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ABSTRACT OP THE DISSERTATION

Nonlinear Statistical Estimation
with
Numerical Maximum Likelihood

by

Gerald Gerard Brown
Doctor of Philosophy in Management
University of California, Los Angeles, 1974

Professor Glenn W. Graves, Chairman

The topics of maximum 1likelihood estimation and
nonlinear programming are developed thoroughly with emphasis
on the numerical details of obtaining estimates from highly

nonlinear models.

Parametric estimation is discussed with the three
parameter Weibull tamily ot densities serving as an exaaple.
A general nonlinear programming method is discussed for both
first and second order representations of the maximum
likeiihood estimation, as well as a hybrid of both
approaches. A new class of constrained parametric
estimators is introduced with numerical methods for their

determination.

Structural estimation with maximum likelihood is

examined, and a Bernoulli regression technigue is presentegd.
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CHAPTER I

¢ A

{ & This dissertation is concerned with a class of probleas
¢ of ULasic importance in applied statistics - the estimation

of parameters in a complicated model where simple closed
: 3 form estimators do not exist and it is necessary to resort

to numerical methods. Many existing numerical apprcaches

Gt i S S e i

prove to be of 1little practical value in the context of
these actual cases because of convergence problems. The
z main purpose is to develop new numerical techniques by

1 comkbining recent developments in the theory and practice of

optimization with statistical theory and to demonstrate the
| efficacy of these methods by application to the srpecial
< class of «complicated, highly nonlinear problems arising in
statistical estimation. The applications are addressed
primarily to maximum likelihood estimation, and the new

methods are compared where fossible to previous recsults.

z The general numerical technigue developed is also used to
solve a new class of estimation problems with nonlinear
constraints on the parameters. The numerical approach is
further utilized to provide an alternative to least syguares

z regression, especially for problems with discrete dependent

variables.

J The present chapter reviews the mathematical foundation

' for statistical estimation for poth density functions and

] structural models, and provides justification for use of
maximum 1likelihood estimation. Chapter II presents a 5
history cf nonlinear progqramming with both search and ascent

b
;
1 ¥ methods, with emphasis on numerical performance £for highly
f nonlinear olLkjective functions., Cpapter III introduces the
E
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maximum likelihood estimation problem for the parametric
Weibull family of density functions. The new techniques of
the dissertation are developed and demonstrated. A new
class of constrained n~aximum likelihood estimators 1is
proposed with sample probiems. Chapter 1V addresses a class
of regression models in which the dependent variable is a
Bernoulli observation, develops a statistical theory for
solutions of the model and gives a numerical example.
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B. INTRODUCTION TO STATISTICAL ESTIMATION THEORY

A classical area of intense interest in statistics is
the art of wusing sampling dinformation to make wvaliid
inferences aktout unknown parameters in the distcibution of a
population under study; this body of technique, motivated by
the mathematical theory of statistical estimation put forth
by Fasher[86], can be applied in several ways to any given
sample producing various estimates of the fparameters, and
leaving wus with the problem of selecting a "good" estimate

from among the possibly infinite number of competitors.

An investigator 1is apt to feel tha£ a "good" estimate
is obviously that which is closest to the true parameters.
However since the estimator is a mathematical function of
the sample ( a statistic ) it is itself random from sample
to sample, so that the attractiveness of a particular
randomly distributed estimator will depend upon the long run
char. .teristics described by its sampling distribution. For
instance, if the sampling distribution of an estimator for a
parameter vector has a great deal of its probability
concentrated in a very small neighborhood of the true
parameter, and a competing statistic does not, we would
probably find the rformer estimator to be "better" than the
latter for purposes of valiad inference. That 1is, the
probability cf an estimate being close to the true parameier
is higher in the former case, so we use that particular
method with cur sampling information. Unfortunately, there
is seldom a gquarantee that a statistic will be '"good" for
every sample, or even that it will produce useful or
intuitively acceptable estimates. Therefore, one must
choose an estimator on the basis of its long run properties
relative to those of feasible alternative estimators and in

the context of each application.
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In order to formalize some of these concepts of

th
Ngoodness," let us define the J observation of an
m-dimensional vector, Xj, as
x = { x ' l.l' x } ' j=1'2' II.'n ;

3 i1 jm

with X rowv j of X, the observation data uatrix.
J

It should be made clear at the outset that if the
successive observations in X are not random, then e nmust
know the precise nature of the sampling procedure which
leads to this non-randomness for the observations, or very
little inference is possible, For this reason, X is assumed
here to result from random sampling from a population with a

single set of parameters, T.

For purjoses of parametric estimation, we must know, or
have assumed hypothetically, the precise mathematical form
of the distribution of each observation of the Gparent
populaticn. Therefore, let

£ (X, ,T) .
i o3

represent thnis density, with

T= t s e e t
(1' ’ k) ’

a set of * columns of unknown parameters to be estimated and

f non-negative over the region of admissible ranges of X
] ]
and T.
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Point estimation, then, 1is the interpretation of a
statistic, ?, computed from X as a vector of constants which
can be assumed as the inferred value of P; interval
estimation is the specification of an intervai such that a
known proportion of such intervals contain the parameter T.

For simplicity of exposition, let us assume that £ = £

for all j, and romentarily that k = 1. Then, let Q(n) be a
statistic to be used as an estimator of t based on a randouw
sample of size n. It is reasonable to assume that the cost
of obtaining the sample 1is some monotonic increasing
function of n, and thus that the economic Jjustification of
Q(n) depends upon how "good" it is as a function of n. 1In
this context some of the following measures cf desirability
of estimators are proposed as functions of sample size, and

thus cost.

1. Existence

It 1s always necessary to be able to demonstrate that a
particular statistic exists with its attendant
properties for a given sample space, probakility
distribution, and so forth.

2. Simple Consistency

A statistic is simply consistent if for any arbitrarily

small positive constants ¢ and d there is a sample size
N such that

A
Pr{it(n) - t] < c]> 1 -4, >N .
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3. Sguared Error Consistency

A statistic 1is sai¢ to have squared error consistency
if for any arbitrari.y small constants ¢ and 4 and some

positive integer n,

A 2
Pr{(t(a) - t) <c]>1-4a, mN.

Some probabilists view these consistency properties as
special cases of stochastic convergence under
particular noras. Both types of consistency are
desirable in the sense of early discussion in this
chapter, producing with high probability values of ?(n)
in a small neighborhood of t, but consistency 1is

achieved at possibly nigh cost.

4. PRias 4

A
The kias, b(n), of the statistic t(n) is defined
A
b(n) = E(t(n) - t],

with E the expectation operator. 1If b(n) = 0 for all i

n,

A
E[t(n)] = t

T

A
and t(n) is said to be unbiased.

A
If b(n) approaches zero as n increases, then t(n) 1is é
said to be asymptotically unbiased.

“Grnltinar

Unbiasedness 1is an intuitively desirable point

SRRISE

] property, but should not be confused with neighborhood




properties such as consistency; neither property

inplies the other. Further, b(n) can sometimes be
. A

determined, or estimated, and removed from t(n).

5. Variance

Tae variance of a statistic t(n) is defined

A A2 2 A A 2
Vit(n)) = E[t(n) ] - E{t(n)]= E((t(n) -t - b(n)) ] .
This may, or may not, be analytically available
depending upon the mathematical form of g(n) and £, but
it 1is a characteristic of the sampling distribution of
Q(n) and thus describes long range behavior of ?(n).

6. Mean Squared Error

A
The mean squared error of t(n) is defined as

A 2 A 2
M.S.E. = E[ (t(n) - t) ] = V[t(n)] + b(n) .
Ne s=2e that the M.S.E. and variance are identical for
unbiased statistics, and that for biased statistics,
the M.S.E. exceeds the variance.

7. Likelihood

A
For independent observations the likelihood of t(n) is
defined by Pisher[86] as

L(X,t) = £(X_,t)eeef (X ,t) ,
1 n

i i s o i
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and 1is regarded as proportional to the probability of

the occurrence of the vector, X, given parameter t.

8. Sufficiency

A statistic, Q(n), is said to be sufficient if it «can
be shown that the conditional probability distribution,
h, of any other statistic, g(n), given Q(n) does not
depend upon the parameter t :

~ A
h( t(n) | t(n) ) not a function of t .

A
Sufficiency for t(n) 1ia-lies that all the sample
A
information concerning t has been exhausted by t(n).

Such statistics exist for a very important family of
density functions including the exponential, binomial,
chi-square, gamma, and normal distributions. As we
shall see, a straightforward algorithm may be used to
identify sufficient statistics

9. Completeness

Let s(X ) be a continuous function of X . If
J ]
E[s(X ) )=0 for every admissible t implies that s(xj)=0

]

for all X then €£(X ,t) is a complete family of density
]

functions.
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10. Minisum Mean Squared Error

It has teen shown by Rao[196] and Cramer[58] that under
assumptions of regularity the lower bound for N.S.E.

of any statistic is

2 2 2
M.S.E. = =(1 + dbsdt) /E[J 1n(L)/dt ] .

The reqularity assumption disaliows discontinuities in
f that depend wupon t. This bound may or may not be
achievable.

For an unbiased statistic, this 1lower bound for

variance is

2 2
M.V. = -1/E{d ln(L)/ot ] .

11. Squared Error Efficiency

. A . . F L
A statistic, t(n), 1is relatively efficient 1f 1its
n
M.5.E. 1is 1less than that of a competitor, t(m), for a

given sample size:

A 2 v 2
E((t(n) - t) J<E[(t(m) -t) ].

We can also treat this as an asymptotic property of an
estimator. If the inequality ultimately holds for any
competitor we simply say that g(n) is asymptotically
efficient.

This 1is a very appealling relative measure of the
"goodness" of a statistic. It seems reasonable to

assume that the cost associated with an error in
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€stimation is an increasing nonlinear function of the
size of the error. For example, the effect of a small
error might well be unimportant. A large error, on the
other hand, might 1lead to significant costs due to
incorrect decisions based on the estimate. The precise
cost-error relationship would be most difficult to
specify mathematically. Assuming that the cost is a
quadratic function of estimation error gives a cost
function that is tractable mathematically, and vweights
larger estimation errors more heavily than small
erroirs. Thus, with this assumption, a <choice of
estimators on the basis of relative efficiency becones

a choice of minimum expected cost,

12. Unigqueness

For purposes of inference, it is desirable but often
impossible to demonstrate that the statistic used

uniquely satisfies its own definition.

13. Asymptotic Normality

An estimator is asymptotically normal if its sampling
distribution approaches normality with 1increasing
sample size. This property gives a statistical
foundation for making the probability assertions
required for interval estimation; it obviates the neeg,
case-by-case, to treat a statistic as a mathematical
transformation applied to the random variables in each
sample and attempt to use statistical transforasation
methods to derive a sampling distripbution for Q(!,n) in
closed fornm. In fact, such an analytic derivation is

frequently mathematically impossible.

10

e St raa AT T O R e i e S i

i ks S

i T

R VT s e R TR TN

P




i S A i bl o it e i AR S A it o0
2 s . et iR RS e i Gt dina inbide Sd e S ULLE bagaty Ay 2od 1) Yy F ey Ty

To use the property of asyuptotic normality fol

interval estimation, we require knowledge of the first

two moments of the estimator so0 that the paramet«rs of
the normal distribution may be obtained{d4]. In sonme i
instances these cannot be obtained analytically, as is /

4

shown by Mann, Schafer, and Singpurwallaf 161,p.263].

T T
o e

(¥4

14. Best Asymptotic Normality

A
A statistic, t(n), 1is Best Asymptotically Normal, 3

B.A.N., if it 1is simply consistent and @(n) o ]
approaches a normal distribution with zero mean and a :
: variance less than that of any competitor with ;
_’ asymptotic normality over the same open interval for t.
] (In %is introduction of B.A.N. estimators, Neyman{172]

ot Gives a more general set ot existence conditions in the ;
| context of continuous data grouped into classes.) Note
that B.A.N. estimators are not necessarily efficient, g
: or unique, but that they are asymptotically unbiased, ,
i; and of course offer the advantages of asymgtotic ?
% g norsality previously discussed. j
~" 5
]
i

Finally, with suitable notation adjustments, all these
characteristics of point estimators generalize to the E
multidimensional estimation case, k > 1. For instance, the
E variance should be notationally replaced with a

variance-covariance matrix, Y.

A A
¥ = E[(T(n)-T) (T(n)-T)']

1 1
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The art in statistical estimation is as much the choice

of an estimator as its mathematical derivation for a given
protlen. Although a myriad of estimation techniques have
been proposed in ¢the 1literature, only those generally
applicatle to the problems to be considered here are
introduced. Noted by their absence are Bayes estimators,
formulated from his idea[ 15] of using prior information, but
which do not apply to a constent vector, T, and exist only
for very restricted choices of prior multivariate density
for T, and Minimum Chi-Square estimators, M.C.S., discussed
at length by Rao[196], which apply to continuous data
grouped 1into classes, and are very similar in poth
determination and asymptotic properties to the waximum

lixkelihood estimators, which are presented shortly.

L 4
Moment Estimators, T(n), proposed by Pearson{ 133], are

formed 'ty equating the sample moments of X with its
theoretical moments stated 1in terms of the parameters, T.

[ ]
The solution for T(n) may not be possible in closed form for
[ ]
many density functions, and T(n) is not necessarily unique
IOr any given sample, however Pearson introduced a 1large

fanily of special distributions which yield solutions for

®

T(n). Moment estimators are usually consistent in both the
simple and squared error sense, asymptotically normal, but
not b.A.N., and can be efficient only when the variance of

X domindtes higher moments of £, as is true with the normal
®
distribution. 1In general, T(n) has few advantages over

common ccmpetitors for any particular density function, £,

12
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ana the disturbinyg habit of frequently producing
outrageously bad estimates, even inadmissible ones. The use
of momenrt estimators by Pearson and others has been largely
restricted to the more specialized problem of choosing both
a mathematical rform for f when none is known, and estimation

of resulting parameters.

v
Sufficient statistics, T(n), have been demonstrated by

Firke:[80] and Neyman[174] to exist for any density for
vhich the likelihood function may be partitionea into

v
L(X,T) = H(T(n),T) K(X)

with H an exclusive nontrivial functioa of ;kn) and T, and K
free of terms or constraints involviung T. v} condition
implying existence of a sufficient statistic, T(n), 1is that
f belong to the Koopman-Pitman exponential tanmily[ 142,180

such that £ may be stated
f(xj,T) = eXPCP(T)m(Xj) 4 S(Xj) + q(T) ]

with p(T) a nontrivial continuous function of T, s(X ) and
J

(X ) continuous functions of xj, dm/dX +# 0, and the range
]

of X independent of T.
J

Sufficient statistics are of strong intuitive appeal
since they demonstrably use all of the sample information
availahle. The algorithm for rinding a sufficient statistic
is straigyhtforward, 1leading immediately either to the
establishaent of suach a statistic, or a proof that no
sufficient statistic exists (128,p.231, 141,p.26].
Unfortunately, sufficient statistics are not necessarily

consistent, unbiased, or efficient.

13




v
Any nontrivial one-to-one transformation of T(n) 1is

also sufficient for T. Therefore, whenever possible we
choose an estimator from this infinite family of sufficient
statistics in order to achieve one or more additional
desirable properties such as concistency, miaimum variance,

or most often unbiasedness.

