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ABSTRACT

It was shown by Newell in 1962 that the extreme value and first
passage time distributions of various types of common Markov processes

asymptotically approach those for independ=nt random variables. In view

of the great simplification this occasions in the calculation f a number

of important properties of Markov processes, it is clearly of interest to
determine in some detail the conditions on both the time and space variables
under which this equivalence holds. In this paper we investigate and
establish these conditions for Markov processes described by the Fokker-
Planck equation and express them in simple analytic forms which are directly
related to the coefficients of the Fokker-Planck equa‘ion. To demonstrate
the usefulness of these conditions, we apply them to two representative
examples of Fokker-Planck equations, the Ornstein-Uhlenbeck process and

tne Montroll-Shuler model tor narmonic oscillator aissociation. It is

shown very clearly in these examples that the extreme value and first
passage time distributions, and thus the mean_extreme and mean first passage
times, of these Markov processes approach very closely those for independent

random variables at finite values of the time and space variables.

Key Words: Markov Processes, Independent Random Variables, Fokker-Planck
Equation, Ornstein-Uhlenbeck Equation, Extreme Valye Distributions,
First Passage Time Distributions, Mean Maxima, Mean First Passage

Times.




1. INTRODUCTION

Most previous work on the theory of extremes in probability theory
dea!. with independent random variables in discrete time.(]) Physical
processes, however, frequently involve dependent random variables in con-
tinuous time. 1t is thus of interest and importance to extend the theoiy
of extremes to dependent variables in continuous time. This paper is con-
cerned with such an extension to a specific class of Markov processes.

The theory of extremes is the study of the distribution of the ex-
treme values (maximum or minimum) of a random variable within a given time
interval. The distribution of extreme values is closely related to the
distribution of first passage times o the random variable to a prescribed
boundary.

Some properties of extreme value distributions for Markov processes

have been investigated previously.(z'e)

In Ref. 3, Newell discusses the
asymptotic extreme value distribution for one-dimensional processes, addressing
himself particularly to the question "as to which of the common types of
Markov processes give rise to extreme value distributions like those obtained
for independent identically distributed random variables."

The calculation of extreme value distributions and their moments
for Markov dependent variables is invariably a much more difficult task
than the calculation of these properties for independent randon variables.
It 1s reasonable to expect, however, that the extreme values of a Markov
dependent random variable within a given time interval themselves form a
set of independent random variables if the time interval is sufficiently
long. This assumption has been adopted by Gumbe1(]) and other workers.
Thus, for instance, when considering the problem of maxima of levels in
a river over a period of many years, Gumbel makes the assumption that the

set of observations of these maxima in a given interval of time forms a
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set of independent random variables if this time interval is sufficiently
long, say one year. This is certainly a reasonable assumption. Even
though the maximum heights of the river are strongly correlated variables
if observations are made within ten minute intervals, one would certainly
expect that this correlation has completely disappeared as the observation
interval is extended to one year. It is of interest to know how rapidly
these correlations decay in a Markov process so that one can calculate,
rather than guess, time intervals for which the assumption of independent
random variable behavior of the extreme values is valid.

A stochastic process with independent random variables can be
characterized by the simple functional form of the probability F(z,t)
that the process stays below ¢ throughout the time t. This form is
F(e,t) = exp [-2(£)t], where the function A(g) is related to the statistical
distribution of the random varjahles and is hence dependent on the detaiis
of the process. From this distribution, moment properties can be calculated.
The mean first passage time to ¢, for instance, is given by T](g) = [A(g)]'].
The mean maximum of the process is also simp1§ related to F(g,t). The pro-
bability F(g,t) and its moments for a Markov process are much more complicated
and in general difficult to calculate. After a sufficiently long time t
and for sufficiently large values of the variable ¢, the Markovian probability
function F(g,t) is well approximated by exp[-xo(g)t], the simple form
characteristic of an independent random variable process. The function
Ao(g) depends on the details of the Markov process but is much simpler to

evaluate than the exact probability F(¢,t). Approximate moment properties

can again readily be obtained; for instance, the mean first passage time

to ¢ is T,(g) = [xo(e)]']-
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It is thus of importance to determine conditions on both the time

and space variables for which extreme value distributions and their
moments in Markov processes approach the behavior characteristic of pro-
cesses of independent random variables, since caiculations are then
i greatly simplified. In this paper we investigate and establish such
conditioﬁs for the class of Markov processes which obey a Fokker-Planck
equation. Ve find such conditions and express them in forms which can
be directly related to the coefficients in the Fokker-Planck equation.
These conditions are then tested for two particular processes, namely
the Ornstein-Uhlenbeck (0.U.) process(7) and the Montroll-Shuler mode1(8)
for harmmonic osciliator dissociation in the high temperature 1im1t.(9’]0)
It is shown in these examples that the extreme value and first passage
time distributions of these Markov processes approach very closely those
for independent random variables at finite values of the time and space

variables.

In Section 2 we present the necessary definitions and general
expressions for first passage time and extremym value distributions and
their moments. In Section 3 results for independent random variables
are briefly reviewed. In Section 4 we consider the general Fokker-Planck
equation and establish conditions for approach to independent random
variable behavior. These conditions are tested on the Ornstein-Uhlenbeck

equation, for which detailed numerical calculations are presented in

Section 5, and on the harmonic oscillator dissociation equation in Section 6.




2. DEFINITIONS

In this section we define the functions and processes to be
studied in the body of this paper.

We limit our considerations to one-dimensional Markov processes
with random variables X(t) defined for continuous time. Let f(x, t|x°)dx
be the probability that X(t) lies within (x, x+dx) without ever having

crossed x = ¢ in time (L, t), given X(0) = x_. As will be seen below,

x
all quantities relevant to the theory of extremes can be expressed in

terms of the probability density f(x,t|xo).
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Define a new random variable

Z(t) =max {X(1), 0 < 1 <t} . (I1.1)

Then the cumulative distribution function, defined by

l 3
| Fle,t]x)) E‘rr dx f(x,tlxo) (11.2a)
i has the_ probabilistic meaning

] F(£,t[x ) = Prob {z(t) <elx(0) = x} (11.2b)

where x = r denotes a reflecting boundary; r may be finite or negative
infinite, with r < o £ The function F is useful when treating maxima
problems. Minima problems can be treated similarly but then ¢ < X ST
with r finite or positive infinite.

