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I. INTRODUCTION 

A method for computing the response of elastically 

coupled non-uniform beam-spring systems to a transient forcing 

function, based upon the use of the Fourier integral trans¬ 

form, has already been described.^- The original version of 

this method incorporated into the General Bending Response 

Program (GBRP) treated only the case in which the forcing function 

had a Fourier transform which could be expressed in closed form. 

Recently, the GBRP transient response capability has been 

augmented by replacing the Fourier transform approach with one 

which is based upon the Fourier series and the use of the fast 

Fourier transform (FFT) to obtain the series coefficients. The 

advantage of this approach is that it enables the program to 

handle not only general periodic forcing functions but transient 

impulses as well by considering these impulses as periodic with 

suitably long periods. 

In the following pages we will discuss the application of 

FFT to forced vibration analysis, focusing on the GBRP-FFT 

interface and demonstrating the results via several practical 

calculations. 

Henderson, F., "Transient Response Calculation In the Frequency 
Domain with General Bending Response Program (GBRP)," Naval Ship 
Research and Development Center Report 3613 (Feb 1971). 
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II, MATHEMATICAL FORMULATION 

The Fourier series transformation of the equations of 

motion for a non-uniform beam follows the classical procedure 

for this type of analysis described in many textbooks. The 

steps in the procedure parallel those for the integral transform 

approach.^ 

The equations for the bending motion of a non-uniform beam 

used in that approach were 

= .„(X) . C(X) . P(x,t) 
3x 3t2 at 

(1) 

= V(x,t ) + I (x) 3 2 Y ( x-’-^ + Q(x,t) 
3X uz 3t2 

(2) 

-më (3) 

ayCx^t) _ M(x,t) 
3x ” EI(x) 

(4) 

with the following notation: 

x Distance in the direction of the beam axis measured 

from the origin of coordinates 

t Time variable 

y Displacement normal to x in the xy-plane of bending 

Y Angular displacement relative to the z-axis 

V Shearing force in the direction of flexural vibration 

(y-direction) 

i-i Bending moment 

u Effective mass per unit length 

I^z Effective rotary inertia per unit length 
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KAG Shear rigidity 

El Bending rigidity 

P External forcing function, force in the y-direction 

c Viscous damping coefficient 

Q External forcing moment per unit length 

If the forcing functions acting on the structure, assumed 

initially at rest, are periodic in time with period T, they can 

be expressed as 

2nimt 

P ( X, t ) l P (x)e m 
m=-<x> 

(5) 

Q(x,t) = z Qm(X)e 
m- -<» 

2irimt 
-^- 

(6) 

The variables for the structural response to these forces then 

have the form 

V(x,t) 

y(x,t) 

Y ( X,t ) 

M(x,t) 

00 

E 
m= — 00 

z 
m= -<*> 

2irimt 

V (x)e 
m 

m 

m 

M (x)e 
m 

T 

2irimt 
T 

2wimt 
—T— 

2TTÍmt 

T 

(7) 

(8) 

(9) 

(10) 

AfLer substituting the expressions (5) through (10) into Equations 

(1) through (4) and performing the indicated differentiations, we 

can then, for each m, set the sum of the coefficients of 

3 



2irimt 
“T— 

e in each equation equal to zero, divide out the common 
¿ ïï imt —^— 

factor e , and obtain the system 

dV (x) 
m 
dx = u(x)u2y - ic(x)ü)y + P 

m ym m (11) 

dM (x) 
m 
dx = Vm(x) - IU2(x,“2lrm('!> * « m (12) 

dy (x) 
m 
dx = Ym(x) - m 

V_(x) 

’ m KAG(x) (13) 

dy ( x) 
m 

dx 

M (x) 
m 
crnn' (14) 

where w = 2Trm(i). 

This gives precisely the system of differential equations given 

by Cuthill and Henderson,2 from which may be obtained the set 

of approximating finite-difference equations whose matrix form is 

(15) 

with 

m 

m, 

M 
mi 

m2 

M 
m2 

m 
'N 

M 
m 
N 

A Z = P 
m m 

m 

mi 

.mi 

m2 

m2 

P 
,mN 

m 
N 

(16) 

Cuthill, E.H. and F.M. Henderson, "Description and Usage of 
General Bending Response Code 1 (GBRC1)," David Taylor Model Basil 
Report 1925 (July 1965). ü 1 
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* 2 
and the matrix A and P as defined there. In Equation (16), 

the subscript m with the components of Pm denotes the mth Fourier 

coefficient in the series representation of P; for the components 

of Z the subscript denotes the m coefficient in the series 
m 

representing the deflection y or bending moment M. The 

subscripts 1,2,...,N are the usual GBRP labeling for midpoints 

of beam subdivisions (sections) at which the response is calculated. 