A Minimun Variance Unbiased Estimator, M.V.U.E.,
discussed by Rao{195] and Blackwell[24], 1is always a
function o0f the sufficient statistic, and is found as the
conditional expectation of any statistic which 1s unl.iaced
for T, given the sufficient statistic, g(n). The M.V.U.E.,
when it can te derived via the conditional density required,
is necessarily simply and M.S.E. consistent, and the most
efficient unktiased statistic for any sample size. Further,
if the density function is complete, the M.V.U.E. is
unique[ 128,p.229]. The mathematical details of deriving the
M.V.U.E. are arduous, but the statistic is desarable
especially fcr small samples where bias and/or M.S.E. are
high for most competitors. A pminimum M.S.E. statistic
provides a tradeoff by minimizing the sum of variance and
sqyuared Lias, and can be preferable to the M.V.U.E. when
unbiassedness is not absolutely essential. Unfortunately,
wmininum M.S.E. statistics are only rarely derivable for
finite sample sizes, and when found often correspond to the
M.V.U.E. result. For instance, the samgle mean from a
normal distribution can be shown to be both a M.V.U.E. and

minimum M.S.E. statistic.

Maximum Likelihood Estimators, M.L.E., suggested by
Fisher({ 86], are found by maximizing the likelihood function
L(X,T) ¢ty cRoice of T. These intuitively appealing
estimators, T(n), can often Le derived in closed fecrm by
differential calculus, and dalwayvs exist under mild
regularity conditions. Although ?(n) is frequently liased

for small samples, it is asymptotically wunbiased, B.A.N.,

14
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and simply and squared error consistent as shown by
daldf 225,224]. It \is also asymptotically efficient,
ultimately achieves the ninimum variance bound, and can be
shown to be a function of the sufficient statistic, if one
exists. Even for relatively small saaples, the M.L.E. can
be more efficient than the M.V.U.E., as has been shown by

Brown and Rutemiller[ 31].

Rde o L e - s el e . e it Al e i) i,

M.L.E. also have an important invariance property. For
any non-trivial functiou of T, u(T), with a single-valued
3 inverse,

A A
u(T) = u(T(n)) .

For example, invariance permits transtformations to reduce

bias without sacrifice of other desirable F.L.E. properties.

This property is an indispensable tool in mathematical
modelling. Since parametric estimation is usually performed
only as a preliminary part of a larger investigation,
invariance 1s crucially important, permitting M.L. point
estimates to be unconditionally intrcduced into any
admissible function of the associated parameters, with the

function directly inheriting all the desirable M.L.

properties. This permits analysis of complex hierarchical

systems to be conducted in a straightforward manner.

Asymptotic normality for all M.L.E. makes them very

;3 useful for interval estimation, especlally in the

] ; multivariate sense. Unfortunately, M.L.E. can not, 1in

;“ 7 general, be guaranteed to be unique, although unigqueness can

' be established on a case-by-case basis. Although npumerical
{ determinaticn of M.L.E. can at worst bre exceedingly
; difficule in practice, the "good" vproperties of these
estimators make them so singularly attractive in the general

field of statistical estimation as to motivate the

B
t




T

Ll Ak ke da baiiart s Buc & U Lulltl O i sl Vi r o a L — ey .
Sl i i - g sl B b i — Rl s L BRSO Gl RO e L Ll I Bl b B bl e labie Si-0 A

investigation in this thesis.
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Suppose we examine a model in which the population mean
is not strictly a function of T, but rather a particular
mathematical function of the population parameters, T, and
some observed constants, X. If we define our sampliug
process to be the measurement, with some random errcr, of
observations, Y, from populations whose parameters depend on
X and T, then a problem which results is the estimation of

the parameters, T, based on tne saample

fY , X} ,
by use of the relationship
Y = Y(T, X, e),

and known information about the nature of the error, e.

This technigue is known as regression.

One example of such a model 1is <classical 1linear

regression, where
Y = XT + e .

Y

Since Y-XT(n) is the sample estimation error in the model
1y

for the estimator T(n), the wusual approach to this

estimaticn is to assert a quadratic cost function and

minimiz~e the scalar sum of squared deviations
(Y-XT)* (Y-XT)
by choice of T. This technique was first suggested for use

in interpolation of planetary data by Legendre[150].
Provided that X'X is non-singular, which requires n > Kk,

17
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this guadratic objective function has a unigue solution,

~ -1
T(a) = (X')  X'Y.

This Least Squares, L.S., estimator is attractive to use for
linear models. The L.S. solution is the best linear
unbiased estimator, B.L.U.E., 1in the sense that among all
untiased linear combinations of X this estimator has minimum
variance regardless of the distribution of e. Gauss[95] has
shown that when e 1is normal the L.S. solution always

maximizes the joint density

f(y IX ,T) eee f£(y |X ,T) .
1 1 n n

This remarkable demonstration both anticipates the later
discovery of M.L.E. and shows that in the normal case, the
linear model has a single solution which is both L.S. and
M.L.E. The distributional theory for interval estimation in
the 1linear model is presented by Cochran{51], and is based
on the unique class properties of the mwmultivariate normal
density, which is closed for affine transformations,
convoluticns, and linear mixtures of normals, and the class
of chi-square distributions of quadratic normal forms, which
is closed for convolutions.

The assumption of normality for e and linearity are
crucial to the L.S. approach, since for non-normal, or
non-linear models the distributional results tail. In fact,
the specification of a quadratic cost criterion for L.S.
minimization is not necessarily justifiable in all
applicaticns; for instance, mean deviation, or minimax
(Tchebycheff) deviation might sometimes be more reasonable.

A general M.L.E. approach tc regression focuses

attention on the density of e to specify the likelihood

18
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function
1T L(Y1X,T) ,

vhich is maximized by choice of T. It is not necessary to

: i derive L(Y|1X,T) from Y(T, X, e) if one can state the density
| 3 directly as in the case of Bernoulli regression examined in
Chapter IV. The M.L.E. solution has all the properties

under cconditions mentioned previously, regardless of the

form of the model, although those that are asymptotic are

3 achieved more slowly for highly non-linear models or

extraordinary distributions for e. Sprott and
Kalbfleisch{ 217) have examined for some specific models the
robustness of the assumption of asymptotic norrality made

l 5 for several finite sample sizes.

b
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E. SUMMARY: JUSTIFICATION OF M.L.E.

As we have seen, the M.L.E. usually have, for large
samples, all the desirable properties of an estimator. They
almost always exist under very mild regqularity conditions,
asymptotically they are consistent, unbpiased, efficient,
B.A.N., achieve the Cramer-kao minimum variance bound, and
they are sutficient statistics whenever such statistics
exist. They can often be derived in closed form by
differential calculus, and in other cases, the estinmator may

be solved for by numerical techniques,

When pcint estimates of functions of parameters are
required in a mathematical model, it is pointless to choose
estimators for their "good" properties unless the function
will also possess those properties. 1In practice, the M.L.E.
are the only available estimators with so many desirable
properties that are all invariant under such
transformations. As mentioned earlier, this invariance
property of M.L.E. is vital in complicated problems where
parametric estimation is only the first step of

investigation.

Best of all, M.L.E. provide a distributional basis for
interval estimation which does not depend upon simplifying
assunptions such as those reguired for the L.S. approach.
This is fortunate, since in models which are non-normal,
non-linear, or, more often, both, the ¥.L.E. provide the
only reasonable estimation alternative. Also, for the
classic 1linear normal nmolel, the M.L.B. provides the L.S.

solution.
For small samples, the M.L.E. have many of the good

estimator properties, and are often the best statistic
available. Their M.S.E. 1is fregquently the best among

20
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competitors, even for very small sample sizes. The M.L.E.
are extremely useful in small sample estimation as a
starting point for seeking better statistical estimators for
particular density functions. The M.L.E. are always derived
by exactly the same method, requiring less intuition, skill,
or plain luck than the intricate schemes leading sometimes
to, for instance, an M.V.U.E. In some statistics texts, in
fact, M.L.E. are the only estimators introduced since they
are generally easy to find and usually produce Letter
estinates than other methods[156,p.162].

Among alternative estimators for any given problem, the
M.L.E. nearly always provide a very good property set that
gets better very quickly with increasing sample size, and
becomes asymptotically best. For those cases in which the
M.l i B must be determined numerically, a potentially
difficult nonlinear programming problem results.

N LT g 7
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CHAPTER II

Ei NOMBRICAL TECHNIQUES OF ESTIMATION

A. INTRODUCTION IO NONLINEAR NUMERICAL ESITIMATION

In the previous chapter ve have proposed a
statistically desirable nonlinear estimation method, M.L.E.,

E which leaves us with the problen

FJ
) A .
MAX( L(T) )

The form of L depends upon the model used. Estipation

of density function parameters for f gives

L(X,T) = f(X1,T)°'0f(X 'T)
n

and estimaticn of parameters for a structural model gives

L(XY4x,7) = f(Y|X1,T)OOOf(Y|X «I) .
n

In either case, L is known to be a highly nonlinear function
of the decision variables, T. Since X and Y are treated as
constants in these two models, they will not be included 1in
the further notation of this chapter, so that both

estimaticn mcdels may be treated at once. Thus

L(T) = £ (T)eeef (T) .
1 n

Mathematical constraints may be present for the

parameters., These may be simple numerical range

oy
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constraints, upper and lower bounds, for instance

l_ st_ Su. ,i=1’ e oo g k r
1 1 i

or @more complicated joint functions of T, equality

constraints cf the fornm

91('1') =0,

or ineqguality constraints such as

T) €< 0.
92()

The set of both types of constraints is referred to
collectively as

g'(T) = {9;(T)v QE(T)} '

g(T) <0 .

We refer to the conditioned set of all values of T which
simultancously satisfy the constraint set, g(T), &as the
feasible region tor T, and values of T within that region
are called feasible points. A particular constraint that is
exactly satisfied by T (a row of g(T) exactly equal to zero)
is said to be active. If, for all possible pairs of two

feasible points, ‘1‘1 and TZ, the convex combination
T = aT1 + (1 - a)T2 ¢ 0 £ a <1,

is also feasible, then the feasible region is called convex.

For M.L.E. problems, there are frequently simple

23
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numerical bounds placed on T. These are usually included to

insure the definition of a valid density function, f.
However, general mathematical ccnstraints are seldon
present. For this reason we will initially emphasize the
: unconstrained M.L.E. problem and the techniques available
; for its solution.

The first step in formulating an M.L.E. problem for
solution is usually the replacement of the 1likelihood
function, L, by its logarithm, 1n[L]. It 1is easy to see
that

e e b

;; H%X{ L(T) } , and H%X[ In(L(T) ]} »

are both achieved by the same value of T, since the
logarithn is a monotonic increasing function of its

oo, L

argument. The log-likelihood function becomes

1a[L(T) ] = 1n{£ (D) J+...+1n(£ (T)] ,

This reformulation usually gives an alias for L(T) which is
a mathematically simpler function. For instance, members of
the Koopman-Pitman family of density functions are
remarkably easier to deal with in this foram. This is
advantageous for both analytic and numerical work. For
instance, since L(T) is the product of n sample likelihooads,
its wvalue for many problems, especially for large n, can
numer ically violate the expressiktle range of floating point
representaticn on a particular digital computer.

We henceforth treat L(T) as the objective function, in
either the 1likelihood, or aliased 1log-likelihood fornm.
Further, we assume where necessary that L(T), and thus f(T),
are continuous, twice differentiable functions of T at
interior points. This 1s a very weak restricting assuaption

LS
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for M.L.E. models, which very seldom have discrete

parameters, T, and rarely have non-differentiable density
functions (poles, etc.) for realistic problems in which M.L.
estimation is attempted. It is not necessary in a
mathematical programming sense to emphasize the statistical
relationship of the M.L.E. and sample size, so it is assumed
notationally that

A A

T = T(n) .

A stationary point of L(T) is characterized{21] by the

3 . 3 . A
necessary condition that the gradient vanish at T,

A
VL(T) = oL(T T =0 .
(T) = 2L(MAAT | _A

Necessary conditions for a lcocal maximum are that
A
VL(T) =0 ’

and that the symmetric Hessian matrix,
2
H=1(h } = (L(T)/0t at 1} ,
ij i j

3 . - . . - A -
be negative semidefinite at a stationary point, T; that 1is,

for any vector 2z not identically zero,
A
z'H(T)z € 0 .
A vanishing gradient and negative definite Hessian

A A
VL(T)=0 ¢& 2z'H(T)z < 0 ,

provide sufficient conditions for a local maximum of L.




If the Hessian can be shown to be negative definite for
all feasible points T, then L 1s said to be concave[19], and
a statlionary point, Q, is the unique global maximum. Other
characterizations of stationary points of L are possible;
these other cases are of 1little general use and usually
require further assuaptions for identification of maxinma,

such as higher-order derivatives[208].

Characterizations of extrema of L(T) in the presence of
equality constraints requires that the gradient vanish while
all the equality constraints simultaneously hold.
Lagrange[ 147 ) expressed these conditions by introducing an
r-dimensional vector of arbitrary aultipliers, 01, and

augmenting the objective functicn of the problem to include

the constraints, giving

MA - a! '
T,i(x[L (T) uld, (7))

vhich, as previously shown, 1is stationary if

v Lfr\ ' ? 06r <k
Tu[() u191()] r £k,

’

and a local maxima under conditions for the Hessianr similar
to those for the unconstrained problem, but modified by the
dimensionality adjusctment. John[135], and later Kuhn and
Tucker[ 146], have generalized the necessary conditions to
inequality constraints as follows, letting u2 be a vector of

with
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T)<0, u <0, u! (T)=0 .
92( ¢ ) ’ 292( )

The 1last condition 1is referred to as complementary

slackness.

For maximization problems subject to mixed constraints,

with multipliers defined

ut = [u;, u;} ‘

necessary conditions for a local constrained maximum are:

A A
VT[L(T) -u'g(T)] =0,
Q =0 ? <0 <0 ' ? =0
91()“192()-0 uz—r ngZ( )=0 .

Local sufficiency foc these conditions further requires that
the constrained objective function be locally concave, tnat
all nonlin:ar inequality constraints be convex, and that all
equality constraints be 1linear. It may be possible to
generalize local sufficient conditions, subject tc the
Kubhn-Tucker restrictions, for nonlinear equality

constraints.

John[ 135] actually developed conditions requiring that
the objective function also have a multiplier, and Kuhn and
Tucker{ 146 ] qualified admissible constraint sets to those
without singularities on the boundary such as an outward
pointing cusp, or other nonlinear degeneracy; 1in these
cases, the nultiplier proposed by John is positive, and can
in fact be normalized to unity. Their development defines

the Lagrangian objective function
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A =
and specifies that if a stationary point (T,u) 1is also a

saddle pcint, that is

u%xj[r,u*] =;["1'\,u‘] = ulxxuj(?,u] ,

A *x
that under the mild assumptions, the point (T,u ) 1is a

solution to both the primal and dual problems, given
respectively at the left and right above. This also
suggests that methods for solution of the primal problem can
sometimes profit froam information gained by simply
examining, cr shifting emphasis completely to the dual. wWe
might intergret the primal optimization process as
maximization subject to feasibility with respect to
constraints and the dual optimization process as
minimization of infeasibility, subject to a stationary

primal profit criterion.

Purther characterizations under varying sets of
assumptions and useful simplifying qualifications have been
given by Mangasarian and Fromovitz[159], Arrow and
Enthoven[6], Arrow, Hurowicz and Uzawa{7], Kortanek and
Evans{ 143], and Wilde[ 230,231].

For many likelihood functions, @ may be determined in
closed form as a stationary point of L by differential
calculus. 1In such cases, demonstration of extremality and
unigueness fgroceed directly by analytic means as previously
discussed.

