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INTRODUCTION 

This is the first semiannual technical report under Contract 
F30602-74-C-01 ^entitled Atmospheric Effects on Space Object Imagery. 
The report covers efforts during the period January 15, 1974 to June 1 
1974.   One object of the program is to study techniques for the computer 
generation of random wavefronts simulating atmospherically degraded 
light beams.   This material is intended to be useful in the computer 
simulation of restoration and predetection compensation of atmospherically 
degraded optical images, especially images of high flying objects such 
as satellites.   A second objective is to study angle of arrival fluctu- 
ations and high altitude temperature spatial spectra.   This work will be 
considered in a later report. 

In the design and construction of equipment to overcome the effects 
of atmospheric turbulence, it is often a difficult procedure to cneck out 
the equipment in the environment for which it is intended.   Large 
telescopes are often busy and ground-level propagation ranges are not 
always accessible.   For these reasons it is desirable to simulate the 
operation of such devices digitally.   In order to perform digital simu- 
lation, one must have as exact a representation of the turbulent atmosphere 
as possible.   This report concerns efforts to provide efficient computer 
simulation of atmospherically degraded light beams as a first step in 
simulation of a complete system. 

Some information is available for simulating atmospherically de- 
graded wavefronts.    It is believed that the phase variations follow 
approximately Gaussian statistics as do phase difference fluctuations 
[Clifford, 1971] [Bertolotti, 1968] and log-amplitude variations 
[Ochs, 1969], [Tatarski, 1971, p. 292].    It is further expected that the 
phase structure function will follow a +5/3 law with separation in the 
inertial subrange [Bouricius, 1970].   Further, predicted expressions for 
phase structure and correlation functions are known [Tatarski, 1971]. 
These items are sufficient to allow the generation of a set of randomly 
degraded wave fronts. 

In the present contract the objectives are to simulate random 
optical fields using two approaches, a random matrix approach and the 
Karhunen-Loeve series approach, and to examine the statistics of 
atmospherically degraded images using recently obtained stellar image 
data.   The random matrix approach has been used by others [McGlamery, 
1974], [Bradley, 1974] to generate random phase fronts, but the 
processes of generating the associated log-amplitude fluctuations and 
of simulating the fields for a light beam that has propagated downward 
along a vertical path have not been hitherto considered.   Neither has 
the application of the Karhunen-Loeve series to this problem been 
considered.   During the past quarter our efforts have concentrated on 
setting up and examining matrices of random numbers to assure that 
they satisfy the statistical criteria.   Work on the Karhunen-Loeve 
approach is just starting.   The work on the examination of stellar 
images has not yet «tarted. 
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In the present report the work on the generation of random -»hase 
matrices will be described first, followed by a derivation of the 
scheme for relating phase and^amplitude fluctuations.   Finally a b%ief 
discussion of the Karhunen-Loeve approach will follow. 

The procedure for generating matrices of random numbers with the 
desired statistics is quite straightforward.   The first step is to 
generate an ensemble of arrays of random numbers with normal distri- 
butions and uniform average spectra.   The second step is to compute 
the spectrum of each individual array, tailor these spectra to the 
desired average functional dependence, and transform back to obtain 
random arrays with the desired probability density and covariance. 

Some of the details of the process we used will now be presented. 
The first step was to obtain a set of arrays of uncorrelated random 
numbers.   These random number arrays consisted of matrices of 64 x 64 
elements which were (theoretically) samples from a Gaussian probability 
distribution.   These elements were produced by a machine-specific random 
number generator. 

To insure that there be no correlation effects between the elements 
of the array a random loading algorithm was employed.   In this algorithm 
two independent random number generators were used to generate numbers 
between one and sixty-four.   These random number tuples were used to 
choose a point in the array which was then filled by a third generator 
with Gaussian random numbers between -3 and +3.   This process was 
continued until the array was something more than half-filled.   The re- 
maining cells were then filled sequentially. 

The random loading scheme just described obviously has some degr : 
of redundancy due to the possibility of selecting the same point in the 
array more than once, but in the Interest of generating arrays in which 
there is no element interaction (correlation), this redundancy was felt 
worthwhile. 

