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Markov processes, it is clearly of interest to determine in some detail the condi- 
tions on both the time and space variables under which this equivalence holds. In 
this paper we investigate and establish these conditions for markov processes 
described by the Fokker-Planck equation and express them in simple analytic forms 
which are directly related to the coefficients of the Fokker-Planck equation  To 
demonstrate the usefulness of these conditions, we apply them to two representative 
examples of Fokker-Planck equations, the Ornstein-Uhlenbeck process and the Montroll 
Shuler model for hamionic oscillator dissociation. It is shown very clearly in 
these examples that the extreme value and first passage time distributions, and 
thus the mean extreme and mean first passage times, of these Markov processes 
approach very closely those for Independent random variables at fin-.te values of the approach very 
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ABSTRACT 

It was shown by Newell in 1962 that the extreme value and first 

passage time distributions of various types of common Markov processes 

asymptotically approach those for independent random variables. In view 

of the great simplification this occasions In the calculation y,f  a number 

of important properties of Markov processes, »t is clearly of interest to 

determine in some detail the conditions on both the time and space variables 

under which this equivalence holds. In this paper we investigate and 

establish these conditions for Markov processes described by the Fokker- 

Planck equation and express them in simple analytic forms which are directly 

related to the coefficients of the Fokker-Planck equation. To demonstrate 

the usefulness of these conditions, we apply them to two representative 

examples of Fokker-Planck equations, the Ornstein-Uhlenbeck process and 

tne Montroll-Shuler model tor narmonic oscillator aissociation  It is 

shown very clearly in these examples that the extreme value and first 

passage time distributions, and thus the mean extreme and mean first passage 

times, of these Markov processes approach very closely those for independent 

random variables at finite values of the time and space variables. 

Key Words: Markov Processes, Independent Random Variables, Fokker-Planck 

Equation, Ornstein-Uhlenbeck Equation, Extreme Value Distributions, 

First Passage Time Distributions, Mean Maxima, Mean First Passage 

Times. 
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1.  INTRODUCTION 

Most previous work on the theory of extremes in probability theory 

deal- with independent random variables in discrete time/   Physical 

processes, however, frequently involve dependent random variables in con- 

tinuous time. It is thus of interest and importance to extend the theoiy 

of extremes to dependent variables in continuous time. This paper is con- 

cerned with such an extension to a specific class of Markov processes. 

The theory of extremes is the study of the distribution of the ex- 

treme values (maximum or minimum) of a random variable within a given time 

interval. The distribution of extreme values is closely related to the 

distribution of first passage times oc the random variable to a prescribed 

boundary. 

Some properties of extreme value distributions for Markov processes 

(2-6) 
have been investigated previously/ " ' In Ref. 3, Newell discusses the 

asynptotic extreme value distribution for one-dimensional processes, addressing 

himself particularly to the question "as to which of the common types of 

Markov ptocesses give rise to extreme value distributions like those obtained 

for independent identically distributed random variables." 

The calculation of extreme value distributions and their moments 

for Markov dependent variables is invariably a much more difficult task 

than the calculation of these properties for independent rando.n variables. 

It is reasonable to expect, however, that the extreme values of a Markov 

dependent random variable within a given time interval themselves form a 

set of independent random variables if the time interval is sufficiently 

long. This assumption has been adopted by Gumbel  ' and other workers. 

Thus, for instance, when considering the problem of maxima of levels in 

a river over a period of many years, Gumbel makes the assumption that the 

set of observations of these maxima in a given interval of time forms a 
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set of independent random variables if this time interval is sufficiently 

long, say one year. This is certainly a reasonable assumption. Even 

though the maximum heights of the river are strongly correlated variables 

if observations are made within ten minute intervals, one would certainly 

expect that this correlation has completely disappeared as the observation 

interval is extended to one year. It is of interest to know how rapidly 

these correlations decay in a Markov process so that one can calculate, 

rather than guess, time intervals for which the assumption of independent 

random variable behavior of the extreme values is valid. 

A stochastic process with independent random variables can be 

characterized by the simple functional form of the probability F(4,t) 

that the process stays below ( throughout the time t. This form is 

FU.t) = exp [->.U)t], where the function x(c) is related to the statistical 

dist.ribuHnn of t^p i^pdo'» uaH^Mes and is hence dependent on the details 

of the process. From this distribution, moment properties can be calculated. 

The mean first passage time to ^, for instance, is given by T.(c) = [x({)] • 

The mean maximum of the process is also simply related to FU,t). The pro- 

bability F(^,t) and its moments for a Markov process are much more complicated 

and in general difficult to calculate. After a sufficiently long time t 

and for sufficiently large values of the variable ', the Markovian probability 

function FU,t) is well approximated by exp[-x U)t], the simple form 

characteristic of an independent random variable process. The function 

x (c) depends on ^he details of the Markov process but is much simpler to 

evaluate than the exact probability FU.t). Approximate moment properties 

can again readily be obtained; for instance, the mean first passage time 

•1 to us uo - uior , I o 
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It Is thus of importance to determine conditions on both the time 

and space variables for which extreme value distributions and their 

moments in Markov processes approach the behavior characteristic of pro- 

cesses of independent random variables, since calculations are then 

greatly simplified. In this paper we investigate and establish such 

conditions for the class of Markov processes which obey a Fokker-Planck 

equation. We find such conditions and express them in forms which can 

be directly related to the coefficients in the Fokker-Planck equation. 

These conditions are then tested for two particular processes, namely 

the Ornstein-Uhlenbeck (O.U.) process^ ' and the Montroll-Shuler moder ' 

for harmonic oscillator dissociation in the high temperature limit. ' ' 

It is shown in these examples that the extreme value and first passage 

time distributions of these Markov processes approach very closely those 

for independent random variables at finite values of the time and space 

variables. 

In Section 2 we present the necessary definitions and general 

expressions for first passage time and extremgm value distributions and 

their moments. In Section 3 results for independent random variables 

are briefly reviewed. In Section 4 we consider the general Fokker-Planck 

equation and establish conditions for approach to independent random 

variable behavior. These conditions are tested on the Ornstein-Uhlenbeck 

equation, for which detailed numerical calculations are presented in 

Section 5, and on the harmonic oscillator dissociation equation in Section 6, 
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2. DEFINITIONS 

In this section we define the functions and processes to be 

studied in the body of this paper. 

We limit ou? considerations to one-dimensional Markov processes 

with random variables X(t) defined for continuous time. Let f(x, t|x )dx 

be the probability that X(t) lies within (x, x+dx) without ever haviny 

crossed x = c in time ((., t), given X(0) = x0. As will be seen below, 

all quantities relevant to the theory of extremes can be expressed In 

terms of the probability density f(x,t|x ). 

i 
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Define a new random variable 

Z(t) s max |X(i), 0 i T s t| 

Then the cumulative distribution function, defined by 

F(C.t|x0) ./J dx f(x.t|xo) 

has the probabilistic meaning 

FU.t|x0) - Prob |z(t) < C|X(0) ■ xo| 

(II.1) 

{II.2a) 

(II.2b) 

where x = r denotes a reflecting boundary; r may be finite or negative 

infinite, with r s xo < 4. The function F is useful when treating maxima 

problems. Minima problems can be treated similarly but then c < x i r 

with r finite or positive infinite. 

An Important random variable is the time 1 when the process crosses 

x = 4 for the first time, i.e., the first passage time 

T(C) ^min |T|X(T) = c|       . (II.3) 

Since F(c.t|xo) is the probability that X(T) never crosses x = ^ during 

the time 0 s T i t, it can be related to the first passage time. From 

Eqs. (II.2b) and (II.3) we find 

(II.4) 

Two more useful  definitions are 

f(C,t|x0)a«    «[l^   FU,t|x0) |dC (II.5) 

F(€,t|x0) = Prob |T(0 > t|X(0) = xo| 

- Prob   |c < Z(t) < ( + d(|X(0) = x 

♦ (^t|xo)dt -[|rF(c.t|xo)|dt (II.6) 

• Prob    |t < T (0 s t + dt|X(0) = x0|   . 

