AD/A-001 408

AIRCRAFT-PAVEMENT COMPATIBILITY STUDY

F. H. Griffis, et al

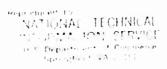
Army Engineer Waterways Experiment Station

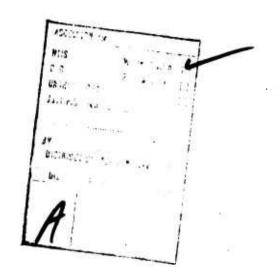
Prepared for:

Federal Aviation Administration Lockheed-California Company

September 1974

DISTRIBUTED BY:


and the second s


			Technical Report Documentation Page
1. Report No.	2. Government A	ccession Ne.	3. Recipient's Cetelep No.
m			ADIR-001 408
FAA-RD-73-206			S Report Date
			September 1074
AIRCRAFT-PAVEMENT COMP	ATIBILITY STUD	Y	September 1974 6. Performing Organization Code
7. Author's)			8. Performing Organization Report No.
F. H. Griffis and M. A	. Gamon		
9. Performing Organization Name and Ad	Idress	······································	10. Work Unit No. (TRAIS)
U. S. Army Engineer War	terways Experi	ment Station	
Soils and Pavements La	boratory, P. O		11. Centract or Grent No. DACW 39-73-0041
Vicksburg, Miss. 3918	0		13. Type of Report and Parced Covered
12. Sponsoring Agency Home and Address	1		Final Report
Department of Transport	lation		May 1971 - Nov 1973
Federal Aviation Admin			
Washington, D. C.			14. Spensoring Agency Code
15. Supplementary Notes			
Work was performed	under contra	ct DOT-FA71-E	/AI-218.
work was personned			
16. Abatrost			
cost associated with adding gears and wheels to aircraft in order to provide adequate flotation for present-day pavement design criteria. A basic assumption was made that the Widebody Jets and a 15-million-lb aircraft (Categories I and aircraft, respectively) would use the projected 26 major hub airports by the year 1985. Three gear types were designed for Categories I and II aircraft: current-flotation compatible with present pavement criteria; median-compromise design considering present pavement criteria and optimal gear for aircraft structure; and optimal-gear optimized for aircraft structure with no regard for pavement flotation requirements. Costs were based on each gear type for both categories of aircraft. Pavement data were surveyed for all projected 1985 major hub airports. Rigid and flexible pavement thicknesses were determined for Categories I and II aircraft; thicknesses were calculated both for new construct and for overlay of selected pavement areas where the aircraft might operate. Aircraft costs were developed as associated with carrying landing gear weight and volume in excess of the optimal gear. Pavement upgrading costs were determined and cost comparisons were made. Recommendations and devices were present relative to policy decisions on pavement criteria.			aircraft (Categories I and II ajor hub airports by the ories I and II aircraft: riteria; median-compromise imal gear for aircraft tructure with no regard for n each gear type for both for all projected 1985 cknesses were determined for lated both for new construction aircraft might operate. rying landing gear weight upgrading costs were deter-
Flotation Landing gear Pavement design		through the N	ement Evailable to the public Stational Technical Information English Virginia 22151.
Unclassified		sified	232
OHETESSILIER	Unclas	STITCA	

Form DOT F 1700.7 (8-72)

Market in the Anti-

Reproduction of completed page authorized

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

PREFACE

This project was conducted by the Soils and Pavements Laboratory, U. S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi, for the Federal Aviation Administration under IAA. This report covers work done from May 1971 to November 1973.

The project was conducted under the general supervision of Mr. J. P. Sale, Chief of the Soils and Pavements Laboratory. Sections 1 and 2 and 6 through 10 were prepared by MAJ F. H. Griffis, Jr. Sections 3 through 5 were prepared by Mr. M. A. Gamon under the supervision of Mr. Paul C. Durup, Group Engineer, Aeromechanics Group of the Structures Division of Lockheed-California Company, Burbank, Calif., under Contract DACW 39-73-0041, dated 27 November 1972, between WES and the Lockheed-California Company.

During this period of the project, Directors of the WES were BG E. D. Peixotto, CE, and COL G. H. Hilt, CE. Technical Director was Mr. F. R. Brown.

CONTENTS

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT				Page
OF MEASUREMENT	PR	EFACE		1
1 EXECUTIVE SUMMARY	COI	VERS:	ION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS	
1.1 Aircraft Cost Development	(OF ME	ASUREMENT	4
1.2 Pavement Cost Development 10 1.3 Cost Comparisons 15 1.4 Recommendations 17 1.5 Additional Value of This Report 18 18 2 INTRODUCTION 19 2.1 Background 19 2.2 Scope 19 2.3 Purpose 21 3 LANDING GEAR OPTIMIZATION 23 3.1 Mathematical Model 23 3.2 Gear Optimization Results 52 4 1985 MAJOR HUB AIRPORTS 64 1985 MAJOR HUB AIRPORTS 64 5.1 General Discussion 66 5.2 Lost Revenue Cost Analytical Model 66 5.3 Lost Revenue Cost Results 72 6 PAVEMENT UNIT PRICE ANALYSIS 81 6.1 Introduction 81 6.2 Relationship of Pavement Cost to Total Cost 66 7 PAVEMENT THICKNESS REQUIREMENTS 91 7.1 Computational Procedures 91 91 7.1 Computational Procedures 91 91 7.1 Computational Procedures 91 91 91 91 91 91 91 9	1	EXEC	UTIVE SUMMARY	5
1.3 Cost Comparisons				5
1.4 Recommendations 17 1.5 Additional Value of This Report 18 2 INTRODUCTION 19 2.1 Background 19 2.2 Scope 19 2.3 Purpose 21 3 LANDING GEAR OPTIMIZATION 23 3.1 Mathematical Model 23 3.2 Gear Optimization Results 52 4 1985 MAJOR HUB AIRPORTS 64 5 AIRCRAFT COSTS 66 5.1 General Discussion 66 5.2 Lost Revenue Cost Analytical Model 66 5.3 Lost Revenue Cost Results 72 6 PAVEMENT UNIT PRICE ANALYSIS 81 6.1 Introduction 81 6.2 Relationship of Pavement Cost to Total Cost of				
1.5 Additional Value of This Report				
2 INTRODUCTION 19 2.1 Background 19 2.2 Scope 19 2.3 Purpose 21 3 LANDING GEAR OPTIMIZATION 23 3.1 Mathematical Model 23 3.2 Gear Optimization Results 52 4 1985 MAJOR HUB AIRPORTS 64 5 AIRCRAFT COSTS 66 5.1 General Discussion 66 5.2 Lost Revenue Cost Analytical Model 66 5.3 Lost Revenue Cost Results 72 6 PAVEMENT UNIT PRICE ANALYSIS 81 6.1 Introduction 81 6.2 Relationship of Pavement Cost to Total Cost of				
2.1 Background 19 2.2 Scope 19 2.3 Purpose 21 3 LANDING GEAR OPTIMIZATION 23 3.1 Mathematical Model 23 3.2 Gear Optimization Results 52 4 1985 MAJOR HUB AIRPORTS 64 5 AIRCRAFT COSTS 66 5.1 General Discussion 66 5.2 Lost Revenue Cost Analytical Model 66 5.3 Lost Revenue Cost Results 72 6 PAVEMENT UNIT PRICE ANALYSIS 81 6.1 Introduction 81 6.2 Relationship of Pavement Cost to Total Cost of		1.5	Additional Value of This Report	18
2.2 Scope 19 2.3 Purpose 21 3 LANDING GEAR OPTIMIZATION 23 3.1 Mathematical Model 23 3.2 Gear Optimization Results 52 4 1985 MAJOR HUB AIRPORTS 64 5 AIRCRAFT COSTS 66 5.1 General Discussion 66 5.2 Lost Revenue Cost Analytical Model 66 5.3 Lost Revenue Cost Results 72 6 PAVEMENT UNIT PRICE ANALYSIS 81 6.1 Introduction 81 6.2 Relationship of Pavement Cost to Total Cost of	2	INTR	ODUCTION	19
2.3 Purpose		2.1	Background	19
3 LANDING GEAR OPTIMIZATION		2.2	Scope	19
3.1 Mathematical Model		2.3	Purpose	21
3.2 Gear Optimization Results	3	LAND	ING GEAR OPTIMIZATION	23
4 1985 MAJOR HUB AIRPORTS 64 5 AIRCRAFT COSTS 66 5.1 General Discussion 66 5.2 Lost Revenue Cost Analytical Model 66 5.3 Lost Revenue Cost Results 72 6 PAVEMENT UNIT PRICE ANALYSIS 81 6.1 Introduction 81 6.2 Relationship of Pavement Cost to Total Cost of		3.1.	Mathematical Model	23
4 1985 MAJOR HUB AIRPORTS 64 5 AIRCRAFT COSTS 66 5.1 General Discussion 66 5.2 Lost Revenue Cost Analytical Model 66 5.3 Lost Revenue Cost Results 72 6 PAVEMENT UNIT PRICE ANALYSIS 81 6.1 Introduction 81 6.2 Relationship of Pavement Cost to Total Cost of		3.2	Gear Optimization Results	52
5.1 General Discussion	4	1985		64
5.2 Lost Revenue Cost Analytical Model	5	AIRC	RAFT COSTS	66
5.2 Lost Revenue Cost Analytical Model		5 1	Canaral Discussion	66
5.3 Lost Revenue Cost Results		-		
6 PAVEMENT UNIT PRICE ANALYSIS		•		72
6.2 Relationship of Pavement Cost to Total Cost of Pavements	6	-		81
6.2 Relationship of Pavement Cost to Total Cost of Pavements		<i>6</i> 1	Introduction	A1
Pavements				OI
6.3 Pavement Unit Price Model		0.2		84
7 PAVEMENT THICKNESS REQUIREMENTS		6.3		86
7.1 Computational Procedures	7	•		91
		7.2	Design Criteria	91 94
7.3 Determination of Thickness Requirements		•		-

		<u>1</u>	Page
8	CALC	ULATION OF TOTAL PAVEMENT PRICE	107
	8.1 8.2 8.3 8.4 8.5 8.6	Introduction	10 ¹ 4 10 ¹ 5 10 ⁹ 5 10 ⁹ 5 11 ³ 5
9	PRICE	E ANALYSIS	124
	9.1 9.2 9.3 9.4	Category I Aircraft	124 124 125 125
10	FIND	INGS AND CONCLUSIONS	139
		Gear Optimization and Aircraft Cost	139 139 140
11	RECON	MMENDATIONS	143
12	ADDI	TIONAL VALUE OF THIS REPORT	144
APPI	ENDIX	A PAVEMENT CONSTRUCTION DATA FOR MAJOR HUB AIRPORTS	145
APPE	ENDIX	B CONTROLLING PAVEMENT CHARACTERISTICS USED TO DETERMINE PAVEMENT THICKNESS REQUIREMENTS	2 3 7
APPE	ENDIX	C PAVEMENT THICKNESS REQUIREMENTS FOR OPERATION OF CATEGORY I AND II AIRCRAFT	242
APPE	ENDIX	D COMPUTATION OF TOTAL PAVEMENT PRICE FOR MAJOR HUB AIRPORTS	251
REFE	ERENCE	ES	272

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	By	To Obtain
inches	2.54	centimeters
feet	0.3048	meters
miles (U. S. statute)	1.609344	kilometers
square feet	0.09290304	square meters
square yards	0.8361274	square meters
cubic inches	16.38706	cubic centimeters
pounds (mass)	0.4535924	kilograms
tons (2000 pounds)	907.1847	kilograms
foot-pounds	1.355818	joules
pounds per square inch	6,894.757	pascals
pounds per cubic inch	27,679.90	kilograms per cubic meter
pounds per cubic foot	16.01846	kilograms per cubic meter

1 EXECUTIVE SUMMARY

The state of the s

The purpose of this study was to perform an economic analysis relating the pavement upgrading cost to the penalty cost associated with adding gears and wheels to aircraft in order to provide adequate flotation for present-day pavement design criteria. Adequate flotation as used here implies distributing the total weight of the aircraft over a larger area to keep pavement stresses within acceptable limits. Specifically, the question answered by this study is "Should the FAA policy on pavement strength stated in paragraph 5 'Maximum Pavement Strength for FAAP Participation' of Order 5320.2 dated July 18, 1966, be changed due to the advent of the Widebody Jets (B747, DC10, L1011) and the possible addition of an aircraft weighing up to 1.5 million 16** to air currier fleets by 1985?" The basis for the answer of this question was purely economic; environmental, sociopolitical, and energy factors did not enter into the trade-off criteria. The basic assumption that the Widebody Jets and the 1.5-million-lb aircraft would use all projected 26 major hub airports in 1985 was not challenged in this study.

1.1 Aircraft Cost Development

To conduct this study, a contract was let to Lockheed-California Company, Inc., to develop two hypothetical aircraft types. The Category I aircraft corresponded to the present Widebody Jets and the Category II aircraft corresponded to a projected 1.5-million-lb aircraft to be operational by 1985. Three gear types were designed for both the Categories I and II aircraft. Type 1, referred to as the current gear, is a gear type with flotation compatible with present FAAP/ADAP maximum design criteria. Type 2, referred to as the median gear, is a compromise gear type designed with consideration of the present FAAP/ADAP pavement criteria but also considering the optimal gear designed with respect to

^{*} The cited paragraph is restated here for easy reference. "The maximum pavement strength for which FAAP [Federal-Aid Airport Program which has been superceded by the Airport Development Aid Program (ADAP)] funds may be applied at any airport may not exceed that required for 350,000 pound dual tandem gear airplane."

^{**} A table of factors for converting U. S. customary units of measurement to metric (SI) units is presented on page 4.

the aircraft structure. Ideally, this median gear lies midway between the two with respect to flotation requirements. The type 3 gear, quite naturally, is the gear type optimized with respect to the aircraft structure with no regard to pavement flotation requirements and is referred to as the optimal gear.

Gear types during this portion of the study were optimized with respect to cost instead of weight.

The model used for the gear designs is the property of Lockheed-California Company. The optimization procedures, from Table 1 in the text, minimize acquisition, maintenance, and flight operation costs of wheels and tires with respect to total weight, vertical load, and tire pressure; brakes with respect to total weight, rejected takeoff, landing kinetic energy, service energy, and number of brakes; bogic beam with respect to total weight, vertical load size, and labor as a function of total number of gears; gear strut, braces, and actuators with respect to total weight, takeoff gross weight, number of gears, and material as a function of gear weight; and gear-support structure with respect to total weight, takeoff gross weight, number of gears, and gear location. Figure 1 shows the gear designs for the Category I aircraft and Figure 2 shows the gear designs for the Category II aircraft as taken from Tables 9 and 12 in the text, respectively.

In conformance with the same contract, Lockheed-California Company surveyed pavement data at all projected major hub airports in 1985. The definition of a major hub airport is one that enplanes more than one percent of the domestic enplaned passengers. FAA Pavement Evaluation Forms for each of the projected 1985 major hub airports are included in this document as Appendix A. In addition to providing a basis for designing the overlay thicknesses required for the pavement costing section of this report, Appendix A provides a central source of pavement data for the subject airports. Table 13 of the text describes the source of the pavement data and, as a check on the validity of the data, each airport engineer was presented a copy for verification. The extreme right-hand column of Table 13 indicates whether or not the airport engineer in question responded to the verification request.

ITEM	CURRENT-PAVEMENT GEAR	MEDIAN-PAVEMENT GEAR	OPTIMIZED GEAR
GEAR CONFIGURATION	6-WHEEL BOGIE	4-WHEEL BOGIE	4-WHEEL BOGIE
TIRE VERTICAL LOAD, POUNDS	38,630	57,950	57,950
TIRE PRESSURE, PSI	200	200	215
TIRE DIAMETER, INCHES	44.8	56.1	53.8
BOGIE SIZE, INCHES a b c	42.3 97.7 56.4	44.5 59.9 -	42.4 57.1
BOGIE CONFIGURATION			

Figure 1. Gear designs for Category I aircraft

ITEM	CURRENT-PAVEMENT GEAR	MEDIAN-PAVEMENT GEAR	OPTIMIZED GEAR
GEAR CONFIGURATION	FIVE 6-WHEEL BOGIES	FOUR 6-WHEEL BOGIES	THREE 6-WHEEL BOGIES
TIRE VERTICAL LOAD, POUNDS	47,500	59,375	79,167
TIRE PRESSURE, PSI	150	200	250
TIRE DIAMETER, INCHES	56.2	56.9	58.4
BOGIE SIZE, INCHES a	52.2	52.8	54.1
b	120.5	121.8	124.9
С	69.6	70.3	72.1
GEAR LOCATIONS, INCHES	214 171 100 613 FUSELAGE	214 171 613 FUSELAGE	613 FUSELAGE

Figure 2. Gear designs for Category II aircraft

The final requirement for the contract was to develop the air-craft cost associated with carrying landing gear weight and volume in excess to that optimized with respect to the aircraft structure and with no regard to the pavement strength. These costs arise from four sources:

- o Acquisition cost
- o Maintenance cost
- o Flight cost
- o Lost revenue cost

The first three costs were considered in the landing gear design since the design was based on the least cost design. The lost revenue cost was based upon the lost payload of the aircraft. Several assumptions were made to determine this payload. Figure 3, taken from Figure 25 of the text, is a graphic illustration of the probability assumptions.

Figure 3. Determination of lost payload

Basically the assumptions include an average weekly payload \overline{X} , a normal distribution of payload weight about \overline{X} , and a coefficient of variation of 60 percent. The equations used in the lost revenue model were:

(Total revenue, \$) = (Passenger miles) × (Yield/passenger mile) + (Cargo ton mile) × (Yield/ton mile) (Average yield (\$/1b)) = (Total revenue) : (Total weight)

multiplied by 52 weeks per year to arrive at an annual expected lost revenue by aircraft type by distance-block under various landing gear/operational empty weight (OEW) assumptions. This lost revenue is then summed over all the distance-blocks analyzed for the projected 26 major hub airports to determine the total annual lost revenue from operations out of the major domestic hub airports. Tables 17 and 18 of the text give the computed lost revenue from each projected 1985 major hub airport for the Categories I and II aircraft, respectively.

Table 19 lists the total acquisition, operation, maintenance, and lost revenue costs in 1985 dollars for the Categories I and II aircrafts. The total point estimate costs relative to the optimal gear configurations are shown below.

	Current Pavement Gear	Median Pavement Gear
Category I Aircraft	\$ 6,673,397	\$ 1,929,880
Category II Aircraft	68,777,864	35,160,820
Total Aircraft Cost	75,451,261	37,090,700

1.2 Pavement Cost Development

Because of spatial and temporal variables, a statistical approach was used to develop the total pavement upgrading costs. Since the Dallas-Fort Worth Regional Airport has been designed for a 1.5-million-lb aircraft, it was excluded from the analysis. An assumption was made that two major runways, the associated taxiway systems, and the entire apron area at the remaining 25 projected 1985 major hub airports would be overlayed with either a rigid or a flexible pavement; the pavement type was determined from historical records. Land-acquisition costs were not considered in this analysis.

The initial step in developing the unit prize for each pavement upgrading project was to determine the relationship of the pavement cost to the total upgrading cost. Bid tabulations for 14 major airport

paving projects published during 1971-1972 in Engineering News Record were analyzed. Upgrading costs were broken down into seven categories and the mean percentage of category cost to total upgrading cost, along with each standard deviation, was computed using small sample statistics. The mean \overline{X} and the standard deviation σ of each category as a percentage of the total upgrading cost are as follows:

Category	<u> </u>	σ
Excavation	13.10	11.08
Pavement	72.79	9.81
Subsurface Structures	7.13	5.70
Wiring	1.74	2.27
Lighting	2.21	4.47
Painting	0.37	0.67
Miscellaneous	2.66	4.92

Although some rather large variances occur in the categories other than pavements, this is inconsequential. The average price of pavement as a percentage of the total contract price is 72.79 percent with a coefficient of variation of 14 percent.

An analysis of variance showed that one could not conclude that there was no significant difference between the percentage of rigid pavement price and the percentage of flexible pavement price to total contract price. Thus, a grouped analysis determined the ratios of pavement price to total price used in this study. These parameters are shown below:

Pavement Type	<u>X</u>	<u> </u>
Rigid	77.51	8.03
Flexible	68.06	9.60

The pavement unit prices were developed, in as far as possible, on the basis of the price per square yard per inch (SYIN). Bid tabulations for numerous projects were collected on a regional basis as were FAA Forms 5100-1. The bid tabulations list the square yard (SY) price, whereas the FAA Form 5100-1 records the depth of each pavement layer. Prices were assumed to decrease hyperbolically with increased thickness within an acceptable range.

Equations used for determining unit prices were:

PCC:

Application - .

C = Price per SY : thickness

Bituminous:

C = Price per SY * thickness

or, when bid tabulations were listed in price per ton,

C = Cost per ton
$$\times \frac{1}{2000 \text{ lb/ton}} \times 150 \text{ lb/cf} \times 9 \text{ sf/SY} \times \frac{1}{12 \text{ in./ft}}$$

"你以来的小家庭的,我

The last equation explicity assumed an asphaltic concrete density of 150 lb/cf. In those cases where the price of aggregate and asphalt cement were given separately, an asphalt content of 5 percent was assumed. The rate of application of asphalt prime coats was assumed to be 0.3 gal/SY and tack coats at 0.1 gal/SY. A list of national average prices for pavement products taken from Table 22 of the text is given below.

Pavement Product	Cost Units	Number of Observations	Mean Price	Standard Deviation
Portland Cement Concrete (P501)	\$/SYIN	46	0.94	0.34
Bituminous Surface Course (P401)	\$/SYIN	21	0.54	0.14
Crushed Aggregate Base (P209)	\$/SYIN	8	0.19	0.03
Bituminous Base (P201)	\$/SYIN	13	0.59	0.22
Prime Coat (P602)	\$/SY	9	0.07	0.02
Tack Coat (P603)	\$/SY	23	0.03	0.02

The prices in SYIN used for each of the projected 1985 major hub airports were derived in order of priority according to the following sources:

- (1) Project bid data at a particular airport if two or more tabulations were available (this requirement was for some statistical credibility).
- (2) Regional averaged bid data for those regions supplying adequate data.

(3) Nationwide averages as listed above.

The prices used for the 1985 major hub airports are listed in Table 23 of the text in 1972 dollars.

Third step in developing the pavement cost was to design the pavement cross section required for the Categories I and II aircraft. FAA design criteria were used for the design at a standard 100,000 aircraft pass level. Only those areas assumed required for operations were considered for design. Design curves and associated rationale are included in Section 7 of the text.

Pavement areas for costing purposes were selected subjectively by this evaluator. Pavement areas were scaled from the sketch drawings shown on the airfield evaluation forms in Appendix A. Most drawings were adequately scaled for the calculation of areas. For those that were not scaled, suitable assumptions were made with respect to the areas involved. From a macro point of view, this was adequate.

そのなるのでは我から、我の母子のなのはなるとないのは、如は我的我のないとれてはないかっという

Since the total cost varies linearly with the surface area, a sensitivity analysis with respect to area and other parameters was performed. Based on most historical evidence, only two types of overlays were considered: full-depth bituminous overlays, FAA Item P-401; and portland cement concrete overlays, FAA Item P-501. A total expected area of 29,939,536 sy was calculated with 32.2 percent consisting of runway area, 23.4 percent consisting of taxiway, and 44.4 percent consisting of apron area. These statistics are shown in Table 24 in the text.

A comparison of the total aircraft cost and the total pavement price was made in terms of equivalent annual cost in 1985 dollars. To develop the total pavement upgrading cost, the unit price p, in dollars per SY, was developed by summing the products of the price per SYIN and the designed thicknesses for each pavement section of each projected 1985 major hub airport with each product divided by the ratio of the pavement cost to the total upgrading cost as developed earlier. The total pavement cost in 1972 dollars was obtained by multiplying unit price for each pavement section by the area of that section and summing over all of the projected 1985 hub airports. These prices are

listed by airports in Tables 25 and 26. These calculations were made for each category airplane and each gear type relative to a zero cost for not upgrading.

The basic equation for determining the equivalent annual pavement cost in 1985 dollars can be expressed simply as

$$x = p \times A \times (1 + i)^n \left[\frac{i (1 + i)^m}{(1 + i)^m - 1} \right]$$

where

x = equivalent annual cost of pavement upgrading in 1985 dollars

p = average total cost of upgrading per sy

A = pavement area to be upgraded in sy

i = interest rate in percent

n = number of years to construction (or bond issuance)

m = amortization period of the pavement structure in years

Some basic value assumptions were necessary in order to make comparisons using this 5-space function. Expected values for p of \$7.36, \$7.77, \$7.45, and \$12.82 in 1972 dollars were computed for the Category I median and optimal gears and Category II median and optimal gears, respectively. The computed value for A was 29,939,536 SY. Assumptions for the remaining independent variables were:

i = 5 percent

n = 13 years (since construction must be concluded in 1985 for the comparison to be valid)

m = 20 years

Since these assumptions are most certainly to be challenged, a thorough sensitivity analysis was performed for each assumption and procedures are presented for recomputing x using the challenger's own assumptions. Tables 27 and 28 in the text list the most probable equivalent annual pavement upgrading cost (MPC) for each projected 1985 major hub airport for the Categories I and II aircraft, respectively. The totals are repeated below for convenience:

	Median Gear	Optimal Gear
Category I Aircraft	\$33,328,803	\$35,218,395
Category II Aircraft	33,749,362	58,097,736

Due to the extreme difficulty of predicting construction cost in the future, three separate costs were developed for each gear type. An assumption was made that a probable coefficient of variation existed in both unit price and area to be paved calculation of 20 percent. Based on this assumption, a lowest probable cost (LPC) of pavement upgrading was computed assuming a 20 percent low-side calculation in both p and A and a highest probable cost (HPC) was computed assuming a 20 percent high-side calculation in both p and A. However, the original assumptions for i, n, and m were not changed.

Again, the reader is reminded that a device for changing these variables is presented herein also. One should note that, while these analyses were performed for the pavement upgrading cost, only a single point estimate of the aircraft penalty cost has been made. This should be considered in examining conflicting alternatives.

1.3 Cost Comparisons

The purpose of this section is to present economic justification for either modifying or not modifying FAA Order No. 5320.2 with regard to pavement strength. This presentation first considers only the Category I aircraft since the possibility exists that the Category II aircraft will not be operational in 1985.

Category I aircraft. Based on the equivalent annual cost analysis using the MPC for pavement, the total equivalent annual costs are:

o Cur	rent Gear	\$ 6,673,379
o Med	ian Gear	35,258,683
o Opt	imal Gear	35,218,395

It is obvious from this listing that the optimal alternative is not to modify the present policy if one only considers the Category I aircraft. If one uses the LPC for pavement, the decision remains unchanged as shown below:

o Current Gear \$ 6,673,379 o Median Gear 13,943,790 o Optimal Gear 12,666,249

These results are illustrated in Figure 44 of the text.

Categories I and II aircraft. A basic assumption inherent in the following analysis is that a pavement structure upgraded for the Category II aircraft would be adequate for the additional Category I aircraft concurrently. The state-of-the-art in pavement analysis is in its infancy concerning mixed traffic and pavement deterioration prediction. Based on the equivalent annual cost analysis using the MPC for pavement, the total equivalent annual costs are:

o Current Gear \$75,451,243 o Median Gear 70,840,062 o Optimal Gear 58,097,736

Based on this total annual cost listing, the present policy should be changed to permit the optimization of the gear to the Category II aircraft. However, in this instance, if one assumes the HPC for pavement, a conflicting alternative arises as shown below:

o Current Gear \$ 75,451,261 o Median Gear 103,239,690 o Optimal Gear 113,842,221

There is considerable logic behind the assumption that the MPC will be exceeded in the pavement upgrading for the Category II aircraft. In all probability, the paved area will exceed that computed in this report. The unit price differential may or may not increase. Thus, it is extremely critical to the decision maker that a proper determination be made as to whether or not the Category II aircraft will be operational in 1985; whether or not it will operate at all 26 projected major hub airports or perhaps only at 7 to 10 regional airports; and other operational assumptions.

Other variable considerations. Numerous figures and equations are presented in the text to permit the user of this document to change parameters and develop his own policy derivation. Assuming that the MPC calculations are correct and n = 13 years, Figure 4 presents a

o Current Gear \$ 6,673,379 o Median Gear 13,943,790 o Optimal Gear 12,666,249

These results are illustrated in Figure 44 of the text.

Categories I and II aircraft. A basic assumption inherent in the following analysis is that a pavement structure upgraded for the Category II aircraft would be adequate for the additional Category I aircraft concurrently. The state-of-the-art in pavement analysis is in its infancy concerning mixed traffic and pavement deterioration prediction. Based on the equivalent annual cost analysis using the MPC for pavement, the total equivalent annual costs are:

o Current Gear \$75,451,243 o Median Gear 70,840,062 o Optimal Gear 58,097,736

Based on this total annual cost listing, the present policy should be changed to permit the optimization of the gear to the Category II aircraft. However, in this instance, if one assumes the HPC for pavement, a conflicting alternative arises as shown below:

o Current Gear \$ 75,451,261 o Median Gear 103,239,690 o Optimal Gear 113,842,221

There is considerable logic behind the assumption that the MPC will be exceeded in the pavement upgrading for the Category II aircraft. In all probability, the paved area will exceed that computed in this report. The unit price differential may or may not increase. Thus, it is extremely critical to the decision maker that a proper determination be made as to whether or not the Category II aircraft will be operational in 1985; whether or not it will operate at all 26 projected major hub airports or perhaps only at 7 to 10 regional airports; and other operational assumptions.

Other variable considerations. Numerous figures and equations are presented in the text to permit the user of this document to change parameters and develop his own policy derivation. Assuming that the MPC calculations are correct and n = 13 years, Figure 4 presents a

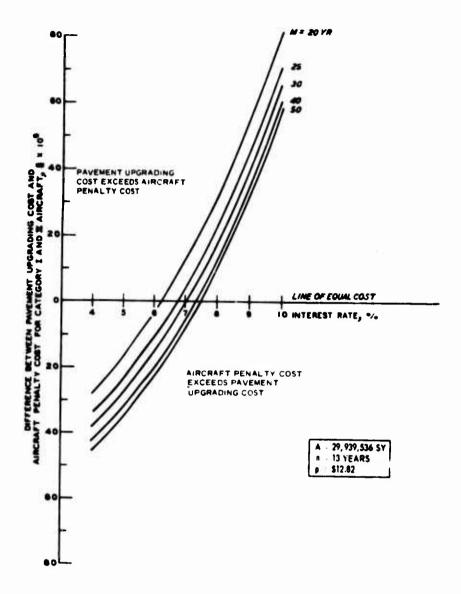


Figure 4. Effects of variations of pavement life m and inflation factor i

convenient method for changing the assumptions for i and m, two elusive parameters. Figure 4 is based on Figure 54 of the text.

1.4 Recommendations

The state of the s

The following recommendations resulted from this study. They are based on the authors' calculations and assumptions. Devices are presented in this report to permit the decision to change these assumptions and calculations and the possibility exists that the recommendations

should change based on further developments.

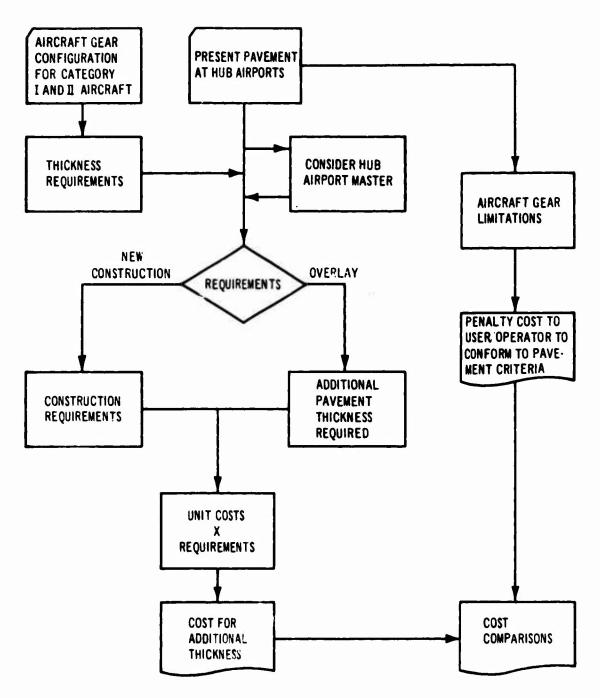
- (1) If only the Category I aircraft will be in operation at each of the 26 projected major hub airports in 1985, the current FAAP/ADAP criteria should not be changed.
- (2) If the Categories I and II aircraft (implied also is the Category II aircraft alone) will be in operation at each of the 26 projected major hub airports in 1985, the current FAAP/ADAP criteria should be changed to permit the gear to be optimized to the aircraft. The possibility of operating the Category II aircraft at from 7 to 10 regional airports should be investigated.

1.5 Additional Value of This Report

In addition to providing a useful device exclusive of additional cost for examining various policy decisions, this report provides:

- (1) A consolidation of airport layouts and pavement structures as of 1972.
- (2) An algorithm for designing aircraft gear types on a minimum cost basis.
 - (3) Pavement design curves for heavy aircraft.
 - (4) Methodology for complex cost analyses.

2 INTRODUCTION


2.1 Background

Since 1958, the Federal Aviation Administration (FAA) has adopted a policy of limiting pavement design for large jet aircraft to an equivalent 350,000-lb gross weight on a twin-tandem gear configuration. However, to remain within acceptable stress limitations, the B747 has 4 main gear bogies with 16 wheels, and the DC10 series 10 and the L1011 have been designed with larger wheels at greater spacing to remain within the same flotation criterion. The penalty cost associated with conformance to these restrictions has been hypothesized, but quantification has not previously been made public.

As aircraft begin exceeding 0.5-million-lb gross weight, intrinsic penalties obviously tend to occur. For instance, the DC10 series 20 and 30 have two additional wheels under the fuselage. The wide spacing required on the four main gears of the B747 places the gears beneath the engines, thereby decreasing the torque available for ground turning. This greatly impedes the ground maneuverability. As the aircraft industry moves toward aircraft in the 1.5- to 2.0-million-lb gross weight class, even greater penalties intuitively seem plausible.

2.2 Scope

The scope of this study is illustrated in Figure 5 and consists of three parts. First, a contract was let to Lockheed-California Company to design landing gears for two categories of aircraft. Category I consisted of a representative of the relatively new series of commercial jet aircraft, in Lockheed's case, the L1011. Category II consisted of a projected 1.5- to 2.0-million-Ib aircraft. These category identifications will be used throughout this report to identify the two types of aircraft. For each of these types of aircraft, Lockheed designed three representative landing gears. The first gear type was constrained by the criterion that states that the gear shall cause no more distress to the pavement than a 350,000-lb aircraft with a dual tandem gear structure with intended spacings similar to a DC8-63F aircraft. The second type of gear is one that is optimized with respect to the aircraft

10 mm S

Figure 5. Scope of aircraft pavements compatibility study

without pavement constraints. The third type of gear is a compromise or median gear, causing a pavement distress somewhere between the other two gear types. In addition, Lockheed was required to project the major hub airports that would be servicing the two categories of aircraft in the year 1985 and from derived city pairs, develop the economic penalties associated with the three gear types for both categories of aircraft.

Based on the gear configurations and parameters provided by Lockheed, the U. S. Army Engineer Waterways Experiment Station (WES) analyzed the airport master plans for the projected major hub airports and decided whether new construction or overlays were required to accommodate the six combinations of aircraft. Pavement cross sections were then designed for each major hub airport and total pavement areas computed. Pavement cost data were obtained from FAA Regional Offices in the form of bid tabulations and associated cross-sectional designs. Lockheed provided FAA with condition surveys of each airport.

The final phase of the study consisted of performing a cost analysis at each major hub airport with respect to equivalent annual cost.

2.3 Purpose

The purpose of this study was to determine an optimal policy with respect to cost to be used in the aircraft gear load and pavement system. By increasing flotation to support a given load through an increase in wheels and design of gears, economic penalty is imposed on the user/operator of the aircraft. This, however, reduces the required thickness of pavement. On the other hand, permitting unrestricted flotation to support a given load increases pavement thickness requirements and consequently construction costs which are ultimately paid by the user/operator. An economic analysis was performed to find the optimal policy with respect to increased flotation versus increased pavement thickness. Specifically the question answered by this study is "Should the FAA policy on pavement strength stated in paragraph 5 'Maximum Pavement Strength for FAAP Participation' of Order 5320.2 dated

July 18, 1966,* be changed due to the advent of the Widebody Jets (B747, DC10, L1011) and the possible addition of an aircraft weighing up to 1.5 million 1b to air carrier fleets by 1985?"

^{*} The cited paragraph is restated here for easy reference. "The maximum pavement strength for which FAAP [Federal-Aid Airport Program which has been superceded by the Airport Development Aid Program (ADAP)] funds may be applied at any airport may not exceed that required for 350,000 pound dual tandem gear airplane."

3 LANDING GEAR OPTIMIZATION

3.1 Mathematical Model

3.1.1 General discussion. The landing gear optimization scheme was based upon functional relationships that predict the weight and costs of the landing gear system. It has been noted that volume requirements for additional wheels are significant as far as bulk cargo space is concerned; however, volume has been ignored for the purpose of this analysis since the emphasis of this study is on passenger aircraft. Table 1 gives an overall summary of the functional relationships, showing the variables that affect the various gear system costs and weights.

Table 1
Landing Gear Optimization Functional Relationships

Item	Factors Affecting Weight	Factors Affecting Costs		
		Acquisition	Maintenance	Flight Operation
Wheel and Tire	Vertical Load and Tire Pressure		Vertical Load and Pressure	
Brake	Rejected Takeoff and Service Energy		Landing Kinetic Energy, Num- ber of Brakes	
Bogie Beam	Vertical Load, Size (from Pavement Stress Curves)	of Nu	Labor Function of Number of Gears	
Gear Strut, Braces, and Actuators	Takeoff Gross Weight, Number of Gears		Material Func- tion of Gear Weight	
Gear Sup- port Structure	Takeoff Gross Weight, Number of Gears, Gear Location			

The functional relationships were derived from historical airplane weight and cost data, empirical design guides available in the literature, specific detailed weight and cost data on Lockheed airplanes, and calculations. The specific relationships are discussed in the following sections.

3.1.2 Functional weight relationships.

a. Wheel and tire weights. Wheel and tire weights are related to the vertical tire load and tire pressure as shown in Figure 6. This figure was derived from the tire data presented in Reference 1 for current airplane tires and the wheel weight data in Reference 2. The wheel weights are for aluminum forgings from Curve 7 of Reference 2. Figure 6 is an average of all the Type VII and some "New Design" tire data, using the rated tire load (32 percent deflection) and corresponding loaded

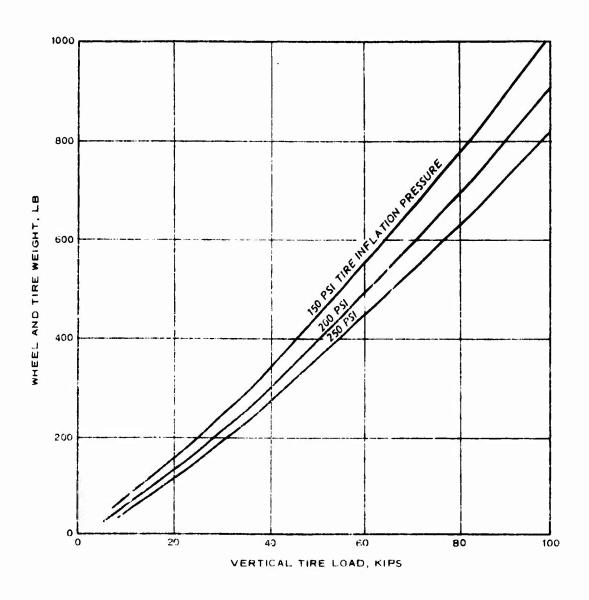
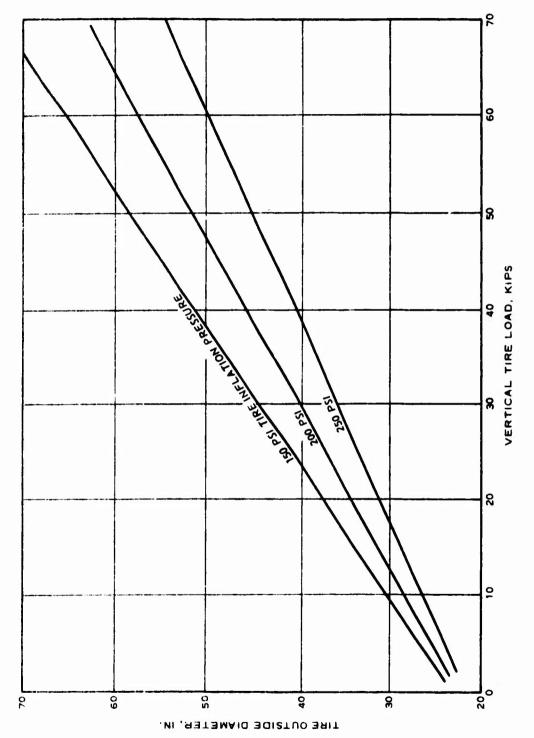


Figure o. Wheel and tire weight versus vertical load

inflation pressure and tire weight. In general, for a given load, a lighter combined wheel and tire weight result from a higher inflation pressure, since this allows a smaller diameter tire (and smaller surface contact area).

· (1)


It is also of interest to note from Figure 6 that multiple small tires are more efficient than fewer large tires. For example, 240,000 lb can be carried by six 40,000-lb rated tires weighing 1800 lb (at 200 psi) or by four 60,000-lb rated tires weighing 1976 lb. This represents a weight saving of almost 9 percent by changing from four to six tires.

Figures 7 and 8 show the relationship between tire load and outside diameter and between tire outside diameter and rim diameter. Again these are statistical averages of the actual data from Reference 1. These curves were needed to determine the minimum possible bogie size (function of tire outside diameter) and to determine brake width (function of rim diameter).

b. Brake weight. The total brake weight for the airplane was determined from Figure 9, which is reproduced from Reference 2. Data are shown in Figure 9 for rejected takeoff (RTO) kinetic energy and for service energy with a brake life of 1000 landings. The hoch her weight from the two curves was used to design the take. One thousand landings represent a relatively long service life, so that the RTO curve tended to control the design of the brake weight. Since current widebody transport airplanes are being designed with this brake life, the 1000-landing curve was used for this study. (Shorter brake-life curves lie between the two shown, giving lighter brake weight.)

For any given gear configuration, it must be ascertained if the above-determined brake weight can be physically locate, within the wheels provided. Figure 10 from Reference 2 shows the heat sink volume corresponding to different brake weights. Figure 11, from Reference 2, shows the heat sink volume available per inch width for different rim diameters. From Figures 10 and 11, the resulting brake width can be calculated for a given configuration. From the data in Reference 1, the rim width averages about 0.5h times the diameter. Therefore, both the wheel width and the brake width are calculated. As long as the brake width is not more than a few inches larger than half the wheel width, the configuration is acceptable.