The arrays were then tested for the desired statistical properties. 
This was accomplished by grouping the arrays by fives and doing an 
analysis of variance with two-way classification on each group.   This 
test assumes a model of the form shown in Eq. (1). 

(1) x1j s y + °1 + ßj + aij 

where xjj is the generic array element; y 1s the mean; aj, ßj, and aij 
represent respectively row effects, column effects, and row-column 
interactions or correlations.   Statistics were generated from the arrays 
enabling us to perform F-tests for significance of these effects.   No 
such significant effects were found. 
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The next step was to obtain the spatial spectrum of the Individual 
arrays and to adjust the power spectra to have the desired functional 
dependence.   This was accomplished using the Fast Fourier Transform (FFT) 
technique.   After the spectral components were found, they were put in 
phasor form giving the magnitude and phase of each component.   The mag- 
nitude was then multiplied by the value of the desired phase spatial 
spectrum for that value spectral component.   The phase spatial spectrum 
chosen was based on the Von Karman index spectrum with a ten meter outer 
scale.   This was available from work performed previously but was 
normalized to coherence length, r0, as discussed in Appendix B.   An 
inner scale much smaller than the aperture grid size was assumed.   The 
complex phase of each spectral component was saved for use later in 
generating the log-amplitude.   The modified spectra were then transformed 
back to the spatial domain.   The result was the desired set of random 
arrays with the proper phase correlation function and normal probability 
distribution function. 

After the phase fronts were generated and checked statistically, 
the associated log-amplitude fluctuations were considered.   The 
derivation of the procedure for relating the log-amplitude to the phase 
will now be presented.   The discussion uses the well-known complex log- 
amplitude representation.   We assume that the (random) phase of the 
light wave entering a receiving telescope is known, and that the region 
inside the telescope has no index fluctuations so that the free space 
wave equation applies, e-|(r) ■ 0.   The complex log-amplitude f(r) 1s, 
following standard procedure, divided into an unperturbed plane wave, 
-jkz, with constant amplitude, +&Q, and a correction, ^, due to the random 
fluctuation as in Eqs. (2).   The correction follows the differential 
equation in Eq. (3) [Tatarski, 1971, p. 223]. 

(2a) E(r) * e*(?) 

(2b) * = iQ - jkz + *, 

(2c)        «Lj = i + j* 

(3) -± + -f- - 2 yk 3-1 + kZe,(F) = 0. 
3xz      ayz 3Z ] 

Using Eq. (2c) we can separate Eq. (3) into real and imaginary parts 
giving two equations relating   Mr) and ^(r).   They are 

(4a) i*   +  i*   .   2 k §■ 
dx*        */ z 



(4b) i*   +   !*   . -2 k ff- 

The two coupled differential equations relating the 1og-ampl1* 'de 
and phase are easily solved.   Solutions are given 1n Eqs. (5). 

(5.)       ♦ - II *m cos(^ ♦ tp ♦ (<&-»' ♦ fiffy ♦ 9nn) 

(5b)      * - H ♦„, smfe ♦ igojr. + /(2a)2 + (2gn)2j z_ + 9 

They are in Fourier series form to facilitate matching to the computer 
generated random phase and log-amplitude arrays.   We note that the 
relationship between the phase and log-amplitude expressions 1s 
especially simple; the only difference is that cosines are replaced by 
sines. 

Equations (5) are more than sufficient for fitting the computer- 
generated solutions.   The summations cover the range -«»<m,n<«> while only 
the range   <m,n<« 1s required to fit a given random matrix; i.e.» two 
Independent solutions are possible.   Two such solutions are giver in 
Eqs. (6) and (7).   They differ by choice of the relations between the 
independent constants. 