An important random variable is the time t when the process crosses

x = ¢ for the first time, i.e., the first passage time
T(g) =min {1|X(z) = ¢} : (11.3)

Since F(g.t|xo) is the probability that X(t) never crosses x = ¢ during
the time 0 < v < t, it can be related to the first passage time. From

Eqs. (II.2b) and (I1.3) we find

F(£,t{x,) = Prob {T(e) > t|x(0) = X} . (11.4)
Two more useful definitions are
: l
Y(eat]x)de = |5 Fle,t]x ) [de (11.5)

= Prob |¢ < Z(t) < ¢ + de|X(0) = x|

o(£,t[x )dt = - [%T F(E.tlxo)] dt (11.6)

= Prob |t <T (c) <t+dt]X(0) = x| .




The functions f, F, v, and % are Green's functions for processes
with arbitrary initial distributions. They can be averaged over any

initial distribution q(xo):

| F(e,t) = fﬁ dxo n(xo) F(g.t:xo) (11.7)
=Pmbh(d >t‘= mvbh(ﬂ <g‘

v(e,t) = f§ dxo n(xo) w(g.t!xo) = %Z F(e,t) (11.8)

f ofe,t) = ff dx  n(x ) +(e.t]xo) ="%E F(e,t) . (11.9)

Using these distribution functions one can now write down moments,
i.e., various mean properties, such as for instance the mean maximum of
the variable X(t) in a given time interval (0,t) or the mean first

passage time to x = ¢. We define the nth moments of Z(t) and T(&) by

, r n n, % n-1
Loat]x) = fr dg g wl(g,tlx ) = v + nf. d¢ ¢ [1-F(£.t|xo)](ll.]0)

Tn(glxo) E To dt t" o(g.tlxo) qfo dt ¢! F(&.tlxo) . (I11.11)

Moments with respect to an initial distribution n(xo) will be denoted by
Zn(t) and Tn(E). The quantity Z](t) is then the mean maximum of the
process in the time interval (0,t); the variance of the maximum in this
time interval is Zz(t) - Zf(t). The mean first passage time to x = £ is

T](i) and its variance is Tz(i) = Tf(&). The corresponding conditional

quantities are similarly defined.

We will also consider processes for which f(x.tlxo) dx is the
probability that the random variable X(t) lies within (x, x + dx) without
ever having crossed x = * £(¢ > 0) in time (0,t), given X(0) = Xq - This

case is of interest, for instance, in the study of largest deviations of

the random variable from equilibrium. A1l definitions given so far can
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be suitably modified to cover this situation. We define the random

variable

Y(t) = max §[X(c)],0 s 1 = t] (11.12)

as the greatest excursion of the random variable X from zero in the time
interval (0,t). The appropriate cumulative distribution function for this

problem is £

Fleat]x,) "’f dx f(x,t|x,) : (11.13)

The probabilistic definitions in Eqs. (I1.2b) and (II1.4) hold here with
Y(t) as defined in Eq. (11.12) and T(:) given by

T(e) =min <X () = ¢ g : (11.14)

Equations (I1.5) - (I1.9) and (I1.11) remain unchanged except for the
replacemant p o - ¢ in the lnwer limits of inteqration. In place of

Eq. (I11.10) we now have

lm A = dg gn-][] - F(,t x )]
Y (t]x,) fo dg £ v(g.tx)) "[‘ (()11.15)

with F(g,t]xo) defined in (I1.13), the quantities Y](tlxo) and Y](t)
are now mean extrema; T](g|x0) and T](g) are mean first passage times to
x = ¥ £, It should be noted that in the frequently occuring situations
in which F(e,t) is an even function of &, the moments Tn(C) and Yn(t)
here are identical with the moments Tn(i) and Zn(t) discussed earlier with
a reflecting boundary at r = 0. .
We restrict our discussion to Markov processes in continuous time.

We believe that many of our conclusions are valid for a large class of

master equations of the form

%f f(x,t|x0) =./HX'K(x,x')f(x',t|xo) (i1.16)

where K(x,x') is the transition rate from state x' tu state x.
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However, we will concern ourselves only with a special case of Eq. (II.16),
namely, the Fokker-Planck equation

g? flx,t]x,) = %; - my(x) fx,tix ) + %—g;—[mz(x) f(x,tlxo)ﬂ

(11.17)

with fhe initial condition f(x,0|xo) = ¢(x - xo) and appropriate
boundary conditions to be discussed in Section 4.
3. RESULTS FOR INDEPENDENT RANDOM VARIABLES

Since it is one of the objectives of this paper to compare the
results for extreme value distributions of Markov processes with those for
independent random variables, we collect here the relevant results for

1, 1)

the latter case.( The statistics of extremes for independent random

variables are traditionally dealt with in terms of variables defined for

dis.ret> times. We will thus state results in terms of processes in

discrete time and then take iimits to ccntinuous time where apﬁropriate.
Let X]. XZ’ K '8 Xn be n sequential observations of a process.
The Xi's are taken to be identically and continuously distributed

independent random variables. Let Z(n) be a new random variable defined by
Z(n) =max X , 1 smsn| (111.1)

in analogy with Eq. (II.1). In further analogy with the equations in

Section 2 we can define probabilities and probability densities such as,

for example
F(¢, n) = Prob |2(n) < ¢ (111.2)
( (cf. €q. (I1.7) and
v(c, n) e = [ Fie, n)ae
= Prob g < 2(n) < ¢+ def (111.3)

-8-




[cf. Eq. (I1.8)]). The moments can then be determined as in Section 2.

Here the probabilities and probability densities are independent of the

initial condition since we are dealing with independent random variables.
Let P(x) be the cumulative distribution function for each x, and

i
p(x) be its probability density function:

P(x) = Prob{X < x} (111.4)
d
p(x) = % P(x) . (I11.5)

The function P(x) [or p(x)] is all that is needed to determine every
property of the process. Thus, for instance, the probability F(¢,n) that
the maximum of n observations is below ¢ is equal to the probability

that each ut the Xi, i=1, ..., n, is less than ¢ so that

Fgn) = [P(g)]" (I11.6)
from vhich it follows that

vieur) = nlP(e)1" p(e) .- (111.7)

Mc ents can alc. ‘2 given immediately. L:t At be the time between obser-
vations and let t = nat be the time of the nth observation. Time is
i-*troduced here so that comparison with continuous time processes can be
mzde later; we could of course continue our discussion in terms of

" bservation" or "step number" and never introduce time. The mean

first passage time to x =g [cf. Eq. (II.11)] is now given by the infinite

series
T(6) = at{[1 - P(e)] + 2 P(e) 11 - P(e)]

+3P2(e) [0 - P(e)] + ..