The brake data above are all based on conventional steel heat sink brakes. (ther more exotic brake

THE AMORE SHOWN

Figure 7. Tire outside diameter versus load

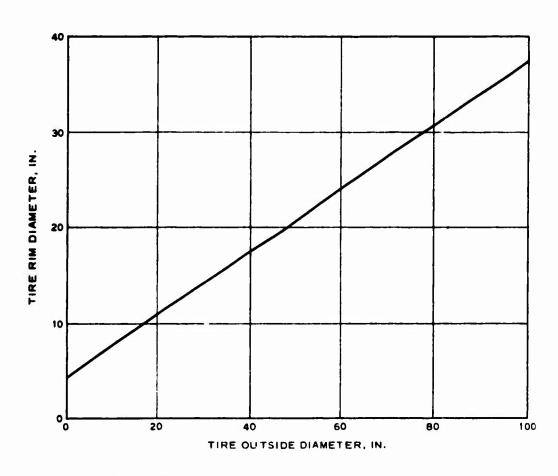


Figure 8. Rim diameter versus tire diameter

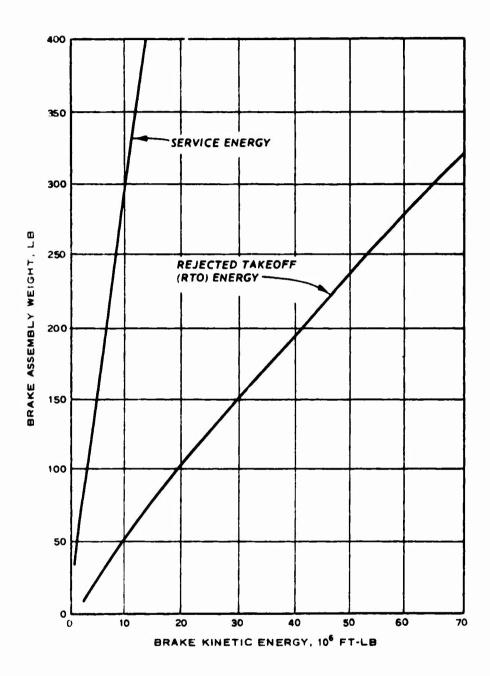


Figure 9. Brake assembly weight versus brake energy (from Reference 2)

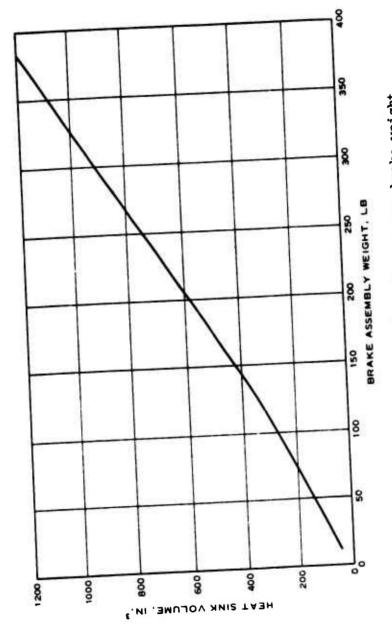


Figure 10. Heat sink volume versus brake weight (from Reference 2)

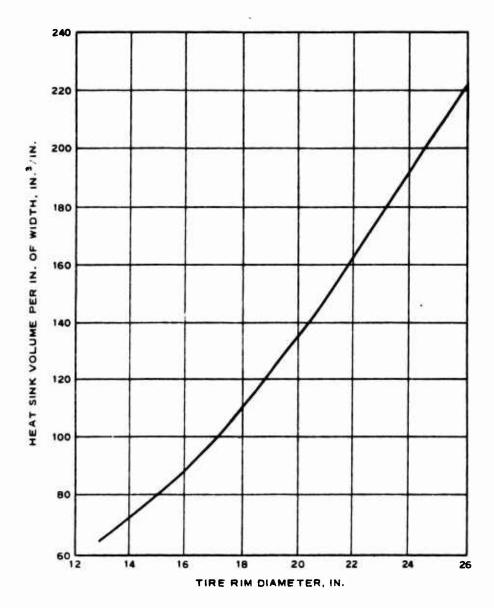


Figure 11. Heat sink volume per inch width versus rim diameter (from Reference 2)

materials are potentially lighter but have yet to prove themselves in service. Since this brake model assumed that the total airplane brake weight is independent of gear configuration (only a function of airplane energies), the type of brake heat sink assumed did not affect the selection of the optimum gear or the weight and cost penalties associated with designing to different pavement strength levels. The brakes only affected configuration selection in that certain configurations were eliminated because the brake size was too large for the available wheel space.

c. Bogie beam weight. Figures 12 and 13 show the weight of the bogie beam and axles per gear as a function of the vertical wheel load and bogie size ratio. The bogie size ratio in each curve is the ratio by which the existing Model -4 four-wheel bogie or Model -6 six-wheel bogie dimensions was multiplied to obtain the desired bogie size. The dimensions of the existing bogies are shown in Figure 14 (axle widths are measured to tire center lines).

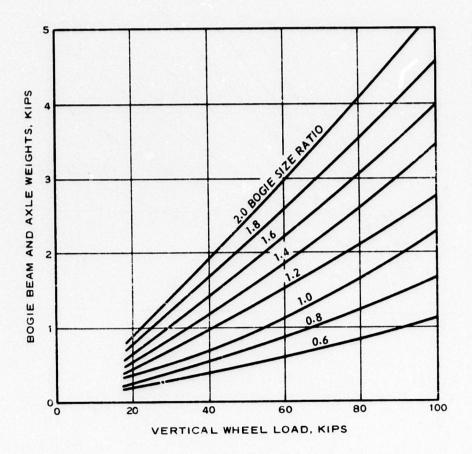


Figure 12. Bogie beam and axle weight versus vertical wheel load, 4-wheel bogie

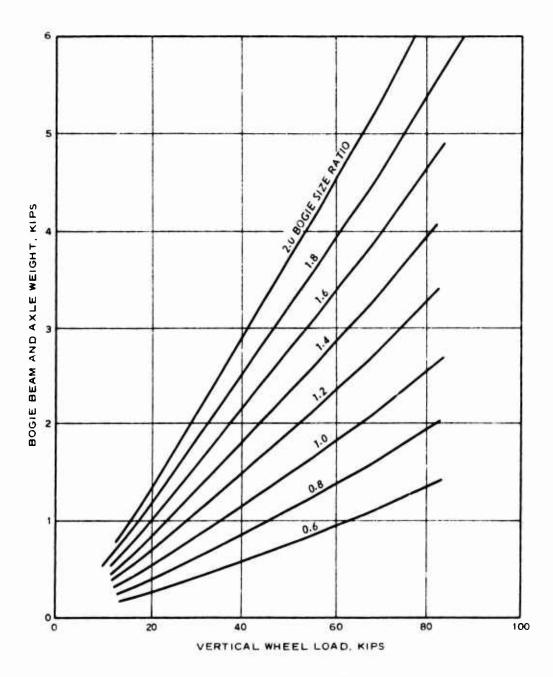
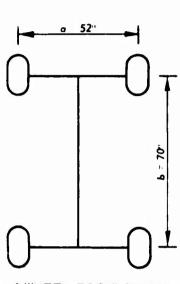
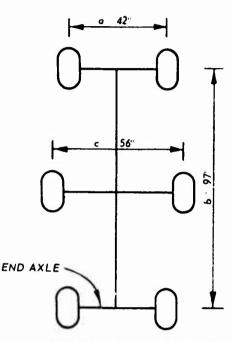




Figure 13. Bogie beam and axle weight versus vertical wheel load, 6-wheel bogie

TO THE YEAR . . .

a. 4-WHEEL BOGIE (MODEL-4)

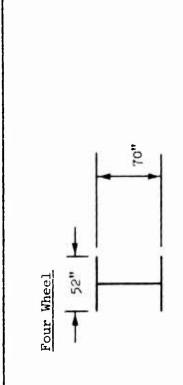

b. 6-WHEEL BOGIE (MODEL-6)

Figure 14. Dimensions of 4- and 6-wheel bogies

A basic assumption in this design procedure was that the bogies always have the same proportion as the designs above and only the overall scale changed. When using Figures 12 and 13, the bogie size ratio and wheel vertical load were known, and the bogie weight was determined. Figure 12 for the four-wheel bogie was derived from known weight and size data for the Model -4, B747, DC8, and C141. Figure 13 was based on Model -6 bogie weight and the same growth relationships as in Figure 12.

This study showed that for a given total gear vertical load, four- and six-wheel bogies of the sizes shown above have about the same weight. Intuitively, one would expect the six-wheel bogie to weigh more, but the smaller vertical loads at each wheel location (2/3 smaller loads) more than compensate for the extra axle and larger beam length. Table 2 shows a simple weight comparison between the above two bogies designed for the same total gear load, assuming that the beam is designed by bending and the axles by shear. Note that the six-wheel bogie configuration is 5 percent lighter than the four-wheel design. Models -4 and -6 weight data support the conclusion that four- and six-wheel bogies weigh

Table 2 Four- and Six-Wheel Bogie Weight Comparison

		97"	-
Six Wheel	± 42" 	<u>+</u> 	

Vertical Load at Each
Wheel

Beam Weight = 0.706

Axle Weight 0.147 ea = 0.294

Total Weight = 1.000

4

Vertical Load at Each
Wheel
Beam Weight = 0.707 (2/3) (97/70) = 0.652

End Axles = 0.147 (2/3) = 0.098 ea = 0.196

Center Axle = 0.147 (2/3)

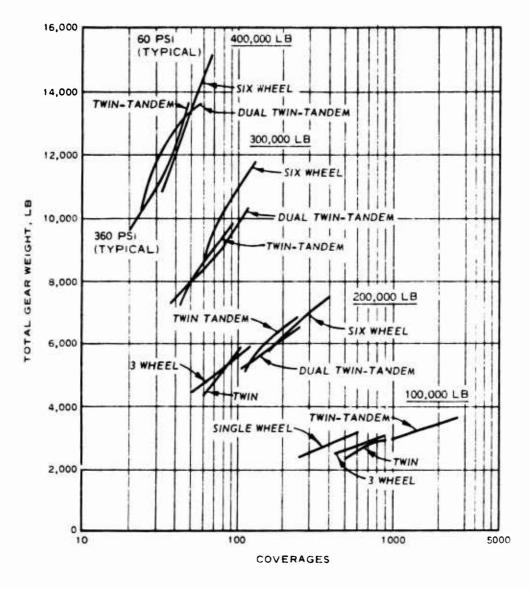
= 0.098

976.0 =

Total Weight

34

about the same for a given total gear vertical load.


Further corroboration is contained in Figure 15, which is a reproduction of Figure 5 of Reference 3 shown here for illustration. This study shows that the sixand four-wheel (twin-tandem) designs are about the same weight, with the six-wheel generally slightly lighter on conventional flexible pavements without stabilized layers. Therefore, the bogie weight curves used in this study (Figures 12 and 13) assumed that at a bogie size ratio of one and the same total vertical gear load, four- and six-wheel bogies weighed the same. (However, for the same total vertical gear load and a bogie size ratio of one, the six-wheel bogie will produce a lower pavement stress.)

Concerning Figures 12 and 13, it was stated earlier that the bogie size ratios must be known to determine the bogie weight. These ratios were determined for a given gear configuration by pavement stress design criteria. Figures 16 through 19 show the relationships for 4- and 6-wheel gears and for both current and median pavements. Current pavement is defined as the pavement thickness requirement for the projected Category I aircraft (Model -6 with a six-wheel bogie at 488,000 lb). Median pavement thickness is halfway between the current pavement thickness and the greater thickness required for an optimized gear (without regard to pavement thickness) on the projected Category II (1.5-million-lb) airplane. These thicknesses are shown in Table 3.

Table 3
Pavement Thickness Criteria

	Pavement T	hickness, in.
Pavement Type	Rigid	Flexible
Current	11.9	33
Median	14.5	42
Optimized	17.1	51.2

For a given gear configuration, with known tire vertical load and tire pressure, Figures 16 through 19 give the bogie dimension a, which is the length of the end axles, measured between the tire center lines. The bogie size ratio is then given simply by dividing the value for "a" by 52 for four-wheel bogies and by 42 for six-wheel bogies. Thus, the size ratios needed for Figures 12 and 13 were determined.

AND THE PROPERTY.

Figure 15. Total gear weight versus coverages for conventional flexible pavement (from Reference 3)

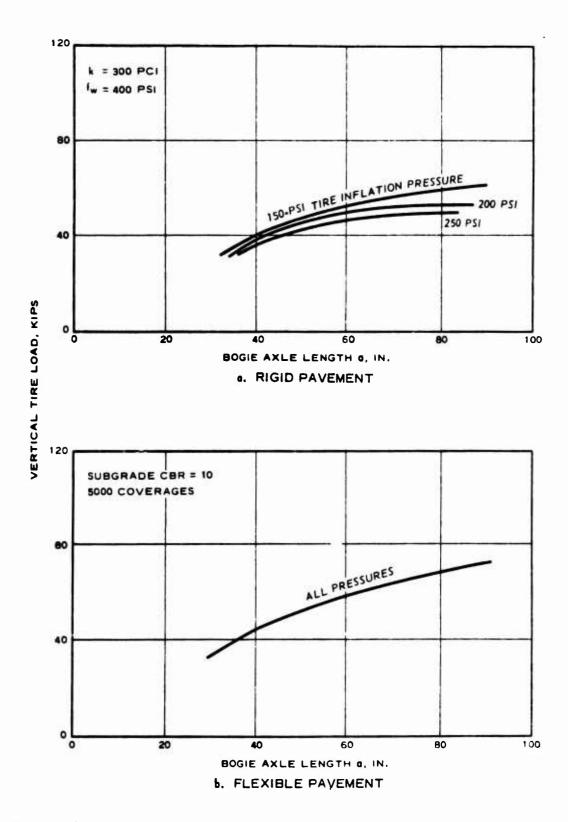


Figure 16. Bogie size versus wheel load, 4-whose bogie, current pavement

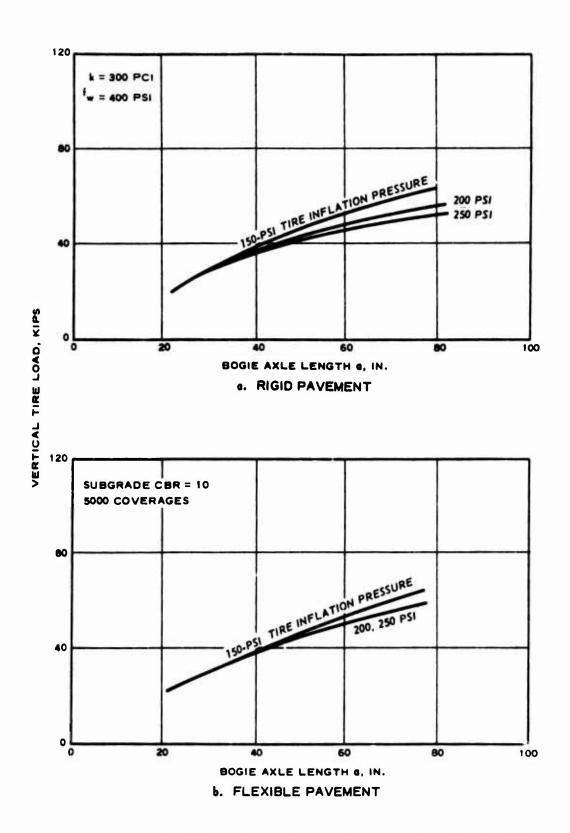


Figure 17. Bogie size versus wheel load, 6-wheel bogie, current pavement

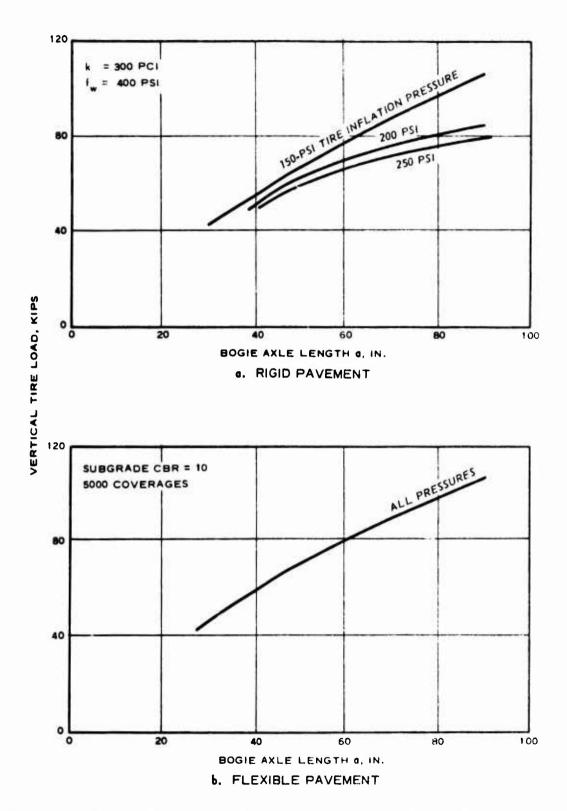


Figure 18. Bogie size versus wheel load, 4-wheel bogie, median pavement

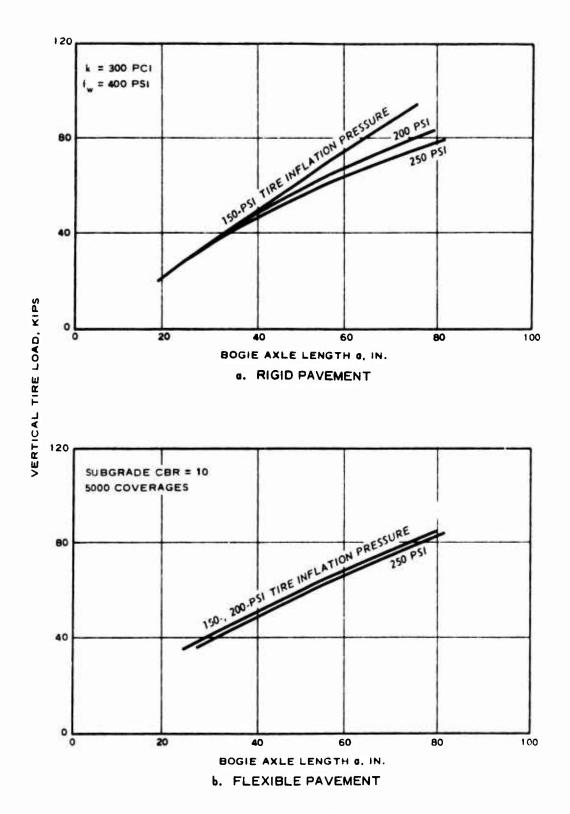


Figure 19. Bogie size versus wheel load, 6-wheel bogie, median pavement

Figures 16 through 19 were based on computer program results that utilize the Portland Cement Association (PCA) method for rigid pavements and SEFL 1965A for flexible pavements. For rigid pavements, a subgrade modulus k of 300 lb/cu inch and a working stress f, of 400 psi were used. For flexible pavements, a California Bearing Ratio (CBR) of 10 was used with 5000 coverages. The effect on pavement stress of the interaction between gears is not included in Figures 16 through 19; the relationships shown are for one landing gear only. FAA pavement design charts were not used since the charts are for specific fixed bogie dimensions and tire pressures, which are the variables in the present analysis. The assumed values of the pavement parameters were required only to provide a starting point for the design process.

Figures 16 through 19 were used to determine the bogie size for the gears designed for current pavement and those designed for the median pavement. For the optimum gear, designed to ignore pavement strength requirements, a different technique is required to determine the bogie size ratio needed in Figures 12 and 13. The bogie for this gear is simply sized as small as possible, while still providing adequate tire clearance. Utilizing the tire clearance calculation procedure from Reference 1, the following governing relations were obtained.

In Table 4, b is the length of the bogie beam, which is related to the outside diameter of the tire Do (obtained from Figure 7). With a as the end axle length, the bogie size ratio is readily determined.

Table 4
Optimum Gear Bogie Size Equations

Four Wheel	Six Wheel
b = Do + 3.3	b = 2Do + 8
$a = \frac{52}{70} b$	$a = \frac{42}{97} b$
Bogie Size Ratio = a/52	Bogie Size Ratio = a/42

Note that throughout the study, the same bogie proportions as the Models -4 and -6 four- and six-wheel designs were retained; only the overall scale was varied. This method of sizing the bogies did not bias

the results significantly. For example, two current widebody transports with four-wheel bogies of different proportions (length-to-width ratios of 1.35 and 1.18) vary in rigid pavement thickness requirement by less than 0.2 inch at the same weight.

The landing gear optimization model considered four- and six-wheel bogies. In the airplane gross weight range employed for this study (0.5 to 1.5 million 1b), main gear configurations with less wheels per gear were considered impractical for a number of reasons. The Category I airplane with a single wheel per gear and two main gears requires a rated tire load of 232,000 lb. The largest commercially available tire is a 56 by 16 high-pressure tire rated at 76,000 lb. If the tire diameter versus rated load trends for current tires, as shown in Figure 7, were followed for a 232,000-1b rated tire, the tire diameter would be 130 in. at 250 psi, and even larger at lower pressures. Providing storage space for such a large wheel-and-tire combination would be a formidable task, resulting in a significant structural weight penalty.

Single-wheel configurations have other inherent design deficiencies. If the wheel is mounted in a fork directly below the strut, the length of the landing gear is excessive. If the tire is mounted off center to allow for a more reasonable length gear, the off-center loading results in strut binding friction, approximately 15 percent of the static gear load. This friction deteriorates the taxi ride quality, since the gear is actually locked by the high friction for a high percentage of the time, causing the airplane to ride on tire deflection only. Single-wheel gear configurations are also less safe than multiple-wheel designs because the failure of a single tire can eliminate the braking and control capability of that gear.

The Category I airplane with two wheels per gear (total of four main gear wheels) requires a rated tire load of 116,000 lb. Such a tire would be 76 in. in diameter with a pressure of 250 psi, and over 100 in. at a tire pressure of 150 psi. These tire sizes are much greater than those that are commercially available. Two-wheel gear designs with such large tires are also very inefficient from a wheel storage viewpoint. For example, the two-wheel pear at 200 psi requires a storage volume for the tire envelope of 754,000 in. compared to 350,000 in. for a four-wheel gear with the same load capability. If this added volume represented lost cargo space, then, at a cargo loading of 10 lb per cu ft, the added volume for the two-wheel gear on a

0.5-million-lb airplane would represent 4680 lb of cargo that could not be loaded. The following sketch (Figure 20) shows graphically the comparison between a four-wheel bogie design and a two-wheel design for the same load capability. Since the two-wheel design is considerably wider than the four-wheel design (93 in. compared to 62 in.), the added storage volume required for the two-wheel design can be readily visualized. Also shown in the sketch above is the position of the dual wheels with the gear compressed, which shows that the tire will interfere with the desired location of the lateral side brace. Therefore, to accommodate the

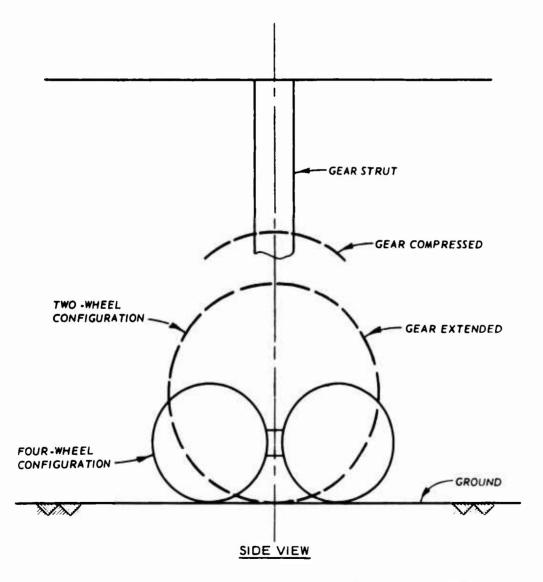


Figure 20. Comparison of two- and four-wheel bogie design

dual-wheel design, the side brace would have to be mounted higher than optimum, resulting in a weight penalty to achieve the required lateral gear strength.

The foregoing considerations were based on configurations with two main gears. It is possible to attain reasonable tire sizes by providing more main gears, each with two wheels. For example, two main gears with four-wheel bogies require the same tire size (and thus weight) as four dual-wheel main gears. However, the extra two main gears result in weight penalties both for the gears themselves and the added gear support structure (this point is amplified in Sections d and e following). These penalties (3900 lb) are much greater than the weight advantage of replacing the two bogies with four axles (1240 lb). Furthermore, it is much more difficult to store four two-wheel gears than two four-wheel gears. The foregoing disadvantages of single- and dual-wheel gears indicate that they should not be considered for installation in airplanes of the weight range under study. However, for airplanes of lower gross weights (around 200,000 lb), two-wheel gears become attractive, since only two main gears are required having reasonable tire sizes.

In reviewing gears with more than six wheels per gear, the most practical configurations are eight wheels mounted on four-wheel bogies and twelve wheels mounted on six-wheel bogies. For each of these configurations, the beneficial effect on pavement stress of the added wheels is reduced by the necessarily close proximity of the adjacent wheels on each bogie "arm." In addition, wheel, tire, and brake maintenance costs rise because of the inaccessibility of the inboard-mounted wheels (the outer wheels must be removed first to get at the inboard wheels). This problem can be alleviated somewhat by mounting two adjacent tires on a single wheel of greater width. However, this leads to difficulties in housing the necessary brake volume, since there are only half as many wheels for mounting the brakes. The brakes become excessively wide, resulting in a large number of rotors and inefficient brake heat dissipation resulting in additional weight penalties.

Because of the considerations above and because no eight- or twelve-wheel gears have been used in commercial operations, only four- and six-wheel gears were considered in this study.

d. Gear strut weight. The weight of the shock strut, braces, and actuators was compared to the airplane gross weight for about 15 different transport aircraft.

The weight used was the total gear system weight less the weight of bogie beams and axles and rolling stock (wheels, tires, brakes). These data showed an overall average for conventional tricycle (2 main gear, 1 nose gear) airplanes of 2 percent of the maximum takeoff gross weight. In addition, the data appeared to indicate a weight penalty for configurations with more than two main gears. This penalty is reflected in Figure 21, which shows a gear weight factor versus number of main landing gears. At two main gears, the factor is 1, and at four main gears, the factor is 1.16, or a 16 percent weight penalty. Thus, the weight of the shock strut, braces, and actuators is given by

- はなかしないないとうとうないからかってもいっていっている

W = 0.02 (TOGW) (Weight Factor, Figure 21)

where TOGW is the takeo'f gross weight of the aircraft. The weight penalty for multiple gears is probably due more to duplication of actuator systems than to heavier shock strut total weight.

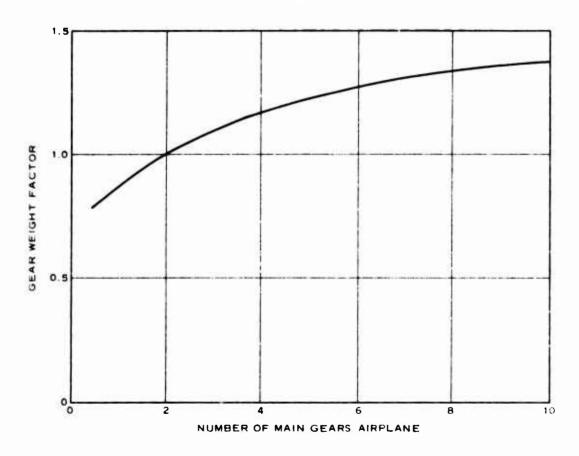


Figure 21. Gear weight factor versus number of gears

e. Gear support structure weight. The main landing gear support structure weight was compared to the airplane gross weight for the C130, C141, C5A, and Model -4 aircraft. These data indicated a basic weight ratio of 1 percent for two main gear equipped airplanes, with the weight penalty of Figure 21 also applicable in this case for airplanes equipped with more than two main gears. In addition, for fuselage-mounted main gears, there is approximately another 50 percent weight penalty for the gear support structure, relative to wing-mounted gears. Table 5 summarizes these effects for multiple-gear aircraft.

The data listed in Table 5 are based on configuring the airplane with only two main gears mounted in the wings and the remainder mounted in the fuselage. This arrangement is dictated by the size of the bogies. In conventional transports, the landing gear is mounted aft of the trailing edge of the wing with the bogie being stored in the fuselage.

Usually blisters are added to completely store the gear. A second wing gear mounted significantly outboard of the first gear would reduce inboard wing downbending and shear loads due to ground loading conditions by more uniformly distributing the ground reaction loads spanwise along the wing. However, when this advantage is compared with some of the more prevalent discavantages and problems, the beneficial effect on structural weight is lost. These difficulties are:

- (1) The maximum thickness is such that the bogic would not fit in the wing.
- (2) Since the second wing-mounted gear would require that the wing box be cut, additional structure will be required to provide adequate torsional stiffness for flutter.
- (3) In order to distribute the load approximately equally on all four main gears to compensate for runway crown and wing flexibility, a means of balancing the air pressure between the gears on the same side of the airplane would be needed.
- (4) The second wing gears would use approximately 20 percent of the wing box volume which is normally used for fuel storage.

3.1.3 Functional cost relationships.

a. Acquisition costs. Landing gear system acquisition costs relative to gear system weight are estimated from Models -4 and -6 experience and from airplane depreciation rates for the DC10 and B747 given in Reference 4.

Table 5 Gear Support Structure Weight

	€	0		€	3	9	Total
(0) Number of Main Gears	Wing- Mounted Gears	Wing- Fuselage- Mounted Mounted	(3) 1.5 × (2)	Equivalent Main Gears (1)+(3)	Equivalent Spt. Strength Main Gears Weight Factor (1) + (3) = (4)/(0)	Gear Weight Factor (Fig. 17)	Spt. Str. Weight Factor (5) × (6)
0	O)	0	0	2.0	1.000	1.000	1.000
ო	a	ť	1.5	3.5	1.167	1.088	1.270
4	a	8	3.0	5.0	1.250	1.160	1.450
ın	8	ĸ	4.5	6.5	1.300	1.220	1.586
9	8	7	6.0	8.0	1.333	1.265	1.686

The acquisition costs on this basis are about 70 dollars/lb in 1973 dollars. These costs are then converted to a cost per lb per flight (\$/#/flight) by dividing by 30,000 flights, which is determined from 20 years' operation at 1500 flights/year. Accordingly, the final acquisition cost is $4.31 \times 10^{-3} \$ /#/flight, in 1985 dollars. The inflation rates employed are discussed in a later section.

b. Flight operation costs. Flight operation costs are also expressed in terms of \$/#/flight and are composed primarily of fuel costs and crew labor costs. A value of 19.49 × 10-3, in 1985 doilars, based on marketing studies, was used for the landing gear optimization studies of the Categories I and II airplanes.

The flight operation cost is about five times larger than the acquisition cost, expressed on the same basis; thus, the flight operation costs dominate. The total costs for acquisition and flight operation are 23.80×10^{-3} \$/#/flight, in 1985 dollars. This figure was used for both airpianes to reflect the cost of carrying landing gear system weight. The value also correlates very well with the operating cost data for the DC10 and B747 published in Reference 4, when compared in terms of 1972 \$/#/flight.

c. Maintenance costs. Referring to Table 1, it can be seen that the gear maintenance costs are divided into wheel and tire maintenance, brake maintenance, and maintenance on the remainder of the gear.

Figure 22 shows the fire maintenance cost relationship used in the study, in terms of \$/wheel/landing (1985 dollars). The basic trend of increasing costs with tire load reflects the fact that increased tire loads require larger tire sizes (at constant inflation pressure and percent tire deflection) which, in turn, cost more to recap and replace. This trend is illustrated by the tire maintenance costs for 18 different airplanes ranging from 40,000 lb gross weight up to the B707 at over 300,000 lb. These data were obtained from Reference 5, which is a 1970 survey by Alleghery Airlines of landing gear maintenance costs as reported by 23 U. S. air carriers.

The maintenance cost increase with higher tire pressures reflects the fact that tire wear increases with tire pressure. This trend was also noted in Figure 3 of Reference 6, a landing gear maintenance cost study performed by American Airlines. Their study shows a rather drastic falloff of tire life (landings/tread) at tire pressures above 150 psi. Lockheed studies in

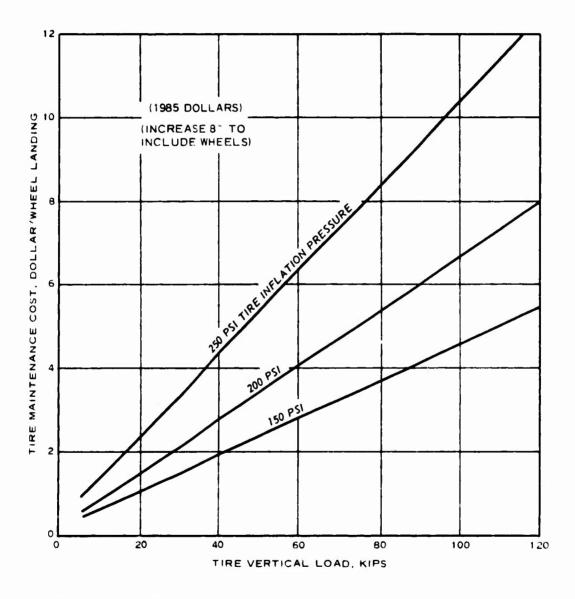
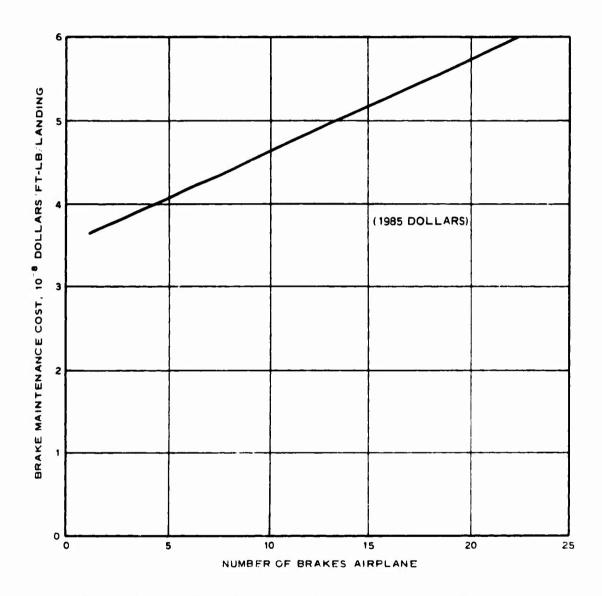


Figure 22. Wheel and tire maintenance cost versus wheel load (data from Reference 6)


support of the Model -4 showed similar effect, but not as severe as the Reference 6 data. Figure 22 was derived by using the Allegheny report data as representative of the cost for 150-psi tires (the average inflation pressure of the 18 airplanes making up the data base) and by estimating the increased cost at higher pressures from Lockheed data.

The increased maintenance cost at higher tire inflation pressures is the major negative factor associated with high tire pressures in the mathematical model of the gear system weight and costs. However, in Figure 6, it is shown that high tire pressure is desirable in reducing hweel and tire weight, which in turn will reduce flight operation and acquisition costs. Therefore, the tire maintenance costs tend to reduce the desirability of very high pressure tires. (Another negative factor resulting from the use of high tire pressures is the larger bogic size required for a given pavement thickness and wheel load, as seen in Figures 16 through 19. This is especially true for rigid pavements.)

Based on an Air Transport Association of America (ATA) System 32 (Landing Gear) maintenance cost analysis of the Model -4, performed by Lockheed's Commercial Maintainability and Reliability Department, the wheel maintenance costs can be included by increasing the tire maintenance values given in Figure 22 by 8 percent.

Brake maintenance costs are expressed in terms of dollars per ft-lb per landing (\$/ft-#/landing), based on the airplane kinetic energy at landing weight and 1.2 times the airplane minimum speed in the landing configuration. Figure 23 illustrates the value of this cost to be a function of the total number of brakes per airplane. This reflects the fact that the total brake maintenance costs are due to both labor and material. The material cost is a function of brake weight only, which results from the landing kinetic energy, and the labor cost is a function of the number of brakes per airplane, not their size.

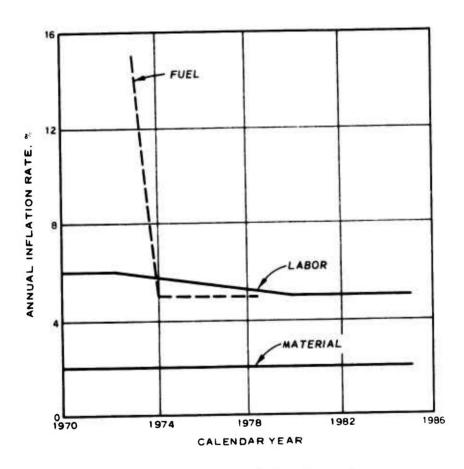
The data on brake maintenance costs from Reference 5 correlates well with landing kinetic energy. However, the corresponding Model -4 cost per landing data is 30 percent less than the data given in Reference 5. This appears to reflect a significant improvement in the state-of-the-art for determining brake maintenance costs, which is attributed to the previously mentioned 1000-landing brake-life criterion (in Figure 9) used to size the brakes. Since this criterion is representative of future heavy aircraft design philosophy,

The state of the s

Figure 23. Brake maintenance cost versus number of brakes

the lower maintenance costs corresponding to that of the Model -4 values were used to derive Figure 23. The data in Figure 23 correspond to \$1.06 per brake landing for the Model -4 in 1973 dollars. In summary, the ordinate of Figure 23 is multiplied by the airplane kinetic energy at landing weight and an approach airspeed of 1.2 times the airplane minimum speed in the landing configuration to obtain the brake maintenance cost in \$/landing. Figure 23 reflects 1985 dollars.

The maintenance costs for the remainder of the landing gear system were calculated based on an ATA System 32 landing gear maintenance cost breakdown for the Model -4. The labor costs were assumed proportional to the number of gears, and the material costs proportional to the total gear system weight. The resulting costs, in terms of 1985 dollars, are


Labor Maintenance Cost = \$7.31 per gear per landing

Material Maintenance Cost = \$0.173 per 1000 1b per landing

d. Inflation rates to 1985. The inflation rates used between 1970 and 1985 are shown in Figure 24. These rates were obtained from a Lockheed corporate marketing study. The rates shown result in the overall inflation factors given in Table 6. The fuel inflation rate is used in the flight operating costs. The fuel costs are expected to take a 15 percent rise in 1973, and then level off at 5 percent to 1985.

3.2 Gear Optimization Results

3.2.1 <u>Category I airplane.</u> The previously described gear optimization mathematical model is applied to the Category I airplane at 488,000-1b gross weight. Analyses of pavement stresses induced by the nose gear during landing rollout showed that pavement thickness requirements are less than those required for the main gear. Increasing the nose gear tire pressure above 200 psi, although reducing the size of the tire and wheel, did not result in cost savings. Accordingly, the gear optimization centered on evaluation of different main gear configurations. Because configurations with more than two main gears result in weight penalties, the analysis of the Category I aircraft was confined to two main gear configurations. Four and six wheels per gear were analyzed

The state of the s

Figure 24. Annual inflation rates, 1970-1985

Table 6
Inflation Factors

Item	Time Span	Inflation Factor
Material	1970 - 1985 1973 - 1985	1.346 1.268
Labor	1970 - 1985 1973 - 1985	2.321 1.951
Fuel*	1973 - 1985	1.967

^{*} Fuel rates prior to 1973 are not shown because the data were not required.

for all three pavement strength levels. In addition, five tire pressures (150, 175, 200, 225, 250 psi) were analyzed for each configuration. Thus, for each pavement strength level, ten landing gear configurations were investigated. The results, in terms of total landing gear system costs in \$/flight, are shown in Table 7.

Table 7

Gear System Costs for Category I Airplane (1985 \$/Flight)

Gear Con-	Wheel	Tire Pressure		r System Costs cated Pavement	
figuration	Load, 1b	p, psi	Current	Median	Optimized
4-wheel	57,954	150 175 200 215 225 250	680.36 690.49 	646.72 643.53 641.55 644.00 647.07 656.38	646.72 643.53 641.06 640.38 640.67 644.25
6-wheel	38,633	150 175 200 225 250	652.56 649.48 <u>647.21</u> 652.97 662.52	652.56 649.48 647.21 647.18 651.34	652.56 649.48 647.21 647.18 651.34
Pertinent P	avement Th	ickness, in	ı.:		
Rlgi Flex			11 .9 33	14.5 42(39)	15.3 39.6

^{*} Underlined numbers indicate lowest cost gear configuration for each pavement strength.

Dashes in Table 7 represent configurations that cannot meet the pavement strength requirements. Some of the higher pressure four-wheel gears cannot meet the current pavement strength requirements. The pavement thicknesses for the three pavement strength levels are also shown in Table 7. The current and median pavement thicknesses are the same as in Table 3 of the previous section, but the thicknesses for the optimized gear are much less than those required for the Category II airplane shown in Table 3. Inasmuch as both the Category I and Category II airplanes would actually operate from the same 1985 pavements, the median pavement, in addition to the current pavement, would be the same.

The large difference in weight between the two airplanes is reflected in the variation in pavement thicknesses for the optimized gears for each of the airplanes. Thus with the most idealized gear configurations, large increases in airplane weight will require some increase in pavement thickness.

Note that the median gear flexible pavement thickness of 42 in. is the same as in Table 3, and is greater than the 39.6-in. thickness for the optimized gear. This apparent anomaly occurs because the median gear is actually sized by the rigid pavement criteria (14.5 in.), which for this gear is more critical than the flexible. Thus, the gear is good for flexible pavements of less than 42 in., in this case, 39 in. In other words, when the median gear is sized to both 14.5-in. rigid pavement and 42-in. flexible pavement, the rigid pavement requirement dominates and the resulting design is actually good for 39-in. flexible pavement.

The lowest cost gear configurations for each pavement strength criteria are underlined in Table 7. The four-wheel gear at 215 psi is the best optimized gear, the four-wheel design at 200 psi is the best median gear, and the best gear for operation on current pavements is the six-wheel design at 200 psi. The costs for the six-wheel gears are the same for all three pavement strength levels at pressures from 150 to 200 psi. For these gears, the bogie size is as small as wheel clearance requirements will allow; nevertheless, the gear is still good for current pavements. Since the six-wheel bogie cannot be made smaller to gain weight and cost benefits from thicker pavement, the costs of these gears are

independent of pavement thickness for the range of pavement thicknesses used in the study. At higher tire pressures, this situation does not hold true. In this case the bogie must be larger than minimum to satisfy pavement strength requirements, so that a benefit is available when designing to thicker pavements (the bogie size can be reduced). However, at these higher pressures the costs are higher than at 200 psi because tire maintenance costs override the weight savings.

Table 7 indicates that the pavement thickness requirements for the optimized gear are not much greater than for the gear now installed on the airplane (the current pavement gear). Accordingly, for an airplane in the weight category of the Category I aircraft (around 500,000 lb), landing gears designed for current pavements are very nearly the same as that which can be achieved without pavement restrictions. This finding does not hold for the case of the Category II airplane.

The pertinent weight and cost penalty data for the Category I gears are shown in Table 8. All dollar figures are in 1985 dollars. The cost per lifetime is based on 30,000 flights, and the total fleet cost is based on 618 airplanes. This is an estimate of the projected fleet size for normal- and extended-range airplanes in this weight category involving domestic U. S. departures. The worldwide fleet size is approximately twice the above figure.

The data required for pavement stress analysis are shown in Table 9. The airplane gross weight is 488,000 lb, with 95 percent of this supported by the main gears, which are spaced 432 in. apart laterally.

3.2.2 Category II airplane. Procedures similar to those employed for determining the gear configurations for the Category I airplane were applied to the 1.5-million-lb airplane. Present-day practice for designing the nose gear for pavement flotation requirements is to configure the nose gear such that it will not impose greater stresses on the pavement during normal operations than will the main gear. This design philosophy is still valid for the Category II airplane. For the Category II airplane, the weight penalty associated with designing the nose gear for current pavement strength, relative to an optimized gear, is about 2 percent of the weight penalty for the main gears.