In general, hovwever, the stationary points of L must be
derived iteratively by the numerical wmethods of nonlinear

28
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prograaming. The general M.L. estimation problem has rather
distinctive features in this respect. The number of
decision variables, or parameters, is usually very small,
seldom more that three for density functions and ten for
structural @models. The objective function and especially
its gradient are highly nonlinear, expensive to evaluate
numerically, and difficult to coampute precisely. These
problems are exacerbated by large sample sizes. d1he
constraints are wusually of relatively simple form, often

just numerical bounds on T.
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The nonlinear programming methods which may be used for
M.L. estimation are all iterative schenes with the

following features. An initial value of T, ro, pust be

specified or guessed by the 1investigator. An iteration

mechanisa then chooses a step-size and direction for
determining the sequence

T T e o o T
o' 1' ’ n ’

such that

L(T') > L(T. )' i=1'2' e s o g ﬂ.
1 i-1

Finally, a set of termination states is specified.
Termination criteria commonly include a maximum value of m.
A stalling «criterion can be used for tolerance of
resolution, with 4@ a vector of arbitrary small constants,

|IT -T i €4 .
a m=-1

A performance criterion can be employed to insure acceptable
distinguishatility, or marginal improvement,

L(T )-L(T ) > minimal gain.
[} n-1

The ideal iteration scheme 1is a totally automatic

30
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algorithm in that the global solution is reached in a finite
number of steps without necessitating human intervention.
Unfortunately, no single method realistically qualifies on
this basis, especially if we define finiteness in terms of
exhausting a reasonable computer budget. Also, a qlobal
solution does not always exist 1n the strict sense for all
M.L. problems. 1In practice, even the attainment ot a local

maximum can be delightful.

A good iteration algorithm should not require excessive
computation time for termination. Neither should it dewmand
brilliant intuition, or extraordinary good fortune, on the
part of the user. Problem specificity of good iteration
performance is also undesirable, unless for demonstrable
cause of an apparent nature general enough to advise prior

choice of the method.

Thne taxonomy of iteration schemes 1identifies direct
search methods as those which achieve gains by experiment
wvith evaluation of the objective function, L(T). Ascent
methods, on the other hand, require 1local d:rivative
information to calculate a priori where each following
evaluation of the objective function should take place.
Ascent methods may be further subclassified as either direct
ascent, which =<seek immediate gains at each iteration, or
indirect ascent, which seek at each step to achieve the
necessary conditions for a maximum. Note that ascent
methods include those using finite difference approximations
to derivatives. Distinguishing between these tvo
classifications is at times most difficult, since +the
systematic experimental achievement of increases in the
objective function, L(T), by varying the argument, T, with a
direct search scheme is highly suggestive cf cognizance of
differential information indicative of an ascent method.
This interminable classification problem is obviated Ly the

plausible defense of nomistic innocence. Several classical
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technigues of both types that are available for finding t(mn)

when k=1, for instance golden section search, regula falsi,

and so forth[232,193], are not discussed here.
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The Hooke-Jeeves pattern search wmethod[129], perhaps
the simplest technique known, is a maximization scheme based

on direct evaluation of L(T). Given a starting point, To,
and stepsite, so, the iteration sequence proceeds by varying

each element c¢f T by one step in each direction and
evaluating the objective function, keeping each respective

element of T at the value which lead to a maximum. Thus, '1'1

will be at a corner of the k-dimensional hyperrectangle
defined by Togso. The scheme proceeds similarly wuntil no

further gain seems possible, in which case the stepsize 1is

halved, the process repeated to no dain, stepsize halved
again, and sc forth until termination 1s recognized within a

spall enough neighborhood.

Several heuristic modifications have been progosed,
inciuding a ridge-following "memory" for acceleration of
stepsize when an element of s continues step-to-step to
exhibit no change in =sign while sequential gains are
made[ 1293, a seguential transformation of coordinates in
order to minimize parameter interaction and separate the
effects of steps on the approximately orthonormalized
problem, linear nminimizations along estimated conjugate
directions, a restart procedure for avoiding local minima
and stalling, paraliel tangent acceleration suggested by
Shah, Puehler, and Kempthorne{210], quadratic approximation
with an interpolating polynomial over the 1local search
lattice, and introduction of random numbers to avoid dead
ends for the search. Such ad hoc modifications are found in
Fletcner(87), Zangwill{239], RrRosenbrock({206], Powell{190]},
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and Davies[66], who also describes response surrace direct

optimization schemes encountered in experimental design.

The simplex method, introduced by Spendley, Hext, and
Himsworth[216], generalized by Nelder and Mead(171], and
generally referred to as the simplical scheme so as not to
confuse 1t with the linear programming algorithm, uses k+1
points defined as a simplex 1in the k-dimensional search
space. At each iteration a new point is created to replace
the point associated with the minimum value on the simplex
by reflection of the nminimum point via a ray through the
centroid of the other points over a distance determined by a
reflection constant. A possible dimensional collapse oI the
simplex is avoided by special logic, and acceleration and
convergence are achieved, respectively, by expansion of tne
maximum point on the simplex on a ray from its centroid, or
contraction of the ainimum point on the simplex on a ray
toward the centroid.

This 1ingenious technique works much like the pattern
search methods examined above, and will almost always
terminate eventually by converging to a 1local wmaxinma.
Moditications of the scheme are possible with random
perturbations to mitigate near linear dependencies in the
simplex and to avoid final convergence to a local maximun.
Numerical bcunds can be accomodated on the parameters.
box[27] found the sigplical scheme superior to pattern
search and Rosenbrock's{206] method, and introduced the
"complex" search method, which is a generalization of the
simplical scheme to admit a convex inequality constraint
set. Richardson and Kuester{199] have published another
constrained simplical program. One weakness of the method
is the requirement for an interior To, but Noh{177], has

further generalized the complex search <for equality

constraints and non-interior starting points. Box refported
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1 that for his simpie models, opjective function evaluations

commonly required 1000 times as long as the complicated steog {

selection 1lcgic. Parkinson and Hutchinson[181] discuss the

.7

relative merits of variations of the simplical approach.

PP BN T SO

Although simplical schemes seem to work in practice, é
4 . even tor difficult problems, no acceptable formal procf of :
| convergence has yet appeared. The theoretical difficulty
seems to lie in (unconstrained) counter examples which «can E
be constructed and for which the method should not
terminate. For instance, see the cases given by Shere[211]
for the prcgram presented by Richardson and Kuester[ 199]. f

Realistically, however, confrontation of such special «cases

i

is higily unlikely. On the other hand, it is true that
dimensional collapse 1is a continuing theoretical and

numerical hazard 1in the presence of constraints. Finally,

Skt o o

; it should be noted that these are scarcely substantive
criticisms of the nmethod when it 1is used for adaptive

process control, as it was originally intended.

: Direct search methods whicn attempt to reliably achieve b

W ey

global maxima have been proposed by Brooks[29], Bocharov and {
Fel'dbaum[25] and Page[180]. These treat the objective i
functioa as an unknown but deterministic response tc the
arqument, T. The optimization proceeds Ly sequentiai.y
partitioning mutually exclusive and exhaustive regions for
" interior T over which the first two moments of the objective

function are estimated to discriminating precision by random !

sampling or numerical «quadrature over a k-dimensional

lattice, and a hypothesis test is performed to select the ;
better region, which is in turn bisected on the next step. )
The iteration ceases when an acceptably small region 1is

selected.

It is important to note the difference petween tnese

area evaluation methods and simple random point sampling.
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Without the partitioning scheme and sequential area
estimation and hypothesis tests, tnese methods degenerate to

the infamous Las Vegas technigque.

Each area selection nethod suffers from a
non-parametric probability of excluding the region
containing the global optimum at some intermediate decision
step and thus of unreliably reporting a surrogate, nonlocal
suboptimal solution. Geometric features such as an isolated
peak with steep slopes and a shallow base can evade
detection and can be caused by a poor choice of initial

feasible region for interior points.

Several authors, notably Clough({50], Cooper{55],
Hartley( 119], Hartman[ 120], Liau, Hartley, and Sielken[154],
and Zakharov[238) have developed statistical strategies for
region sampling and evaluation and conducted experiments
with standard objective functions. They report limited
success in actual applications. None of the applications
include a prcblem typical of M.L.E.

High frequency oscillations and other 1irregularities
which thwart other search techniques are smoothed and thus
mollified by this area approach. This smoothing
characteristic and the academically appealing global
strategy suggest the technigue for finding a reasonable
starting douwain for interior points for some other search
mechanism, especially if the latter iteration converges only
in a <close neighborhood of a maximum, or if the objective
function is pathological. Some experimentation has shown,
however, that excessive objective function evaluations were
necessitated for relatively small, uncomplicated sample

problenms.
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D. ASCENT METHODS

——— b em n - o ————

Most indirect schemes are characterized by an iteration

of the form

-1
T = T + al s, i=1,2, «.., o ,
i i-1

with a positive scalar step length, a, an iteration matrix

-1
M , and a vector of directional gradient information, s.

For instance, the first-order method of steepest ascent
first described by Cauchy[45], and later by Courant[56],
Curry[59]), and Levenberg[153], uses

§3115=VL(T),

and chooses the stepsize a as a suitable positive constant

to increase L(T) along the ray

T  + aIVL(T) .
i-1

4 ray pe chosen to produce a maximum along the ray by direct
evaluaticn, regula falsi, juadratic approximation, or simply
to produce any gain. This method ultimately terminates at a
local maxima, but often converges with slow performance,
especially along curved rising ridgyes for which it

hem-stitches with agonizing progress.

Further discussion of ascent methods 4s given by
Goldstein[101] and Ramsay[ 194]). Powell[190] and Brent[28]
give first-order ascent schemes using difference

approximations for derivatives, with due attention to the
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numerical and theoretical conseguences of such substitution.

A second-order scheme, the Newton-Raghson method,

applies
M= -H(T), s =VL(T), a = 1,

for which convergence terminstion depends wupon negative
definiteness of H(T). This condition on B(T) is usually
guaranteed only over a small neighborhood satisfying the
Lipschitz condition discussed by Henrici[123], which in
essence requires that L(T) behave nearly 1linearly in thae
vicinity of a maxima. The rate of convergence for fgroblems
that do successfully terminate is quadratic above the noise
level of machine calculations and it follows rising ridges
weli. However, this second-order scheme is renowned for its
progensities to seek saddle points and follow ridges out of
the vicinity of the feasible region. Also, computinag H can

be prohibitively expensive and imprecise for L(T),
2
requiring, as it commonly does, kX very extensive n-sums of

complicated nonlinear transcendental terms. (Not to speak
of the debugging effort in checking program 1logic and
algepra.) Goldstein and Price[103], have suggested
approximation of H by finite differences on L(T) 1in these
cases. Error analysis of the Newton-Raphson scheme 1is given

by Lancaster({ 148]).

Many methods have been proposed to give convergence
rates like those of Newton-Raphson and dependability of
Ssteepest ascent. Usually these involve forming an iteration
matrix, M, by various means in the 1interests of assuring

positive definiteness over the largest neighborhood.

The conjugate gradient method, iuvented by Hestenes and

Stiefelf 12617, applies an 1ingenious one-step memory by
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modiiying the stecpest ascent 1teration to the recursion

s = VL(T ) ¢+ (LUVL(T )II/1IQL(T ) 1l) s, P
i 1 1 1-1 i-1

with

= VL L(T -
80 v (To)/llV ( O)ll

This scheme avoids the notorious hem-stitch stalling of the
steepest ascent nmethod, even permitting finite convergence
proots for quadratic objective functions. The
ortnogonalized gradient vectors, and the conjugacy and
linear independence of the steps is achieved at very little
cost, without requiring maintenance of second order
information, such as H(T). Thus, second order convergence
can otten be achieved at very little additional
computational cost. The method was suggesteé for solving
linear systems by Hestenes and Stiefel[ 126] and implemented
for nonlinear objective functions later by Fletcher and
heeves[90]. A complete developnent is given Dy
Hestenes[ 124,125]. A convergence discussion and

modifications to the method are given by Daniel[60 ].

Fisnher[ 86)] gives the second-order method of scoring,
also discussed by Rao[197], which is specific to probleams in
whicn a 1log-likelihood function is maximized, and is
identical tc the Newton-Raphson method, except that the

Hessian is replaced by its expectation,
A= E[-H(T)] ,

where M is calied the information matrix, which Kendall and

Stuart{ 141,p.56)] show to always be positive definite, We
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see that the final 1teration asatrix for this schenme, g(?) -
is the Cramer-Rao bound for regular M.L.E. Vandaele and
Chowdhury{223] give some computationai examples and suggest
some wincr mcdifications for this approach. This metnod
reguires a fcrmal derivation of the expectdation of some very
complicated transcendentai suks in the Hessian matrix. An
example will serve to illustrate the scope of this problen

later.

Both the theoretical and nuwmerical perrormance of thesc
iteration methods can be 1aproved D»ny appropriate aftine
transformation of tne problem. For instance, see the recent
investiqation ot Amor{3]. Other techniques can be agplied
to insure crositive definiteness foc M. Various spectral
decompositions of N8 may Dpe used. Determination of
elgenvectors and associated eigenvalues of the real
symmetric matrix M 1is possible by several methods reviewed
by Schwarz, Putishauser and 5tiefel{209], along with syuare
root and Cholesky decompositions. Although diagonalization
and orthonormalization of H will eliminate local parameter
interaction, the neighborhood over which the result holds is
quite small for non-quadratic problems, making the
transfornation of yuestionable value when performed at the
high expense of the eigen-andalysis. If the condition nuaber
of H is defined as the ratio of the absolute values of the
laryest to the smallest eigenvalues, then a measure results
of botn topological distortion from an idealized
k-dimensional response sphere about T, and the difficulty
with wnich M will be accurately inverted{1¢7,78,133].

Advccates of the transformational approach have even
proposed introducing constraints on the eigenvalues of A,
for instance, replacing negative eligenvalues by tnelr
absolute values, and near-zero values by a smail constant

was progosed by Greenstadt{108] for maximization with a
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Newton-Raphson-like scheme. #with some difficulty we can
momentarily visualize the presence of a large condition
number implying the existence of a4 1long ridge or trough
oriented with the eigenvector associated with the eigenvalue
in the denominator. This 15 a good situation for a
second-order iteration scheme if the ridge is convex, wnich
1s the case when the eigenvalue in the denominator of tue
condition number is positive. This eilgenvalue constraint
method, and other similar proposals, attempt to mask the
concave ridges and saddle points which are also attractive
in the seccnd-order 1iteration. Bootnh and Peterson[26]

discuss such geometric inference at length.

A reasonable compromise is the simple scaling of N,
analgous to the <creation of a correlation matrix from a

covariance matrix. Let a scaling of M be performed by

1/2

N = [mij/lmiimjjt

with singularities m =0 replaced in the computation by 1.
3]

This can ease the burden of computing spectral

decompositions for the iteration matrix, and it can reduce

internal loss of numerical precision in the iteration

scheme.

In the same vein, a normalized gradient 1is sometinmes

applied

PL(D) = PL(T)/LIVL(T) LI ,
to keep computations numerically stable and place the
scaling turden on the scalar stepsize, a. Even though these

transformation methods are always avalilable and sometimes
useful, they are not emphasized in this presentation for
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simplicity. This 1s appropriate 1in part since the

investigator should always take care to reasonably scale any
problen regardless of the method employed to solve it.

TN Y T

i Levenburg[{153] prouposes a scheme which has since been
generalized and machine implemented by Margquardtg 164 ]. In

the development, a method is sought which will behave like

i ik e e g e e

steepest ascent in regqgions not local to the solation, and

RGEai L ol e

like Newton-Raphson when the solution is approached. The :

iteration matrix 1s chosen

i e it
i

¥ =-H(T) ¢+ ol ,

B

with m a positive constant. We see that no matter how ]
ill-conditivned B is, a suitably large choice for m will

give a numerically nonsingular iteration matrix.