= At

T-P(e)

(111.8)




For the independent process we define an upcrossing rate i{¢)
so that a(£)at is the probability that the process crosses the level x = ¢

from below in time At. Then
ae) at =1 - P(g) (111.9)

and the probability F(e¢,t) that the process stays below ¢ throughout

the time t = nat can, instead of Eq. (II1.6),be written as

Fe,t) = [1 - a(g) at]" : (111.10)
In the limit of many observations such that n—x=, At—=0, nat = t,

Fle,t) e M (0Dt (111.11)

In this limit, the first passage time moments are then given by [cf. Eq.
(11.11)]

T (g) = = (111.12)
x(g)

and the mean maxima are [cf. Eq. (11.10)]

Zn(t) =r" 4 n i dg Cn'][l—e'A(C)t] . (IT1.13)

The results of Eqs. (II1.11) and (I11.12), summarized as

Fle,t)—e t/Th(8) (111.14)

are characteristic of independent processes. The form of A(&) or T](C)
of course depends on the particular process one is considering, 1i.e.,
on P(¢).

Equations (I11.11), (I11.12), and (I11.14) also hold with some

changes in definitions when one considers first arrival at x = e, In

-10-




place of £q. (111.4) one now has

P(x) = Prob}{X,| < x| : (111.15)
The quantity x(¢) at is the probability that the procecs crosses the
level x = ¢ from below, or the level x = -¢ from above, in time at. The
moments Yn(t) now are

Y (t) = n Sm d " 1-en (80 . (111.16)
0

Depending on the form of the cumulative distribution function
of Eq. (I11.4), and hence of the mean first passage time T](g), one obtains

in the limit as t—=«(equivalent to n — =) one of the three familiar

stable asymptotic distributions of F(g,t)(]]']z). The most familiar of
the three, known as the asymptotic distribution of the exponential classs]3)
is

lim Fe,t)-e"® (111.17)

t—e—oo
with

le a, (¢ - en) (111.18)
and a8, defined by the relations

. 1, L, 9P(x)
Plp, ) = 1 = ey, =n =g (111.19)
X =8,

This asymptotic distribution holds for a wide class of probability
density functions p(x) for which, as x—=

p“(X) ~pw (X ~P""(x)

m p-r(—)-lx m* ce . . (”1.20)

ail-




Exponential and Gaussian density functions are members of this class.

The quantity B, is the expected extreme value o' X and becomes equal to
the most probable extreme value when n—= . The quantity an is a measure
of the variation of B, with n. The mean first passage time to x = ¢

corresponding to the asymptotic distribution (II1.17) is

T,(¢)

at

-e°Z ! 74
~N-e ~e" for large Z (111.21)

[t has been shown(3'4)

that in the limit f—« t—= the distribution
F(e,t) for Markov processes tends to the asymptotic independent random

variable form, Eqs. (II1.11) and (I11.12). We will show in this paper

by detailed analysis of some specific Markov processes that first passage

time and extreme value distr‘butions and moments are given to a very good

approximation by the indep' ndent variable formulae also for finite times

ana finite boundaries. The uriteria for tiiis ayrecuient and tiie ervuis

involved will be discussed in detail in the next few sections.
4. SOLUTIONS OF THE FOKKER-PLANCK EQUATION WITH BOUNDARIES
In this section we formulate the solution of the Fokker-Planck

equation

%{ f(x,t|x0) = %; :—m](x)f(x,t|x0)+% %; [mz(x) f(x,t|xoﬂ}

(Iv.1)
in the presence of boundaries. In Eq. (IV.1) the coefficients m](x) and

mz(x) are given by the conditional expectation values of the change 4X

of the random variable X in time at:

E[aX]X(t) = x] = my(x) at + ofat)

ELX)Z[X(t) = x] = my(x) at + ofat) ' (1V.2)

x] = o(at), r =2

EL(ax)"[X(t)

-12-




The probability density also satisfies the backward Kolmogorov equation

(x.t|xo) . (1v.3)

There exists a large literature dealing with equations of the
form of €q. (IV.1). Most of the literature can roughly be divided into
three (overlapping) categoriesgla) One category(7’]5’]6) deals with the
Ornstein-Uhlenbeck (0.U.) process [m](x) = -ux, mz(x) = 2D, p and D
constant] as a description of Brownian motion, where the velocity distri-

bution of Brownian particles is the distribution of interest1 The 0.U.
equation is solved, but not for extreme value distributions, and only
specialized boundary conditions are considered. The second category(2'6’17'22)
deals with first passage time or extreme value distributions of diffusion
processes. In this group are ne papers which are Concerned with formal

rather than detailed solutions of Eq. (IV.1) with general boundary conditions
and with asymptotic properties of these distributions. Finally, there

are many papers concerned with specific applications that involve various

particular forms of Eq. (IV.1), for which we only give a few typical refer-

ences.(9’23'25) Of all these many papers only the work on the Fokker-

Planck equation described in refs. 3, 4 and 5, deals with the problem of
the asymptotic equivalence of the extremum properties of the F-P equation
and independent random variable processes. The recent numerical work of
Keilson and RL:S(ZG) on passage time distributions for the 0.U. process is
also related to the calculations presented here.

~ numter of different mathematical techniques have been used to

solve E3. (Ii.1) and to find properties related to f(x,t[xo). The two most

! We sncw in Appendix A that the 0.U. process is equivalent to a stationary

auto-regressive process of first order(in the terminology of time series

analysis) under the assumption of continuous time and delta correlated
Gaussian noise. :
«73-




(18,19,26) (3,20)

common ones, are Laplace transforms and eigenfunction expansion.
The former is inconvenient for numerical work because of difficult inverse
transforms that must be performed, and becomes tractable only for certain
specialized boundary conditions. We therefore chose the method of eigen-
function expansions.

Equation (IV.1) is a parabolic partial differential equation whose

-olution can be expressed as the eigenfunction expansion

U (x) U
"(X)Nk"(x°) ekt . (1v.4)

f(x.tlxo) = ZE o (x)

Here the weight function o(x) is the equilibrium solution of the Fokker-
Planck equation (IV.1) with or without reflecting boundari e, but without

absorbing boundaries,

2m, (x")
. 2h(a) g o
D(_X) & WGXD {g dx m] (IV.S)

with h(a) determined by the normalization condition
S p(x) dx =1 ’ . (Iv.6)
a

The constant a ‘s left undefined at this point, and will be chosen later
to conform to the particular boundary conditions to be considered. The
eigenfunctions Uk and eigenvalues kk satisfy the differential equation

%

] a2, (x) du, (x)
2—m2(x) T+ m](x) -5 ¢ e Uk(x) =0 . (1v.7)

In addition two boundary conditions for Uk(x) must be specified. The
normalization constants Nk also depend on the boundary conditions.
To deduce some properties of the eigenvalues Xk, it is convenient to 3

rewrite Eq. (IV.7) in the self-adjoint form

-14-




q dUk(x)
a;'a(x) —a | * A e(X) Uk(x) =0

o(x) = 5 my(x) o(x) . (Iv.9)

Since this equation is of the Sturm-Liouville type, the eigenvaiues Ak
are real and non-degenerate. For m2(x) > 0, which is required in order
that the F-P equation (IV.1) describe a physical system, the roots are

non-negative and

Ao < A] < Az < ... . (Iv.10)

a) Reflecting boundary at x = r, absorbing boundary at x = £.