-5- 
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The functions f, F, f, and v are Green's functions for processes 

with arbitrary initial distributions. They can be averaged over any 

initial distribution n(x„): 

FU.t) ^.rjdx0 n(xo) F{c.t|x0) 

= Probte) > t| ■ Prob|z(t) < (.\ 

f(c.t) =^dx0r1(x0) f(c.t|x0) -f^FCct) 

•U.t) BJ^xon(xo) i(4.t;x0) —jjj F(c.t) 

(II.7) 

(11.8) 

(11.9) 

Using these distribution functions one can now write down moments, 

i.e., various mean properties, such as for instance the mean maximum of 

the variable X(t) in a given time interval (0,t) or the mean first 

passöie time to x = ^. We define the nth moments of Z(t) and TU) by 

Vqx0) a Jr dc 4n fU.t|x0) - rn ♦ njr dC ^Cl^C.tlx^ljj, 10) 

IJlK) 'ln  
dt ^ ♦(^.tlxj = nf dt t""1 F(«.t|x0) (11.11) 

MoiT.ents with respect to an initial distribution n(x0) will be denoted by 

Z (t) and T (0. The quantity Z^t) is then the mean maximum of the 

process in the time interval (0,t); the variance of the maximum in this 

time interval is Z2(t) - Z^(t). The mean first passage time to x = C is 

T^O and its variance is T2U) - T^U). The corresponding conditional 

quantities are similarly defined. 

We will also consider processes for which fvx,t|xo) dx is the 

probability that the random variable X(t) lies within (x, x + dx) without 

ever having crossed x ■ t (({ » 0) in time (0,t), given X(0) ■ xo. This 

case is of interest, for instance, in the study of largest deviations of 

the random variable from equilibrium. All definitions given so far tan 
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be suitably modified to cover this situation.    We define the random 

variable 

Y(t) emax ||X(T)|.0 £ T * t| (11.12) 

as the greatest excursion of the random variable X from zero in the time 

interval (0,t). The appropriate cumulative distribution function for this 

problem is 

FU.t|x ) H f dx f(x.t|x )       . (11.13) 
H 

The probabilistic definitions in Eqs. (II.2b) and (II.4) hold here with 

Y(t) as defined in Eq. (11.12) and T(c) given by 

TU) «min MX (t) ■ ♦ i\ (11.14) 

Equations (II.5) - (II.9) and (11.11)  remain unchanged except for the 

SpltCgsyt r -► - c, in thp Inwer limits of integration.    In place of 

^[l   - F(  ,t x0)] 

Eq.   (11.10) we now have 

»„(tix,) ./o dc t" ,u.tiv •.( * (ni5) 

with F(^,t|x0) defined in (11.13), the quantities Y^tjx ) and Y^t) 

are now mean extrema; T, (^jx ) and T^;) are mean first passage times to 

x = t c.    It should be noted that in the frequently occuring situations 

in which FU,t) is an even function of C, the moments T (0 and Y  (t) 

here are identical with the moments T (0 and Z (t) discussed earlier with 

a reflecting boundary at r « 0. 

We restrict our discussion to Markov processes in continuous time, 

We believe that many of our conclusions are valid for a large class of 

master equations of the form 

|rf(x.t|x0) =/dx'K(x.x')f(x',tIxo) 

where K^.x') is the transition rate from state x' to state x. 

-7- 
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However, we will concern ourselves only with a special  case of Eq.  (11.16), 

namely, the Fokker-Planck equation 

h '^MV = h I- miw f^\^ + ? h ^z^ ^.t|x0)3] 
(11.17; 

with the initial condition f(x,0|x ) = «(x - x ) and appropriate 

boundary conditions to be discussed in Section 4. 

3.    RESULTS FOR INDEPENDENT RANDOM VARIABLES 

Since it is one of the objectives of this paper to compare the 

results for extreme value distributions of Markov processes with those for 

independent random variables, we collect here the relevant results for 

the latter case.    *      '    The statistics of extremes for independent random 

variables are traditionally dealt with in terms of variables defined for 

diSvret^ times.    We will  thus state results tn terms of processes in 

discet»» time and then take limits to continuous time where appropriate. 

Let X,, X2,  ...   , X   be n sequential observations of a process. 

The X^'s are taken to be identically and continuously distributed 

independent random variables.    Let Z(n) he a new random variable defined by 

Z(n) =max |xm, 1  s m s n| (III.l) 

in analogy with Eq. (II.1). In further analogy with the equations in 

Section 2 we can define probabilities and probability densities such as, 

for example 

FU. n) ■ Prob |z(n) < (| (III.2) 

(cf. Eq. (II.7) and 

*U. n) dc = (l^FU. n)|df 

- Prob je < 2(n) < c + dc| (III.3) 

-8- 
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[cf. Eq. (II.8)]. The moments can then be determined as in Section 2. 

Here the probabilities and probability densities are independent of the 

initial condition since we are dealing with independent random variables. 

Let P(x) be the cumulative distribution function for each xi and 

p(x) be its probability density function: 

P(x) B ProbU < x) (III.4) 

p(x)H^P(x) . (III.5) 

The function P(x) [or p(x)] is all that is needed to determine every 

property of the process. Thus, for instance, the probability FU,n) that 

the maximum o*" n observations is below 5 is equal to the probability 

that each of the X., 1 = 1, ..., n, is less than (,  so that 

F(c.n) • [Pu)]n (in.6) 

from whicl. it follows that 

fU.n) • n[P(0]n'1 PU)      . ' (HI-7) 

Mc. ents can aU« te given immediately.    L:t At be the time between obser- 

ve :ions and let t ■  iAt be the time of the nth observation.    Time is 

1- Produced here so that comparison with continuous time processes can be 

mr-de later; we could of course continue our discussion in terms of 

" bservation" or "step number" and never introduce time.     rhe mean 

first passage time to x =C[cf. Eq.  (II.11)] is now given by the infinite 

series 

1,(0 ■ Atjd - PU)] *'2 PU) [i - PU)] 

♦ 3 P2(C)  [1   - PU)] ♦  ...| 

=        Lt (III  8) 

■^ 
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For the independent process we define an upcrossing rate x(0 

so that xUht is the probability that the process crosses the level x = 4 

from below in time At. Then 

X(C) At = 1 - PU) (III.9) 

and the probability F(^,t) that the process stays below { throughout 

the time t = HAt can, instead of Eq. (III.6),be written as 

FU.t) = [i - xU) At]n (III.10) 

In the limit of many observations such that n-*-00, At-*-0, nAt ■ t, 

F(C.t)-f-xU)t (III.11) 

In this limit, the first passage time moments are then given by [cf. Eq. 

(11.11)] 

n! 

x U) 

and the mean maxima are [cf. Eq. (11.10)] 

2n(t) = rn + n f d^ rtl-e^
01]   . 

The results of Eqs. (III.ll) and (III.12), summarized as 

F(,.t)_e-t/T1(0 

(III.12) 

(III.13) 

(III.14) 

are characteristic of independent processes. The form of MO or T^O 

of course depends on the particular process one is considering, i.e., 

on PU). 

Equations (III.ll), (III.12), and (III.14) also hold with some 

changes in definitions when one considers first arrival at x = -c. In 

■10- 



place of Eq. (III.4) one now has 

P(x) ■ ProbjjXJ < xj (III.15) 

The quantity x(c) At is the probability that the process crosses the 

level x c ^ from below, or the level x = -f, from above, in time at. The 

moments Y (t) now are 

rn(t).n ^  dc c^n-t-^^1] (III.16) 

Depending on the form of the cumulative distribution function 

of Eq. (111.4), and hence of the mean first passage time T^U), one obtains 

in the limit as t-*-<-(equivalent to n-^-) one of the three familiar 

stable asymptotic distributions of FU.tr *  • The most familiar of 

the three, known as the asymptotic distribution of the exponential class. 
(13) 

is 
-e 

with 

lim F(f,t)~e 
t—oo 

Z-an U -6n) 

(III.17) 

(III.18) 

and a .6 defined by the relations n n 

P(6r) ■ 1 if0n dx (III.19) 

X « 6. 

This asymptotic distribution holds for a wide class of probability 

density functions p(x) for which, as x-*-*» 

P"(x)  P" (x) P""(x) (III.20) 

■11 



Exponential and Gaussian density functions are members of this class. 

