of unreliably reporting a surrogate, nonlocal 
suboptimal solution. Geometric features such as an isolated 
peak with steep slopes and a shallow base can evade 
detection and can be caused by a poor choice of initial 

feasible  region  for interior points. 

Several authors, notably Clough[60]# Cooper[55], 

HartleyC 119], Hartman[ 120 ], Liau, Hartley, and Siellcen[ 154 ], 
and Zäkharov[238] have developed statistical strategies for 
region sampling and evaluation and conducted experiments 

with standard objective functions. They report limited 
success in actual applications. None of the applications 

include  a  prcblem  typical of  M.L.E. 

High frequency oscillations and other irregularities 
which thwart other search techniques are smoothed and thus 

mollified       by       this       area       approach. This      smoothing 

characteristic and the academically appealing global 
strategy suggest the technique for finding a reasonable 

starting domain for interior points for some other search 
mechanism, especially if the latter iteration converges only 
in a close neighborhood of a maximum, or if the objective 

function is pathological. Some experimentation has shown, 
however, that excessive objective function evaluations were 
necessitated for relatively small, uncomplicated sample 
problems. 
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D . ASCENT METHODS 

Most indirect schemes are characterized by an iteration 

of the form 

T  = T   ♦ aM s , 1=1,2, . 
i    i-1 

witn a  positive scalar  step  length,   a,   an     iteration     matrix 

-1 
M     ,     and    a    vector  of  directional  gradient  information,  s. 

For  instance,   the    first-order    method     of     steepest     ascent 

first    descrxced     by     Cauchy[45],     and  later  by  Courant[56], 
Curry[59],   and  Levenberg[ 153 ],   uses 

H  *  I   ,   s = 7L(T)    , 

and    chooses    the  stepsize a  as a  suitable   positive constant 

to  increase   L (T)   along  the ray 

T ♦  al7L(T) 
i-1 

a may oe chosen to produce a maximum along the ray by direct 

evaluation, regula falsi, quadratic approximation, or simply 

to proauce any gain. This method ultimately terminates at a 

local maxima, but often converges with slow performance, 

especially along curved rising ridges for which it 

hem-stitches with agonizing progress. 

Further discussion of ascent methods xs given by 

Goldsterne 101] and Ramsay[ 194 ]. Powell[1903 and Brent[28] 

give first-order ascent schemes using difference 

approximations for derivatives, with due  attention to the 
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numeiical and  theoretical consequences of   such substitution. 

A second-order scheme, the Newton-Kaphson method, 

applies 

M   =   -H(T) ,   s  = 7L(T) ,   a   =   1    , 

for which convergence terminition depends upon negative 

definiteness of H(T). This condition on H (T) is usually 

guarantetd only over a small neighborhood satisfying the 

Lipschitz condition discussed by Henrici[ 123 ], which in 

essence requires that L (T) behave nearly linearly in the 

vicinity of a maxima. The rate of convergence for problems 

that do successfully terminate is quadratic above the noise 

level of machine calculations and it follows rising ridges 

well. However, this second-order scheme is renowned for its 

propensities to seek saddle points and follow ridges out of 

the vicinity of the feasible region. Mso, computing H can 

be  prohibitively  expensive  and  imprecise for L(X) , 

2 
requiring,   as it  commonly does,   k     very extensive  n-sums    of 

complicated nonlinear transcendental terms. (Not to speak 

of the debugging effort in checking program logic and 

algeora.) Goldstein       and       Price[103],        have     suggested 
approximation of H by finite differences on L{T) in these 

cases. LtioL analysis of the Newton-Raphson scheme is given 

by  Lanca3ter[148]. 

Many methods have been proposed to give convergence 
rates like those of Newton-Raphson and dependability of 
steepest ascent. Usually these involve forming an iteration 

matrix, H, by various means in the interests of assuring 

positive  definiteness over  the  largest  neighborhood. 

The conjugate gradient method, invented by Hestenes and 

Stiefelf 126],       applies    an     ingenious     one-step     memory    by 
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modiiying the  steepest  ascent  iteration to  the recursion 

s=VL(T.)   ♦   (N7L(T.) M/||7L(T.      )||)   s.        , 
1 1 1 L-l 1-1 

with 

S   = 7L(To)/| l7L(To)| | 

This scheme avoids thp notorious hem-stitch stalling of the 

steepest asctnt method, even permittinq finite convergence 

proofs      for quadratic objective functions. The 

ortnogonalized gradient vectors, and the conjugacy and 

linear independence of the steps is achieved at very little 

cost, without requiring maintenance of second order 

information, such as H (T) . Thus, second order convergence 

can often be achieved at very little additional 

computational cost. The method was suggested for solving 

linear systems by Hestenes and Stiefel[126] and implemented 

for nonlinear objective functions later by Fletcher and 

heeves[90]. A       complete       development        is       given      oy 

Hestenos[ 124,125]. A convergence discussion        and 

modifications  to  the   method  are  given  by   Daniel[60]. 

Fisher[8b] gives the second-order method of scoring, 

also discussed by Hao[197], which is specific to problems in 

whicn a log-likelihood function is maximized, and is 

identical to the Newton- Raphson method, except that the 

Hessian  is  replaced  by its  expectation, 

H   =   £[-H(T) ]   , 

where H is called the information matrix, which Kendall and 

Stuart[ 1U1,p.56]  show  to  always be    positive     definite.       We 
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A   -1 
see   that   the  final   iteration   aiatrix  for  this  scheme,   H (T)      , 
is the Cramei-Rao bound for regular M.L.E. Vandaeie and 

Chondhury£ 223 ] give some coinpu tationai examples and suggest 
some BiiiCi modifications for this approach. Tnis method 

requires a formal derivation of the expectation of some very 
complicated transcendental sums in the Hessian matrix. An 
example will serve to illustrate the scope of this pLoble;n 

later. 

Both the theoretical and nuuierical pertormance of these 

iteration methods can be improved oy appropriate dtiine 

transformation of the problem. For instance, see the recent 
investiqation of Amor[3]. Other techniques can be applied 
to insure positive definiteness for M. Various spectral 

decompositions    of     H     may     oe       used. Determination       of 

eigenvectors and associated eigenvalues of the real 
symmetric matrix H is possible Dy several methods reviewed 
Dy Schwarz, Putishauser and Stiefel[ 209], along with s^uar^ 

root and Cholesky decompositions. Although diagonalization 
and orthonormalization of H will eliminate local parameter 

interaction, the neighborhood over which the result holds is 
quite small for non-quadratic problems, making the 

transformation of questionable value when performed at the 
high expense of the eiqen-analysis. If the condition number 

of H ib defined as the ratio of the absolute values of the 

largest to the smallest eigenvalues, then a measure results 

of notn topological distortion from an idealized 
k-dimensional response sphere about T, and the difficulty 

with  wmch  B  will   be  accurately  inverted[ 1 ^7,70, 133 ]. 

Advocates of the transformational approach have even 
proposed introducing constraints on the eigenvalues of H, 

for instance, replacing negative eigenvalues by their 
absolute values, and near-zero values by a small constant 

was     proposed     by     Greenstadt[108]     for     maximization   with  a 
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Newton-Raphson-iike scheme. With some difficulty we can 

mooentaiily visualize the presence of a large condition 

number inflying the existence of a long ridge or trough 
oriented with the eigenvector dssociated with the eigenvalue 
in the denominator. This is a good situation for a 
second-order iteration scheme if the ridge is convex, wnich 

is the case when the eigenvalue in the denominator of tue 
condition number is positive. This eigenvalue constraint 
method, and other similar proposals, attempt to mask the 
concave ridges and saddle points which are also attractive 

in the seccnd-order iteration. Bootti and i?eterson[ 261 

discuss such geometric  inference at  length. 

A reasonable compromise is the simple scaling of H, 
analgous to the creation of a correlation matrix from a 

covariance  matrix.     Let  a  scaling of M be   performed  by 

V2 
B     =   {m. y|m     m     |       }    , 
s 13        ii   jj 

with  singularities  m =0 replaced in the computation by 1. 
3 3 

This       cm       ease       the       burden      of      computing       spectral 

decompositions for the iteration matrix, and it can reduce 

internal loss of numerical precision in the iteration 

scheme. 

In  the same  vein,  a  normalized    gradient     is     sometimes 

applied 

* 7L(T)   =  7L(T)/||VL(T) | |    , 

to keep computations numerically stable and place the 

scaiinq burden on the scalar stepsize, a. Even though these 

transformation methods are always available and sometimes 

useful,  they are  not  emphasized in this presentation for 
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sxupiicity. This is appropriate in part since the 
investigator should always take care to reasonably scale any 
problem   regardless  of  the  method  employed   to  solve   it. 

Levenburg[ 153] proposes a scheme which has since been 

generalized and machine implemented by Marguardt^16U ]. In 
the development, a method is sought which will behave liKe 

steepest ascent in regions not local to the solution, and 
like Mewton-Raphson when the solution is approached. The. 

iteration matrix   is  chosen 

H   =   -H(T)    +  ml   , 

with m a positive constant. We see that no matter how 

ill-conditioned H is, a suitably large choice for m will 
give  a  numerically   nonsingular  iteration  matrix. 

(The    nonsingularity     of     B    is     more     apparent 

momentarily  consider  the convex comuination 

we 

H  « -(l-a)H(T)   ♦  al,   0<a<l   .   ) 

For m=0, this Mar^uardt-Levenburg heuristic is the 
Newton-Raphscn metnod, and for m large this approaches tae 

steepest ascent method. Marguardt gives a heuristic for 
modifying a by a multiplicative expansion/redaction factor- 

on the basis oi: algorithm performance. A more formal method 

of determining m was later put forth by Smith and 
Shanno[212], along with facility for handling linear 
constraints    by the  projected  gradient  method of  &osen[203]. 

Marguarat also introduces a useful termination 
criterion for tolerance of resolution. With "|...|" 
denoting  a k-vector  of absolute values,  this  is 
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-b -3 
|T -T   | < 10  (T   ♦ 10  ) 

a  m-l m-l 

This might be restated 

-d -n 
|T -T   | < 10   (T    ♦ 10 ) , (d + n) In 10 < b, 

m m-1 m-l 2 

with d the number of significant digits of desired 

resolution. b is the number of bits in the floating point 

mantissa of the computei: used, modified by the noise level 
for  one   or  two's complement   arithmatic. 

Another    school     of       thought       attempts       to        achieve 
second-order    convergence     without evaluating  H  at   each  step 
of   the   iteration.     The  iteration   matrix,   H,   is     assiduously, 

and     hopefully,   maintained  as   a   negative  definite  substitute 

-1 
for     H Such     variable     metiric    methods,     introduced     by 

DavidonföS],     and     discussed     by   aroyden[35],  are  in   reality 

more       computationally       efficient indirect ways of 
approximating       the       Hessian       matrix     by     difrerencing     as 

suggested     earlier     by     Golstein     and       Price[103]. These 
approaches  work by   adding  a   correction matrix at  each  step 

-1 -1 

i i-1 

with C derived in several ways.  Define 

-1     -1 
^T = T  - T    = aM  s = aj? VL (T) , 

i   i-1 

^(7L(T)) = 7L(T ) - 7MT.  ) , 
i       1-1 
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AS  «   A(7L(T))    , 

and 

-1 
d = AT - H      As  , 

i-1 

-1 
then a rank-one correction  for  the  iteration  matrix,   H     ,   is 

C =  dd'/AT^  ; 

there  aie  others,   for  instance see Householder[ 130, p. 1 23 ]. 

A    rank-two    correction     for     the      iteration       matrix, 

developed  by  Davidon,   and Fletcher and Powell[8S],   gives 

-1 -1 -1 
C = ATAT'/AT'As -   H      AsAs'H      /As'M       As 

i-1 i-1 ~i-1 

An   inverse rank-one correction  proposed by     Powell[191]    and 

Bard[ 12 ]   uses 

-1 
c  = As  -  H       AT  , 

i-1 

to   give 

C  =   cc'/AT'c     . 

Poweil[191] suggests  using 

-1 -1 
M        =1! ♦  C   , 
~i i-1 

while   flard  suggests 
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-1 
H        =   C   . 
i 

These rank-ont1 methods have also ueen discusseil by 
Greenstadt[ 109 1, Fiacco and McCorinick[ 83, p . 170 ], 
Cantreil[43 ], Miele and Cantrell[ 168 ], Cragg and Levy[57]# 

Forsythe[ 92 ], Myers[170], and many others, largely with ttie 

objective of finding a stepsize with minimal expenditure and 
avoiding singularities in H. Lili[155] presents a computer 

program with some of these features. Hank-two and other 

variable metric schemes have been examined by Bard[11]r 

DavidonTöa], Goldfarb[ 99 ], Matthews and Davies[1b5]f Brown 

and Dennis[J3], and Broyden[ 36 , 229,230 ], who gives evidence 

against using transformations on the problem when in a near 
neighborhood to the solution under pain of stalling the 
algorithm. On the other hand, Oren and Luenberger[178,179 ] 

propose a self-scaling variable metric class of algorithms 

with  claims  of excellent  performance. 