For the purpose of performing a computation, this approach 

suggests the following three steps: 

Step 1 Compute the Fourier coefficients for the 

series given by Equations (5) or (6) truncated 

to a finite number of terms. 

Step 2 For each term of the truncated series compute 

the complex frequency response of the structure, 

thereby obtaining the Fourier coefficients for 

the truncated series approximating Equations 

(8) and ( 10 ). 

Step 3 With the coefficients generated in Step 2, 

form the summations [Equations (8) and (10)] 

to obtain response as a function of time. 

This procedure is implemented by using FFT to accomplish 

Steps 1 and 3 and GBRP to accomplish Step 2. Since, from the 

standpoint of computing, each step is independent of the other 

two, the total sequence of calculations is handled by suitably 

interfacing FFT with GBRP. The term "interface" here implies a 

linking of the two programs such that data generated by FFT in 

Step 1 becomes the input to GBRP (Step 2) which in turn supplies 

data to FFT (Step 3) for the final calculation. In other words, 

the interface involves only a manipulation of the conventional 

data supplied to and generated by the two programs. The inter¬ 

face will be explored more fully in Section IV. 



111, NOTES ON FFT 

In Equation (5) from the previous section, 

_ 2irimt 

P(X,t) = Z Pm(x)e T 
m= -« 

P(x,t) designates a vertical forcing function acting at a distance 

X along the beam. If we assume this function is defined only for 

the interval, 0<t<T, the Fourier coefficients are given by 

T 2Ttimt 

Pm^x^ = f / pix,t)e ^ dt (17) 

0 

It was the purpose of the present project to determine how 

FFT might be used to compute the coefficients of the series 

(truncated) in Equation (5) ana to compute the series (truncated) 

in Equations (8) and (10). 
3 

To apply FFT it is necessary to have a periodic function, 

g(t), which is assumed to be known at N equally spaced time 

points g(0), g(l), g(2), ..., g(N-2), g(N-l), (that is, at 

t — "^l* ^ 2 ’ • • • ï 't^_2 , tj^ ^ quantities G(0), G(l), 

G(2), ..., G(N-l) are then sought such that 

mi 2 ni . N-l -fj- kq 
g(k) = ï G(q)e , k = 0,1,2 ,... ,N-1 (18) 

q = 0 

Equation (18) specifies a system of N equations in N unknowns 

which can be solved to obtain 

mi 2 n i . , N-l - —vi kq 
G(q) = rr E g(k)e ” , q = 0,1,2,... ,N-1 (19) 

k = 0 

Theilheimer, Feodor, "Some Applications of the Fast Fourier 
Transform," Naval Ship Research and Development Center Report 4231 
(July 1973). 
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The set of G(q) is called the discrete Fourier transform for 

the given data, g(k). The alternate process of computing the 

g(k) from the G(q) by Equation (18) is called the inverse 

Fourier transform for that set of data. 

The quantities G(q) may be referred to as the discrete 

Fourier transform coefficients for the data g(k). It is worth¬ 

while to consider their relationship to the conventional Fourier 

coefficients for it is the latter which are to be approximated 

in the present application. One way of doing this has been 

demonstrated by Ralph B. Johnson, Jr. of the Computation and 

Mathematics Department in some unpublished notes. 

To summarize Johnson's approach we can begin with the 

Fourier series representation of a periodic function, g(t), with 

period T 

. 2nmt 
1 -sr- 

T (20) g(t) = I 

Assuming that the interval in which the function is defined, 

0<t<T, is divided into N equal subintervals At and substituting in 

Equation (20) for integer multiples of this subinterval of time, 

kAt, then 

• 2itm/1 . , \ 
i -Tj—(kAt) 00 

. 2irmk 
i —r,— 

g(kAt) = E E 
m=-oo 

(21) 

T 
since At = . Noting that 

e (22) 

where q are the integers modulo N, and setting m=pN+q, 

q=0 ,1,2 ,...,N-1, ps...,-1,0,1,..., we obtain the following 

relationship : 

• • • » 

N-l 
(23) 
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Defining 

G(q> = J.. a<pN+q> <2‘,) 

and substituting into Equation (23), provides the relationship 

N-l i ^ 
g(k) = Z G(q)e N (18)(25) 

q=0 

with the right hand side yielding at most N distinct values as 

k=0,1,2 ,... ,N-1. As stated by Johnson, this definition of G 

indicates a grouping of the amplitudes of certain frequencies 

as a single frequency, an effect called "aliasing". For this 

discussion it is sufficient to observe that in Equation (24) as 

N becomes large, the discrete Fourier coefficient for a particular 

q approaches the q*^ conventional coefficient, because the only 

terms a(p^j+q) being added to a^ will be the ever smaller relative 

amplitude terms associated with the higher frequencies. 