Table 8 Weight/Cost Penalties for Category I Airplane

Item	Current Pavement Gear	Median Pavement Gear	Optimized Gear	Diffe Current- Optimized	Difrerence nt- Median- zed Optimized
Gear Configuration	6 Wheel (200 psi)	4 Wheel (200 psi)	4 Wheel (215 psi)		
Total Gear Weigh*, pounds	2 4,08 4	23,934	23,720	364	214
Total Cost, \$/flt	647.21	641.55	640.38	6.83	1.17
Total Cost, \$\\$/lifetime	19.416 × 10 ⁶	19.247 × 10 ⁶	19.211 × 10 ⁶	204,900	35,100
Total Cost, \$/fleet/ lifetime	11.999 × 10 ⁹	11.895 × 10 ⁹	11.872 × 10 ⁹	126.6 × 10 ⁶ 21.7 × 10 ⁶	21.7 × 10 ⁶
Pavement Thickness, Inches				Optimized- Current	Median- Current
Rigid	11.9	14.5	15.3	3.4	5.6
Flexible	33	42(39)	39.6	6.6	9

Table 8 Weight/Cost Penalties for Category I Airplane

				Diffe	Difference
Item	Current Pavement Gear	Median Pavement Gear	Optimized Gear	Current- Optimized	Median- Optimized
Gear Configuration	6 Wheel (203 psi)	4 Wheel (200 psi)	4 Wheel (215 psi)		
Total Gear Weight, pounds	24,084	23,934	23,720	364	214
Total Cost, \$/flt	647.21	641.55	640.38	6.83	1.17
Total Cost, \$/lifetime	19.416 × 10 ⁶	19.247 × 10 ⁶	19.211 × 10 ⁶	204,900	
Total Cost, \$/fleet/ lifetime	11.999 × 10 ⁹	11.895 × 10 ⁹	11.872 × 10 ⁹	126.6 × 10 ⁶	21.7 × 10 ⁶
Pavement Thickness, Inches				Optimized- Current	Median- Current
Rigid	11.9	14.5	15.3	3.4	5.6
Flexible	33	42(39)	39.6	9.9	9

Table 9

Gear Parameters for Pavement Stress Calculations

for Category I Airplane

ITEM	CURRENT-PAVEMENT GEAR	MEDIAN-PAVEMENT GEAR	OPTIMIZED GEAR
GEAR CONFIGURATION	6-WHEEL BOGIE	4-WHEEL BOGIE	4-WHEEL BOGIE
TIRE VERTICAL LOAD, Pounds	38 ,630	57,950	57,950
TIRE PRESSURE, PSI	200	200	215
TIRE DIAMETER, INCHES	44.8	56.1	53.8
BOGIE SIZE, INCHES a b	42.3 97.7 56.4	44.5 59.9 -	42.4 57.1
BOGIE CONFIGURATION	c b	b	

The most attractive nose gear configuration for the Category II airplane, for operating on current pavements, is four wheels on a common axle, as on the C5A. The wheels are 55 in. in diameter, with a load rating of 45,000 lb per tire, and an inflation pressure of 150 psi. The outer wheels are spaced 144 in. apart (compared to 92 in. for the C5A), and the inner wheels are spaced 51 in. apart (versus 33 for the C5A). For the optimized nose gear, the wheels are spaced closer (total axle width equals about 100 in.).

Since the weight penalty or designing the nose gear for current pavement strength is so small relative to the penalty for the main gears, the gear optimization scheme involves only finding the best gear configuration for the main gears. Seven different main-gear configurations, each at five different tire pressures (150, 175, 200, 250 psi), were investigated for each of the three pavement strength criteria shown in Table 3. Thus, 35 configurations were analyzed for each pavement strength level. The gear configurations analyzed included three sixwheel main gears; four, five, and six four-wheel gears; and four, five, and six six-wheel gears. Table 10 shows the total costs for these configurations at 150, 200, and 250 psi.

The lowest cost gears for each criterion are shown underlined in Table 10. The median gear is well defined in this case because there is a large spread in pavement thickness requirements between the current pavement gear and the optimum gear. The five and six gear, six-wheel-bogic wheel loads are of such a low magnitude that the bogic sizes are tire clearance limited as they are on the Category I airplane, so that at the lower tire pressures the costs are the same regardless of pavement strength requirements.

A comparison of the costs of the four-strut, six-wheel gears and the six-strut, four-wheel gears (both have the same total number of tires and, hence, the same tire vertical load) shows that the six-wheel bogic versions are less expensive. This is attributed to the weight penalties associated with the increased number of gears required for the four-wheel bogic versions.

Table 11 presents the pertinent weight and cost penalty data for

Table 10

Gear System Costs for Category II Airplane (1985 \$/Flight)

Gear Configuration	Wheel Load, 1b	Tire Pressure p, psi		System Cosated Pavement	
Three 6-wheel	79,167	150 200 250		2368.11 2371.72 2442.09	2342.30 2289.04 2263.19
Four 4-wheel	89,063	150 200 250		2382.49 2538.53	2353.08 2315.75 2304.84
Four 6-wheel	59,375	150 200 250	2 432.92 25 37.5 5	2366.24 2332.17 2366.15	2366.24 2332.17 2325.76
Five 4-wheel	71,250	150 200 250		2390.88 2414.13 2481.88	2390.88 2365.32 2366.44
Five 6-wheel	47,500	150 200 250	2410.68 2447.10 2522.55	2410.68 2387.10 2391.78	2410.68 2387.10 2391.78
Six 4-wheel	5 9, 375	150 200 250	2550.24 	2428.38 2414.55 2461.61	2428.38 2410.16 2419.03
Six 6-wheel	39, 583	150 200 250	2453.12 2437.94 2490.04	2453.12 2435.95 2447.80	2453.12 2435.95 2447.80
Pertinent paveme	ent thicknes	s, in.: Rigid	11.9	14.5	17.1
		Flexible	33	42	51.2

^{*} Underlined values indicate lowest cost gear for each pavement strength.

the three best gear configurations from Table 10. To determine the data given in Table 11, 30,000 flights/lifetime and a fleet size of 67 airplanes were used. This is the fleet size projected for 1985 for a Category II airplane to service U. S. domestic departures. The total worldwide fleet size is approximately twice this number. Table 11 shows that the Category II airplane gear system costs per flight are much larger than the corresponding figures for the Category I airplane (\$147 versus \$7). However, since the fleet size of the Category II airplane is much smaller (67 versus 618), the total fleet lifetime costs for the larger plane are only about two times the costs for the Category I airplane (\$296 million versus \$127 million).

阿里洛斯斯

The data required for pavement stress analysis are shown in Table 12. Ninety-five percent of the airplane gross weight of 1.5 million 1b is distributed equally to each of the main gears. Likewise, the gear loads are distributed equally to each of the six wheels by providing the proper initial vertical offset between the center and end axles. With equal wheel loading, the six-wheel bogic pattern is such that the pavement stress under each wheel is virtually identical. For all configurations, two gears are wing-mounted, and the remaining 1, 2, or 3 are fuselage-mounted. In the case of the optimized gear, the tire size and load rating are greater than that of currently available tires. However, these larger capability tires would not require technical advances in the state-of-the-art to be feasible for a 1985 airplane.

Table 11
Weight/Cost Penalties for Category II Airplane (1985 \$)

				Difference	ence
	Current	Median	Optimized	Current-	Median-
Item	Pavement Gear	Pavement Gear	Gear	Optimized	Optimized
Gear Config- uration	Five 6-Wheel Bogies	Four 6-Wheel Bogies	Three 6-Wheel Bogies	ŀ	1
Total Gear Weight, pounds	93,353	89,288	84,566	8787	4722
Total Cost \$/Flight	2410.68	2332.17	2263.19	147.49	68.98
Total Cost \$/Lifetime	72.320 × 10 ⁶	69.965 × 10 ⁶	67.896 × 10 ⁶	4.425 × 10 ⁶	2.069 × 10 ⁶
Total Cost \$/Fleet Lifetime	4.845 × 10 ⁹	4.688 × 10 ⁹	4.549 × 10 ⁹	0.296 × 10 ⁹	0.139 × 10 ⁹
Pavement Thickness, Inches	8			Optimized- Current	Median- Current
Rigid	11.9	14.5	17.1	5.2	2.6
Flexible	33	24	51.2	18.2	6

Table 12

Gear Parameters for Pavement Stress Calculations

for Category II Airplane

ITEM	CURRENT-PAVEMENT GEAR	MEDIAN-PAVEMENT GEAR	OPTIMIZED GEAR
GEAR CONFIGURATION	FIVE 6-WHEEL BOGIES	FOUR 6-WHEEL BOGIES	THREE 6-WHEEL BOGIES
TIRE VERTICAL LOAD, POUNDS	47,500	59,375	79,167
TIRE PRESSURE, PSI	150	200	250
TIRE DIAMETER, INCHE	56.2	56.9	58.4
BOGIE SIZE, INCHES a b c	52.2 120.5 69.6	52.8 121.8 70.3	54.1 12 4. 9 72.1
•	<u>+</u>	c b	
GEAR LOCATIONS, INCHES	214 171 100 613 FUSELAGE	214 171 613 FUSELAGE	C/3 FUSELAGE

4 1985 MAJOR HUB ALKPORTS

For the purpose of this study, a major hub airport was considered to be the same as a large hub airport as defined by the FAA in Reference 7. According to this definition, a major hub airport is one that emplanes more than one percent of the domestic emplaned passengers.

Reference 7 lists the present major hub airports and those planned to be operational by fiscal year 1983. Air carrier operations from these airports are projected for fiscal years 1975, 1978, and 1983. Actual data for fiscal year 1971 are also given. The data from Reference 7 have been extrapolated graphically to obtain calendar year 1985 operations. These are presented in Table 13.

The airports shown in Table 13 do not include all the major hub airports listed in Reference 7. Some of the airports listed will be phased out for scheduled airline traffic by 1985, such as Love and Greater Southwest in Dallas and Kansas City Municipal. Other fields, such as Chicago's Midway and Los Angeles' Hollywood-Burbank, were ruled out as being too small to handle the 1985 projected 1.5-million-lb airplane with which this research effort is concerned: Table 13 lists projected 1985 departures for each of the major hub airports. A compilation of the pavement construction data for the hub airports is given in Appendix A. The last column in Table 13 indicates whether or not the subject airport officials responded to requests as to the validity of the javement data presented.

Projected Departures from Major Hub Airports in 1985 Table 13

	1905 Calendar Year			Source of			
	Number of Departures		Pav	Pavement Data	*.		Airport
Airport	Thousands	CALAC	AII.	NASA	FAA	EBD	Response
Chicago (O'Hare)	ग्०ग				RTA		Ž.
Atlanta	346	•	Ħ		RTA		Xes
Los Angeles (International)	242	RTA	RTA	RT	RTA		Yes
Dallas/Ft. Worth Regional	235	RTA	RTA				No
San Francisco	222	RTA	RTA			RTA	Yes
Memi	203		RTA	£	RTA		Yes
New York (JFK)	198		RTA		RTA		Yes
New York (La Guardía)	171		RTA		RIA		Yes
Levary	175		RTA		RTA		Yes
Lenver .	191		RTA		RTA		No
Boston	146		RTA		RTA		No.
Philadelphia	140				RTA		S
St. Louis	132		RTA		FIA		Yes
Honolulu	121	RTA	RTA	RT	RTA		Yes
Detroit	120		RTA		RTA		Yes
Seattle/Tacoma	110		RTA	R	RTA		Yes
Prttsburgh	. 501		RTA		RTA		Yes
Heuston	102		RTA		RTA		Yes
Min.capolis/St. Paul	97				RTA		Yes
New Orleans	76		RTA		RTA		Yes
Las Vegas	76				RTA		No
Kansas City (International)	16				RTA		fes
Baltimora	88	RTA			RIA		Yes
Cleveland	78		RTA		RTA		No
Washington (Dulles)	. 59	RTA	RTA				Yes
Fort Lauderdale	37				FTA		Yes

Note:

R - runway data; T - taxiway data; and A - apron data.

CALAC - Lockheed data

ATI - Airport data for Air Transportation Planners, Air Transportation Industries Working Group

NASA - Data obtained from recent NASA reports

FAA - Data from FAA surveys

WRD - Data from Materials Research and Development, Inc.

5 AIRCRAFT COSTS

5.1 General Discussion

The airplane costs associated with carrying excess landing gear weight arise from four sources:

- a. Acquisition cost.
- b. Maintenance cost.
- c. Flight operation cost.
- d. Lost revenue cost.

The first three of these were discussed in Section 3, Landing Gear Optimization. The total cost penalties for the first three of the above costs were shown in Tables 8 and 11 for the Category I and II airplanes, respectively. These cost penalties were shown for airplane landing gear configurations designed for both current and median pavements, relative to an optimized gear. This section deals with the determination of the lost revenue cost and with the total of the above four costs.

5.2 Lost Revenue Cost Analytical Model

The lost revenue cost due to carrying excess landing gear weight results from the fact that there is a fixed structural limit on the total loaded weight of the airplane; therefore, every excess pound associated with the landing gear design represents the potential loss of 1 lb of revenue payload. The key word in the above statement is "potential"; since not all flights are performed with a full payload, the lost revenue must be determined statistically.

The analysis was performed for the traffic operating out of the 26 U.S. domestic major hub airports for 1985 shown in Table 13. Emplaned passengers and cargo tonnage from each of the hub airports were projected for the year 1985. Assuming 200 lb per passenger (including baggage), the total pounds departing from each hub airport in 1985 were determined in Table 14. The total pounds departing from each hub airport 1. 1985 were then broken down into departures traveling less than and greater than 1000 statute miles. Based on the current distribution of flight lengths for U.S. domestic traffic, as shown in the Official

Table 14 1985 Departing Pounds by Airport

					Total	Total	
	Inplaned	No. of	Passengers	Passenger	Passenger.	Cargo	Total
	Passengers	Departures	per	lb per	1b/	15	16
Airport	Thousands	Thousands	Departure	Departure	100	100	100
Inicago (C'Hare)	40,000	701	66	•	8,000	2,085	10,086
Atlanta	38,700	346	112	22,400	7,740	290	•
Los Angeles (International)	23,700	242	86	19,600	4,740	1,561	6,401
Dallas/Ft. North Regional	23,000	235	98	19,600	7,600	267	4,867
San Francisco	20,200	222	16	α	070,4	1,298	•
Wiscons.		203	113	•	7,600	1,387	5,987
Hew York (J.K.)	22,000	198	111	22,200	004,4	3,000	•
New York (La Guardia)	15,500	177	88	17,600	3,100	825	3,925
Kewal'k	15,000	175	98	17,200	3,000	825	3,825
Denver	16,200	161	101	20,200	3,240	159	3,399
Boston	14,200	146	26	19,400	2,840	558	3,398
Fhiladelphia	10,700	140	77	15,400	2,140	311	2,451
St. Louis	11,300	132	98	17,200	2,260	113	2,373
Honolulu	13,000	121	107	21,400	2,600	1,300	3,900
Letroit	10,900	120	16	18,200	2,180	352	2,532
Seattle/Tacoma	11,400	110	104	20,800	2,280	149	2,429
Pittsburgh	8,100	105	77	15,400	1,640	တ္တ	1,720
Houston	6,600	102	7 8	16,800	1,720	136	1,856
Minneapolis/St. Paul	9,700	76	100	20,000	1,940	159	2,099
Wew Orleans	7,600	76	81	16,200	•	53	1,579
Las Vegas	8,600	る	91	18,200	•	S	1,726
Kansas City (International)	5,800	91	1 9	12,800	1,160	110	1,270
Baltimore	6,700	88	92	15,200	•	78	1,424
Cleveland	6,500	78	83	16,600	•	210	1,510
Washington (Dulles)	5,500	65	85	17,000	1,100	128	1,228
Fort Lauderdale	2,900	37	78	15,600	580	72	592

Mirline Guide, 68.4 percent of the total departing pounds involve flights of less than 1000 miles.

operate over routes of less than 1000 miles and that any short-range usage (less than 1000 miles) of the Category I airplane will not involve a significant revenue loss from lost payload. Accordingly, the lost revenue analysis considered only ranges greater than 1000 statute miles. Table 15 shows the weekly departing pounds from each major hub airport and the departing weights involving ranges over and under 1000 statute miles. The two right-hand columns in Table 15 show the departing pounds that are projected to be carried by the Category I and II airplane, and by other airplanes, such as the B707, DC8, and B727, that may be operating in 1985.

For each nub airport, the departing poundage was distributed over different flight distance blocks, from 1000 to 6500 miles in 500-mile increments. This distribution was based on Lockheed's commercial marketing analyses of current airline route structures, as shown in the Official Airline Guide. Once the departing weight from each major hub airport, Table 15, was distributed to the distance blocks, it was then further distributed to the Category I and the Category II airplanes, in normal- and extended-range versions. The normal-range versions of both airplanes operate up to 2000 miles; the extended-range version of the Category I airplane operates from 2000 to 4500 miles; and the extended-range version of the Category II airplane operates from 2000 to 6500 miles. The departing weight distribution between the two program airplanes (54 percent Category I, 46 percent Category II airplane) reflects the anticipated fleet sizes and relative payload capabilities of Category I and Category II airplanes.

The following inputs are required to calculate expected lost revenue by distance-block:

- a. Operating empty weights (OEW) by aircraft type, which reflect the landing gear configurations designed to three pavement strength levels.
- b. Maximum allowable TOGW by airplane type by airport. (Function

Table 15
1985 Departing Pounds, Program Airplanes

		Average	Weekly Deman	d 10 ³ 1b	
					er 1,000 SM
				In	In Cate- gories I
	Total	Under	Over	Other .	and II
Airport	Departure	1,000 SM	1,000 SM	. Airplanes	Airplanes
Chicago (O'Hare)	193,962	132,670	61,292	12,258	49,034
Atlanta	154,423	105,625	48,798	9,760	39,038
Los Angeles (International)	123,096	84,198	38,898	7,780	31,118
Dallas/Ft. Worth Regional	93,596	64,019	29,577	5,915	23,662
San Francisco	102,654	70,215	32,439	6,488	25,951
Miami	115,135	78,752	36,383	7,277	29,106
New York (JFK)	142,308	97,339	44,969	8,994	35,975
New York (La Guardia)	74,481	51,629	23,852	4,770	19,082
Newark	73,558	50,314	23,244	4,649	18,595
Denver	65,365	44,710	20,655	4,131	16,524
Boston	65,346	44,697	20,649	4,130	16,519
Philadelphia	47,135	32,240	14,895	2,979	11,916
St. Louis	45,635	31,214	14,421	2,884	11,537
Honolulu	75,000	51,300	23,700	4,740	18,960
Detroit	48,692	33,305	15,387	3,077	12,310
Seattle/Tacoma	46,712	31,951	14,761	2,952	11,809
Pittsburgh	33,077	22,625	10,452	2,090	8,362
Houston	35,692	24,413	11,279	2,256	9,023
Minneapolis/ St. Paul	40,365	27,610	12,755	2,551	10,204
New Orleans	30,365	20,770	9,595	1,919	7,676
Las Vegas	33,192	22,703	10,489	2,098	8,391
Kansas City (International)	24,423	16,705	7,718	1,544	6,174
Ealtimore	27,385	18,731	8,654	1,731	6,923
Cleveland	29,038	19,862	9,176	1,835	7,341
Washington (Lulles)	23,615	16 , 153	7,462	1,492	5,970
Fort Lauderdale	11,535	7,787	3,598	720	2,878
Total	1,756,635	1,201,543	555,098	111,020	444,078

of runway length and elevation and airplane performance.

- c. Capacity by airplane type.
- <u>d</u>. Average weekly demand of cargo/passenger pounds departing by distance-block.
- e. Average combined passenger/cargo yields by distance-block.
- f. Load factors.
- g. Standard deviation from the mean weekly payload.

The load factors and OEW's are constant in the model, while the other factors vary with airport distance-block and airplane type considered. The model used in calculating expected lost revenue requires the inputs of TOGW at each airport, distance-block average weekly demand, and distance-block yield. To calculate flight frequency for each distance-block, aircraft capacity is taken at 50 percent load factor and divided into average weekly demand. The resultant figure is rounded off to the nearest whole number above or below 0.5. This frequency number is then divided back into the average weekly demand to give the mean \bar{X} of average weekly payload. A normal distribution of expected pounds to arrive on the dock for any one flight is calculated with a standard deviation of 0.6 times the mean \bar{X} of average weekly rayload. This relationship between the standard deviation and the mean is based on Lockheed's commercial marketing analysis of airline-furnished data on flight load factor variation over a two-year period, covering 297 city pairs; the normal distribution is considered an adequate assumption for such a large sample. The maximum payload that can be carried per flight X is determined by payload/range curves for the Category I and the Category II airplanes, as well as airplane performance limitations at each hub airport.

The analysis can be readily understood by referring to Figure 25.

The horizontal bar represents airplane weight. The total weight for each flight is made up of the operating weight empty, the fuel weight, and the payload weight. The maximum allowable payload X for a given distance-block and departure hub airport, is determined from the payload/range curve, at the average range for the distance-block being

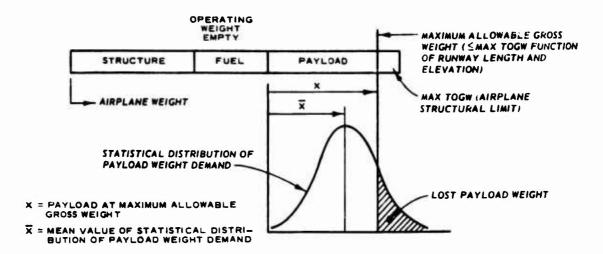


Figure 25. Determination of lost payload

analyzed, as well as airplane performance limitations (if any) due to runway length and altitude at the departure hub airport.

Once the average weekly payload \bar{X} has been determined as previously discussed, the statistical distribution of payload weight can be determined by assuming a normal curve with a standard distribution equal to 0.6 times the mean \bar{X} . The crosshatched area under the normal curve shown in the above sketch represents the lost payload for the distance-block analyzed in any one week.

This result is then multiplied by the distance-block yield on cargo/passenger pounds to obtain the expected dollar value of weight loss in any one week. The weighted average yield for combined cargo/passenger pounds is obtained for each distance-block by the following equations:

The weekly expected revenue loss is then multiplied by 52 to arrive at an annual expected lost revenue by aircraft type by

distance-block under varying landing gear/OEW assumptions. This lost revenue is then summed over all the distance-blocks analyzed for the 26 major hub airports to determine the total annual lost revenue from operations out of the major domestic hub airports.

The factors that influence the lost payload are the factors that determine the relative location of \overline{X} and X in Figure 25. The lost payload (crosshatched area in Figure 25) varies inversely with the distance separating \overline{X} and X.

The lost payload is reduced by the following:

a. Lower operating empty weight.

(460)

- <u>b</u>. Improved fuel economy (lowers fuel weight for given range-payload).
- <u>c</u>. Improved takeoff performance (raises X on performance limited airfields).
- d. Extended range-payload curve (raises X for given range).

Of the above factors, this study is concerned only with the first. Landing gear configurations designed to different pavement strength criteria result in different operating empty weights, which affect the lost revenue.

5.3 Lost Revenue Cost Results

The lost revenue analytical model was applied to the Category I and the Category II airplanes, operating out of the 26 major hub airports shown in Table 15. Two versions of each airplane were analyzed: normal-range and extended-range versions. The range/payload curves for these airplanes are shown in Figures 26 and 27. Both the normal- and extended-range versions of the Category I airplane weigh 488,000 4b, and both versions of the Category II airplane weigh 1.5 million 1b. The landing gear configurations chosen in the previous section for each airplane are the same for both the normal- and extended-range versions. Table 16 summarizes the 1985 number of departures and total departing weight projected for each major hub airport. Also shown is the percentage of these departures accounted for by the normal- and extended-range versions of both the Category II and the Category II airplanes.

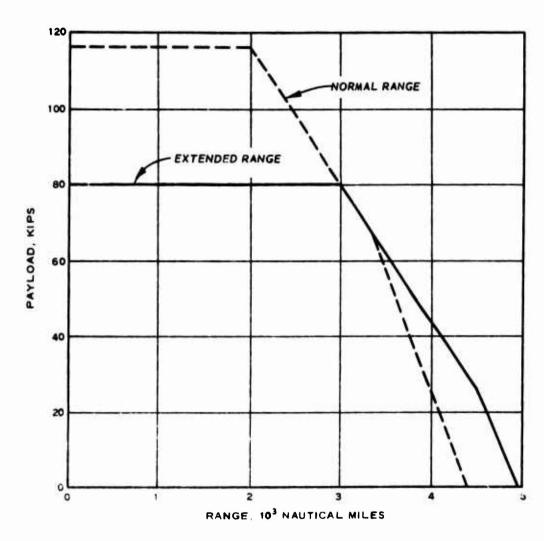


Figure 26. Payload versus range for Category I airplane

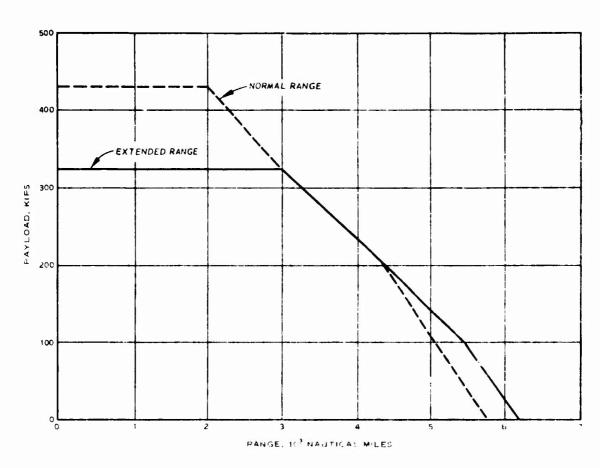


Figure 27. Payload versus range for Category II airplane

Table 16

1985 Major Hub Airport Departures and Departing Weight

			Pe	rcentage o	f Depart	ures
	Departing			gory I		gory II
	Weight	Departures	Normal	Pplane Extended	Normal	plane Extended
Airpor+	-10 ⁹ 1b	-10 ³	Range	Range	Range	Range
Chicago (O'Hare)	10.086	404	15.83	3.333	0.721	1.017
Atlanta	8.030	346	14.73	3.096	0.676	0.962
Los Angeles (International)	6.401	242	16.76	3.502	0.752	1.117
Dallas/Ft. Worth Regional	4.867	235	13.165	2.744	0.597	0.863
San Francisco	5.338	555	15.225	3.186	0.703	0.984
Miami	5.987	203	18.7	3.919	0.845	1.153
New York (JFK)	7.400	198	23.77	4.990	1.077	1.549
New York (La Guardia)	3.925	177	12.475	2.705	0.578	1.024
Newark	3.825	175	13.965	2.882	0.624	0.981
Denver	3.399	161	13.405	2.842	0.614	1.066
Boston	3.398	146	14.78	3.099	0.677	0.962
Philadelphia	2.451	140	11.145	2.377	0.52	0.730
St. Louis	2.373	132	11.225	2.364	0.512	0.768
Honolulu	3.900	, 151	0	10.185	0	2.536
Detroit	2.532	120	13.435	2.817	0.607	0.910
Seattle/Tacoma	2.429	110	13:945	2.789	0.615	1.040
Pittsburgh	1.720	105	10.4	2.179	0.495	0.743
Houston	1.856	102	11.47	2.447	0.510	0.816
Minneapolis/St. Paul	2.099	97	13.67	2.895	0.590	1.072
New Orleans	1.579	94	10.51	2.213	0.498	0.774
Las Vegas	1.726	94	11.615	2.434	0.553	0.830
Kansas City (International)	1.270	91	3.57	1.829	0.400	0.743
Baltimere	1.424	88	10.34	2.127	0.473	0.827
Cleveland	1.510	78	12.333	2.600	0.533	0.933
Washington (Dulles)	1.228	65	12.00	2.400	0.560	0.960
Fort Lauderdale	J.592	37	9.84	2.108	0.422	1.265
Total	91.345	3863	14.345	3.329	0.653	1.073

These figures are based on the flight frequencies for the four different airplane models as predicted by the lost revenue analytical model. The flights for the normal range Category I airplane have been increased above the analytical model results to reflect flights of less than 1000 miles. This alteration is required because the departures in Table 16 will be used to determine pavement coverages at each hub airport for each airplane type. While the lost revenue analytical model ignores flights of less than 1000 miles because it is assumed that any revenue loss at this range is negligible, from a pavement-damage viewpoint, the numerous short flights by the Category I airplane, normal-range version, cannot be ignored.

While the percentages of departures in Table 16 appear rather low, totaling about 19.4 percent for the four airplane models, these airplanes have an average payload of around 75,000 lb based on the total annual flights and total annual departing pounds for these planes. The average payload for the total departures shown in Table 16 is 91.345E9/3.863E6 or 23,600 lb. Therefore, the heavy-weight airplanes in this study have an average payload equal to 75,400/23,600 or 3.19 times the total 1985 fleet average payload. Thus, the 19 percent of total departures for these planes represents about 62 percent of total departing weight. Furthermore, since the distribution of airline revenue with flight distance is weighted more heavily toward the longer flights than is the distribution of departing weight (it costs more to fly farther), the 62 percent of total departing weight represents over 90 percent of airline revenue.

The 1985 annual expected lost revenue from each hub airport, for the current pavement and median pavement gear configurations relative to the optimized year configuration, are shown for the extended-range version of both airplanes, in Tables 17 and 18. The normal-range airplanes, which only operate up to 2000 miles, do not suffer any significant revenue loss from lost payload. The revenue loss for the Category II airplane is far greater than that for the Category I airplane, because the weight penalties are much greater for this airplane, as shown in Tables C and 11 (8787 versus 364 1b for the current pavement

Table 17

Annual Lost Revenue from Major Hub Airports

Extended-Range Category I Aircraft

Airport	Current Pavement Dollars/Year	Median Pavement Dollars/Year
Chicago (O'Hare)	139,324	81,471
Atlanta	112,166	65,594
Los Angeles (International)	125,370	73,320
Dallas/Ft. Worth Regional	78,498	45,912
San Francisco	91,570	53,551
Miami	108,458	63,436
New York (JFK)	131,616	76,969
New York (La Guardia)	294,451	172,449
Newark	134,891	78,968
Denver	145,472	85,182
Boston	52,767	30,867
Philadelphia	35,619	20,823
St. Louis	42,896	25,099
Honolulu	67,158	39,282
Detroit	39,066	22,836
Seattle/Tacoma	38,553	22,536
Pittsburgh	27,695	16,202
Houston	31,150	18,230
Minneapolis/St. Paul	36,626	21,419
New Orleans	23,039	13,474
Las Vegas	31,778	18,593
Kansas City (International)	24,247	14,196
Baltimore	21,319	12,463
Cleveland	27,587	16,130
Wilhington (Dulles)	22,172	12,977
Fort Lauderdale	17,788	10,422
Total	1,901,276	1,112,401

Table 18

Annual Lost Revenue from Major Hub Airports

Extended-Range Category II Aircraft

Airport	Current Pavement Dollars/Year	Median Pavement Dollars/Year
Chicago (O'Hare)	5,955,958	3,115,072
Atlanta	4,719,668	2,466,657
Los Angeles (International)	4,573,753	2,391,495
Dallas/Ft. Worth Regional	2,861,967	1,489,804
San Francisco	3,245,655	1,693,190
Miami	4,384,743	2,290,566
New York (JFK)	4,903,924	2,549,059
New York (La Guardia)	6,410,712	3,278,854
Newark	3,243,256	1,683,129
Denver	2,982,823	1,521,113
Boston	2,024,124	1,055,206
Philadelphia	1,032,096	528,480
St. Louis	1,256,918	648,743
Honolulu	2,162,275	1,121,065
Detroit	1,251,611	643,373
Seattle/Tacoma	1,037,821	531,718
Pittsburgh	885,385	460,163
Houston	842,286	434,445
Minneapolis/St. Paul	1,422,629	734,638
New Orleans	681,2°1	351,659
Las Vegas	897,852	466,795
Kansas City (International)	337,327	169,746
Baltimore	543,190	277,600
Cleveland	769,850	396,91.4
Washingto. (Dulles)	426,013	216,627
Fort Lauderdale	101,943	50,611
Total	58,955,030	30,566,752

gear relative to the optimized gear).

Table 19 presents both the 1985 annual lost revenue costs and the annual acquisition, operating, and maintenance costs for the normal- and extended-range versions of the Category I and the Category II airplanes. The acquisition, operating, and maintenance costs are based on the costs per flight shown in Tables 8 and 11 of Section 3, Landing Gear Optimization. A flight frequency of 1200 flights/year was used for the normal-range airplanes, and 900 flights/year for the extended-range airplanes. These figures were based on historical flight frequency data. The fleet sizes used were as follows:

Category 1	I Airplane	Normal Range Extended Range	475 143
Category 1	II Airplane	Normal Range Extended Range	21 46

These fleet sizes represent the number of airplanes to satisfy domestic U. S. departures. Worldwide fleet sizes would be approximately twice the above figures.

The bottom line of Table 19 is the total annual cost in 1985 for the two airplanes analyzed, which together in normal- and extended-range versions account for over 90 percent of the total airline domestic U. S. revenue. These are the total airplane costs resulting from designing the landing gears to current and median pavement strength levels; all costs are relative to zero cost for an optimized landing gear system for each airplane. It can be seen from Table 19 that about 80 percent of the total costs are due to lost revenue on the extended-range version of the Category II airplane.

To help place the total cost figures in Table 19 in perspective, the total domestic airline revenue estimated for 1985 by the Air Transport Association of America (ATA) in Reference 8 is \$38 billion. Therefore, the \$75 million lost revenue at the majob hub airports in Table 19 represents about 0.2 percent of the total domestic airline revenue for 1985. The costs in Table 19 are annual costs in 1985 dollars; over a 25-year time span, the total costs for the current pavement gear relative to the optimized gear would be 1.88 billion dollars, in constant 1985 dollars.

Table 19

Total Annual Airplane Fleet Cost Penalties Relative to

Pavement Designed for Optimal Gear Designs

(1985 Dollars)

Airplane	Item	Current Pavement	Median Pavement
	Acq., Oper., Maint Costs	\$ 3,893,100	\$ 666,900
Airplane Normal Range	Lost Revenue Costs*		
Airp No Ra	Total Costs	3,893,100	666,900
ory I	Acq., Oper., Maint Costs	879,021	150,579
Category Extended Range	Lost Revenue Costs	1,901,276	1,112,401
Ext	Total Costs	2,780,297	1,262,980
	Total Costs, Category I Airplane	6,673,397	1,929,880
11	Acq., Oper., Maint Costs	3,716,748	1,738,296
irplane Normal Range	Lost Revenue Costs*		
١	Total Costs	3,716,748	1,738,96
y III	Acq., Oper., Maint Costs	6,106,086	2,855,772
Category Extended Range	Lost Revenue Costs	58,955,030	30,566,752
Cat Ext	Total Costs	65,061,116	33,422,524
1 1 /	Total Costs, Category II Airplane	68,777,864	35,160,820
	Total Cost, Both Airplanes	\$75,451,261	\$37,090,700

^{*} No significant payload loss for normal-range airplanes.

6 PAVEMENT UNIT PRICE ANALYSIS

6.1 Introduction

In developing pavement price, a distinction must be made between cost and price. Pavement cost is defined as the amount of monies that a contractor must spend for labor, materials, equipment, subcontracts, and overhead to construct a pavement structure. Pavement price is the total amount of monies that an agency, or the public, must spend to have a pavement structure constructed. Pavement price includes pavement cost, general contractor overhead, and contractor profit.

In calculating unit prices for a study such as this, which encompasses the country as a whole, an extremely large number of variables are apparent. For each major hub airport, there are spatial and temporal variables. Spatial variables include location of material sources, contractors, and labor contracts. Temporal variables include inflation rates, material availability, labor contract periods, and business climates. Statistical validity, within an acceptable range, can be attached to the spatial variables since it can be assumed that future construction distances will correlate fairly well to previous construction distances. Certain of the temporal variables can be attacked statistically. Inflation rates have been projected; these may or may not be accurate. Material availability and labor contract periods can be assumed to remain as they have in the past. The business climate at a particular award date is extremely difficult to predict. This factor affects greatly the markup that the contractor attaches to his cost. In the author's opinion, this factor is the most sensitive and difficult variable to predict in calculating pavement unit prices.

Prior to presenting the unit prices used in this study, the variability of price due to a change in business climate deserves discussion. The amount that a contractor bids for a particular job includes a markup over his estimated cost. From the contractor's point-of-view, the study of the amount of money that he should mark up his estimated cost in order to maximize his expected ability is commonly referred to as the "Competitive Bidding Problem." In order to establish a strategy for bidding,

a contractor must select (either implicitly or explicitly) his utility function. This function is extremely sensitive to his own business situation and has been shown to depend upon the volume of work which he presently has on hand (Reference 9).

A representation of a contractor's volume as a function of time is given by his volume-time function as shown in Figure 28. The ordinate of

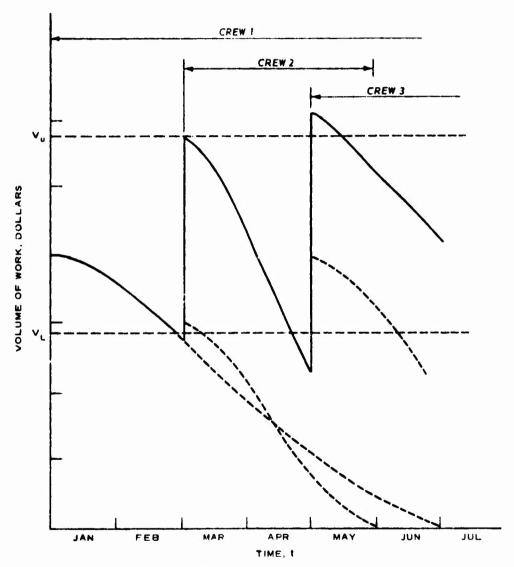


Figure 28. Volume-time function

this function is V , the volume of work that the contractor has on hand in dollars. The abscissa represents time T. There are two usually distinct values of V on each volume-time function. The first V_{τ} is the volume of work below which a contractor does not like to operate. When his volume is below $V_{I,}$, this implies that a large portion of his cash flow must go to pay his fixed cost thereby making his overheadvolume ratio higher than satisfactory. When a contractor's volume reaches his upper volume V, (the volume which is generally set explicitly by his bonding capacity, staff or equipment capability, or other constraints), his objective in a particular bidding situation is different than when his volume is at V_{τ} . A contractor operating at or near his maximum volume V is in an extremely good business situation. Simply, he does not desire any more work. If he does bid a job while his volume is high, he will mark up his estimated cost to account for the additional risk involved and, quite often, hope to be awarded the job at an extremely high contribution level.

Basically, if the entire local construction industry has a lot of work on hand (i.e., most contractors operating near $V_{\rm u}$), the sponsor of a project can expect to pay an extremely high price for construction. If, on the other hand, a large portion of the industry is operating near $V_{\rm L}$, the sponsor can expect to pay a lower unit price for construction, since the objective of most contractors will be to bid low in order to be awarded the contract and thereby obtain some contribution to maintain their cash flow.

Ideally, the construction market will be, at the time of each award, in an equilibrium situation. An equilibrium situation implies that most contractors are operating in a volume range between $V_{\underline{u}}$ and $V_{\underline{L}}$. This being the case, each contractor's objective, either implicitly or explicitly, is to maximize his expected profit, thus permitting true construction. In this situation, the sponsor gets a reasonable bid for his construction and the contractor gets his fair profit.

The purpose of these introductory paragraphs is to explain to the reader one reason for the high variability in bid prices relative to time in one location. Additionally, there is an extreme variation in

bid prices among locations. Thus the approach used in this treatise has been to develop unit prices based on historical data statistically and show the sensitivity of the total pavement cost to these unit prices. Hopefully, an upper and a lower bound have been developed that will permit future rational decisions.

6.2 Relationship of Pavement Cost to Total Cost of Pavements

When one constructs a new pavement or strengthens an old pavement, the actual price of the pavement is only a part of the total price. In an attempt to predict the total cost of upgrading a pavement structure, a total of 14 bid tabulations published during 1971 and 1972 for airport pavements in Engineering News-Record have been analyzed. These bid tabulations have been arbitrarily subdivided into seven categories for analysis. These seven categories are shown as column headings in Table 20.

The elements of the matrix shown in Table 20 are the percentages of the total price of each category. The means \bar{x} and standard deviations σ of each category as a percentage of total cost are:

Category	<u> </u>	σ
Excavation	13.10	1.1.08
Pavement	72.79	9.81
Subsurface Structures	7.13	5.70
Wiring	1.74	2.27
Lighting	2.21	4.47
Painting	0.37	0.65
Miscellaneous	2,66	4.92

Although some rather large variances occur in the categories other than pavement, this is inconsequential. The average price of pavement as a percentage of the total contract price is 72.79 percent with a coefficient of variation of 14 percent. These 14 contracts grouped both flexible and rigid pavements together. An analysis of variance (AOV) was performed to test the significance between the percentage of total contract price of flexible and rigid pavements. There were 7 contracts each for rigid and flexible pavements in the sample of 14 airfield pavement contracts. The percentages of pavement price to total contract

Table 20
Categorical Percentages of Total Contract Price of Seven Pricing
Elements in Airfield Pavement Construction

		Per	Percentage of Total	Bid	and Indicated Category	Category	
Type of Pavement Surfacing	Excavation	Pavement	Subfeature	Wiring	Lighting	Painting	Miscellaneous
Rigid	10.7	75.2	8.1	3.8	0.8	ī	ቱ • τ
Flexible	34.7	60.2	5.0	•	0.1	1	•
Flexible	9.5	0.69	19.7	1	ı	0.5	1.3
Flexible	1.8	58.1	ī	6.1	9.91	•	17.4
Rigid	5.7	73.0	10.1	5.3	5.8	0.1	•
Flexible	9.6	80.4	5.3	1	ı	1.7	3.0
Rigid	6.1	4.67	4.6	1	3.6	0.1	1.1
Flexible	4.5	80.0	7.6	4.1	1.2	ł	0.5
Rigid	26.2	4.59	3.7	6.0	4.0	ī	3.4
Rigid	7.7	90.2	3.6	ī	•	1.8	•
Flexible	35.0	58.6	3.3	ı	1	ı	3.1
Rigid	10.4	84.2	5.2	ī	•	1	0.2
Flexible	17.9	70.2	1	3.4	2.1	1.1	5.3
Rigid	6.9	75.2	16.7	7.0	7.0	•	0.ì

price for each of the two pavement types are:

Pavement Type	<u> </u>	<u>σ</u>
Rigid	77.51	8.03
Flexible	68.06	9.60

Based on a standard one-way analysis of variance and a 95 percent level of significance, one can reject the hypothesis that there is no significant difference between the percentage of total contract price of rigid and flexible pavement construction. The AOV is shown in Table 21.

Table 21
One-Way Analysis of Variance*

Source	DF	SS	MS	F**
Total	13	1252.4171	-	-
Treatments	1	313.0314	313.0314	3.9988
Error	12	939.3857	78.2821	-

^{*} Analysis of variance based on the hypothesis that there is no difference between the percentage of pavement cost to total project cost for rigid versus flexible pavement structures.

Therefore for the purpose of this report, the percentages of pavement price to total contract price will be as shown above.

6.3 Pavement Unit Price Model

Although there are numerous methods that might be used to develop unit prices, this report considers them only statistically. A primary assumption of this section is that pavement price per SY is hyperbolically related to pavement thickness within a reasonable range. This assumption is necessary since the only feasible method for conducting a nationwide price analysis for airport construction is to collect the individual bid tabulations for each project and the associated cross-sectional design from the FAA Form 51001. The bid tabulations list the unit (SY) price, whereas the FAA Form 5100-1 records

^{**} Probability of F less than 3.9988 = 0.9313.

the depth of each pavement layer. Therefore, for each airport, the price per SYIN for each pavement layer C_{ij} is given by

$$C_{11} = \frac{C \text{ SY}}{h} \tag{2}$$

where

C SY = price per SY for the pavement layer h = thickness of the layer in inches

A linear regression analysis was performed on a national basis to test a linearity assumption; the resulting functional relationship is shown in Figure 29. A relatively poor correlation coefficient of -0.60 was found nationwide. Using the homoscedastic assumption inherent in a linear regression analysis, one might assume that a coefficient of variation of 0.36 holds for the derived functional relationship. However, it is reasonable to assume that the variance would shrink when performed on a local level and the calculated correlation coefficient can be considered an upper bound.