The quantity ß is the expected extreme value o X and becomes equal to 

the most probable extreme value when n-»--. The quantity a is a measure 

of the variation of s with n. The mean first passage time to x = 4 

corresponding to the asymptotic distribution (III.17) is 

At 
1-e •t 

-Z •1 
— e for large Z 

,(3.4) 

(111.21) 

It has been shown^*"' that in the limit ^—-,t—* the distribution 

FU.t) for Markov processes tends to the asymptotic independent random 

variable form, Eqs. (III.11) and (111.12). Me will show in this paper 

by detailed analysis of some specific Markov processes that first passage 

time and extreme value distr'butions and moments are given to a very good 

approximation by the indep ndent variable formulae also for finite times 

ana finite bounadries. The criLeria for this ayi cement emJ UM cri'uii 

involved will be discussed in detail in the next few sections. 

4. SOLUTIONS OF THE FOKKER-PLANCK EQUATION WITH BOUNDARIES 

In this section we formulate the solution of the Fokker-Planck 

equation 

k f(x*tlxo) = h  |-i(*)'<M|x0)4 |j [^(x) f(x.t|xo)]| 

(IV.1) 

in the presence of boundaries. In Eq. (IV.1) the coefficients m^x) and 

m?{x) are given by the conditional expectation values of the change AX 

of the random variable X in time At: 

E[AX|X(t) = x] = m^x) At + o(At) 

E[(AX)2|X(t) - x] = m2(x) At ♦ o(At) 

E[(AX)r|X(t) = x] = o(At), r k 2 

(IV.2) 

-12- 
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The probability density also satisfies the backward Kolmogorov equation 

^f(x.t|xo) 

■"l^Sx   t^'^ *]2m2{xo)hf{x't\*o)        '        (IV-3) 
c xo 

There exists a large literature dealing with equations of the 

form of Eq. {IV.1). Most of the literature can roughly be divided into 

three (overlapping) categories' ' One category1 ' *   deals with the 

Ornstein-Uhlenbeck (O.U.) process [m^x) = -ux, m2(x) = 2D, w and D 

constant] as a description of Brownian motion, where the velocity distri- 

bution of Brownian particles is the distribution of interest. The O.U. 

equation is solved, but not for extreme value distributions, and only 

specialized boundary conditions are considered. The second categoryv * ' 

deals with first passage time or extreme value distributions of diffusion 

processes. In this group are uie paper i which one com-eineu m'tth  formal 

rather than detailed solutions of Eq. (IV.1) with general boundary conditions 

and with asymptotic properties of these distributions. Finally, there 

are many papers concerned with specific applications that involve various 

particular forms of Eq. (IV.l), for which we only give a few typical refer- 

ences.  *    ' Of all these many papers only the work on the Fokker- 

Planrk equation described in refs. 3, 4 and 5, deals with the problem of 

the asymptotic equivalence of the extremum properties of the F-P equation 

and independent random variable processes. The recent numerical work of 

Keilson and Rtis  ' on passage time distributions for the O.U. process is 

also related to the calculations presented here. 

h  nüinL-r of different mathematical techniques have been used to 

solve Eq. (IV.l) and to find properties related to f(x,t|x ). The two most 

We shew in Appendix A that the O.U. process is equivalent to a stationary 
auto-regressive process of first order(in the terminology of time series 
analysis) under the assumption of continuous time and delta correlated 
Gaussian noise. 

-13- 



common ones, are Laplace transforms^18,19,26' and eigenfunction expansion. , 

The former is inconvenient for numerical work because of difficult inverse 

transforms that must be performed, and becomes tractable only for certain 

specialized boundary conditions. We therefore chose the method of eigen- 

function expansions. 

Equation (IV.1) is a parabolic partial differential equation whose 

-olution can be expressed as the eigenfunction expansion 

(x.t xj = Z- p(x) - 
k=0 w. e Ak' (IV.4) 

Here the weight function P(X) is the equilibrium solution of the Fokker- 

Planck equation (IV.l) with or without reflecting boundaries, but without 

absorbing boundaries, 

2h(a) o(x) :   >=f exp 
x    2m,(x') 
\ dx' r-hrrr (IV.5) 

with h(a) determined by the normalization condition 

au 

J P(X) dx = 1 
a 

(IV.6) 

The constant a is left undefined at this point, and will be chosen later 

to conform to the particular boundary conditions to be considered. The 

eigenfunctions Uk and eigenvalues >k satisfy the differential equation 

.     d2U.(x)       dU. (x) 
^m2(x)_k__+mi(x) -Jjj- ^kuk(x) = 0 (IV.7) 

In addition two boundary conditions for Uk(x) must be specified. The 

normalization constants Nk also depend on the boundary conditions. 

To deduce some properties of the eigenvalues >k, it is convenient to 

rewrite Eq. (IV.7) in the self-adjoint form 

-14- 
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d_ 
dx (x) 

dU.(x) 

W *  xk p(x) Uk(x) - 0 (IV.8) 

where 

i(x) E 2 m2(x) p(x) (IV.9) 

Since this equation is of the Stjrm-Liouville type, the eigenvalues >. 

are real and non-degenerate. For m?(x) > 0, which is required in order 

that the F-P equation (IV.1) describe a physical system, the roots are 

non-negative and 

A  < A < A  < . 
0        c 

(IV.10) 

a) Reflecting boundary at x = r, absorbing boundary at x ■ C. 

We impose a reflecting boundary condition at / = r, where r may 

be finite or negative infinite. For definiteness we consider here maxima 

problems; for minima problems r is finite or positive intimte. The 

boundary condition is 

(> K(x) 

I ax | ?— f(x.t|xo) -It! 1(x)f(x,t|xo) x=r (IV.11) 

for all t - G. This condition insures (provided m, and nu are physically 

reasonable) .'at the process is conservative, i.e., for j; = » 

J c\ c(x,tlx ) - 1 
r 

(IV.12) 

The second boundary ccndifon is obtained directly from the definition 

of f(x,t|x ) dx g^ven <f Section 2 as the probability that the random 

variable X(t) lie«; within (x, x + dx) without ever having crossed x * £ 

in time (0,t), given X'O) ■ x . We can thus impose the absorbing boundary 

condition 

f(x,t|x0) (IV.13) 
XH 
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It shouU be stressed here -..at the condUion „ . . 4 d.^^necessar^ 

i^O^presence of . phys.rel honnder^.    „ s1mply represen.s the value 

t   of x at which we "watch" for the first passage, or crossing, of the 

rando. variable X(t).    Ti. ioitia, vaioe ,, of X(t) is bounded by r s ,   < 5 

c   -n^e bourn.. .< ronulons we take a = r as the lower H.U 

for the n^l1,.ti r tqü.ti3„ (IV.S).    The normaüzatlon constants N 

In Eq.   (IV.4) are -.Sen by k 

6k.mNk = I dx P(X) Uk(x) Urn(x) 

The boundary conditions on the eigenfunctions are 

{IV.14) 

P(X) 
dUk(x) 

= 0 
x=r 

PU) MO - 0 

(IV.15) 

(IV.16) 

b)    Absorbing boundaries at 

We now consider the case of s^etric (about x=0) absorbing bound- 

arles it x - tc<    The boundary conditions are. 

'(«.t|i0l       = 0 
x-n 

and the nonmalization constants N.   are 

(IV.17) 

1 
•;'    3 

'•■» "k = J.{ *■ °M u
k'«) "mM („.,„ 

boundary conditions on the 
■ "  <fl Eqs.  (IV.5) and (IV.6).    The 

e-icef unctions are 

o(*C) u, (to = o 
(IV.19) 
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c)    First Passage Times. 

To obtain first passaye times for the boundary conditions 

considered above we utilize the backward Kolmogorov equation (IV.3).    The 

first passage time moments Tn(f.|xo) satisfy the differential  difference 

equations, obtained from hq.   CIV.3), 

V^o) " ] 

1 d   Tn^lXJ 
?-2^-f      0 dx

o 

dT UlxJ 
!r_iL-+ m (x  )      "       o 
2 1v o'        d) 

(n = 1,2,...)        (IV.20) 

with appropriate boundary conditions/27'    For first passage to x = 4 with 

a reflecting boundary at x = r,  the boundary conditions on T    are 
n 

V^o) ■ 0 
x «C 

u 
(IV.21) 

ar-Tn^lxo) 
xo=r 

(IV.22) 

For first passage to x =■ t^,' 

(IV.23) 

Rewriting Eq.   (IV.20) in self-adjoint form and integrating twice yields 

1    ^TFT 4 " Tn-l(f'ly) p(y,dy (IV'24) r
n^lxo) 

with c = r for boundaries at x = r, c(case 4a) .and c = 0 for boundaries 

"In the interest of simplicity, when dealing with two absorbing boundaries 
we will henceforth assume that m^x) is odd and m2V,) is even. 