These methods have been compared with others intended 

for the mere general problem of solving a simultaneous set 
of nonlinear equations by Barnes[13], Daniel[6 1], and 
Broyden[ 34,39 ]. For. contrast, it is also instructive to 

review  earlier work by  Davidenko[62 ],   and  Molfe[235]. 

A further modification of second-order schemes is 
introduced in two excellent papers by Stevnrtt 218 ], and Gill 

and Murray[97], in which the gradient is estimated by 

differences, and sequential approximations of the Hessian 
are made with great care in an attempt to balance truncation 

errors, loss of numerical precision, and ill-conditioning in 
the iteration matrix. The.se authors mention the numerical 
singularities that can occur in the iteration matrix despite 

theoretical guarantees to the contrary. Gill and Murray 
propose    the    spectral    decomposition     known      as       Cholesky 

US 
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factorization for representing the symmetric Hessian. For L 

a lower triangular matrir; and D a diagonal matrix, the 

factorization produces 

H = LD^1 . 

Definiteness for H is then assured by the careful monitoring 
of  diagonal  elements of L and p. 

Jones[1J6] gives a factorization for Waryuardt's 

scheme. Jones, Hoss[207] and Bard[12], give conparisoiis of 
the various indirect iteration schemes, finding the 

Marguardt and Davidon-Fletcher-Powell methods better ir. most 
test problems. Brooks[30] gives a review of ealier 
unconstrained methods, as do Dennis[71], Poifell[ 192 ], 
Spang[215] and Kowalik and Osborne[ 144 ]. 
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E.   METHODS   WITH  CONSTRAINTS 

General    constraints    on    the optimization   problem  have 

already been defined notationally        along with 

characterizations      of      optima       under       these    conditions. 

Algorithms  permitting  constraints  are    classifiable    by     the 

admissable    form    of     the    constraints    and    tne    associated 

objective  function.     For  instance,   a linear    constraint     set 

can     be     treated     with    classical     linear   programming,   L.P., 

methods   if  the objective function   is approximated    linearly. 

Note       that       the      L.P. includes       mechanisms       for     the 

determination of  interior  points,     T  ,     given    any    starting 
i 

value       for       T  . Frank     and     Wolfef93]    present     such     a 
0 

first-order algorithm,  for  linearly    approximated    objective 

functions,   stated  for step   i: 

MAX     7MT        )'T     , 
T i-1       i 

which is solved via a standard L.P. step (treating 7L(T  ) 
i-1 

as    a  fixed  parameter vector),   reapproximated,  and  so   forth. 

Other similar approaches to the problem have been proposed 
by Wolfe[236] who uses tne Kuhn-Tucker conditions to 
formulate a L.F. for a quadratic objective function, while 
Beale[16,17] and Zangwill[ 240 ] imbed the objective function 

evaluation within the L.P. mechanism. Non-convex problems 
have oeen approached similarly with decomposition techniques 

discussed by Zangwill[ 2U2 ]. A primal-dual method is given 

by  van  de  Panne  and Whinston[222 ]. 

Nonlinear equality constraints may be implicitly 

combined with the objective function by the use of Lagrange 
multipliers,       as      discussed       earlier,        to       produce       an 
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unconstrained        equivalent       maximization       problem. For 

nonlinear inequality constraints, a set of active, or basic, 

constraints is kept in the objective function and used via 

the current multipliers, or their estimates, to give 

feasible directions for eacn iteration, either alonq aa 

active constraint, or toward the interior region. These 

modifications are discussed for gradient methods and 

quadratic objective functions by MarJtowitz(. 163], Theil and 

van de Panne[220], and Lemke[152]. General problems with 

mixed nonlinear constraints are examined by Rosen[ 203,204], 

Davies[653, Zoutendijk[ 244 ], Forsythe[ 91 ], Goldstein[ 100 ], 

and many others. Goldfarb[98] gives a generalization of the 

Davidon - Fletcher-Powell second order method to accomodate 

mixed linear constraints. Greenstadt[ 107 ] presents a local 

deflected  gradient   method. 

Nonlinear constraints may also be explicitly added to 

the objective function by the use of penalty functions, an 

idea attributed by some to Courant[56], recently suggested 

by Carroll[44] and generalized by      Fiacco       and 

McCormick[82,83,81 ].     For  example: 

MAX        L(T) 
T 

s.t. g   (T)   < 0  ,  g   (T)   =  0   , 

is restated with "interior" penalty functions 

MAX L(T) ♦ c/g« (T) 1 - g» (T)g (T)/c 
V2 

with c a scaling parameter, and 1 a summing vector. As an 

interior point approaches any constraint, the objective 

function is distorted. This sequential unconstrained 

optimization  technique,  S.U.M.T.,   solves a sequence of 
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Bonotonically less internally distorted problems by 

decreasing c to a noise level. We see that a formal basis 
of active constraints need not be maintained, although logic 

should be included to permit numerical evaluation of the 
ratios in the objective function as tney approach 
indflterminate       limits. Sequential       relaxation      of    the 

penalties will ultimately terminate with an interior 

solution, or for problems with active constraints in their 
final solution, a termination occurs in a close neighborhood 
of the undistorted solution. Great care must be taken in 
constructing the S.U.M.T. iteration so as to properly scale, 

or "tune,"  the constant,  c. 

Zangwill[241 ]    gives    an     "exterior"     penalty    function 

formulation 

MAX 
T 

L(T)    -  eg« (T)g(T)    , 

with  g(T)   the  subset  of constraints    from     g   (T)     and     g   (T) 

violated     by  the  current solution,   and  c  a   positive constant 

sequentially increased maximization-to-maximization to an 

arbitrarily large terminal value. While this method admits 
any  starting solution,  T  ,     there    is     an     added    burden    of 

maintaining  a current index  set for violated constraints. 

Many ether variations have been proposed for penalty 
methods, notably by Camp[42], Butler and Martin[41], 
Goldstein and Kripke[ 102 ], Stong[219], Pomentale[ 189 ], 

Fiacco[79], Fiacco and Jones[80], Kowalik, Osborne and 
Ryan[1U5],  and  Beitrami and  McGilltlB]. 

Finally, cutting plane algorithms introduced by 

Keiley[1i*0]  for a  linear objective    function    and    nonlinear 
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constraints, and by Cheney and Goldstein[ 47 ] and Holfe[237] 
for strictly concave objective function and constraints, and 
a constraint set which is convex, involve successive 

introduction of auxiliiary variables and constraints to a 
sequence of linearly bounded problems. Such strategies can 
lead to cumbersome dimensionality and numerical overhead 

even  for   relatively small problems. 

The       texts       by Hadley[111 ], Fletcherf88] and 

Jlangasarian[ 158 ], give extensive development of the various 

constrained algorithms. 
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!_• iUüMARYj.   AN   EFfIC^ENT   GENEflAL   TECHNIQUE 

Convergence proofs are widely published for most of the 

numerical    optimization     methods    presented     thusfar. For 

instance, Zangwill[2U3 ] develops several representative 

theorems, each with its set of simplifying assumptions and 

necessary conditions. However, even for a "nice" problem 

(convex, guadratic, and so forth) these mathematical 

demonstrations all implicitly depend at some point upon 

exact arithmetic, and are tnus weakened by finite numerical 

precision of floating point operations on a digital 

computer. As an example, the effect of numerical, or 

random, perturbations on an iteration matrix and thus its 

inverse is largely a mathenatical problem that is not well 

understood. Perhaps one is better off to adopt a passive 

view. An undesirable, but nontheless terminal state of an 

iteration algorithm is always possible due to mathematical 

and numerical instabilities. This is the motivation of the 

"terminal state" approach taken here, rather than a 

"convergence" point of view. 

The relative computational success of an algorithm in 

practice often becomes a more important criterion for its 

selection than theoretical rate-of-convergence. Further, 

one must usually trade off the degree of automation of a 

method (the amount of monitoring and "tinkering" required 

for each application) with efficiency stated either in terms 

of solution expense or the probability of termination at a 

stationary point that is optimal. In short, sufficient 

proof   is  performance,   and it   is never  general. 

Along these lines, it can be dangerous to attempt to 

generalize the results of computational experinents on 

"standard" functions, such as those discussed by Rosen and 

Suzuki[205],     to     a complicated application   (very  nonlinear. 
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high dimensionality, etc.). One oi the reasons for the lack 

of literature on comparisons ot algorithm performance on 

real problems is the incredibly high cost of conducting such 

competitions, measured in exhausted computer accounts and 

aan-hours expended in preparation. Other iactuus 

contriouting to the paucity of published comparisons include 

the sheer volume of data required to display the results 

meaningfully, and the proprietary nature of both the 

problems and implemented algorithms. 

There are some refreshing exceptions, such as the 

report of Friedman and Pinder[9U] who state that the complex 

method performed better for their application than S.U.M.T., 

deflected gradients, or pattern search. 

Graves[104] gives a descciption of a general nonlinear 

programming algorithm developed and used for several test 

cases and applied to a more complicated minimum fuel 

guidance problem. Graves and Whinston[ 106 ] present both 

analytic evidence, and experimental results for convergence 

of the method on a set of problems given by Colville[54]. 

Hatfieid and Graves[122] give another favorable application, 

and Clasen, Graves and Lu[49] describe a set of large 

munitions mix allocation problems upon which the method is 

successfully applied. dense, the efficacy of the Graves 

algorithm has been established on uoth theoretical and 

empirical grounds over a period of ten years' use. 

Tne method is based on the optimization of a sequence 

of local linear programming problems arising from the first 

order approximation of the objective function and 

constraints in the neighborhood of a current solution. 

5igniticantly, the program has general provisions for the 

practical implications of certain numerical characteristics 

of finite precision digital computers and for vagaries in 

the behavior of general nonlinear constraint sets. 
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The efficient performance of the method is probably 

most directly attributable to the speed, precision and 

compactness of the linear programming algorithm exercised; 

the mutual primal-dual representation of linear programs 

given by Balinski and Gomory[10] and extended and completely 

implemented by Graves[105] provider both impressive solution 

speed and a format within which the local linear problem may 

be easily and effectively manipulated to deal with various 

inconsistencies and parameterizations which arise during the 

course of solution of a nonlinear problem. 

Linearly constrained problems are handled expeditiously 

by this general nonlinear method. Modifications of the 

iteration mechanism are facilitated by program features 

permitting, for instance, incorporation of a second order 

representation of the pronlem given in (.106]. Externally 

supplied routines may be used to monitor the progression of 

solutions, provide starting tableaus from previous 

solutions, perform specialized input/output functions, and 

so forth. As further evidence of the adaptability of the 

Graves philosophy in nonlinear programming. Hatfield[ 121] 

demonstrates an efficient conjugate gradient method for a 

linearly constrained nonlinear programming problem. 

The general method uses the fundamental linear 

approximation theorem presented and proved by 3ucit[ 40, p. 160 ] 

for continuous differentiabie functions, g(T). If, for some 

T and single constraint, g(T), 

g(T + AT) = g{T ) + Vg(T ) 'AT *   rem(T ,AT) , 
0 0       0 0 

then 

LIM  rem (T ,AT)/|AT| = 0 , 
AT-»0      0 
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is  approached  uniformly     for     feasible    T   .       The     iteration 
0 

proceeds  by  solution  of  the  local  linear  programming  problea. 

MAX    7L(T  ) «AT   , 
AT 0 

s.t.    \7G(T ) »AT < -g(T )   -  "Rr  , 
"0 0 

with  r a     vector     of     positive    constants     representing     the 

directional    linear    approximation    error  estimated  from  the 

most     recent    iteration,     and     initialized     r=0. is 

parametric    adjustment  constant,   used  to  control  the  rate  of 

solution   of   the  local   problems. 

Three numerical bounds are imposed on the algorithm. 