(6a) 

(6b) 

(7a) 

(7b) 

The solutions represented by Eqs. (6) and (7) are chosen for a specific 
reason.   That represented by Eqs. (5) and (6) has finite phase and zero 
log-amplitude In the plane zs0.   The solution represented by Eqs. (5) 
and (7) have zero phase and finite log-amplitude at z*0.   The sum of 
the two solutions can be used to represent any Independently generated 
combination of log-amplitude and phase. 

mn n 

*m,n + *-m, -n 

6      ■ m,n "•-. -n 

¥m,n ■*-. -n 



The procedure thus suggested is to generate two statistically 
independent random fields for log-amplitude and phase respectively.   This 
procedure is especially appropriate for a plane wave propagated hori- 
zontally through the atmospnere a sufficiently long distance, L»2ira2/x; 
(a is the receiver apertu/e size).   For such ranges the cross covariance 
B£(j>(p) is negligibly small [Tatarski, 1971, Eqs. (36)-(38), (46)].    How- 
ever, the assumption of zero cross covariance for vertical paths where 
the effective range is limited is not so obvious. 

A second technique being investigated for generating the random 
phase fronts involves the use of the Karhunen-Loeve series [Davenport, 
1958].   Here the correlation function B(r,r') is automatically built 
into the functions because it is the kernal of the integral equation 

(6) jß(r.r') fn(r) dr = Xn yf') 

used to generate {f«}, the set of orthonormal functions.   There is 
further only a one-dimensional set of random numbers to consider, namely 
the random function coefficients in the series for the phase front.   One 
great advantage in the use of the K-L series is the combined statistical 
as well as functional orthogonality property of the functions. 

•. 
In the Karhunen-Loeve procedure the phase covariance derived 

from a Von Karmann index spatial spectrum was ussd.   An 8 x 8 element 
array square aperture gave sufficient precision for the lower order poly- 
nomials.   The procedure is quite similar to one used previously 
[Morel and, 1969], 

The procedure for generating the set of random phase fronts is 
then to generate the series of random coefficients., an, for each member 
of the set using a random number generator and sum at every point 1n 
the array.   Once the phase fronts have been generated, the random log- 
amplitude functions are generated as indicated previously. 

This procedure has the advantage that only a one dimensional set 
of random numbers needs to be generated per array, but has the dis- 
advantage that the series must be summed for eyery point in every member 
of every set. 

To summarize, two methods of generating random phase and log- 
amplitude fields are being investigated.   The first method generates 
a set of random arrays and tailors them so as to have the requisite 
probability distribution and covariance.   The second method generates 
a set of eigenfunctions having the correct covariance.   The series 
expansions for the phase and log-amplitude are then summed using random 
coefficients to provide one member of the set of wavefronts.   We are 
also studying the relationship between the random arrays and atmos- 
pherically degraded log-amplitude and phase fronts to assure that the 
computer generated arrays represent as accurately as possible the real 
atmosphere. 
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I APPENDIX A 

I I In this appendix the random number generation scheme mentioned 
I ) in the text is described. The random number generators are based on 
| I the power residue method (IBM 6C20-8011-0). This method consists of the 
I I following steps: 

1, Choose for a starting value any odd integer yQ. 

2, Choose a constant multiplier of the form x = 8t±3 where t is 
an integer such that x is close to 2b/2 where the machine 
word length is b bits. 

3, Compute the product xu0. This product is 2b bits long. The 
higher order b bits are discarded and the lower order b bits 
become the next number u,. 

In this manner the random numbers are generated according to the formula 

Vi = xv 
It is understood in the above discussion that the radix poirn. in 

the u^'s is at the extreme right of the word so that the miners are 
integers.   After generation however the radix point is moved to the 
extreme left of the word (by dividing by the maximum representable integer) 
to produce a number between zero and unity.   At this point the random 
numbers can be scaled to produce the required range of values, e.g., 1-64. 



APPENDIX B 

In this appendix we present the derivation of the expression for 
the spatial spectrum of the phase structure function. The situation 
considered has a plane wave propagating vertically downward through the 
earth's boundary layer where the turbulence structure constant is a 
function of altitude. The outer scale is also a function of altitude 
but this will be neglected because it has little effect on the resulting 
expressions. The object is to present an expression for the phase 
structure function spectrum normalized in a simple fashion; in this case 
normalized to the appropriate value for the coherence length, r . 