• 16a- 

m§ ^mmmmmm 



_ *mw*m^  i v~mmm^- m 

at x = *c (case 4b). 

To obtain the mean first passage time T^O for the initial distri 

bution rj(x ) = c{x = x ) we multiply Eq. {IV.24), with n= 1, by P(XO) and 

integrate between the boundaries. With boundaries at r and C, 

w : / LxliL^iUi d2 (IV.25) 

where 

x(z) = /   p(y)dy (IV.26) 

With boundaries at ±4, 

¥ö- i^f1^ (IV..27) 

Equation (IV.25) reduces to tq. (iv.^/; when r = u, as notea earlier. 

d) Asymptotic Results. 

We now present asymptotic results for the cumulative distribution 

functions F(c,t|x ) and FU.t), the first passage time moments TnU)t aid 

the extremum moments Z (t) and Yn(t) for the Fokker-Planck equation dis- 

cussed above. It is useful to define new functions A^) and BkU) by 

v . O -Z A (OU^xJe-H1 
k=0 K   K 0 

(IV.28) 

FU.t) = 1 MOe'V (IV.29) 
k=0 

from which it follows that [see Eqs.   (II.2a),  (11.13) and (IV.4)] 

\{0 '- ItJXT J dx p(x) Uk{x), (IV.30) 

with b = r or -^ depending upon the nature of the boundaries. 

-17- 

_ ■ IHMMi 



We consider in this paper only initial probability densities »(x) which 

are identical with the equilibrium weight function p{y) defined in Eq. 

(IV.5). It then follows that 

BkU) ■ \(0 / dxUk(x) p(x) - NkU)AkU) (IV.31) 

i) Cumulative Distribution Functions 

For large f., > U)-0. With the proper choice of normalization. 

U (x )^1 for x«t,. andNn(0-l. I" these limits, ind^ated by the 
o o        o 
symbol -. with one reflecting and one absorbing boundary it follows from 

Eqs. (IV.30) and (IV.31) that 
'f 

(IV.32) 

and 

'f 

A U)~l   dx p(x) ■ 1-) dx p(x) 
0   L t 

B0(d- 
1 - j dx p(x) dx p(x) 

With absorbing boundaries at x " *^ one finds 

2 
(IV.33} 

I f 
A U)- I  dx p(x) = 1- 2j dx p(x) 
0   J-L 4 

(IV.34) 

and 

»,(<»- 
dx p(x) 1- 2J dx p(xf (IV.35) 

It now follows from Eqs. (IV.28) and (IV. 29), for large C and t, independently of 

boundary conditions and initial conditions, that 

(IV.36) 

a res 

F(ut|x0)-FU.t)^-
XoU)t 

ult which has been derived previously 
(3-6) 
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Since BkU) ^ 0 for all k and E [cf. Eq. (IV.31)] while Ak(OUk(x0) 

may be positive or negative, one can be more specific about the approach 

to asymptotic behavior of FU.t) than one can for F(4,t|xo). From the 

initial condition 

FU.t = 0) = X B.U) = f dx p(x) . c(0 
k=0 

(IV.37) 

and Eq.   (IV.10) and Eq.   (IV.29)  it follows thdt for all  {. and t 

B (Üe-XoU)t ^   FU.t) ceU) eV01 . (IV.38) 

Hence Eqs.   (IV.33).   (IV.35) and (IV.37)  imply that, for all  times t. 

Fu.o-rV^ 
for (, sufficiently large so that 

■ 

fpU) dx « 1 

it should be noted that the condition (IV.39a) implies 

B0U)^ c(0= 1 

(IV.39) 

(IV.39a) 

(IV.39b) 

from v. ;ch (IV.39) follows immediately. 

The relations (IV.36) and (IV.39) are identical  in form with 

FU.t) 'or independent random variables as given  In Eq.  (III.11).    It is 

in   .nis sense that the extremum properties of Markov processes approach 

tnose of independent processes, even for finite values of the variables. 

For the Markov process» as is the case for independent random variables, 

the specific form of  *   (C) depends on the details of the process under 

consideration. 

-19- 
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ii) First Passage Time Moment:> 

F/orn Eqs. (11.11) and (IV.29) it follows that the first passage 

time moments are given by 

B,,(0 
Tn^ U) = n! Z -^ 

k=0 AJ{0 
(IV.40) 

Asymptotically, when Eqs.   (Iw.39) and (IV.39a) are applicable, this reduces to 

T"U,S^ 

(IV.41) 

which is identical to the result of F'. (III.12) for independent random 

variables. In particular, A (0 is again the reciprocal of the mean first 

passage time to (.  or *^,depending upon the boundary conditions. It should 

be noted that for fixed t.,  Eq. (IV.41) is more accurate as the order n 

of the moment increases since the rat:o of the (k + 1)  to the k   term 

in the sum (IV.40) decreases with incrjasing n. mis is a consequence 

of the fact that the accuracy of the approximation (IV.39) improves for 

fixed 4 as t increases. This is an important observation for both Markov 

and independent random variables since the mean first passage time by 

itself is a very inaccurate measure of the tine dependence of any process 

with an exponential cumulative distribution of the form (IV.39). 

Indeed, in the asymptotic limits where (IV.39) and hence (IV.41) 

are valid, the dispersion of the mean first passage time is unity, i.e. 

t. |( T2(O - T^oTVcr I^T 
1/2 
— 1 (IV.41a) 

The utility of these results [Eq. (IV.40) et. seq.] lies in the 

simplicity with which one can calculate AO(0 = 1/^(0 from Eq. (IV.25) 

or Eq. {IV.27). This in turn permits one to obtain very "eadily the 

asymptotic distribution function (IV.36) and (IV.39). 
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i i i) Extremum Moments 

It Is more difficult to make general statements about the 

asymptotic behavior of extremum moments thaii of first passage time moments. 

The latter involve integrations over time of a function with a simple time 

dependence wnich is known for all t. On the other hand, it does not seem 

possible to establish an equation for F(c,t) analogous to Eq. (IV.39), 

i.e., one involving 4 Jnly via >0(0. valid for all c. Even if such a 

relation were to exist, it would be necessary to determine the analytic 

form of > (c) for the specific process under consideration in order to 

carry out the required integration over 5. 

It is nevertheless possible to conclude that for t i tc,with tc 

defined below, the mean maximum and higher moments are approximately given by 
00 

Zn(t).r
n + n I dc^ll-e-V^ 

r      I 
{IV.42) 

i.e.,that for t i t , the distribution FU.t) in Eq. (11.10) can be replaced 

by the asymptotic form exp[-A0U)t] averaged over the initial distribution 

p(x0). The time t is given by the relation 

(IV.43) 

where C0 is the smallest value of 4 for which the condition (IV.39a) hold^. 

We assume here that xAO  is a monotonically non-increasing function of 5, 

which would appear to be true    In physically interesting cases. Equation 

(IV.42) can be justified as follows. If t > tc, then for 4 « co. it 

fo1lows from the definition of F(f.,t) in Eq. (II.7) that FU,t) « 1. 

Therefore, FU.t) RMKCS a negligible contribution to the integrand C " [1 - FU.t)] 

of Eq. (11.10). The detailed form of FU.t) in this region of integration 
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■'s thus unimportant, it ': only when \ * K    that the form of F(f.,t) 

is important. With UQ  defined in Eqs. (IV.43), (IV.38) and (IV.39) 

then allow us to replace FU.t) with its asymptotic form. Hence if 

tit it is ayain sufficient to know only 0(0 = 1/^(0 to obtain the 

meanmaxi-um and higher moments. It should be noted that for fixed t itc, 

the first moment 2,(0 obtained from the asymptotic form (IV.42) is expected 

to be more accurate than the higher moments Zn(t), n ä 2. This is because 

the largest contributions to Z^t) come from small values of 4 where 

exp[-A U)t] « l.so that errors introduced through use of the asymptotic 

form are less important than in the evaluation of the higher moments. 