The first is an upper bound on the variables of the dual 

program 

MIN       Y'tgCT ) + ^r]  , 

s.t.      Y*yG(T   ) = 7L(T   )    , 
~     0 0 

Y >  0 ; 

which  is  stated 

B     >  YM   . 
1 

This condition insures that the optimal bases of the 

sequence of local linear programs do not approach 

singularity arbitrarily closely while remaining nonsingular, 

and is used in lieu of the Kuhn-Tucker constraint 

qualifications. 
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The  primal  variables  are  bounded 

E)   > HATH 
2 

so that numerical range constraints on T may be incorporated 

algebraically into solutions without inclusion in the 
constraint set, g(T), and to preclude local numerically 

unbounded  solutions. 

The  last  bound. 

B     >   MAX(|HEH(T  ,AT) |)    , 

gives an upper limit for the linear approximation remainder 

terms.     This error bound  is used with  B    during the  progress 

of  the algorithm to control   the    parametric     adjustment    for 

infeasibilities in   local  linear programs via  the constant K. 

A zero level, e, is also provided as a "noise" limit 

for numerical computations within the program. This is a 
very important feaLure in several ways. For instance, the 

pivotal transformations use e to control accumulation of 
truncation    errors. Most       important,       constraints      are 

considered  to  be  satisfied  when 

g (T)   < 0 ♦ e  . 

This is a subtle feature. Some thought about numerical 

evaluation of nonlinear functions bounding the feasible 

region reveals that apparent inconsistencies caused by loss 

of real precision could lead to incorrectly concluding that 

an infea-iibility has been encountered, when in fact T is in 

a feasible e-neighborhood of, for instance, an equality 

constraint.  Remember, too, that the local  linear program 
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will, whtin finally applied to inaxiuiizmj the objectivf 
function, seek bd^ic extremal solutions on the boundary Jf 

iii« quality constraints as well. Thus this e-relaxation is a 

f uiHldmental technique. In the lexicon of Iverson[ 134 ], we 
treat   constraint   boundaries  as being  "fuzzy." 

A jejuence of consistent local linear programming 
problems is solved by constructively treating violated 
linear   approximations   of  constraints  as objective     functions, 

in     subproblems.        If     for     some   intermediate   solation Tc  has 

been   par jnietrically   reduced   to 

Tc   =  e/[B3(3     ♦   1) ]  , 

and  tnere still remains a violated constraint g(T ), not a 
0 

* 
member  of  active     constraints    q(T )     with    associated    dual 

0 

variables  Y,   such   that 

y.gd^)     >   -g(T)    -   e   , 

then  an   unrtsoivable   inconsistency is  reached as  a     terminal 

stat«-;. 

A   teraiinal  optimal   solution   is recognized  when   a     local 
linear   program exhibits   a  dual  solution  with 

I'g(T )   > -e  . 

A finite convergence proof for this technique requires, 

5b 

■MMMB llrtlUlM — -      -     -■ ---    -    ' •■     "Vfl,   -.■Wl 



• 1 1" WW'P» 'l|^T;'^^W«J,tljf|l|K)l>^l|lUJ|l^lli|/|I||l.»;il^Wi)W-.»p!lf|y,i;^)iy 

W*\-->r^"4^ f'^*r'^r.V-; 

as always, restricting assumptions about the nonlinear 
functions in the problem. However, a terminal optimal 

solution to a local linear program is a stationary point for 
the original objective function, L(X,T). The possibility of 

termination at a stationary saddle point cannot be ruled 

out, but experience has shown such a result to be very rare 

for real   problems. 

A second order representation of the primal problem can 
often te expected to converge more guickly in the 
neighoorhcod of a stationary point than the first order 

"gradient"       formulation. To     achieve    the    higher    order 

representation, we create an expanded nonlinear program by 
introducing the first order stationary conditions as 

constraints. This expanded representation introduces the 

dual  variables explicitly  and  uses 

♦ # 
T      =    {TrT}    , 

so  that   the  reformulation   yields 

* « 
MAX  [7L(T)   - VGCT)1!]'!  +   g (T) «T 

T* 

s. t. g(T)   < 0  , 

7L(T)    - VG(T) »T  < 0   , 

T     >   0   . 

» 
We     define    H (T)   as  the   three  dimensional  matrix  of   Hessians 

for the  constraint set,     with     "column     j"     the    Hessian    of 

♦ ♦ 
g   (T).        Now,    with    T    =  T   ,   the  parameterized  local   linear 

j 0 

program   becomes 
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»        * i 
MAX[7L(T   ) + (H(T  )-H(T  )T  }T    ]'AT   +  [ g (T )   - VG(T )T    I'AT 

s. t. 7G(T )AT  < -g(T )   - ^r     , 
~     0 0 1 

tt       « « * 
[H(T   )    -   H(T )T   ]AT  -  VC <T   ) «AT  <  -^{T   )   + 7G(T   )«T     -   Tcr 

In     the    special     case     of     unconstrained problems,   the 

local linear program becomes 

MAX [7L(T   )   +   H(T  )T   J'AT   , 
AT 0 "00 

s.t.  H(T )AT < -yL(T )  - ür    , 
~     0 0 2 

and the  direction of ascent,   neglecting  the  parameterization 

term Icr   ,   becomes 
2 

-1 
T =  -[H(T  )      ]«7L(To)    , 

which  is  thfe fam'.liar  Newton-Raphson result  when  the  Hessian 

is  cf  full  tank. 

It should be noted that the present linear programming 

approach is more robust than the classical Newton-Saphson 

process precisely because it will continue to function in 

the presence of a singular or near singular Hessian. Also, 

tne    relaxation     features     of     the method  introduced  via  the 

parameterization  of  the  right  hand side     with    Er     generally 

have    a     salutary    effect     on     the rate of  convergence  for  a 

constrained first  order  or   any  second    order     representation 
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of   the  problei». 
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CBAPTEB III 

ISHfiAIISI IQS 2M1 HIIBOLL DEHSITI FOMCTIOH 

A. INTRODUCTION TO THE PARAMETBIC WEIBÜLL FAMILY 

A density function has been proposed for describing 

breaking strength in materials and later formally introduced 

by Waloddi Weibull [227,228,229] for use in fitting many 

types of physical data from various academic and industrial 

fields of interest. It is his reasonable claim that there is 

very seldom sound theoretical oasis for applying any 

particular density to real data. He therefore advises 

choice of a relatively simple density function which seems 

to fit with empirical observations, and "stick to it as long 

as none better has been found[229,p.293 ]." 

Tne Weibull density was originally parameterized 

T« = ( a, b, c } , 

and given  the  form 

b-1 b 
f   (x,T)   =   (b/a) (x -   c)       exp[-[(x  - c)   /a])   ; 

a,   b  >   0;   x  >  c   . 

A  reparameterization gives  the eguivalent 

b-1 b 
f   (x,T)   =   (b/a)[ (x -  c)/a]      exp{-[ (x - c)/a ]  }    ; 

2 

a,   b   >   0;   x  >  c   . 
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In this tocm of the tnree parameter Weiouli, a is known ati 
the "scale parameter," b as tne "shape parameter," and c as 

the  "location parameter." 

The flexibility of tne Weioulx family of densities via 
choice of the shape parameter, b, xs illustrated in Figure 1 

for arbitrary location paranieter, c, and unit scale 
parameter, a. The chameleonic nature of this family is 

discussed by Lehinan[ 151 ]. Its robust adaptability for data 

fitting have made it a popular candidate in such 

applications. Indeed, with b= 1 the Weibull simplifies to 
the two parameter exponential family, and when b=2 the 
Rayleigh family results. Figure 2 shows the Rayleigh family 
of densities arising from the Heibull with b=2, arbitrary 
location parameter, c, and several values of the scale 

parameter,   a. 

By design, the Heibull density is a perfect algebraic 
differential,  and  its reliability  function  is defined 

R   (x,T)   =   / f   (x,T)   dx =  exp{-t(x - c)/a ]  }   , 
2 x     2 

and the distribution function follows: 

F (i,T) = <  f (x,T) dx = 1 - expK (x - c)/a ] } 
2       c  2 

Keen interest in the Weibull family comes from 

reliability applications and the statistics of extremes. 
Gumbel[110] gives a derivation of a form of the Weibull 

family under the name "Type III asymptotic distribution of 

the smallest extreme." Also, reliability theory leans 
heavily   upon the concept of  "hazard rate,"   which is  defined 
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h(x,T)   =   f   (x#T)    /  R    (x,!) 

This is interpreted as the instantaneous failure rate of a 
functioning electronic device or physical component under 

service   stress. 

Many statistical studies are aade under hypothetical 

conditions of decreasing, constant, or increasing hazard 
rate. The flexible Weibull family can exhibit all three. 
In fact, another derivation of the Weibull density comes 

immediately   from   the assumption  of 

b-1 
h(x,T)   =   (b/a)[ (x  - c)/a] 

as the mathematical form for the hazard rate function. 

In an excellent introduction to reliability theory. 

Mann, Schäfer and Singpurwalla give many references to 

applications in the open literature using the Weibull, and 

state: "Eecently, the Weibull distribution has emerged as 

the most popular parametric family of failure 

distributions." [161,p.127] 
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I   <> 

FIGURE   1 

MEIBÜLL   DENSITIES   FOR   a=1f   b= 1. 0 (0. 5) U. 0 

^ i'..' 
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FIGCBE   2 

WEIBULL   DENSITIES   WITH  a«0.5 (0.5)3 .0,5.0,   b=2 

'Ji'-' 
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fijt   ESTIMATION   AL^ERNITIVES 

The most popular statistical techniques for parametric 

estimation in the Weibull family are graphical estimation, 

the method of moments, and M.L.E. The first method needs 

little discussion, however the latter two demand some 

mathematical development for proper evaluation, especially 

for the M.L.E. For the present we will restrict our 

attention to complete random samples, and the nost general 

case of all three parameters unknown. The literature is 

rife with examples of estimation for subsets of the 

parameters, although numerical details are often scarce. 

The       most       prolific      author on the        subject is 

Mann[ 160;16l,p.185ff. ] who gives extensive references. 

Dubey[ 75,73,72,76 ] has also made many contributions. Also 

see the cases given by Menon[166] and Smith and Dubey[213]. 

Generalizations of specia- cases for subsets of Weibull 

parameters have been given by Dubey[77] and others. An 

excellent discussion of the entire topic is given by 

Rockette[201 ]. 

Graphical estimation, used by Weibull[229] and 

described by Berrettoni[ 22] and Kao[139] relies on some 

prior knowledge of parameter values and the tact that the 

reliability   function,   in the  for1"  proposed   by Weibull, 

b 
R    (x,T)   =  exp{-[ (x  -   c)   /a}   , 

can  be transformed  to 

ln{-ln[R   (x,T) ])   =  b  ln(x  -  c)    -   in(a)   . 

A  value  for the  location  parameter, c, is asserted with 
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reference to the first order statiti'.ic ii» .■ r-auipi^. Then 

the empirical reliability function is ^loi. •> i n\ a "Icj-log" 
ordinate sc?.le versus d "log" abcissa 01 tlit- üx^piaced 
sdBiple values, X - c. If the resulting points fall in a 

nearly straight line, then b is estimated as its slupe anc d 
is found from the intercept. In a. Otnerwise, anotl.n walu*: 

of c   is  tried,   and   so  fortn. 

Obviously, this subjective estimation method leaves 

much to be desired statistically. However, it can be 
carried out with tools no more formidable than an extensive 

table of logarithms, and it has served adequately for 

decades. Of course, a L.S. approach to this transformed 
problem is also possible, but tne results are statistically 

comparable  to  the   manual  method. 

The method of moments can be used to estimate Heibull 
parameters. Although a moment generating function tor the 

Weibuli cannot be given in closed form algebraically, the 

central   moments are  defined 

q ^  q 
m«   =E[x]=/xf    (x,T)    dx   , 

q c 2 

th 
from   which  we  derive   for  the  q       moment   tue   partial  sui 

m'   =   .L\q\ c*  VpO + i/b) 
q     1=0 U/ 

The  tirst  two  moments about   the  mean  are 

m    = c   +  arn + Vb)    r 

and 

laM..-;. j.--- --iirt vh7_ ■      ■-- '- --^^-^-- 
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2 2 
a2  = a    [r(U2/b)   - p (Ut/b) ] . 

Obviously,       it     is     impossible    to    solve these     equations 
explicitly     for     the    parameters,     although an       iterative 

solution     is     possible     by     elimination    of one    paraaeter. 
Surprisingly,   however,   the skewness 

m /n 
3    2 

r(1+3/b)   -   3P{1 + 2/b)n(1 + Vb)   +   2P   (1+1/b) 

[r(i*2/b) - p (i+vb) ]3/2 

and kurtosis 

2 
m /m 

U    2 

2 4 
Ptl+U/b)   -  4p(U3/b)P(1 + Vb)   + 6p(l+2/b)p   (1 + 1/b)   -  3P (Hl/b) 

_ _ _ 

[P(1 + 2/b)   - P   (U1/b) ] 

are strictly functions of the shape parameter, b. Each can 
individually yield es4imates of b by reference to a simple 

tabulation [198], depending upon the judgement of the data 

analyst. 