AR e

(fhe nonsingularity of M 1is more apparent i we

momentarily consider the convex compination ;

E

B = -(1-a)H(T) + aI, 0sas<l . )

Y

FPor =0, this Maryuardt-Levenburg heuristic is the 1
Newton~-Raphscn metnod, and for m large this approaches tae 3
steepest ascent method. Marquardt gives a heuristic for #
modifying @ by a multiplicative expansion/reduction factor :

on the basis oi algovithm performance. A more formal method :

of determining m was later put forth by Smith and
Shanno{212], along with facility for handling linear

constraints by the projected aradient amethod of kosen[203].

i b et AT i S

Margquardt also introduces a uaseful termination

criterion for tolerance of resolution. With "{...|"
i denoting a k-vector of absolute values, this is
3
1
i
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-n
{iT -T I € 10 (T + 10 ) , (4d +# a) 1In 10 < b,
m m-1 m-1 2

with 4 the number of significant digits of desired
resoluticn. b 1is the number of bits in the floating point
mantissa of the computer used, modified by the noise level

for one or two's complement arithmetic.

Another school of thought attempts to achieve
second-order convergence without evaluating H at each step
of the iteration. The iteratioun matrix, H, is assiduously,
and hoperfully, maintained as a negative definite substitute

-1
for H . Such variable metric methods, introduced by

Davidon[63], and discussed by Broyden{35], are 1in reality

more computationally efficient indirect ways of
approximating tae Hessian matrix by difzerencing as
suggested earlier by Golstein and Price[103]. These

approaches work by adding a correction matrix at each step

with C derived in several ways. Define
-1
AT =T - T = aM s = a0 VL(T) .,

A(VL(T)) = VL(Ti) - VL(Ti ) .

43

FI A i AV M A& P o &b sl et A Sttt L) i s d e i

=




as = A(VL(T)) .,

-1
then a rank-one correction for the iteration matrix, M , 1is

c = d4d'/AT'd ;
there are others, for instance see Householder{[ 130,p.123].

A rank-two correction for the iteration matrix,

developed by Davidon, and Fletcher and Powell[89], gives

-1 -1 -1
C = ATAT'/AT'As - B _ Asbs'M.  /As'H._ As .
1= 1~

i-1

An inverse rank-one correction proposed by Powell{191] and
Bard[ 12] uses

to give
Cc = cct'/AT'c .

Powell[ 191] suggests using

while Bard suggests

4u
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These rank-one methods have also veen discussed by
Greenstadt[ 1097, Fiacco and McCormick{ 83,p.170],
Cantrelil[43), Miele and Cantrell{168], Cragg and Levy{57],
Forsythe[92 ], Myers{(170], and many others, largely with the
objective of finding a stepsize with minimal expenditure and
avoiding singularities in M. Lili[ 155] presents a computer
program with some of these [eatures. Rank-two and other
variable metric schemes have Dbeen examined by Bard(11],
Davidon{ 64}, Goldfarb[(99], Matthews and Davies[1b65], Brown
and Dennis[33], and Broyden{ 36,229,230]), who gives evidence
against using transformations on the problem when in a near
neighborhocd to the solution under pain of stalling the
algorithum. On the other hand, Oren and Luenberger{178,179]
propose a self-scaling variable metric class of algorithams

with claims of excellent performance.

These methods have been compared with others intended
for the mcre general problem of solving a simultaneous set
of nonlinear equations by Barnes{13], Daniel(61], and
Broyden{ 34, 39]. For contrast, it 1s also instructive to

review earlier work by Davidenko[562], and Wolfe[235].

A further modificationu of seccnd-order schemes 1is
introduced in two excellent papers by Stewart{218], and Gill
and Murray(97], 1in which the gradient 1is estimated by
differences, and s'equential approximations of the Hessiabp
are made with great care in an attempt to balance truncation
errors, loss of numerical precision, and ill-conditioning in
the iteration matrix. These authors mention the numerical
singularities that can occur in the iteration matrix despite
theoretical guarantees to the contrary. Gill and Murray

propose the spectral decomposition known as Cholesky
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factorization for representing the symmetric Hessian. For L
a lower triangular matr.- and D a diagonal matrix, the
factorization produces

Definiteness for M is then assured by the careful monitoring
of diagonal elements of L and D.

Jones[136] gives a factorization for Marquardt's
schene. Jones, Ross[207)] and Bard[12], give compariscius of
the wvarious indirect iteration schenes, finding the
Marquardt and Davidon-Fletcher-Powell methods better in most
test prcblenms. Brooks{30] gives a review of ealier
unconstrained methods, as do Dennis[71], Powell[192],
Spang[215] and Kowalik and Osbormne[ 144 ].
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General constraints on the optimization proklem have
already been defined notationally along with
characterizations of optima under these conditions.
Algorithms permitting constraints are classifiable by the
admissable form of the constraints and tne associated
objective function. For instance, a linear constraint set
can Le treated with classical 1linear programming, L.P.,
methods if the objective function is approximated 1linearly.
Note that the L.P. includes mechanisms for the
determination of interior points, Ti' given any starting

value for TO. Prank and Wolfe[93] present such a
first-order algorithm, for linearly approximated objective

functions, stated for step 1i:

MAX VL(T, )'T, ,
T 1 1

which is solved via a standard L.P. step (treating VL(T. 1)
l-

as a fixed parameter vector}, reapproximated, and so forth.

Other similar approaches to the problem have been proposed
by Woltfe[236] who uses the Kuhn-Tucker conditions to
formulate a L.E. for a quadratic objective ifunction, while
Beale[ 16,17] and Zangwill[240] imbed the objective function
evaluation within the L.P. mechanism. Non-convex prcblems
have peen approached similarly with decomposition technigues
discussed by Zangwill{242]. A primal-dual method 1s given
by van de Panne and Whinston[ 222].

Nonlinear equality constraints may be implicitly

conbined with the objective function by the use of Lagrange

multipliers, as discussed earlier, to produce an
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unconstrained eqguivalent maximization problen. For
nonlinear inequality constraints, a set of active, or basic,
constraints is kept in the objective function and used via
the current wmultipliers, or their estimates, to give
feasible directions for each iteration, either along an
active constraint, or toward the interior region. These
modifications are discussed for gradient methods and
guadratic objective functions by Markowitz[ 163], Theil and
van de Panne[220], and Lemke[152]. General problems with
mixed nonlinear constraints are examined by Rosen[203,204],
Davies[65], Zoutendiik[244), Forsythe[{91], Goldstein[100],
and many others. Goldfarb{98] gives a generalization of the
Davidon - Fletcher-Powell second order method to accomodate
mixed linear constraints. Greenstadt[ 107) presents a 1local

deflected gradient method.

Nonlinear constraints may also be explicitly added to
the objective function by the use of penalty functiomns, an
idea attributed by some to Courant{56], recently suggested
by Carroll(4u4] and generalized by Fiacco and
McCormick([82,83,81]. For example:

MAX  L(T
2 (T)

S.t. Ty €0 T)y =0
91( ) v 92( ) ’
is restated with "interior" penalty functions
1/2
N%X L(T) + C/g;(T)1 - 9'7(T)92(T)/C ’

with ¢ a scaling parameter, and 1 a summing vector. As an

interior point approaches any constraint, the objective

function 1is distorted. This sequential unconstrained
optimization technique, S.U.M.T., solves a sequence of
48
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monotonically less internally distorted problems by
decreasing ¢ to a noise level. We see that a formal basis
of active constraints need not be maintained, although logic
should be included to permit numerical evaluation of the
ratios 1in the objective function as they apfroach
indeterminate limits. Sequential relaxation of the
penalties will wultimately terminate with an interior
solution, or for problems with active constraints in their
final solution, a termination occurs in a close neighborhood
of the wundistorted solution. Great care must be taken in
constructing the S.U.M.T. iteration so as to properly scale,

or "tune," the constant, c.

Zangwill{ 241] gives an "exterior" penalty function

formulation

HII\‘X L(T) - cg*'(T)g(T) .

with g(T) the subset of constraints from g1(T) and gz(T)
violated by the current solution, and c a positive constant

sequentially increased maximization-to-maxiwmization to an
arbitrarily 1large terminal value. While this method admits

any starting solution, TO, there 1s an added burden of

maintaining a current index set for violated constraints.

Many cther variations have been proposed for penalty
nethods, notably by Camp[42], Butler and Martin[41],
Goldstein and Kripke[ 102], Stong{ 219], Pomentale{ 189 ],
Fiacco[79]), Fiacco and Jones[80])], Kowalik, Osborne and
Ryan[ 145 ], and Beitrami and McGill{18].

Finally, cutting plane algorithms introduced by

Kelley(140] for a linear objective function and nonlinear
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constraints, and by Cheney and Goldstein(47] and Wolfe[237])
for strictly coacave objective function and constraints, and
a constraint set which is convex, 1involve successive
introduction of auxilliary variables and constraints to a
sequence oI linearly bounded problems. Such strategies can
lead to cumberscome dimensionality and numerical overhead

even for relatively small problenms.

The texts by Hadley[ 111], Fletcher[ 88] and
Mangasarian[158], give extensive development of the various

constrained algorithms.
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Convergence proofs are widely published for most of the
numerical optimization methods presented thusfar. For
instance, Zangwill[243] develops several representative
theorems, each with its set of simplifying assumptions and
necessary conditions. However, even for a '"nice" problen
(convex, quadratic, and so forth) these mathematical
demonstrations all implicitly depend at some point upon
exact arithmetic, and are thus weakened by finite numerical
precision of floating point operations on a digital
computer. As an example, the effect of numerical, or
random, perturbations on an iteration matrix and thus its
invers=2 is largely a mathematical problem that is not well
understood. Perhaps one 1is better off to adopt a passive
view. An undesirable, but nontheless terminal state of an
iteration algorithm 1is always possible due to mathematical
and numerical instabilities. This is the motivation of the
"terminal state" approach taken here, rather than a

"convergence" point of view.

The relative computational success of an algorithm in
practice often becomes a more important <criterion for 1its
selection than theoretical rate-of-convergence. Purther,
one must usually trade off the degree of automation of a
method (the amount of monitoring and "tinkering" required
for each application) with efficiency stated either in teras
of solution expense or the probability of termination at a
stationary point that is optimal. In short, sufficient

proof is performance, and it is never general.

Along these lines, it can be dangerous to attempt to
generalize the results of computational experiments on
"standard" functions, such as those discussed by Rosen and

Suzuki[205], to a complicated application (very nonlinear,
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high dimensionality, etc.). One oi the reasons for the lack
of literature on comparisons ot algorithm performance on
real problems is the incredibly high cost of conducting such
competitions, measured 1in exhausted computer accounts and
man-hours expended in preparation. Cther factors
contriputing to the paucity of published comparisons incluie
the sheer volume of data reyuired to display the results
meaningfully, and th2 proprietary nature of both the

problems and implemented algorithas.

There are some refreshing exceptions, such as the
repcrt of Friedman and Pinder[94 ] wiuo state that the ccaplex
method performed better for their application than S.U.M.T.,

deflected gradients, or pattern search.

Graves[{ 104] gives a description of a general nonlinear
programming algorithm developed and used for several test
cases and applied to a more complicated wminimuam fuel
gquidance problem. Graves and Whinston[106] present both
analytic evidence, and experimental results for convergence
of the method on a set of problems given by Colville[54].
Hatfield and Graves[122] give another favorable application,
and Clasen, Graves and Lu[49] describe a set of large
munitions mix allocation problems uporn which the method is
successfully applied. Hense, the efficacy of the Graves
algorithm has been establiished on wpoth theoretical and

empirical grounds over a period of ten years' use.

Tne method 1s based on the optimization of a seguence
of local linear progranmming prcblems arising from the first
order approximation of the objective function and
constraints in the neighborhood of a current solution.
Significantly, the prograam has general provisions for the
practical implications of certain numerical characteristics
of finite precision digital computers and for vagacies imn

the behavior orf goneral nonlinear constraint sets,
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The efficient performance of the method is probably
most directly attributable to the speed, precision aad
compactness of the linear programming algorithm exercised;
the mutual primal-dual representation of 1linear programs
given py Balinski and Gomory[ 10] and extended and completely
implemented by Graves[105] provides both impressive solution
speed and a format within which the local linear problem may
be easily and effectively manipulated to deal with various
inconsistencies and parameterizations which arise during the

course of solution of a nonlinear problem.

Linearly constrained problems are handled expeditiously
by this general nonlinear method. Modifications of the
iteration mechanism are facilitated by program features
permitting, for instance, incorporation of a second order
representation of the proplem given in [ 106]. Externally
supplied routines may be used to monitor the progressicn of
solutions, provide starting tableaus from previous
solutions, perform specialized input/output functions, and
so forth. As further evidence of the adaptability cf the
Graves philosophy in nonlinear programming, Hatfield[ 121]
demonstrates an efficient conjugate gradient method for a

linearly constrained nonlinear programming problem.
The jeneral method uses the fundamental linear
approximation theorem presented and proved by Buck[40,f.180]

for continuous differentiable functions, g(T). If, for some

TO and single constraint, g(7T),
T + AT) = T + Vg(T )'AT + rem(T ,AT
g 0 ) g( 0) g ( O) ( 0’ )
then

LIM rea(T ,AT T = 0
) ( 0 ) /18T P
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is approached uniformly for <feasible TO. The 1iteration

proceeds by solution of the local linear programming problean

MAX WVL(T )'AT ,
AT 0

S.t. Vg(TO)'AT < —g(TO) - K& ,

with r a vector of positive constants representing the

directional 1linear approximation error estimated from the
most recent iteration, and initialized r=0. kK is a
parametric adjustment constant, used to control the rate of

solution of the local problems.

Three numerical bounds are imposed on the algorithnm.
The first is an upper bound on the variables of the dual

progranm

MIN  Y'[g(T ) + Kr
T [9(T) 1

1t

s.t. Y'WG(T VL(T ;
G( 0) ( O)

Y 2 0 ;
which 1is stated

B 21Y'1.
1

This condition insures that the optimal bases of the
sequence of local 1linear programs do not approach
singularity arbitrarily closely while remaining nonsingular,
and 1is wused in lieu of the Kuhn-Tucker constraint

qualifications.
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The primal variables are bounded

B_ 2 AT
5 HATH

so that numerical range constraints on T may be incorporated
algebraically into solutions without inclusion in the
constraint set, g(T), and to preclude local numerically

unbounded solutioas.
The last boungd,

53 2 nAx{|REu(TO.AT)I} ’

gives an upper limit for the linear approximation remainder
terms. This error bound is used with B1 during the prcgress

of the algorithm to control the parametric adjustment for

infeasibilities in local linear programs via the constant K.

A zero level, e, is also provided as a "noise" linmit
for numerical computations within the program. This is a
very important feature in several ways. For instance, the
pivotal transformations use e to control accumulation of
truncation errors., Most important, constraints are

considered to be satisfied when
g(T) <0 ¢+ e .

This i1s a subtle feature. Some thought about numerical
evaluaticn of nonlinear functions bounding the feasible
region reveals that apparent inconsistencies caused by loss
of real precision could lead to incorrectly concluding that
an infeasibility has been encountered, when in fact T is in
a feasitle e-neighborhood of, for instance, an equality

constraint. Remember, too, that the 1local 1linear progranm

e
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will, when finally apyplied to waximizing tae objective
function, seek basic extremal solutions on the boundary of
invygyuality constraints as well. Thus this e-relaxation is a
fundawental technique. In the lexicon of Iverson(134], we

treat constraint boundaries as being "fuzzy."
A seguence of consistent local 1linear programning

problems 1is solved by constructively treating viclated

linear approximations of constraints as objective functions
in subproblenms. If for some intermediate solution X has

been puarametrically reduced to
K = e/[B (3 + 1
/[ 3( 1 )1

and tnere still remains a violated constraint g(TO), not a
*
member of active constraints g(TO) with associated dual

3
variables Y, such that

x *
Y'g(TO) 2 -g(T) - e,

then an untesolvable inconsistency is reached as a terminal

state,

A terminal optimal solution is recognized whan a local

linear program exhibits a dual solution with

Y'g(TO) 2 -e .