It should also be observed that fur large t the mean maximum Z^t) is a 

good measure of tne distribution of maxima. It can readily be shown via 

Eq, (IV.42) that the dispersion of the maximum Z^t) tends to zero, i.e. 

This is 'n marked contrast to the mean first passage time T^U) which, as 

shown by . t dispersion [Eq. IV.41a] is not a good measure for the distri- 

bution of first passage times in the limit as t-,•• 

The asymptotic approximations to the extremum moments Yn(t) for 

tit are given by Eq. (IV.42) with r = 0. 

5. THE O.U. EQUATION 

In order to make some progress beyond the above formalism, it 

is necessary to consider some particular Fokker-Planck equation. For our 

first example we turn to the Ornstein-Uhlenbeck (O.U.) equation 

(IV.44) 
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|rf(x.t|xo)=|r|l,xf{x.tlxo) + D|rf(x.t|xo)|      (V.I) 

where the general coefficients m^x) and m-U) of the F-P equation 

(IV.1) now take the form m,(x) = - ux, m-U) = 2D with p, D constant. 

After defining the dimensionless variables 

Mt-*T (V.2) 

(u/2D)1/2x-*y (V.3) 

we can rewrite the eigenfunction equation {IV.7) as 

d2U.(y)     dU.(y) 
—K 2y -5 ♦ 2xkU (y) ■ 0 (V.4) 

dy        dy 

where the eigenvalues x.   of Eq. (V.4) are dimensionless ones related to 

these zf  Zq. (!V.7) by ,\. - ;>./V All variables end functions from here 

on are understood to be in dimensionless form^even when the same symbols 

are used for them as in earlier sections. The weight function p(y) 

normalized with respect to y is 

»<*)■. PrrirTT (v-5' 

where the value of a^ depends on the boundary conditions. 

We now consider the solution for each type of boundary condition 

separately. 

a) Reflectini Boundary at y = r, Absorbing Boundary at y = ^. 

The solutions of the eigenfunction equation (V.4) with boundary 

functions: 

conditions fIV.15) and (IV.16) are combinations of confluent hypergeometric 

(28) 

/ x   1  \  2x ryMh-^-i/ ) "(T - 4. |. y2) 
uk(y) ■■ M - 4 . j,y2]* ——^ r   \   '    \ — /(v.6) 
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The eigenvalues are obtained numerically from the boundary condition (IV.13) 

as will be discussed below.    Our choice of normalization makes the lowest 

eigenfunction Uo(y) -1  for any finite y as C-»-. 

Equation (V.6) simplifies in a number of special  cases.    When r- - - 

the eigenfunctions reduce to 
(28) 

My) - J&. W) HBU 
41) 

(\ - >• I. >2)       <-' 

where r(y) is the ganma function. For the special case r - - - and *. = 0 

the eigenfunctions are the odd Hermite polynomials, Uk(y) = H2|c+i^^ 
and 

the eigenvalues are the odd positive integers, xk = 2k+l. In this case 

the full probability density function f(y.T|y0) can be written in closed 

form as 
(29) 

f      ^.^/7^ 

f(y»t|yJ ■ |-(i-e-^)| exp 

exp I- (y+y0e" ) 
2-, 

d-e"77) J (V.8) 

with -« <y < 0. The cumulative distribution function is 

V 
-T 

F(e=0,Tlyo) ■ erfl   ,    ]/2 
l-e-tT) 

(V.9) 

jf r _.» and 4 - - the eigenfunctions are all the Hermite polynomials. 

U (y) = My), and the eigenvalues are the nonnegative integers, \ = k. 
(28) 

(29) 
The probability density function in this case is 

(y-v"T)2 -1/2 
fCy.tlyJ ■ ["d - e-21)]  exp KZT) 

(v.10) 

-24- 



■"wnnvaMaaai 

and the cumulative distribution function F(c—.i|y0) is of course unity. 

When r = 0, the second term on the r.h.s. of Eq. (V.6) vanishes. 

If in this case t—• the eigenfunctions are the even Hermite polynomials, 

U (y) = H9.(y). and the eigenvalues are the even nonnegative integers, 

x. •= 2k. The probability density function is as in (V.10) with -y0 re- 

placing y . and the cumulative distribution function is again unity, 

b) Absorbing boundaries at y = U. 

The solutions of Eq. (V.4) with boundary conditions (IV.19) are 

either even or odd functions of y: 

u2k(y) = M(-^< ^y2)ik = 0>li2  (v.n.) 

w>» ■ *(? - ^ l^ •k = 0,1,2   (v-"b) 

Aaain U (v) - 1 as C—• The eigenvalues are obtained from the conditions 

ü2kU) • u2k+,U) • o •  (V.12) 

The odd eigenfunctions do not contribute to the cumulative distribution 

function FU.T) with p(y) as the Initial distribution, and they also do not 

contribute to FU,T|yo-0). When 5—, the eigenfunctions and eigenvalues 

are the same as those of the r-* —, ^-^ case- 

Expressions for the m,>an first passage time 1,(0 in terms of the 

auxiliary function xU) of Eq. {IV.26) can readily be evaluated for the 

equilibrium weight function p(y) of Eq. (V.5). They are: 

TiU) . 1 ^f r J dy exp(y2) (erf y - erf r)2 (¥.13) 

for a single absorbing boundary, and 

MO -y/r\   dy exp (y2) erf2 y (V.14) 
1      J0 
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for two absorbing boundaries. Note that Eq. (V.14) is 

identical to Eq. (V.13) with r = 0. When i,  is very large, asymptotic 

expansion of Eq. (V.13) y'elds (3) 

MO n^V^O - erf r)?^i (V.15) 

c) Results and Discussion 

To obtain the desired results for more general boundary conditions 

on the approach of the Markov properties to those of independent rando;:! 

variables it is necessary to calculate numerically the eigenfunction U. (y) 

and the eigenvalues >.. These calculations were performed on a Burroughs 

6700 computer and the plotting was done on a CDC 3600 computer. In Tables 

I through IV and Figures 3 through 7 we present a representative sample 

of the extensive calculations that were carried out. The complete set of 

calculations is available upon request. 

The quantities of main interest are tne eigenvalues,since ail 

subsequent results depend upon them. Since p(y) is non-zero for all finite 

y, the search for the eigenvalues reduces to finding the zeroes of the 

eigenfunctions of Sections 5a and 5b. A "bisecting search" method was 

used to obtain the first four eigenvalues as a function of the absorbing 

boundary ^, for various values of the reflecting boundary r and for symmetrical 

absorbing boundaries. The results for some representative cares are given 

in Tables I to III. It should be noted that the ratio A (O/A.U) decreases 

rapidly with increasing C. For C = 1, this ratio is already of 0(10' ) 

for all the boundary conditions studied by us. It is of course this rapid 

separation of the lowest and next eigenvalue with increasing 5 which causes 

the asymptotic results to hold to a very good approximation for finite 

values of the boundary value f,. It is also important to note (see Table IV) 
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that the condition {IV.39a), . r». a E J p(y)dx « 1. holds for all values 

of r, i 1. 

Results for the cumulative probability distribution F(4,t) 

of Eq. (IV.29) are presented in Table IV for reflecting boundaries at r = 0, 

r = -1, and r = - •*, for various times ^ t. As can be seen from the equations 

and discussions insection« 5a and 5b, the cumulative distribution function 

FU,t) for r = 0, with an absorbing boundary at y = C, is identical to 

F(C,t) for symmetrical absorbing boundariesat y ■ * C. The entries in the 

first row of Table IV thus pertain both to the case y = r = 0, y = C and 

to the case y ■ * 5. The results presented in Table IV and all subsequent 

ones discussed here were obtained by using the first four eigenvalues 

xo(0 through ^(O- 

The asymptotic cumulative distributions FU,t)-**exp[-X0({;)t], 

Eftt nv.39), are a1s" nresen*-pH for comparisons in T^hlp IV. Thp "px»rt." 

distributions, obtained with the use of our eigenvalues x0 through x^ and 

the asymptotic distributions exp[->0Uh],are quite close in value (to within 

15% - 20%) already for 4 *  1, regardless of the boundary conditions. For 

C i 3 they are essentially indistinguishable. 