• 
Given  b,   one   may  sequentially  obtain   moment    estimators 

of  the scale  parameter 

• • 2 •        1/2 
a =   £m /[r(1 + 2/b)   - p   (Ul/b) ]) 

and location  parameter 
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C  =   X   -   d p(1 + l/b)    . 

Unfortunately,     these moaient    f>stiniator.s     do     not   havt?  many 

desirable     properties. Dube7[74]     nar,       invei:tiga tv-d       the 

efficiency     ct     monient estimators  for   W».irull   parametera  in 

restricted   cases.      The most   coaimon     com^iaint     is     that     the 

• 
estiniatp     of     location     parameter,   c,   regularly  violates  tne 

siinpik?     -iiiraerical     constraints    of     the     definition     of     tht 

Weibuii   randoBi  variable.     Most often   this   would  be 

0   <  c <  x 
[1] 

When  a   violation  occurs,   it   is not  clear   that   any   reasonable 

• 
metnod     exists    tor  adjusting c and  "backing   out"   the  charuje 

through     the     other     moment     equations.        The     most       contaon 

practice     in     these     cases     is    to replace   c   by   the  violated 

bound,     and     conveniently     disregard     the     effect     upon     the 

moments  of   the  solution. 

c8 
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C^ MATHEMATICAL PflELIMINARIIS 

M.L.E. for the parametric Weibuil famiiy may ostensibly 

be numerically performed with almost any of the 

unconstrained techniques introduced in Chapter II. 

Therefore, in order to compare the merits of various 

approaches, the following development gives the necessary 

mathematical fcasis for consideration of any of the search or 

ascent methods. 

The log  likelihood function  for  the Weibull family 

f (x,T) is 
2 

L(X,T)   =  ln[ (b/a)n."Tf [ (x.   - c)/a] exp{-[(x.   -   c)/a]}]   ; 
1 = 1       i i 

a,   b  >  0,  c  > x , 
[1] 

with  x the  first  order  statistic.     This  gives 
[1] 

L (X,T)   =   n  ln[ b/a ]  ♦   (b  -  1)  £ ln[ (x     - c) /a ] 
i = 1 i 

n b 
-   .HI (x.   -  c)/a]     . 

1=1       i 

The  grddient  of  the  log   livelihood,   7 L(XrT),   has  the     three 
T 

element? 

V =   (o/a) (i r (x.   -  c)/a]     - n}   , 
a i=1       i 
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V =   n/b *    flr[(x     -  c)/a] -   .f[ (x.   -  c)/a]  ln[ (x     -   c)/a], 
b                i=1          i 1=1      i i 

r JL b-1 

V =  -(b -   1)  E [1/(x     -  c) ] ♦   (L/a) r [ (x.   -  c)/a] 
c                       i=1            i 1=1       i 

The  üyiumetric   Hessian   matrix  for   the     family,      f   (x,I) , 

pararaetetized  by 

T«   =   {  a,  b,  c  } 

is   defined  as 

H(T)    =    {h     }   =   h L(XrT)/^t.^t .   , 
ij 13 

and  is  given   by 

=   (b/d  ) {n -   (b+l) .£^[ (xi - c)/a]  }   , 

n D 

h       =   (l/a) {-n +    r [ (x.   -  c)/a] 
12 i^I       i 

n b 
+  b £ [(x    -  c) /a ] ln[ (x .   - c) /a ]}   , 

i=1       i i 

2R b-1 
h       =  -(t/a)    CC (x.   - c)/a] 

13 i^I       i 

2 n b    2 
h       =  -n/b     -    E.t (x     "  c)/a]  ln  f <x-   "  c)/a:i   ' 

22 1^1        i ■L 
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23 
ijx.   -  c) 
i = 1     i 

-1 

(Va) {b.Ü: [ (x.   -  c)/a]D    ln( (x .   -  c)/a] 
i = 1        i i 

b-1 
*   .Ö (x.   -  c)/a]      } 

1 = 1       i 

h       =  -(b -   1) {.r   (x.   -   c)        +   (b/a ) .£"[ (x.   - c)/a] 
33 i=1      i 1=1        i 

b-2 

We see  immediately that     the    three     parameter     Wcibull 

family,   t   (x#T),   is  not of  the Koopman-Pitman  form  admitting 

sufficient statistics. Therefore,  search   for an   M.V.Ü.E.   is 

pointless. 

Special cases of the Weibull family have already been 

mentioned for known b=1 (exponential) and b=2 (Rayleigh) . 

The former case is covered exhaustively in the literature. 

M.L. estimation for the two parameter exponential is 

ncnregular,   requiring  use of 

A 
c   =  x 

[1] 

We shall  hence :orth rule out values of b< 1, since the 

likelihocu function is unbounded as the location  parameter, 

c,   approaches  x    and  thus the Weibull  density is 
Li] 

inappropriate   for   use  in  the   M.L.   estimation. 

tfockette[ 201] analyzes the other cases with b>l, for 

various subsets of the pdraraetecs known. If both a and b, 
or a and c, are known, solution of the appropriate remaining 
gradient  element     gives    a     unique    M.L.     estimator,     as    is 
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veritied     by    examination     of     the numerical  behavior  of the 

applicable  conditioned  Hessian  term. 

If   b and c are linown,   a Jacobian transformation 

b 
V   =    (x   -   c)      , 

qives    an    exponential    density     for     v     with       well       known 

properties   including  uniqueness  for a. 

If   only b  is  known,     the    resulting     solution     for    the 
M.L.E.      is     unique.        McCooi[157]     shows     that     if   only  c  is 

known,   the  remaining  M.L.E.   are  unique.     We  shall  see     later 
that    knowledge    of    a     is     of     little value,  since  a  can be 

A A 
derived  as  a  lunction  of  b  and c. 

Proceeding with the general three parameter case, it 
will be reassuring for purposes of validation to show that 

the expectation of   the gradient  satisfies 

E[ V L(X#T) ] = 0   . 
T 

This derivation, and others which follow, require definition 
of several mathematical functions and identities. For 

scalar   z>0,   the gamma  function  is defined  as: 

*   z-1   -y 
(z)   =   / y       e      dy   , 

witn tne  useful relation 

r(z+i) = znz) , 

and the  derivatives P* (z)      and P" (^) r  are  defined by; 
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(i) «     (i)        z-1   -y 
P       (z)   =   / In     (y)y       e      dy  ,   i = l#2,... 

Also,   there are tabulations given by Gauss[96],   H.    Davis[ö7] 
and P.   Davis[69] of  the  digamma   (Psi)   function 

^(z)   =  7 InpCz)   = f (z)/r(z) 
2 

which   has  the  recursive  property 

Y(Z+1)     =       ^(Z)     +    VZ 

and  the  trigamma  function,   with  tabulations  presented  by     H, 
Davis[68] and P.   Davis[69],   defined 

y(z; = 7 C7inP(2) ] --r«(z)/r(z) - [p* (z)/p(z) ] 
Z       Z 

= P'^zj/Hz)   - f   (z)   . 

This  will  permit algebraic  substitution  asing 

P» (z) = r<z)f (z) 

and 

p"(z) = rvKf (z) * r (z) ] . 

Now, the oxpectations of the gradient, V MX,T) » ^re 
T 

E[7 ] = (nb/a)P(2) - nb/a = 0 , 
a 
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Ef7 ]   =   n/b  +   (n/b)r« (1)    "    (n/b)P' (2) 
b 

=   <n/b)[1  +   P{1)fO)   -   fV)y(2) ] 

=   (n/bj[l   *  ^(1)   "   f(2) ] 
=   (n/b)[1  ♦  f(l)   -  f(l)   -   1]  -  0 

E[7 j   =  -n[ (b-1)/d]P(1-1/b)    ♦   n[b/a]n(2-Vb) 
c 

=  -n[ {b-1)/a]ni-Vb)    ♦   n[b/d](1-1/t)p{1-1/b) 
=   0   . 

The  symmetric  informcttion  matrix. 

H  =   E[-H(T)  ]  =    (E[-h, ,]]    , 
ID 

Cdn   be  derived from  the  teraiü   of   the  symmetric    Hessian    and 

the   Weibull  density,   £   (x,T) ,   ds  follows: 

2 « 2 EC-h     3  =   (nt/a )[ (b*1)r(2)-1 ] =  n(b/a) 

E[-h      ]  =   (n/aKI-r^-r" (2) ]   =-(n/a)fM2)   =  - (n/a)P(2)f/(2) 

=   -{n/di)f(2)   =  - (n/a) (0.42278»««) 

E[-h     ]  =    (b/a)   P(2-l/b)    , 

E[-h      ]  =   n/b    +P"(2)   =   n/b     +  [f'{2)   *f   (2) ]f(2) 

n/ß    +   Ü.46619»«' 
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E[-n23]  -"   (n/a)[r{1-1/o)-r(2-1/b)-br' (2-1/b) ] 

=   (n/a)[ri(l-Vb)-p(2-1/b) {1  -   bf(2-1/b)}]   , 

Ei-h     ]  =  n[ (ü -  l)/a   ][p(\-2/Q}   + br(2-2/b) ] 

=  n[ (b-1)/a]  r(1-2/b)    . 

Rdvenis[iy8]  gi.veo   the  information matrix     for     the     Weibuil 
family,     f   (x,!),     and     Harter     and     Moore[118]  give  similar 

numerical  results  for  singly   censored   Weioull  samples. 

We   recall  that   the  inverse  of the   information   matrix  is 

the  Crainer-Sao  minimum     variance     bound    discussed     earlier. 

This        inverse      can       be     derived     algebraically,      but     the 

usefuliness   of  this   explicit   result     does     not     warrant     the 

space     and     effort   required   for  derivation  and  display   here. 
Although       Huzurbazar[ 132]       has      shown      that       for any 

(multivariate)     density    of     the  Koopman-Pitman  family  -that 
is,   any   density  admitting sufficient   statistics-  the     M.L.E. 
asymptotically acnieve  the  bound,   so   that   the   inverse   cf  the 

A 
information   matrix   is the  variance ccvariance  matrix  for    T, 
the     full     parametric  Weibull   family   is  not   a  Koopman-Pitraan 
form.      Fortunately,   Halperin[ 113 1 generalizes the  Cramer-Rao 
minimum        variance       bound        result     under     mild     regularity 

conditions  to   any  density  and     also     establishes     asymptotic 
unbiasedness,   consistency and   normality for   M.L.E. 

For   the   Weibull   family   of   densities,   cl.L.   estimation  is 
regularf 118 ]     for     complete     samples     only     if     the  location 
parametei,   c,   is  known,   or   if   the    shape     parameter,      fc,     is 
greater   than   2.     We   can   verify  above,   in   fact,   that   the   terai 

E[-h      ]   in   the information   matrix  has   a  singularity   for   b=2, 
33 
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but that all terms ace well defined for D>2. Huber[1i1] aod 

Le Cain[l49] investigate the effect of nomeqularity on 

fl.L.E.   properties. 

äince   tor  any   regular   parametric  estimation   the     H.L.K. 

asyoiptot ically    achieve     the     Cramer-Pao     bounc1   yiven   hy  the 

A  - I 
inverse of the  information  matrix,  E[-H(T)]  ,  and  this 

inverse. variance    covanance     matrix. known  to be 

positive derinite[ lUIrp.56],  we may take  some  comfort  in 
A 

the  knowledge that at least in expectation H (T) is negative 

definite.  A stronger result follows immediately for  simply 

consistent  M.L.E.,  which must converge in prorability to a 

single ^set of parameters.  Thus, even  for  a problem  with 

multiple  solutions,  the  coordinates  of  the  maxima must 

approach  the same  point   asymptotically.   Cha'-.üra[ 46 ] 

presents  evidence  for  consistency  of  M.L.E.  under very 

general  conditions.   We  also  recall  that  M.L.E.   are 

asymptotically functions of sufficient statistics, when ..uch 

exist.  Huzurbazar[132] shows that sufficiency aüso  imrlies 
A 

uniqueness for T. 

Choi[U8] gives estimates of bias for M.L.E. in the 

closely related Gamina family of densities, finding the 

magnitude of bias to be small even for intermediate sample 

sizes. Harter and Moore[117] sugge3t that a local maxima, 

though not a true M.L.E. in the strictest global sense, can 

exhir>ir most of the desirable statistical properties. 