Another way of demonstrating this relationship is to show 

that the discrete Fourier coefficients correspond to a 

trapezoidal rule approximation to the formula for conventional 

coefficients. Consider that the quantities am in Equation (20) 

are computed from 

T _ 2iiimt 

am = F / g(t)e T dt (26> 
0 

With the interval Olt^T subdivided into N equal subintervals, At, 

the trapezoidal rule for the integral is 

2ïïim(At) _ 2irim(2At) 

I = £ [j g(0) + g(At)e T + g(2At)e T + ... 

+ j g(NAt)] (27) 

Since NAt = T and, by periodicity, g(0) = g(T), the first and 

8 



last terms may be combined, giving 

_ 2ffim(At) _ 2irim(2At) 

I = ^ [ g(0)+g(At)e T +g(2At)e T + • • 
(28) 

N-l 2irim{ (N-l)At > 

+ g{ (N-l)At }e ^ ] = £ E^gOOe T 
N k=0 

2nimkAt 

Substituting T = NAt yields the relationship 

M i 2nimk 

T - T ; ' Ñ I = jT E g(k)e 
N k=0 

Substituting this approximation to the integral into Equation 

(26), we obtain the equation 

(29) 

-1 i"-1 
am = ï 1 = Ñ 1 8(k)e 

2ïïimk 
N (30) 

k=0 

Again setting m = pN+q, as was done on page 7, and noting that 

the right hand side then produces only q distinct values, 

q=0,1,2,...N-l, as p=...,-1,0,1,..., we obtain 

. ! N-l 
a = jr I 
q N k = 0 

2irikq 

g(k)e N = G(q) (31) 

The relationships given by Equations (24) and (31) indicate 

that for a given value of N, the discrepancy obtained in 

approximating a^ by G(q) will be greater as the value of q 

increases. From Johnson's approach this discrepancy is seen as 

the effect of the magnitude of a^ approaching, as q increases, the 

magnitude of the nearest terms a(pN+q) being added to it (the 

magnitude of Fourier coefficients -*-0 with increasing q). In 

the latter approach it is the problem of numerically integrating 

Equation (26) when the integrand becomes increasingly oscillatory 

9 



with large values of q (i.e., m = pN+q). In other words, N 

must be increased in order to gain accuracy in the discrete 

Fourier coefficients associated with higher frequencies. 

Having considered the relationship between the discrete 

Fourier c. »fficients and the corresponding conventional Fourier 

coefficients, we will now describe the use of the FFT algorithm 

to compute the discrete Fourier coefficients, hereafter 

designated DFC. 

Assume that we have sampled data for a function and wish to 

compute the DFC. The sampled data consist of N points of data, 

g(k) = on the interval of definition for the function as 

indicated in Figure 1. For the particular FFT subroutine used 

here, N must be a power of 2. However, this condition on N 

stems from the method used to implement FFT for machine computation 

and not from the basic theory. The quantities g(k) may be real- 

or complex-valued, but for the present applicationb they will 

be considered real since they represent points of a forcing 

function that is assumed to be real-valued in time. With the 

g(k) as input data, we can then designate an option of the 

subroutine which requests computation of the discrete Fourier 

transform, G(q) [Equation (19)]. If, however, we wish to obtain 

the quantities, g(k), from the G(q) set considered as input data, 

the option for the inverse discrete transform must be selected. 

Remember that the îFT algorithm calculates only coefficients 

approximating the am where m = 0,1,2,..., whereas the formal 

series we are concerned with here [Equation (20)] requires a 

summation over the a_m as well. Recall that this equation is 

simply the complex representation of the trigonometric series 

_ ww -- . 

g(t) = i cn + L (c cos T 
¿0 __i m 

+ b sin 
m 

2itmt 
T 

(32) 

with a 
1 

0 " 2 c0 

a 

a 

10 



■h imppf 

Figure 1 - Sampled Data Points for a Function 
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A term in the summation on the right-hand side of Equation (20) 
for m>0 is then 

i 
a-e T = 1( Vi bm , (cos 2*St t i 8in ^mt, m 

= I(c.oos2l51 * bmsin^S£) t ii(omsinil!« - biiiCOS ^mt, 2 m T “m-T 

Similarly, the -m term gives 

T 

2irmt 

(33) 

m 

• 2nmt 

a e 
-m = J<cmcosir!i * ♦ ji(-C|nsiniy!î 

i he sum of these two terms i« 

(34) 

i ^ïïmt 2ïïmt 

ame + a.me T = c.cos —iî- + b sin —mt 
i m T m 

= 2R a e 
m 

• 2wmt 
~T 

(35) 

where R denotes "real part of". Equation (35) indicates that 

quation (20) can then be expressed in terms of positive m. 