A finite convergence proof for this technique requires,

St TN R
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as always, restricting assumptions about the nonlinear
functions in the problem. However, a terminal optimal
solution to a local linear program is a stationary point for
the original objective function, L(X,T). The possibility of
termination at a stationary saddle point cannot be ruled
out, but experience has shown such a result to be very rare

for real problenms.

A second order representation of the primal problem can
often ke expected to converge more quickly 1in the
neighporhcod of a stationary point than the first order
"gradient" formulation. To achieve the higher order
representation, we create an expanded nonlinear program by
introducing the first order stationary conditions as
constraints. This expanded representation introduces the

dual variables explicitly and uses

* L
T = (T,T} ,

so that the reformulation yields

* *
M%{ (VL(T) - VG(T)*'T]'T + g(T)'T
S.t. g(T) € o,
#
VL(T) - VG(T)*'T <0 ,
x
T 20.
. “ . .
We define B(T) as the three dimensional matrix of Hessians

tor the constraint set, with "column 3j" the Hessian of

* *
g (T). Now, with T = TO, the parameterized local linear

3

program tecones
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# * #
MAX[VL(T T )- T T g T) - VG(T )T ]'AT
BAX[VL(T )+ (B(T)-H(T )T }T J'4T + [g(T) - VE(T )T 1'A

S.t. G(T T € -g9(T - K '
S VG ( 0)A g 0) r,

£ ' *
H(T ) - H(T T - VZ(T )'AT < -PL(T G(T )'T - X
[H( 0) H( O)TOJA v 0) AT Vi o) + V6 ( o) 0 B

In the special rnase of unconstrained problems, tae

.t. H(T T € -VL(T -k 0
s H{( G)A VL ( 0) r2

and the direction of ascent, neglecting the parameterization

tern Ktz, becomes

-1
= - ] L ¢
T [!’.(To) 1'v (TO)

which is the familiar Newton-Raphson result when the Hessian

is cf full rank.

It should be noted that the present linear programmiag
approach is more robust than the classical Newton-Raphson
process precisely because it will continue to function in
the presence of a singular or near singular Hesslan. Also,
the relaxation features of the method introduced via the

parameterization of the right hand side with Kr generally

have a salutary effect on the rate of convergence for a

constrained first order or any second order representation
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of the problenm.
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CHAPTER III

A density function has been proposed for describing
breaking strength in materials and later formally introduced
by #Waloddi Weibull [ 227,228,229] for wuse in fitting many

types of physical data from various academic and industrial

e

fields of interest. It is his reasonable claim that there is
very seldom sound theoretical basis for applying any
particular density to real data. He therefore advises
» choice of a relatively simple density function which seens
] to fit with empirical observations, and "stick to it as long

as none better has been found[ 229,p.293]."

The Weibull density was originally parameterized

T = { a, b, c} ,

P

and given the forn

: b~1 b
h £ UEe D) =aiba) Gk S8 ) exp Rl (1=t 8) i) i

f a, b > 0; x > c .

A reparameterization gives the equivalent

P U

b-1 b
i fz(X.T) = (bra){ (x -~ c)ra] exp{-[(x -c)/a)} ;

% a, b > 0; x>c .
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In this torm of the taree parameter Weibull, a4 1s known as
the "scale parameter," b as the "shape parameter," and ¢ as

the "location parameter."

The flexibility of the Weipuld family of Jdensities via
choice of the shape parameter, b, 1s illustrated in Fiqure 1
for arbitrary Jlocation parameter, ¢, and unit scale
parameter, a. The chameleonic nature of this family is
discussed by lenman{151]. 1Its robust adaptabllity for data
fitting have made it a popular candidate in such
applications. 1Indeed, with b=1 the Weibull simplifies to
the two parameter exponential family, and when b=2 the
Rayleigh family results. Figure 2 shows the Rayleigh family
of densities arising froa the Weibull with b=2, arbitrary
location parameter, ¢, and several values of the scale

parameter, a.

By design, the Weibull demsity is a perfect algebraic
differential, and its reliability functicn is defined

Cd b
R_(x,7) = £ (x,T) dx = exp{-[(x - c)sa)} ,
2 X 2
and the distribution function follows:

b
Fz(x,T) = foz(x,T) dx = 1 - exp(-[(x - ¢c)/al} .

Keen interest in the Weibull family comes from
reliability applications and the statistics of extrenes.
Gumbel[ 110] gives a derivation of a form of the Weibull
family under the name "Type III asymptotic distributicn of
the smallest extreme." Also, reliability theory leans
heavily upon the concept of "hazard rate," which 1s defined
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h(x,T) = fz(x,T) / R2 (x,T) .

This 1s interpreted as the instantaneous failure rate of a
functioning electronic device or physical component under
service stress.

Many statistical studies are wmade under hypothetical
conditions of decreasing, constant, or increasing hazard
rate. The flexible Weibull family can exhibit all three.
In fact, another derivation of the Weibull density conmes

immediately from the assumption of

b-1
h(x,T) = (br/a){(x - c)ra] ’

as the mathematical form for the hazard rate function.

In an excellent introduction to reliability theory,
Mann, Schafer and Singpurwalla give many references to
applications in the open literature using the Weibuil, and
state: '"Recently, the Weibull distribution has emerged as
the most popular parametric family of failure
distriputions." [161,p.127]
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PIGURE 1

WEIBULL DENSITIES FOR a=1, b=1.0(0.5) 4.0
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FIGURE 2
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WEIBULL DENSITIES WITH a=0.5(0.5)3.0,5.0, b=2
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B. ESTIMATION ALTERNATIVES

The most popular statistical techniques for parametric
estimation in the Weibull family are graphical estimation,
the method of moments, and M.L.E. The first method needs
little discussion, nowever the latter two demand some

k mathematical development for proper evaluation, especially

E for the M.L.E. For the present we will restrict our
attention to complete random samples, and the most general
case of all three parameters unknown. The literature is
rife with examples of estimation for subsets of the

parameters, although numerical details are often scarce.

The most prolific author on the saebject is
Mann[ 160; 16 1,p.1851f. ] vho gives extensive references.
Dubey(75,73,72,76 ] has also made many contributions. Also

see the cases given by Menon{ 166] and Smith and Dubey[213].
Generalizations of specia® <cases for subsets of Weibull
parameters have been given by Dubey[77] and others. An
excellent discussion of the entire topic is given by
Rockette[ 201 ].

Graphical estimation, used by wWeibull[ 229] and

s

described by Berrettoni{22] and Kao[139] relies on sonae

prior knowledge of parameter values and the tact that the

reliability function, iu the form proposed by Weibull, :

Y

b :
R1(X,T) = exp{-[ (x - c) r/a} , 3

can be transformed to

E 1“['1H[R1(X,T)]} = b ln(x - ¢c) - ln(a) .

L A value for the 1location parameter, c, is asserted with




reference to the first order statis-ic ru .+ saaplo. Then

the empirical reiiability function is plot:« i n a "lca-log"
ordinate scale versus 4 "log" abcissa o1 the Jdisplaced
sapmple values, X - «c¢. If the resulting points fall in a

nearly straight line, then b is estimated as its slope anc a
is found from the intercept, 1ln a. Otnerwise, anotier value

of ¢ is tried, and so fortna.

Obviously, this subjective estimation method leavoes
much to be desired statistically. However, it can he
carried out with tools no more formidahble than an extensive
table of logarithms, and 1t Las served adequately for
decades. 0f course, a L.S. approach to this transiormed
problem is also possible, but the results are statistically

comparable to the manual method.

The method of moments can be used to estimate Welbull
parameters. Although a moment generating function tor the
Weibull cannot be given in closed form algebraically, the

central moments are defined

9 ® q
mt = B(x J = fxf (x,T) dx ,
q ¢ 2

th
from which we derive for the ¢ moment tue partial sum

no= # ((.1) Tt pisisn)
q 1=201\1

The tirst two moments about the mean are

m1 = ¢ + af'(1+1/b) ,

and

T ; . =g g - iR L daii 1




2 2
a, = a [N(e2/b) = [ (/o))

; Obviously, it 1s 1impossible to solve these equations
] . explicitly for the parameters, although an iterative
solution 1s possible by elimination of one parameter.

Surprisingly, however, the skewness

o it

B
~
1=}
"

3
[(1+3/b) - 3P(1+2/b)'(1+1/b) + 2[Y (1+1/b)

2 3/2
{(P(1+2/b) - (1+1/Db) ]

and kurtosis

2
m/m_ =
4/ 2

2 4
P(1+4/b) = 4(1+3/b)(1+1/b) + 6P (1+2/b) (1+1/b) - 3P (1+1/b)

2 2
(F"(1+2/b) - (1+1/b) ]

are strictly functions of the shape parameter, b. Each «can

individually yield es‘imates of b by reference to a simple

tabulation [ 198], depending upon the judgement of the data

analyst. E

L ]
Given b, one may sequentially obtain moment estimators

of the scale parameter

é ° 2 . 172
a= [mz/[r‘(1+2/b) - (1+i/b) 1) '

Al it

and location parameter
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c =X - ;Pun/g) 3

Unfortunately, these moaent estimators do not have many

desirable jproperties. Dubey{74] nas investigated the

efficiency o¢t moment estimators for weitull parameters in

restricted cases. The most coammon compiaint 1s that the
o

estimate of docation parameter, ¢, regularly violates tne

simple umerical constraints of the definitiuvn of the

Weibull random variable. Most often this would be

0 € c< x K
(1]

When a violation occurs, 1t is not clealr that any reasonable
. ) [ ]
metnnod exists for adjusting ¢ and "backing out" the change
through the other moment equations. The most common
) . . 3
practice 1in these <cases 1s to replace c by the viclated

bound, and conveniently disregard the effect upon the

poments of the solution.

o
o
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C. MATHEMATICAL PRELIMINARIES

M.L.E. for the parametric Weibull family may ostensibly

be numerically performed with almost any of the

unconstrained techniques introduced in Chaprter iI.
Therefore, in order to compare the merits of various
approaches, the following development aives the necessary
mathematical kasis for consideration of any of the search or

ascent methods.

The 1log 1likelihood zfunction for the Weibull family

fz(x,T) is

nn b-1 b
L(X,T) = 1ln[ (bsa) i'l:l’1[ (xi - c)/a] exp {-[ (xi - c)rajll;

a, b>0,c 2x 0

(1]

with x_1 the first order statistic. This gives
L

L(X,T) = n lo[bza] + (b - 1)i£1ln[ (x, = c)/a]

n b
- 2 l(x -¢ora) .
1=1 1

The gradient of the log 1likelihooad, V&L(X,T), has the three

elements

b
V= ) (f((x -cral -nj,
a i=1 i

69




b
Ve=nmbe+ Finfx - casal- Bl -a/alla((x - </l
b 1=1 1 1=1 i A

h-1
T=-tb-1)Ei1/(x -a)+ b/a) £ - c/al
1i=1 1 1i=1 1

C

The sywmetric Hessian natrix for tne family, fz(x,T),

parameterized by

T = {a, b,c} ,

is defined as
2
H(T) = {h, } = O L(X,T)/dt Ot ,
ij i 3

and 1s given by

2 : n b
h” = (b/a ) {n - (b”)i)::‘[ (xi -cysrali .,
b
h = (1sa) (-0 + .ﬁ[ (x - c)/al
12 1= 1
n b
+ by [(x, - c)ra]linl(x, -c)/al}
i=1 i 1
2 b-1
ho, T - () j;[ (x, - /al
. b2 n bl 2
» - - - x - ’
35 n/ ig‘l[ (xi c)sal In [ ( i c)/aj
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-1
hyy = -i);(xi =
p=-1
¢ (1/a) tb.}s_“[(x. - ¢)sal n{(x. - c)/a]
1= 1 1l
. n b-1
L, -asl ),
n - 2 b-2
h = -(b- (L (x. -c —+ (b/a) Ef(x - cyral - .
33 i=1 i 1=1 1

We see immediately that the three parameter Weibull

family, ﬁz(x,T), 1s not of the Koopman-Pitman form admittiug

sutficient statistics. Therefore, search for an M.V.U.E. is

Fointless.

Special cases of the Weibull family have already been
mentioned for known b=1 (exponential) and b=2 (kayleigh).
The former case is covered exhaustively in the 1literature.
M.L. estimation for the two parameter exponential 1is

ncnreqular, requiring use of

We shall hence lorth rule out values of b<1, since the
likelihocd function i unbounded as the location parameter,

c, approaches x_1 and thus the Weilbull density 1is
L

inappropriate for use in the M.L. estimation.

Rockette[ 201] analyzes the other cases with b>1, tfor
various subsets of the parameters known. If both a and b,
or a and ¢, are known, solution of the appropriate remaining

gradient element gives a unique M.L. estimator, as 1is

71
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veritied by examination of the numerical behavior of the

applicable conditioned Hessian tern.

|
|
i

g

If b and ¢ are known, a Jacobian transiormation

LIPSt D

gives an exponential density for v with well kaown

. : : : A
progerties ircluding uniqueness for a.

i If only b is known, the resualting solution for the
M.L.E. is unique. McCool{157] shows that 1if only c is
kncwn, the remaining M.L.E. are unigue. We shall see later
that kncwledge of a is of 1little vaiue, since Q can be

A A
derived as a fiunction of b and c.

Proceeding with the general three parameter case, it

will be reassuring for purposes of validation to show that

the expectation of the gradient satisfies

E[ VTL (X,T)] =0 .

This derivation, and others which follow, require definition
of several mathematical functions and identities. For

scalar z>0, the gamma function 1is Jdeiined as:

2O/t I
(z)=({y e dy,

with the useful relation

. i e S e i

P(z+1) = z[(z) .,

and the derivatives ['*(z) and P"(z), are defined by:

P g P L
Rt omirboge ek o e n
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r‘(l) (z) = ollnm(y)yz el ay, i=1,2,... .

Also, there are tabulations given by Gauss{96), H. Davis[o7]

and P. Davis[69] of the digamma (Psi) function

VYz) = Vzlnf"(Z) =" (2z) /[(2)

which has the recursive property

Yz+1) = WY(z) + 1/2

and the trigamma function, with tabulations presented by
Davis[{ 68] and P. Davis{69], defined

2
P (z)/MNz) - (" (@z)/P(z) )

1

Yz =V 1Vinl(z)]
o

2
Pr(z)y/Mz) - Y (2) .
This will permit algebraic substitution asing

re(z) = M2)Y)

and

2
P =M@Yz +¥Y (2)) .

Now, the vxpectations of the gradient, VTL(X,T) s are

E[ Va] = (nbsa)[(2) - nbra =0,
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E( Vb] = n/b + (/b)Y (1) - (n/D) (2)
= (n/p)[ 1+ DY) - (Y (@2))
] = (n/D)[ 1 + W) - ¥(2)] g
2 = (n/b)[ 1+ Y1) - W) -1]1=0,
E{ VCJ = -n[ (b=1)sa }J['(1-1/b) + n{bralf'(2-1/b) %.
E . = -n[ (b=1)/a }J[(1-1/b) + n[bral(1-1/b)(1-1/b) &
? =0 . ?