For finite sample sizes in cases such as the Weibull 

where no sufficiency can be established, the asymptotic 

results acovt do not necessarily hold. However, Harter and 

Hoore[113] have performed extensive simulation studies for 

the three parameter Weibull family, and give tables showing 

that tht Weibull M.L.E. achieve tneir asymptotic variances 

very  quickly,  with the  actual  variance  exceeding   the 

76 

  ■ '^liliM» I        I --——  _„ a- ,. ■■ .■-^..-.. .... ...,..■■.- ^^j^gyjUgH 



mmmm *r''ffw'5w^WWWP«W!,PWWPl» ■ (^■l,wi.^ili"Mmw«>»uj -.»IlliUM.   1JI.IJUI1.I   ...■ 

Cramer-Rdo  bound  by an amount, proportional to l/n .  Thus, 

their results suggest that the inverse of the information 

matrix is valid as an estimate of the M.L.E. variance 

covariance matrix for samples as small in size as 100. When 

a, or b, are known, this result is achieved much more 

rapidly. 

As mentioned earlier, when the shape parameter, b, is 

less than 2, a nonregular estimation results, and if b<1, 

L(X,T) is not oounded. Pike[185] suggests that when the 

likelihood function is unbounded in the feasible parameter 

space, a local maxima provides a reasonable estimate. It is 

easiest tc constrain the range of the shape parameter to 

avoid this problem, since in a pure i>ense the M.L. method is 

inapplicable otherwise. RocKette, Antle and Klimkc[202] 

suggest substitution of 

+     +  +   ♦ 
T = { a # b , c  ) , 

with 

; -   i^(Xi- 
c)/n 

and 

b  = 1 , 

c = x 
[1] 

for   cases  in   which   no M.L.   solution  exists.        For     cases     in 

+ 
which   a   maximum  is   achieved,   it   is  compared   with T   ,   and  the 
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W.L.   solution  T  is   chosen     to     corLespond     witL    the     higher 

likelihood. 

As   a     useful     simplification     of     the     three     parameter 

Weicuil     estimation,     the     scale  parameter  can  be  eliminated 

from   the  system  by   solution   of   V =0  and   suostitution,     which 
a 

gives 

A n. b        1/b 
a   = [^ (xi  -   c)   /n] 

so   that 

♦ A 
T    =   {  a,   b,   c  }    , 

for  which  the  conditioned   log   iikelihood   iunction   becomes 

♦ JL b 

L   (X,T)   =  n   ln(b)   -   n ln[.2l (x.   -  c)   /n] 
1=^     i 

+    (b-1)  r ln(x    -   c)   -  n   , 
i = 1        i 

with   giaditnt 

♦ iL b JL b 

7     --   n/b   -   »[ X (x     -  c)   ln(x,   -  c)/   .C.{x.   -  c)   ] 
b 1=1      i 1 1= 1      1 

* V lib £   (x     -  c)"      /   C (x.   -  c 
C 1=1        1 1^1        1 

b -1       n b n 
- )      "    (b-1)   E L V(x.   -   c) ] 

1=1 i 

The symmetric Hessian , 9 , for this reduced problem is 

7o 
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22 
=  -   n/b 

n b    z 
-   n >"  (x     -   c)   In   (x 

i=1     i i 

n b 
♦   n[ r;   (x     -   c)   ln(x. 

i=1     i i 

c)   /   .£  (x. 
i=1     i 

-  c) 

-   c)    / £".- b 2 
c)    ]    , 

b-1 

23 
n{br <x.   -   c)       ln(x,   - c)   +   .21 U.   -  c)"     ) 

i=1     i i i=1     i 

i=1     i 

b-1 
-   nb^T  (x    -   c)   ln(x     -  c)    ^ (x     -  c)       } 

1=1     i i i=1     i 

b 2 

1=1  i 

-.t,^- -i 
c) 

33 

2       n b-1   2 
nb  [ tX^ (x^^  -  c)       ) 

b    n n b    n b-2 n 
-   il(x     - c)     .C  (x.   -  c) ] /[ Z 

1=^     1 1=1     1 1= 
(x.   - 

äTl     i 

b   2 
c)    ] 

n iw n +  nb.2-jx.   - c)        /  .ru.  - 
1=1    1 1=1    1 

c) 

-2 
(fc-D .21[x     -  c]       . 

iSl      l 

The     expectation  of  H    is  hopelessly   difficult  to derive,   so 

that additional assertions of uniqueness, or other 

properties, are not acmevabie by that method for this 

reduced system. However, Peto and Lee[18U] treat each 

element cf the gradient as an implicit function of the other 

respective  M.L.   estimator,   and   plot   the   two  trajectories  for 

* 
7 L   (X,T)=0#     showing     the   M.L.   solution   as  an  intersection. 
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Hockettef201 ] carries this treatment  further,  and obtains 

strong, tut net conclusive evidence via lengthy teim by term 

inecjuaiity arguments for tne sums of powers of X found in 

the conditioned Hessian (drawing trom Hardy, Littlewood and 

Poiya[1l4]) that at most one maximum exists f .ir the tnree 

parameter WeiDuli M.L. problem, and tiiat tnere is a saddle 

point associated with each maximum. Extensive empirical 

evidence supports these assertions. 

A qeneralization of the Weibull likelihood model is 

possible fcr other than complete samples. Cohen[52 ] 

classifies the process by which elements have been censored 

from a sample of failure times in life testing as being of 

Type I when the sampling process is stopped at some 

predetermined time, or Type II when testing ceases after 

some fixed number of elements, k, have failed. For Type I 

censoring, the number of observed failure times, K, is a 

random variable, while Type II censoring provides a random 

sampling cessation time. For either type of censoring, when 

only the first k out of n elements have been observed, the 

WeiLuli likelihood function is 

k n~ k 
L (X,T) = ln{[ni/(n-k)! ]  .IT f f (x. ,T) ] R (x ,T) '  } 
k 1= 1  2  i     2  k 

= ln[ nl/(n-k) ! ] ♦ k[ln(b) - b lu (a) ] 

+ (b-1) .Zl ln<x- " c) - X,[(x. " c)/a] 1=1    i       1=1   i 

- (n-k)[ (x  - c)/a] 
k 

with x  fixed for Type I censoring, and x =x   for Type II, 
k K  [ k ] 

Kinger  and  Sprinkle[ 200 ] and Cohen[S3] discuss H.L.E. 

for the censored k\.ibull density with c=Ü,  and  Harter  and 

HO 
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f1oore[llDj  study  the three parameter case for the Weibuil 

and Gamma faoilies. 

Progressive  censoring  of  either  type occurs when at 

successive  stages  a  number  of  survivors  are   randomly 

selected  for  removal from further testing.  Suppose that s 

stages  of  censoring  occur at  progressive  times  y , 
1 

j=1/2#...#s/     with     k     functioning elements  randomly  removed 

at   each   stage   from     further     testing.        Progressive     Type     I 

censoring,       with       the     predetermined     constant     times,     Y, 
produces  a  random  sample size 

m  =  n  -    XI k     , 

and  has   log   likelihood 

L        (X#T)   =   ln{   C    TTf   (x.,T)     ^R   (y.,T)     (D   } 
Y,K 1=1   ^     l ]=1   2     ] 

=  ln(C)    ♦  m  ln(b/a)   +   (b-1) X" ln[ (x.   -  c)/a] 

if (x .   -  c) /a ]D  +    f: k r (y .   -  c) /a ] 
i=1 1 j 

with C a combinatorial constant. 

For  Ty^-e  II progressively censored sampling, with the 

numter ot censored elements, K , fixed,  and  the  times of 
D 

censorship  occurring randomly  with  each failure, the log 

likelihood is 

81 
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II 
L (X#T) 

i-1 K(i) 
=   int.-fr f (n -   r [k ,-i+1])   f   (y.,T)   h.(y.,T)       " ]} 

1=1 ]=1     3 2     i ^     x 

=    tlnil (n -   Z:[k.-i + 1]) 
1=1 3=1     ] 

+   (b-1) .tilni (y. 
1=1 i 

-  c)/d] 

,C t (y.   - c)/a]    +    r K.[ (y.   -  c)/a] 
i=1       i i^i   i       i 

Tho gradient and Hessian matrix fcr eaca of these 

aiodels is not included here. It should be pointed out, 

however,     that   the   scale  parameter  can  be   eliminated   in  each 

model   in     precisely     the     same     manner     that     gave     L   (X#T). 

II 
Hinger     and     Sprinkle[200 ]     give     the  gradient   for   L        (X#T) 

Y, K 

when c-0, und Cohen[531 gives the gradient and  Hessian  tor 

f (X,T) with c=G.  Wingo[234] gives the gradient and Hessian 

for Type I progressive censoring of f (X#T). 

Harter and Moore[118] givf: the gradient and Hessian for 

doubly censored, or truncated, samples in which the first k 

and last r elements have not been ooserved. Tne form of the 

log likelihood function is very similar to the singly 

censored case. An interesting result of these empirical 

studies cf censored sampling is that when the location 

parameter, c, is not bounded from the left a higner variance 

results for c than when c is constrained 

c < x m 
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Hockette[ 201] reports chat this effect seems to increase 

with the ratio, c/a. Polfeldt[ 18d, 187] has given some 

limited theoretical results for nonregular estimation of 

location parameters. Antie and Bain[: j have given several 

interesting transformations of scale and location parameters 

which die statistically independent. 

Note   that  a  numerical  singularity  occurs  when c 

approaches x   too closelv  in  a complete  sample.   This 
[1] 

suggests usxiig c=x    and dropping x   from the sample when 
[ i ] [ 13 

necessary.  For large samples this heuristic can De extended 

to  the  censoring  of  all  sample  elements in  the close 

neighborhood  of  x 
[1] 

As practical       matter,       this 

adjustment     can     circumven,      serious     difficulties   with  M.L. 

estiraatici for some samples, but it is somewhat distasteful 

to peremptorily discard costly sampling information in this 

way. Also, strongly assymetric censoring can introduce more 

bias for the M.L.E., and of course increase M.S. 12. Harter 
has repotted that even for sample sizes of 10 and 20, bias 
is net. severe undei. moderate censoring and the theoretical 

variance   of   the   M.L.S.     is   not  greatly   exceeded. 

A 
The reluctance with which T approaches the Cramer-Rao 

bound for intermediate sample sizes can be overcome by 

constraining the shape parameter, b, to a feasible range 

known uy the investigator. The M.S.S. can be lowered 

significantly by such precaution, since the Weibull density 

function and conseguently the likelihood objective function 

are very unruly for high values of b, unbounded for b=1, and 

nonregular for D<2. If we constrain b to values between, 

for instance, 1 and U we have still included a very robust 

parametric family in our investigation, but one with less 

habitual inclination to provide ridiculous likelihood 

estimates for purely numerical reasons. 
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For very smdll samples, an investigator is faced with 
the unfortunate paradox that, although the objective 
function and its derivatives are easily and gurckxy 
evaiudced, the likelihood surface can exhidit a toituous 
landscape. Perhaps this is fortuitous, tor otherwise one 

would be tempted to rely on T despite its unknown 

statistical properties. The irregularity introduced oy 
including the location paraaeter, c, in the search is most 
troublesome for these cases. The frequent occurrence ot a 

stationary  saddle   point   usually   takes     place     at     parametric 

coordinates  relatively  close   to  the  upper   bound  for  c,   x       ; 
[1] 

however the saddle point can Lie well within the range of c 
for small samples, making it difficult to consistently 
identify   and  avoid   numerically. 

If a sample is used for the .I.L. estimation with the 

Weibuil model that actually comes from some markedly 
different population, the results can be disastrous even for 

large sample sizes. It is worthwhile to remember that the 

statistical theory underlying this estimation process 
reguireij that, the hypothetical assumption of the density 
function for which point estimates are sought must be based 

in fact. Two singular examples of such (large) samples have 

come to the author's belated attention in this regard; one 

was subsequently identified as coming from a ^areto 
population, and the other was ultimately determined to be a 
sample from a beta density. These samples wreaked numerical 
havoc with several optimization codes applied to the Weibuil 

model, the first because of too many sample elements in the 
extreme right tail for the Weibuil density to fit, and the 

second due to the effect of a finite upper domain limit for 
a       symmetric       sample. Both    samples     produced     epparent 

A 
stationary saddle points, numerically unbounded T, and 
infinite likelihoods at various times. Thus, great care 

must  be   taken   in  applying   any  numerical   K.L.        procedure     to 
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the Weibull, since termin,. t a stationary point on 

L(X,T) should be allowed only for a maxiaiuni, or the 

optimization problem should terminate with indication of no 

achievable finite optimum. 