We impose a reflecting boundary condition at x = r, where r may
be finite or negative infinite. For definiteness we consider here maxima
problems; for minima problems r is finite or positive intinite. The

boundary condition is

(y [0 '
= Xot]x )] -my(x)f(x,t]x s 4
O flx.t] o)] T OOF(x,tfx ), = 0 (Iv.11)

for all t . 0. This condition insures (provided m and m, are physijcally

reasonable) .'at the process is conservative, i.e., for ¢ = =
Cx ‘(x,tlxo) =] 4 (Iv.12)

The second bouniary ccndition is obtained directly from the definition
of f(x,tlxo) dx given ir Section 2 as the probability that the random

variable X(t) lies within (», x + dx) without ever having crossed x = ¢

in time (0,t), given X'0) = X,+ We can thus impose the absorbing boundary

condition

f(x,t]xo)l z 0 . (Iv.13)
X=£

-15-




It should be stressed here that the condition at x = ¢ des not necessarily

imply the presence of a physical boundary. It simply represents the value

& of x at which we "watch" for the first Passage, or crossing, of the

random variable X(t). Tra initial value X, of X(t) is bounded by r < Xy < £.
“Ciotnese taung: Jocarnitions we take a = p ag the lower limit

for the ra-m:ii,ar, ¢ equat.on (1¥.5). The normalization constants Ny

in Eq. (IV.7) are a4ven by

&
dk,me = ;‘dx o{x) Uk(x) Um(x) ) (Iv.14)

The boundary conditions on the eigenfunctions are

dUk(x)
O(X) T yer =0 (IV.]S)
o(€) U (e) = 0 : (1v.16)

b) Absorbing boundaries at x = i,

We now consider the case of symmetric (about x=0) absorbing bound-

arfes at x = t;. The boundary conditions are.

f(x.tlxon = 0 (1V.17)
x=t£

and the normalization constants Nk are
Gk,m Nk = fc dx o(x) Uk(x) Um(x) (Iv.18)
3= - = in Egs. (1V.5) and (Iv.6). The boundary conditions on the

eicer-unctions are

a(%€) U.(tg) = 0 . . (Iv.19)
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c) First Passage Times.

To obtain first passage times for the boundary conditions
considered above we utilize the backward Kolmogorov equation (IV.3). The
first passage time moments Tn(clxo) satisfy the differential difference

equations, obtained from kEq. (1v.3),

T (Elx ) =1
d?1 (elx ) a1 (51x,)
2Mole) = Tt M) g s T (8l
0

(0 1,25 =) (1v.20)

(27)

with appropriate boundary conditions. For first passage to x = £ with

a reflecting boundary at x = r, the boundary conditions on Tn are

Tn(Clxo)I " = () (Iv.21)
v
d =
ax—Tn(EIXo)I ) =0 . (IV.ZZ)
0 Xy="
For first passage to x = fc.z
T (Elx )l =0 . (IV.23)
n 0 3
xo-*g

Rewriting Eq. (IV.20) in self-adjoint form and inteqrating twice yields
E; 2
r dz
rn(ﬁlxo) ' 51;7'.£ n Tn_](EIY) o (y)dy (1v.24)
0

X

with ¢ = r for boundaries at x = r, ¢(case 4a),and ¢ = 0 for boundaries

2In the interest of simplicity, when dealing with tvo absorbing boundaries
we will henceforth assume that m](x) is odd and mz\/) is even.
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at x = ¥g (case 4b).

To obtain the mean first passage time T](C) for the initial distri-
bution n(xo) = p(x = xo) we multiply Eq. (Iv.24), with n= 1, by o(xo) and

integrate between the boundaries. With boundaries at r and &,

’ 2
T () = j;[—"iz—l?(%r—u— dz (1v.25)

where

Z
x(z) Ef o(y)dy : (1v.26)
0

With boundaries at t¢,

T,(¢e) = SC %’ dz (1v.27)

fquation (IV.25%) reduces to tq. (1v.</) when r = U, as notea earlier.

d) Asymptotic Results.

We now present asymptotic results for the cumulative distribution
functions F(g,tlxo) and F(¢,t), the first passage time moments Tn(i), and
the extremum moments Zn(t) and Yn(t) for the Fokker-Planck equation dis-

cussed above. It is useful to define new functions Ak(g) and Bk(g) by

) ES;O ()0, (x ek (1v.28)

Fleat) = 2 B (e)et (1v.29)

from which it follows that [see Eqs. (II.2a), (I11.13) and (IV.4)]

£
Ak(g) = N?](—E:T {dx D(X) Uk(x)’ (IV.30)

with b = r or -¢ depending upon the nature of the boundaries.
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We consider in this paper only initial probability densities n(x) which

are identical with the equilibrium weight function o (r) defined in Eq.

(1v.5). It then follows that

£
By(e) = Ale) [ ax () o) - N (AR . (w3

i) Cumulative Distribution Functions

For large ¢, AO(E)-*O. With the proper choice of normalization,
Uo(xo) —1 for x << ¢, and No(g) —~1. In these limits, indicated by the
symbol ~, with one reflecting and one absorbing toundary it follows from

Eqs. (Iv.30) and (1Iv.31) that

oo

Ao(g)-f dx o(x) = 1-[ dx o(x) (1v.32)
Fig &
and
o £ o]
~ d =l - . Iv.353)
B, () Jr Xo(X)] l J£ x o(x) (1v.33)

With absorting boundaries at x = tr one finds

£ o
Ao(§)-j dx p(x) = 1- ZI dx o(x) (1v.34)

-g £

and

& 2 T 2
Bo(g)-l:I dx o(X)] = [1- 2 I dx p(xi ' (1v.35)
=€ £

It now follows from Eqs. (IV.28) and (1V.29), for large ¢ and t, independently of

boundary conditions and initial conditions, that

F(a.tlxo)~F(a.t)~e"°(‘)t (1v.36)