An alternate equation using a least-squares fit to a hyperholic function was also performed. The resulting dashed curve in Figure 29 is intuitively more pleasing than the linear functional. However, any statistical description such as the correlation coefficient is meaningless as a goodness-of-fit indicator since most assumptions regarding statistical inference with respect to a regressed function are violated by the nonlinearity of the function considered.

In those cases where asphaltic concrete prices were expressed in cost per ton, the price per SYIN was developed from the equation:

$$C_{u} = CPT \cdot \frac{1}{2000 \text{ lb/ton}} \cdot 150 \text{ lb/ef} \cdot 9 \text{ sf/SY} \cdot \frac{1}{12 \text{ in./ft}}$$

$$= CPT \cdot 0.05625$$
(3)

where CPT is the price per ton.

This explicitly assumed an asphaltic concrete density of 150 lb/cf. In those cases where the price of aggregate and asphalt cement were given

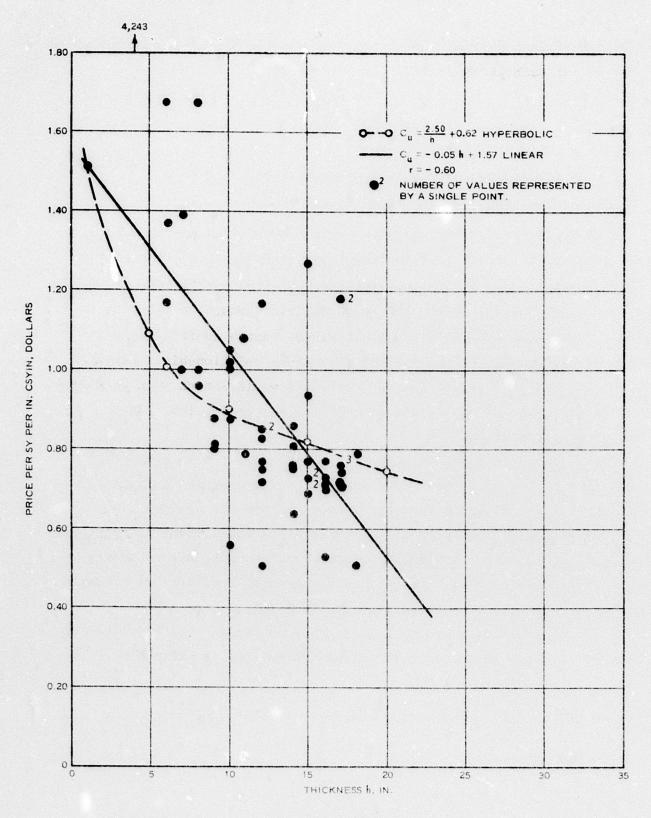


Figure 29. Pavement prices per SYIN as a function of pavement thickness (national statistics for rigid pavement)

separately, an asphalt content of 5 percent was assumed. The rate of application of asphalt prime coats was assumed to be 0.3 gal/sy and tack coats at 0.1 gal/SY. The density of crushed stone was assumed to be 100 and the C_u for crushed stone developed from Equation 2 using the assumed density. A list of national statistics is given in Table 22.

Table 22
Statistical Values Nationwide for Pavement Products

tions 46	Price 0.94	Deviation
46	0.94	0. 21.
		0.34
21	0.54	0.14
8	0.19	0.03
13	0.59	0.22
9	0.07	0.02
23	0.03	0.02
	9	9 0.07

The prices per SYIN used for each of the projected 1985 major hub airports were derived in order of priority according to the following sources: (a) project bid data at that particular airport if two or more tabulations were available (this requirement is for some statistical credibility); (b) regional averaged bid data for those regions supplying adequate data; and (c) nationwide averages as given in Table 22. The price per SYIN in 1972 dollars used for each projected major hub airport is given in Table 23.

Table 23

Price per SYIN Used for Each Projected 1985 Major Hub Airport in 1972 Dollars

		Price per SYIN	for Indicated	Pavement Product	
	Portland			Crushed	
	Cement	Asphaltic	Base	Aggregate	
	Concrete	Concrete	Course	Base Course	Compacted
Airport	P501	P401	P201	P209	Subbase
Chicago (O'Hare)	0.79	0.76	0.54	0.18	0.13
Atlanta	09.0	0.54	0.66	0.19	1
Los Angeles (International)*	76.0	0.54	0.68	0.19	0.13
Dallas/Ft. Worth Regional	1	1	ţ	1	1
San Francisco*	0.94	0.54	i	0.19	0.13
Miami*	0.9 ⁴	0.54	99.0	1	0.13
New York (JFK)	1.37	0.52	0.65	:	0.30
New York (La Guardia)	0.85	0.56	0.65	:	0.30
Newark	0.85	0.54	0.65	1	0.30
Denver	1.27	0.37	0.32	0.19	0.08
Boston	1.37	0.92	0.65	ł	0.30
Philadelphia	1.37	0.73	0.65	0.38	ł
St. Louis	0.64	97.0	77.0	0.15	6.13
Honolulu	0.94	0.54	99.0	0.19	;
Detroit	76.0	0.76	0.67	0.18	0.13
Seattle/Tacoma	1.38	0.41	0.39	0.27	0.34
Pittsburgh	1.17	0.93	0.74	0.38	0.24
Houston	0.84	0.34	0.71	0.23	0.11
Minneapolis/St. Paul	0.85	0.76	0.67	0.18	0.13
New Orleans	0.79	0.76	0.57	0.23	0.13
Las Vegas	1.27	0.54	99.0	ł	0.38
Kansas City (International)	0.85	0.42	0.76	;	0.18
Baltimore	1.37	0.52	0.65	;	0.18
Cleveland	0.85	0.76	29.0	0.18	0.13
Washington (Dulles)	1.37	•	•	0.38	0.30
Fort Lauderdale*	76.0	0.54	99.0	0.19	0.13

National averages used.

7 PAVEMENT THICKNESS REQUIREMENTS

7.1 Computational Procedures

Realistic rigid and rlexible pavement thicknesses that will be required to support operations of the Category I and the Category II aircraft on the airports listed in Table 13 were determined for input to calculations of pavement costs. It was assumed that all of the airports except Dallas-Fort Worth Regional Airport may need to build new pavements for the 1.5-million-lb Category II aircraft and that overlays would be required on other pavement areas; therefore, thicknesses were calculated both for new construction and for overlay of selected pavement areas.*

Dallas-Fort Worth Regional Airport is designed for operation of the Category II aircraft and consequently is omitted from further tables.

The rollowing parameters were used for calculating pavement thicknesses.

CBR. The California Bearing Ratio (CBR) is a measure of soil strength. For each airport, CBR values for the subgrade were determined by correlating the soil group with the subgrade class (F) using Table 2 in FAA Advisory Circular AC-150-5320-6A (Reference 10) and then converting the F-class to CBR using Figure 20 from the same reference. The CBR values are tabulated in Appendix B.

Modulus of subgrade reaction k. The moduli of subgrade reaction used in this report represent the strength of the foundation upon which a rigid pavement will be placed. When a k-value was not a matter of record, the CBR value described above was used with Figure 30 to determine a k-value for the subgrade based upon the average CBR-k correlation curve. When the pavement was to be placed on a base or subbase layer, the subgrade k-value was adjusted by using Figure 31 and then the k-value was determined for the foundation layer. The k-values are shown in Appendix 3.

Working stress. The working stress represents the allowable stress

^{*} The pavement areas selected for overlay calculations were those on which it was assumed that the Categories I and II aircraft might operate. These areas are identified on the airfield layouts in Appendix A.

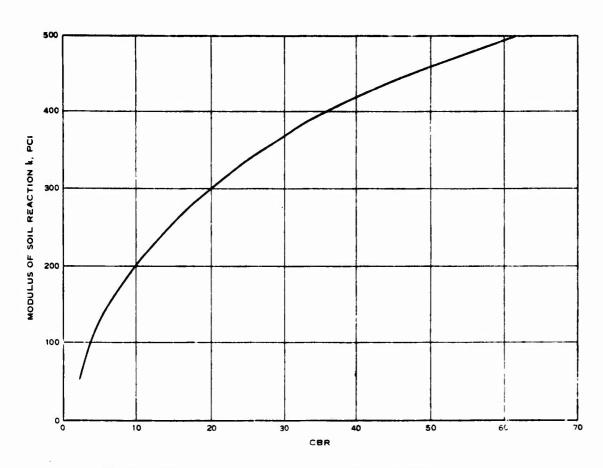


Figure 30. Approximate correlation of CBR and k-value

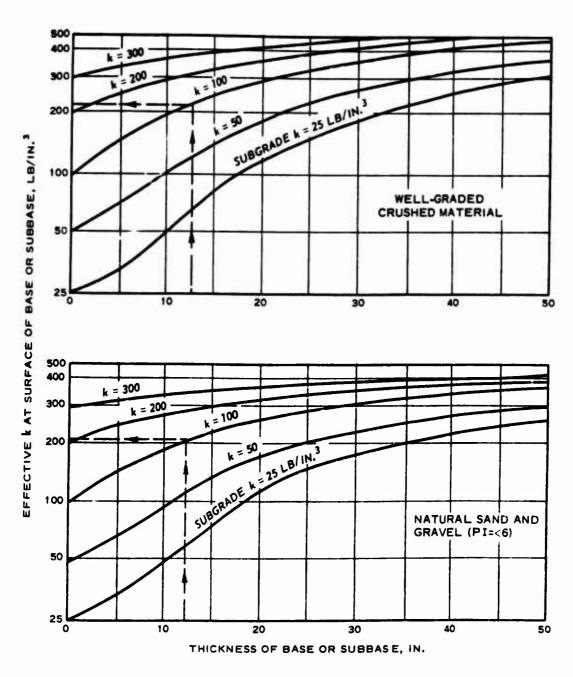


Figure 31. Effect of base or subbase thickness on modulus of soil reaction (from Dept of Army Technical Manual TM 5-88-9 "Airfield Rigid Pavement Evaluation-Air Force, Emergency Construction")

for a rigid pavement slab. This stress is determined by dividing the flexural strength by a safety factor (2.0). For this study, a working stress of 350 psi was assumed for all pavements.

<u>Traffic.</u> A standard level of 100,000 aircraft passes was chosen for the design of all typical pavement sections and overlays.

7.2 Design Criteria

The flexible and rigid pavement design curves used to develop typical sections for the major airports are shown in Figures 32 through 39. These curves were developed basically using the Corps of Engineers procedures for flexible and rigid pavements and were modified , to be compatible with current FAA criteria as shown in Reference 10. To make the rigid pavement curves compatible with FAA criteria, rigid pavement curves were developed initially in terms of thickness k, load, and flexural strength, and the flexural strength was then changed to working stress by dividing the flexural strength by a safety factor of 2.0. To make the flexible pavement curves compatible with the FAA flexible pavement criteria, the curves were developed initially in terms of CBR, thickness, and load. The CBR was then converted to the FAA soil class as discussed above. Additional adjustments were made to the flexible pavement curves because the slope of the curves developed using the Corps of Engineers methodology was different from the slope of the current FAA curves. This adjustment was made by multiplying the thickness requirements for the median and optimized aircraft gears by a ratio of the FAA thickness requirement for the dual tandem gear to the Corps of Engineers thickness requirements for a dual tandem gear.

Fach design curve was developed for 100,000 passes and covered the ranges of soil strengths, working stresses, and thicknesses necessary to accomplish the study.

7.3 Determination of Thickness Requirements

7.3.1 New construction. The flexible pavement thicknesses were determined by entering the design curves shown in Figures 32 through 35 with the appropriate subgrade CBR value from Appendix B and reading the

corresponding thickness. For rigid pavement new construction, the design curves shown in Figures 36 through 39 were entered at a working stress of 350 psi, and the required thickness was determined using the k-value of the foundation under existing pavements and the gross weight of the aircraft. The resulting thicknesses for new construction of flexible and rigid pavements are shown in Appendix C.

7.3.2 Overlays. All overlay thicknesses were determined in accordance with FAA procedures and methods presented in Reference 10. The base pavement for all overlays was assumed to be in good condition. Calculations were made for flexible, bituminous, and rigid overlays* on rigid and flexible pavements. Overlay thicknesses were calculated for each cross section on a pavement item, i.e., runway, taxiway, apron, etc., and the overlay thickness deemed most logical was selected for the entire pavement item. The results of these calculations are shown in Appendix C.

^{*} Flexible pavement - asphaltic concrete over a granular base course.

Bituminous pavement - full-depth asphaltic concrete.

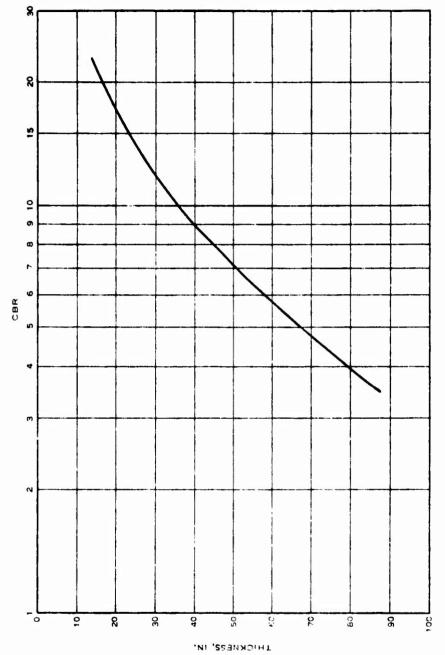


Figure 32. Flexible pavement design curve for Category I airplane with median gear

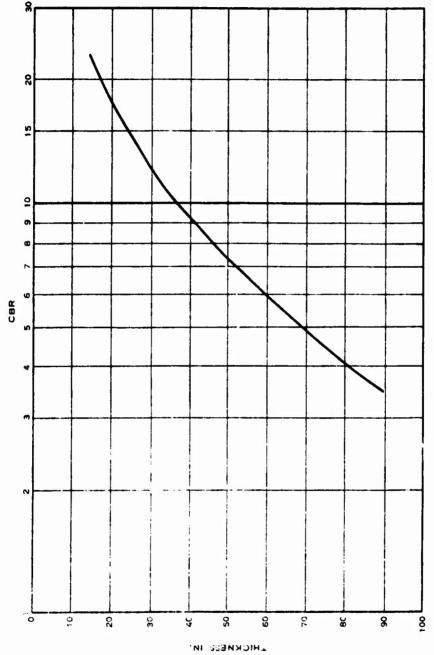


Figure 33. Flexible pavement design curve for Category I airplane with optimized gear

23 hours 23 days 41 1 - 44

No. of the last of

Figure 34. Flexible pavement design curve for Category II airplane with median gear

THICKNESS, IN.

ક્ર

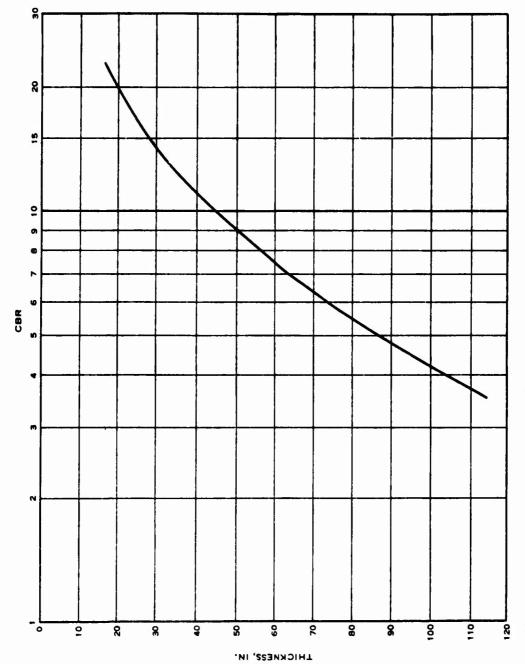
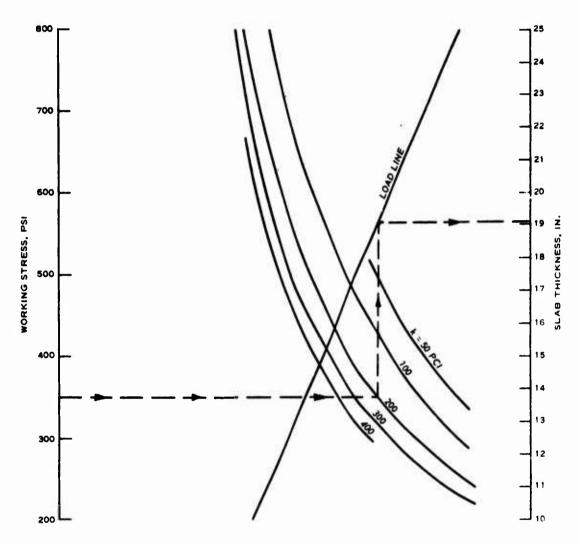



Figure 35. Flexible pavement design curve for Category II airplane with optimized gear

美国的物的中心。

Figure 36. Rigid pavement design curves with example of usage. Category I airplane with median gear

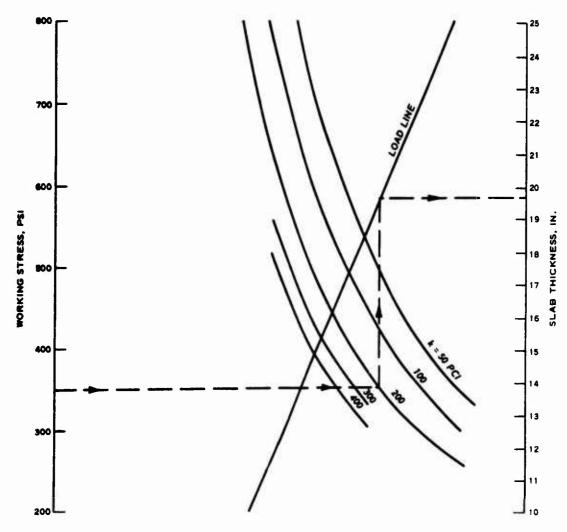
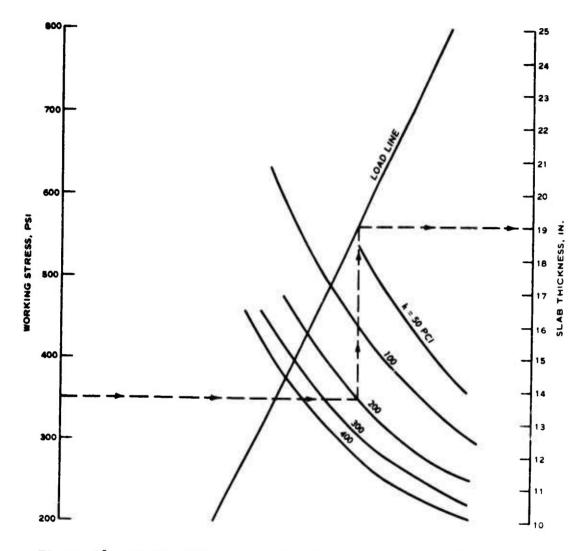



Figure 37. Rigid pavement design curves with example of usage. Category I airplane with optimized gear

The second second

Figure 38. Rigid pavement design curves with example of usage. Category II airplane with median gear

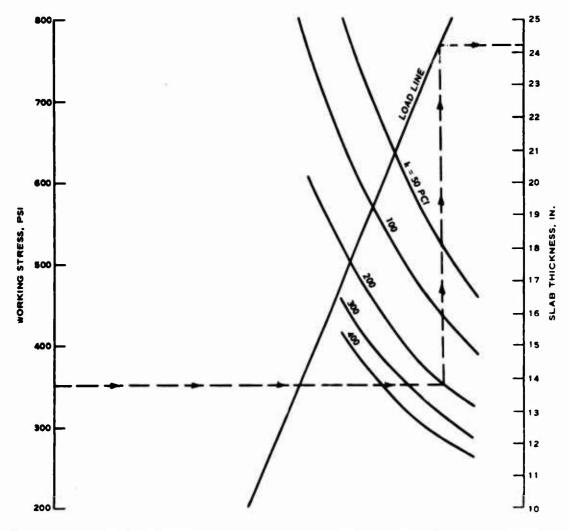


Figure 39. Rigid pavement design curves with example of usage. Category II airplane with optimized gear

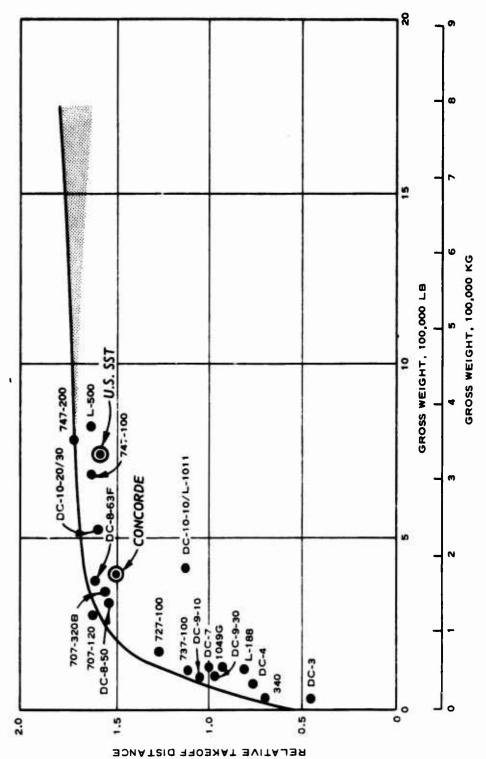
8.1 Introduction

Based on information given in the two previous sections, the total price of upgrading the 26 major hub airports can now be calculated. Section 6 developed unit prices in units of dollars per SYIN of thickness in addition to the ratio of pavement price to total price. Section 7 developed the thicknesses required to upgrade the present pavement structure to accommodate the Category I and the Category II aircraft using both the median and optimized gears for each category. The pavement price for the gear type corresponding to present flotation criteria has been considered zero. Thus, this section actually develops the incremental prices.

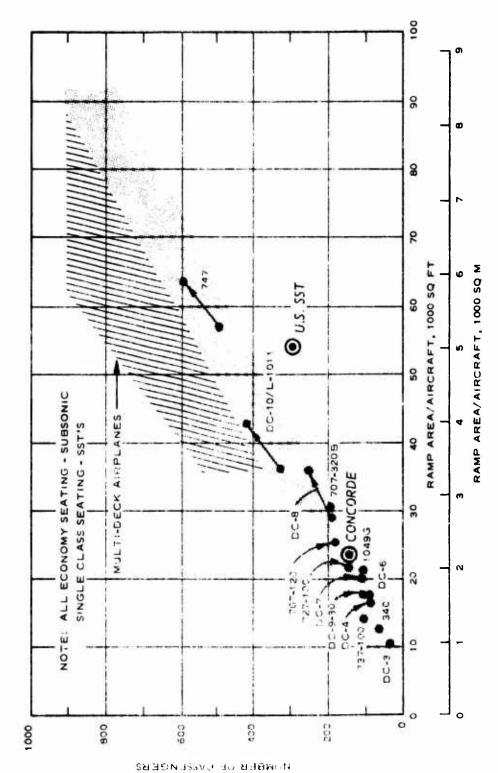
In order to develop the total price of upgrading the pavements at the major hub airports, one must calculate the pavement area to be upgraded and a pavement structure must then be selected. With these two parameters known, the results of Sections 6 and 7 can be applied and a total price in 1972 dollars can be calculated. In order to be compatible with the aircraft lost revenue costs developed in Section 5, either an equivalent annual cost or a present worth comparison must be made using either 1972 or 1985 dollars. Finally, due to the nationwide scope of this study and the inherent errors associated with the macro estimates performed, a sensitivity analysis of all parameters must be performed to test the consequences of any decisions made based on this analysis.

8.2 Calculations of Pavement Areas

Determining the amount of area to be upgraded for each major hub airport required subjective evaluations by this investigator. In general, pavement areas selected were the two major runways at each major hub airport, the taxiways associated with each of these runways, and the entire commercial apron area. In those cases where available airport master plans indicated a planned new runway, such as Atlanta's Hartsville International Airport, the incremental increases in the structure required for the Category I and the Category II aircraft were included.


For the existing runways, taxiways, and aprons selected, an assumption was made that the existing geometry would be adequate for the design aircraft. It is apparent that the runway length requirements have leveled off for heavy-gross-weight aircraft. This change can be attributed primarily to increased engine thrust and wing lift (Reference 11). The Aerospace Industries Association projections for takeoff field length are shown in Figure 40. This holds true for both landing and takeoff requirements. Although there is a trend implying an increase in wing span as aircraft become larger, it has been assumed that taxiway and runway width will remain the same.

There is a definite trend toward a larger apron area required for the two design types of aircraft as shown in Figure 41. However, to accommodate increases in apron area, more terminal gates will be required and this factor is beyond the scope of this study. Thus, a conservative assumption with respect to pavement price has been made that there will be no increase in present apron area. The sensitivity analysis described later will provide information to the decision maker should this increase be considered in his decisions.


Pavement areas were scaled from the sketch drawings shown on the airfield evaluation forms in Appendix A. Most drawings were adequately scaled for the calculation of areas. For those that were not adequately scaled, suitable assumptions were made with respect to the areas involved. From a macro point of view, this is adequate. Again, however, since the total price varies linearly with area, the sensitivity portion of this study will provide a decision tool with respect to area. Some pertinent statistics associated with area calculations are shown in Table 24.

8.3 Selection of Pavement Structures

It is the airport manager's choice, usually based upon the recommendation of the airport engineer, as to what type of pavement structure he desires for a particular project. Most often, this choice will be based on the least-cost structure, which, among other factors, is based upon availability of materials. For the purpose of this study,

Trend of length of field required for takeoff (from Reference 11) Figure 40.

Brake Brake Black

Figure 41. Trend in ramp area requirements (from Reference 11)

Table 24 Area Calculations and Statistics

		ntage of Total Are		Upgraded Total Area	Ratio of Areas Runway	to
Airport	Runway	Taxiway	Apron	SY	Taxiway	Apron
Chicago (O'Hare)	24	32	44	2,479,381	1.33	1.83
Atlanta	24	45	31	2,281,975	1.88	1.29
Los Angeles	23	21	56	1,883,831	0.91	2.43
San Francisco	31	15	54	1,688,808	0.48	1.74
Miami	30	27	43	1,315,750	0.90	1.43
New York (JFK) New York	19	17	64	2,100,400	0.89	3.37
(La Guardia)	23	11	66	2,003,641	0.48	2.87
Newark	34	35	31	453,258	1.03	0.91
Denver	23	28	49	914,874	1.22	2.13
Boston	57	31	12	878,955	0.54	0.21
Philadelphia	80	13	. 7	560,389	0.16	0.09
St. Louis	38	20	42	586,155	0.53	1.11
Honolulu	22	39	39	1,158,949	1.77	1.77
Detroit	29	20	51	1,606,242	0.69	1.76
Seattle/Tacoma	23	16	61	1,350,306	0.70	2.65
Pittsburgh	35	22	43	988,391	0.63	1.23
Houston	14	27	59	1,099,579	1.93	4.21
Minneapolis	53	21	26	1,222,891	0.40	0.49
New Orleans	35	19	46	435,289	0.54	1.31
Las Vegas	31	15	54	1,413,322	0.48	1.74
Kansas City	35	23	42	1,257,233	0.66	1.20
Baltimore	36	26	39	982,425	0.72	1.08
Cleveland	28	15	57	830,095	0.54	2.04
Washington (Dulles)	38	23	39	880,020	0.61	1.03
Fort Lauderdale	21	24	55	667,677	1.14	2.62
x =	32.24	23.40	44.40		0.85	1.70
s =	13.97	8.31	14.78		0.47	0.96
v =	0.43	0.36	0.33		0.55	0.56
Total Expected Area				29,939,536 SY		

historical data were considered in selecting the type of pavement structure to be priced. If one sirport traditionally used bituminous overlays, this was the type chosen for this study. If, on the other nand, a combination of overlay types were used at a specific airport, a subjective evaluation was made and the most predominant type of overlay was chosen. Only two types of overlays were considered: full-depth bituminous overlays, FAA Item P-\$01, and portland cement concrete overlays, FAA Item P-\$01. Flexible overlays that consist of a bituminous surface course with a minimum depth of \$4\$ inches and a base course were not considered due to the possible variations in base course selections and the pricing difficulties involved. Traditional pavement structures were considered for the construction of new areas.

8.4 Total Price Model

The following equation determines the total pavement price for the \mathbf{k}^{th} airport,

$$X_{k} = \left[\sum_{j=1}^{m} \sum_{i=1}^{n} \bar{c}_{ik}^{h}_{ijk}^{A}_{jk} \right] + s, k = 1,2,...26$$
 (4)

where

| \$\vec{\mathbb{Z}}{\mathbb{k}} \| \equiv \text{ total pavement price in 1972 dollars at the kth airport | \$\vec{\mathbb{C}}{\mathbb{i}k} \| \equiv \text{ expected unit price for the ith layer at the kth airport in dollars per SYIN | \$\vec{\mathbb{c}}{\mathbb{i}k} \| \equiv \text{ airport at the kth airport in dollars per SYIN | \$\vec{\mathbb{c}}{\mathbb{c}} \| \equiv \text{ airport at the kth airport in dollars per SYIN | \$\vec{\mathbb{c}}{\mathbb{c}} \| \equiv \text{ airport at the kth airport at the

h_{ijk} = thickness in in. of the ith layer in the jth area at the kth airport

Aik = area, in SY, of the jth area at the kth airport

S = ratio of the pavement price to the total airport upgrading price for either rigid or flexible pavement.

 $\mathbf{X_k}$ must be calculated for median and optimized gear for both the Categories I and II airplanes. Computations for $\mathbf{X_k}$ are shown in Appendix D and the results are shown in Tables 25 and 26.

8.5 Development of Common Dollars for Comparisons

The aircraft costs in Section 5 of this treatise are in terms of

Table 25

Total Pavement Upgrading Cost for Each 1985 Major Hub Airport

in Terms of 1972 Dollars - Category I Aircraft

		nt Upgrading Cost
Airport	Median Gear	Optimized Gear
Chicago (O'Hare)	\$ 14,820,850	\$ 15,685,120
Atlanta	12,576,977	12,720,977
Los Angeles	11,596,007	12,377,982
San Francisco	4,017,430	4,017,430
Miami	2,206,712	2,433,004
New York (JFK)	20,630,970	23,239,123
New York (La Guardia)	22,929,004	23,745,126
Nevark	504,159	560,176
Denver	12,043,615	12,230,798
Boston	3,929,476	3,800,370
Philadelphia	3,062,560	3,192,564
St. Louis	5,024,018	4,528,715
Honolulu	1,422,342	1,777,928
Detroit	17,348,249	18,200,341
Seattle/Tacoma	6,212,138	6,572,468
Pittsburgh	16,087,501	17,130,735
Houston	9,408,089	9,406,799
Minneapolis	9,668,822	10,777,467
New Orleans	4,398,039	4,716,317
Las Vegas	8,227,866	8,986,433
Kansas City	12,138,043	12,452,762
Baltimore	0	0
Cleveland	7,505,082	7,963,577
Washington (Dulles)	9,338,890	10,889,539
Fort Lauderdale	5,177,427	5,351,784
Total (1972 dollars)	\$220,269,266	\$232, 757 , 535

Table 26

Total Pavement Upgrading Cost for Each 1985 Major Hub Airport

in Terms of 1972 Dollars - Category II Aircraft

		t Upgrading Cost
Airport	Median Gear	Optimized Gear
Chicago (O'Hare)	\$ 14,335,571	\$ 29,332,323
Atlanta	12,025,466	19,415,827
Los Angeles	11,270,088	18,912,179
San Francisco	4,017,430	6,029,921
Miami	1,754,129	4,469,634
New York (JFK)	18,022,818	34,486,858
New York (La Guardia)	25,649,175	34,630,495
Nevark	392,123	1,755,448
Denver	12,182,728	18,413,985
Boston	4,607,590	13,059,612
Philadelphia	3,126,274	4,500,016
St. Louis	5,024,018	8,412,372
Honolulu	1,244,549	3,587,473
Detroit	22,343,112	34,377,628
Seattle/Tacoma	5,655,554	10,799,822
Pittsburgh	16,723,838	26,721,192
Houston	8,279,450	14,666,932
Minneapolis	9,345,637	17,245,238
New Orleans	4,480,185	8,071,317
Las Vegas	9,287,474	12,858,963
Kansas City	11,925,265	19,540,225
Baltimore	0	0
Cleveland	6,964,593	12,883,345
Washington (Dulles)	9,333,890	20,223,427
Fort Lauderdale	5,057,774	9,572,327
Total (1972 Dollars)	\$223,048,731	\$3 83 , 966 , 559

annual 1985 dollars, whereas the pavement costs have been computed in terms of total 1972 dollars. In order to make valid comparisons, there are several methods available to the analyst. They are equivalent annual cost comparisons, present worth comparisons, and future worth comparisons. The latter can be summarily dismissed as having no advantage over the previous two. In making a present worth comparison, the costs of both airport pavement and aircraft cost must be assumed to have equal lives or at least a combination of equal multiple lifetimes. Therefore, since this type of comparison has no logical basis, the comparison must be an equivalent annual cost basis. Since the aircraft cost has been calculated on an annual basis, the problem now becomes, how does one predict the lifetime of the pavement structure and how does one anticipate the date of the completion of the construction.

If the date of construction for each airport is known, then the amount of 1972 dollars expended at the time of construction can be calculated in terms of the year of construction dollars by the equation

$$X_{k}^{1972+n} = X_{k}^{1972} (1 + i)^{n}$$
 (5)

where

Maria Property and

n = number of years from 1972 until the construction date

i = inflation rate assumed equal to the interest rate

If the lifetime of the pavement structure can be calculated or anticipated, then the equivalent annual cost can be calculated by assuming no future value of the pavement structure and using the following equation:

$$EAC_{k} = \chi_{k}^{1972+n} \left[\frac{i(1+i)^{m}}{(1+i)^{m}-1} \right]$$
 (6)

where EAC_{k} is the equivalent annual cost at the k^{th} airport and m is the expected lifetime of the pavement structure in years.

One should note at this point that a serious shortcoming in the

field of pavement engineering is the fact that no deterioration function has ever been developed for a pavement structure. In fact, there is no real agreement among the pavement "experts" about the failure criteria that should be used in determining the life of a pavement. Although pavement structures are usually designed for a 20-year life span, overlays are required usually within 5 to 7 years (Reference 12).

For the initial calculation of the equivalent annual cost at each major hub airport, the following assumptions have been made.

- a. Number of years from 1972 until construction of the pavement structure n = 13 years. This converts 1972 dollars into 1985 dollars.
- <u>b.</u> Pavement lifetime m = 20 years. Implicit in this assumption is the fact that the structures will have no future worth. In actuality, this implies that maintenance cost will be so high as to make new construction a desirable alternative. From another point of view, m can be considered as the period over which the cost of the pavement is amortized.
- c. Average inflation factor i = 5 percent is assumed to be equal to the average interest rate.

The results of the computations are shown in Tables 27 and 28 for the Category I and the Category II aircraft, respectively.

8.6 Sensitivity Analysis

JE 1 2-150

The state of the s

The computations of pavement prices have been based on variables involving a high degree of uncertainty. The equivalent annual cost for upgrading pavements in this study, x, is explicitly sensitive to the following variables:

- a. Unit prices.
- b. Calculated areas.
- c. Inflation and interest rates.
- d. Time to construction.
- e. Expected pavement life.

In addition, an implicit variable is the individual decision of upgrading at each major hub airport. This variable cannot be treated by any normal sensitivity analysis; however, the reader should keep this variable in mind when comparing the costs in the succeeding sections.

Table 27

Equivalent Annual Cost for Upgrading Project 1985 Major Hub

Airports in 1985 Dollars - Category I Aircraft

the property

	Equivale	nt Annual Cost
Airport	Median Gear	Optimized Gear
Chicago (O'Hare)	\$ 2,242,533	\$ 2,373,306
Atlanta	1,903,814	1,924,803
Los Angeles	1,754,584	1,872,905
San Francisco	607,875	607,875
Miami	333,896	368,136
New York (JFK)	3,121,659	3,516,297
New York (La Guardia)	3,469,373	3,592,860
Newark	76,284	84,760
Denver	1,822,312	1,850,634
Boston	594,567	575,032
Philadelphia	463,394	483,065
St. Louis	760,181	685,237
Honolulu	215,214	269,017
Detroit	2,624,953	2,753,882
Seattle/Tacoma	939,955	994,476
Pittsburgh	2,434,190	2,592,041
Houston	1,423,532	1,423,337
Minneapolis	1,462,983	1,630,732
New Orleans	665,464	713,623
Las Vegas	1,244,953	1,359,731
Kansas City	1,836,600	1,884,220
Baltimore	0	0
Cleveland	1,135,589	1,204,964
Washington (Dulles)	1,412,305	1,647,689
Fort Lauderdale	783,393	809,775
Total Annual Cost	\$33,328,803	\$35, 218 , 395

Table 28

Equivalent Annual Cost for Upgrading Projected 1985 Major Hub

Airports in 1985 Dollars - Category II Aircraft

	Equivale	nt Annual Cost
Airport	Median Gear	Optimized Gear
Chicago (O'Hare) Atlanta Los Angeles San Francisco Miami	\$ 2,169,106 1,819,566 1,705,270 607,875 265,416	\$ 4,438,255 2,937,796 2,861,590 912,384 676,297
New York (JFK) New York (La Guardia) Newark Denver Boston	2,727,021 3,880,960 59,322 1,843,361 697,172	5,218,185 5,239,918 265,616 2,786,208 1,976,042
Philadelphia St. Louis Honolulu Detroit Seattle/Tacoma	473,035 760,181 188,312 3,380,722 855,738	680,895 1,272,871 542,818 5,201,657 1,634,114
Pittsburgh Houston Minneapolis New Orleans Las Vegas	2,530,473 1,252,758 1,414,082 677,894 1,405,282	4,043,167 2,219,244 2,609,366 1,221,266 1,945,682
Kansas City Baltimore Cleveland Washington (Dulles) Fort Lauderdale	1,804,404 0 1,053,608 1,412,305 765,289	2,956,619 0 1,949,371 3,059,994 1,448,383
Total Annual Cost	\$3 3,749,362	\$58,097, 736

The sensitivity model has been developed from the macro point of view and considers only gross total price components. Thus, the sensitivity model is

$$x = \Sigma_{k} EAC_{k} = p \times A \times (1 + i)^{n} \left[\frac{i(1 + i)^{m}}{(1 + i)^{m} - 1} \right]$$
 (7)

where

p ≡ unit price in dollars per SY

A ≡ calculated area in SY

i = inflation rate assumed equal to the interest rate

n = number of years from 1972 until the pavement is upgraded

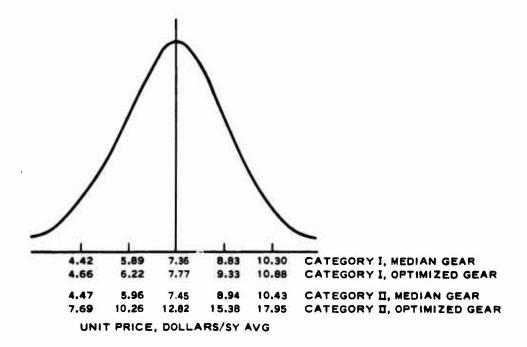
m = expected pavement life or period of pavement cost amortization. The term m could also be interpreted as the life of the bonds sold to finance the pavement construction. This interpretation would, however, disassociate the costs from the pavement structures and this investigator has chosen to ignore this interpretation.

Equation 7 can be considered as a five-space function of p, A, n, m, and i. To examine its sensitivity with respect to changing any single variable, the following partial derivatives have been completed.

$$\frac{\partial x}{\partial A} = p(1 + i)^n \left[\frac{i(1 + i)^m}{(1 + i)^m - 1} \right]$$
 (7a)

$$\frac{\partial x}{\partial p} = A(1 + i)^n \left[\frac{i(1 + i)^m}{(1 + i)^m - 1} \right] \tag{7b}$$

$$\frac{\partial x}{\partial n} = pA(1+i)^{n} \ell_{n}(1+i) \left[\frac{i(1+i)^{m}}{(1+i)^{m}-1} \right]$$
 (7c)


$$\frac{\partial x}{\partial m} = pA(1 + i)^{m} \left\{ \frac{-i(1 + i)^{m} \ln(1 + i)}{\left[(1 + i)^{m} - 1\right]^{2}} \right\}$$
 (7d)

$$\frac{\partial x}{\partial i} = pA \begin{cases} \frac{in(1+i)^{m+n-1}}{(1+i)^m-1} \end{cases}$$

+
$$(1 + i)^n \left[\frac{(1 + i)^{2m} - (1 + i)^m - im(1 + i)^{m-1}}{(1 + i)^{2m} - 2(1 + i)^m + 1} \right]$$
 (7e)

It is obvious that x varies linearly with both the area and the unit price p . A change in either of these two variables will directly change the value of x by a proportional amount. If one assumes a coefficient of variation of 20 percent for each of these variables as shown in Figure 42 and holds n constant at 13 years, m constant at 20 years, and i constant at 5 percent, some feasible bounding costs can be developed. For the purpose of this analysis, the LPC (n = 13, m = 20, i = 5) was defined as the x computed using the expected unit price less two standard deviations and the calculated area less two standard deviations; the MPC (n = 13, m = 20, i = 5) was defined as the x computed using the expected unit cost and the calculated area; and the HPC (n = 13, m = 20, i = 5) was defined as x computed using the expected unit price plus two standard deviations and the calculated area plus two standard deviations. These values were computed using Figure 43 and are shown in Table 29. The bounding values, noting that they inherently involve a compounded coefficient of variation of 20 percent for each parameter, provide the reader with a mechanism by which he can challenge the recommendations in Section 11 by altering either price, area, or both.

Equations 7c through 7e provide some insight of the variations with respect to n, m, and i. The equivalent annual cost increases monotonically with respect to n as one would expect. The cost of construction increases at the annual rate of 5 percent per year and the factor involving n simply considers the time value of money. The slope of the curve is ever increasing, although tempered somewhat by a factor involving a natural logarithm of a relatively small number.

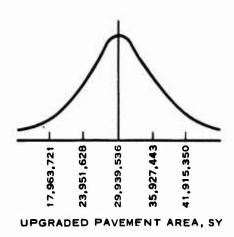


Figure 42. Sensitive parameters (coefficient of variation of 20 percent assumed)

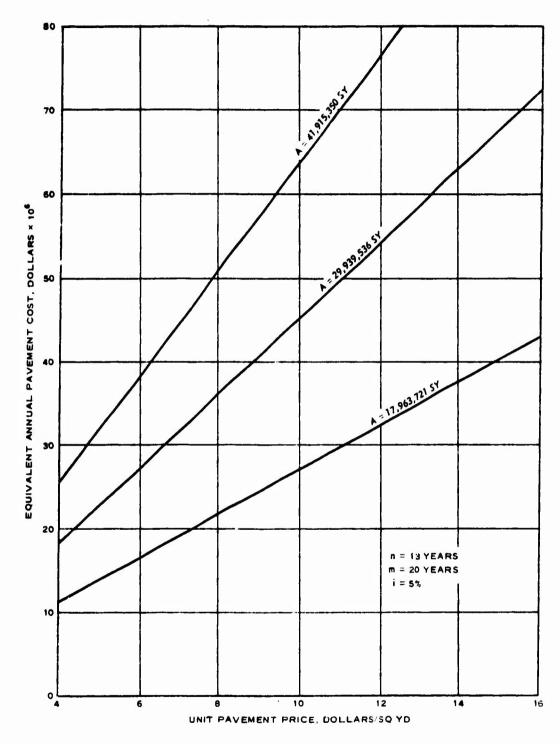


Figure 43. Variation in equivalent annual cost with respect to unit price and pavement area, 1985 dollars

Table 29

Bounding Cost Ranges for Both Categories I and II Airplanes with

Constant i at 5 Percent, n at 13 Years, and

m at 20 Years

	LPC	MPC	HPC
Category I Airplane:			
Median Gear	\$12,013,910	\$33,32°,803	\$ 65,324,506
Optimized Gear	12,666,249	35,218,395	69,002,973
Category II Airplane:			
Median Gear	12,149,814	33,749,362	66,148,990
Optimized Gear	20,902,029	58,097,736	113,842,221

The factor involving m in Equation 7 is the capitalization factor. It assumes that the cost of construction will be capitalized over a period of m years at an interest rate equivalent to the inflation rate. The slope of the curve is a monotonic decreasing function with a limit, as m approaches infinity, of zero. The limit of the factor involving m in Equation 7 is i, the assumed interest rate. Basically, the equivalent annual cost decreases as m increases.