Inferential techniques based on finite samples for 

Weibull and other closely related moaels are given by Harter 

and fioote[ 115], Bain and Weeks[9]/ Thoman, Bain and 

Antle[221], Bain[ 8 ] and Billman, Antle and Bain[233. Most 

of these investigations give tables which are developed by 

estensive simulation. 

M.L. estimation of the reliability function is shewn to 

be surprisingly unbiased and robust by Hager, Bain and 

Antle[112] and others. 
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C.   NUMERICAL  APPROACH 

The methods commonly used for numoricdily determininq 

Weibuli M.L.E. have historicdliy included cyclic search by 

Hatter and Moore[116]/ second order Newton-Eaphson ascent by 

Peto and Lee[174] and Ringer and Sprinkie[200 ], aad 

quasilinearization (Newton-Raphson ascent with the Hessian 

approximated by  differences)   by  Wingo[ 233, 234]. 

The magnitude of effort involved in applying a search 

technique to M.L. estimation is implied by the iteration 

limit suggested by Harter and Moore of 550 cycles for tne 

Weibull model and 1100 cycles for a Gamma. Barnet te[ !'< 1 

suggests cyclic search for likelihood models with multiple 

roots; such cases usually occur only for small samples from 

selected density functions. The Keibull model has never 

empirically exhibited finite multiple optima, although some 

small sample estimations lead to numerical difficulties 

characterized by a stalling of the iteration over a 

respectable  neighborhood. 

In     a    refreshingly  honestly titled article.   Mantel  and 

Myer3[162]  report     that     for     second     order     ascent     methods 

choice    of    the    starting     value,    T   ,     is   vital   to   success. 
0 

(This is, of course, no theoretical surprise to a  numerical 

analyst.) As we have seen, the Weibull model .-eems to 

produce a saddle point as a gratuitous companion of a 

maximum. For this reason, pure second oraer representations 

of the problem have consistently not leaü to acceptable 

performance of the optimization algorithm. 

Kale[137,138] compares the secona order Mewton-Raphson 

and Fisher's scoring methods and indicates that they are 

most applicable for large samples,  önfortanately, both his 
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iteration and residue criteria for rate of convergence 
evaluation are not directly related to computer time, and 

his sample problem is a fairly uncomplicated two parameter 
estimation. Michelini[ 167 ] gives a method for selecting 

starting values for the scoring method applied to a 
lognoraial model, and presents fascinating graphical 

depiction  of  empirical  regions  of  convergence. 

Implementation of both first and second order ascent 
methods and search techniques for the Weibull models have 

produced tne following conclusions. The first order 
gradient methods are superior to search techniques for 

reasons of speed, and are better than second order iteration 
on the basis of reliable convergence. The saddle point 

dilemma is most expeditiosly resolved by use of first order 
methods ana a solution verification; convergence to a saddle 

point is very rare for the constrained parameter problem and 

sample  sizes greater  than   10. 

All techniques regularly fail for small samples. It is 
suggested that for these cases either the sample has 

insufficipnt information to warrant M.L.E., or the wrong 

density   is  being used  for  parametric estimation. 

A hybrid ascent method which produces both fast and 
dependable convergent ^ for highly nonlinear problems 
utilizes both first and second order representations of the 
maximization problem. The first order formulation is used 

to begin the solution, and continued until the amount of 

information in the linear term of the objective function 
approximation diminishes significantly below the remainiag 
higher   order  terms   in 

L (T    + AT)   =  L(T   )    ♦  7L(T  ) «AT  ♦   rem(T   ,AT) 
0 0 0 0 
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The switching  rule  requires   that   a  sequence  of  solutions     or 

specified  length exhibit a   moving  average of 

avg{   L(T )*AT  /  rem (T  #AT)}   <   B 
0 0 U 

B     has  been   set  at  0.1.     The  transition  to   the  second     order 
U 

representation  is   not  guaranteed   for  every   problea,   since  it 

occurs   only   when     higher     order     terms     dominate     the     local 

approximation of  L. 

To test these methods, 50 samples of size 100 were 
randomly generated from Weibull families with (arbitrarily) 

a = b0/ c=100, and b = 1.5,2.0r2. 5,3.0 . For all estimations a 

total computation time was recorded with the iteration 
records. The host computer was an IBM 360/67 - II with 

optimized FOKTRAN-IV(H) . A pure first order representation, 
and  the   hybrid scheme  were   used  on  the  matched  set   of   random 

samples;     with    B  =0.1     and   the  length  of   the  moving   average 
4 

for the switching rule set at two. 

The results were 

8d 
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n         b METHOD a b c 

100     1.5 I 47.95 1.56 101.28 

4.47 .19 1.67 

II 46.01 1.52 101.27 

4.94 .17 1.55 

2.0 I 48.56 1.98 101.19 

5.00 .30 3.28 

II 48.54 1.97 101.19 

4.93 .30 3.29 

2.5 I 49.23 2.49 100.83 

5.26 .37 4.92 

II 49.25 2.49 100.80 

5.22 .36 4.90 

3.0 I 47.80 2.97 101.75 

6.69 .56 6.21 

II 47.76 2.99 101.72 

6.64 .55 6.18 

AVERAGE  PBKFOBHANCE 

Tine (sec)     ITERATIONS 

46.0 59.3 

18.2 21.3(12.7) 

50.9 59.2 

20.9 19.6(4.8) 

45.7 51.8 

19.1 17.0(3.9) 

51.4 67.6 

16.6 15.9(4.1) 

The coot mean squared error is given just below the sample 

mean for estimators of each parameter. The number in 

parentheses following the average iterations required for 

convergence of the second order scheme indicates the average 

number of first order iterations required to trigger the 

switching rule. There were no cases for which convergence 

was not achieved. The second order representation clearly 

dominates these results. 

For b='\.S,  seven cases  converged with results  which 

were replaced by the solution, T , (with b-l) on the basis 

of likelihood coaparison. Samples generated for other 

higher values of b produced no such replacements. For 

samples from the population with b=3.0, six cases converged 

to the upper numerical bound, b=4, and did not achieve 

transition to the second order representation.   Since  this 
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seemed  to  have no serious effect upon the expectation of b 

for this set  of  samples,  no fiuthei. action was  tak-en. 

Uaisinq the bound for b might be indicated in other 

investiqatioi: contexts. 

All  estimations were started with the initial solution 

fc=2 and c=0.9 x   .  In order to test the robustness of  tue 
[1] 

numerical  methods with respect to starting values, the sane 

sets of random samples were used with initial values of 

b=1.5#2.0,3.0. The numerical values of the H.L.ii). results 

fot each sample showed almost no sensitivity to starting 

value, and the average number ot iterations required for 

convergence and the computation time consumed were not 

significantly different, although individual samples did 

occasionally exhibit large variations. For several samples, 

the first order method converged to values differing in the 

hundredtbs position. Such variation was never evident for 

the secend order hybrid iteration. 

The behavior of the objective function during 

optimization with the hybrid second order method was 

remarkably consistent for all samples. At the initial 

iteration, the first order term in the linear approximation 

of the objective function dominated the remiinder term. 

After several iterations, as indicated in the performance 

data, transition to the second order representation of tne 

problem took place, after which no mere than three 

iterations produced a solution for which tne linear 

approximation of the second order representation objective 

function left a remainder term several orders of magnitude 

smaller than the linear term. The final likelihood achieved 

by the second order scheme was higher than that given by the 

pure  first  order method in every case, but the difference 
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-5 
never exceeded a relative magnitude of 10 

By "tuning11 the iteration scheues, significant further 

reductions in computing time are possible. This is 

especially true if the resolution of the termination 

criteria is relaxed. This is usually a reasonable course of 

action, since the values of the fl.L.E. are not really 

required to, say,, five decimal places. Such a change for 

the second order model with b=2 produced an average 

convergence time of 9.7 seconds in 11.3(3.U) iterations. 

It is important to note that for various sample sizes, 

termination has always been achieved without numerical 

processor interrupts. That is, the algorithm detects 

terminal singularities, and indicates them under full 

control of the program, permitting remedial action to be 

taken, or simply allowing analysis of the complete output. 

This is far superior to the spectacular results to be 

expected from most Newton-Raphson based programs. 

There is no theoretical reason prohibiting formulations 

of even higher order representations of nonlinear 

optimization problems. The motivation for such an approach 

would be a highly nonlinear problem for which the first 

order approximation of the imbedded local linear program can 

be expected to give a poor representation of functions, ^ven 

with the seccnd order formulation. The algebraic demands of 

higher order representations of likelihood models and the 

consequent debugging and computational expense of the 

associated higher order problems do not promise much 

practical value. Fortunately, the likelihood models 

investigated thusfar have not reached such nonlinear 

extremes within the numerical capabilities of a digital 

computer, as is attested by the dominated remainder terms 

for  the second  order  representation.   However,  it is 
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possible that foe other types of highly nonlinear pcobler.s 
high order representations will prove a fruitful field for 
further research. K sequential transition nechanisa such as 
that proposed uere say also provide for robust conveEgencc- 
with higher order foramlations as it has done in the present 

investigation. 
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Consider the following problem. A random sample is 

collected tcom a Weibull nopulation whose mean is known, but 

whose parameters are '.o be estimated by H.L. Such 

situations arise» for instance, when census information is 

used in conjunction with random survey data for demographic 

modelling. 

As another example, suppose a bank wishes to use a 

random sample to estimate the parameters of a Weibull 

density function describing the size of an individual 

depositor's account. Certainly the bank will know exactly 

the total of money on deposit and the number of depositors. 

Thus the mean of the density is known, but not the 

parameters. 

The H.L. formulation of such a constrained probien 

becomes 

MAX  L(X,T) 
T 

s.t.  c ♦ aP(U1/b) = m  , 

0 < a < •• , 

1 < b < U , 

0 < c < x 
[1] 

The constraint has gradient elements 

g = ro*vb)  , 
a 
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g - -(a/b )rM1*Vb) 
b 

= -u/b )r(U1/b)f(1*1/b) , 

g  = 1 r 
c 

and the Hessian for  the constraint,  H,  has the nonzero 

terns: 

h^ = -1/b r'(1*Vb) 

= -1/b P(Ul/b)f (U1/b) , 

»       3 « ^ - h  = (a/b if'd^Vb) ♦ (a/b )PH(1*Vb) 

= (a/b )r{l*Vb)Cbf(1*1/b)+yMl*Vb)*r (l*Vb) ] 

As before, the scale paraseter, a, nay  be substituted 

out, leaving 

MAX  L (X#T) 
T 

b   1/b 
s. t. 

n       D  i/D 
c ♦ [.^(x. - c) /n]  P(1 + 1/b) = 

"l ' 

i < b < a , 

0 < c < x 
[1] 

The gradient for this reduced problem is 
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» r b       l/b« gw - r r (x4 - o /n]    n^vt) 
b        i«l    i 

{(Vb)ci,(xi   - c)   ln(x    - c)/   f (x.   - c) 
i=1    i i x«1     i 

b 
In 

b 
-(Vb)ln(.£: (x    -  c)   /n) ] 

i = 1     i 

♦ WUI/b))   # 

b-1 •        « JL b       1/b-1       n 
g    = -P(1*1/b)[.r (x^   - c)   /n] [.C (x.   - c)       /n ] 

c 1=1      i 1=1      i 

The Hessian  for the constraint will not be given  here. 

As a test of this model, ten samples of size 100 were 

randomly generated with a=50# b=2, and 0=100, and the 

constrained mean,   ■  ,   was set at 

=  c  ♦  aP(U1/b)   =   100 ♦   50P(1.5)   =   1U4.31«»«   . 

The three variable model was run for both first order 

and hybrid schemes, with the switching rule qualified to 

activate   for  feasible solutions only.     The  results  were 

AVERAGE  PERPOBHANCE 

n b      METHOD a b c        Time (sec)     ITERATIONS 

100     2.0 I 48.40   1.98   101.21        132.8 135.4 

4.65     .38       3.95 

II 49.11   2.00   101.27 89.7 87.2(6.4) 

4.69     .39       4.02 

One sample did not make a transition to the second order 

representaticn before convergence, and two of the saaples 

reguired 200 iterations for termination. 
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The choice of width for the equation band repcesentinq 

the equality constraint feasioility cegion and the inannei in 
which this band is closed during the progress of the 

solution is nost iaportant for insuring success. Preoature 
closing, or choice of a band too narrow can cause the 

methods to stall, especially for the second order 

representation which has polyganna terms that are 

exceedingly difficult to compute precisely. On the other 
hand, too wide a band, or too much delay of the closing can 

lead to excessive iterations involving infeasible solutions. 
The choice of a bandwidth of 0.1 was made in these 

applications with good success and the band was closed by 32 
successive bisections for feasible solutions. Upon 

transition to the second order representation of the 
problem, it was determined that a reinitialization of the 
equation  band had  a desirable effect on convergence. 