® i 
git) = a ♦ 2 E R a e T 

0 m=l m (36) 

Since it is the intent here to 
use Equation (18) to obtain 

approximation to Equation (21) the expression above 
compute 

N-l 

q = 0 " G(0)’ k = 0,1,2,... ,N-1 

an 

suggests we 

g(kAt) = 2 Z G(q)e T 
(37) 

in the present application. 

12 



The particular version of the FFT algorithm used for 

combination with GBRP is one which was developed in the 

Computation and Mathematics Department and designated FFT5. 

For this application* only minor changes were introduced so 

that the subroutine could handle up to 16384 data points for the 

sets g(k) or G(k). 

These few notes summarize those aspects of FFT which 

pertain directly to the present work and are essential to an 

understanding of the FFT-GBRP interface and its use as explored 

in later sections. 

For a discussion of the significance of the term "fast” 

associated with the algorithm the reader may refer to a paper 

by 'Jr. F. Theilheimer of the Computation and Mathematics 
4 

Department. 

IV. DESCRIPTION OF GBRP-FFT INTERFACE 

As previously stated at the close of the discussion of the 

mathematical formulation, the interface between GBRP and FFT is 

essentially a data interface with each program performing its 

particular part of the total calculation independently. 

The nature of the interface is perhaps best demonstrated 

by considering the form of the data (input and output) associated 

with the steps (page 5) of a typical calculation, and the 

procedure for processing FFT data for use with GBRP and vice 

versa. 

Assume a beam-spring system acted upon by a set of periodic 

forcing functions. The structure is divided into sections 

4 Theilheimer, Feodor, "A Matrix Version of the Fast Fourier 
Transform," IEEE Transactions on Audio and Electroacoustics, 
Vol. AU-17, No. 2 (June 1969). 
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numbered 1, 2, 3, ..., L, and the forcing functions are specified 

as acting at the section midpoints. The objective is to compute 

the bending response as a function of time. 

The forcing functions are defined by their respective 

sets of sampled data points: g^O), g^l), g^?), ..., g^N-1) 

for the force at section 1; g2(0), g2(l), g2(2), ..., g2(N-l) 

for the force at section 2; etc. These sets are arranged in 

this order on an input file for FFT which calculates the discrete 

coefficients. From Equation (19) it is seen that N coefficients 

will be generated for each set. These data provide the steady- 

state force amplitudes to be used in the complex frequency 

response calculation (Step 2 with GBRP) indicated in Equation (15). 

However, since the solution for each Z involves a matrix 
m 

inversion, it becomes highly advantageous from the standpoint of 

computing time to make this calculation for only those MN 

coefficients which are expected to produce significant amplitudes 

of response in the structure. ’’Signifleant" here refers to the 

relative effect these amplitudes (which are in turn the discrete 

coefficients of the time response) are likely to exert in the 

summation appearing in Equation (18). Accordingly, MN discrete 

coefficients for the force at each section are retrieved from 

the N computed by FFT and written on an output file in the 

following order: G^O), G^l), 6^2), ..., G^MN) for section 1; 

G2(0), G2(1), G2(2), ..., G2(MN) for section 2; etc. 

In preparation for Step 2, these G sets are sent to the 

interface which forms the vectors Pm of Equation (16). Assuming 

only vertical forces of excitation (i.e., no moments), the G's 

in GBRP notation become the Pm,3» and the required vectors, 

written sequentially on tape, are 

14 



(38) 

m 

G^O) 

G2(0) 

G3(0) 

G^l) 

g2(D 

G3(1) 

G1(MN) 

G2(MN) 

MN 

gl(1) 
Gl(MN) 

Comparing the notation in these vectors with that in Equation 

(16) it is clear that the integers in parentheses (Equation (38)) 

correspond to m, which is the multiplying factor of the 

fundamental frequency. GBRP then solves Equation (15), using the 

successive right hand sides G^, and produces the vectors 

(Equation (16)) 

y1(D 

M1(l) 

y7(i) 

m2(D 

y^O) 

M^O) 

y2<o> 

M2(0) 

y1(MN) 

M1(MN) 

y2(MN) 

M2(MN) 

(39) 

-► 
Z m=0,1,2 MN m 

yL(0) 

Mlj(0) 

yLU> 

Ml(1) 

yL(MN) 

M,(MN) 

which are written out on a tape. These data, the output of 

Step 2, give the discrete Fourier coefficients of the time 

response in deflection and moment at each section. 