The interest factor i has an extreme effect on the equivalent annual cost. Both x, and the change in x, increase rapidly as i increases. A conservative approach with respect to pavement prices has been taken in this treatise by ascuming that interest rates correspond to the annual inflation rate. Thus, the calculated pavement costs should be considerably lower than the actual cost. Figures 44 through 46 show relative in-plane changes in costs with respect to n, m, and i.

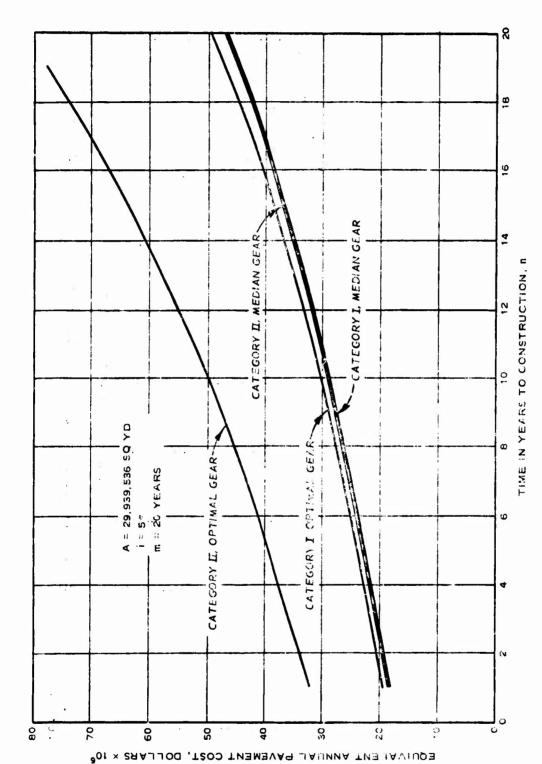
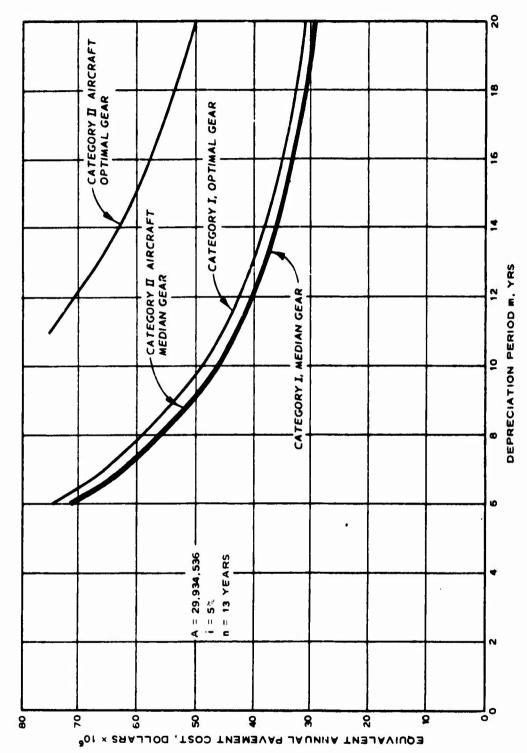
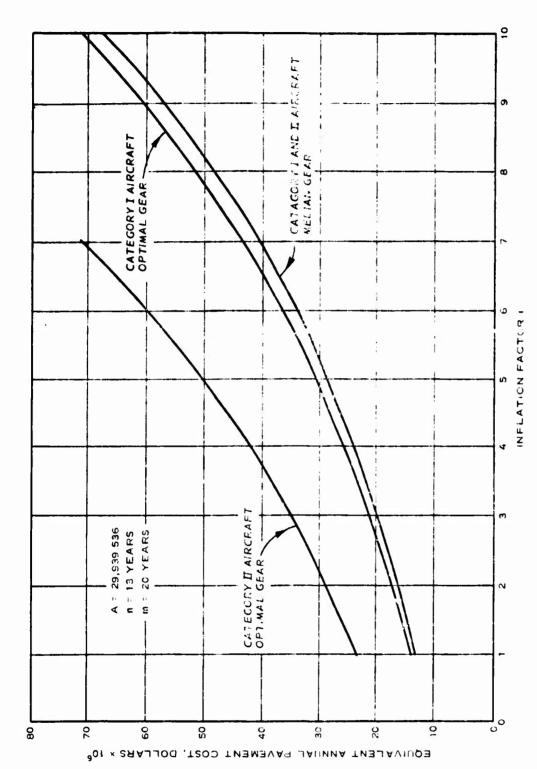




Figure $k \, 4$. Variation in equivalent annual payement prices with respect to time to construction n

Variation in equivalent annual pavement costs with respect of depreciation Figure 45. period m

Variation in equivalent annual pavement costs with respect to inflation Figure 46. factor i

9 PRICE ANALYSIS

9.1 Introduction

The purpose of this portion of the aircraft-pavements compatibility study was to determine the most economical of the three alternatives listed below:

- a. Require aricraft to meet the flotation requirements imposed by present standards, e.g., impart no greater stress on the pavement structure than a 350,000-lb gross weight aircraft on twintandem gears. The implication of this alternative is that aircraft manufacturers are required to put more and more wheels on their aircraft as the gross weight increases. On the other hand, airport pavements will not require upgrading.
- <u>b.</u> Permit aircraft to be designed with landing gears optimized with respect to the aircraft without regard for flotation criteria. The implication of this alternative is that the aircraft will not be penalized by being required to haul the extra volume and weight of additional gears and wheels and absorb other associated costs. This alternative required that the pavements at each of the projected 1985 major hub airports be strengthened to the point of accepting such stresses as will be imposed by gears not corresponding to flotation criteria.
- c. Compromise between the two previous alternatives. For the purpose of this study, this alternative implies that a median gear could be designed with a lesser flotation restriction and designed more to optimize aircraft performance.

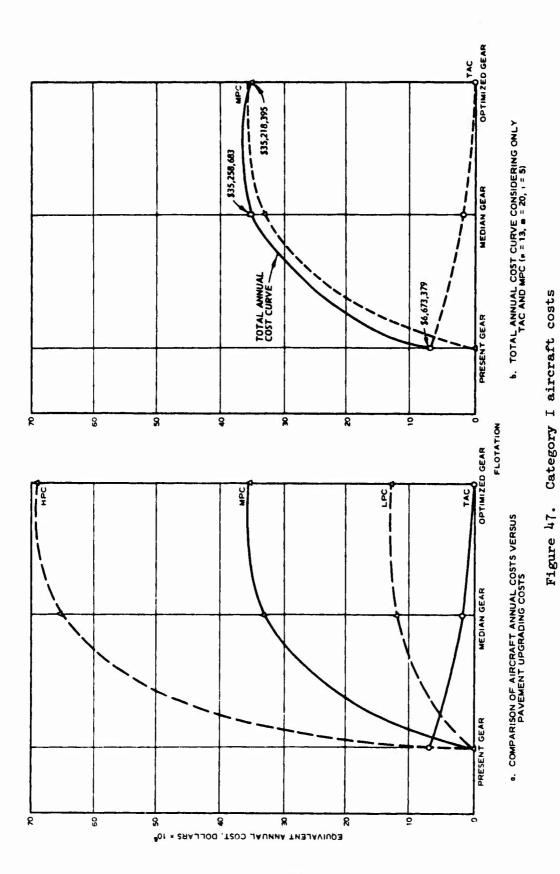
The basis of the conclusions and recommendations is exclusively economic. Other considerations such as those dealing with sociopolitical factors, ecological and environmental restrictions, space constraints, etc., are beyond the scope of this analysis.

9.2 Category I Aircraft

The total annual airplane costs (TAC) are given in Table 19 for the Category I aircraft in terms of 1985 dollars. It is obvious that, with only a \$6,673,397 annual penalty cost for conforming to current pavements that the present gear configuration of the Category I aircraft is close to optimal. The following tabulation shows the total expected annual cost components in 1985 dollars for the Category I comparison.

	Current Gear	Median Gear	Optimized Gear	
Aircraft Cost	\$6,673,379	\$ 1,929,88\$	\$ 0	
MPC Pavement	0	33,328,803	\$35,218,395	
Total Annual Cost	\$6,673,379	\$35,258,683	\$35,218,395	

Figure 47 graphically depicts the relationship between the aircraft annual cost and the MPC, LPC, and the HPC for the Category I aircraft. The obvious inference is that one cannot economically justify upgrading the twenty-six 1985 major hub airports for the Category I aircraft. Figure 47 should be viewed with a jaundiced eye in that the flotation functional relations are highly nonlinear and the figure is simply a graphic representation.


Figure 48 is a graphic illustration of the total cost to the public summing both the pavement upgrading costs and the aircraft costs. Keeping in mind that the HPC and the LPC have been developed assuming the most improbable of pavement price estimates, it is obvious from this figure that the least-cost-to-the-public alternative, assuming only the Category I aircraft is in service, is to maintain the present pavement flotation criteria.

9.3 Category II Aircraft

The TAC's are given in Table 19 for the Category II aircraft in terms of 1985 dollars. Contrary to the small penalty for corresponding to current flotation requirements for the Category I aircraft, the Category II airplane is considerably penalized. The following tabulation shows the total expected annual cost components in 1985 dollars for the Category II airplane.

	Current Gear	Median Gear	Optimized Gear	
Aircraft Costs	\$68,777,364	\$35,160,820	\$	0
MPC Pavements	0	33,749,362	58,09	7,736
Total Annual Costs	\$68,777,864	\$68,910,182	\$58,09	7,736

Figure 49 graphically represents the relationship between the

Wind for

126

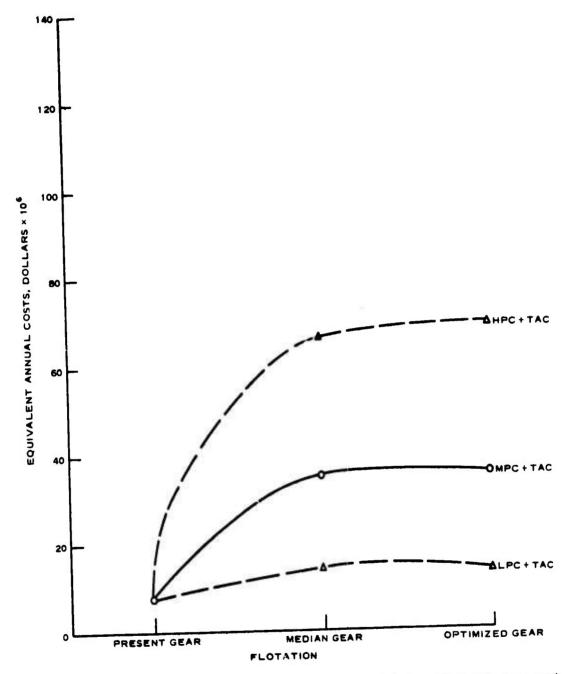


Figure 48. Comparison of total annual cost for aircraft and pavement upgrading for Category I aircraft

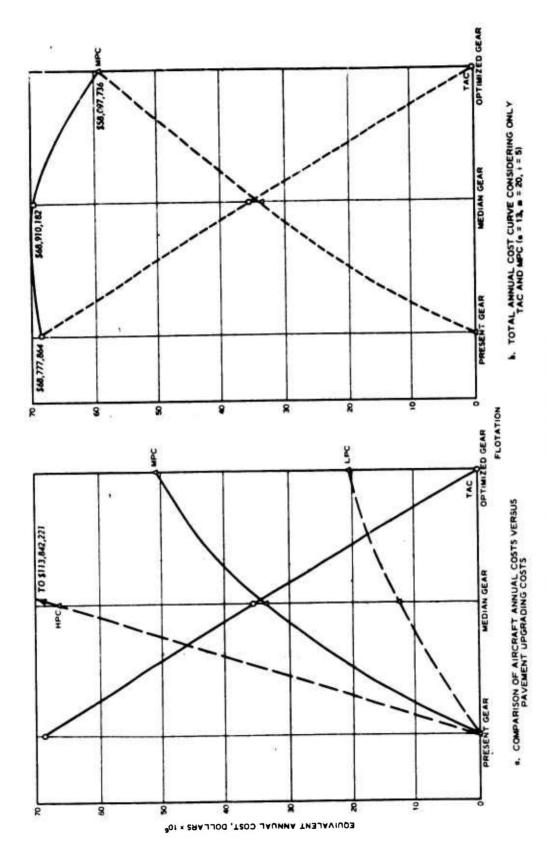


Figure 49. Category II aircraft costs

airplane cost and the LPC, MPC, and HPC for upgrading the pavement structures for the Category II airplane. From a purely economic point of view, it is apparent that the least cost to the public, assuming that a Category II airplane will be using all 26 major hub airports in 1985, will be to upgrade the pavement structures to accommodate the optimized gear for the Category II aircraft. In all probability, the LPC in this analysis should be disregarded since the larger aircraft will require more pavement area to be upgraded than that estimated.

Figure 50 is a graphic illustration of the total cost to the public summing both the pavement upgrading costs and the aircraft cost. Contrary to the results relating Category I aircraft costs to pavement costs, there exists here the possiblity of conflicting alternatives with regard to the Category II aircraft. However, if the Category II aircraft will service all 26 major hub airports in 1985, the Category I aircraft will also. Therefore, the discussion of the conflicting alternatives will be discussed in Section 9.4.

9.4 Policy Derivation

Based on total annual costs given in Sections 9.2 and 9.3 using the MPC and the TAC, one reaches the conclusions that (1) the pavement upgrading criterion should not be changed if only the Category I aircraft is to be in use in 1985, (2) the pavement criteria should be changed so as to permit flotation requirements to correspond to the gear design optimzed with respect to the aircraft if the Category II aircraft is to be in use in 1985, and (3) the following tabulation implies the same alternative selection as (2) above if one considers both the Categories I and II aircraft being in use in 1985.

	Current Gear	Median Gear	Optimized Gear	
Category I Aircraft*	\$ 6,673,379	\$ 1,929,880	\$	0
Category II Aircraft	68,777,864	68,910,182	58,097,736	
Total Annual Cost	\$75,451,243	\$70,840,062	\$58,097	,736

^{*} Only aircraft costs necessarily have been considered since pavement upgraded for Category II aircraft will not be significantly changed with the addition of the Category I aircraft.

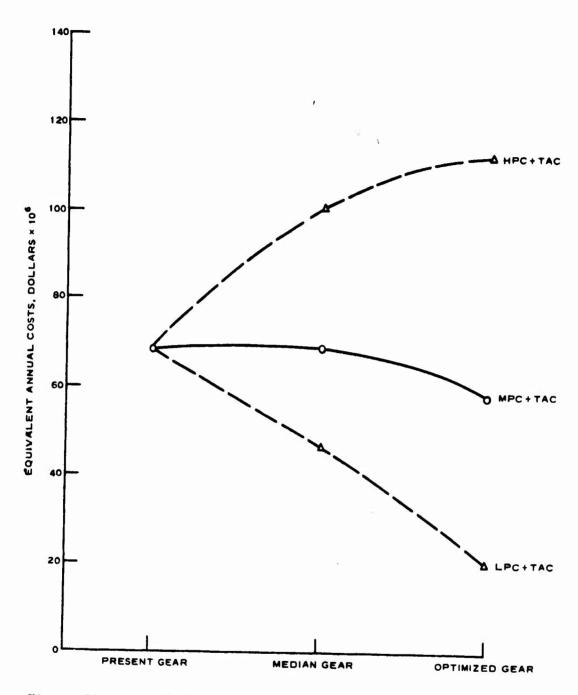


Figure 50. Comparison of total annual cost for aircraft and pavement upgrading for Category II aircraft

The authors feel that the policy decision should be made only after a careful determination that a Category II aircraft will or will not operate on all the major hub airports in 1985 since the policy decisions are so diametrically opposed.

Figure 51 is a graphic illustration of the total cost assuming both the Categories I and II aircraft are in service in 1985. It is obvious that there are conflicting alternatives. If the MPC assumption is considered valid, the optimal alternative is clearly to change the criteria and permit the gear to be optimized to the aircraft. As mentioned previously, the LPC is probably beyond the realm of feasibility since the area to be paved will, in all probability, be greater than the computed area used to develop the MPC. On the other hand, if the HPC is considered a valid assumption, the optimal alternative is reversed; the present criteria becomes the optimal alternative.

It has been stated throughout this report that, as in any statistical study, there probably exists considerable errors in any of the point estimates. This study lacks sufficient data to attach any great degree of reliability that the point estimates are indeed unbiased estimates. Therefore, it is the intent of this portion of the study, along with Section 7.6, to provide a convenient tool for comparing the aircraft cost with the cost of upgrading the pavement structures should the current data be updated. Section 7.6 provides an insight into the sensitivity of the equivalent annual cost of upgrading the pavement structure to each of the five explict parameters. Equation 7 provides a method of recomputing the equivalent annual pavement upgrading cost as data are updated.

If one equates the annual aircraft cost y_{85} to the equivalent annual pavement upgrading cost, the following equation results:

$$y_{85} = pA(1+i)^{13} \left[\frac{i(1+i)^m}{(1+i)^m - 1} \right]$$
 (8)

The parameter n is assumed constant at 13 years in order to have a common time value of money for comparison. Equation 8 provides the break-even point at which the annual aircraft cost equals the equivalent

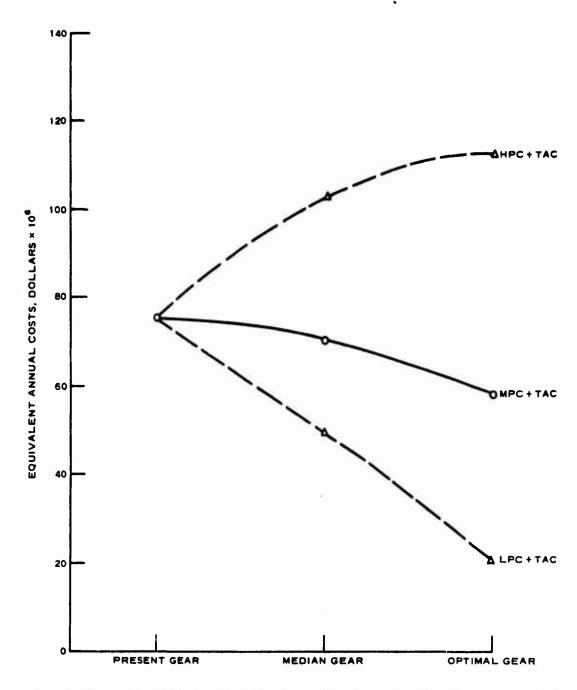


Figure 51. Comparison of total aircraft annual costs versus pavement upgrading costs in 1985 dollars for Categories I and II together

annual pavement upgrading cost. If the left-hand side of Equation 8 is greater, then the most economic policy is to permit gear optimization with respect to the aircraft or the gear type corresponding to the value of y_{85} (optimal or median gear). If the right-hand side (RHS) is greater, then the most economic policy decision is to maintain the present ADAP criterion.

It is a simple matter to relate two of the pavement cost parameters using Equation 8 and holding the other two constant. Considering first i and m as variables and p and A as constants equal to the expected price per SY and computed area, respectively, one can solve for m in terms of i giving

$$m = \frac{1}{\log(1+i)} \log \left[\frac{1}{1 - \frac{PA}{y_{85}} (1+i)^{13}i} \right]$$
 (9)

For each of the y₈₅'s calculated, Equation 9 divides the i-m plane in two half-spaces. If estimates for i and m provide coordinates to the left of a curve as shown in Figure 52, then the equivalent annual cost of the pavement structure will be less than the annual aircraft cost; conversely, a point to the right gives the aircraft cost the economic advantage. It should be noted that in order for a value for Equation 9 to exist, the denominator of the RHS must be greater than zero. This implies that the aircraft cost conforming to the current pavement flotation requirement can equal the cost of upgrading the pavement corresponding to the optimal gear if i = 1 percent and the pavement is amortized for a period of 67 years or i = 2 percent and m = 118 years. This, of course, is both an unrealistic inflation rate and amortization period. However, for the curve corresponding to the total cost of both the Categories I and II aircraft optimal gears, more reasonable assumptions make the two costs competitive.

A closer examination of the relationship involving p and A is warranted at this point. The variables n, m, and i are quite speculative, whereas the area could conceivably be measured if all airport authorities were to make a decision. Thus, most challenges to the

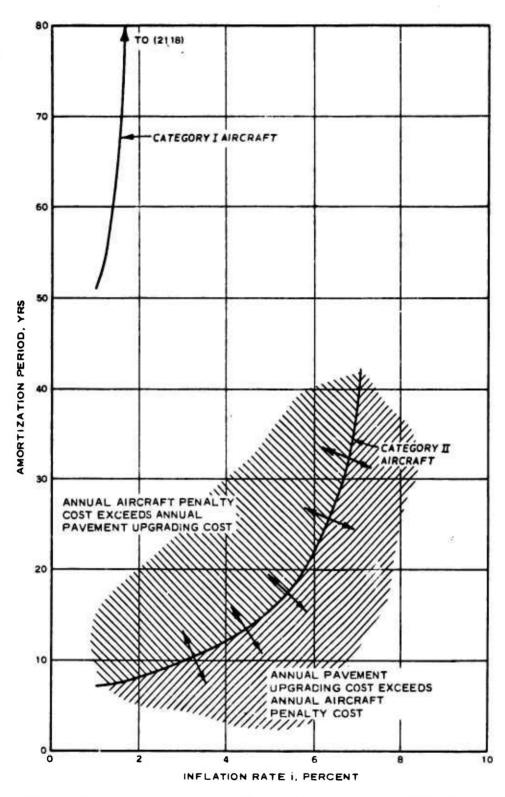


Figure 52. Curves of equal airplane cost corresponding to present flotation requirements and upgrading to optimized gears in terms of i and m

computations in this report should be with regard to p and/or A. If one equates the equivalent annual cost of the aircraft to the equivalent annual cost of the pavement upgrading and solves Equation 7 for A as a function of p and holds the parameters n, m, and i constant, the following result is obtained:

$$A = \frac{y_{85}}{p} (1 + i)^{n} \left[\frac{(1 + i)^{m} - 1}{i(1 + i)^{m}} \right]$$
 (10)

Assuming n , m , and i as 13 years, 20 years, and 5 percent, respectively, Equation 10 becomes

$$A = 6.605 \frac{y_{85}}{p}$$
 (11)

With y₈₅ fixed, by a single-point estimate, this locus of vertices of an infinite series of constant area rectangles, or more simply, this hyperbola, provides a convenient device for examining the effect of A and p on the policy decision. Examining Figure 53, a series of graphs of Equation 11, it is obvious that is is not economically justifiable to upgrade the pavement structures for the Category I aircraft alone even if estimates of the area and price are made ridiculously low. However, if one considers the Category II aircraft, optimal or median gears, reasonable assumptions can change the selection of the most economical alternative. For instance, if one considers upgrading the largest amount of area probable for the category aircraft, optimal gear (41,915,350 SY), a relatively low unit price of \$11.00 per SY makes the cost of pavement upgrading equal to the aircraft cost. The price of \$11.00 per SY is considerably less than the expected unit price of \$12.82 per SY. The most probable area, 29,939,536 SY, requires a unit price of \$15.40 per SY or roughly one standard deviation of unit price above the expected unit price to make the two costs equal. The Category II, median gear aircraft is also competitive when one changes the price and area. Thus, Figure 53 provides an analytic device for testing updates of areas and price estimates. As in Figure 52, if the intersection of the new

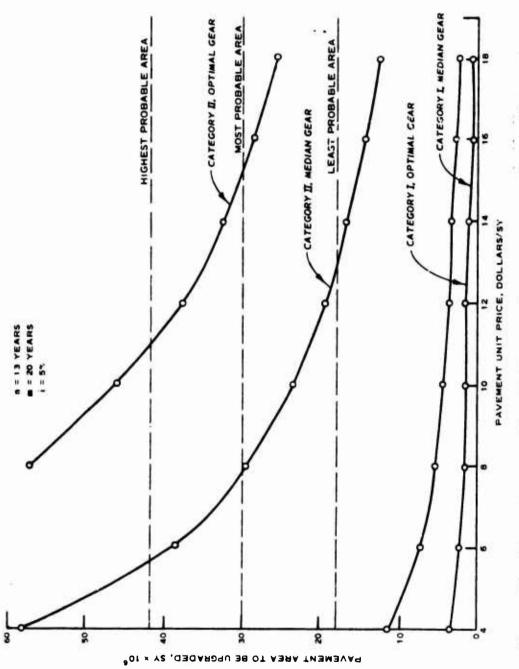


Figure 53. Isocost curves for airplane cost versus pavement upgrading costs as a function of p and A

estimates falls to the left of the curve, pavement upgrading cost is less than the aircraft cost and vice versa.

Finally, by modifying Equation 11 and considering the constant term as a parameter F, the following provides a method of analysis permitting different assumptions to be made for the variables m, i, A, and p. Rewriting Equation 11, one obtains the following description of an infinite series of hyperbolas:

$$A = \frac{F}{p} \times y_{85} \tag{12}$$

Using values of F found in Table 30 for each assumption of i and m and substituting into Equation 11, one can develop a series of curves similar to those in Figure 53. Thus, a new assumption of A and p can be made. If the intersection of the new A and p assumption falls to the left of a particular curve, the aircraft penalty cost for a particular gear configuration is greater than the pavement upgrading cost and the pavement should be upgraded. If the intersection falls to the right of the curve, the pavement should not be upgraded since the cost of upgrading exceeds the aircraft penalty cost.

One note of caution should be provided to the reader prior to concluding this discussion. The point estimate developed for the aircraft penalty cost is an estimate. This estimate also has some inherent variances that have been assumed to be zero in this report. Therefore, prior to making an absolute decision, the variances associated with the aircraft penalty costs should be investigated in those instances where conflicting alternatives are involved.

Table 30

Values of F for Use in Equation 11 for Each i and m Assumption

12 9.889 8.175 6.778 5.636 4.700 3:931 3.296 2.771 13 10.661 8.773 7.242 5.997 4.982 4.150 3.468 2.906 14 11.426 9.359 7.692 6.344 5.249 4.358 3.629 3.031 15 12.183 9.933 8.129 6.677 5.505 4.553 3.779 3.147 16 12.932 10.496 8.553 6.998 5.748 4.738 3.920 3.255 17 13.674 11.048 8.965 7.306 5.979 4.912 4.051 3.354 18 14.409 11.589 9.365 7.603 6.199 5.076 4.174 3.446 19 15.136 12.120 9.75+ 7,888 6.409 5.231 4.289 3.531		
2 1.731 1.501 1.303 1.133 0 0.860 0.750 0.656 3 2.584 2.229 1.926 1.667 1.253 1.089 0.948 4 3.429 2.943 2.531 2.186 .800 1.665 1.406 1.218 5 4.265 3.644 3.119 2.6 1.296 1.975 1.701 1.468 6 5.092 4.330 3.689 3.14 2.692 2.305 1.978 1.700 7 5.912 5.003 4.243 3.6 3.069 2.517 2.236 1.914 8 6.723 5.663 4.780 4.044 3.428 2.911 2.478 2.113 9 7.527 6.310 5.302 4.465 3.769 3.189 2.704 2.297 10 8.322 6.944 5.809 4.271 4.095 3.451 2.915 2.467 11 9.110 7.566 6.301 5.261 4.405 3.698 3.112 2.625 12 9.889 8.175 6.778 5.636 4.700 3.931 3.296 2.771 13 10.661 8.773 7.242 5.997 4.982 4.150 3.468 2.906 14 11.426 9.359 7.692 6.344 5.249 4.358 2.629 3.031 15 12.183 9.933 8.129 6.677 5.505 4.553 3.779 3.147 16 12.932 10.496 8.553 6.996 5.746 4.738 3.920 3.255 17 13.674 11.048 8.965 7.306 5.979 4.912 4.051 3.354 18 14.409 11.589 9.365 7.003 6.199 5.016 4.174 3.446 19 15.136 12.120 9.75+ 7.988 6.409 5.231 4.289 3.531 20 15.856 12.640 10.131 8.162 6.609 5.378 4.396 3.610 21 16.569 13.150 10.497 8.426 6.799 5.515 4.496 3.683 22 17.275 13.650 19.852 3.679 6.981 5.646 4.590 3.751 23 17.974 14.140 11.197 6.323 7.153 5.768 4.678 3.813 24 18.666 14.621 11.532 9.157 7.318 5.884 4.759 3.871 25 19.351 15.092 11.480 9.807 7.766 6.194 4.974 4.021 28 21.366 14.451 1.777 12.480 9.807 7.766 6.194 4.974 4.021	97	10%
2 1.731 1.501 1.303 1.133 0 0.860 0.750 0.656 3 2.584 2.229 1.926 1.667 1.253 1.089 0.948 4 3.429 2.943 2.531 2.180 .800 1.665 1.406 1.218 5 4.265 3.644 3.119 2.6 1.296 1.975 1.701 1.468 6 5.092 4.330 3.689 3.11 2.692 2.305 1.978 1.700 7 5.912 5.003 4.243 3.6 3.069 2.617 2.236 1.914 8 6.723 5.663 4.780 4.044 3.428 2.911 2.478 2.113 9 7.527 6.310 5.302 4.465 3.769 3.189 2.704 2.297 10 8.322 6.944 5.809 4.271 4.095 3.451 2.915 2.467 11 9.110 7.566 6.301 5.261 4.405 3.698 3.112 2.625 12 9.889 8.175 6.778 5.636 4.700 3.931 3.296 2.771 13 10.661 8.773 7.242 5.997 4.982 4.150 3.468 2.906 14 11.426 9.359 7.692 6.344 5.249 4.358 3.629 3.031 15 12.183 9.933 8.129 6.677 5.505 4.553 3.779 3.147 16 12.932 10.496 8.553 6.998 5.746 4.738 3.920 3.255 17 13.674 11.048 8.965 7.306 5.979 4.912 4.051 3.354 18 14.409 11.589 9.365 7.003 6.199 5.016 4.174 3.446 19 15.136 12.120 9.75+ 7.888 6.409 5.231 4.289 3.531 20 15.856 12.640 10.131 8.162 6.609 5.378 4.396 3.610 21 16.569 13.150 10.497 8.496 6.799 5.515 4.496 3.683 22 17.275 13.650 10.852 3.679 6.981 5.646 4.590 3.751 23 17.974 14.140 11.197 6.323 7.153 5.768 4.678 3.813 24 18.666 14.621 11.532 9.157 7.318 5.884 4.759 3.871 25 19.351 15.092 11.858 9.382 7.474 5.993 4.836 3.925 26 20.029 15.554 12.173 9.399 7.623 6.096 4.907 3.975 27 20.701 16.057 12.480 9.807 7.766 6.194 4.974 4.021 28 21.366 14.451777 12.007 7.901 6.285 5.036 4.063	0.299	0.263
3 2.584 2.229 1.926 1.667 1.253 1.089 0.948 h 3.429 2.943 2.531 2.186 1.600 1.625 1.406 1.218 5 4.265 3.644 3.119 2.6 1.26 1.975 1.701 1.468 6 5.092 4.330 3.689 3.14 2.692 2.305 1.978 1.700 7 5.912 5.003 4.243 3.6 3.692 2.305 1.978 1.700 8 6.723 5.663 4.780 4.044 3.428 2.911 2.478 2.113 9 7.527 6.310 5.302 4.465 3.769 3.189 2.704 2.297 10 8.322 6.944 5.809 4.271 4.095 3.451 2.915 2.467 11 9.110 7.566 6.301 5.261 4.505 3.698 3.112 2.625 12 9.889 8.175 6.778 5.997 4.982 4.150 3.468 2.906 <td< th=""><td>0.574</td><td>0.503</td></td<>	0.574	0.503
4 3.429 2.943 2.531 2.180 1.600 1.625 1.406 1.218 5 4.265 3.644 3.119 2.6 1.296 1.975 1.701 1.468 6 5.092 4.330 3.689 3.14 2.692 2.305 1.978 1.700 7 5.912 5.003 4.243 3.67 3.069 2.617 2.236 1.914 8 6.723 5.663 4.780 4.044 3.428 2.911 2.478 2.113 9 7.527 6.310 5.302 4.465 3.769 3.189 2.704 2.297 10 8.322 6.944 5.609 4.471 4.095 3.451 2.915 2.467 11 9.110 7.566 6.301 5.261 4.405 3.698 3.112 2.625 12 9.889 8.175 6.778 5.636 4.700 3.931 3.296 2.771 13 10.661 8.773 7.242 5.997 4.982 4.150 3.468 2.906	0.826	0.720
6 5.092 4.330 3.689 3.14 2.692 2.305 1.978 1.700 7 5.912 5.003 4.243 3.67 3.069 2.617 2.236 1.914 8 6.723 5.663 4.780 4.044 3.428 2.911 2.478 2.113 9 7.527 6.310 5.302 1.465 3.769 3.189 2.704 2.297 10 8.322 6.944 5.809 4.371 4.095 3.451 2.915 2.467 11 9.110 7.566 6.301 5.261 4.405 3.698 3.112 2.625 12 9.889 8.175 6.778 5.636 4.700 3.931 3.296 2.771 13 10.661 8.773 7.242 5.997 4.982 4.150 3.468 2.906 14 11.426 9.359 7.692 6.344 5.505 4.553 3.779 3.147 16 12.183 9.933 8.129 6.677 5.505 4.553 3.779 3.147 <td>1.057</td> <td>0.918</td>	1.057	0.918
6 5.092 h.330 3.689 3.14 2.692 2.305 1.978 1.700 7 5.912 5.003 h.243 3.67 3.069 2.617 2.236 1.914 8 6.723 5.663 h.780 h.043 3.428 2.911 2.478 2.113 9 7.527 6.310 5.302 0.465 3.769 3.189 2.774 2.297 10 8.322 6.94h 5.809 4.371 4.095 3.451 2.915 2.467 11 9.110 7.566 6.301 5.261 4.405 3.698 3.112 2.625 12 9.889 8.175 6.778 5.636 4.700 3.931 3.296 2.771 13 10.661 8.773 7.242 5.997 4.982 4.150 3.468 2.906 14 11.426 9.359 7.692 6.344 5.249 4.358 3.629 3.031 15 12.183 9.933 8.129 6.677 5.505 4.533 3.293 3.255 <td>1.269</td> <td>1.098</td>	1.269	1.098
8 6.723 5.663 4.780 4.044 3.428 2.911 2.478 2.113 9 7.527 6.310 5.302 1.465 3.769 3.189 2.704 2.297 10 8.322 6.94h 5.809 4.871 4.095 3.451 2.915 2.467 11 9.110 7.566 6.301 5.261 4.005 3.698 3.112 2.625 12 9.889 8.175 6.778 5.636 4.700 3.931 3.296 2.771 13 10.661 8.773 7.242 5.997 4.982 4.150 3.468 2.906 14 11.426 9.359 7.692 6.344 5.249 4.358 3.629 3.031 15 12.183 9.933 8.129 6.677 5.505 4.553 3.779 3.147 16 12.1932 10.496 8.553 6.998 5.746 4.738 3.920 3.255 17 13.674 11.048 8.965 7.306 5.979 4.912 4.051 <td< th=""><td>1.463</td><td>1.262</td></td<>	1.463	1.262
9 7.527 6.310 5.302 1.465 3.769 3.189 2.704 2.297 10 8.322 6.944 5.809 4.871 4.095 3.451 2.915 2.467 11 9.110 7.566 6.301 5.261 4.405 3.698 3.112 2.625 12 9.889 8.175 6.778 5.636 4.700 3.931 3.296 2.771 13 10.661 8.773 7.242 5.997 4.982 4.150 3.468 2.906 14 11.426 9.359 7.692 6.344 5.249 4.358 3.629 3.031 15 12.183 9.933 8.129 6.677 5.505 4.553 3.779 3.147 16 12.932 10.496 8.553 6.998 5.748 4.738 3.920 3.255 17 13.674 11.048 8.965 7.306 5.979 4.912 4.051 3.344 18 14.409 11.589 9.365 7.603 6.199 5.076 4.174 <	1.642	1.410
10	1.805	1.545
11 9.110 7.566 6.301 5.261 4.05 3.698 3.112 2.625 12 9.889 8.175 6.778 5.636 4.700 3.931 3.296 2.771 13 10.661 8.773 7.242 5.997 4.982 4.150 3.468 2.906 14 11.426 9.359 7.692 6.344 5.249 4.358 3.629 3.031 15 12.183 9.933 8.129 6.677 5.505 4.553 3.779 3.147 16 12.932 10.496 8.553 6.998 5.748 4.738 3.920 3.255 17 13.674 11.048 8.965 7.306 5.979 4.912 4.051 3.354 18 14.409 11.589 9.365 7.603 6.199 5.076 4.174 3.446 19 15.136 12.120 9.75+ 7.888 6.409 5.231 4.289 3.531 20 15.856 12.640 10.131 8.162 6.609 5.378 4.396 3.610 21 16.569 13.150 10.497 8.426 6.799 5.515 4.496 3.683 22 17.275 13.650 10.852 3.679 6.981 5.646 4.590 3.751 23 17.974 14.140 11.197 8.923 7.153 5.768 4.678 3.813 24 18.666 14.621 11.532 9.157 7.318 5.884 4.759 3.871 25 19.351 15.092 11.858 9.382 7.474 5.993 4.836 3.925 26 20.029 15.554 12.173 9.599 7.623 6.096 4.907 3.275 27 20.701 16.007 12.480 9.807 7.766 6.194 4.974 4.021 28 21.366 14.65177 12.480 9.807 7.766 6.194 4.974 4.021	1.956	1.668
12 9.889 8.175 6.778 5.636 4.700 3:931 3:296 2:771 13 10.661 8.773 7.242 5.997 4.982 4.150 3.468 2:906 14 11.426 9.359 7.692 6.344 5.249 4.358 3.629 3.031 15 12.183 9.933 8.129 6.677 5.505 4.553 3.779 3.147 16 12.932 10.496 8.553 6.998 5.748 4.738 3.920 3.255 17 13.674 11.048 8.965 7.306 5.979 4.912 4.051 3.354 18 14.409 11.589 9.365 7.603 6.199 5.076 k.174 3.446 19 15.136 12.120 9.75+ 7,888 6.409 5.231 4.289 3.531 20 15.856 12.640 10.131 8.162 6.609 5.378 4.396 3.610 21 16.569 13.150 10.497 8.426 6.799 5.515 4.496 <td>2.093</td> <td>1.780</td>	2.093	1.780
13 10.661 8.773 7.242 5.997 4.982 4.150 3.468 2.906 14 11.426 9.359 7.692 6.344 5.249 4.358 3.629 3.031 15 12.183 9.933 8.129 6.677 5.505 4.553 3.779 3.147 16 12.932 10.496 8.553 6.998 5.748 4.738 3.920 3.255 17 13.674 11.048 8.965 7.306 5.979 4.912 4.051 3.354 18 14.409 11.589 9.365 7.603 6.199 5.076 k.174 3.446 19 15.136 12.120 9.75+ 7,808 6.409 5.231 4.289 3.531 20 15.856 12.640 10.131 8.162 6.609 5.378 4.396 3.610 21 16.569 13.150 10.497 8.426 6.799 5.515 4.496 3.683 22 17.275 13.650 10.852 3.679 6.981 5.646 4.590<	2.220	1.881
14 11.426 9.359 7.692 6.344 5.249 4.358 3.629 3.031 15 12.183 9.933 8.129 6.677 5.505 4.553 3.779 3.147 16 12.932 10.496 8.553 6.998 5.748 4.738 3.920 3.255 17 13.674 11.048 8.965 7.306 5.979 4.912 4.051 3.354 18 14.409 11.589 9.365 7.603 6.199 5.076 k.174 3.446 19 15.136 12.120 9.75+ 7,808 6.409 5.231 4.289 3.531 20 15.856 12.640 10.131 8.162 6.609 5.378 4.396 3.610 21 16.569 13.150 10.497 8.426 6.799 5.515 4.496 3.683 22 17.275 13.650 10.852 3.679 6.981 5.646 4.590 3.751 23 17.974 14.140 11.197 6.923 7.253 5.768 4.67	2.336	1.974
15 12.183 9.933 8.129 6.677 5.505 4.553 3.779 3.147 16 12.932 10.496 8.553 6.998 5.748 4.738 3.920 3.255 17 13.674 11.048 8.965 7.306 5.979 4.912 4.051 3.354 18 14.409 11.589 9.365 7.603 6.199 5.076 4.174 3.446 19 15.136 12.120 9.75+ 7,808 6.409 5.231 4.289 3.531 20 15.856 12.640 10.131 8.162 6.609 5.378 4.396 3.610 21 16.569 13.150 10.497 8.426 6.799 5.515 4.496 3.683 22 17.275 13.650 10.852 3.679 6.981 5.646 4.590 3.751 23 17.974 14.140 11.197 6.923 7.153 5.768 4.678 3.813 24 18.666 14.621 11.532 9.157 7.318 5.884 4.	2.442	2.058
16 12.932 10.496 8.553 6.998 5.748 4.738 3.920 3.255 17 13.674 11.048 8.965 7.306 5.979 4.912 4.051 3.354 18 14.409 11.589 9.365 7.603 6.199 5.076 k.174 3.446 19 15.136 12.120 9.75+ 7,868 6.409 5.231 4.289 3.531 20 15.856 12.640 10.131 8.162 6.609 5.378 4.396 3.610 21 16.569 13.150 10.497 8.426 6.799 5.515 4.496 3.683 22 17.275 13.650 10.852 3.679 6.981 5.646 4.590 3.751 23 17.974 14.140 11.197 6.923 7.253 5.768 4.678 3.813 24 18.666 14.621 11.532 9.157 7.318 5.884 4.759 3.871 25 19.351 15.092 14.858 9.382 7.474 5.993	2.540	2.134
17 13.674 11.048 8.965 7.306 5.979 4.912 4.051 3.354 18 14.409 11.589 9.365 7.603 6.199 5.076 k.174 3.446 19 15.136 12.120 9.75+ 7,888 6.409 5.231 4.289 3.531 20 15.856 12.640 10.131 8.162 6.609 5.378 4.396 3.610 21 16.569 13.150 10.497 8.426 6.799 5.515 4.496 3.683 22 17.275 13.650 10.852 3.679 6.981 5.646 4.590 3.751 23 17.974 14.140 11.197 6.923 7.153 5.768 4.678 3.813 24 18.666 14.621 11.532 9.157 7.318 5.884 4.759 3.871 25 19.351 15.092 11.858 9.382 7.474 5.993 4.836 3.925 26 20.029 15.554 12.173 9.599 7.623 6.096 <td< th=""><td>2.629</td><td>2.203</td></td<>	2.629	2.203
18 14,409 11.589 9.365 7.603 6.199 15.076 k.174 3.446 19 15.136 12.120 9.75+ 7,888 6.409 5.231 4.289 3.531 20 15.856 12.640 10.131 8.162 6.609 5.378 4.396 3.610 21 16.569 13.150 10.497 8.426 6.799 5.515 4.496 3.683 22 17.275 13.650 10.852 3.679 6.981 5.646 4.590 3.751 23 17.974 14.140 41.197 6.923 7.253 5.768 4.678 3.813 24 18.666 14.621 11.532 9.157 7.318 5.884 4.759 3.871 25 19.351 15.092 14.858 9.382 7.474 5.993 4.836 3.925 26 20.029 15.554 12.173 9.599 7.623 6.096 4.907 3.975 27 20.701 16.007 12.880 9.807 7.766 6.194 <	2.711	2.266
19	2.787	2.324
20 15.856 12.640 10.131 8.162 6.609 5.378 4.396 3.610 21 16.569 13.150 10.497 8.426 6.799 5.515 4.496 3.683 22 17.275 13.650 10.852 3.679 6.981 5.646 4.590 3.751 23 17.974 14.140 41.197 6.923 7.253 5.768 4.678 3.813 24 18.666 14.621 11.532 9.157 7.318 5.884 4.759 3.871 25 19.351 15.092 11.858 9.382 7.474 5.993 4.836 3.925 26 20.029 15.554 12.173 9.599 7.623 6.096 4.907 3.075 27 20.701 16.007 12.480 9.807 7.766 6.194 4.974 4.021 28 21.366 16.451 77 12.407 7.901 6.285 5.036 4.063	2.856	2.376
21 16.569 13.150 10.497 8.426 6.799 5.515 4.496 3.683 22 17.275 13.650 10.852 3.679 6.981 5.646 4.590 3.751 23 17.974 14.140 11.197 8.923 7.153 5.768 4.678 3.813 24 18.666 14.621 11.532 9.157 7.318 5.884 4.759 3.871 25 19.351 15.092 11.858 9.382 7.474 5.993 4.836 3.925 26 20.029 15.554 12.173 9.599 7.623 6.096 4.907 3.275 27 20.701 16.007 12.480 9.807 7.766 6.194 4.974 4.021 28 21.366 16.45177 12.407 7.901 6.285 5.036 4.063	2.910	2.423
22 17.275 13.650 10.852 3.679 6.981 5.646 4.590 3.751 23 17.974 14.140 11.197 6.923 7.153 5.768 4.678 3.813 24 18.666 14.621 11.532 9.157 7.318 5.884 4.759 3.871 25 19.351 15.092 11.858 9.382 7.474 5.993 4.836 3.925 26 20.029 15.554 12.173 9.599 7.623 6.096 4.907 3.975 27 20.701 16.007 12.480 9.807 7.766 6.194 4.974 4.021 28 21.366 16.451 1.777 12.407 7.901 6.285 5.036 4.063	2.978	2.466
23	3.031	2.505
24 18.666 14.621 11.532 9.157 7.318 5.884 4.759 3.871 25 19.351 15.092 11.858 9.382 7.474 5.993 4.836 3.925 26 20.029 15.554 12.173 9.599 7.623 6.096 4.907 3.075 27 20.701 16.007 12.480 9.807 7.766 6.194 4.974 4.021 28 21.366 14.451	3.080	2.541
25 19.351 15.092 11.858 9.382 7.474 5.993 4.836 3.925 26 20.029 15.554 12.173 9.599 7.623 6.096 4.907 3.975 27 20.701 16.007 12.480 9.807 7.766 6.194 4.974 4.021 28 21.366 16.451 17 12.007 7.901 6.285 5.036 4.063	3.125	2.573
26 20.029 15.554 12.173 9.599 7.623 6.096 4.907 3.975 27 20.701 16.007 12.480 9.807 7.766 6.194 4.974 4.021 28 21.366 14.451	3.166	2.603
27 20.701 16.607 12.480 9.807 7.766 6.194 4.974 4.021 28 21.366 16.451	3.204	2.629
28 21.366 16.451	3.239	2.654
	3.270	2.676
20 22 DZi, 16 API, 18	3.300	2.696
		2.714
30 28.676 17.313 13.347 10.365 6.152 6.453 5.149 4.139 31 23.322 17.732 13.619 10.563 8.269 6.530 5.200 4.173	3.351 3.374	2.731 2.746
	3.394	2.759
	3.413	2.772
	3.431	2.783
	3.447	2.794
36 26.454 19.704 14.867 11.356 8.775 6.855 5.409 4.308	3.461	2.803
37 27.062 20.075 15.095 11.497 8.862 6.909 5.443 4.330	3.475	2.811
38 27.664 2039 15.316 11.632 8.945 6.960 5.475 4.349	3.487	2.819
39 28.260 20.797 15.531 11.762 9.024 7.009 5.504 4.368	3.498	2.826
40 28.851 21.147 15.740 11.887 9.100 7.054 5.532 4.385	3.509	2.833
	3.518	2.838
	3.527	2.844
43 30.586 22.156 16.331 12.234 9.305 7.176 5.605 4.428	3.535	2.849
44 31.153 22.480 16.516 12.341 9.367 7.212 5.626 4.441	3.542	2.853
45 31.715 22.797 16.696 Li.hhl 9.626 7.246 5.646 4.652	3.549	2.857
46 32.271 23.108 16.871 11.543 9.482 7.278 5.564 4.463	3.555	2.851
47 32.821 23.413 17.041 12.636 2.536 7.309 5.682 4.473	3.961	2.864
	3.566	2.867
49 33.906 24.004 17.265 12.817 9.635 7.364 5.713 4.490	3.571	2.870
	3.575	2.872

10 FINDINGS AND CONCLUSIONS

Willy man in the war and the

10.1 Gear Optimization and Aircraft Cost

The lightest weight gear and gear installation is not necessarily the most optimum from the economic aspect.