The superiority of tne second order representation of 
the constrained model would be enhansed greatly by the use 

of efficient       and/or       accurate      polygamma       functions. 
Currently, the best series approximations derived produce 

only six decimal place precision, and their computation 
requires almost half of  the iteration  time  reported above. 

Other side constraints can be added to parametric M.L. 
estimation. For instance prior knowledge of the population 

variance, or other moments, can be used in the estimation. 
The numerical details follow directly from the example given 

here. 

The results for both classical unconstrained and 

constrained models reported here for the parametric Weibuil 
family apply with remarkably little modification to the 
general gamma family of densities as well. Regularity 

conditions, gradients, Hessians, numerical approach and so 

fortn  follow  the  Weibull  examples very  closely. 
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CHAPTER IV 

A SlfiSrJSIlIi flfifi»!   UilOfiUI SISIISSIOI 

AJ  IHIfiOpUCIJOl!  JO   A  fiÜfifiQiliLI  REGRESSION   M0£2L 

Consider    a    structural    nodel    based     on    the observed 
sanple 

(*   * I)   * 

where    y      is    one  of a set  of n   (statistically)   independent 

discrete-valued observations  with ■ associated parameters 

Z    =   {  x     ,...,x      I   . 
j jl J« 

In this usage, X is often called the set of (structurally) 
independent variables, and T is referred to as the 
associated (structurally) dependent variable, with T a set 
of model parameters. 

As  a specific example,   suppose that T  is a  set of  "1-0" 
observaticns of    "success,     or    failure"     from    n     Bernoulli 
trials.     He may assert that  y    is observed  with 

j 

f(y ix /P) = f(y IP(X n = f(y IP ) # 

and  that  f  is a  parametric  family of  Bernoulli densities 

Myjpj = pJ     o-pj 
J      J D J 
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o < p   s 1  j    y   = o,  i  . 

In the regression, p is sone statea nathematical 

function of the independent variables, X , with parameter^ 

T, 

p    =  p(X  , T)   , 

and is interpreted as the prior probability of success for a 

Bernoulli trial carried out under a given set of conditions. 

To illustrate, suppose that p is the  probability of 
j 

destroying, or disabling, a target with a volley of shots in 

a naval bcabardaent.  The success of each  volley can be 

considered as an observation, y , from a Bernoulli density 

with paraneter p .  Clearly, the probability of success on 

each atteapt is a  function of distance  to target, sea 

conditions, weapons employed, visibility,  and so  forth - 

characteristics which constitute X . 
j 

If  we  employ   the theory of ballistics     to    determine    a 

functional    form    for    p(X  ),  and if a  record  is liept  by the 

lire    director    of     each    volley,    then    we     have     just    the 

observations required to estimate p  . 

Consider another example.     Let p    be  the  probability of 
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a snog alert during a partlcuiur day. If a record of wind 
velocity« wind direction, teaperature, nitrous oxide level, 
cloud cover, particulate content, and so forth, is kept 
daily constituting X  ,   with  y    the    observation    of    a    saog 

alert    for    that day,   then  estiaation of p    aay  be  attempted 

froa n independent observations of polluted    and    unpolluted 

days,   with soae function,  p (X ),   supplied by  the researcher. 

The Bernoulli  parameter,  p  ,  aay be the probability    of 

default      on 

probability  cf winning an    election    given    a     platfon    and 

a      loan    given    credit    infornation    X      the 
j 

legislation record, the probability of survival given 
information  about  disease and  treatment,   ad  infinitua. 

It should be stressed that discrete Bernoulli 
observations      are      often       available        when continuous 
guantitative information is not, or when continuous measure 
is inappropriate. For instance, it may be possible to 
classify an individual as "poor" while to use a measure of 
his economic income would be difficult or impossible due to 
unreported income, government subsidy in the form of money, 
goods and services, unclear family consuming units, and the 
problematic equivalence of income level with the quality of 
life. 

As another illustration, the regression analysis of a 
communications satellite launching may, for purposes of 
research budget request, properly deal with the probability 
of successful orbital entry, or launch failure, rather than 
with orbital apogee, perigee, period, etc. Thus all the 
information concerning launch conditions and technology 
would    be    used    to     yield  a  prior probability  of  success,  a 
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result more tractable for nanagement and mote Cioseiy 
related    to project costs  than estimates of orbital physics. 

It is felt that the general class of problems dealt 
with here is iaportant and previously overlooked, or 
■isclassified in the literature. Several Bernoulli uodels 
are presented in the sections that follow. Point and 
interval  estimates for p     are developed,  a    hypothesis    test 

is    given    for    evaluating the contribution of paranetürs to 

complicated, realistic models, a stepwise construction 
technique is proposed, and a heuristic is given tor choosing 
between  functional  forms  for  the regression. 
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&J.  COUfAfilSOlJ   Hllü  DläCIiaiNANI   ANALYSIS 

A technique often misapplied to Bernoulli regression 
problems is that of discriminant analysis. Borrowing prior 
notation in this new context, a binary discriminant analysis 
provides a decision rule for classifying an individual as a 
member of one of two populations   (IT »IT)   from examination of 

a    set    of  k  properties,  X  .     Each individual is asserted to 

be a permanent member of only one of the    populations.       The 

discriminant    analysis    attempts to determine which of  these 
mutually exclusive populations contains the individual. 

For example, the Internal Revenue Service in this 
country  uses a property set  X    consisting of    income    level, 

deduction    types    and quantities,  etc.,  in order to classify 

an individual filing an  income tax return either as  a member 
of the population of chiselers,   or honest tax payers. Those 
classified  in the former population are    audited    in detail 
for errors and misrepresentations. 

Applications occur frequently in the literature, and 
classically have included taxonomic classification by 
physical measurement, qualitative biochemical analysis, 
pattern recognition, identification of arcbeological 
remnants, and so forth. For excellent examples see 
Fisher[85] and Nilson[176]. 

The discriminant analysis    requires    use    of     n       known 

members    of     T#    and    n    individuals  from TT,  and a density 
1 2 2 

function  for  the  property  set of each  population,   f   (X)     and 
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Tht i:robability of an observation in the neighbo-hocd 

of the point Z ,  niven that the individual is from IT,  is 
j 1 

f (X ) dX . 
1  j   j 

This probability is    proportional    to    the    argunent    t   (X ) 

which     is    defined    as the likelihood  function for  the point 

X  .    The  fundamental principle of  discriminant    analysis    is 

to    classify    the    individual    as    a    member    of    T#  or IT, 
1     2 

according to the relative size of f (Z ) and f (X ) , and the 

costs  of each type of misclassification.  In general, the 

density functions f and f vill contain  unknown  parameter 
1     2 

vectors  T  and T . and these parameters must be estimated 
1       2 

from the known members of each population.  The  parametric 

estimation  is usually performed with H.L.E., as previously 

discussed. 

The discriminant analysis  will  further  reguire the 

prior probability of selecting a member of V for analysis. 

Pr = n / (n ♦ n ) , 
1   11   2 

or,     when    population sizes are unknown,  a sampling estimate 
of    Pr       nay     be    used.       If     no    sampling     information       is 

available,     and    the    population    sizes    are unknown,   Pr    is 
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assuaed to be 0.5. 

Also,  the costs of nlsclassification, C   and C  , 
2M 1|2 

nust be  stated, where C        is the cost of  aisclassifying  TfT 
2| 1 2 

when    the    individual    is actually from ^T.    Without loss of 
1 

generality,     C 
IM 

and C       , 
2|2 

the      costs      of correct 

classification, are taken to  be zero. 

Finally,    the    decision    rule    for    discrimination    is: 

classify  X     as a  aember of ^T  if 
j 1 

Pr C       f   (X )   >   (1 -  Pr )   c       f   (X )   , 
1 2M   1    j 1       1|2  2    j 

and classify  X    as  a aeaber  of IT otherwise.    This   minimizes 
j '2 

the expected cost  of aisclassification. 

Clearly, the results above may be generalized to any 
number cf populations. Such multiple discriminant analysis 

is required in machines for character recognition in which a 

hardware automaton carries out the analysis automatically in 

a fascinating vay[ 175]. Another example of the technique is 
multipnasic screening of school children for physical and 

mental       defects       by      tests      and       inexpensive profile 

measurements. In this manner, a single property set is 
examined in order to classify an individual as healthy, or 
medically defective in any of several ways. It is assumed 

that these defects, once identified, may be verified with 
certainty  by  a more thorough,  and expensive examination. 

In contrast to the discriminant, the Bernoulli 

regression       model      is      not      concerned     with    classifying 
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observations into peraanent populations of success and 

failure, tut rather with forecasting the probability, p , of 

an individual achieving a success. The iaplication is that 

repeated trials on the saae individuell «ill produce soao 

successes, and sone failures, and that the properties X are 

not uniquely those of a member of some population of 

successes, or failures. It is interesting to note that many 

applications of discriainant analysis in the literature ace 

specious for just this reason. 
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^  MülflAmAL  PREilfllüOIES 

To    proceed  with  Bernoulli   regcession   one Must choose a 
functional iocn foe  p    In the Bernoulli    density,    and    then 

estimate    any    unknown paraneters, T,   in  this function using 

the observations 

and    remenbeting     that    Bernoulli    regression    aust     produce 
predictions  satisfying 

0 <  p    <   1   . 
j 

Anong     the     natheaatical    transfornations available for 

our  use are a general linear  model with 

an exponential 

anotner exponential 

P    =  X T  , 
j J 

0  <  X T  <   1   ; 

p    =  exp{-X T)   , 

0  <  X T S «» ; 
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P    *  expi-[X T]  )   , 

0 i  X T  < ^ ; 

the logistic function 

P  = [1 ♦ exp(-X TJ ]"  ; 

ürban's  tranforaation 

-1       -1 
p    *  1/2  ♦ IT   tan     (X T)   ; 

a tcigoncaetric noäel 

P,  =   (1/2) [1   ♦  sin (XT) ]  , 

-•^2  <  X T  < ^2   ; 

and so  forth. 

There are, of course, an infinite number of candidates, 
as in any regression problem. We have chosen each of these 
to    contain    the    linear    form X T.     In  this  way,   there  is a 

single  parameter  in  T associated with  each  characteristic in 

X.       This    permits     definition    of     x    =1     so that  t     aay be 

interpreted  as    an     ••intercept"    parameter     in    each     model. 

Also,     addition    and  deletion   of  characteristics in  I  may  be 
performed       easily;       this       facilitates,       for instance, 
introduction    of     additional    variables     to    X,  to  allow  for 
nonlinear  interactiou of characteristics.     Just as  in    least 
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squares cegc«ä3ion# it is perfectly ddpissiblb, and uieful, 

for the independent variables to talce on discrete values 

(e.g.,       0,1). Finally,    we    shall    discover    a    salutary 

distributional property of a wide class of such models, and 

we will develop a method for comparing the effxeucy of two, 

or  more,   lodels in  any particular  problem. 

Note    that    several    of    the    models     given    require    a 
constraint  on  the   linear form Z T.     This     follows    from    the 

j 
••1-0" constraint  on  p    and the desirability  of  providing  for 

p    to be stated as a  single valued function  of  the    argument 

Z T. Although       such      constraints      can     be    accoaodated 

numerically,  their   number grows  directly  with  the  number    of 

observations. For       ease    of     exposition,     we    choose    an 
unconstrained model for complete development here. That is, 

the transformation used mathematically guarantees a feasible 
probability,   p . 

As our example, we will use H.L. estimation for the 

logistic transformation. Berkson[20] suggests the logistic 
function for bio-assay models. Also see the presentation 
given by Finney[ 84 ]. A development of L.S. estimation for a 

similar logistic model is given by UalKer and Djncdn[22b]. 
He rememoer, though, that the L.S. assumptions do not lead 

to tractacle distributional results, while the K.L.E. 

approach will yield excellent large sample properties with 
invariance. 