(3-6)

a result which has been derived previously.
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Since Bk(g) >0 for all k and ¢ [cf. Eq. (IV.31)] while Ak(E)Uk(xo)
may be positive or negative, one can be more specific about the approach
to asymptotic behavior of F(£,t) than one can for F(&,tlxo). From the

initial condition
' = &
Flevt = 0) = 2 B(6) = [ axol0) =cle) (1v.37)
k=0 b
and Eq. (IV.10) and Eq. (IVv.29) it follows that for all ¢ and t

Bo(&;)e')\o(&;)t < F(e,t) se(e) e'xo(k")t . (1v.38)

Hence Eqs. (1v.33), (IV.35) and (1v.37) imply that, for all time: t,

Fle,t) = e XolE)t (1v.39)
for ¢ sufficiently large so that

J“p(x) dx << 1 . (1v.39a)
£
.t should be noted that the condition (IV.39a) implies

B, (6) = e(e) =1 ' (1v.39b)

from v ‘ch (IV.39) follows immediately.

The relations (IV.36) and (IV.39) are identical in form with
F(¢,t) €9~ independent random variables as given .n Eq. (ITr.1). 1t is
in .nis sense that the extremum properties of Markov processes approach
chose of independent processes, even for finite values of the variables.
For the Markov process, as is the case for independent random variables,

the specific form of XO(E) depends on the details of the process under

consideration.




ii) First Passage Time Moments

F:rom Eqs. (1i.11) and (Iv.29) it follows that the first passage
time moments are given by

< B ()
Ti)=nt 2 X (1V.40)
k=0 rp(¢)

Asymptotically, when Eqs. (J¥.39) and (IV.39a) are applicable, this reduces to

n!
T(e) = — (1v.41)

Ao (€)

which is identical to the result of £-. (I11.12) for independent random
variables. In particular, Ao(g) is again the reciprocal of the mean first

passage time to £ or *g, depending upon the boundary conditions. It should

be noted that for fixed £, £q. (IV.41) is more accurate as the order n

of the moment increases since the ratio of the (k + l)th to the kth term
in the sum (I1V.40) decreases with incr2asing n. Inis is a consequence

of the fact that the accuracy cf the approximation (iV.39) improves for
fixed ¢ as t increases. This is an importang observation for both Markov
and independent random variables since the mean first passage time by
itself is a verv inaccurate measure of the‘time dependence of any process
with an exponential cumulative distribution of the form (IV.39).

Indeed, in the asymptotic limits where (IV.39) and hence (IV.41)

are valid, the dispersion of the mean first passage time is unity, i.e.

i (T 2V,
im 2(&) - T](E) T](t:) 1 . (Iv.4a)

E-—om

The utility of these results [Eq. (IV.40) et. seq.] lies in the

simplicity with which one can calculate \o(g) = ]/T](g) from €q. (1v.25)

or £q. (IV.27). This in turn permits one to obtain very readily the
asymptotic distribution function (IV.36) and (IV.39).
-20-




iii) Extremum Moments

It is more difficult to make general statements about the
asymptotic behavior of extremum moments than of first passage time moments.
The latter involve integrations over time of a function with a simple time
dependence which is known for all t. On the other hand, it does not seem
possible to establish an equation for F(¢,t) analogous to Eg. (Iv.39),

i.e., one involving £ Jnly via xo(g), valid for all ¢. Even if such a

relation were to exist, it would be necessary to determine the analytic
form of Ao(g) for the specific process under consideration in order to
carry out the required integration over .

It is nevertheless possible to conclude that for t 2 tc,with tc

defined below, the mean maximum and higher moments are approximately given by

Z(t) = " 4 s de g"“[Le"‘o(“‘] (Iv.42)

v

i.e.,that for t 2 t_, the distribution F(¢,t) in Eq. (II1.10) can be replaced
by the asymptotic form exp[-xo(g)t] averaged over the initial distribution
o(xg). The time t. is given by the relation °
t. = T](Eo) = XSTE;T (Iv.43)
where £, is the smallest value of & for which the condition (IV.39a) holds.
We assume here thnat Ao(g) is a monotonically non-increasing function of ¢,
which would appear to be true in physically interesting cases. Equation
(IV.42) can be justified as follows. If t 2t then for ¢ << A it
fo'lows from the definition of F(¢,t) in Eq. (II.7) that F{g,t) << 1.
Therefore, F(c,t) maces a negligible contribution to the integrand g"'][l - F(e,t)]

of Eq. (I1.10). The detailed form of F(¢,t) in this region of integration




s thus unimportant. It ‘: only when % 2 ¢, that the form of F(&,t)

is important. With &0 defined in Eqs. (IV.43), (1V.38) and (1V.39)

then allow us to replace F(£,t) with its asymptotic form. Hence if

tet itis again sufficient to know only 0(f,) = 1/T](£) to obtain the
mean maxiaum and higher moments. It should be noted that for fixed t 2t ,
the first moment Z](t) obtained from the asymptotic form (IV.42) is expected
to be more accurate than the higher moments Zn(t), n >2. This is because
the largest contributions to Z](t) come from small values of ¢ where
exp[-xo(a)t] << 1,50 that errors introduced through use of the asymptotic
form are less important than in the evaluation of the higher moments.

It should also be observed that tur large t the mean maximum Z](t) is a
good measure of tne distribution of maxima. It can readily be shown via

Eq. (IV.42) that the dispersion of the maximum Z](t) tends to zero, i.e.

1/2
iﬂm[(zz(t) . Z](t)z)/ll(t)Z] =2 . (1V.44)

This ;5 “n marked contrast to the mean first passage time T](E) which, as
shown by . 5 dispersion [Eq. IV.41a] is not a good measure for the distri-
bution of first passage times in the limit as - =.

The asymptotic approximations to the extremum moments Yn(t) for

ta t, are given by Eq. (IV.42) with r = 0.

5. THE 0.U. EQUATION
In order to make some progress beyond the above formalism, it
is necessary to consider some particular Fokker-Planck equation. For our

(7)

first example we turn to the Ornstein-Uhlenbeck (0.U.) equation
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o) o) [
3T f(x,tlxo) = S5 [uX f(x,t,xo) +D —— f(x t|x ) (v.1)

where the general coefficients ml(x) and mz(x) of the F-P equation
(IV.1) now take the form m](x) = - ux, mz(x) = 2D with 1, D constant.