The syametric information matrix,

M= E[-H(T)] = (E[-h__]} ,
1]

can te derived from the terms of the symmetric Hessian and

the Weibull density, fz(x,T), as follows:

2 R
(nt/a )[ (b+ N[ (2)-1] = n(b/a)

|

E( -h =
(-h ]
E['hu-‘ = (nza)[1-[2)-["(2) ] = - (n/a)"* (2) = -(n/a)["(AY(2)

= -(n/a){f(2) = -(n/a) (0.42278ses)

2
E{~h ] = (bsa) M(2-1/b) , 1
P 2 2

E[-hzz] = n/b” +"(2) = n/b + (Y () + Y (212

2
n/o + 0.46619%eee

it
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(n/a)[[(1-1/b) (2= 1/b) =bl™ (2-1/L) ]

(nsa) ([ 1=1/b) -[(2-1/b) {1 - bY(2-1/b)} 1 ,

2
n{ (b - 1)sa J[(1-2/p) + b[T(2-2/b) )

(¢t

~
!

jo ol
il

2
n[ (b-1)ysa] [(1-2/b) .

Ravenis{ 19871 gives the information matrix for the Weibull

family, f1(x,T), and Harter and Moore[118] give similiar

numerical results for singly censored Weivbull samples.

We recall that the inverse of the information matrix is
the Cramer-Rao minimum variance bound discussed earlier.
This inverse can be derived algebraically, but the
usefullness ¢f this explicit result does not warrant ‘the
space and effort required for derivation and display here.
Although Huzurbazar[ 132] has shown that for any
(multivariate) density of the Koopman-Pitman family -that
is, any density admitting sufficient statistics- the M.L.E.
asymptotically acnieve the bound, so that the inverse cf the
information matrix is the variance ccvariance matrix fcr ?,
the full parametric Weibull family is not a Koopman-Pitman
form. Fcrtunately, Halperin[ 113 ] generalizes the Cramer-Rrao
minimun variance bound result wunder miid <Tegularity
conditions to any density and also establishes aoymptotic

unbiasedness, consistency and normality for M.L.E.

For the Weibull family of densities, d.L. estimation is
reqular[ 118] for compiete samples only if the location
parameter, ¢, is known, or if the shape parameter, L, 1is
greater than 2. We can verify above, in fact, that the term

E[—n33] in the information matrix has a singularity for b=2,
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but that all terms are well defined for p>2. Huber[131] and
Le Cam{ 149] 1investigate the effect of nonteqularity on

M.L.E. properties.

Since tor any regular parametric estimation the M.L.E.

asymptotically achieve the Cramer—Fao bounéd given hy the
A -

inverse of the 1information matrix, E[-H(T)] , and this
inverse, a variance covariance mattix, 35 kunown to be
positive definitel 141,p.56], we may take some coafort in
the knowledge that at least in expectation g(%) 15 pegjative
detinite. A stronger result follows 1ammediately for simply
consistent M.L.E., which must converge 1n probability to a
single set of parameters. Thus, evea for a problem with

multiple solutions, the <coordinates of the maxima nmust

approach the sane point asymptotically. Chardraf46]
presents evidence for consistency of M.L.E. nvader very
general conditions, We also recall that Miorls < Bre are

asymptotically functions of sufficient statistics, when such
exist. Huzurbazar[132] shows that sufficiency also imrlies
A

uniqueness for T.

Choif 48] gives estimates of bias for M.L.2. in the
closely related Gamma family of densities, tindiny the
magnitude of bias to be small even for 1interpmediate sample
sizes. Harter and Moore[117] suggest that a local maxime,
though not a true M.L.E. in the strictest global sense, can

exhibit most of the desirable statistical properties.

For finite sample sizes in cases such as the Weilbull
where nc sufficiency can be established, the asymptotic
results arove do not necessarily hold. However, Harter and
Moore{ 118] have performed extensive simulation studies for
the three parameter Weibull family, and give tables showing
that the Weibull M.L.E. achleve their asymptotic variances

]

1

ot

o

very quickly, with the actual variance exceeding

et it i s O Aol
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Cramer-Rao bound by an amount proportional to 1/n . Thus,

t their results suggest that the inverse of the information
! matrix 1is valid as an estimate of the M.L.E. variance

covariance matrix for saampies as small in size as 100. whep
E | a, or b, are known, this vresult 1is achieved much more

§ rapidly.

As mentioned earlier, when the shape parameter, b, 1s
less than 2, a nonregular estimation results, and if b<1,
L(X,T) 1is not bounded. Pike{ 185] suggests that when the

likelihood function is unbounded in the feasible parameter

space, a local maxima provides a reasonable estimate. It is
easiest tc ccnstrain the range of the shape parameter to
avoid this problem, since in a pure sense the M.L. method is
{ inapplicable otherwise, Rockette, Antle and Klimkc{202]

suggest substitution of

Bl o s s
s T

with 2
+
a = .ﬁ}(x.-c)/n. :;
Juz i :
B !
b =1, %
and :
+ 3
: C = X ’
(1]
_ 1
for cases in which no M.L. solution exists. For cases 1in b

+
which a4 maximum is achieved, it is compared with T , and the

77




A
M.L. solution T 1s chosen to correspond witlh the higher

likelihocd.
As a useful simplification of the three parameter

Weibull estimation, the scale parameter can be eliminated

from the system by solution of V =0 and substitution, whict
a

gives

b 1/
S (Xi'C) /nj P

so that

* A
T = {a, b, c} ,

for which the conditioned log liikelihood tunction becomes

*

b
L (X,T) = n 1ln(b) - txln[_it‘(x‘ - ¢y /nj}
i= i

+ (b-1)i}g’1ln(xi - c) -n,

with gradient

* b b
V - - a( B (x - o ln(x -c)/ b (x, -c )

b i=1 1 i 1=1 1

§!
v L la(e, - <),
1= 1 3t

* [ b-1 n b
V. wXx o-a /Lo - k0Ll -l

C 1=1 1 1= 1 1=1 i

*

The symmetric Hessian , 8 , for this reduced problem is




h
22

i=1 1
h* _ . b-1l . n b-1
23 = ol 1=1(x1 ¢) n(xi <) 12;1(x1 ©) ;
b
/f (x, - c)
i=1 i
b-1
= b =, l = —
n 122: (x c) lon(x c) i=1(xi C) }
b 2
ST x, -]
i=1
-1
. (x = E) ’
1= i
h* . b-1 2
- x -
—_— [{i_ ( c) |}
b n b-2 b 2
-t ca Lx-a aafx -a)
i= 1 i=1 1 i=1 i
b-2 b
e x -0 /T -0
1=1 1 1= i

n
- (b-1)i§‘[xi-c] .

*
The expectation of H is hopelessly difficult to derive, so
that additional assertions of unigueness, or other
properties, are not achievable by that method for this
reduced system. However, Peto and Lee{184] treat each
element cf the gradient as an 1implicit function of the other

respective M.L. estimator, and plot the two trajectories for

]
VL (x,T)=0, showing the M.L. solution as an intersection.
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kockette[201] carries this treatment further, and okbtains

strong, but nct conclusive evidence via lengthy term by term ;
inequality arguments for tne sums of powers of X found 1in ‘
the conditioned Hessian (drawing trom Hardy, Littlewood and
Polya[ 114]) that at most one maximum exists o r the three
parameter Wweipull M.L. problem, and that tnere 1s a saddle
point associated with each maximunm. Extensive empirical

evidence supjorts these assertions.

A generalization of the 'Weibull 1likelihood wmodel is
possible fcr other than complete Saamples. Cohen([52]
classifies the process by which elements have been censored
from a sample of failure times in life testing as beinyg of
Type I when the sampling process 1s sStopped at sone
predetermined time, or Type II when testing ceases after

some tixed numker of elements, k, have tailed. For Type I

censorinyg, the number of observed tallure times, £, is a
random variable, while Type II censoring provides a random !

sampling cessation time. Por wither type of censoring, when

only the first k out 2f n elements have been observed, the

wWwei.Luli likelihood function is

iaie e S S

K n-k
1 ' -k)! £ ,T) 1 R ,T
n{{nt/(n-k)!] i‘lL[ 2(xi LN 2(xk ) }

L (X,T
hk( )

Ia{nl/(n-k)!] + k{iln(b) - b lu(a)]
b

k
+# (b=1) - In(x - c) - .)E[(X. - C)/aj
1=1 i i=1 1

] b
3 = (n-k)[(xk ~ c)/a)

with x tixed for Type I censoring, and x =x[k] for Tyge II.
K K

ringer and Sprinkle{200] and Cohen[ 53] discuss M.L.E.

for the censcred W.ibull density with c=0, and tHarter and




Moore[ 110] study the three parameter case for the Weibull

and Gamma farilies.

Progressive censoring of either type occurs when at
successive stages a number of survivors are randomiy
selected for removal from further testing. Suppose that s
stages of censoring occur at progressive times Y .o
j=1,2,...,8, ¥ith k fuunctioning elements randomly removed

at each stage from furtner testing. rrogressive Type 1T

censorinyg, with the predetermined constant times, Y,

produces a random sample size

m=mn - ﬁ;k .
=13

and has log likelihood

S k (3
e Fe@.n Feg.n
i=1 2 1 =1 2 73

]

Lt (X,T)
Y, K

’

In(C) + m ln(bra) + (b-1)‘£:ln[(x_ - c)saj
is 1

b b
- i@ -cysa) ¢ f‘.k.[(y. - ¢)sal
1=1 i =1 3 j

with C a combinatorial constant.

For Type II progressively censored sampling, with the
numter ot censored elements, x , fixed, and the times of
]

censorship cccurring randomly with each failure, the log

likelihocd is

81
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i-1 . K(1)
L 1) = In{T [(n - T.(k-ie1]) € (v ,T) & (v, I
7 i=1 bER 2 1 2 1
S 1i-1
= T in{{(n - [k =i+1]))
1=1 j=1 j

S
+ (b-Hi{_','ln[ ()!i - ¢)/al

S D 53 o)
- Ll -ezal v Bk ly, - o/a)

The graaient and Hessian matrix fcr edca of these
models 1s not included here. It should be pointed out,

however, that the scale parameter can be eliminated in each

3
model in precisely the same maonner that gave L (X,T).

II
Ringer and Sprinkle{200] give the gyradient for LY K(X,T)

’

wihen c=0, and Cohen[ 53] gives the gradient and Hessian tor

f1(X,T) with c=0. Wingo[234] gives the gradient and Hessian

for Type 1 progressive censoring of f1(X,T).

Harter and Moore[ 118] give the gradient and Hessian for
doubly censored, or truncated, samples i1n which the first Xk
and last r elements have not been opserved., Tne form cf the
log likelihood function 1s very similar to the singly
censored case, An interesting result of these empirical
studies cf censored sampling 1is that when the 1location
parameter, ¢, is not bounded from the left a higner variance

A . .
results for ¢ than when ¢ 1s constrained

P T STy




rockette{ «01] reports that this effect seemns to 1ncrease
with the ratio, c¢/a. polfeldt{1838,187] has given sone
limited theoretical results for nonregular estimation of
lccation garameters. Antle and Bain[: , have given several
interesting transformations of scale and location parameters

which are statistically independent.

Note that a numerical singularity occurs when ¢

approaches «x . too closely 1in a complete sample. This
A
suggests using c=x[1] and dropplng x(1] from the sample when

necessary. For large samples this heuristic can be extended
to the censoring of all sample elements 1in the close

neighbornood of As a practical matter, this

X .
(1]

adjustment can circumven. serious difficulties with M.L.

estimaticr for some samples, but it is somewhat distasteful
to peremptorily discard costly sampling information in this
way. Also, strongly assymetric censoring can introduce more
bias for the M.L.E., and of course increase M.S.E. Harter
has repcirted that even for sample sizes of 10 and 20, bias
is nct severe unde. moderate censoring and the theoretical

variance cf the M.L.E. 1is not greatly exceeded.

The reluctance with which Q approaches the Cramer-Rao
bound rfor intermediate sample sizes can bLe overcome by
constraining the shape parameter, b, to a feasible range
known oy the 1investigator. The HA.S.E. can Dbpe lowered
significantly by such precaution, since the Weibull density
function and consequently the likelihood objective function
are very unruly for high values of b, unbounded for b=1, and
nonreqular for p<2. If we constrain b to values Letween,
for 1instance, 1 and 4 we have still included a very robust
parametric family in our investigation, but one with less
habitual inclination to provide ridiculous 1likelihood

estimates for purely numerical reasons.
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For very smdall samples, an iuvestigator is faced witn

the unfortunate paradox that, although the objective
function and its derivatives are easily aud quickiy

evaiudated, the likelihood surface can exhibit a tortuous

landscape. Perhaps this is fortuitous, ifor otherwise one
A

would be tempted to rely on T aespite its unknown

statistical properties. The irreqularity 1introduced ony

including the location parameter, ¢, in the search 1s nost
troublescome for these cases. The freguent occurrence ot .
stationary saddle point usually takes jplace at parametric

coordinates relatively close to the upper bound for c, xf1];
L

however the saddle point can lie welil within the range of ¢
for small =samples, making 1t difficult to consistently

identify and avoid numerically.

It a sample 1is used for the 4.Ll. estimation with the
Weibull model that actually comes from some markedly
different populaticn, the results can be disastrous even for
large sample sizes. It is worthwhile to remember that the
statistical theory underlying this estimation process

requires that the nypothetical assumption of the density

function for which point estimates are sought must be based
in fact. Two singular examples of such (large) samples have
come to the author's belated attention in this regard; one
] was sSubsequently identified s coaing from a pareto
L population, and the other was ultimately determined to be a
sample from a beta density. These samples wreaked numerical
havoc with several optimization codes applied to the Weibull
model, the first because of too many sample elements in the
extreme right tail for the Weibull density to fit, and the
} second due to the effect of a finite upper domaln limit for
a symmetric sample, Both samples produced epparent
stationary saddle points, numerically unboundei 3, and
3 infinite likelihoods at various times. Thus, dgreat care

] must be taken in applying any numerical 4.L. procedure to

1 84




the Weibull, since termin.: "t a stationary point on

L(X,T) should be allowed only for a maximum, or the
£ optimization problem should terminate with indication of no

achievable finite optimun.

Inferential techniques based on finite samples for
Weibull and other closely related models are given by darter
% and hoore[ 115], Bain and Wweeks{9]), Thoman, Bain and
Antle[221], Bain[8] and Billman, Antle and Bain[23]. Most
of these investigations give tables which are developed by

estensive sipulation.

L Rt a2

M.L. estimation of the reliability function is shcwn to
be surprisingly untiased and robust by Hager, Bain and
) Antle[112] and others.

1
3
4
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C. NUMERICAL APPROACH

The methods commonly used for numerically determining
Weibull M.L.E. have historically included cyclic search by
Harter and Mcore[116], second order Newton-kaphson ascent by
Peto and Lee( 174 ] and Ringer and Sprinkie{200], and
quasilinearization (Newton-Raphson ascent with the Hessian

approximated by differences) by Wingof 233,234].

The magnitude of effort involved in applying a search
technique tc M.L. estimation is implied by the iteration
limit suggested by Harter and Moore of 550 «cycles for tne
Weibull wodel and 1100 cycles for a Gamma. Barnette[1:]
suggests cyclic search tfor likelihood models with multiple
roots; such cases usually occur only for small samples from
selected density functions. The Weibull model has never
empirically exhibited finite multiple optima, althougn some
small sample estimations 1lead to numerical difficulties
characterized by a stalling orf the 1teration over a

respectable neighborhood.

In a refreshingly honestly titled article, Mantel and
Myers{ 162] report that for second order ascent methods

choice of the starting value, TO' is vital to success.
(This is, of course, no theoretical surprise to a numerical

analyst.) As we have seen, the Weibull model .seems to
produce a saddle point as a gratuitous companion of a
maximum. For this reason, pure second oruer representations
of the protlem have consistently not 1leaa to 4accegtable

performance of the optimization algorithm.
Kale[ 137,138] compares the secona order Newton-Raphson

and Fisher's scoring methods and indicates that they are

most applicakle for large samples. Unfortunately, both his
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iteration and residue criteria tor rate of convergence
evaluaticn are not directly related to computer time, and
his sample problem is a fairly uncomplicated two parameter
estimation. Michelini[167)] gives a method for selecting
starting values for the scoring method applied to a
lognormal mcdel, and presents tascinating graphical

depiction of empirical regiuns of convergence.