From Equation (39) we see that the coefficients relating to a 

particular section are distributed among all the vectors and 

thus require reordering before FFT can perform the inverse 

discrete transform. Consequently, these data are sent to the 

15 



interface which forms the sets: y^(0), y^d), y^d), ..., y1(MN) 

and M^O), M^d), M1(2), ...» M^iMN) for section 1; y2(0), 

y2(l), y2(2), ..., y2(MN) and M2(0), M2(l), M2<2), ..., M2(MN) 

for section 2; etc; and writes them on tape in the order shown. 

In Step 3, FFT computes the discrete inverse transform 

(Equation (18)) for the augmented data sets: y^(0), y^(l), 

y1(2), ..., yi(MN), y^MN+1), ..., y^N-1); M^O), M^l), 

M1(2), ..., MX(MN), M1(MN+1), ..., M^N-1); y2(0), y2(l), y2(2), 

..., y2(MN), y2(MN+1), ..., y2(N-l); M2(Ü), M2(l), M2(2), ..., 

N2(MN), M2(MN+1), ..., M2(N-1); etc.; the coefficients with sub¬ 

scripts greater than MN being assigned the value zero. Making 

notational substitutions of y or M for G and y or M for g in 

Equation (18) for example, results at section j in 

mi 2iri, N-l -rr-kq 
Z y.(q)e , k=0,1,2,...,N-1 

q=0 3 

N-l ^ikq 
Z M.(q)e , k = 0,1,2 ,... ,N-1 

q = 0 3 

The sets of data y^(k), M^(k), for j = 1,2,3,...,1 are written 

sequentially on tape by FFT as they are produced. 

With the third step of the calculation completed, the final 

data sets obtained from FFT are ready for editing. It is 

important to recall that the response computed at each section 
k *T 

is given at the intervals k*At = -yr— determined by the FFT 

process. As will be discussed in the next section, the program 

(GßRP-FFT) allows the user to specify that only every n**1 point 

of the final data sets received be edited for printing. The 

transformation of FFT results indicated in Equation (37) is 

performed on each n^ point just prior to editing. 

and 

y. (k) 
3 

M. (k) 
3 

16 



If the user wishes to see the complete time history of 

response for each section separately the final sets of data, 

y.(k), M^(k), can be edited directly from the FFT output tape 

because the results are ordered sequentially first with respect 

to k, then with respect to j. If alternately the user desires 

to see the response of the entire beam system for each time 

step (i.e., through the usual GBRP editing subroutines), the 

final data sets may be rechanneled to the interface which will 

form the vectors 

y^O) 

M^O) 

y2<o> 

M2(0) 

y^l) 

M1(l) 

y2(i) 

M2(l) 

ÿ1(2) 

( 2 ) 

y2<2> 

M2(2) , 

ÿj^CN-l) 

M1(N-1) 

ÿ2(N-l) 

M2(N-1) 

yL<0) 

Al(o) 

yL(1) 

«L(1) 

yL(2) 

AL(2> 

yL(N-l) 

M,(N-l) 

which have the same form of the right-hand sides of Equation (16) 

for Z . 
m 
In concluding this section, a few notes on the software 

aspects of this interface are in order. 

The prospect of incorporating such an interface in GBRP 

suggested that a new version of the program be created using a 

system of overlays. The overlay facility would remove the 

constraint of a fixed amount of computer core for instructions 

pursuant to the addition of new subroutines and would enable 

the larger program to execute on the machine with a significantly 

reduced memory requirement. 
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The basic overlay version of GBRP was developed using 

the NASTRAN Linkage Editor.^ Four subroutines were then added 

to this basic version in making the present modification for general 

forced vibration calculations. Two of these subroutines, FFT5 

and IRVING, combine to perform the discrete transform and 

inverse transform. These two subroutines were obtained as already 

operational program decks; FFT5 was modified as noted on page 13. 

The other two subroutines, TRNSFN and SORT, were developed 

specifically for the present application. 

Subroutine SORT provides the data interface between GBRP 

and FFT referred to on pages 14, 15, 16, and 17. The subroutine 

establishes two arrays in computer storage. One, a singly 

dimensioned array, acts as a buffer to receive data coming from 

GBRP or FFT calculations. The other, a doubly dimensioned 

array, serves as working space for making data from either 

program compatible as input to the other. As an illustration, 

assume an output file from FFT with the sets of discrete coefficients 

shown on page 14; G^(0), G^(l), G^(2),. .. ,G^(MN) ; 6^(0), G^CD, 

G2(2),...,G2(MN); etc.; in this order. SORT first reads all 

elements of the first set into the buffer array, and then 

regroups all elements into m-word subsets; if m<MN, the subsets 

are written onto a random access file. This process continues 

for each succeeding original set. The first m-word subset of each 

original set is then read into the two-dimensional array as 

follows (assume, for example, m=3) 