After defining the dimensionless variables
ut—s1 (v.2)
(w20) /% y (v.3)

we can rewrite the eigenfunction equation (IV.7) as

du, (y) au, (y)
— - Yy + 20, (y) = 0 (v.4)
dy dy

where the eigenvalues A of Eq. (Vv.4) are dimensionless ones related to
these 32 83, (.1 L M 'Ak/“' A1l variablcs cnd functicns from here
on are understood to be in dimensionless form, even when the same symbols
are used for them as in earlier sections. The weight function p(y)

normalized with respect to y is

2
e Y

o(y) -\7: 'r—-——qr- (v.5)
where the value of a depends on the boundary conditions.

We now consider the solution for each type of boundary condition
separately.

a) Reflectiny Boundary at y = r, Absorbing Boundary at y = ¢.

The solutions of the eigenfunction equation (V.4) with boundary
conditions (IV.15) and (IV.16) are combinations of confluent hypergeometric

functions: (28)
) 2 ryM(-?—? 2) M(J, A—; ) _yz)
_ k 1 2 ’ 7 - ’ ’
Uk(Y) = M(‘ _2 ’ '2".Y )+ : Ak ! 2 (V.6)
(z 7 iz )

e

_ .



The eigenvalues are obtained numerically from the boundary condition (IV.13)
as will be discussed below. Our choice of normalization makes the lowest
eigenfunction Uo(y) -1 for any finite y as §—=.

Equation (V.6) simplifies in a number of special cases. When r— - =

the eigenfunctions reduce to(28)

where My) is the gamma function. For the special case r —- = and £ = 0
the eigenfunctions are the odd Hermite polynomials, Uk(y) = H2k+](y), and

the eigenvalues are the odd positive integers, A = 2k+1. In this case

the full probability density function f(y,rlyo) can be written in closed

form as(zg)

2

r a2 . -1\
-e

2
(y*yge )
- exp |- -?Tt;:?;g—

with -= <y < 0. The cumulative distributioa function is

-y el
F(C’O,Ilyo) = er‘fL-l—g—_?-T—)']—/'é] . (v.9)
-e

If r — -= and £ — = the eigenfunctions are all the Hermite polynomials,

Uk(y) = Hk(y), and the eigenvalues are the nonnegative integers, A = k.(28)

The probability density function in this case 15(29)

-1\2
-1/2 ®
flyselyy) = [0 - e e [((i]_’;&:?)l_]
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and the cumulative distribution function F(g~ow.x|yo) is of course unity.
When r = 0, the second term on the r.h.s. of Eq. (vV.6) vanishes.

If in this case ¢—=, the eigenfunctions are the even Hermite polynomials,

Uk(y) = HZk(y)’ and the eigenvalues are the even nonnegative integers,

N * 2k.. The probability density function is as in (V.10) with -y  re-

placing Yor and the cumulative distritution function is again unity.

b) Absorbing boundaries at y =

The solutions of Eq. (V.4) with boundary conditions (1v.19) are

either even or odd functions of y:
Upy () = M( XZk, 1y ) Jk=0,1,2,..., (v.11a)

= 0,1,2,... : (v.11b)

1 e 32
Uppnr (¥) = y"(z =3 z'y) » K

Aaain Uo(v) —~1 as f--=. The eigenvalues are obtained from the conditions

Upp (g) = Uppyy(e) = 0 Lva)

The odd eigenfunctions do not contribute to the cumulative distribution
function F(g,1) with o(y) as the initial distribution, and they also do not
contribute to F(g.r|y°=0). When t— =, the eigenfunctions and eigenvalues
are the same as those of the r — -, g—= Case.

Expressions for the mcan first passage time T](g) in terms of the
auxiliary function x(z) of Eq. (1v.26) can readily be evaluated for the
equilibrium weight function >(y) of Eq. (V.5). They are:

£
T](g) = T—Tlé;;—F j dy exp(yz) (erf y - erf r)€ (v.13)

r

for a single absorbing boundary, and

%
=\/F'S; dy exp (yz) erf2 y (v.14)
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for two absorbing boundaries. Note that Eq. (V.14) is
identical to £q. (V.13) with r = . When ¢ is very large, asymptotic

expansion of £q. (V.13) y‘e]ds(3)

2
T0) VA - erf ) 8L . (v.15)

c) Results and Discussion

To obtain the desired results for more general boundary conditions
on the approach of the Markov properties to those of independent random
variables it is necessary to calculate numerically the eigenfunction Uk(y)
and the eigenvalues Mo These calculations were performed on a Burroughs
6700 computer and the plotting was done on a CDC 3600 computer. In Tables
I through IV and Figures 3 through 7 ~e present a representative sample
of the extensive calculations that were carried out. The complete set of
calculations is available upon request.

The quantities of main interest are tne eigenvalues,since all
subsequent results depend upon them. Since o(y) is non-zero for all finite
y, the search for the eigenvalues reduces to finding the zeroes of the
eigenfunctions of Sections5a and 5b. A "bisecting search" method was
used to obtain the first four eigenvalues as a function of the absorbing
boundary ¢, for various values of the reflecting boundary r and for symmetrical
absorbing boundaries. The results for some representative caces are given
in Tables [ to 1II. It should be noted that the ratio AO(C)/A](C) decreases
rapidly with increasing ¢. For ¢ = 1, this ratio is already of 0(]0’1)
for all the boundary conditions studied by us. It is of course this rapid
separation of the lowest and next eigenvalue with increasing ¢ which causes
the asymptotic results to hold to a very good approximation for finite

values of the boundary value ¢. It is also important to note (see Table IV)
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o

that the condition (IV.39a), i c.a = I o(y)dx << 1, holds for all values

£
of £ 2 1.

Results for the cumulative probability distribution F(&,t)
of Eq. (IV.29) are presented in Table IV for reflecting boundaries at r = 0,
r==-1,and r = - = for various times kox. As can be seen from the equations
and discussions inSections 5a and 5b, the cumulative distribution function
F(¢,t) for r = Q with an absorbing boundary at y = £, is identical to
F(£,t) for symmetrical absorbingboundariesaty = ¥ £. The entries in the
first row of Table IV thus pertain both to the case y = r =0, y = £ and
to the case y = ¥ £. The results presented in Table IV and all subsequent
ones discussed here were obtained by using the first four eigenvalues
Ao(g) through A3(¢).