Implementation of both first and second order ascent
methods and search techniques for the Weibull models have
produced tne following conclusions. The first order
gradient methods are superior to search techniques for
reasons of speed, and are better than second order iteration
on the basis of reliable convergence. The saddle point
dilemma is most expeditiosly resolved by use of first order
methods anu a solution verification; convergence to a saddle
point 1s very rare for the constrained parameter proklem and

samfle sizes greater than 10.

All techniques reqularly fail for small samples. It is
suggested that for these cases either the sawmple has
insufficient information to warrant M.L.E., or the wrong

density is being used for parametric estimation.

A hybrid ascent method which produces both fast and
dependalble convergenr fox highly nonlinear prcblens
utilizes both first and second order representations of the
maximization problem. The first order formulation is used
to begin the solution, and continued until the amount of
intormation in the 1linear term of the objective function
approximation diminishes significantly below the remainiag
higher order terms in

L(T_ + AT
(2, AT)

L(TO) + VL(TO)'AT + rem(To,AT)

o o amae i o

DO, P Ry




ki A Sl e A L b Db b L e e i il o e S i i A A S R R RETRT AR RET e

The switching rule requires that a sequence of solutions of

specified length exhibit a moving average of

L(T )*AT T ,AT)} < B .
avg{ (O)A / rea(T .AT)} .

Bu has been set at 0.1. The transition to the second order
representation is not guaranteed for every problem, since 1t

occurs only when higher order terms dominate the local

approximation of L.

To test these methods, 50 samples of size 100 were
randomly generated from Weibull families with (arbitrarily)
a=50, ¢c=100, and b=1.5,2.0,2.5,3.0. PFor all estimations a
total ccmputation time was recorded with the iteration
records. The host computer was an IBM 360,67 - II with
optimized FORTRAN-IV(H). A pure first order representation,
and the hybrid scheme were used on the matched set of randon

samples, with B =0.1 and the length of the moving average
4

for the switching rule set at two.

The results wvere
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AVERAGE PEKFORMANCE
! n b  METHOD a b c Time (sec) ITERATIONS
. 100 1.5 I 47.95 1.56 101.28  46.0  59.3 |
; 4,47 .19 1.67
] I 46.01 1.52 101.27  18.2 21.3(12.7) |
; 4,94 .17 1.55 i
; 2.0 1 48.56 1.98 101.19 50.9 59,2 ;
5.00 .30 3.28
11 48,54 1.97 101.19 20.9 19.6 (4.8)
1 4.93 .30 3.29
; 2.5 I 49.23 2.49 100.83  45.7 51.8 !
A 5.26 .37 4.92 |
II 49.25 2.49 100.80 19.1 17.0(3.9) ]
5.22 .36 4.90 1
3.0 I 47.80 2.97 101.75 51.4 67.6 !
6.69 .56 6.21
11 47.76 2.99 101.72 16.6 15.9 (4.1)

6.64 .55 6.18

-

The root mean sjuared error is given just below the sample
mean for estimators of each parameter. The numker in
parentheses following the average iterations required for
convergence of the second order scheme indicates the average
number of first order iterations required to trigger the ]
switching rule. There were no cases for which convergence

-t S AT o Y

Gl o 0 _‘,’M‘\»_.'i ) .00

wvas not achieved. The second order representation clearly

Ealerrea

dominates these results.

Ty

For b=1.5, saven cases converged with results which

+
were replaced by the solution, T , (with b=1) on the basis

of 1likelihood comparison. Samples generated for other :
higher values of b produced no such replacements. For
samples from the population with b=3.0, six cases converged
to the upper numerical bound, b=4, and did not achieve
transition to the second order representation. Since this
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seemed to have no serious effect upon the expectatinn of b
for this set of samples, no further action was tak<2n.
Raising the bound for b wmight be indicated in other

investigationr contexts.

All estimations were started with the initial solution

£=2 and ¢=0.9 x 11° In order to test the robustness of tae

numerical methods with respect to starting valucs, the sane

sets of randoms samples were wused with 1initial values of
b=1.5,2.C,3.0. The numerical values of the 4.L.Z. results
for each sample showed almost no sensitivity to =starting
value, and the average number ot iterations required for
convergence and the computation time consumed were not
significantly different, although individual samples did
occasionally exhibit large variations. For several saaples,
the first order method converged to values differing in tne
hundredths position. Such variation was never evident for
the seccnd order hybrid iteration.

The behavior of the objective function duriag
optimization with the hybrid second order method was
remarkably consistent for all samples. At the initial
iteration, the first order term in the linear approxipmation
of the objective function dominated the remiinder tern.
After several iterations, as indicated in the performance
data, transition to the second order representation of tae
problen took place, after which ao wmore than three
iterations produced a solution for which the linear
approximation of the second order representation objective
function left a remainder term several orders of magnitude
smaller than the linear term. The final likelihood achieved
by the second order scheme was higher than that given by the
pure first order method in every case, but the difference
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never excesded a relative magnitude of 10 .

By "tuning" the iteration schemes, significant further
reductions in computing time are possible. This is
especially true if the resolution of the termination
criteria is relaxed. This is usually a reasonable course of
action, since the values of the HM.L.E. are not really
required to, say, five decimal places. Such a changs for
the second order model with b=2 produced an average
convergence time of 9.7 seconds in 11.3(3.4) iterations.

It 1is important to note that for various sample csizes,
termination has always been achieved without numerical
processor interrupts. That 1is, the algorithm detects
terminal sinqularities, and indicates them under full
control of the progras, permittiag remedial action to be
taken, or siaply allowing analysis of the complete output.
This 1s far superior to the spectacular results to be
expected from most Newton-Raphson based progranms.

There is no theoretical reason prohibiting formulations
¢f even higher order representations of nonlinear
optimization problems. The mctivation for such an apgroach
would be a highly nonlinear problem for which the first
order approximation of the imbedded local linear program can
be expected to give a poor representation of functions, cven
with the seccnd order formulation. The algebraic demands of
higner order representations of likelihood models and the
consequent debugging and computational expense of the
associated higher order prctlems do not proamise auch
practical value. Portunatcly, the 1likelihood models
investigated thusfar have not reached such nonlinear
extremes within the numerical capabilities of a digital
computer, as is attested by the dominated remainder terms
for the second order representation. However, it 1is
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possible that for other types of highly nonlinear problers
high order representations will prove a fruitful field for
further research. A seguential transition mechanisa such as
that proposed aere may also provide for robust convergence
with higher crder formulations as it has done in the present

investigation.

92

Sl 4

|
|

_—

i A,




T T ST T YT T VI I ro T IIY Ty ~=mryey

s by ST

D. A NONLINEARLY CONSTRAINED EROBLEM

(WY

Consider the following probles. A random sample is
collected trom a Weibull nopulation whose mean is known, but
vhose parameters are “o be estimated by M. L. Such
situations arise, for instance, vhen census inforsation is
used in conjunction with random survey data for demographic

modelling.

E_‘ As another example, suppose a bank wishes to use a
random sample to estimate the parameters of a Weibull
density function describing the size of an individual
depositor's account. Certainly the bank will know exactly
the total of money on deposit and the number of depositors.
Thus the mean of the density is known, but not the

S ol

parameters.

The M.L. formulation of such a constrained probiem

becones

H%X L(X,T)
S.t. C ¢+ aff(1+1/b) = m‘ z

0 <acgce,

q 1 <b<4y,

0 < c<x 5
{

1]

The constraint has gradient elements

= et -,

g =T(1+/b) ,
a




SR gt s i s gk

MRt At e o ey

et s

R it o i e e R b e e € aie i b ol it e cu bl et el

2
-(asb )'* (1+1/Db)

O
"

2
-(a/o )P+ /b)Y (1+1/b)

#
and the Hessian for the constraint, H, bhas the ncnzero

teras:

2
=1/b ' (1+1/D)

|
1
;1
12 i

s
]

2
-1k P(1+1/b)Y(1+1/b) ,

3 4
(asb )M (1+1/b) + (as/b )" (1+1/b)

-
"

22

4 2
(asb )P (1+1/b) [ bY(141/b) +¥* (1+1/b) +¥ (1+1/b) ] .

As tefore, the scale parameter, a, may be substituted

out, leaving

*
H%X L (X,T)

(1]
9
-

e b 1/b
S.t. C + ['iﬁ(xi - c¢) /n] ru1+1/b)
1:

1<b<u,

0 Cc<x 3
(1)

The gradient for this reduced problem is




L'

* f - < 1/bP 1+41/b
qb i).ﬂ(xi c) /n) (1+1/b)

((Vb)[f(x -C)bln(x -q)/ (x -C)b
i=1 i i i=1 i

b
-min(E x -0 /m)

BBV
. b 1/b=-1 b-1
a. = Pt o - T fa - o

The Hessian for the constraint will not be given here.

As a test of this model, ten samples of size 100 were
randomly generated with a=50, b=2, and ¢=100, and the

constrained mean, 11, was set at

n1 = c + aff(1+1/b) = 100 + 50[%(1.5) = 144.31e0e ,

The three variable model was run for both first order
and hybrid schemes, with the switching rule qualified to
activate for feasible solutions only. The results were

AVERAGE PERFORMANCE

n b METHOD a b c Time (sec) ITERATIONS
100 2.0 I 48.40 1.98 101,21 132.8 135.4
4.65 .38 3.95
I1 49.11 2.00 101.27 89.7 87.2(6.4)

4.69 .39 4.02

One saample did not make a transiticn to the second order
representaticn before convergence, and two of the saaples
required 200 iterations for termination.
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The «(hkoice of width for the equation band represecnting
the equality constraint feasipility region and the manner in
which this band 1is closed during the progress of the
solution is most important for insuring success. Prepature
closing, or <choice of a band too narrow can cause the
methods to stall, especially for the second order
representation which has polygamma terms that are
exceedingly difficult to compute precisely. On the other
hand, too vide a band, or too much delay of the closing can
lead to excessive iterations involving infeasible solutions.
The choice of a bandwidth of 0.1 was made in these
applications with good success and the band was closed by 32
successive bisections for feasible solutions. Upon
transition to the second order representation of the
problem, it was determined that a reinitialization of the
equation tand had a desirable effect on convergence.

The superiority of tne second order regresentation of
the constrained model would be enhansed greatly by the use
of efficient and/or accurate polygamma functions.
Currently, the best series approximations derived produce
only six decimal place precision, and their computation
requires almost half of the iteration time reported abcve.

Other side constraints can be added to parametric M.L.
estimation., For instance prior knowledge of the population
variance, or other moments, can be used in the estimation.
The numerical details follow directly from the example given

here.

The results for both <classical wunconstrained and
constrained models reported here for the parametric Weibull
family apply with remarkably 1little modification to the
general gamma family of densities as well. Regularity
conditions, gradients, Hessians, numerical approach and so
fortn follow the wWweibull examples very closely.
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CHAPTER IV

A STRUCTURAL HOPEL; BEBNOULLI BREGRESSION

A. INTRODUCTION IO A BERNOULLI REGRESSION MODEL

Consider a structural wmodel based on the observed

sanmple

Y . 1} .

where vy is one of a set of r (statistically) independent

discrete-valued observations with m associated parameters

x = [ x f ...' x l L]

3 R oL

In this wusage, X is often called the set of (structurally)
independent variables, and Y is referred to as the
associated (structurally) dependent variable, with T a set
of model parameters.

As a specific example, suppose that Y is a set of "i-Q"
observaticns of "success, or failure"® from n Bernoulli
trials. We may assert that yj is observed with

f IX ,p) = £ ip(X )) f | ’
(Yj j P (Yj P( j) (Yj Pj)

and that f is a parametric family of Bernoulli densities

1-
y(j)“_p) Y (3) ;

f(y_ ip,) =
Y Pj Pj 3

3
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In the regression, p is some stated mathematical
function of the independent variables, xj, with parameters,

T,

=pXx ,T) .
Py = Py

and is interfreted as the prior probability of success for a
Bernmoulli trial carried out under a given set of conditions.

To illustrate, suppose that p is the probability of
]
destroying, or disabling, a target with a vclley of shots in

a naval bcambardment. The success of each volley can be
considered as an observation, Yj' from a Bernoulli density

with parameter p . Clearly, the probability of success on
each attempt is a function of distance to target, s=a

conditions, weapons employed, visibility, and so forth -

characteristics which constitute xj.
If we employ the theory of ballistics to determine a
functional form for p(X ), and if a record is kept by tne
J

fire directcr of each volley, then we have Jjust the

observaticns required to estimate pj.

Consider another example. Let pj be the probability of
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a smog alert during a particular day. If a record of wind
velocity, wind direction, temperature, nitrous oxide level,
cloud cover, particulate content, and so forth, is kept
daily constituting xj, with yj the observation of a smog

RN Tt e 2 e i ——

alert for that day, then estimation of pj may be attempted
from n independent observations of polluted and wunpolluted

days, with some function, p(xj), supplied by the researcher.

The Bernoulli parameter, pj, may be the probability of
default on a Joan given credit information X the
probability cf winning an election given a platfora and
legislation record, the probability of survival given

1 information about disease and treatment, ad infinitum.

It should be stressed that discrete Bernoulli
observaticns are often available vhen continuous

quantitative information is not, or when continuous measure
is inappropriate. For instance, it may be possible to
classify an individual as "poor" while to use a measure of

his economic income would be difficult or impossible due to
1 unreported income, government subsidy in the form of soney,
3 goods and services, unclear family consuming units, and the
1 problematic equivalence of income level with the quality of
life.

f As another illustration, the regression analysis of a
communications satellite launching may, for purposes of

research budget request, properly deal with the probability
of successful orbital entry, or launch rfailure, rather than
with orktital apogee, perigee, period, etc. Thus all the
information concerning launch conditions and technology
would bPe wused to yield a prior probability of success, a

T T P T TR AT TS A AR Y T T e
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result more tractable for management daud more ciosely
related to project costs than estimates of orbital physics.

It is felt that the general class of problems dealt
with here is important and previously overlooked, or
misclassified in the literature. Several Bernoulli wmodels
are presented in the sections that follow. Point and
interval estimates for pj are developed, a hypothesis test

is given for evaluating the contribution of parameters to

complicated, realistic models, a stepwise construction
technique is proposed, and a heuristic is given tor choosing
betvween runctional forms for the regression.
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Bs COMPAEISON WITH DISCRIMINANT ANALYSIS

A technique often misapplied to Bernoulli regression
problems is that of discriminant analysis. Borrowving prior
&: notation in this new context, a binary discriminant analysis
2 provides a decision rule for classifying an individual as a
pember of one of two populations (ﬂ;,ﬁg) from examination of

4
!
3
1
b

bt 3

a set of k properties, xj. Each individual is asserted to

T

be a permanent member of only one of the populations. The

discriminant analysis atteapts to deteramine which of these
P mutuvally exclusive populations contains the individual.

Por exasmple, the 1Internal Revenue Service in this
country uses a property set xj consisting of income level,

e
i Y
e i TR S

deduction types and quantities, etc., in order to classify

| an individual filing an income tax return either as a member
{ of the porulation of chiselers, or honest tax payers. Those
classified in the former population are audited in detail

e

for errors and misrepresentations.

o = = -
SR i kot b T

Applications occur frequently in the literature, and
classically have included taxonomic <classificaticn by
physical measurement, qualitative biochemical analysis,
pattern recognition, identification of archeological
remnants, and so forth. For excellent examples see
Fisher[85] and Nilson[ 176].