G^O) G2(0) ... Gl(0) 

G^l) G2(l) ... Gl<1) 

G1(2) G2(2) ... Gl(2) 

Martin, R.J., "A General Purpose Overlay Loader For 
Series Computers; Modification of the NASTRAN Linkage 
Naval Ship Research and Development Center Rept. 4062 

CDC-6000- 
Editor," 
(Apr 1973). 
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and these elements are written out by rows on a file as the 

vectors Gm, m=l,2,3 (page 15). This procedure continues until 

all subsets of the original set have been treated and the 

vectors Gm, m=4,5,6,...,MN are completed. The G file is then 

in a form suitable for use with GBRP. As shown, the two- 

dimensional storage array must have at least L columns, although 

only m rows are necessary, depending upon how much core is to 

be used in a particular run. In applications where the number 

of beam sections or exciting forces, L, is small, m may be set 

equal to MN, thereby bypassing the regrouping of the original 

sets and writing of the random access file. 

In the overlay structure FFT5, IRVING, TRNSFM, and SORT 

are grouped into a single program segment which in Linkage- 

Editor terminology is called a link, and which we designate by 

the name LINK2. TRNSFM serves as a master controlling routine 

governing the order of calling other members of LINK2 when this 

link is in memory. All of the original subroutines of GBRP 

are grouped in another segment designated LINK1. Because FFT5 

requires a large amount of core storage for its arrays (page 13), 

this use of links proves highly beneficial. Not only need just 

one of the links (LINK2 for calculation steps 1 and 3 or LINK1 

for step 2) be present in memory at a time during transient 

calculations, but for steady-state applications only LINK1 need 

ever be present. In other words, the core requirement for a 

job can always be restricted to the minimum amount required for 

the particular application. 
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V. INPUT DATA DESCRIPTION 

This section outlines the data input to a GBRP-FFT job 

on the computer. The cards are discussed in order of their 

appearance in the data deck. The specific contents of standard 

GBRP data cards are discussed in detail only insofar as items of 

data receive a particular interpretation for this type of 

application. The material of this section supersedes that given 

in Section IV of Henderson's work.^ 

The first two data cards are not to be read by GBRP's data 

reading subroutine and therefore do not have the usual "type 

number" (columns 3 and 4) assigned. They are referred to as 
Data Cards 1 and 2. 

Data Card 1 

Columns 

1 

(Option to select GBRP alone or in conjunction 

with FFT) 

Contents 

Indicates a forced vibration run 

involving GBRP and FFT 

1 All other GBRP applications 

Data Card 2 (Data input to LINK2 - refer to page 19) 

Columns Contents 

1-5 Number of sampled time points describing one 

period of the forcing function(s), i.e., 

each forcing function acting on the structure 

is assumed represented by this number of 

points. This number must be an integer 

power of 2 — 16384. 

Number of sampled time points to be printed 

out for each forcing function; used in 

verifying the input data. 

20 



Columns Contents 

11-16 

17-22 

23-26 

27-30 

31-34 

35-42 

43-50 

51-58 

59-60 

Number of blocks of sampled time data input. 

Each block originates from a forcing function 

acting at a particular beam section. 

Number of discrete Fourier coefficients 

(refer to page 14) to be used for the Step 2 

complex frequency response calculations. A 

particular value for this number, say N 
. , * DFC* 

is equivalent to using 2NDFC-1 terms 

(symmetric about a0) of Equation (21). 

Total number of beam sections. 

An integer, L, designating that every 

input time point or time response coefficient 

(from complex frequency response calculation) 

is to be printed for verification purposes. 

An integer, K, designating that every 

discrete Fourier coefficient of the time data 

transform is to be printed for verification 

purposes. 

An approximate time interval, 6t (in seconds), 

for editing time response of the structure. 

Since FFT produces this response only at 

At = k ’ Ñ * the Pr°gram selects that 

multiple of T/N nearest the specified interval. 

Maximum time < N • J for which the time 

response is to be edited and printed 

Period (in seconds) of the forcing function(s). 

01 Sampled data points for forcing 

function(s) are to be read in 

binary form from tape. 
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Columns Contents 

61-62 

63-64 

65-66 

67-68 

02 

01 

02 

01 

02 

Sampled data points are to be 

generated internally by the 

program (for example, see 

Problem 1, page 28, Data Card 2). 

Sampled data points for forcing 

function(s) and time response 

coefficients (from complex 

frequency response calculation) 

are not to be printed. 

The points are to be printed. 

Ihe discrete Fourier coefficients 

of the forcing function transform 

are not to be printed. 

The coefficients are to be printed. 