Results for the mean first passage time and mean extrema are shown 

in Figures 1-6. Figures 1, 2, and 3 display the natural logarithm of the 

mean first passage time MO for symmetrical absorbing boundaries as 

discussed insection Aband for reflecting boundaries with r = -1 and 

r = -. as discussed in^a.^^he solid curves are the exact mean first 

passage times obtained from numerical integration of Eq. (V.13). It ': 

It should be noted that the values of F(1,T) may have a non-negligible 
error for short times due to the truncation of the expansion for FU.t) 
after four terms. 
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of interest to note that the mean first passage times obtained from the 

first four terms of Eq. (IV.40) agree closely with these exact results. 

The dashed curves are the independent random variable approximation 1// (4) ■ 1,(0 

For ^ ^ 1 this approximation gives results which are extremely close to 

the exact T^UJ in all cases. The dotted curves represent the asymptotic 

expansion (V.15) of Eq. (V.13).  It is rather a poor approximation for small 

values of c, as expected, but also becomes quite accurate for C > 1. 

We have also evaluated the dispersion of the mean first passage 

/     2\l/2 
time, \Tp - T* | ' /T,. It is approximately unity for all values of (,. 

This extends to small values of ^ the asymptotic result (IV.41a) on the 

dispersion of the mean first passage time for the general Fokker-Planck 

equation. This is an interesting and disturbing result. From it one learns 

that the mean first passage time T,(0 is not a "sharp" measurctand one 

needs really to calculate the full first passage time distribution, Eq. 

(II.9). 

The mean extremum Y^1) as a function of time are shown in Fig. 4. 

By extraiium,we mean here the greatest excursion of the random variable Y 

above or below y = 0.  In Figs. 5 and 6 we display the mean maxinum Z,(:) 

as a function of time for processes with reflecting bounJaries at r = -1 and 

r = -•, where by maximum we refer to the greatest excursion of the random 

variable Y above y = 0. The dashed curves are the approximate first moments 

Z^T) computed from Eq. (IV.42). The solid curves are the exact results, 

averaged over the initial conditions, obtained from Eqs. (11.10) and (11.15) 

for n ^ 1• The dotted curves are the differences between the exact and 

approximate results. It will be noted that these differences are very small 

at all times T and essentially zero for all times T > T ,1n agreement with 

our criterion for the validity of (IV.42). From the definition of t In 

terms of^0(C0), Eq. (IV.43), one can see from Tables I-III that 1 is of 

order unity. 28_ 
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It Is interesting to compare this value of r with the characteristic time 

for decay of correlations in the unbounded O.U. process. It follows 

directly from Eq. (V.l) in terms of the dimensionless variables of Eqs. 

(V.2) and (V.3) that in the absence of boundaries 

<y0 )y(0)> B yo j dy y f(y,x|y0) - yo
2 e -i {V.16) 

The characteristic dimensionless decay time,i.e. the time required for 

the correlations to decay to 1/e of the initial value,is thus unity. The 

values of *c  found here imply the physically reasonable result that mean 

extrema and maxima of the O.U. process are well approximated by independent 

random variable results at times when the correlations of the unbounded 

O.U. process have decayed to about 1/e of their initial value. Analogous 

relations for more general Markov processes still need to be developed. 

We have also calculated the dispersion of the mean maximum, 

(Z2-Z1 ) /ly    For small values of i it is of 0(1); as T ■> - the dispersion 

approaches zero, as expected from Eq. (IV.44).. In contrast to the relation 

between the mean first passage time and the first passage time distribution, 

the mean maximum is thus a useful measure of the distribution of maxima, 

particularly at large times t. It is interesting and important to note 

that one can therefore make a meaningful calculation, i.e. one with a 

small dispersion, of the most probable maximum excursion of the space 

random variable for any time interval (0,T),but that the calculation of 

the mean time required for the space variable to reach an extreme value 

for the first time is not very useful.owing to the large dispersion of the 

mean first passage time. 
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Finally, we wish to point out that the units in this discussion 

are scaled dimensionless ones. The absolute values of the time t and the 

variable x for which independent random variable behavior can be assumed 

depend on the parameters u and D of the O.U, equation, according to Eqs. 

(V.2) and (V.3). 

6. HARMONIC OSCILLATOR DISSOCIATION 

A specific example to which the developments of Section 4 can 

readily be applied is the harmonic oscillator dissociation model of Montroll 

and Shuler in the high temperature approximation. " ' 

Consider an ensemble of harmonic oscillators in contact with a 

heat bath at temperature T; the fundamental frequency of each oscillator 

is v. Let 

0 E hv/kT . (VI.1) 

In the high temperature limit, 0 « 1, one can approximate the discrete 

energy levels of each oscillator by a continuum of energies denoted, in 

units of hv, by the dimensionless variable x.' The ground state energy is 

(8) 
x = 0; it is assumedv ' that if the energy of an oscillator reaches or 

exceeds x = f, the oscillator dissociates irreversibly. The probability 

that an oscillator has not dissociated at time t then obeys a Fokker- 

Planck equation with a reflecting boundary at x = 0 and an absorbing 

boundary at x = 4. The coefficients in Eq. (11.17) are^ * ' 

m^x) = 1 - 9x (VI.2) 

iu(x) = 2x . (VI.3) 
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The time t is expressed in units of l/^g« where kio is the collisional 

deactivation rate of the first excited state to the ground state. 

Thi> eioenfunctions for thi-> Fokker-Planck equation are confluent 

(9 28) 
hypergeometrir functions,  * 

Uk(x) - M(-Ak/0,l,0x). k - 0.1,2,... (VI.4) 

where the x. are determined by the absorbing boundary condition 1)^(4) = 0. 

When C - a>, the eigenfunctions are the Laguerre polynomials, Uk(x) = Lk(0x), 

with eigenvalues K   = k0. The weight function for this problem, obtained 

from Eq. (IV.5), is 

P(x)=0e-Öx . (VI.5) 

The mean first passage time to x = C with r = 0 (i.e., the mean 

nme for oikSOCllttun Lu uv.cui / 13 given by Eq. v*» ••-•'/ -- 

In the limit C - -s it then follows from Eqs. (IV.39) and (IV.41), according 

to which TjU)* OQU)]'1. that 

F(c,t) % exp[-92 4e"er't] (VI.7) 

where F(c.t) is the probability that 1}U) < t. The results in Eqs. (VI.6) 

and (VI.7) are identical to those obtained from the rigorous discrete 

energy level treatment of the Montroll-Shuler modelv ' in the high temperature 

limit as N + 1 ■ C* - [Eq. VII.6 of reference 8]. It should be noted that 

these results were obtained here with much less effort than in the original 

papers,refs. 8 and 9. 
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Figure 7 shows a comparison of the exact and approximate mean 

first passage times. The ordinate is in units of OT,U) and the abscissa 

is in units of Qf,. The solid curve is the exact mean first passage time 

obtained from the exact expression in Eq. (VI.6), the dashed curve is 

0/^oU) evaluated numerically, and the dotted curve is the asymptotic 

expansion of the exact result of Eq. (VI.6). Beyond 9C ■ 3, T,(0 = 1/A (0 

to within 11%. For Or, = 3, | p(x)dx = 0.05«1 ,so that the criterion o^ 

Eq. (IV.39a) for the validity of Eqs. (IV.39) and (IV.41) is well fulfilled. 
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APPENDIX A 

We Illustrate   here how a particular Fokker-Pianck equation, namely the 

Ornstein-Uhlenbeck (O.U.) process, can readily be obtained by starting 

with a model of a Markov process defined only for the discrete times t   = nAt. 

Our starting point is the so-called stationary auto-regressive process 

of first order 

1 

X(tn+1)  =aUt)X(tn)  ^A(tn+1) (A.l) 

where X is a random variable and A is a "noise" term.    Equation (A.l) can 

be rewritten as 

X(tn + At) = a(At)X(tn) ♦ A(tn + At) (A.2) 

We now go over to continuous time, so that t becomes the continuous variable t. 
n 

This permits us to replace the noise term with 

t+At 
A(tn + At) - f    a(t)dt (A.3) 

Dividing (A.2) [with (A.3)] by At and taking the limit At -♦ 0 yields 

dX(t) _ lim 

dt   At-0 

a(At) 

At 
J] x(t) ♦ act) 

Expansion of a(At) in a Taylor series about At -  0, 

(A.4) 

•(At) = 1 ♦ ^11 Lt   + o[(At)
2] 

d(At) 
6t;e 

and substitution of (A.5) into (A.4) then gives, to order At, 

(A.5) 

fitel = .^(t) ♦ an) 
dt 

(A.6) 

with 

do(flt) 

d(At) At=0 
(A.7) 
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Equation (A.6) will be recognized as the Langevin equation. If we POW 

assume that CUt)  corresponds to delta-correlated Gaussian noise with 

<a(t)> ■ 0 
<a(t)a(tM> = 2Dl(t - t') 

(A.8) 

where D is a constant, then it is easy to show by well known methods that 

the Langevin equation (A.6) integrates to the Fokker-Planck equation (11.17) 

with nUx) =-^x and m2(x) = 2D.    The stationary auto-regressive proces 

of first order. Eg. (A.D. is thus equivalent to the O.U. process [Eq.  (V.   i] 

under the assumption of continuous time and delta-correlated Gaussian noise. 