Laiisi

SIS

The discriminant analysis requires use of n1 known 3
members of 7§, and n2 individuals froam 72, and a density :

function for the property set of each population, f1(X) and

ot T it
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2 (X)

The probability of an observation in the neighboshocd
of the point xj, given thai. the individual is froa 72, is

£ (X ax .
y g 94Xy

This probability is proportional to the argument f1(xj)
vhich is defined as the likelihood function for the point
I . The fundamental principle of discriminant analysis is
to classify the individual as a @member of 1q, or 12,

according to the relative size of f’(xj) and fz(xj), and the

costs ot each type of misclassification. In general, the
density functicas f1 and fz will ccontain unknown parameter

vectors T and TZ, and these parameters must be estimated
from the known members of each population. The parapetric
estimation is wusually performed with M.L.E., as previously

discussed.

The discriminant analysis will further require the
prior probability of selecting a member of 1q for analysis,

Pr =n n +n
1 70y gl
or, when population sizes are unknown, a sawmpling estimate

of Px:1 may be used. If no sampling 1information is

available, and the population sizes are unknown, Pr1 is
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assumed to be 0.5.

Also, the costs of misclassification, C2|l and C1|2,
must be stated, where C2|1 is the cost of misclassifying ‘N;
when the individual is actually fron ﬂn. Without loss of

the costs of correct

eneralit C and C
g Y, 101 2|2'

classification, are taken to be zero.

T T e —

Finally, the decision rule for discrimination is:
4 classity xj as a member of ﬂc if

PrC f (X) > (1-Pr) C
12|11(j) . )

’

£ (X
12 2‘j)
and classify X as a member of 72 otherwise. 1his minimizes

the expected cost of misclassification.

Clearly, the results above may be generalized to any
numaber c¢f populations. Such multiple discriminant analysis
is required in machines for character recognition in which a
hardvare autcmaton carries out the analysis automatically in
a fascinating vay[ 175]). Another example of the technique is
multipnasic sciieening of school children for physical and
mental defects by tests and inexpensive profile
measurements. In this manner, a single property set is
examined in order to classify an individual as healthy, or
medically defective 1in any of several ways. It is assused
‘ that these defects, once identified, may be verified with
; certainty by a more thorough, and expensive examination.

In contrast to the discriminant, the Bernoulli
1 regression nodel is not concerned with classifying

L : 103 !




observations into permanent populations of success and
failure, Ltut rather with forecasting the protability, Fj' of

an individual achieving a success. The implication is that
repeated trials on the same individual will produce soae
successes, and sopme failures, and that :the properties xj are

not uniquely those of a amember of some population of
successes, or failures. It is interesting to note that many
applicaticns of discrisinant analysis in the literature are
specious for just this reason.

104

PO R et b e L 5
& pnle Ayl (Rt & e e b




|

N e B R ——

R e B e o U —

]

€ MAIHEMATICAL BRELININARIES

To proceed with Sernoulli regression one must choose a
functional torm for p in the Bernoulli density, and then

estimate any unknown parameters, T, in this functiom using

the observations
rY ., x .,

and remembering that Bernoulli regression aust produce

predictions satisfying

Among the mathematical transformations available for

our use are a general linear model with

an exponential

anotner exponential
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0 s xjr < %,

the logistic functiouw

Pyt L1+ expt-x,T) e

Urban's tranformation

-1 -1
pj = 172 + T tan (xjr} $

a trigoncaetric model
pj = (1/2)[1 + sin{xjr}] ;

-2 < xjr < M2 ;

and so forth.

There are, of course, an infinite number of candidates,
as in any regression problem. We have chosen each of these
to contain the 1linear form X T. In this way, there is a

singie parameter in T associated with each characteristic In

X. This permits definition of x =1 so that t1 may be

31

interpreted as an ‘"intercept" parameter in each wodel.

Also, addition and deletion of characteristics in X may be
performed easily; this facilitates, for instance,
introduction of additvional variables to X, to allcw for
nonlinear interacticu of characteristics. Just as in least
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squares regression, it is perfectly adeissible, and useful,
for the independent variables to take on discrete valuos
(e.9., 0,1 . Finally, wve shall discover a <calutary
distributional property of a wide class of such models, and
we will develop a method for comparing the effic.cy of two,
or more, sodels in any particular problea.

Note that several of the waodels given require a
constraint on the linear form X T. This follows fros the

"1-0" constraint on p and the desirability of providing for
pj to be stated as a single valued function of tne argument

X4T. Alt hougn sach constraints can be accomodated

-

numerically, their nuamber grows directly with the number of

observations. For ease of exposition, we <choose an
unconstrained model for complete development here. That is,
the transformation used mathematically qguarantees a feasible
probability, pj.

As our example, we will use M.L. estimation for the
logistic transformation. Berkson{20] suggests the logistic
function for bio-assay aodeis. Also sec the presentation
given by Finney([84 ). A development of L.S. estimation for a
similar logistic @model is given by Walker and Dancan[226].
We rememoer, though, that the L.S. assumptions do not lead
to tractaple distributional results, while the M.L.E.
approach will yield excellent large sample properties with
invariance.

The log likelihood for the parametric Bernoulli family

is

L(P) = f_"(y.ln(p) ¢ (1-y)In(t-p)].
= J j J j
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Since

in £(p)) =y /p, - (1~ )/(V = p)
Pj / Pj Yj Pj Yj Pj

| ve see that regardless of the parametric fora for pj,
" f E{L'(P) )=0 Ly inspection. Parameterization with the

logistic function

Py = [V expi-x,T) 7,

gives

ln(pj) = =1ln(1 ¢ exp{-lj‘r}) ‘

and

In(* - p) =-XT-1n(1 + exp{-X.T}) .
3 3 3
Froa this we find the gradient

Vi = ]g1([ijjiexp{-x_"1‘} - (1 -y )in] /(1 + exP{'ijl .

b

and symmetric Hessian matrix

BT = b ) jg:, (xx (XD /(1 ¢ exp-1T])

The symmetric information matrix, E[-H(T) ], is

e e iy
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2
E[-hik] = #1(xjixjkexp{-x11') /7 (1 ¢+ exp(-xj'r}] I ar

(Remarkatly, from this wve see that the Newton-kaphson and
Pisher's scoring methods are identical for this model.)

A
Once an M.L.E. solutiorn, T, has veen deterained for a
particular problem, the invariance property gives for tane
single valued function p

8 (T) ("1'\)
P = ¢
3 P

and the Maximum Likelihood Estimation ot the Bernoulli

regression is conplete.
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Do SIMISTICAL IHEORY

We can derive confidence limits for the parameter pj by

A
noting that ¢the 4.l. estimators, T, arc dasymptotically
normally distributed with a variance covariance matrix given
by th» Craser-’ao bound, the 1inverse of the information

matrix,

A A -1
() = E[-B(D)] .
Using the logistic model as an example, clearly the scalai,

A
XT
3

is 4 linear combination of asymptotically normaily
distributed random variabples, and thus is asymptotically
normally distributed with paraaseters

= X7,

o
1(3) i
and
m_ ¥
2(3) - 3

Confidence limits for X T are

1/2
o t 2 B
(39 as/z2 2(3)

’

variate for

where z > is the appropriate wunit rnormal
a/
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confidence level 1-a. Confidence 1limits for pj follow
directly by apriication of the logistic function tec the

lisits for xjr.

All the mathematical transformations, pj(xj,r),
proposed earlier for possible use in bernoulli regression

were chosen to be single valued functions of the scalar
argument ij to provide similar results in general.

To test the contribution of a particular parameter, or

?
set of parameters, T, in tne prediction of yj, a likelihood

ratio hypothesis test developed by Neyman and Peiarson{173],
Wald{224) and given in Mood and Graybili[109], can be used.
*
As an example, to compare pj(r) and pj(T)' with
* ?
T = (T,T} ,

A %

obtain T and T, and compute the statistic

A 2

-2 1n{L(T) 7/ L(T)] -

As n approaches infinity, the statistic is asymptotically
chi-square vith degrees of freedom ejual to the number of

?
elements 1in T, providing sufficient statistical grounds to

give a constructive hypothesis test.

A stepwise Bernoulli regression algorithm can be
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defined and performed by introducingy each of the variables
singly with an intercept term, determining the M.L.E. in
each case, and keeping the <characteristic 1leading to the
greatest likelihood among the competing two-varidble amcdels.
Sequential steps proceed, selecting one additional wvariable
at a time by the criterion of maxisum 1likelihood
contribution amcng all remaining individual candidates. The
procedure stops either wvhen all variables have been
included, or when addition of another variable produces a
likelinooa ratio 1less than the value of the chi-square
integral for one degree of freedom and, say, 95 percent
confidence (3.841ee0),

To choose between alternative functional forms for the
regression wmodel, for instance betvween the logistic model
and the Urban transformation, the following heuristic |is
proposed: perforn the stepvise algorithm for both
mathematical functions, and select the function for which
the final likelihood is larger.
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An interesting problem to which Bernoulli regression is
applicabie 1is given by Solberg[214], vho investigates the
propensity of female heads-of-household with dependent
children to Jjoin the 1lanor force, and gives extensive
references to and criticisms of published analyses using
other statistical techniques.

The data used for analysis is extracted as a subset of
the March, 1970, Person-Pamily file of the Current
Population Survey conducted by ¢the United States Census
Bureau; the data selection criteria produces 2,839
observations of female family heads with defendent children
present whc are in the «civilian non-institutionalized
population with a primary source of income not gained froam
self-employment in agriculture.

In order to study only individuals who <can reascnably
be expected to participate in the labor force with non-zero
probability, family heads over 70 years of age are deleted
along with certain identifiable incomplete entries, leaving
2,222 observations.

Observation j is coded y =1 if the head-oi-househcld is
]

working, with a job but not working, or 1looking for
employment, and y =0 for those heads who are at home, in

3

school, unable to work, or have other reasons for not

participating.

Sixteen independent variables are defined for eacth
observaticn as followvs
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x =1, an intercept tern,

? x2 = earned income in hundreds of dollars,
: x3 = welfare income in hundreds,
; xu = unemployment compensation,
x5 = other income,
i x6,x7,x = "0-1" regional codes for North-Central,

South-Central and Western States
respectively,

x9 = #)-1" SMSA L.bor Market Control variable,
egual to one for families located in SHSA
Central Cities,

ﬂ x10 = number of children present,
' 3HE number of children present under six years
of age,
x12 = number of other adults present,
x13 = "0-1" race code, eqgual to one for black
head-of-household,
x1u = age of head-of-household,
X = age squared,
15
x16 = years of education.

A rprogram was written in FORTRAN to access the
observations on a mass storage device, providing features to
select anv desired subset of the observations, scale, or
normalize the variables, selectively list observations, and
obtain the M.L.E., T, for either the logistic or Uiban's
transformaticn for pj(T), using a second order

representation of the problesm and numerically bcunded

variables. A high resolution ti.er provides active compute




tice statistics for the host computer, an IBM 360/67 - 1I1I
operated under the MVT systen. The object program was
generated by the FORTRAN-IV (H) compiier with code
optimization, requiring a wmemory region of approximately
200K bytes.

Other program features include an automatic stepwise
introduction of variables to a given nminimal fixed model
froa resaining indicated candidates, with sequential
selection made on the basis of wmaximum log 1likelihood
contribution, and termination triggered by a likelihood
ratio hygpothesis test successively performed at each step
with a level of significance specified by the user.

Also, a variance covariance matrix is given for any
designated model solution, ?, by use of the inverse Hessian
Cramer-Rao bound, and used to compute <confidence intervals
for p (T) for specified observations in the original data

set, or other source. The final regression model is applied

to the data and a frequency distribution is individually
produced for observations with yj=0 and with yj=1.

In our analysis, the logistic and Ucban's
transformations vere separately applied both stepwise and
simultaneously to all sixteen variables, a ten variable

subset consisting of

{!'x" i=1'2'3'“'5'9'11'13,1“,16} Y
1

and an eight variable subset comprised of

[!'xi' i=1'2'3'5'11,13,1u'16} .
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On the basis of the 1logy 1likelihood heuristic proposed
earlier, and on the apparent reluctance with which Urban's
transformaticn produces predicted probabilities unear zero,
the logistic model was selected for further detailed

T T T

analyses,

‘ As an example of the results, the eight variable
i composite gave a stepwise logistic model vith variables

o

introduced in the sequence indicated with each step:

T T

sTERE 1 3 2 1 5 11 14 13
1 1.111 =-.042
2 .162 -.016 ,300
3 -.025 -.016 .298 .011
4 «206 -.019 .292 .01t -,507

5 «399 -.018 .289 .013 -.643 -.539
945 -.019 .287 .012 -.571 -.690 -.012
.530 -.020 .286 .013 -.545 -.698 -.012 .036

' The final log likelihood for this model is =-795.2. The
asterisk indicates the six variable model tor which a 95
percent likelihood ratio test, with «critical chi square
value 3.841, would terminate with log likelihood -797.9.

Executicn time for this run includes disk access, M.L.
estimaticn, comparison and output of seven two-variaple
nodels, each with 2,222 observations, six three-variable
models, five four-variable models, and so forth, yielding an
aggregate to 10 minutes, 14 seconds.

Por specific subproblems, an individual M.L. estimation
is not permitted by the program to require more than ten
1 iterations. This bound was never exercised by the Bernoulli
1 models discussed here. The eight variable model required an
average at all 1levels of search dimensionality cf 4.1
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iteraticns fcr convergence.

It is iaportant to note the remarkable step to step
stability of individual terms in ?, with the exception of
the intercept term. This clearly shows that use of the
previous solution as a starting value for successive
iterations can greatly accelerate convergence of the second
order representation of the problem. Exploitation of such
behavior ia nonlinear estimation has been suggested by
Ross[ 207 ].

The regression predictions for p given for the 2,222
observations by the final logistic model are given in the
following frequency distribution

PORECAST  ACTUAL
P =6 y=1
0-.1 139 5
.1-.2 308 37
.2-.3 232 54
J3-.4 134 60
A4-.5 35 65
.5-.6 24 61
6=.7 9 51
.7-.8 11 62
.8-.9 12 117
.9-1 38 772

In another experiment, a subset of 400 cbservations was
randoely selected and ? determined without stepwise
introduction of variables for the sixteen variable 1logistic
model. The solution of this pilot model was then used as a
starting value for computation of ? for all 2,222
observations, with a total computation time of 3 minutes, 21
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l seconds. A direct estimation without this prelisinary step

required 6 minutes, 8 seconds, constructive stepvise
! estimation or all sixteen variaples with no pilot wodels
required 80 minutes, 42 seconds.

Specification of the appropriate size of such a pilot
run is difficult, since a subset too small #ill give a
solution of doubtful value (numerically and statistically)
L for starting the larger model, and a subset too large
defeats the fpurpose of the approach. It is such small
sample cases that exercise the numerical bounds and other
provisions for difficulties in estimation. As a rule ot
thusb, 400 Bernoulli observations are used here with good

success for "all at once" models.

Experience with all these models indicates that the
constructive stepwise approach, possibly begqun with a
ainimum wmodel based on the investigator's prior experience,
and terminated by the likelihood ratio test, is a generally
reasonable plan of attack. Although computation time can be
very high with such a method, important benefits are de¢rived
from model analysis by the M.L. estimation of subset models
in the course of solution. For instaace, subtle
comcomitance among variables may be detected by analysis of
intermediate output that would evade detection in a final

variance covariance matrix.

Other Bernoulli regression models have been studied,

including trediction of the probability of winning a

horserace, based on handicap data, and the estimation of thne

probability of increase iun stock price froam market analysis i
and financial information in investment survey quides. Most
recently, DeMont and White[ 70] report analysis of tactical
& data fros tank engagements in the Arab-Israel conflicts.

Generalization of these techniques 1s possible to

S o
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accosodate binomial, or sultinomial data and models with
dependent observations, although much work remains to be

done.

-

-
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