Maximum number of response variables (for 

example, deflection, moment, twist, etc.) 

that may be present in the GBRP solution 

vector at any station for the particular 

application. 

The number of these variables that are 

not identically zero at every section. For 

example, in longitudinal calculations with 

GBRP, variables for both deflection and 

moment occur in the solution vector although 

moments are defined in this calculación to 

be zero. 

This information with that in the previous two 

card columns xs utilized in the program to 

insure that the inverse transform is per¬ 

formed only on arrays not identically zero. 
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The standard GBRP data deck, headed by the title card, is 

placed behind these two data cards. The contents of three of 

these GBRP data cards merit special attention for the present use. 

• Forcing Function Location Card - "32" Card 

Columns Contents 

3-4 

7-9 

10-11 

12-13 

14-15 
• 

71-72 

32 

Total number of beam sections 

Section numbers of those sections where 

forcing functions act 

Frequency Range and Increment for Generating Z Card 
m 

We recall from the discussion on mathematical formulation 

U, associated with Z pages 3 and 4, that the angular frequency, 

is equal to m • Step 2 calculations are therefore made for 

frequencies corresponding to m=0,1,2,...,MN. This range of 

frequencies is specified to the program as follows. 

• General Data Card - "30" card 

Columns 

3-4 

9-16 

Contents 

30 

Starting frequency in CPS 

This is the zero frequency with m=0. Since 

GBRP cannot make its calculation, however, 

using an identically zero frequency, a very 

small number, for example u)=10 

selected. 

-6 
may be 

17-24 

1 
T 

25-32 

Final frequency in CPS 

This quantity will be MN 

Frequency increment in CPS 

This quantity will be . 

The factor 2n in the latter two quantities is supplied auto¬ 

matically by the program which always computes in terms of angular 

frequency. 23 



Option Control Card - n20" Card 

Column 

21-24 

37-40 

Contents 

0003 This number signifies to GBRP 

matrix subroutines that the elements 

of Pm are to be read from a tape 

rather than generated as usual. 

The tape contains the discrete 

Fourier coefficients of the forcing 

function at each beam section. 

0003 This option designates a bypass of 

GBRP’s detailed editing (EDITA) 

of computed output for each 

frequency. These are onl,T inter¬ 

mediate results which may be 

accessed for review purposes in a 

more economical fashion (see 

seventh option on Data Card 2). 

VI, SAMPLE CALCULATIONS 

This section outlines and presents the results of two 

calculations performed as a test of the GBRP-FFT interface. 

The first problem considered was the one 

F. Henderson1 used to test the previous GBRP capability for 

transient response. For convenience we have reproduced the 

physical details. A diagram of the mechanical system follows. 
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M 

*7f rntt) htirw/m 

Figure 2 - Simple Harmonic Oscillator 

The transient force F(t) represents a constant 0.5 lb force 

acting on the system for two seconds. The mass M = 1.0 lb~^n 

see 
the spring constant k = 8.4 lbs/in, the damping constant 

c = 0.6 —^— . The natural frequency of this oscillator is 

0.4613 CPS. 

In the present approach the transient force F(t) is replaced 

by a force of period T as shown in the following figure. 

F 

Figure 3 - Transient Rectangular Force as Limiting Case 

of a Periodic Force With Period T-*-® 
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T must be of a duration sufficient to allow the effect of the 

periodic force on the oscillator to approach that of the 
original F(t). 

Some preliminary calculations were made as an aid to 

selecting a suitable value of T and to estimating the number of 

Fourier coefficients to include in the analysis, m these 

calculations we take advantage of the fact that for this application 

imple formulas for the Fourier series coefficients of the forcing 

unction and hence the oscillator response can be obtained We 

can then readily determine the oscillator response by automatic 

calculation, without, however, any recourse at this point to 

the larger program. These calculations using various values of 

T and various numbers of coefficients indicate that with T = 

20 (secs) and 601 coefficients in the Fourier series for the 

response, a good agreement can be obtained with the response 

solution calculated for the original transient force. The latter 

solution is obtained utilizing the formula 

where 

z(t) = -½ C ^tî-iKt-OlKt-T) ] 
% 

Fq is the magnitude of the force 

M is the mass 

Wq = k/M 

iKt) = l-e”bt[cos wt + ^ sin ut] 

with b = c/2M 

(40) 

U(t-T) 
0 , t < T 

1, t > T 

with t the force duration. 