The asymptotic cumulative distributions F(C,t)-a—exp[-xo(ﬁ)x],
£a. 1v.39), are 3lsn nresented for comparisons in Tahle 1V. The “"exact"
distributions, obtained with the use of our eigenvalues A, through A3, and
the asymptotic distributions exp[-},(£)7],are quite close in value (to within
15% - 20%) already for ¢ = 1, regardless of the boundary conditions. For
€ 23 they are essentially indistinguishable.’

Results for the mean first passage time and mean extrema are shown
in Figures 1-6. Figures 1, 2, and 3 display the natural logarithm of the
mean first passage time T](E) for symmetrical absorbing boundaries as
discussed inSection fband for reflecting boundaries with r = -1 and
r = - as discussed idi\%sioqhe solid curves are the exact mean first

passage times obtained from numerical integration of Eq. (V.13). It is

It should be noted that the values of F(1,1) may have a non-negligible
error for snhort times due to the truncation of the expansion for F(f,t)
‘ after four terms.
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of interest to note that the mean first passage times obtained from the

first four terms of Eq. (Iv.40) agree closely with these exact results.

The dashed curves are the independent random variable approximation ]/zo(:) = T](ﬁ).

For ¢ > 1 this approximation gives results which are extremely close to
the exact T](ﬁ) in all cases. The dotted curves represent the asymptotic
expansion (V.15) of Eq. (V.13). It is rather a poor approximation for small

values of &, as expected, but also becomes quite accurate for ¢ > 1,

We have also evaluated the dispersion of the mean first passage
time, (T2 - le)]/z/T]. It is approximately unity for all values of €.
This extends to small values of £ the asymptotic result (IV.41a) on the
dispersion of the mean first passage time for the general Fokker-Planck
eqdation. This is an interesting and disturbing result. From it one learns
that the mean first passage time T](g) is not a "sharp" measure,and one
needs really to calculate the full first passage time distribution, Eq.

(11.9),

The mean extremum Y](I) as a function of time are shown in Fig. 4.

By extremum,we mean here the greatest excursion of the random variable Y

above or below y = 0. In Figs. 5 and 6 we display the mean maximm\Z](x)

as a function of time for processes with reflecting boundaries at r = -1 and
r = «», where by maximum we refer to the greatest excursion of the random
variable y above y = 0. The dashed curves are the approximate first moments
Z](T) computed from Eq. (IV.42). The solid curves are the exact results,
averaged over the initial conditions, obtained from Eqs. (I1.10) and (I1.15)
for n = 1. The dotted curves are the differences between the exact and
approximate results. It will be noted that these differences are very small
at all times 1 and essentially zero for all times t > rc,dn agreement with

our criterion for the validity of (IV.42). From the definition of B in

terms ofko(Co), Eq. (IV.43), one can see from Tables I-1I1 that T, is of

order unity.
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It is interesting to compare this value of e with the characteristic time
for decay of correlations in the unbounded 0.U. process. It follows
directly from Eq. (V.1) in terms of the dimensionless variables of Egs.

(V.2) and (V.3) that in the absence of boundaries

o

<y(1)y(0)> = Yo S dy y f(y.tlyo) = yo2 e . (v.16)

-

The characteristic dimensionless decay time,i.e. the time required for

the correlations to decay to 1/e of the initial value,is thus unity. The
values of Te found here imply the physically reasonable resul* that mean
extrema and maxima of the 0.U. process are well approximated by independent
random variable results at times when the correlations of the unbounded

0.U. process have decayed to about 1/e of their initial value. Analogous

relations for more general Markov processes still need to be developed.

We have also calculated the dispersion of the mean maximum,
(ZZ-Z]Z)]/Z/Z]. For small values of 1 it is of O(1); as v + = the dispersion
approaches zero, as expected from Eq. (IV.44). In contrast to the relation
between the mean first passage time and the first passage time distribution,
the mean maximum is thus a useful measure of the distribution of maxima,
particularly at large times 1. It is interesting and important to note
that one can therefore make a meaningful calculation, i.e. one with a
small dispersion, of the most probable maximum excursion of the space
random variable for any time interval (0,7),but that the calculation of
the mean time required for the space variable to reach an extreme value

for the first time is not very useful,owing to the large dispersion of the

mean first passage time.




Finally, we wish to point out that the units in this discussion
are scaled dimensionless ones. Tthe absolute values of the time t and the
variable x for which independent random variable behavior can be assumed
depend on the paramcters . and D of the 0.U. equation, according to Egs.
(v.2) and (v.3).

6. HARMONIC OSCILLATOR DISSOCIATION

A specific example to which the developments of Section 4 can
readily be applied is the harmonic oscillator dissociation model of Montroll
and Shuler in the high temperature approximation.(s']o)

Consider an ensemble of harmonic oscillators in contact with a

heat bath at temperature T; the fundamental frequency of each oscillator

is v, Let
9 = hv/kT . (vi.1)

In the high temperature limit, @ << 1, one can approximate the discrete
energy levels of each oscillator by a continuum of energies denoted, in
units of hu, by the dimensionless variable x.” The ground state energy is
x = 0; it is assumed(a) that if the energy of an oscillator reaches or
exceeds x = ¢, the oscillator dissociates irreversibly. The probability
that an oscillator has not dissociated at time t then obeys a Fokker-

Planck equation with a reflecting boundary at x = 0 and an absorbing

boundary at x = £&. The coefficients in Eq. (I1.17) are(g‘]o)
m](x) =1 - Bx (V1.2)
mz(x) = 2x ] (V1.3)
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The time t is expressed in units of 1/k]0, where k]0 is the collisional
deactivation rate of the first excited state to the ground state.
The eigenfunctions for this Fokker-Planck equation are confluent

hypergeometric functions,(g-ze)

Uk(x) = M(-Ak/9,1,9x), k =0,1,2,... (v1.4)

where the ) are determined by the absorbing boundary condition Uk(ﬁ) = 0.
When £ -~ =, the eigenfunctions are the Laguerre polynomials, Uk(x) = Lk(Ox).
with eigenvalues Ak = k0. The weight function for this problem, obtained

from Eq. (IV.5), is
o(x) = 0 e : (VI.5)

The mean first passage time to x = € with r = 0 (i.e., the mean
vime for dissocialiun Lu ueeur) 1> given by Eg.
3

-2,2
T,(6) = ¢ [ a Q-7 o e” (VI.6)
0 .