APPENDIX B 

We present here some of the equations used in the nr^rical computations 

for the O.U. process. 

A useful  function for these calculations is 

vk(y) i -*- uk(y) (B.l) 
ax, 

where the right hand side represents pa-tial  differentiation of the 

eigenfunctions of Section V.a and V.b, for fixed y.    Some of the quantitif' 

that enter the numerical computations can be simply expressed with th? use 

of this auxiliary function. 

Normalization constants N. 

Equation (V .4) in self-adjoint form is 

dlUy) 1 d r    dUk( 

dy L dy 
♦ Xkp(y)lUy) ■ (B.2) 

Differentiation of this equation with respect to x^ yields an inhomogeneous 

differential equation for Vk(y): 

dy j o(y) 
dVk{y)] 

dy      J 
4 xkp(y)Vk(y) - -p(y)Uk(y) (B.3) 
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Multiplying Eqs. (B 2) and (B.3) by Vk(y) and Uk{y) respectively, subtracting 

them, integrating the diffe.^.ice from b to C, and using the appropriate 

boundary conditions, yields 

Nk(0 
2o(Ovk(Ouk'(c) 

for b = r 

for b = -C 
(B.4) 

where the prime indicates differentiation with respect to y. 

Coefficients Ak 

Integration of Eq.  (B.2) between the boundaries gives 

A o(OU'(0 -o(b)U'(b) 
Jbdyp(y)Uk(y) ■ - ^ 

Substitution of Eqs.  (B.4) and (B.5) into Eq.  (V.3)  results in 

(B.5) 

Ak(*   - -[*k(^V*)] -1 (B.6) 
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TABLE  I 

First four eigenvalues for the O.U. process with synmetrical absorbing boundaries at 

0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.B 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 

xQ(0 
.445U3=>01 

.20^97lF>01 

.146932E>01 

.I07570r+0l 

.79P<V60r + 00 

.5976?2E>no 

.^49l0nF: + 00 

.337653fr+nn 

.25322Br4.o0 

.18891^^+00 
,139902F:-»-00 

.I0^597r+00 

.743660(r-01 

.53lBl5c-01 

.J74612E-01 

.2595^0F-01 

.1766J4F-01 

.ll7959F-ni 

.77?30qrr02 

.495MOF-02 

.3n20nr-02 

.l9l369r-02 

.115180F-02 

.678437r-n3 

.3910S3F-03 

.220632^-03 

.121826E:-03 

.65fl439r-04 

.3^6370^-04 

.I30448r-Ö4 

.9l5l4rF-05 

.454455F-05 

.221000F-05 

.105251ET05 
,490869F-06 

.192745F*02 

.13258AF+C? 

.96<»02lFt-Ol 

.730094F+01 

.570653F+01 

.45755flF+0l 

.37483aF+0l 

.312831F>01 

.265619F4.01 

.229061F+01 

.200/t98F*0l 

.17B027F+01 

.160?82F*0l 
,146254F+01 
.135183F+01 
.126482F*0l 
.119689F+01 
, i i-H3'+F-»-öi 
.110416F+01 
.107368F+01 
.105142F+01 
,103508F+01 

.10234?F*0I 

.101529F+01 

.io097er+oi 
,100608P*01 
.100370F*01 

.100220F+01 

.100123F+01 

.100072F+01 

.100040F+01 

.100022F+01 

.100011F+01 

.l00006F-i'Ol 
,100003F+Ol 
.100002F*01 

x2U) 

,439521E*02 
.303985F+02 
,222360F*02 
,169484F*02 
.133337F+02 
.10758«E*02 
.R86452E+01 

,743473E*01 
.633313E+01 
.547028E+01 
.478549E+01 
.423645E+01 
.379285F+01 
.343257E+01 
.313908E+01 
.289979E+01 
.270497E4-01 
,25HÖ92t♦"i 
.241944F+01 
.231744F+01 
,223669F+0l 
.217356E+01 
.212496E+01 
.20R819E+01 
.206092E+01 
.204113E+01 
.202711E*01 
.201743F+01 

.201093F>01 

.200667E+01 

.200397E+01 

.200230E+01 

.200130E+01 

.200072E+01 
,200038E+01 
.200020E*01 

x3(r.) 

,78^9',9r*02 
,543889r + 0t: 
.39P,6?7F*02 

.306452F*02 
,23qq93r*C2 
,193<?97P*02 
.160077F*02 
.134391F*02 
.1145I7F*02 

.98P64lE*01 

.8635<.2F*01 
,7623S

/
-»F + 01 

.679701F+01 
,61l662F*01 
,5553I8F*01 

,50p4^4r+0l 
,46qA04r+0l 
,^3f,8l7^»0l 
,^0Q659F*01; 

.387090F*01. 

.368<+?6F*01 

,353099E*01 

.340626F*01 

.330593F+01 

.32263^F*01 

.316422F*01 

.311665F+01 
,30P09Br+0l 

.305487E*01 

.303624E*01 

.30?330F*01 

.30IA58F*01 

.300887F*01 

.300525E*01 

.300302F+01 

.300169F+01 
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TAB'E I! 

First four eigenvalues for the O.U. process with boundaries at r - -1. y- c 

o.i 
0.2 
0.3 
0.^ 
O.S 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.^ 

.5 

3. ) 
3 : 
3.2 
r.3 

3.5 
3.6 
3.7 
3.8 
3.9 
4.0 

x0U) 
,147597F*01 
.l?2l34F. + ül 
.10l60}E*0l 
.847714E+00 
.707917r*0ü 
.59065iSE*00 
.491601E+00 
.407545E+00 
.336C5^f*00 
.275266E*00 
.223672E*00 
,l80066r4-00 
,143434E*00 
.11290Sr4.00 
.877131E-01 
.671669E-01 
.506356E-üi 
.375368E-01 
.273328E-01 
.195302E-01 
,136«lciE-01 
,939049E-02 
.631072E-02 
.4150B0E-02 
.257130E-02 
.168182E-02 
.103579E-02 
.624n4iE-03 
.36781^E-03 
.212110E-03 
.119693E-03 
^olOOOE-O'* 
.3572a6E-0i» 
.ie9044E-04 
.979?33E-05 
.496628E-0^ 
,24662^E-05 
.llq93lE-05 
.57lia6E-0b 
,266^07E-06 

.972635r*0l 

.817342F4.01 

.6960l6r*01 

.599455E4.01 

.5?l40Sr*01 

.457490E+01 

.404575r*0l 

.360364F4-01 

.323145F+01 

.291621E+01 

.264793E*01 

.241882F+01 

.222273E+01 

.205'47ÖF + 01 
,191099E*01 
,178B14E*01 
. i uu J >0»- ▼ u I 
,159C98E*01 
.152049E+01 
,l458^0F*0l 
.1407?2E*01 
.1365^7E+0l 
.133??UE*01 
.13059lE*01 
.128561E*01 
.127n27F*01 
.125fl9JE*0l 
.125076E*01 

.I24503r*0l 

.1241UE*01 

.123851F+01 

.1236a2F-»-01 

.123576E+01 

.123512F+01 
:i23473E*0l 
.123451r*0l 
.l?3^38E+0l 
,123^31E+Ül 
.123427E+01 
.123425E"»-ni 

X?U) 

.260467F*0? 

.21888?E>02 

.18647 3E*'0-' 

.160732F* ? 

.13995SF*-0? 