A comparison of the two solutions for oscillator 

for time 0 to 4 seconds at a 0.04 second interval 

Figure 4. 

response computed 

is shown in 

26 



Figure 4 - Simple Harmonic Oscillator 

Response to a Transient Rectangular Force 

Comparison of Laplace Transform and Fourier Series Solutions 

27 
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Using the previous estimation for period and number of co¬ 

efficients, these data for the harmonic oscillator problem were then 

prepared for input to GBRP-FFT. This process can be facilitated 

through the use of standard GBRP data forms as shown on pages 29 

through 32. Computer runs were made using N = 2048, 4096, 8192, 

and 16384 in sampling the period T of the periodic forcing 

function (Figure 3). The sampled points of the time function 

were generated by the program internally. The response computed 

with the discrete Fourier coefficients is compared with the 

Laplace transform solution and found to be in good agreement 

(Figure 5, page 33). 

The input data for the run using 2048 sampled points of 

the forcing function are included in the following four pages. 

Data Card 1 

1 

Data Card 2 

2 8 16 

/2048 TÕÕ r 

20 26 30 34 39 48 53 60 62 64 66 68 

300 1 12 0.04 4.0 20.0 2222 

68 f 

ï ' 
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I I " t *tcu«lh 

Figure 5 - Simple Harmonic Oscillator, Response to a 

Transient Rectangular Force, Comparison of Laplace 

Transform and Discrete Fourier Transform Solutions 
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To check the functioning of the interface for a case 

involving several masses, we next made test computations of the 

response of the spring-mass system given in Figure 6, using the 

following data: 

. 1 ib-sec k . 2000 lb c - loo l^sec 
1 in 1,2 in 1,2 in 

, lb-sec' 
1 1 " I 

in 
; = 4000 C. , 
2,3 in 2,3 

200 ^-7-S-e- 

in 

= 2 lb-sec' . 
in 

; = 6000 c, n 
3,0 m 3,0 

= 300 
lb-sec 

in 

The system configuration and values of M and k used here are from 
0 

Biggs. To these data were added the damping constants whose 

values are assumed to be 5 percent of the respective spring 

constants with which they are associated. F(t) is the same 

transient rectangular force (page 25) used with the first problem. 

The undamped natural frequencies of the system as reported in 

Biggs6 are 4.445 CPS, 9.375 CPS, and 14.862 CPS. 

The initial computer runs for this problem were made with 

the period T (see Figure 3) equal to 20 seconds and utilizing 

300 coefficients of the discrete transform of the forcing function, 

as was done in the first problem. In successive trials the 

period was increased to 30 seconds and the number of coefficients 

increased to 500. The latter increase was made since in this 

calculation we attempt to keep all of the undamped natural 

frequencies of the structure within the range of frequencies 

included in the analysis. For example, from page 4 we can see 

that for T = 30, the frequencies (in CPS) associated with the 

Biggs, John M., "Introduction to Structural Dynamics," McGraw- 
Hill, Inc., New York, 1964. 
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Fourier series components are = m(i) = m x 0.05. If only 

300 discrete transform coefficients, corresponding to m = 299, 

were used, the highest frequency obtained would be 9.966 CPS 

and therefore the structure's highest frequency would be excluded 

from the range. 

The results of the calculation with T = 30 seconds and 

N = 2048, 4096, and 8192 are compare, in Figures 7, 8, and 9 

with an analytic solution obtained using Laplace transforms. 

The time range for which the response is shown is t = 0 to 3 

seconds at intervals of 0.04 seconds. Program data for the case 

N = ?048 precede the comparison of the results. 

Data Card 1 

1 

/1 

Data Card 2 

2_8_16 20 26 30 34 39_48 53 60 62 64 66 68 f 

/2048 IÕÕ ï 5ÕÕ 3 ï 2 0.04 ¡TTo 30.0 2 2 2 2 1 I 
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Figure 7 - System of Springs and Masses, Response to a Transient Rec¬ 

tangular Force, Comparison of Laplace Transform and Discrete 

Fourier Transform Solutions at Mass 1. 
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Figure 8 - System of Springs and Masses, Response 

Rectangular Force, Comparison of Laplace Transfo 

Fourier Transform Solutions at Mass 2. 

to a Transient 

m and Discrete 



« t I » I • I • 

Figure 9 - System of Springs and Masses, Response to a 

Transient Rectangular Force, Comparison of Laplace Transform 

and Discrete Fourier Transform Solutions at Mass 3 
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The graphs in Figures 4, 5, 7, 8, and 9 were obtained 

through use of the plotting facilities of the NASTRAN7 program. 

This operation was performed separately from the computer runs 

which produced the data sets. 

Table 1 records some computer running times for the second 

problem, run on the CDC-6400. 

TABLE 1 - COMPUTING TIMES ASSOCIATED WITH 

THE SECOND SAMPLE CALCULATION 

N 
Discrete Transform 
of Forcing Function 
by FFT5 (seconds) 

Complex Frequency Discrete Inverse 
Response by GBRP Transform by FFT5 

(seconds) (seconds) 
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