The log   likelihood for  the  parametric   Bernoulli     family 
is 

M P)   =  ülfy.IMp )   ♦   (1 -  y.)   ln(1 - p.)] 
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Since 

In £(P )/ P    «  y /P    -   (1 -  y )/(1 - P )   / 

ve    see    that     regardless    of    the    paranetric     form foe  p   , 

EiL,(P)l = 0    by    inspection. Parameterization      with      the 

logistic  function 

gives 

and 

p    =  [1  ♦  exp(-X T) ]"     , 

ln(p )   =  -ln(l  ♦  exp{-X T))   , 

ln(1   -   p )   = -X T - ln(l   ♦   exp{-X T)) 

froa this we find  the gradient 

7   =   £  ([Y  x   .exp{-X T)   -   (1 -   yix     1/  [1  ♦  exp(-XTj])   , 

and syimetric  Hessian  matrix 

I(T)   =   {h.}   «    i  (-xj.xj   exp{-X T)   /  [1   ♦  exp{-X T)]') 
ik ^1       ji  jk j j 

The synnetric  information matrix^   E[-H (T) ],   is 
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ik        j^l     ji   jk 1 j 

(Reaarkably,     ttom     this    we see that  the  Newton-haphson and 

Fisher's scoring aethods are identical  for   this aodtl.) 

Once    an    N.L.E.   solution, T,  has  ueen  deterained  for a 

particular  problem,   the  invariance property     gives     for    tne 

single valued  function  p 
j 

A A 
P   (T)   =  p   (T)    , 

and the    HaxiBua     Likelihood    Estiaation     ol     the     Bernoulli 

regression  is complete. 
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Wd  can  derive  confidence  liinitj  for  the  faCdnetec p    by 

noting that the il.L. estinators, T, arc dsymptoticaiiy 

norialiy distributed with a variance covacidnce matrix giv^n 

by th> Craner-aao bound, the inverse of the infocnation 

■atcix. 

A A     -1 
V(T)    -   E[-fl(T) ] 

Using the logistic model as an example, clearly the scalai, 

A 

V' 
is a linear combination of asymptotically noimaily 

distributed random vaciaoles, and thus is dsymptotically 

normally  distributed  with  parameters 

1(j) V' 
and 

m =  X ? I« 
2(3)     r  1 

Confidence limits foe X T are 
j 

V2 
01       * Z    B      , 
Mj)    a/2 2(j) 

where    z is    the    appropriate    unit     normal     variate  for 
a/2 

110 

— *-**. i m im m^mmtatUatm 



*^^^^^^^^^^^^*wr^*' u ■ i ipiwiMn    i      i --*'%?" »*^^piWiTOwiHH^wp^»w^wwL|ii)niiip^i-. I^PJI -r-r- ■ -<ivrw"pnnmf«r 

confidence level     1-a.      Confidence    units    for    p       folluM 

directly    by    application    of    the    logistic function to the 

limits for I T. 
j 

All  the  nathenatical  transfornations,   i   (X #T), 
j    j 

proposed earlier  for possible  use    in    bernoulli    regression 

were    chosen    to    be    single    valued functions of  the scalar 
argument Z T to provide sinilar results in  general, 

j 

To    test  the  contribution of a particular  parameter,  or 
? 

set of  parameters,  T#   in  the prediction of  t»  ,  a     likelihood 

ratio hypothesis test developed by Neyman and PeirsonC173 ], 

Uald[22U] and given in Hood and Graybili[ 1t>9 ]r can be used. 

As an  example,  to compare  p   (T)   and p   (T) ,   with 

* ? 
T  =   {T#T)   , 

A ^ 
obtain I and T,  and compute the statistic 

A ♦ 
-2  ln[L(T)   / L(T) ]  . 

As    n    approaches     infinity,   the  statistic  is asymptotically 

chi-square with degrees of  freedom ejual  to    the    number    of 

? 
elenents    in    T,   providing  sufficient statistical  grounds to 

give a constructive hypothesis test. 

A       stepwise    Bernoulli     regression    algorithm     can     be 
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defined and pecforaed by introducinj each ot the variables 

singly «ith an intercept ten, deternin'.ng the M.L.E. in 
each case, and keeping the characteristic leading to tue 

greatest likelihood aaong the competing two-varidbl«? mcdeii. 

Sequential steps proceed, selecting one additional vaciabie 
at a time by the criterion of maximum likelihood 

contribution among all remaining individual candidates. The 

procedure stops either when all variables have been 
included, or when addition of another variable producer a 

likeiinooa ratio less than the value of the chi-square 

integral for one degree of freedom and, say, 95 percent 

confidence   (3.8m«»«). 

TJ choose between alternative functional forms for the 
regression model, for instance between the logistic model 

and the Urban transformation, the following heuristic is 
proposed: perform      the       stepwise      algorithm     tor     both 

mathematical functions, and select the function for which 

the final  likelihood is  larger. 

112 

■ - - -ii. 



I   i    I  -HH^WPWtP ii IUIIIIHI       — —..i..ii.     „.^ „...„.., ..-      . 

&j.  iU  £Zä&ik&l EfilfilfillSÜ  2^  iABOfi ZPJCE   PAFIiCI£AIiON 

An interesting problem to which Bernoulli regression is 

applicable is given by Solberg[214 ]f who investigates the 

propensity of female heads-uf-household with dependent 
children to join the laoor force, and gives extensive 

references to and criticisms of published analyses using 
other statistical  techniques. 

The data used for analysis is extracted as a subset of 
the March, 1970, Person-family file of the Current 

Population Survey conducted by the United States Census 

Bureau; the data selection criteria produces 2,639 
observations of female family heads with dependent children 

present whc are in the civilian non-institutionalized 
population with a primary source of income not gained from 

self-employment in  agriculture. 

In order to study only individuals who can reasonably 

be expected to participate in the labor force with non-zero 

probability, family heads over 70 years of age are deleted 
along with certain identifiable incomplete entries, leaving 
2,222  observations. 

Observation   j  is coded   y   =1   if  the head-of-househcld   is 
3 

working,     with    a     job    but     not     working,     or    looking    for 
employment,     and     y =0     for     those heads  who are at   home,   in 

school,   unable to    work,     or     have    other     reasons     for    not 

participating. 

Sixteen independent variables are defined for each 
observation  as follows 
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x    =  1,   an intercept  tern, 

x    « earned incoae   in  hundreds of  dollars» 
2 

x    * welfare incoae  in hundreds, 
3 

x    « unemployment  coapensationf 
4 

x    = other income, 
5 

x   ,x  .x     =  H0-1M   regional  codes  for  North-Central, 
6     7    8 

South-Central  and Western  States 
respectively, 

x    = "0-1"  SMSA  L>ibor «arket Control Variable, 
9 

e^ual to one  for  families  located  in  SHSA 
Central Cities, 

x      = number of children present, 
10 

x      = number of  children present  under six  years 
11 

of   age, 

x      = number of  other adults  present, 
12 

x      =  «o-i" race  code,   equal to one for  black 
13 

head-of-household, 

x      = age of head-of-household, 
14 

x       = age squared, 
15 

x      = years of education. 
16 

A     program    was    written     in    FORTRAN     to    access      the 

observations on a   mass storage device,   providing features to 

select  any  desired  subset  of     the    observations,     scale,     or 
normalize     the variables,   selectively  list  observations,  and 

A 
obtain  the  H.L.E.,   T,   for   either     the    logistic    or     Urban's 
transfornaticn for p   (T),       using      a      second       order 

j 
representation    of     the    probleu    and     numerically       bounded 

variables.       A high resolution  ti;-er  provides active compute 
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tine statistics for the host computer, an IBM 360/67 - II 
operated under the HVT system. The object program was 

generated by the FORTRAN-IV (H) conpixer with code 

optimization, requiring a memory region ot approximately 
200K  bytes. 

Other program features include an automatic stepwise 

introduction of variables to a given minimal fixed model 
fron renaining indicated candidates, with sequential 

selection made on the basis of maxioun log likelihood 

contribution, and termination triggered by a likelihood 

ratio hypothesis test successively performed at each step 
with a   level of significance specified  by the user. 

Also,   a variance covariance  matrix    is    given     for    any 
A 

designated    model solution,  T,   by use  of the  inverse Hessian 

Cramer-Rao oound,  and used  to compute     confidence     intervals 
for    p   (T)     for    specified observations in the original  data 

set,  or  other source.    The  final  regression model  is applied 

to    the    data    and    a  frequency  distribution  is individually 

produced  for  observations  with  y  =0 and kith  y =1. 
j j 

In our analysis, the logistic and Ocban's 

transformations were separately applied both stepwise and 

simultaneously to all sixteen variables, a ten variable 

subset consisting of 

{I,X., i=l,2,3,U,5,9,ll,13,ia,16} , 
i 

and an  eight  variable subset comprised of 

{1,1^   1=1,2,3,6,11,13,14,16} 
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On the basis of the lotj likelihood heuristic pcoposed 

earlier, and on the apparent reluctance with which Urban'u 

transfornaticn produces- predicted probabilities near zero, 

the logistic nodel was selected for further detailed 

analyses. 

As an example of the results, the eight variable 

composite gave a stepwise logistic nodel with variables 

introduced in the sequence indicated with each step: 

JTEP 1 3 2 16 6 U 1Ü 
1 1.111 -.042 

2 .162 -.016 .300 

3 -.025 -.016 .298 .011 

a .206 -.019 .292 .011 -.507 

5* .399 -.018 .289 .013 -.643 -.539 

6 .9a5 -.019 .287 .012 -.571 -.690 -.012 

7 .5 30 -.020 .286 .013 -.545 -.698 -.012 

13 

.0 36 

The final log likelihood for this nodel is -795.2. The 

asterisk indicates the six variable model tor which a 95 

percent likelihood ratio test, with critical chi square 

value 3.841, would terninate with log likelihood -797.9. 

Execution tine for this run includes disk access, n.L. 

estimation, comparison and output of seven two-variaole 

nodels, each with 2,222 observations, six three-variable 

nodels, five four-variable nodels, and so forth, yielding an 

aggregate to 10 minutes, 14 seconds. 

For specific subproblems, an individual H.L. estination 

is not pernitted by the program to require more than ten 

iterations. This bound was never exercised by the Bernoulli 

noaels discussed here. The eight variable nodel required an 

average  at all levels of search dimensionality  of 4.1 
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itecaticns fcr convergence. 

It  is  i«{ortant to note the cenackable step to step 

stability of individual terns in T, with the exception of 

the  intercept tera. This  clearly shows that use of the 

previous solution  as a starting value for  successive 

iterations  can greatly accelerate convergence of the second 

order representation of the problem.  Exploitation of such 

behavior in nonlinear estimation  has been suggested by 

Boss[207 ]. 

The regression predictions for y given tor the 2,222 

observations by the final logistic sodel are given in the 

following freguency distribution 

PORECAST ACTUAL 

£ IzC Izl 
0-.1 139 5 

.1-.2 308 37 

.2-. 3 232 sa 

.3-. a 13a 60 

.a-.5 35 65 

.5-. 6 2U 61 

.6-. 7 9 51 

.7-. 8 11 62 

.8-. 9 12 117 

.9-1 31» 772 

In another experiment, a subset of 400 observations was 

randoaly selected and T determined without stepwise 

introduction of variables for the sixteen variable logistic 

model. The solution of this pilot model was then used as a 

starting value for computation of T for all 2,222 

observations, with a total computation time of 3 minutes, 21 
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seconds. A diitct estiuation without this proiirainary st^p 
required 6 minutes, 8 seconds. Constructive stepwisp 
estiaation or ail sixteen variables with no pilot aodels 
required 80  ainutes,   42 seconds. 

Specification of the appropriate size of such a pilot 
run is difficult, since a subset too small till give a 
solution of doubtful value (numerically and statistically) 
for starting the larger model, and a subset too largo 
defeats the purpose of the approach. It is nuch small 
sample cases that exercise the numerical bounds and other 
provisions for difficulties in estimation. As a rule ot 
thumb, 400 Bernoulli observations are used here with good 
success  for   "all at once"  models. 

Experience with all these models indicates that the 
constructive stepwise approach, possibly begun with a 
minimum model based on the investigator's price experience, 
and terminated by the likelihood ratio test, is a generally 
reasonable plan of attack. Although computation time can be 
very high with such a method, important benefits are derived 
from model analysis by the H.L. estimation of subset models 
in    the    course       of      solution. For       instance,       subtle 
comcomitance among variables may be detected by analysis of 
intermediate output that would evade detection in a final 
variance covariance matrix. 

Other Bernoulli regression models have been studied, 
including prediction of the probability of winning a 
horserace, based on handicap data, and the estimation cf the 
probability of increase in stock price from market analysis 
and financial information in investment survey guides. Host 
recently, DeBont and Mhite[70] report analysis of tactical 
data  from  tank engagements in  the  Arab-Israel conflicts. 

Generalization    of    these    techniques     is    possible    to 
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accoiodate binoaial, or nultinooidi data and models with 
dependent observations, altbouqh auch work remains to be 

done. 
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