The basic expressions for obtaining the phase struction function 
spectrum have been given [Tatarski, 1971]. Combining Eqs. (8) and (9) 
on p. 243 and Eq, (15a) on, p. 230 and substituting for the relative 
permittivity spectrum $£(K) in terms of the refractive index spectrum, 
*n(ic), as in Eq. (Bl), 

(Bl)    *£(K) * 4*n(<) ■ 4 cj(n) *nQ(7), 

we have for the plane wave phase structure function spectrum 

(B2a)   FS(K) = uk
2 $no(K,0) |

L (l + cosf^^-jj C2(K) dn . 

The corresponding expressions for the phase structure function and 
covariance are respectively 

(B2b)      DS(P) = 4TT J  (1 - J0(KP)) FS(K) KdK 

(B2c)   BS(P) = 2* | Jo (KP) FS(K) KdK . 

In Eqs.  (1) and (2) n is the longitudinal variable running from trans- 
mitter to receiver and K is the magnitude of the transverse components 

of spatial frequency, K -JK2 + K{- .    (K   and n are in the longitudinal 
direction.) v   x      y z 

For spatial frequencies corresponding to fluctuations in the size 
range 5 mm to 5 mf for ranges in excess of 1 km, and for visible light 
we can replace the cosine term in Eq. (B2a) by its average, zero.   We 



further use the height variation of the index structure parameter, C(j(h) 
for well developed turbulence in unstable air [Wyngaard, 1971] 

(B3) 
o o h    ~4/3 

Thus, taking the source at a very large height and receiver near ground 
level we have 

(B4) FS(K) * *k2 *noOc,0) j   C2 (Ho) 
HQ+L-n -n r4/3 

dn 

where H0 is the height of the receiver and Cp(H0) is the structure 

parameter value at the receiver height, (n=L).   Performing the n inte- 
gration and substituting for *no(K»°) using the Von Karmann spectrum 
we have 

(B5) FS(K) 7T<2-3H0C^(HO)M-(1 + \-)        jx.033 :W*2 -11/6 

Taking the source much higher than the receiver, L + H0 » H0 and 
rearranging, we have 

(B6) FC(K) =  .033irk2  (3HjC2(Hj 4(142.)    + K2 

V nv o* 

-11/6 

where L0 is the outer scale and the factor, 1.077, is included to make 
the asymptotic value of the index structure for large separation, 

Dn(°°) * C«Lp'3. This allows convenient determination of Lg from 
log-log plot of Dn versus p: the break point occurs where the se] 
equals L0. 

separation 

Equation (6) is the desired spectrum.    However it will be more 
convenient to express it using the coherence length, r0, for normalization. 
For this we find the expression for the wave structure function appropriate 
to this situation.   The expression for the wave structure function spectrum 
is obtained from the phase structure function spectrum by putting the 
cosine term to unity in Eq.  (B2a); 
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(B7) FW(K) = 2,r2 *no(K,0) J   cjfo) dn . 

Performing the longitudinal integration gives 

(B8) FW(K) = .033irk2(3H0) C2(H0) -{ (if*)' ♦ K2 

0 

-11/6 

In the inertial subrange, K2 » (1.077/Lo)2, the associated structure 
function is 

(B9a) Dw(p) = 2 x .033*kZ(3Ho)C2(Ho) x ^j    (1-JO(KP))K"8/3 <JK 

(B9b) - 4 x .033,2 x (6/5)r(l/6) k2(3H )C2(H , 5/3 
p(n/6) 2b/3 °  n   ° 

(BIO) 6.88(p/r0)
5/3    . 

Combining Eqs.  (B9b) and (BIO) we have 

(BID rQ = (6.88/2.91k2(3H0)C2(Ho))
3/5 

It is interesting to note that the value for rp thus obtained corresponds 
to the plane wave value for horizontal propagation at the height of the 
receiver and over a path length of only three times the receiver height. 

normal ■ 
Substituting for k2(3H0)C2(H0) in Eq.  (B8) gives the desired 
ized form of the phase structure spectrum. pectrum, 

(B12) FS(K) = .245 r0'
5/3 (1.077/Lo)

2 + K2 
-11/6 

10 
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For many purposes the receiver is much smaller than the outer scale, 
(the outer scale being of the same order of magnitude as the height), 
For such cases the outer scale can be neglected, giving 

(B13) FC(K) = .246 r "5/3 K"11/3 

5 C 

Equations (12) and (13) are the main results of this appendix. 
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