The existing six-wheel-bogie landing gear of the Category I airplane is very close in weight and cost to the optimum gear that could be designed without regard to pavement strength.

The total 1985 cost penalty for designing the landing gear to current pavement strength, relative to an optimized gear, is ten times greater for the Category II airplane than for the Category I aircraft (\$68.8 million/year versus \$6.7 million/year).

The total 1985 cost penalty for both airplanes (\$75 million) represents 0.2 percent of total domestic airline revenue projected for 1985 by the ATA (\$38 billion).

10.2 Pavement Cost Analysis

Pavement unit prices vary considerably with both location and time. The cost associated with strengthening pavements can only be estimated statistically. Unit prices for portland cement concrete (P501) overlays used in the analysis varied from \$0.60 per SYIN in Atlanta to \$1.38 per SYIN Seattle with a national average of \$0.94 per SYIN with a 34 percent coefficient of variation. Unit prices for asphaltic concrete (P401) overlays varied from \$0.34 per SYIN in Houston to \$0.93 per SYIN in Pittsburgh with a national average of \$0.54 per SYIN with a 26 percent coefficient of variation.

These unit prices were assumed to decrease hyperbolically with increased thicknesses and include direct labor, equipment, and material costs; indirect costs; overhead; and contractor profit in 1972 dollars.

A heuristic approach was used in designing pavements for an optimized gear configuration for the Category II airplane, since no rational procedure was available for extrapolating data to accommodate such stresses.

The area calculations in this study were crude. However, they were

made as accurately as possible staying within the macro scope of the research and the Central Limit Theorem Lends credence to the possibility of compensating errors. Even with a large error in calculations, the decision with respect to policy would not change.

The total cost of upgrading the pavement structures was calculated on an equivalent annual cost basis in 1985 dollars. The calculations were based on a calculated expected total area of 29,939,536 SY, an interest rate of 5 percent, the time to completion of 13 years (1985), pavement amortization period of 20 years, and expected 1972 SY prices \$7.36, \$7.77, \$7.45, and \$12.82 for the Category I median and optimal gears and the Category II median and optimal gears, respectively.

The MPC for strengthening the pavement structure for the Category II aircraft is 165 percent of the MPC for strengthening the pavement structure for the Category I aircraft.

To examine the potential of conflicting alternatives developing by changing the assumptions noted, a 20 percent coefficient of variation was assumed for both unit price and calculated area. By compounding the 20 percent error in both unit price and calculated area, an LPC and an HPC were developed and examined against the aircraft penalty cost. In addition, a procedure was provided by which the decision maker can change the assumptions and arrive at his own pavement upgrading cost.

10.3 Total Cost Analysis

Category I aircraft. Based on the equivalent annual cost analysis using the MPL for pavement, the total equivalent annual cost is:

0	Current Gear	\$ 6,673,379
O	Median Gear	35,258,683
ο	Optimal Gear	35,218,395

It is obvious from this listing that the optimal alternative is not to modify the present policy if one only considers the Category I aircraft. If one uses the LPC for pavement, the decision remains unchanged as shown below:

o Current Gear	\$ 6,673,379
o Median Gear	13,943,790
o Optimal Gear	12,666,249

These results are illustrated in Figure 48.

The state of the s

<u>Categories I and II aircraft.</u> Based on the equivalent annual cost analysis using the MPC for pavement, the total equivalent annual costs are:

o Current Gear	\$75,451,243
o Median Gear	70,840,062
o Optimal Gear	58,097,736

Based on this total annual cost listing, the present policy should be changed to permit the optimization of the gear to the Category II aircraft. However, in this instance, if one assumes the HPC for pavement, a conflicting alternative arises as shown below:

o Current Gear	\$ 75,451,261
o Median Gear	103,239,590
o Optimal Gear	113,842,221

There is considerable logic behind the assumption that the MPC will be exceeded in the pavement upgrading for the Category II aircraft. In all probability, the paved area will exceed that computed in this report. The unit price differential may or may not increase. Thus, it is extremely critical to the decision maker that a proper determination be made as to whether or not the Category II aircraft will be operational in 1985; whether or not it will operate at all 26 projected major hub airports or perhaps only at 7 to 10 regional airports; and other operational assumptions.

Other variable considerations. Numerous figures and equations are presented in the text to permit the user of this document to change parameters and develop his own policy derivation. Assuming that the MPC calculations are correct and n=13 years, Figure 54 presents a conveient method for changing the assumptions for i and m, two elusive parameters.

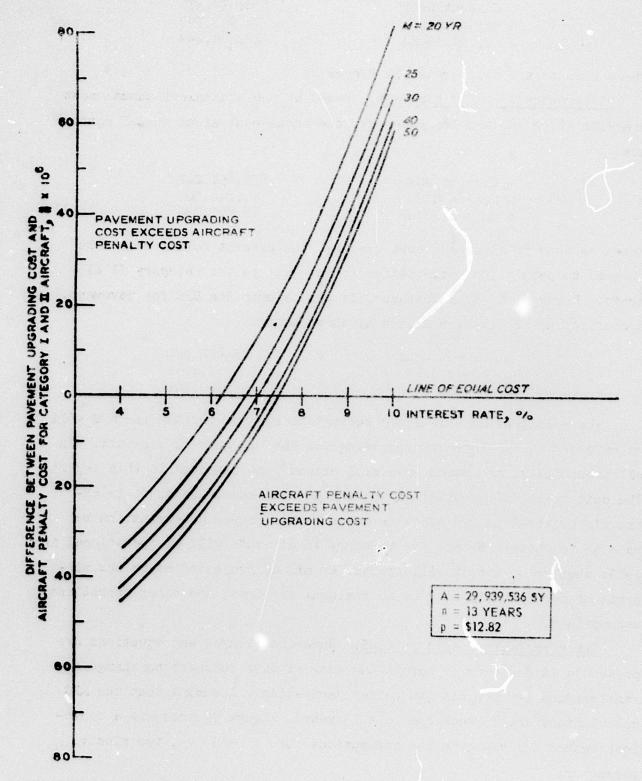


Figure 54. Effects of variations of pavement life m and inflation factor i

11 RECOMMENDATIONS

The following recommendations resulted from this study. They are based on the authors' calculations and assumptions. Devices are presented in this report to permit the decision to change these assumptions and calculations and the possibility exists that the recommendations should change based on further developments.

- (1) If only the Category I aircraft will be in operation at each of the 26 projected major hub airports in 1985, the current FAAP criteria should not be changed.
- (2) If the Categories I and II (implied also is the Category II aircraft alone) will be in operation at each of the 26 projected major hub airports in 1985, the current FAAP/ADAP criteria should be changed to permit the gear to be optimized to the aircraft. The possibility of operating the Category II aircraft from 7 to 10 regional airports should be investigated.

Further research, to include new gate and terminal construction, socioeconomic factors, and airport geometry requirements should be made to determine if the Category II aircraft will service all 26 projected major hub airports. Criteria should be changed to permit optimized design of gear with respect to aircraft only if the market survey indicates that the Category II aircraft will service the 26 major hub airports.

If further research reveals that only aircraft similar to the Category I aircraft will utilize the 26 projected major hub airports, the existing criteria should not be changed.

Additional research should be performed to study the economic implications of the criteria relative to the medium hub airports projected for 1985.

1.2 ADDITIONAL VALUE OF THIS REPORT

In addition to providing a useful device exclusive of additional cost for examining various policy decisions, this report provides:

- (1) A consolidation of airport layouts and pavement structures as of 1972.
- (2) An algorithm for designing sircraft gear types on a minimum cost, basis.
- (3) Pavement design curves for heavy aircraft.
- (4) Methodology for complex cost analyses.

APPENDIX A

PAVEMENT CONSTRUCTION DATA FOR MAJOR HUB AIRPORTS

As a part of the contract study by Lockheed-California Company, a compilation was made of the available pavement construction data for the major hub airports shown in Table 13 of the main text. This effort was necessary because there exists no central agency or location where all of the current pavement data can be found. The data are scattered among FAA Regional and District Offices, airport engineering staffs, and pavement consulting companies. In cases where more than one pavement data source exists, various sources were compared and discrepancies were reconciled by contacting the airport engineer. Table Al shows the sources for the pavement construction data for the major hub airports. The airport pavement characteristics are shown in Table A2. The last column in Table Al indicates whether or not the subject airport officials reponded to requests as to the validity of the pavement data presented.

for this study. The most current FAA pavement strength survey data were obtained from the FAA Regional and District Offices. These surveys were conducted between 1957 and 1972, with most surveys being as current as 1969. Upon request, the FAA supported these basic data with pavement inspection reports, airport pavement design forms, etc., which describe pavement-related changes to an airport since the strength survey was completed. These data were supplemented by pavement information recorded by the Air Transport Industry (ATI) Working Group. The strength characteristics of the pavement (that is, modulus of subgrade reaction k, design allowable, safety factor, and CBR strength) have been obtained exclusively from the ATI reports.

Additional data were obtained directly from airport engineering staffs of the larger hubs such as Los Angeles International, San Francisco International, and the Port of New York Authority (PONYA) airports. This group of information is classified as "Calac" source data in Table Al. NASA technical notes contained data for four of the major hub airports. Data from Materials Research and Development, Inc.,

Cakland, Calif., were made available for San Francisco International.

The format of the FAA pavement strength survey varies considerably with each airport. This is particularly true with the identification of pavement segments on airport maps. Thus, a number of the maps have been modified to provide consistent presentations. It should be noted that several airports are currently improving the condition of their pavements, while others have plans to do so in the immediate future.

As a check on the validity of the data presented in Table A2, a letter was sent to all the airport engineers, along with the appropriate data from Table A2, requesting their comments and recommended changes to the data. These changes have been incorporated into the data as presented in Table A2. The airport engineers who replied to the letters are identified by a "Yes" in the column headed "Airport Response" in table A1.

The pavement terminology used in Table A2 is primarily based upon the FAA Advisory Circular, AC 150/5320-6A (Reference 10 in the main text). FAA designations for pavement material have been used frequently. They are defined as follows:

Subbase Course P-154 Subbase Course Dry-Bound Macadam Base Course or Water-P-206 Bound Macadam Base Course P-208 Aggregate Base Course P-213 Sand-Clay Base Course P-216 Mixed In-Place Base Course P-301 Soil Cement Base Course Base Course P-201 Bituminous Base Course P-209 Crushed Aggregate Base Course Caliche Base Course P-210 P-211 Lime Rock Base Course P-212 Shell Base Course P-214 Penetration Macadam Base Course P-215 Cold Laid Bituminous Base Course Cement Treated Base Course P-304

(Continued)

Flexible Pavement

罪性的这些的这个一个

P-401 Bituminous Concrete or Asphaltic Concrete
Rigid Pavement

Portland Cement Concrete Pavement

In addition, for Newark Airport, a lime-treated subbase is employed. This is denoted in Table A2 by LA, LB, and LC, depending on the composition of hydrated lime, cement, and flyash. See sheet 14 of Table A2 for the definition of these symbols.

Table Al

Sources of Pavenent Construction Data for Major Hub Airports

	1985 Calendar Year	,		Source of			
	Number of Departures		Pav	Pavement Data	***		Airport
Airport	Thousands	CALAC	ATI	NASA	ľ	NEW CENT	Response
Chicago (O'Hare)	404				RTA		No
Atlanta	346		돲		RTA		1007
Los Angeles (International)	242	RTA	RTA	F	RTA		Yes
Dallas/Ft. Worth Regional	235	RTA	RTA				No
San Francisco	. 222	RTA	RTA		•	RTA	Yes
Mismi	203		RTA	£	RTA		Yes
New York (JFK)	198		RTA		RTA		Yes
New York (La Guardia)	177		RTA		RTA		Yes
Newark	175		RTA		RTA		Yes
Denver	191		RIA		RTA		No No
Boston	746		RTA		RTA		No
Philadelphia	140				RTA		No
St. Louis	132		RTA		RTA		Yes
Honolulu	121	RTA	RTA	뒲	RTA		Yes
Detroit	120		RTA		RTA		Yes
Seattle/Tacoma	110		RTA	댎	RTA		Yes
Pittsburgh	105		RTA		RTA		fes
Houston	102		RTA		RTA		Yes
Minneapolis/St. : aul	76	•			RTA		Yes
New Orleans	₹6		RTA		RTA		Yes
Las Vegas	る	•			RTA		No
Kansas City (International)	18				RTA		Yes
Baltimore	88	RTA			RTA		Yes
Cleveland	78		RTA		RTA		No.
Washington (Dulles)	65	REA	RIA				Yes
Fort Lauderdale	37				RTA		Yes

Note:

R - runway data; T - taxiway data; and A - apron data.
 CALAC - Lockheed data.
 ATI - Airport data for Air Transportation Planners, Air Transportation Industries Working Group.
 NASA - Data obtained from recent NASA reports.
 FAA - Data from FAA surveys.
 MRD - Data from Materials Research Development, Inc.

Table Al

Sources of Pavement Construction Data for Major Hub Airports

	1985 Calendar Year			Source of			
	Number of Departures		Pave	Pavement Data	3.		Airport
Airport	Thousands	CALAC	ATI	NASA	FAA	EEG C	Response
Chicago (O'Hare)	701				RTA		No
Atlanta	346		E		RITA		Yes
Los Angeles (International)	242	RTA	RTA	¥	RTA		Yes
Dallas/Ft. Worth Regional	235	RTA	RTA				No
San Francisco	222	RTA	RTA		•	RTA	Yes
Miami	203		RTA	돭	RTA		Yes
New York (JFK)	198		KTA		RTA		Yes
New York (La Guardia)	177		RTA		RTA		Yes
Newark	175		RIA		RTA		Yes
Denver	161	1	RTA		RTA		2
Boston	146		RTA		RTA		No
Philadelphia Phila	140				RTA		No No
St. Louis	132		RTA		RTA		Yes
Honolulu	121	RTA	RTA	뒲	RTA		Yes
Detroit	120		RTA		RTA		Yes
Seattle/Tacoma	110		RTA	Ħ	RTA		Yes
Pittsburgh	105		RTA		RTA		les
Houston	102		RIA		RTA		Yes
Minneapolis/St. Paul	76	•			RTA		Yes
New Orleans	16	•	AT.		RTA		Yes
Las Vegas	お				RTA		NC
Kansas City (International)	91				RTA		Yes
Baltimore	88	RTA			RTA		Yes
Cleveland	78		RTA		RTA		No
Washington (Dulles)	65	RTA	RTA				Yes
Fort Lauderdale	37				RIA		Yes

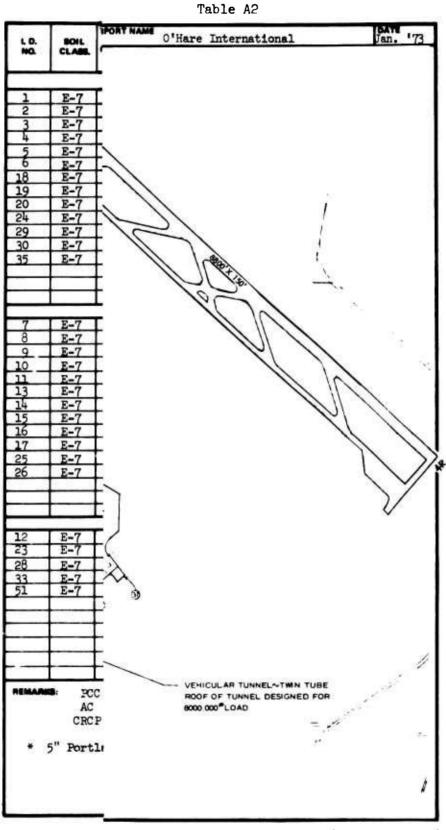
Note:

R - runway data; T - taxiway data; and A - apron data.

CALAC - Lockheed data.

ATI - Airport data for Air Transportation Planners, Air Transportation Industries Working Group.

NASA - Data obtained from recent NASA reports.


FAA - Data from FAA surveys.

MRD - Data from Materials Research Development, Inc.

The following is an index to the airfield pavement property sheets that comprise table A2.

Airport	Sheet No.
Chicago (O'Hare)	1, 2
Atlanta	3
Los Angeles (International)	4, 5, 6
Dallas/Fort Worth Regional	7
San Francisco	8, 9
Mi ami	10
New York (JFK)	11, 12
New York (La Guardia)	13
Newark	14
Denver	15
Boston	16, 17, 18
Philadelphia	19
St. Louis	20
Honolulu	21, 22, 23
Detroit	24, 25
Seattle/Tacoma	26, 27
Pittsburgh	28, 29
Houston	30
Minneapolis/St. Paul	31, 32, 33
New Orleans	34
Las Vegas	35, 36
Kansas City (International)	37
Baltimore	38
Cleveland	39, 40, 41
Washington (Dulles)	42, 43
Fort Lauderdale	44

the manual state of the state

AIRPORT	PA	VEMENT	CHARAC
711111 9111			

L D. NO.	SOIL CLASS.	SUB- GRADE CLASS	SUGGASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW.	CONSTRUC.	YEAR
		<u> </u>			RUNWAYS	_				
1	E-7	Re	12" P-209	-	10"/7"PCC	4" P-401			C of E	1960
2	E-7	Re	12" P-209	-	15" PCC				FAA	1958
-3	E-7	Re	16"/18"P-1	54 -	11" PCC	2" P-401			FAA	1967
4	E-7	Re	18" P-154	_	12" PCC	2" P-401			FAA	1967
5	E-7	Re	12" P-154	-	12" PCC	4" P-401			FAA	1960
6	E-7	Re	-	-	15" PCC	5"+ 2" *			FAA	1967
18	E-7	Re	12" P-154	6" P-209	12" CRCP				FAA	1966
19	E-7	Re	12" P-154	6" P-209	10" CRCP				FAA	1966
20	E-7	Rc	12" P-209	-	15" PCC				FAA	1966
24	E-7	Rc	12" P-209	-	10"/7" PCC	9½" AC			C of 3	1967
29	E-7	Rc	24" P-154	_	12" CRCP				FAA	1967
30	E-7	Rc	24" P-154	-	10" CRCP				FAA	1967
35	E-7	Re	15" P-209	_	10"/7" PCC				C of E	1942
-										
					-YAXIWAY-					
7	E-7	F7_	15" P-206	-	3" P-401	4를"/6" P=	4 01		C of E	1957
8_	E-7	F7	16" P-206	-	5" P-401		4 01		CAA	1957
9	E-7	F7	16" P-154	8" P-206	13"/4" P-40		401		CAA	1957
10	E-7	F7	16" P-154	8" P-206	3" P-401	4불"/6" P=	+01		FAA	1969
11	E-7	F7	16" P-154	8" P-206	3" F-401	2" P-401	1		FAA	1961
13	E-7	Rc	12" P-209	-	10"/7" PCC	2" P-401			FAA	1960
14	E-7	F7	15" P-154	6" P-209	3"/4"P=40				C of E	1961
15	E-7	F7	21" P-15 ^l i	6" P-209	3"/4" P=4	01			C of E	1960
16	E-7	Re	10" P-20 ⁰		10"/7" PCC	4를" P-401			FAA	1961
17	E-7	Rc	10" P-208	•	12" PCC				FAA	1963
25	E-7	Rc	12" P-209		15" PCC				FAA	1959
26	E-7	Rc	12" P-154	-	12" PCC				FAA	1961
					APRONS					
12	E-7	Re	12" P-209	-	15" PCC				FAA	1959
23	E-7	Re	10" P-154		10" PCC				C of E	1942
28	E-7	Rc	10"/12"P - 154	-	10" PCC				FAA	1963
33	E-7	Rc	12" P-208		10"/7"PCC	2" AC			C of E	1943
51	E-7	Rc_	12" P-154	-	12" PCC				UAL	1969

PCC - Portland Cement Concrete.

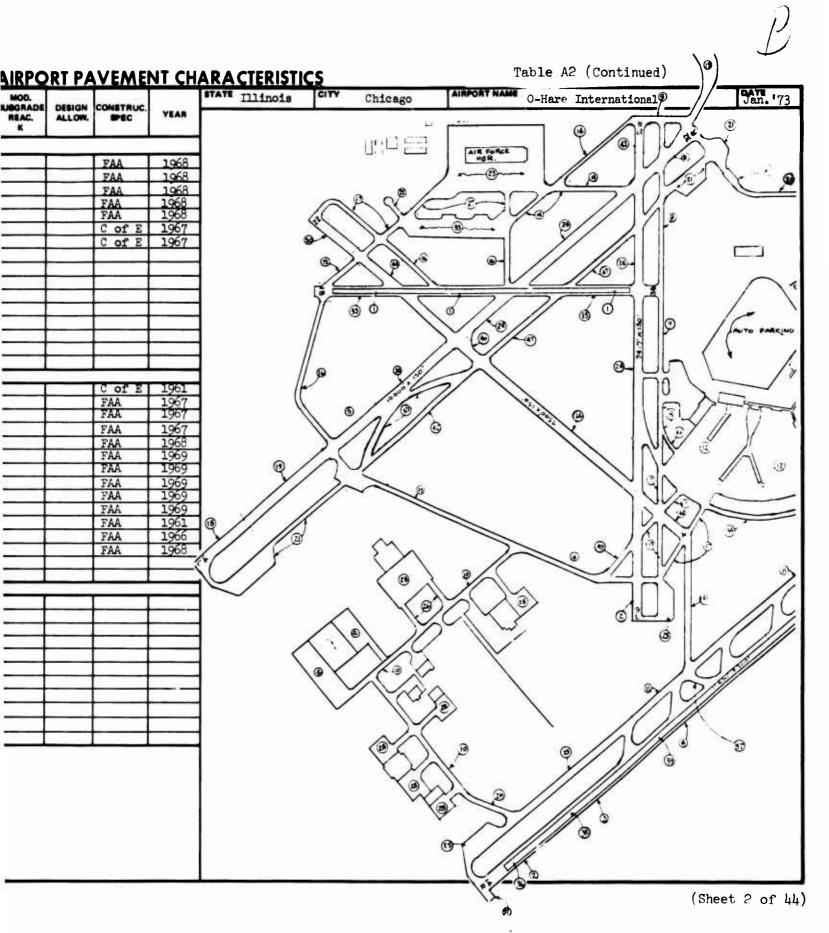
AC - Asphaltic Concrete.

CRCP - Continuous Reinforced Corprete Pavement.

^{* 5&}quot; Portland Cement Contrete + 2 Asphaltic Concrete.

Table A2

IRPORT PAVEMENT CHARACTERISTICS Jan. '73 Illinois Chicago O'Hare International DESIGN ALLOW. 1960 C of E 1958 1967 FAA FAA 1967 FAA 1960 1967 1966 FAA FAA FAA FAA C of E 1967 FAA 1967 FAA 1967 C of E 1942 1957 CAA 1957 CAA 1957 FAA 1969 FAA FAA 1961 1960 C of E 1961 C of E 1960 FAA 1961 FAA 1963 FAA 1959 FAA 1 FAA C of E C of E UAL 1969 VEHICULAR TUNNEL~TWIN TUBE ROOF OF TUNNEL DESIGNED FOR 8000,000 *LOAD (Sheet 1 of 44)


100

817	YEAR	CONSTRUC. SPEC	DESIGN ALLOW.	MOD. SUBGRADE REAC. K	OVERLAY	SURFACE COURSE	BASE COURSE	SUBBASE COURSE	SUO- GRADE CLASS	SOIL CLASS.	I, D. NO.
]					_	- RUNWAYS -	_				
]	1968	FAA				12" CRCP	12" P-209	18" P-154	Rd	E-8	3 6
4	1968	FAA				12" CRCP	-	24" P-154	Rd	E-8	37
4	1968	FAA		L		12" CRCP	12" P-209	18" P-154	Rd	E-8	38
4	1968	FAA		L		12" CRCP	12" P-209	18" P-154	Rd	E-8	39
4	1968	FAA		.	51W 40	12" CRCP	12" P-209	18" P-154	Rđ	E-8	40
4	1967 1967	C of E		 	5½" AC	10"/7" PCC 10"/7" PCC	-	12" P-209	Rc	E-7	43
4	1907	C of E			4" P=401	12" PCC		12" P-209 10" P-209	Rc	E-7	111
1						12 FCC	-	10 P=209	Rc	E-7	50
1											
‡											
#											
4		L		l		TAXIWAY					
1	1961	C of E		T	3" P-401	10"/7"PCC		15" P-209	Rc	E-7	27
1	1967	FAA				12" CRCP		30" P-154	Rd	E-8	31
1	1967	FAA				12" CRCP	12" P-209	24" P-154	Rc	E-7	32
1	1967	FAA			2"/3"P-401	12" CRCP	-	15" P-208	Re	E-7	34
1	1968	FAA				12" CRCP	12" P-209	18" P-154	Rd	E-8	41
7	1969	FAA				12" CRCP	12" P-209	12" P-154	Rđ	E-8	42
1	1969	FAA				4" P-401	20" P-201	14" P-154	Rd	E-8	45
]	1969	FAA				4" P=401	14" P-201	12" P-154	Rd	E-8	46
]	1969	FAA				12" CRCP	12" P-209	12" P-154	Rd	E-8	47
]	1969	FAA				4" P=401	4 8" P-201	15"/24"P-15	Rd	E-8	48
	1961	FAA			2분" P-401	12" PCC	-	10" P-209	Rc	E-7	49
	1966	FAA		I		12" CRCP	12" P-209	12" P-154	Rc	E-7	21
1	1968	FAA				15" CRCP	12" P-209	12" P-154	llets	at F1	21
/		─									
٦)						- APRONS -					
1											
I											
4											
4								- 			
+									\longrightarrow		
+											
1	-										
1											
H											
4									-		

AC - Asphaltic Concrete.

CRCP - Continuous Reinforced Concrete Pavement.

PCC - Portland Cement Concrete

154<

STATE G	YEAR	CONSTRUC.	DESIGN ALLOW,	MOD, SUBGRADE REAC, K	OVERLAY	SURFACE COURSE	BASE COURSE	SUBBASE COURSE	SUB- GRADE CLASS	SOIL CLASS.	I, D. NO.
						RUNWAYS -					
]					31" Bitum	3"Bitum.	8" WB Maca	8" Granular	F5	E-7	R -1
1					35" Bitum		10" WB Maca	10" Granul.	F5.	E-7	R-I
1	1969	AAE-REP	350 ps:	150		16" PCC	. 6" P-209	6" Soil Cem	Rć	E-7	R-2
4	1969	AAE-REF	350 ps:	150		16" PCC	. 6" P-209		Rc	E-7	R-End
┦						10" PCC		6" P-154	Re	E-7	B-3
4						12" PCC	10" P-209	6" P-154 10" P-154	Re	E-7	R-end
4						3½" Bitum.	10" P-209	3" P-154	F5 Rc	E-7	R-4
-						10" PCC					R-5
4	20/2	445 55	250	1.50		12" PCC	(II D 00)	8" P-154	Re	E-7	епа
-	1969	AAE-REH	350 ps	150		16" PCC	6" P-304	6" P-301	Rc	E-7	R <u>6</u>
-	1971					5" P-401	8" P-201	8-10" P-154	F5	E-7	R-1A
1	47(A					7 1-401	O P-EUI	0-10 F-194		70-1	<u>- TV</u>
1											
1											
1											
1						-TAXIWAY-					
1			1		3 Bitur		10" WB Mac	10" Granul.	F5	E-7	r-1
1	1969	AAE-REF	350 psi	150	. 12 . 111111	16" PCC	6" P-209	6"Soil-Cem	Re	E-7	T-2
1						12" PCC		6" P-154	Re	E-7	r-3
]						31 B1tum	10" P-209	10" P-154	F5	E-7	r-4
]						12" PCC	•	8" P-154	Rc	E-7	T-5
	1969	AAE_REE	350 psi	150		16" PCC	6" P-304	6" P-301	Rc	E-7	г-6
	1969	AAE-REF	350 pŝ	150		16" PCC	6" P-304	6" P-301	Rc	E-7	r-7
onstruct	Under C			150		16" PCC	6" P-304	6" P-301	Rc	E-7	г-8
	1971					5" P-401	20" P-304	6" P -301	F5	E-7	Γ-9
							+11" P-201				
								I			
J			I					I			
1											
1											
1											
4						APRONS -					
						11½" PCC	_	8" Granular	Rc	E-7	
1						$11\frac{1}{3}$ " PCC		8" Granular	Rc	E-7	
-						12" PCC	-	10" P-154	Rc	E-7	
	He dow	AAR DEE	250	750		3" P-401 16" PCC	12" P-209 6" P-304	27" P-154 6" P-301	F5.	E-7 E-7	A-4
L	Under	AAE-REP	350ps1*	150		16" PCC	6" P-304	6" P-301	Rc	E-1	1-5
tion	Constru										
			1								

REMARKS:

^{*} Safety Factor 2

⁺ Regarding on 75' center section

IRPORT PAVEMENT CHARACTERISTICS Table A2 (Continued) MOD. IBGRADE REAC. K Jan. '73 Georgia Atlanta Atlanta DESIGN ALLOW. CONSTRUC. AAE-RE 1969 150 350 ps: 150 350 ps1 AAE-REI 1969 1971 AAE_REI 350 ps 350 ps AAE-REE 350 ps AAE-REE 350 ps AAE-REE 1969 1969 Under Construction 1971 350psi* AAE-REF Under SCALE 2000 F T

(Sheet 3 of 44)

i, D. NO.	SOIL CLASS,	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW.	CONSTRUC.	YEAR
	*				RUNWAYS -				<u> </u>	
R-1	E-7/E-2	F5/Ra	8" AC/4"ESB		12" PCC				FAAP-19	1960
R-1A	E-7	Ře	S.:	-	16" PCC				SE-17	1950
R-1B	E-7	Rc	24" SM	4" CAB	15" PCC				FAAP-19	1960
?-1C	E-2	Ra	4" ESB	8" AC	105" PCC				FAAP-19	1960
}-1D	E-2	Fa	6" SC-COMP.	10" CAB	3" AC				FAAP-19	1960
-1E	E-2	Fa	6" SC-COMP.	10" ESB	3" AC				FAAP-08	1951
-1F	E-7	Fs	4" ESB	4"-15" CAB	3" AC				FAAP-19	1960
-1G	E-2	Fa	12" SM	8"-10" SC	_3" AC				CITY	1958
1-1H	E-2	Fa	12" SM	10" CAB	3" AC				FAAP-20	1960
}− 2	E-7	Rc	18" SM	4" CAB	12" PCC			····	FAAP-18	1958
R-2A	E-7	Re	18" SM	4" CAB	15" PCC				FAAP-18	1958
-2B	E-2	Ra	12" SM:	6" CAB	3" AC	10" PCC			FAAP-18	1958
R-2C	E-2	Fa	6" SC-COMP.	10" ESB	3" AC				FAAP-08	1951
-2D	E-2	Ra		6"COMP SOIL	16" PCC	1			FAAP-08	1951
-2E	E-2	Fa	12" SM	10" CAB	3" AC				FAAP-19	1959
2F	E-2	Fa	28" SM	12" CAB	3" AC			-	FAAP-26	1965
		Territor		WAY.	TAXIWAY					F573
-1	E-2	Fa	6" SC-COMP	ESB	3" AC				CITY	1955
-lA	E-2	Fa	12" SC-COMP	10" CAB	3" AC		I I		FAAP-16	1957
1B	E-C	Fa		10" CAB	3" AC	_			CITY	1960
-1C	E-2	Fa	6" SC-COMP	10" CAB	3" AC				FAAP-29	1968
- 2	E-7	Ŗc	18" SM	_	9" PCC				CITY	1947
-2A	E-2	Fa	6" SC-COMP	10" CAB	3" AC				F.JAP-08	1957
- 2B	E-2	Fa	6" SC-COMP	12" CAB	3" AC				FAAP-08	1951
-2C	E-7	F5	18" SM	9" CAB	4" AC		I			1963
-2D	E-7	F5	28" SM	12" CAB	3" AC				FAAP-18	1958
- 3	E-7	F5	2" SAMD	4" ESB	2" AC				WPA	1940
1	E-7	F5	34" SM	6" CAB	15" PCC		l I			1963
-5	E-7	F5	28" SM	12" CAB	3" AC				FAAP-14	1956
-5A	E-2	Fa	6" SC-COMP	8" ESB	3" AC				FAAP-08	1951
-5B	E-2	Fa	6" SC-COMP	10" CAB	3" AC				faap-08	1951
-5C	E-2	Fa	6" SC-COMP	10" ESB	3" AC	<u> </u>			faap-08	1951
					- APRONS -					
<u>-1</u>	E-7	F5	14" SM	6" ESB	2" AC	L			Unknown	1945
- 2	E-7	Re	18" SM	-	9" PCC		<u> </u>		Unknown	1947
-3	E-7	F5	18" s∷	8" CAB	3" AC				Unknown	1955
-4	E-7	F5	12" SX	6" CAB	4" AC		ļ		Unknown	1948
-5_	E-7	F5	24" SM	8" CAB	3" AC		ļl			1953
-6	E-2	Ra			12" PCC		1 1			
-7	E-2	Ra			12" PCC		 		FAAP-16	1957
<u>-8</u>	E-2	Ra			9" PCC				FAAP-16	1957
- 9	E-7	F5	28" s::	12"CAB	3" AC				1000	1959
-10	E-7	F5	2" SAND	4" ESB	2" AC					1953
-11	E-2	Ra	6" SC-COMP		12" PCC		T		FAAP-16	1957

REMARKS:

AC - Asphaltic Concrete

ESB - Emulsion Stabilized Base

PCC - Portland Cement Concrete

SM - Select Material

CAB - Crushed Aggregate Base SC - Soil Cement (Compacted)

IRPORT PAVEMENT CHARACTERISTICS Table A2 (Continued) MOD. JOGRADE REAC. California Los Angeles Los Angeles International DESIGN ALLOW. CONSTRUC. YEAR K 1960 1950 FAAP-19 SE-17 1960 FAAP-19 1960 FAAP-19 FAAP-19 1960 FAAP-08 1951 1960 1958 1960 FAAP-19 CITY FAAP-20 FAAP-18 1958 FAAP-18 1958 FAAP-18 1958 FAAP-08 FAAP-08 1951 1951 1959 1965 FAAP-19 FAAP-26 SEE SHEET 6 FAAP-16 1957 CITY 1960 1968 1947 FAAP-29 CITY FAAP-08 1957 1951 faap-08 1963 1958 FAAP-18 1940 1963 WFA 1956 FAAP-14 faap-08 1951 faap-08 faap-08 1951 1951 1945 1947 Jnknown Unknown 1955 Jnknown Unknown 1948 1953 FAAP-16 1957 1957 FAAP-16 1959 1953 FAAP-16 1957

(Sheet 4 of 44)

AIRPORT PAVEMENT CHARACTE STATECalif

I, D. NO.	SOIL CLASS,	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE RE 4C,	DESIGN ALLOW.	CONSTRUC.	YEAR
					- RUNWAYS -					
R-3	E-2	Fa	12" SC-COMP	8" CAB	2" AC	3" AC *			FAAP-16	1957
R-3A	E-2	Ra	12" SC-COMP	-	12" PCC	~	300	**	FAAP-16	195
R-3B	E-2	Fa	12" SC-COMP	10" CAB	3" AC	3" AC *			FAAP-16	1957
R-3C	E-2	Ra	(22" SM }	6" CAB	15" PCC				FAAP-27	196
			(+9" SC)							
R-4	E- 2	Ra	22" SM	6" ÇAB	15" PCC		400	***	FAAP-29	1970
					-YAXIWAY-					
T-5D	E-2	Fa	12" SC-COMP	10" SC	3" AC				ÇITY	1958
T-5E	E-2	Fa	28" SM	12" CAB	3" AC				FAAP-26	1965
T-6	E-7	F5	2" SAND	4" ESB	2" AC	5" AC			WPA	1951
T-7	E-7	Rc	14" SM		8" PCC					1947
T-8	E-2	Ra	12" SC-COMP	-	12" PCC				FAAP-16	1957
T-8A	E-2	Ra	12" SC-COMP	12" CAB	3" AC				FAAP-16	1957
T-9	E-7	F5	28" SM	12" CAB	3" AC				CITY	1959
	E-2	Ra	22"P209	6" CAB	15" PCC				FAAP-22	_1966
T-11	E- 2	Fa	24" SM	12" CAB	3" AC				FAAP-25	1964
T-12	E-7	Rc	34" SM 24" SM	6" CAB	15" PCC				FAAP-25	1964
	E-2	Fa	24" SM		3" AC				FAAP-25	1964
T-13	E-2	Fa		10" CAB					FAAP-22	1960
	E-2	Ra	22" SM 22" SM	6" CAB	15" PCC 15" PCC				FAAP-29	1970
	E-2 E-7	Ra F5	22 SM	6" CAB	15" PCC 12" PCC		-		FAAP-27	1967
	E-7	F5	20" SM	11" CAB	APRONS -	- 4" AC			<u> </u>	1965 1968
	E-2		20 51/1	II CAD	11" PCC	- 4 AC				1,400
		Ra	12" SC-COME	70" 045						1000
	E-2	Fa	12" SC-COMP	10" CAB					FAAP-21	1957 1960
	E-2	Ra	-							
	E-2	Ra		10" CAB_					FAAP-21	1960
	E-2	Fa							FAAP-21	1960
	E-2	Fa		JULIE	3" AC 12" PCC				FAAP-21 FAAP-22	1960 1960
	E-2	Ra								
	E-2	Ra			8" PCC				FAAP-22	1960
1-20	E-2	Fa		10" CAB	3" AC				FAAP-22	1960
A-21	E-2	Fa		7" JAB	3" AC				FAAP-22	1960
	E-7	F5	6" SM	4" CAB	2" AC					1958
:- 23	E-7	F5	6" SC-COMP	12" CAB	12" PCC					1968

AC - Asphaltic Concrete

ESB - Emulsion Stabilized Base

PCC - Portland Cement Concrete

SM - Select Material

CAB - Crushed Aggregate Base SC - Soil Cement (compacted)

* Overlay 1968
** Working Stress = 400 psi

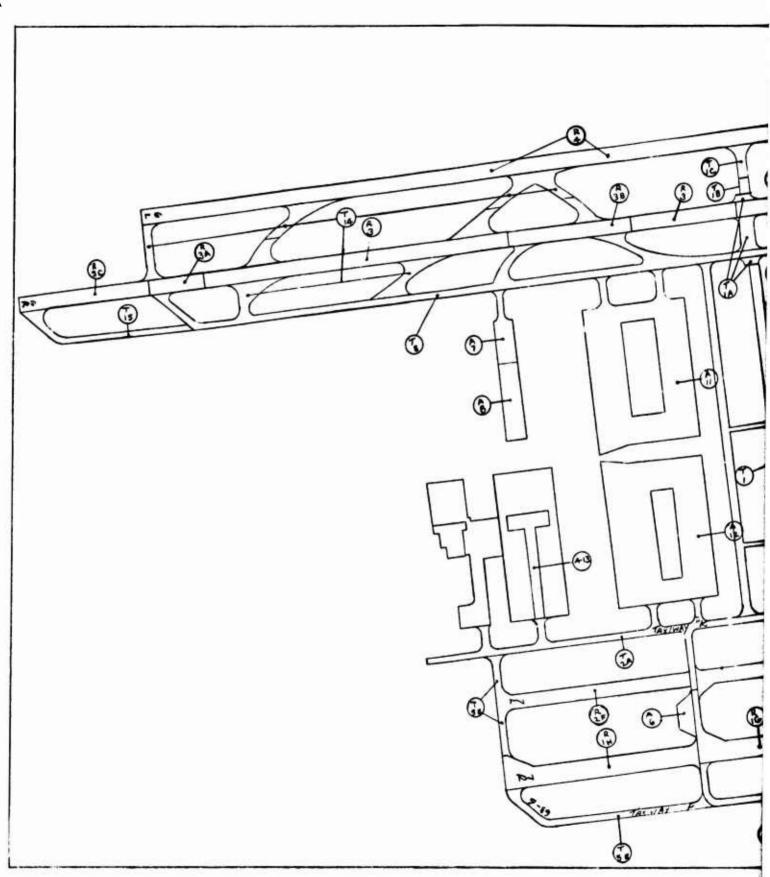

*** Design Allow = 1,250,000 lbs.
Safety Factor = 1.65

Table A2 (Continued)