0 ze”? U

In the limit ¢ + =, it then follows from Eqs. (IV.39) and (IV.41), according

to which T,(£) = [Ao(z,)]'1, that

Flg,t) ~ eXp[-O2 se'gﬁt] (VI.7)
g-mn

where F(g,t) is the probability that T](g) <t. The results in Eqs. (VI.6)
and (VI1.7) are identical to those obtained from the rigorous discrete

energy level treatment of the Montroll-Shuler mode1(8) in the high temperature
limit as N + 1 = t¢» » [Eq. VII.6 of reference 8]. It should be noted that
these results were obtained here with much less effort than in the original

papers,refs. 8 and 9.
a3




Figure 7 shows a comparison of the exact and approximate mean
first passage times. The ordinate is in units of QTI(C) and the abscissa
is in units of 6. The solid curve is the exact mean first passage time
obtained from the exact expression in Eq. (V1.6), the dashed curve is
O/Ao(é) evaluated nurerically, and the dotted curve is the asymptotic

expansion of the exact result of Eq. (VI.6). Beyond 0¢ = 3, T](C) = I/AO(E)

to within 11%. For 0¢ = 3, z p(x)dx = 0.05<<1,s0 that the criterion of

Eq. (IV.39a) for the validity of Eqs. (I1V.39) and (IV.41) is well fulfilled.




APPEKRDIX A

We illustrate here how a particular Fokker-Pianck equation, namely the
Ornstein-Uhlenbeck (0.U.) process, can readily be obtained by starting
with a model of a Markov process defined only for the discrete times t, = nat.
Our-starting point is the so-called stationary auto-regressive process
of first order

X(toyq) = alat)x(t ) + A(t ,.) (A.1)

n+l

where X is a random variable and A is a "noise" term. Equation (A.1) can
be rewritten as

¥
X(t, + at) = a(At)X(tn) + A(t:n + at) (A.2)
We now go over to continuous time, so that tn becomes the continuous variable t.
This permits us to replace the noise term with
t+at
A(t +at) ~ [ Q(t)dt (A.3)
n t

Dividing (A.2) [with (A.3)] by at and taking the limit at -» 0 yields

dx(t) Hm[agu) - ‘]xm v alt) (A.4)

dt ot-+0 At

Expansion of o(at) in a Taylor series about at = 0,

G(At) = ] +M

at + o[ (at)?] (A.5)
d(at)

4t:0
and substitution of (A.5) into (A.4) then gives, to order at,

d-zitil = -aX(t) + A(t) (A.6) |
with
M .5- doat) (A.7)
d(at) | at=0
. =33~




| Equation (A.6) will be recognized as the Langevin equation. If we now
assume that A(t) corresponds to delta-correlated Gaussian noise with

! <Q(t)> =0
<a(t)a(t')> = 208(t - t*) (A.8)

where D is a constant, then it is easy to show by well known methods that

the Langevin equation (A.6) integrates to the Fokker-Planck equation (11.17)
with m](x) ==mx and mz(x) = 2D. The stationary auto-regressive proces

of first order, Eq. (A.1), is thus equivalent to the 0.U. process [Eq. (V. )]
under the assumption of continuous time and delta-correlated Gaussian noise.

APPENDIX B

We present here some of the equations used in the niv-arical computations
for the 0.U. process.
A useful function for these calculations is

Ve (y) = 2 (y) (8.1)
k k
8)\k
where the right hand side represents partial differentiation of the
efigenfunctions of Section V.a and V.b, for fixed y. Some cf the quantities
that enter the numerical computations can be simply expressed with th> use
of this auxiliary function.

Normalization constants N,

Equation (V .4) in self-adjoint form is

d du, (v)
4 [o(y) a0 (Y)U Ly) = 0 (8.2)
dy dy

Differentiation of this equation with respect to M yields an inhomogeneous
differential equation for Vk(y):

[oty) i‘(’j_k‘_’_)] £ AV (9) = ~o(¥)U y) (6.3)
y

&10.
—




Multiplying Eqs. (B.2) and (B.3) by Vk(y) and Uk(y) respectively, subtracting
them, integrating the diffe...ce from b to £, and using the appropriate
boundary conditions, yields

(0{1 kaﬁ)lk'(ﬁ) forb=r
Nk(& = ‘ (B.4)
ZG(E)Vk(E)Uk'(C) for b = -§
‘ where the prime indicates differentiation with respect to y.
Coefficients A
Integration of Eq. (B.2) between the boundaries gives
3 o(E)U! (&) - o(b)u;(b)
[ & oty ts) = - " (6.5)
b k
cubstitution of Eqs. (B.4) and (B.5) into Eq. (V.3) results in
A (€] = [0 (), (8)]7] (8.6)
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TABLE |
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First four eigenvalues for the 0.U. process with symmetrical absorbing boundaries at -f.
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3 A8 A (e) A,() A4(£)
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First four eigenvalues for the 0.U. process with boundaries at r = -1, y = &.
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4 A (E) A (e) 2, (€) A,(E)
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First four eigenvalues for the 0.U. process with boundaries at r = -=, y = .

Ao(c)

02537201401
e 23054717401
0 210238F4+0]
o 198788F 491
L 182190r40)
e 1604365 ,0]

A (e)
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Aa(¢)
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2.5 . 245887F 02 .102456F 401 +210363F+01 md80edilE 4]
2.6 2 154860F-02 T101697F+01 »207815¢ 401 «Ee PoCOF €0
2,7 +953966F =03 c101164E401 02057626401 =317060%. 0]
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FIGURE CAPTIONS
FIGURE 1. 0.U. process. Mean first passage time to symmetrical absorbing
boundaries at *£. Exact result, ————, Independent random variable

approximation, — — — — — . Asymptotic expansion of exact result, ***"°""""°

FIGURE 2. 0.U. process. Mean first passage time tof with reflecting

boundary at r = -1, Exact result, —————. Independent random variable

approximation, — — — — — . Asymptotic expansion of exact result,

FIGURE 3. 0.U. process. Mean first passage time tof with reflecting
boundary at r = -« Exact result, ————. Independent random variable
approximation, — — — — — . Asymptotic expansion of exact result, **°"°°"°"° .

FIGURE 4, 0.U. process. Mean extremum. Exact result,

Independent randor variable approximation, — — — —— . Difference, "*°"""""""° .

i FIGURE 5. 0.U. process. Mean maximum with a reflecting boundary at r = -1,
Exact result, ——————. Independent random variable approximation, — — — — — g
Difference, **°°°"°"*° .

FIGURE 6. 0.U. process. Mean maximum with a roflecting boundary at r = -«
Exact result, ———————, Independent random variable approximation, — — — — — .
Diffel‘ence. oooooooooo .

FIGURE 7. Harmonic oscillator dissociation, Mean first passage time to §.
Exact result, ———————. Independent random variable approximation, — — — — — 1

Asymptotic expansion of exact result, s
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