.122951F*02 

.108H70E*02 

.970n9lF*0 

.871463F*0 

.7fl6905F*0 

.7l452c;F*0 

.652226E*0 

.598356E*0 
,55l603E*0 
.510907F+0 
.475413F*0 

.A17352F+0 

.39372flF*0 

.373U9E + 0 

.355276E*0 

.339823E+0 

.32f,54n1>0 

.315210F*0 

.305636F+0 

.297640F+0 

.291053E*0 

.2657lSF*-0 

.281467F+0 
,278l5flE*0 
.27564iE*0 
.273773^ + 0 
.272426F>0 
.27l48lF*0 
.27083QF+0 
.270M5F + Ü 
.27014SF+0 
.269977E+0 
.269876E+0 
.269818E*0 

X3U) 

.50SlR7-*n? | 

,36lS9lE*02 
,3n8l5E*02 
.27IS70r*02 
.238633E*&2 
.21l348F>n2 
,lpqS05F*02 
. 169201F + 02 
.1527^SE*02 
,138643^4.02 
,1264S7F*02 
.115876F+02 
.106645F*02 
.98SS84F+01 
,9164«7F*01 

.796401F>01 
,747357F+01 
.70389lF*nl 
.665351F+01 
.631187F4.01 
.60O932F*0l 
.57^190F+nl 
.55n620£*01 
.529928':>0l 
.5na58r*oi 
.4961R6E*01 
tU*270BF*0\ 
.^71238E*01 
.4D1600E*01 

.45362''*F + 01 

.447139F*01 
,44l975E-»-01 
.4379^6F+01 
,4349i0F*01 
,432666E*0l 
.43106?F-»-0l 
,4299S3F*01 
.429211F+01 
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TABLE  III Reproduced   from 
beit  available  copy. 

First four eigenvalues for the O.U.  process with boundaries at r = -», y = £, 

] .^ 
0 ,9 
n f> 

o ,7 
n ,6 
P /. 
0 ,4 

0 ,3 
'1 .? 
0 . 1 
0 i 
o ,? 
0 .3 
0 .'. 
n .s 
0 .6 
0 7 
0. .B 
0. .9 

n 
i 
2 

1    4 3 
* 1 f *♦ 

s 
.6 

7 
1 

■) 

?. 0 
? 1 
?. 2 
?. .3 
?. u 
?. 5 
?. 6 
2 .7 

?. q 

?. ,9 
3. 0 
3. 1 
3. .? 
3. 3 
3. 4 
3. ,5 
3. 6 
3. 7 
3. B 
3. 9 

«.0 

»0(O 
.2,i37?0^*0l 
,?3^S^'Jp40l 
.2l»>?3ür*0l 
.19ü78MF<01 

.in^l90r*0l 
, l6(/.3r>r + 0l 

.137/(2AF*3l 

.1?'U47F*Ö1 

.lll')77r*0l 

.H91(K6r400 

.7ft9767l+00 
,69601ÜF*00 
.609609t-*00 
.,.30383r+ö0 
.45Ö133F+00 
.39?6/»?F-»00 
.333f>7lF + 00 
.?80963r*00 
,23^?34F+00 
.193179F400 
•15V467riJo 
•12674AF400 
,100634 fi*0C) 
.787399F-01 
.606492F-01 
.459393F-01 
.341851F-C1 
.?4967?F-01 
.178817F-01 
.l?b495F-0l 
,86aA83F-0? 
.580l8aF-02 
.381882F-0? 
.24bB87F-Ü2 
.15^860F-02 

,9S3966F-03 
.574o27r-03 
.338838F-03 
.19S412F-03 
.ll027^F-03 
.608996F-0^ 
.329181F-04 
.iy^l7^F-04 
.902211F-05 
.457567F-05 
.227227^-0^ 
.110500F-05 
.526216F-06 
.24S493F-06 

S103fl2f*0 
Wttxr + Q 
4M 61 1F*'J 
438498f.*Ü 
4162?Mir40 
394795r*0 
37419/*F*Ü 
3SV. l9F-f0 
335466r4Ü 
3l732aF*0 
28347,ir4U 
2677^6.r*0 
25280Br*0 
2386r;3r*0 
22S?7'*V*'} 
212663E*0 
200ni3F*0 
189716F*0 

179364^*0 
I6974f>r40 
160BS5E*0 
lb267HF4U 
145205r+0 
ijrt^2, +0 
1323K 40 
126R63F4Ü 
12204aF+0 
117a^5F40 
11A724F40 
1111S1E4Ü 
108SR6F40 
106A84F40 
104797F4-0 
103472F40 
1024S6F4D 
101697F4Ü 
101144^*0 

10n7S3F4C 
1004P3F40 
100302E40 
10018^F*0 
10011CE40 
100064F40 
10003^F40 
100020F4Ü 
lOnoilE40 
l000')6F40 
lonno3F4ü 
100001F40 

lOOOOlF»^ 

.7,i266Sr4 01 
,7?.\f>t*<*r*0 
,69'-^^8F40 
,66R13Jr*0 
,64i635t-40 

.59113sr40 

.b6712br4.0 
,54i93cjr40 
.521562F4 0 
,47q246r40 
.<«5O2':>^^40 
.4401MF4-0 
.421781F40 
,40^210F40 
.387A23F4') 
.37i4l5r40 
.35M82r40 
.341718F40 
.3280l9(r*0 
.315081F40 
,302898^+0 
,29i467r40 
,^OU /M3P'4'J 

^yos^OF+o 
.26i63^F4-0 
.2531S9r40 
,24SA08F*0 

.238373^*0 

.23204«.F*0 
,226406r+0 
.22l4^9r40 
.217l40'-40 
.213457F40 
.2103^3F40 
.2078l5r40 
.205762F40 

.2041^8F*0 

.202912F+0 

.201991F40 
,20i325r*0 
.20n858E*0 
.20n5<»lF*0 
.200331F40 
.20oi9Rr*0 
.200115F4.0 

.200065F*0 
,20r036E*') 
.20O019F40 
.20n0l0F40 

^3(0 

,9H78M0r4n) 

, 955 350 r*.*» 
,923601r40 
#89?809r*h 
.85279 if o 
,H33604F*r. 
.805?^3r*T 
.777706r+^ 
i750989F*1 
.725')HHF4.0 

.67t;720f ♦f? 
,6522^6F»:j 
.629573F40 
.607697F4rJ 
,5866]5r4.T 
,566323F*^ 

,5^6817F4Ö 
.r.2809/4r4n 
.5101501:4) 
.492981F4Ö 
.4 76585F4',, 
.^6C95«F*0 

.431999r40 

.418663F4Ö 

.4060b5F4f) 
,3942ö4F40 
.383199F4.Ö 
.372886F4f; 
.36332'»F4"> 
.354512F4^ 
,3^6^'«6F4i) 
.339l22F4r 
.332534r4:S 
,32667lF4;) 
.321520F40 
.317060^40 
.313264F4P 
.310095r40 
.307508F4'1 
.305446F4f> 
.3038A7F4.0 
.302644F4T 
.3017b5F4O 
,3011^5F4n 
.300721F4C. 

.3004^0r*f 

.300261F4", 
,300l5lr4,ö 

.300084F4r 
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FIGURE CAPTIONS 

FIGURE 1. O.U. process. Mean first passage time to sytimietrical absorbing 

boundaries at ±C. Exact result,  . Independent random variable 

approximation, . Asymptotic expansion of exact result, 

FIGURE 2. O.U. process. Mean first passage time to^ with reflecting 

boundary at r = -1. Exact result,  . Independent random variable 

approximation, . Asymptotic expansion of exact result,  

FIGURE 3. O.U. process. Mean first passage time toe with reflecting 

boundary at r = -<«>. Exact result,  . Independent random variable 

approximation, . Asymptotic expansion of exact result,  

FIGURE 4. O.U. process. Mean extremum. Exact result,  , 

Independent random variable approximation,  . Difference, 

FIGURE 5. O.U. process. Mean maximum with a reflecting boundary at r = -1. 

Exact result, . Independent random variable approximation,  

Difference,  

FIGURE C. O.U. process. Mean maximum with a reflecting boundary at r = -•. 

Exact result,  . Independent random variable approximation,  

Difference,  

FIGURE 7. Harmonic oscillator dissociation. Mean first passage time to C. 

Exact result,  . Independent random variable approximation,   

Asymptotic expansion of exact result,  
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