DO. IRADE AC.	DESIGN ALLOW.	CONSTRUC.	YEAR	STATE California	Los Angel	.es	Los Ar	ngeles Inte	rnational	Jan.	1
(
		FAAP-16	1957	†							
00	**	FAAP-16	1957	1							
+		FAAP-16									
		FAAP-10 FAAP-27	1957 1967	1							
		FARF-CI	1907	1							
00	***	FAAP-29	1970								
7.											
<u>-</u>		CITY	1958								
-+		FAAP-26	1965	1							
		WPA	1951	1							
			1951 1947	1		SEE SHEET 6					
		FAAP-16	1957	1							
1		FAAP-16	1957	1							
		CITY	1959	1							
		FAAP-22	1959 1966 1964								
		FAAP-25	1964	1							
		FAAP-25	1964 1964]							
		FAAP-25	1964	ì							
		FAAP-22	1960	}							
		FAAP-29	1970 1967								
		FAAP-27	1967	.							
		1	1965	ł							
T			1968	1							
			1957	1							
		FAAP-21	1957 1960]							
		FAAP-21	1960								
		FAAP-21	1960	4							
		FAAP-21 FAAP-22	1960 1960	4							
				ł							
		FAAP-22	1960	4							
		FAAP-22	1960	ł							
		FAAP-22	1960 1958	ł							
			1958	4							
			1968	ł							
12											
lbs.				1							

(Sheet 5 of 44)

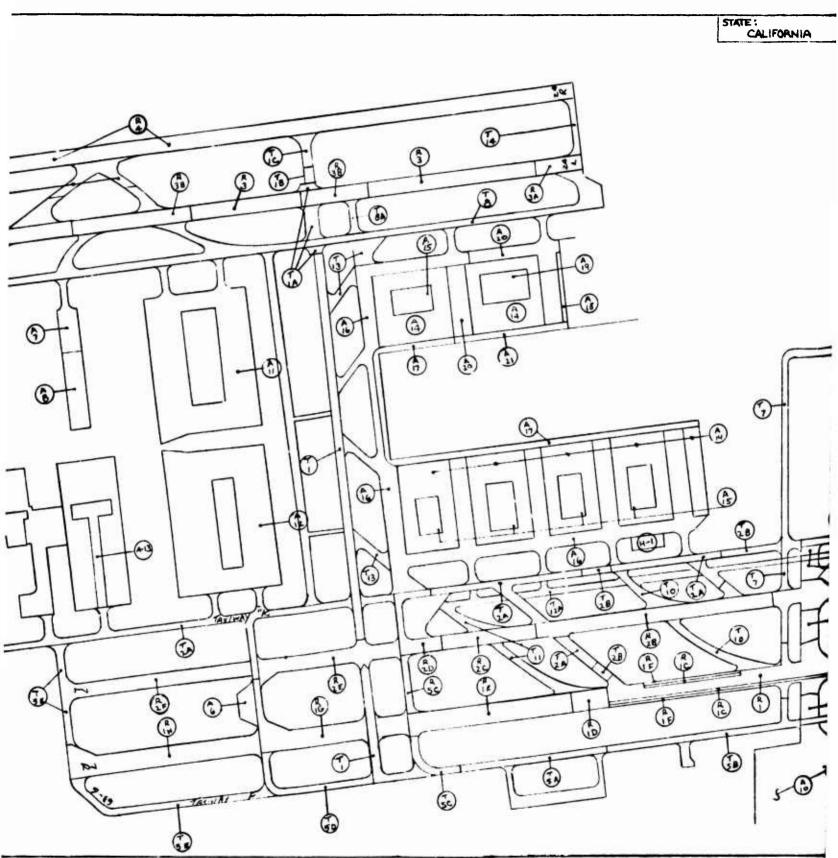
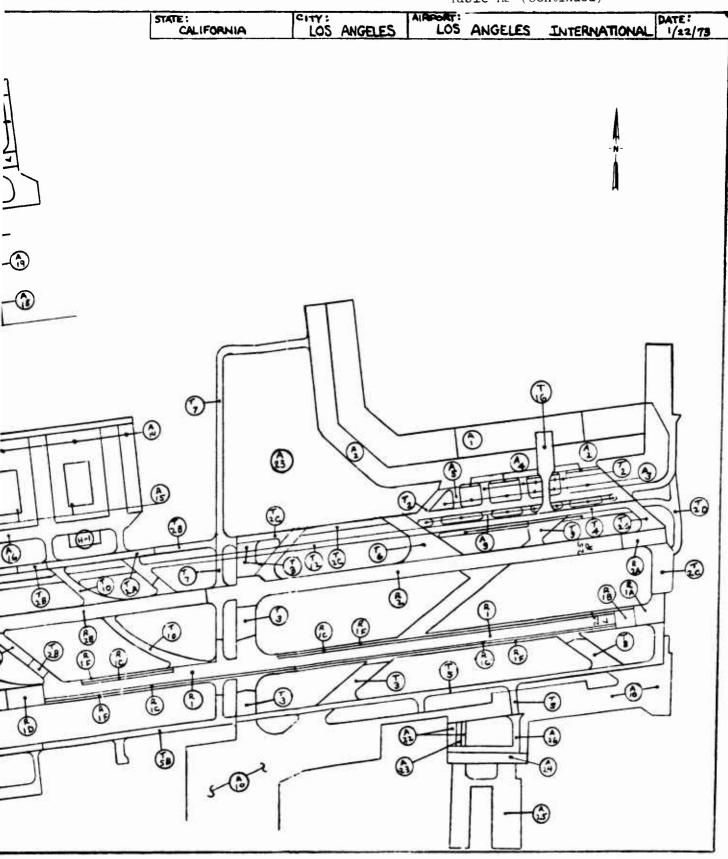



Table A2 (Continued)

AIRPORT PAVEMENT CHARACTER

							HINI Q	KIIF	IV BITTE	111 611
I, D. NO.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW.	CONSTRUC.	YEAR
	L				- RUNWAYS					
17R-35	Ĺ				1	- 				
R-1	I		9" LTM	10" CSB	18" JRC				*	
R-2			9" LTM	o" CSB	18" JRC				*	
R-3			9" LTM	9" CSB	17 JRC				*	
R-6			9" LTM	9" CSB	17 JRC 18"/15"JRC				*	
17L-35	Ř						1			
R-1			9" LTM	10" CSB	18" JRC				*	
R-2			9" LTM	Q ¹¹ CSB	18" JRC 17" JRC				*	
R-3			9" LTM	9" CSB	17" JRC				*	
R - 6			9" LTM	9" CSB	18"/15"JRC		I		*	
13L-31	R		.	+		· · · · · · · · · · · · · · · · · · ·	1			
R-3			9" LTM	9" CSB	17" JRC				*	
R-6			9" LTM	9" CSB	17"/14"JRC				*	
	L			<u> </u>	TAXIWAY				L	
T-1		T	9" LTM	10" CSB	18" JRC		1		*	
т-2			9" LTM	9" CSB	18" JRC				*	
T-2 T-3			9" LTM	9" CSB	17" JRC		1		*	
T-4			9" LTM	9" CSB	16" JRC				*	
T-5			9" LTM	9" CSB	15" JRC				*	
				<u> </u>			-			
							-			
				 	<u> </u>			-		
		}		<u> </u>	+		 			
			2011 7 7714	1 2011 222	APRONS	-			T - V	
A-1			18" LTM	10" CSB	18" JRC				*	
				İ						
				 	†		1			
					 		-			
					†					

REMARKS:

CSB - Cement Stabilized Base

JRC - Jointed Reinforced Portland Cement Concrete LTM - Lime Treated Material

* Aircraft pavement design - Mason & Johnston, Sept. 1971.

1

PORT PAVEMENT CHARACTERISTICS

Table A2 (Continued)

D. IADE				STATE	Texas	CITY	Dallas	AIRPORT NAME Dallas-Fort Worth Regional Airport	Jan. '73
C.	ALLOW.	CONSTRUC.	YEAR				·		
		<u> </u>		1				٠,٨	
		*		1				- N	
\exists		*		1	7	ø.	7 9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		*		}	<u>«</u>	,	Ĭ	* \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
\dashv				}	•	74	7 1 1 mm	111111111111111111111111111111111111111	R-1
		*		1	1,01		4	-59 C159 C159 C155	>T-1
		*		1		//	1		
-		*		┨		-3 T-2(1		\$
\Box		*		1			V	A1	≫ _{T-2}
		*		1		3/24	ð	■	
				1		•	j_ ""		
		*		}		T - 2	-	1 -	
		*		}		T+3			7 2
		*		1	- 2	1	1 1 P	E 12 EN 30E 10 30 000 300	×.
				1	T	- ^	C		$\sum_{t=1}^{t-1}$
				1	41	7	7		X
				}	R-3	R-6	R-3	R-2 R-6 R-2 T-5 R-6 R-6 R-2	T-3
			· · · · · ·	1			T-3	т-3-	7
				1			l	Žoʻ	1
				1			2	500	1/1
\dashv		*		}				1)%
				1					T-5 R-3 ⁿ
				1					
				1					
				}				A 7-5	
				1				R-6	
				1				R-3	
]				T-5	
				ł					
				Ì				R-6	
								R 1	
								T-5	

(Sheet 7 of 44)

AIRPORT	PAV	EMENT	CHA	RACI

							WILL C			
I, D. NO.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE	SURFACE COURSE	OVERLAY	MOD. SUBGRADE REAC. K	DESIGN ALLOW.	CONSTRUC.	YEAR
				_	RUNWAYS	_				
1R-19I				1						
R-1	E-3	Fl	_	12" U.	3" Bit.				CAA	1951
R-2	E-3	F1	4" U.	10" C.T.	4" Bit.	f	<u> </u>		FAA	1960
R-3	E-3	Fl	4" U.	10" C.T.	$3\frac{1}{2}$ " Bit.		<u> </u>		CAA	1957
R-4	E-3	Fl	4" Ŭ.	14" C.T.	5" Bit.	1			FAA	1967
R-5	E-3	Rb	-	6" C.T.	13" PCC		400	345ps1*	FAA	1962
1L-19F	{									
R-1	E-3	Fl	-	12" U.	3" Bit.				CAA	1949
R-2	E-3	Fl	4" U.	10" C.T.	4" Bit.				FAA	1960
R-3	E-3	Fl	4" U.	10" C.T.	31" Bit.				CAA	1957
R-6	E-3	F1	14" SS	17" C.T.	5" Bit.		†		FAA	1967
10L-28										
R-2	E-3	Fl	4" U.	10" C.T.	4" B i t.				FAA	1960
R-3	E-3	Fl	4" U.	10" C.T. 6" C.T.	olit par				CAA	
R-5	E-3	Rb	-	6" C.T.	13" PCC		400	345ps1*		1957 1962
					TAXIWAY-					
T-1	E-3	Fl	-	12" U.	3" Bit.				CAA	1951
T-2	E-3	Fl	4" U.	10" C.T.	4" Bit.				FAA	1960
T-3	E-3	Fl	4" U.	10" C.T.	$35^{"}$ Bit.				CAA	1957
T-4	E-3	Fl	4" U.	14" C.T.	5" Bit.				FAA	1967
T-5	E-3	Rb		6" C.T.	13" PCC				FAA	1962
T-6	E-3	Fl	14" SS	17" C.T.	5" Bit.				FAA	1967
T-9	E-3	Rb	-	6" C.T.**	14" PCC				FAA	1967
T-12	E-3	Fl	-	15" U.	3" B1t.				CAA	1949
					APRONE					
AP-1	E-3	Fl		12" U.	3" Bit.				CAA	1951
AP-2	E-3	Fl	4" Մ.	10" C.T.	4" B i t.				FAA	1960
AP-3	E-3	Fl	4" U.	10" C.T.	35" B1t. 13" PCC				CAA	1957
AP-5	E-3	Rb		6" С.Т.			 		FAA	1962
AP-6	E-3	F1	14" SS	17" C.T.	5" Bit.		ļ		FAA	1967
AP-9	E-3	Rb		6" с.т.	14" PCC				FAA	1767
AP-10	E-3	Fl	4" U-	12" С.Т.	4" Pit.				FAA	1960
AP-11	E-3	F1.	-	8" C.T.	8" Bit.	- · · ·	 		CAA	1951
		l								
		T								

REMARKS:

- * Safety Factor = 1.74. ** Piers C & E are 14" PCC on $3\frac{1}{2}$ " cement treated base.
- U Untreated Base Crushed Aggregate.
- CT Cement Treated Crushed Aggregate. SS Stabilized Soil.

0

AIRPO	RT PA	VEME	NT CH	ARACTERISTICS		Table A2 (Con		
MOD. SUBGRADE	DESIGN	CONSTRUC.	N	STATE California CITY	San Francisco	San Francisco In	ternational	Jan. '73
REAC.	ALLOW.	SPEC .	YEAR	'A		2	NAP-S	. \
<u> </u>		CAA	1951	A 175		1		7-5
		FAA CAA	1960 1957	1/11/11/11		T-9) X / 11-2 \	M
<u> </u>		F#A	1967	W-2/ /// W	N . 7 . n	1 X	T-17 AP-2	义
400	345psi*	F/A	1962	R-7	A 4 4 6 5	1,9,		T=2
		C AA	1949	R-2				7-3
<u> </u>		FAA CAA	1960 1957			(a.z /	1-1	<u>}</u>
		FAA	1967					AP-10 AP-6
		FAA	1960	AP - S		// 8-2/	MAR	. / / @
400	345ps i *	CAA	1957 1962		(- 3	Y 6 XXX		
400	J/P31	1721	1)02	1	(* T)		L. XIL	100
T		CAA	1951	7-2			CHO!	
		FAA	1960	7.5				- " - "
		CAA FAA	1957 1967	74			· · · · · · · · · · · · · · · · · · ·	T = T
		FAA FAA	1962 1967		****			4 4
		FAA	1967	/		R-3 X		64
		CAA	1949	/9:1 /	/R-1 (R-1)	1. 1.		AP-2
				"\ / X/	R-6 MR 1	N 1-3	VIII	ا لم AP-1
					X/CV	XX XXS		
						A 1-5 / 1		2,4
						2 2 2	W. V.	.≌
		CAA	1951	N 1 1 1 1	$\mathbf{Y}_{\lambda i}$	A. J.		(
		FAA	1960	71	· · · · · · · · · · · · · · · · · · ·	7. 12/	12	AP-1 V
		CAA FAA	1957 1962	1 5 gg 8 10			1 000	†
		FAA	1967	99-99-99			5 AP 2 P	
		FAA FAA	1967 1960		Manual and a second sec		· // /-	AP-1
		CAA	1951	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			I W	1.
				200 Page 1 10 Pa	11 14 16 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1			$A \neq 0$
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, 1 13	1
				AND A THE PROPERTY OF THE PROP	Handle of the property of the	Section 2 Control of the Control of	Mai	
ase.				19 15 129 18 10 17 15 153 1- 10	10 10 15 1910 19 1 110 110 10 100 11		100	LAP :
							S. JUL	7.,
								-T
							T-2	3. : :

(Sheet 8 of 44)

YEAR	CONSTRUC.	DESIGN ALLOW,	MOD. SUBGRADE REAC, K	OVERLAY	SURFACE COURSE	BASE	SUBBASE COURSE	SUB- GRADE CLASS	SOIL CLASS.	I, D. NO.
			<u> </u>	-	- RUNWAYS -	_				
	I T								L	OR-28
1960	FAA				4" Bit.	10" C.T.	4" U.	Fl	E-3	- 2
1957	CAA				$3\frac{1}{2}$ " B1t.	10" C.T.	4" U.	Fl	E-3	-3
1967	FAA		1		5" Bit.	14" C.T.	4" U	F1	E-3	-4
1960	FAA		 		4" Bit.	20" C.T.	8" + 4" (1)	Fl	E-3	- 7
1960	FAA FAA		 		4" Bit.	14" C.T.	14"+ 4" (2)		E-3	-8
1960	TAA	-	 	-	4" Bit.	12" C.T.	4" Ŭ.	Fl	E-3	10
										=
			╁┈╌╁							
	L		<u> </u>		TAXIWAY					
			 							
			 							\dashv
			1							
										\Box
			 							
				-	400000					\Box
-	Г		T		- APRONE -	 -		T	T	Т
			 							
										— [
			+							
			 							
			+				-			
			 							-
										

8" Coarse Aggregate Base on 4" old cement treated crushed aggregate base.
2 - 14" Coarse Aggregate Base on 4" old cement treated crushed aggregate base.

U - Untreated crushed aggregate C.T.- Cement treated crushed aggregate

P

AIRPORT PAVEMENT CHARACTERISTICS

Table A2 (Continued)

AIRPO	<u>KI PA</u>	VEME	NI CH	AKACIEKISTIC	.3						
MOD, SUBGRADE	DESIGN	CONSTRUC.	YEAR	California California	CITY	San Francisco	AIRPORT NAME	San Francisco	International	San.	173
REAC.	ALLOW.	₽ EC	TEAN								
			1	4							
		FAA	1960								
-		CAA FAA	1957 1967	1							
		FAA FAA	1960 1960	,							
		FAA	1960	1							
				1							
				1							
				<u> </u>							
				4							
				1							
				1							
				}							
				1							
		- :-	3 3	1							
				1							
				1							
				-							
]							
				1							
		U		1							
				1							
				1							
				1							
				1							
				1							
ı crushed l crushed	aggreg aggreg	ate base ate base									

AIRPORT PAVEMENT CHARACTER STATE Florid

						-	AIRPO	KIIA	VENIE	ITI CI
I, D. NO.	SOIL CLASS,	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD. SUBGRADE REAC. K	DESIGN ALLOW,	CONSTRUC.	YEAR
				·	RUNWAYS	-				
R-1	E1/E2	Fa	10"IR Stab	8" LR	3" Bit.					
R-1A	E1/E2	Fa	10"IR Stab	8" LR	3" Bit.	5" AC				1972
R-2	E1/E2	Fa	10"LR Stab.		2" Bit.	6" AC				1972
R-2A	E1/E2	Fa	10"LR Stab	8" LR	3" Bit.	5" AC	11	······································		1972
R-3	E1/E2	Fa	-	12" IR	2" Bit.	6" AC				1972
R-4	E-3	F-2	10"IR Stab	10" IR	2" Bit.	5" AC				197 2
R-5	E-2	Ra	_	-	8" PCC	5" AC				1972
R-6	E1/E2	Fa	10"LR Stab.	10" LR	2" Bit.					
R-7	E1/E2	Fa	12" LR Stab		2" Bit.	5" AC *				1972
R-8	E1/E2	Fa	12" LR Stab		2" Bit.	6" AC **				1972
R-9	E1/E2	Fa	_	10" LR	2" Bit.	6" AC				1972
R-10	E1/E2	Fa	-	12" LR	2" Bit.					
R-11	E1/E2	Fa	-	10" LR	2" B1t.					
R-12	E1/E2	Fa	10" LR Stab	. 8" LR	3" Bit.					
R-13	E1/E2	Ra	-	-	8" PCC					
R-14	E1/E2	Fa	12" LR Stab	. 12" LR	2" Bit.					
					TAXIWAY					
T-1	E1/E2	Fa	10"IR Stab	8" IR	3" Bit.					
T-1A	E1/E2	Fa	10"LR Stab	8" LR	3" Bit.					
T-13	E1/E2	Fa	10"LR Stab.	8" LR	3" Bit.		L			
T-2	E-1	Fa	10" IR Stal	10" LR	2" Bit.					
T-3	El/E2	Fa	-	12" IR	2" Bit.					
T-3A	E1/E2	Fa	-	12" LR	2" B i t.					
T-4	E1/E2	Fa	10"LR Stab.	6" LR	DPST (1")					
T-5	E1/E2	Fa	10"LR Stab	6" IR	2" B1t.		<u> </u>			
T-6	E-1	Fa	-	12" LR	2-3/4" Bit		<u> </u>			
T-7	E-1	Fa	12"IR Stab	9" LR	2" Bit.		11			
T-8	E-1	Fa	12" LR Stab	.12" LR	2" Bit.		<u> </u>			
T-9	E-1	Fa		12" LR	4" Bit.	3" AC	Ll			197
							1			
							ļ			
							<u> </u>			
	/				APRONS -		· · · · · ·			
A-1	E1/E2	Ra			8" PCC	3" AC	 			
A-2	E1/E2	Fa		10" LR	2-3/4" Bit		 			
A-3	El/E2	Fa		12" LR	2" Bit.		 			
A-4	E-1	Fa	10"IR Stab.	6" LR	DPST (1")		 			
	E-1	Ra		LR Stab.	8" PCC		 			
A-6	E-1	Fa	12"LR Stab.	9" LR	2" Bit.	-	 			
A-7	E1/E2	Ra		LR Stab.	6" PCC		++			
	E-1	Ra	0.0	LR Stab.	10" PCC	3" AC	1			
	E1/E2	Fa	8" LR Stab.	12" LR	2" Pit.		 			
	El/E2	Fa	12" LR Stab	. 12" LR	2" Pit.		1			
	El/E2	Fa	12" LR Stab	13" LR	2" Bit.	6" AC	<u> </u>			1972
A-12	E1/E2	Fa	-	12" LR	2" Bit.	6" AC				1972

LR STAB. - Lime Rock Stabilized

AC - Asphaltic Concrete
Bit. - Bituminous Concrete

Note: Runway 12-30 is due to have a 3" asphalt concrete runway early in 1973.

- * Overlay on OL/27R is 6" AC. ** No overlay on 17/35.

3

Table A2 (Continued)

RPORT PAVEMENT CHARACTERISTICS

IOD, GRADE EAC. K	DESIGN	CONSTRUC.	YEAR	STATE Florida	CITY Miami	AIRFORT NAME Miami International	Jan. 173
EAC. K	ALLOW.	SPEC	TEAR				
Т							
			1972				
			1972 1972	<u> </u>		= :	
	_		1 972 1 9 7 2		sīr I		
			1972		3 1-5245		
			1972	WW Acth Street			
			19 7 2 19 7 2	4			
				4		·	
				3			
					# [[] [] [] [] []		
				1	いべ園が必		
				1/	الم المعالم الم	4 51 4 10 BIT 4 4 10 11 11 11 11 11 11 11 11 11 11 11 11	
				1	一层相线		
			1000		= एक मार्थित नी		
			1972		X .	**************************************	
						4 / /5	
						# // // W	
					JOJEN M	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
					1 1 1 1		
				ž.,	-11 - 1 2		
-				بر المارية براجا به			
				*	1 2 2 21-6		
			1972	4	-799 E	7%/ 湖山	
-			1972	GENERAL	3 F		
				130		7	
		200			3 1 " 4	(CH	
/ ear	ly in 1	7/3 •		er Er	4 7 (174 1)	T B	
						98	

(Sheet 10 of 44)

							AIRPC	KIFA	A PIAIR	AI CU	ANA
I, D. NO.	SOIL CLASS.	SUB- GRADE CLASS	SUSBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD. SUBGRADE REAC. K		CONSTRUC.	YEAR	STATE
			<u> </u>		RUNWAYS -						1
R-22L	E-1	Ra	6" sc	 	12" PCC	-	300	430ps1	NYC	1959	1
				i i				7.7.	.,,,,,		1
L-22R	E-1	Ra	6" sc	-	12" PCC	4"/8"Bit.	300	430psi	NYC]
25 23						7 11 70 11					
3R-311	E-1	Ra Ra	6" sc 6" sc	-	12" PCC 12" PCC	4"/8" Bit 4"/8" Bit	300 300	430ps1			1
ast El	101 E-1	Na	0 50	 	12 100	+ 8" PCC	300	430psi			1
3L-31F	E-1	Ra		-	12" PCC	6"/10"Bit.	300	430psi			1
]
4-32	E-1	Ra	6" SC	an bit	2" + 2"*	4"/6" Bit					4
L Ext	E-1	Ra	6" sc		1'." PCC	 	300	430psi	NYC	1964	i
				1	1	<u> </u>		1 3 9 1 2 2	-1120	-/-	1
]
											1
				L	TAXIWAY-	<u> </u>	<u> </u>				1
0.00			-		TANIMAT	 T					1
tical		F2	?:" LS	∂" LA	4" AC						1
	E2/E3	FÇ.	16" LS	IV	14" AC						
0'	E2	Fl	02" LS 6" 30	8" LA	2"+ 2" *	2/4" AC					
E F			υ" SC	8" P.: 3" P.:	2"+ 2" *	4/6" AC					
G.			6" sc	6" PM	3" AC	4/6" AC					"
H-1			o" SC	6" P.4	3" AC	B" AC					1.
H-2			o SC	δ" P∴	3"+ 2" *	L' H AC					
K KK UU			6" 30 6" 80	6" PM 6" PM	54+ 54 *						∤ *≀
P, PP, F	Δ DR	PC .PD	6" SC	6" PM	13" PCC						1 ⁴
Q-1	119 110	10,11	6" sc	8" PM	2"+ 2" *	4/6" AC					ł
02			6" SC 6"SC+6"RS	5" P.	2114 011 *	4/6" AC					1
R S			6"SC+6"RS	10" P.2.	2"+ 2" AC	<u> </u>					
AP-1			6" SC		APRONS	 -					∤ ==
AP-2			6" SC	QH PM	2"+ 2" AC						1
AP-3			6" sc	5" PM	2"+11" AC						
AP-4			6" sc 6"sc+6"::Bs	6" P.	3 ⁱⁱ AC						
AD C			6"SC+6"TBS	5"+ 5"PM	25"AC+1:"R' 12" PCC						§° 4
AP-5			26" LS	8" LA	12 PCC						₹ .
AP-6			20 40	- 211	1.11. 1.11. 1.2						1
AP-6 AP-7				18" P.4	4"+ 4" AC						
AP-6 AP-7			6" sc	18" P.	4"+ 4" AC						1
AP-6 AP-7 AP-8				16" P4	4"+ 4" AC						

Table A2 (Continued)

<u>IRPO</u>	RT PA	VEME	NT CH	ARA CTERISTI	CS			Table A2 (Conti	nuea)	
MOD, IBGRADE REAL. K	DESIGN ALLOW.	CONSTRUC.	YEAR	New York	CITY	New York	AIRPORT NAM	John F. Kennedy	International	Apr. '73
				1		(D			
300	430psi	NYC	1959	}		-	/ ·			
3 00	430psi	NYC		1						
							7.			
300	430nsi						-			
300	430psi			1			/ J %			
300	430psi]			X ; ;	7		
	· · · · · · · · · · · · · · · · · · ·							" . •	1 =	
300	3Jpsi	ITYC	196,4		' 4	· /.		1	: D	8
				NOPH PASSENGER	=	a 6	- · ·	, ,	7	
				44 HTRO		٠. _{ال}		1 0	/	
				i /) 	. 4		* *		
				1.5	/		ONING SAMP	, i.e.	. 3	\ _ ^
						_	NT: FIVAL MINAL			100
					0	أر سرا	P. P			
				AM2	1	ز ۲۰۰۲	م ک			1 11 11 12
				CAND	ž •	\ = ° -	/ ` 	20	AP-2 (AP) (-5)	AP -3
						` .	- o - c - c - c - c - c - c - c - c - c	1.3/1/2	37	(AF-6)
				}	. * *	<u></u> -1	GENERAL	AP (AP	LORY REF POINT	7 · .
				, and 8 4		UAL	S	95	//	
				441	FAL		1		//////	1: :
						~ >	2	(LOP)	// (AP.7)	
Binder	+ 2" <i>I</i>	Asphalt			•	7, .*				н .
					` ,	₹ * .,			// AE STATE	AP-B
						AA B		(AF 4)	(")	
				141	~	8			1	X 1 11
										

(Sheet 11 of 44)

lA.	C. YEAR	CONSTRUC.	DESIGN ALLOW,	MOD. SUBGRADE REAC. K	OVERLAY	SURFACE COURSE	BASE COURSE	SUBBASE COURSE	SUB- GRADE CLASS	SOIL CLASS.	I, D. NO.
					_	RUNWAYS					
	+	· · · · · · ·								 -i	
				1				+			
	-			<u> </u>							
	 			 							
				 	•			-			
								}			
								i			
_	+			∤							
	 			 							
				$I_{}I$							
					D /2 OHAG	TAXIWAY-	011 704	711 ag 1			m 1/1/
				 	4" AC	"+ 2" AC 12" PCC	8" PM	6" sc 6" sc	-		T.XK XE
				 	7 AC	12" PCC		<u> </u>	- 		<u>-1</u>
						12" FCC	-	6" sc			- 2
					2/4" AC	12" PCC	-				-1
	+				4/6" AC	"+ 2" AC	8" PM	6" sc			-2
-	+										
				 	·						
				 					-		
	1										-
				<u> </u>							
				,		- APRONS					
				 							
_	+	+		 							
	-		· · · · · ·								
	1				· · · · ·				+		
	+		-	1						-	

REMARKS:

SC - Stone Screening PM - Penetrated Macadam AC - Asphalt Concrete

13

Table A2 (Continued) MOD.

BLIEGRADE DESIGN CONSTRUC

STATE New York

CI John F. Kenned, International MOD, BUBGRADE REAC, K New York DESIGN ALLOW. CONSTRUC YEAR

A

AIRPORT PAVEMENT CHARACTER STATE New You SOIL i, D. NO. DESIGN SUBBASE BASE SURFACE CONSTRUC. GRADE OVERLAY YEAR CLASE COURSE COURSE COURSE REAC. ALLOW. PEC K RUNWAYS 6" sc 6" PM 2"+ 2"(1) 13-31 E-3 Fl 13" AC (2) POLIYA 1973 45" SBM POLYA 1972 Fl 75" PM 21" AC <u>(3)</u> 4-22 E-3 TAXIWAY AC 5" 7" Concret Fl PONYA 1972 E-3 AC 2"+ 2" E-3 Fl AC FOUNA 1972 21" AC 41" P.1 POLYA SBM. 7-4 E-3 Fl 1973 1971 6" sc 6" sc 6" sc 2"+ 2" PM DEFERENCE FOLTYA 4" P.: 2"+ 2" POHYA E-3 F1 1973 4" P. POLYA E-3 Fl 1973 <u>ś"</u> 4" P. 2"+ 2" E-3 1973 4"+ 3" SC Pi-1 AYLICT 1971 T-10 E-3 Fl 6" 6" sc 6" sc 6" sc 2" + 2 AYNOI F.(1960 1-11 4"+ 3 1971 1960 E-3 Fl P. 1 1-12 4" PM 2"+ 2" POLYA 2"+ 2" 6" sc 6" PM 1960 APRONE AC (Unknown thickness) 7"Concrete AC 2½" AC 6 45" P.V. B1 E-3 F1 1971 511 2 n - 2 n 6" AC 611 FONYA 1971 B2 4" 6" AC 6" SC 2"+ (L) E-3 PONYA 1971 2 AC SBM 4 FM 6 PONYA 1960 Cl PM 2"+ 2" 6" sc POLYA 1960 C5 -<u>6"</u> Tit 2"+ 2" PM PM 1960 1960 SC PCNYA 25" SBM <u>ඉ</u> Dl AC PONYA PONYA 1960 U22½" AC 42" PM 1938 SBM AC (unknown thickness) E-1 REMARKS: SC - Stone Screening AC - Asphaltic Concrete SBM - Selected Base Material PM - Penetrated Macadam PMM - Plant Mix Macadam Asphalt binder + asphalt top course. (1)5" AC (1969) + 8" AC (1973). (2)8/20" PM + 2" Binder + 2" AC top course (1960) + 5" AC (1972). (3) 8/20" PM + 2" Binder + 2" AC top course (1960) + 5" AC (1972). (4) 2" PM + 2" AC Binder + 2" AC top course (1960) + 3" AC (1973). (5) 4" to 8" AC (1971) + 5" AC (1973). (6) 6" SC + 4" PM + 2" AC Binder + 2" AC top course.

3

Table A2 (Continued) MOD.

DESIGN CONSTRUC

STATE New York Apr. '73 AIRPORT NAME MOD. JOGRADE REAC. La Guardia New York DESIGN ALLOW. CONSTRUC. YEAR PONYA 1973 PONYA 1972 FLUSHING POLYA 1972 PCLYA 1972 POLYA POLYA 1971 PO:IYA 1973 1973 1973 POLIYA 1960 POLYA 1971 PONYA 1900 PONYA 1960 n thickness) 1938 1971 PC YA POLIYA 1971 PONYA 1971 PO!IYA 1960 PONYA 1960 1960 1960 PONYA PONYA 1960 thickness) Concrete Base Material

(Sheet 13 of 14)

STATE	YEAR	CONSTRUC.	DESIGN ALLOW,	MOD. SUBGRADE REAC. K	OVERLAY	SURFACE COURSE	BASE COURSE	SUBBASE COURSE	SUB- GRADE CLASS	SOIL CLASS.	I, D. NO.
1					_	- RUNWAYS -					
1		PONYA			6"/18"AC	*	*	*	*	*	/29
1		TOMIA			0 /10 10		, ,				1
1	1973	PONYA				4" AC&B	8" LA	8"LC+11+"LB	Fl	E-2	√22T
1		PONYA ·		 		14" AC&B	8" LA	6"LC+14" LB		E-1	3
1	19 7 3 19 7 3	PONYA				4" AC&B	3" LA	ll₊" LB	Fl	E-2	4
1											/22R
1	1973	PONYA				4" AC %B	8" LA	6"LC+16"LB		E-2	-5
1	1973 1973	PONYA PONYA				4" AC&B	8" LA 8" LA	6"LC+14"LB 6"LC+ 3"LB		E-2 E-2	-6 -7
1											
1											
1	1050	701714				TAXIWAY	311 = -				
\mathbf{I}	19 7 3	PONYA PONYA				4" AC&B	8" LA 8" LA	6"LC+14"LB 8"LC+14"LB		E-2 E-2	-1 -2
1	$\frac{1973}{1973}$	PONYA				4" AC&B	8" LA	6"LC+3" LB		F-5	3
1	1973	POHYA				4" AC&B	3" LA	6"LC+16"LB	Fa	E	14
]	1973	POLYA			(V Agos	4" AC&B	8" LA	14" LB	Fa	E-8	-5
┨	1973 1973	PONYA PONYA			6" AC&B	3½" AC	7" PM	-	Fa *	E-1	-6
1	1962	PONYA			3" AC	*	*	*	*	4	- 7 -8
1		AYIOT			3" AC	3. AC	5" PM	6" 3C	Fa	Ē2	-9
1											
1											
}						-					
. 25	1773	PONYA			_	4" AC B	8" LA	8"IC+16"LB	Fa	E-2	1
1 :	1973	PONYA				4" AC &В	8" LA	6"LC+16"LB	Fa	E-3	-2
,:	1975	POWYA			3" AC	4" AC&B	8" LA	8"LC+14"LB	<u>Fa</u>	E) Ii
1 /					ر بر	*	4	*	* 1	#	5
]						11" PCC	6" sc	6" sc	Fl	E-1	-6
-				-		2" AC 33" AC	3" PM 5" PM	6" 30 6" 80	F1 F1	E-1 E-1	-7 පි
1						Jano .			*		
									<u> </u>		
		creening nd Cement	Portlar		ng course		lam	halt Concrete etrated Maca	- Pen	P://	IARK
ار.			cret	regate	ash Agg			cement flya: Hylrated Lim		tion o	mpos
			55.5	30	.0		•3	3.6	A	L	
_			Pl. 0	-	2		.9 .7	3.2 2.8		L L	

NOTE: Only critical sections presented.

Table A2 (Continued)

RPORT PAVEMENT CHARACTERISTICS

40D.		CONSTRUC.		STATE of Jerney	CITY Newark	AIRPORT NAME Newark	Apr. '73
EAC.	ALLOW.	SPEC	YEAR	180	10	I	
		PONYA		R-2	FOJ		
		PONYA PONYA PONYA	1973 1973 1973				
		PONYA PONYA PONYA	1973 1973 1973		2-4 2-4 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
		POLYA	1973 1973 1973 1973 1973 1973 1973 1962	R-4	T-1 T-3 T-3 T-3		
		PONYA PONYA PONYA	1973 1973 1973	R-4 T-1	9.0	A PANEMEN EN PANEMEN E	
SC - PCC -	Portlar cre	screening ad Cement te.	3 5 Con-	2-H-2 A-3 A-4 2-H-2 A-3 A-7 2-H-2 A-2 A-2	9-1 22R	FUTURE T-8 PAVEMENT	
and ar	55.5 94.0 84.5 e unkno	own to					

(Sheet 14 of 44)

YEAR	CONSTRUC. SPEC	DESIGN ALLOW,	MOD, SUBGRADE REAC, K	OVERLAY	SURFACE COURSE	BASE COURSE	SUBBASE COURSE	SUB- GRADE CLASS	SOIL CLASS,	D. IQ.
	<u> </u>			-	RUNWAYS -					
1969	FAAP-32			7" AC	3" AC	10" CA	10" JAN	F6	E-6	1
1969	FAAF-32		<u> </u>	7" AC	3" A	10" ÇA	10" 3AM	F5	E-5	2
1969	FAAP-32		1	7" AC	3" AC	10" CA	15" SAM	Fó	E-0	3
1969	FAAP-32		1	7" AC	3" AC	10" CA	15" SAM	F6	E-6	4
1969	FAAP-32		ļ	7" AC	3" AC	10" CA	10" SA::	F5	E-5	5
1972	A! AP-02	,	1		1;" AC	13" A3	10" SAX	F7	E-7	o
1962	FAAP-26				12" PUC			Ra	E-2	7
1962	FAAP-06				10" PCC	-		Ra	E-2	3
1969		600 ps1			12" PCC	6" ca	24" SAM	Кc	E-7	9
1969	CIUY	600 psi	200		12" PCC	σ" ca	24" SAN	Re	E-7	10
1972	ALAE-02				4" AC	25" AC	-	¥7	E-7	1.1
2011					YAWIKAT	5" CA	- a !! - a	- m/		
1944	USEL		 		2" AC		10" SAX:	F6	E-6	<u>1 </u>
1944	USEI BOIL				_ AU	y UA	10" SAN	F6	E-6	2
1948	FAAP-801		 		2 310	10" CA	6" sa::	F3	E-3	3
1944	USED				3" AC	7" CA	10" SA::	F6	E-6	+
1972			 		4" AC	10" AC	15" SA::	F7	E-7	5
1944	USEL		 		3" AC	7" CA	10" SAM	F6	E-6	5
1945	SEL		ļ.,		2" AC	7" JA	10" SA:	F6	E-6_	<u></u>
1963	FAAP-22	00 nsi	200		10" PCC		3" SAX	Re	E-7	3
1963	FAAP-22				14" AC	16" CA		F7	E-7	<u>. </u>
1962	FAAP-26	600 ps	200		12" PCC			Ra	E-2	
1967	FAAP-29		 		3" AC	₽" CA	7" SAX	F7	E-7	11
1972	ALAP-02				4" AC	25" AC	-	F7	E-7_	2
1943	USED			-				Re	E-6	1
1957	FAAP-619		 		3" AC	11" CA	8" SAN	F6	E-6	2
1965	FAAP-28		 		3" AC	10" CA	- JA.	:74	E-4	
1965					E" AC	SI" CA	91" SAT	F7	E-7	
1963	FAAP-27	200 net	300		12" PCC		IT SAM	Rc	E-6	
1961	CTTV	200 X	300		1011 771		E" SAL			
1967	1 AT.	200 **s:	300		12" PC:			Ra	E-2 E-2	,
1966	FAAP-29	200 ps:	300		13 PCC 12" PCC			Ra		
1969	FAAF-31		300		12" PCC		5" SAL. 3" SAL.	R c Rb	E-6 E-5	

REMARKS:

* Safety Factor 1.75

SAM - Selected Aggregate Material

CA - Crushed Aggregate
AC - Asphaltic Concrete

AIRPORT PAVEMENT CHARACTERISTICS

Table A2 (Continued)

AIRPC	RIPA	VEME	NT CH	ARACTERISTIC	CS		Table AZ (CC	on or naca,	
MOD.	DESIGN	CONSTRUC.		STATE Colorado	CITY	AIRPORT	NAME Stapleton I	nternational	Jan. '73
REAC.	ALLOW.	SPEC	TEAR				(87)		1
	<u> </u>			1		5			
		FAAP-32	1969	1		- 1	H		•
		FAAF-32	1969]			11		
		FAAP-32	1969			- 1	11		T.
<u> </u>		FAAP-32 FAAP-32	1969	1		li li	IL		
<u> </u>		APAP-02	1969 1972	1		- 1		1	
200		FAAP-26	1962	1		4	(R8)	1	
200	600 ps1	FAAP-06	1962				ਮ / ~	-N	
200	600 psi	CITY	1969	Į		/ 12			
200	600 psi		1969	ł			Z Z	1	
<u> </u>		ADAP-02	1972	i			11		
<u> </u>				1		/	IL .		
				1		\sim			
ļ						(TIO)	Y \		
<u> </u>				1		\prec \parallel	(R7)		Į.
Ţ		USED	1944	1		1 19			
1		USED	1944	1		\			
		FAAP-801	1944 1948	j		\ #1			
ļ		USED	1944	100.00		\ II L			
		110 FFD	1972 1944	(A7)	(A)	116			
		USED_ USED	1944	\odot	(AI)	VOL	97C		1
200	000 psi		1963		(73)	<u>lu</u>	(88)		1
		FAAP-22	1963		- 1 9		1		
200		FAAP-26	1962	-1-	V	(0.9)	R/WA	Y 17/35	
ļ		FAAP-29 ADAP-02	1967 1972		1 1	T101 - 3	150' 4	Y 17/35	
		ADAP-02	1912	$\overline{}$				55	
				(48)		117111			
					X-1.	- F 11 H	(C) =	R/WAY 26 R/8L	
·		HOTE	1010	۲		4 CIDUP	-(87)	150' A	1
		USED FAAP-619	1943 1957	~ 1	L 4.		(A5) /		
		FAAP-28	1965	(A3)-C		(R9)	111)		
		FAAP-28	1965	~	(RID)		(17)	(RG)	
300	200 ps:	FAAP-27	1963	(A6)_	- XX		$\sim 10^{-7}$	(TA)	
300 300	200 ps:	CITY	1963 1961 1967	<u> </u>	Z-1V1 '2	(18)	X		
300	200 ps:		1966	(T5) (A	2)11/			/	1
300		FAAP-31	1969					^	
				(T4)-					0 1
				\sim		4	771		H
					1 1/5	(7)	(c1)	/ /	
				(1	25) (R3)	(22)		(a) (b)	
					1		(RI)	(R3) (R4)	:
				0		(T2)	(11)	MAY OCI /AD	
				(16)				WAY 26L/BR	
				\$25U		<u>_</u>	130	- 10,010	
				(\sim $-$	Lug inc	FORMATION		
				(4:	9	אט ואו	CHMAIION		

(Sheet 15 of 44)

								RT PA		
D. ¥O.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW.	CONSTRUC.	YEAR
					RUNWAYS					
22R										
Α	E-7	F7	30" Gravel	4½",6" (2)	$2\frac{1}{2}$ Bit.C	1''', VAR (8			FAAP &	1969
				1 1 1 2 1 - 2	-10		<u> </u>		MPA	
В	E-7	F7	30" Gravel		25" Bit.C	211 7 11 211	7)		FAAP	1950
C	E-7	F7 F7	30" Gravel	45",6" (2) 45",6" (2)	L 7 772000	3" 3" 5"	1		FAAP	1961 1961
D E	E-7 E-7	F7	30" Gravel		25" Bit.C		5		FAAP FAAP	1961
3-331	_ 4-1	*1-	O GLAVET	1 2 10	CZ -DEHAU	3 943 8-3	1		FAAF	1307
A	E-7	F7_	30" Gravel	41.6" (2)	21" Bit.C	3", 3", 6"	(3)		FAAP	1963
					1770					
В	E-7	F7	30" Gravel		2!"Bit.C	3" 5" "5"	(3)		FAAP	
	E-7	F7	20" P-154	4",11" (4)	4" P=401	-			FAAP	1 969
	to 7	77-	3" P-208	4", 5" (5)	4" P-401	ļ			TAAD	3000
D E	E-1 E-1	Fa Fa	5" 3" (7)		4" P-401	-	 		FAAP FAAP	1969 1969
	<u> </u>	ra_		7 2	4 <u>F-40</u> 1		· · · · · · ·		FARE	1.905
				· · · · · · · · · · · · · · · · · · ·	TAXIWAY	-				
h a	E-7	F7_	24" Gravel	4", 8" (2)	3" P-401				FAAP	1963
b	E-7	F7	30" Gravel	41.6" (6)	21" P-401				FAAP	1970
pron		F7_	24" Gravel	4" 8" (2) 41" 6" (2)	3" P-401					-
8	E-7	F7	30" Gravel	4;" 6" (2) 4;" 6" (2)	2½" P-401 2½" P-401	4" P=401 3", 15", 5"	3		::PA	1969
b	E-7 E-7	F7 F7	30" Travel	45.6" (2)	25" P-401 25" P-401	4" P=401	4		FAAP	1969
a b	E-7	F7	30" Travel	45" 6" 6	25" P-401	3" 1 1" 3"	15		FAAP	1961
c	E-7	F7	30" Gravel	45" 6" (2)	21" P-401		i		FAAP	1960
	E-7	F7	30" Gravel	L 4±"•6" (2)]	21" P-401	4" VAR(8			MPA	1970
ide	E-7	F7	30" Fravel	4", 8" (5)	4" P-401	-	ļ		MPA	1970
	E-7		Exist.Gravel	4", 8" (2)	3" P-1+01		ļ		FAAP	1960
	E-6	Fó	24" Travel 24" Travel	4", 8" (2) 4", 8"	3" P-401				FAAP	1966
-	E-6 E-6	F6 F6	24" Gravel	4" 8" (2)	3" P-401 3" P-401		-		FAAP FAAP	1966 1966
1	E-7	F7	30" Gravel	43" 6" (2)	25" P-401	4" P=401			_	1.700
					- APRONS -	-				
	E-7	F7_	22" P-154	4" P-205	3" P-401	_			FAAP	1963
3	E-7	Re	1.7" P-154		15" PCC	-	300		FAAP	1963
_	E=7 E-7	Rc F7	17" P-154 24" P-154	8",2" (2)	15" PCC 3" P-401	-	300	·	FAAP FAAP	1966 1966
	- <u></u> 7	F7		8".8" (2)	3" P=401				FAAP	1971
1	E=7	r'7	Gravel		2:" P-401				FAAP	1057
i	E-7	F7 F7	12" Gravel	-	12" PCC	-	300		FAAP	1957
	E-7		24 ravell	-	12" PCC	-	30.)		FAAF	1000
	E-7	F7		4 ", 8" ②	3" P-401	-			FAAP	1960
	E-1	Fl	17" Fravel	4" , 6" (5)	3" P-401				FAAP	1966
,	E-7	F7	24" Gravel	4", 5" (2)	3" P-401	-			FAAP	1966

CTICC

Table A2 (Continued)

D. NADE		CONSTRUC.	YEAR	ARACTERISTICS STATE Massachusetts	Boston	AIRPORT NAME	Logan International	Jan. '73
	ALCOM							A
								$-\Pi \rightarrow$
								22
		FAAP &	1969		١.			
		MPA	1050	4	ĺ.			
		FAAP	1950	{ ·	,		33	
-		FAAP	1961 1961	{	\ \			
		FAAP	1961	1	1		1	
		raar.		Í	A		F	
\dashv		FAAP	1963					
		FAAP					.]	
		FAAP	1969		ALIEGNENT TO		4	
		FAAP	1969		Cheny.		1	\sim
		FAAP	1969		1	May To		1
				7	_ ~	3. K	<u> </u>	
		FAAP	1963	/	7-77	A CL		
		FAAP	1970	/ /		<) ~ (10	
				1		7/ NOZ C	20 1	
_):[PA	1969	11:01		1/	16 Di	. 11 1
		FAAP	_1969	150		1	No.3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+		7117	10(1			141/1		- P
-+		FAAP FAAP	1961 1960		<u> </u>	APAG	N ENIMISION Z. A +	
-		YPA ∵PA	1970	111			1 - 1	
		MPA	1970			/	1 / 5 S)471
		FAAP	1960	->	1 22 .		William I I	31
		FAAP	1966		/ " " " " " " " " " " " " " " " " " " "	<u> </u>	- 1	M
\rightarrow		FAAP	1966		· · · · · · · · · · · · · · · · · · ·			
-		FAAP	1966)		
			<u> </u>			< /	PI	3
		FAAP	1963			~~~	W WOOT D	
5		FAAP	1963			7		
2		FAAP	1966	5 7	A SOUTH			T-2 1 177
_		FAAP	1966		8	~		+
\rightarrow		FAAP	1071	-	111 7 3	(Jin 12)	Y/1	
\rightarrow		FAAP FAAP	1 <u>257</u> 1 <u>257</u>			17 d/e/		4
5-1		FAAP	1960		1		→ • '11	
\rightarrow		FAAP	1960				@ - !'I	
		FAAP	1966			75	\	
\dashv		FAAP	1966	Runway 4L-22R	= 7850' x 150'	Alle	500	
		1.011	+	Runway 4R-22L	= 10002' x 150'	Soun	FUEL FARM	
				Runway 15L-33	2468' x 125'	11	AMON PRINTER	المارية ا
				Runway 15R-33I	$x = 10089' \times 150'$			
				Runway 9-27 =	7002' x 150'			Jan Jak
								1
								(No.
								A

(Sheet 16 of 44)

	T -	_	Y	T	1	1	AIRPO	10.1.7		11 01
I, D. NO.	SOIL CLASS,	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW.	CONSTRUC. SPEC	YEAR
					- RUNWAYS -	_				
R-22L										
A	E-7	F7	30" Gravel	4",6" (1)	25" Bit.C	3", 4" ③			FAAP	1961
В	E-7	F7	30" Gravel	4½",6" (2)	2; Bit.C	3" , ¼" (3)			ADAP	1961
С	E-7	F7	30" Gravel	43",6" (2)	2½" Bit.C	3",15",3"	4		ADAP	1961
D	E-7	F7	30" Gravel	41",6" (2)	2 ¹ " P-401	4" P-401			FAAP	1 950
E	E-7	F7	30" Gravel	41,6" (2)	21" P-401		(-	FAAP	1960
F	E-7	F7	30" Gravel	1, 111 611 (3)	2½" P-401	3",3",5"	(4)		FAAP	1960
3	E-7	F7	30" Gravel	4111 611 (2)	2.I" P-401				FAAP	1950
Н	E-7	F7	30" Gravel	45",6" (2)	25" P-401	-			FAAP	1950
			<u></u>		TAXIWAY	<u></u>	1	_	<u></u>	
Р	E-7	F7	20" P-154	4".11" (5)	4" P-401		I		FAAP	1969
Pa	E-1		5",3" (6)	4" P-214	4" P-401	_			L <u>-</u> _	
<u>H</u>	E-7	F7	26" P-154	4" , 8" ⑦	4" P-401		ļ		MPA	1970
J	E-7	F7		4", 8"	4" P-401				MPA	1970
lleg.	E-6	F6	24" P-154	4" , 8" (7)	4" P-401		 		MPA	1969
					· · · · · · · · · · · · · · · · · · ·		 			
							 			
							 			
					APRONS	<u>-</u>	<u> </u>		L	
pan.l	E-7	F7	20" P-154	4",11" ⑤	4" P=401	-			FAAP	1969
xpan.	E-1	Fa	3" P-208	4" , 5" (8)	4" P-401				FAAP	1969
nt.2 ent.3	E-7	F7	Compacted		14" PCC		300		MPA	1969
ent.3	. <u>11</u> -1		Jompac Ged		1- 100		500		1.1.11	<u>+202</u>
									+	
		i					L			
REMARK			14; P-204							
	2	• P-2	14; P-205 .C; P-401							
	4	. P-4	01; P-201; P	-214						
	5	. P-2	14; P-208, F	- 209						
			09; P-208 14; P-208							
			14; P-200							

Table A2 (Continued)

AIRPO	RTPA	VEME	NT CH	ARACTERISTI	CS		Table .	A2 (Continued)	
MOD,				STATE Massachusetts	CITY	Boston	AIRPORT NAME Logan	International	Jan. '73
SUBGRADE REAC, K	ALLOW.	CONSTRUC.	YEAR						
		<u>. </u>				795-2	<u> </u>		
				1		ے,	K		
		FAAP	1961	1					
		ADAP	1961	Ŷ			7,		
4		ADAP	1961		rı		25	/	
		FAAP	1950	102	- u		l H	*	
(A) (A)		FAAP	1960		20	`		1	Vi
<u>4</u>		FAAP FAAP	1960			١.	1 11	,	<i>)</i>
		FAAP	1950 1950	В —			9		
				1	1				
					- 11				
				13		C		Coa	
		FAAP	1969		8 H		A Ge		
ļ		- MPA	1970		~, "I		1	/	• ,
		MPA	1970		100	B-	15	−8 / ` :	
		MPA	1969	2 7304 7	76	Part 1		/9/ XX	>
					14		De la	15 m	
					Vol			/0/	
				E 6	c				
				TAXIWI	F -	e	•		
				1	- 11		74		. 1
				1			// 74	- 18×	>
<u> </u>		EAAD I	3.060	1	U		//	*****	7
		FAAP	1969			THE WAY &	/		
		FAAP	1969	700:33	II	-//	6 0		
300		MPA	1969	7		//			
				7					V.
				//	5/				
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
					\ H				
					1				
					171				
				1	1174	1			
				£77.	48				
					Ш	/			
					-				

(Sheet 17 of 44)

AIRPORT PAVEMENT CHARACTER

							AIRPO	KIPP	A EMIE	AI CL
L, D. NO.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE REAC. K	DESIGN ALLOW,	CONSTRUC.	YEAR
					- RUNWAYS -	_				
L5L-33F	3									
Ā	E-7	F7	30" Gravel	$4\frac{1}{2}$ ".6" (1)	2½" P-401	-			FAAP	1951
В	E-7	F7	30" Gravel	4½".6" D		_			FAAP	1951
			<u> </u>		-2					
27										
A	E-7	F7	30" Gravel	4½",6" (1)	2½" P-401	3" 443" 3"	(2)		FAAP	1961
В	E-7	F7	30" Gravel	4불",6" ①	2½" P-401				FAAP	1951
C	E-7	F7	30" Gravel	4½",6" (1) 4½",6" (1)		$3'', 1\frac{1}{2}'',$	2		FAAP	1961
D	E-7	F7	30" Gravel	4늘",6" (1)	2½" P-401	1½", VAR	3		FAAP	1951
Е	E-7	F7	30" Gravel	4를",6" (1)	2늘" P-401	3",1½",5	(2)		FAAP	1960
I										
i										
					TAXIWAY	-				
I		<u> </u>					<u> </u>			
					· · · · · · · · · · · · · · · · · · ·					
							ll			
I										
							L			
			- -		APRONS					
									I	
							<u> </u>			
							\coprod			
							 			
										
-]				<u> </u>			
							L			
[<u></u> I			
							I I			

VAR - Variable Thickness

1. P-214; P-205 2. P-401; P-201; P-214 3. P-401; P-201

ORT PAVEMENT CHARACTERISTICS

Table A2 (Continued)

_				AKACIEKISIN						 777.5
)				Massachusetts	CITY	Boston	AIRPORT NAME	Logan	International	Jan. 173
NOE.	DESIGN	CONSTRUC.	YEAR	. dandon dancoon						
٠	ALLOW.	SPEC	1641							1
		Ĺ		4						-
				1						
\Box]						1
		FAAP	1951	1						
\neg		FAAP	1951	1						
		11111	13,11	1						
				1						
\dashv		FAAP	1961	1						
				1						
\rightarrow		FAAP	1951	1						
\rightarrow		FAAP	1951 1961	1						
\rightarrow		FAAP	1951	1						
\rightarrow		TAAR	1951	4						
-		FAAP	1960	4						
-										
\rightarrow				Į.						
-				1						
-	_			4						
				1						
				1						
\Box				1						
\Box				ì						
				1						
\neg				1						
_				1						
_				1						
_										
_				1						
-				1						
\rightarrow				ł						
-				ł						
-+				{						
_										
			_	Į.						
				Į.						
				4						
				1						
				ł						
\perp										
]								
T										
\neg										
				1						
				j						
				<u> </u>						

AIRPORT PAVEMENT CHARACT

								AINI O	KI I F	VEINE	
I. D. NO.	SOIL CLASS.	SUB- GRADE CLASS	SUBE		BASE COURSE	SURFACE COURSE	OVERLAY	MOD. SUBGRADE REAC. K	DESIGN ALLOW,	CONSTRUC. SPEC	YEAR
						RUNWAYS	_				
9R-27L	(See n	ote be	Tow)								
Critic	ıl:					_					
	E1/E2		3" SM	(1)	8" Bit.	2					
Non-Cr	ltical:										
	El/E2	F-1	8" SM	1	3" Bit.	(2)		 			
-	/2										
)L-27R		pte be	TOM)			12"-20"Bit	<u> </u>	 			
Critic					<u> </u>	12 -20 B10		↓ 			
Non-Cr Exten	t		———		22 11 222 14	3"-8" Bit. 2" Bit.	C.	 			
Exten.	E1/E2	F-1	S	<u>M</u>	11" WB Mac	2" B1t.	-				
		<u> </u>				TAXIWAY		L			
9R-27L	(See n	ote be	low)								
critic	i:							1 1			
	E1/E2	F-1	3" S	M 1	8" B1t.	(2)					
Non-Cr	tical:				-24						
	E1/E2	F-1	7" S	M (1)	3" B1t.	(2)					
	E1/E2	F-1	S	М	11" WB Ma						
r-2			35" S	M	8" Bit.	<u> </u>		-			
	-					APRONS					
Primary	1900	not a 1	۱۰۰۰۱				-	т -т			
Apron	(pee	noce o	Var.	Materi	al	12" PCC					
			3-36								
								1			
								-			
											

REMARKS: SM - Selected Material

Bit. C. - Bituminous Concrete

WB Mac.- Water Bound Macadam.

NOTE: Unable to obtain reliable data on Philadelphia International. Current pavement composition are very complex and the information is not readily available. The above data was obtained by telephone conversation with Harold Taylor, Engineer at Phila. Intil.

90% of current pavements (excluding the new runway) is planned for major improvement by 1975.

Pennsylvania Department of Highways standard base course. $3\frac{1}{2}$ " Binder Bituminous $1\frac{1}{2}$ "Surface Bituminous. $2\frac{1}{2}$ " Binder Bituminous + $1\frac{1}{2}$ " Surface Bituminous.

Table A2 (Continued)

<u>KI Ç</u>	NI I A	APME	MI CH	<u>ARACTERISTICS</u>	<u> </u>	Secretary Section 1997	(61916)
IOD. GRADE EAC. K		CONSTRUC.		STATE Pennsylvania	CITY Philadelphia	Philadelphia International	Jan. 7
*				1			
[1			
				1			
				1			
]			
				1			
				1			
				1			
				į.			
				1			
				1			
				4			
				ł			
				1		® .	
]		<i>.</i> 7'	
 						3 xlr. 12	
			-	1		· · · · · · · · · · · · · · · · · · ·	
				1)	Arm _ 100	
						13	
					9R-27L	90 3491 (27D)	
					· · · · · · · · · · · · · · · · · · ·	3500	
	_			1	6	10,70°	
				}	9	The state of the s	
t				1			
				1			
				4			
				İ			
				1			
				{			
				1			
				ł			
\longrightarrow		-					
	WB Mac	Water					
		Macad	am.				
			!				
		_					
Cur	rent pa	vement c	om-				
avall	able. rat Ph	The abov	·1.				
		1mprovem					

(Sheet 19 of 44)

AIRPORT PAVEMENT CHARA

							AIRIO	KIIF	VEIVIE	11 6
L D. NQ.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD. SUBGRADE REAC. K	DESIGN ALLOW.	CONSTRUC.	YEAR
						_				
3	E-7	Rc	-	-	7" PCC	7"/8" PCC			WPA-City	1941
4	E-7	Re	-	-	8" PCC	7"/8" PCC			CAA-City	1943
5	E-7	Re	-	_	12/13" PCC	**			CAA-City	1947
6	E-7	Re	-	_	14" PCC				CAA-City	1953
7	E-7	Re	-	-	14" PCC				CAA-City	1959
8	E-7	Rc		_	14" PCC				CAA-C1tv	1958
9	E-7	Rc	-	_	7/8" PCC	7/8" PCC			CAA-City	1950
11	E-7	Rc			14" PCC				FAA-C1ty	1960
12	E-7	Rc	-		14" PCC				FAA-City	1961
6A	E-7	Re	-	-	1/i" PCC	**			CAA-City	1947
7A	E-7	Rc	-		14" PCC	**			CAA-C1ty	1959
12A	E-7	Re	-	6" AC	14" FCC				FAA-City	1970
					— TAXIWAY—					
1	E-7	F5		8" *	25 Bit.				City	1940
2	E-7	Rc	5" P-209	181	9" PCC				City	1940
4	E-7	Re	J F-209	-	8" PCC		-		CAA-City	1943
6	E-7	Re		_	14" PCC			-	CAA-C1tv	1 953
7	E-7	Re		-	14" PCC				CAA-City	1954
11	E-7	Re			14" PCC				FAA-C1ty	1960
12	E-7	Re			14" PCC				FAA-City	1961
13	E-7	Re	45" P-209	-	9" PCC				FAA-City	1963
14	E-7	Re	43" P-209	_	12" PCC				FAA-City	1963
15	E-7	Rc	4½" P-209	-	9" PCC				FAA-City	1965
2A	E-7	Rc			9" PCC	2" Asph.				
2A	E-7	Re	•	6" AC	14" PCC				FAA-City	1969
					APRONS -					
7	E-7	Rc	-	-	14" PCC				CAA-City	1954
10	E-7	Rc		-	14" PCC				FAA-City	1960
11	E-7	Rc			14" PCC				FAA-City	1960
13	E-7	Rc	4½" P-209		מיו מתר				FAA-City	1963
L2A	E-7	Rc		6" AC	14" PCC				FAA-City	1969

REMARKS:

- * Water Bound Macadam
- ** 5" AC overlay at center line tapered to 0" 75' from center line

OD.	DESIGN	CONSTRUC.		STATE	Missouri	CITY	St. Louis	AIRPORT NAME	Lambert Intern	national	Jan.	17
EAC,	ALLOW.	SPEC	YEAR									
				1								
		WPA-C1ty	1941]								
		CAA-C1ty	1943]								
		CAA-City	1947]								
		CAA-C1tv	1953]								
		CAA-C1tv	1959	ļ	Runway	NE/SW	(6 - 24) -	7600' x 200				
\Box		CAA-C1tv	1958		•	N/5	(17 - 35) -	6000' x 150		i		
		CAA-City	1959]			(12R-30L) -	10,018' x 200	•	i.		
		FAA-City	1960	1	T T		(12L-30R) -	6,623 x 150	•	A		
		FAA-C1ty	1961	1						- N -		
				l .						i.		
		CAA-C1ty	1947							1		
		CAA-City	1959	Į.						Д		
		FAA-City	1970									
				ł								
		 		l								
				ł								
—		1044	7010	ł					_			
+		City	1940	ł								
-+		City	1943	ł				040	Q 24 4.			
-		CAA-C1ty		ł			n	•				
		CAA-City	1953	1			~ \\ @	n 1	1			
\rightarrow		CAA-C1ty	1954 1960	1		· .	(24) O+1\ T	603	2/2/2/11			
\rightarrow		FAA-C1ty		ł		N.	1	I KON		- ®		
i		FAA-C1ty	1961 1963	1		6	0 119		-0 W/U	•		
_		FAA-City	1963	Í		- 7	160 X 140		M (W)			
		FAA-C1tv	1965	1			NCON!		10011			
		100					Q YXX	2 1100				
		!				-	Deco	N/O	VX VOI	11/19/		
		FAA-City	1969	1		્	KIR					
				1		د	/ b	S/KMI		5~~~		
]				TIPECOL		() T		
				I	•	·MC	J W/ 15		TC 60/01	₩° ~		
		CAA-City	1954]		\sim	-//	The Park		(124)	0.	
		FAA-City	1960	1		9	0 ~	371100		29/1/2		
		FAA-City	1960	ŀ				20/	2	40 c //		
_		FAA-C1ty	1963	l				`,		\sim $^{\circ}$	ma.	
		FAA-C1ty	1969	l				1	5967U			
		├ ──		l				,		111/	(2A)	
				(1/2/201	ONLY.		
				l					7	W WA		
									- 30	4		
				ı						6		
										•		
line												
				ŀ								

(Sheet 20 of 44)

AIRPORT PAVEMENT CHARAC

							AIN G	14111	A PIMIT	11 0
i, D. NO.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD. SUBGRADE REAC. K	DESIGN ALLOW,	CONSTRUC.	YEAR
		<u> </u>		-	RUNWAYS					
3-26										
⊰-1	E-3	Rb	52" CG	-	15" PCC				USAF	1960
R - 2	E-3	F2	45" CG	12" CG	3" AC	$1\frac{1}{2}$ " AC	300	600psi	USAF	1965
3-3	E-3	Rb	45" CG	-	16" PCC		300	600psi	USAF	1967
3-4	E-3	F2	45" CG	12" CG	5" AC	5" AC			USAF	1965
3-5	E-3	F2	45" CG	12" CG	5"/6" AC	3"/5" AC			USAF	1967
3-6	E-3	F2	45" CG	12" CG	5"76" AC	3/4"-4"AC	<u> </u>		C-811	1967
R-7	E-3	F2	48" CG		3" AC	3/4" - 4"AC				1963
₹-8	E-3	F2	48" c ;	_	3" AC	3/4"-4"AC				1963
R - 9	E-3	F2	48" C7	_	5±" AC	4" AC			C-811	1967
					TAXIWAY-					
-1	E-3	F2	36" Agg.	8" CA	4" Fit.					1959
-2	E-3.	F2	32" CA	26" CA	4" Pit.				USAF	1950
-3	E-3	F2	1 8" d.;	40" ca	4" Bit.		ļ		'ISAF	1961
7-4	E-3	F2	21" 07	9" CA	3" Bit.	ļ	ļ		6206	1964
' - 5	E-5	F2	21" CG	9" CA	3" Bit.		├ ───- ├		6004	1961
r <u>-6</u>	E-3	F/2	21" C1	9"/1?" CA	3" Bit.		L		6105	1964
7-7	E-3	F2	60" C3	-	25" Bit.	ļ	ļ		USN	1944
' - 8	E-3	F2	36" C:3	12" CA	3" Bit.	 	 		6105	1964
1-9	E-3	F2	60" U. AE.	12" CA	4" Bit.	ļ	 			1970
-10	E-3	F2	21" CJ	12" CA	3" Bit.				6105	1964
1-11	E-3	F2	36" CG	12" CA	3" Bit.	ļ	 			1964
1-12	E-3	F2	60" CG		$2\frac{1}{2}$ " Bit.	 -			USI	1944
-13	E-3	F2	21" CG	4" cA	2" Bit.	ļ	 		<u>620</u> 6	<u> 1961</u>
1-14	E-3	F/2	60" CG		2½" Bit. 2½" Bit.		 		1777	1944
15	E-3	F/2	60" cc	-			<u> </u>		USN	1944
	See Pag		4" CA		APRONS -		· · ·			2010
-1	E	F2		911 014	15" PCC 4" Bit.	 	 			1969
-2	E-3	F2	12"+24" (1)	8" CA			 			1969
<u>-3</u>	E-3	r'2	21" CG	12" CA		 			(00)	1,964
-4	E-3	F2				 	 		6004	1961
<u>-5</u>	E-3	F2		-			 		6004	1961
<u>-6</u>	E-3 E-3	F2 F2	9" CG 21" CG	9"/12" CA		 			6105	1964
<u>-7</u> -8	E-3	F2	9" CG	12" CA	3" Bit.	 	-		6105	1964
			2 0 3		1 2 2 0 6	7 10 7.14			C308	1964
-2	E-3	F2	21" CG	9" CA	3" Bit.	15" Bit.			6004	1961
-10	E-3	F2	10 Gr. A.		4" Bit.	1.1W = 2.7	L		(60)	1969
-11	E-3	F2	21" CG	9" CA	3" Bit.	15" Bit.	L. i		6084	1961

REMARKS:

CG - Coral Aggregate

AC - Asphaltic Concrete

U.Agg.- Untreated Aggregated
CR - Crushed Aggregate
Gr.A. - Granular Aggregate
Bit. - Bituminous Asphalt
12" Coral Aggregate + 24" Granular Aggregate

Table A2 (Continued) AIRPORT PAVEMENT CHARACTERISTICS Jan. '73 Hawa11 Honolulu Honolulu International DESIGN CONSTRUC SPEC REAC. USAF 1960 300 600ps1 USAF 1965 300 600ps1 USAF 1967 USAF 1965 USAF 1967 1963 1963 C-811 1956 USAF USAF 1961 6206 6004 1964 1961 6105 1964 USN 1944 6105 1964 1970 6105 1964 1964 1944 USN 6206 1961 1944 1944 USN 1969 1964 6004 1961 6004 1961 1964 1964 1964 1961 1969 6105 6105 6004 6084 1961 HICKAM AIR FORCE BASE

(Sheet 21 of 44)

	YEAR
RUNWAYS	
	1964
F2 45" CG 30" CG 2\frac{1}{2}" Bit. 14\frac{1}{2}" Bit. C-308 19	1964
F2 45" CG 12" CG 23" Bit. 143" Bit. C-308 19	1964
	1964
	1970
F2 62"+24" (1) 8" CA 8" Bit.	<u> 1970</u>
F2 45 " CG 18 " CG $2\frac{1}{2}$ " Bit. $4\frac{1}{2}$ " Bit.	1963
F2 45" CG 18" CG 2½" Bit. 6" Bit.	1963
F2 45" CG 18" CG 25" Bit. 6" Bit.	1963
	-
— TAXIWAY—	
F2 60" CG - 25" Bit. 35" Bit. 19	1963
	1964
F2 28" CG 10" CA 4" Bit. 0710 19	1969
F2 21" CG 9"/12" CG 3" Bit. $1\frac{1}{2}$ " Bit. 19 F2 10" Gr. A. 12" CA 4" Bit. 19	1970
	1970
	1969 1969
	1963
	1944
	1963
	1963
	1963
	1963
	1942
	1942
— APRONS —	
	1969
F2 10" Cr. A. 12" CA 4" Bit. 19	1969
F2 21" CG 3" CA 12" PCC UAL 19	1962
	1944
F2 6" CA - 9" PCC 19	1966
F2 - 9" CA 3" Bit. 19	1966
F2 21" CG 12" CG 3" B1t. UAL 19	1962

REMARKS:

CG - Coral Aggregate
CA - Crush Aggregate
Gr. A.- Granular Aggregate

① 62" Untreated Aggregate + 24" untreated aggregate

3

Table A2 (Continued)

				STATE Hawaii	CITY	Honolulu	AIRPORT NAME	Honolulu	International	Jan. '73
MOD, BGRADE REAC,	DESIGN	CONSTRUC.	YEAR	nawall		1.01.02.02.0	_	HOHOLULU	Intel na vional	104
K				1						
				1						
		0.000	30(1)	4						
		C-308	1964	4						
	·	C-308 C-308	1964 1964	4						
		C-308	1964	1						
		0	1970	1						
			1970	1						
				1						
				4						
			1963 1963 1963	4						
			1963	1						
			1907	1						
				1						
				1						
]						
	-			1						
		C-308	1963 1964	-†						
		0710	1969	1						
		0/10	1970	1						
			1970 1970	1						
			1969]						
			1969]						
		USN	1969 1963 1944 1963	4						
		MGO	1063	4						
			1963	1						
			1963	1						
			1963	1						
		USAF	1942]						
		USAF	1942	4						
			1969	4						
			1060	1						
		UAL	1962	1						
		USN	1969 1962 1944	1						
I		30000	1966	4						
			1966 1966 1962	4						
		UAL	1962	4						
-				4						
				1						
				1						
				1						
Aggrega	te + 24	1		1						
egate										

(Sheet 22 of 44)

i, D. NO.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW.	CONSTRUC.	YEAR
				<u> </u>	RUNWAYS -					
	ļ									
		— —	<u> </u>		}		 			
		<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · · ·	 		 			
				1	İ					
	 	 			 				 	
							 			
					-		 			
				 	 		 			
				1						
20	# O	770	(a/V a.a.	131.11 64	TAXIWAY-		, ,			
-32 -16	E-3	F2 F2	36" CG 60" CG	14" CA	4" Bit. 2½" Bit.		 		USAF USN	1962 1944
-10	E-3		00 00	 	E3 BILL		 		USIN	1944
				 	 		 			
					<u> </u>		 			
				t						
				 			 			
			 	 	 		+		-	
				 		• • •	 			
				,	APRONS		, ,			
				<u> </u>	ļ	***	 			
				 	f		 			
							ļ Ī			
				 	 	 .	 			
				-			 			
				 	 		 			
				 	 		 		·	

CG - Coral Aggregate CA - Crushed Aggregate Bit.- Bituminous Asphalt

13

Table A2 (Continued)

IRPO	RT PA	VEME	<u>NT CH</u>	<u>ARACTERIST</u>	ICS		rable A2 (Continued)	
MOD. BGRADE REAC. K	DESIGN ALLOW.	CONSTRUC.	YEAR	ARACTERIST STATE Hawaii	Horolulu	AIRPORT NAME	Honolulu International	Jan. '73
				1				
				j				
				}				
				1				
				1				
				1				
				1				
				1				
				4				
		USAF	1962 1944	1				
		USN	1944	1				
				1				
	-]				
-			-	1				
				1				
\longrightarrow			· · · · · · · · · · · · · · · · · · ·	1				
				1				
				1				
-								
				4				
				1				
			-					
-				1				
_								

AIRPO	RT	PA	VEM	ENT	CHAR
MOD.				_	STAT

RINNWAYS RC ST P-154 - 13" RC RC ST P-110 CAA 1	AR					I			1		MOD.			Ī					
1 E-7 Rc 9" P-154 - 13" RCC ** 5" P-410 CAA 1		YEAR	YEAR	YEAR	YE						REAC,	OVERLAY				1-10-3-4-4	GRADE		
2 E-7 Re 9" P-154 - 11" FCC ** 200 375 Jpg4* CAA 1: 3 E-7 Re 12" P-209 - 11" FCC ** 200 3750ps1* FAA 1: 4 E-7 Re 12" P-209 - 13" FCC ++ 200 3750ps1* FAA 1: 5 E-7 Re 9" P-154 - 13" FCC ** 200 3750ps1* CAA 1: 6 E-7 Re 9" P-154 - 11" FCC ** 200 3750ps1* CAA 1: 8 E-7 Re 9" P-154 - 11" FCC ** 200 3750ps1* CAA 1: 8 E-7 Re 9" P-154 - 11" FCC ** 200 FAA 1: 9 E-7 Re 9" P-154 - 13" FCC ** 5" P-410 FAA 1: 40 E-7 Re 12" P-209 - 9" FCC ** 5" P-410 FAA 1: 41 E-7 Re 12" P-209 - 13" FCC ** 5" P-410 FAA 1: 42 E-7 Re 12" P-209 - 15" FCC ** 5" P-410 FAA 1: 43 E-7			-									_	NWAYS —	R					
2 E-7 Re 9" P-154 - 11" FCC ** 200 375 Jpd* CAA 1: 3 E-7 Re 12" P-209 - 11" FCC ** 200 375 Jpd* CAA 1: 4 E-7 Re 12" P-209 - 13" FCC ++ 200 375 Jpd* FAA 1: 5 E-7 Re 9" P-154 - 13" FCC ** 200 375 Jpd* CAA 1: 6 E-7 Re 9" P-154 - 11" FCC ** 200 375 Jpd* CAA 1: 7 E-7 Re 9" P-154 - 11" FCC ** 200 375 Jpd* CAA 1: 8 E-7 Re 9" P-154 - 11" FCC ** 200 FAA 1: 9 E-7 Re 9" P-154 - 13" FCC ** 5" P-410 FAA 1: 14 E-7 Re 12" P-209 - 9" FCC ** 5" P-410 FAA 1: 40 E-7 Re 12" P-209 - 13" FCC ** 5" P-410 FAA 1: 41 E-7 Re 12" P-209 - 15" FCC ** 5" P-410 FAA 1: 42 E-7 Re 12" P-209 - 15" FCC ** 5" P-410 FAA 1: 43 E-7 Re 11" P-154 - 9" FCC ** 5" P-410 FAA 1: 44 E-7 Re 9" P-154 - 11" FCC ** 5" P-410 FAA 1: 45 E-7 Re 9" P-154 - 11" FCC ** 5" P-410 FAA 1: 45 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 45 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 45 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 46 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 47 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 48 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 49 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 40 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 40 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 40 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 40 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 40 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 40 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 41 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 41 E-7 Re 9" P-154 - 12" FCC ** 5" P-410 FAA 1: 41 E-7 Re 9" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 9" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 9" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 9" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 9" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 9" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 9" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 9" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 9" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 9" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 9" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 12" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 12" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 12" P-154 - 12" FCC ** FAA 1: 41 E-7 Re 12" P-154 - 12" FCC ** FAA 1: 4	369	1969	1969	196	19	Т	ΑТ	CAA				5" P-410	PCC **	113"	_	9" P-154	Re	E-7	1
3 E-7 Re 12" P-209 - 11" RC ++ 200 3750ps1* FAA 1 4 E-7 Re 12" P-209 - 13" RCC ++ FAA 1 5 E-7 Re 9" P-154 - 13" RCC ++ 200 3750ps1* CAA 1 6 E-7 Re 9" P-154 - 11" RCC ** 200 3750ps1* CAA 1 7 E-7 Re 9" P-154 - 11" RCC ** 200 FAA 1 8 E-7 Re 9" P-154 - 13" RCC ** 200 FAA 1 9 E-7 Re 9" P-154 - 13" RCC ** 4 9 E-7 Re 9" P-154 - 13" RCC ** 4 10 E-7 Re 12" P-209 - 9" RCC ** 5" P-410 FAA 1 140 E-7 Re 12" P-209 - 15" RCC ** 5" P-410 FAA 1 141 E-7 Re 12" P-209 - 15" RCC ** 5" P-410 FAA 1 142 E-7 Re 12" P-209 - 15" RCC ** 5" P-410 FAA 1 143 E-7 1.0 11" P-154 - 9" RCC ** 5" P-410 FAA 1 144 E-7 Re 9" P-154 - 11" RCC ** 5" P-410 FAA 1 145 E-7 Re 9" P-154 - 11" RCC ** 5" P-410 FAA 1 15 E-7 Re 9" P-154 - 12" RCC ** 5" P-410 FAA 1 16 E-7 Re 9" P-154 - 12" RCC ** 5" P-410 FAA 1 17 E-7 Re 9" P-154 - 12" RCC ** 5" P-410 FAA 1 18 E-7 Re 9" P-154 - 12" RCC ** FAA 1 19 E-7 Re 9" P-154 - 12" RCC ** FAA 1 10 E-7 Re 9" P-154 - 12" RCC ** FAA 1 11 E-7 Re 9" P-154 - 12" RCC ** FAA 1 12 E-7 Re 9" P-154 - 12" RCC ** FAA 1 13 E-7 Re 9" P-154 - 12" RCC ** FAA 1 14 E-7 Re 9" P-154 - 12" RCC ** FAA 1 15 E-7 Re 9" P-154 - 12" RCC ** FAA 1 16 E-7 Re 9" P-154 - 12" RCC ** FAA 1 17 E-7 Re 12" P-154 - 12" RCC ** FAA 1 18 E-7 Re 12" P-154 - 12" RCC ** FAA 1 19 E-7 Re 12" P-154 - 12" RCC ** FAA 1 19 E-7 Re 12" P-154 - 12" RCC ** FA	771	1971	1971	197	19	T) हा ने	375 Jps			PCC **	יננ ו	-	9" P-154			2
Table Tabl) 67	1967	1967	196'	19	T	Ā	FAA							-		Rc		
6 E-7 Re 9" P-154 - 11" PCC ** 200 3750ps1 CAA 1 7 E-7 Re 9" P-154 - 11" PCC ** 200 FAA 1 8 E-7 Re 9" P-154 - 13" PCC ** FAA 1 40 E-7 Re 9" P-154 - 13" PCC ** FAA 1 40 E-7 Re 12" P-209 - 9" PCC ** 5" P-410 FAA 1 41 E-7 Re 12" P-209 - 15" PCC ** 5" P-410 FAA 1 42 E-7 Re 12" P-209 - 15" PCC ** 5" P-410 FAA 1 43 E-7 Re 11" P-154 - 9" PCC ** 5" P-410 FAA 1 44 E-7 Re 9" P-154 - 11" PCC ** 5" P-410 FAA 1 45 E-7 Re 9" P-154 - 11" PCC ** 5" P-410 FAA 1 45 E-7 Re 9" P-154 - 11" PCC ** 5" P-410 FAA 1 46 E-7 Re 9" P-154 - 12" PCC ** 5" P-410 FAA 1 47 E-7 Re 9" P-154 - 12" PCC ** 5" P-410 FAA 1 48 E-7 Re 9" P-154 - 12" PCC ** 5" P-410 FAA 1 49 E-7 Re 9" P-154 - 12" PCC ** 5" P-410 FAA 1 40 E-7 Re 9" P-154 - 12" PCC ** FAA 1 40 E-7 Re 9" P-154 - 12" PCC ** FAA 1 40 E-7 Re 9" P-154 - 12" PCC ** FAA 1 40 E-7 Re 9" P-154 - 12" PCC ** FAA 1 40 E-7 Re 9" P-154 - 12" PCC ** FAA 1 40 E-7 Re 9" P-154 - 12" PCC ** FAA 1 40 E-7 Re 9" P-154 - 12" PCC ** FAA 1 40 E-7 Re 9" P-154 - 12" PCC ** FAA 1 40 E-7 Re 9" P-154 - 12" PCC ** FAA 1 40 E-7 Re 9" P-154 - 12" PCC ** FAA 1 40 E-7 Re 9" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 40 E-7 Re 12" P-154 - 12" PCC ** FAA 1 41 E-7 Re 12" P-154 - 12" PCC ** FAA 1 41 E-7 Re 12" P-154 - 12" PCC ** FAA 1 41 E-7 Re 12" P-154 - 12" PCC ** FAA 1 41 E-7 Re 12" P-154 - 12" PCC ** FAA 1 41 E-7 Re 12" P-154 - 12" PCC ** FAA 1 41 E-7 Re 12" P-154 - 12" PCC ** FAA 1 41 E-7 Re 12" P-154 - 12" PCC ** FAA 1 41 E-7 Re 12" P-154 - 12" PCC ** FAA 1 41 E-7 R		1967				r	Ā	FAA					PCC ++	13"	-	12" P-209	Re	E-7	4
T) 50	1950	1950	1950	19	Γ	A	CAA					PCC **	13"	-		Re	E-7	5
R)50	1950	1950	1950	10		A	CAA	81	375 Ops:	200		PCC **	111"	-	9" P-154	Rc	E-7	6
9 E-7 Rc 9" P-154 - 13" PCC ** FAA 1 40 E-7 Rc 12" P-209 - 9" PCC ** 5" P-410 FAA 1 41 E-7 Rc 12" P-209 - 13" PCC ** 5" P-410 FAA 1 42 E-7 Rc 12" P-209 - 15" PCC ** 5" P-410 FAA 1 43 E-7 Rc 11" P-154 - 9" PCC ** 5" P-410 FAA 1 44 E-7 Rc 9" P-154 - 11" PCC ** 5" P-410 FAA 1 45 E-7 Rc 16" P-209 9" P-201 17" PCC ** 325ps1 FAA 1 45 E-7 Rc 9" P-154 - 12" PCC ** 325ps1 FAA 1 10 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 11 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 12 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 13 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 14 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 15 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 16 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 17 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 18 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 19 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 10 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 11 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 12 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 13 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 14 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 15 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 16 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 17 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 18 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 19 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 20 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 21 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 22 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 23 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 24 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 25 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 26 COUNTY 1 27 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 28 PCC ** 1½" AC COUNTY 1 29 E-7 Rc - 8" PCC ** 1½" AC COUNTY 1	⊋58	1958	1958	195	10	L	A	FAA			200		PCC **	<u> </u>	_		Re	E-7	7
\$\frac{1}{40} \text{E-7} \text{Rc} \text{12" P-209} - \text{9" PcC ** 5" P-410} \text{FAA} \text{1} \\ \begin{array}{c ccccccccccccccccccccccccccccccccccc		1958					A	FAA]				PCC **				Rc	E-7	8
Land	3 62	1962	1962	1962	19	Γ	A	FAA					PCC **	13"			Rc	E-7	
12 F-7 Rc 12 F-209 - 15 RCC ** 5 F-410 FAA 1	971	1971	1971	197	19	L	A	FAA						9"	_		Rc	E-7	
Hart Hart) 71	1971	1971	197	19	L	A	FAA	\Box			/		<u> </u>	-				
Hat E-7 Rc 9" P-154 - 11" PCC ** 5" P-410 FAA 1		1971				L	A	FAA	\Box				PCC **		-			E-7	
Lambda L		1969				L									-				
TAXIMAY 10 E-7 Re 9" P-154 - 12" PCC **		1969				L			ــــــــــــــــــــــــــــــــــــــ			5" P-410							
10 E-7 Re 9" P-154 - 12" PCC ** FAA 12 E-7 Re 9" P-154 - 12" PCC ** FAA 12 E-7 Re 9" P-154 - 12" PCC ** FAA 13 E-7 Re 9" P-154 - 12" PCC ** FAA 14 E-7 Re 9" P-154 - 12" PCC ** FAA 14 E-7 Re 9" P-154 - 12" PCC ** FAA 15 E-7 Re 9" P-154 - 12" PCC ** FAA 14 15 E-7 Re 9" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 15 E-7 Re 12" P-154 - 12" PCC ** E-7 Re 12" P-154 -	<u>}70 </u>	1970	<u> 1970</u>	1970	19	L	<u> </u>	<u>FAA</u>	si	325ps			PCC **	17"	9" P-201	16" P-209	Rc	E-7	45
10 E-7 Re 9" P-154 - 12" PCC ** FAA 12 E-7 Re 9" P-154 - 12" PCC ** FAA 12 E-7 Re 9" P-154 - 12" PCC ** FAA 13 E-7 Re 9" P-154 - 12" PCC ** FAA 14 E-7 Re 9" P-154 - 12" PCC ** FAA 14 E-7 Re 9" P-154 - 12" PCC ** FAA 15 E-7 Re 9" P-154 - 12" PCC ** FAA 14 15 E-7 Re 9" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 16 E-7 Re 12" P-154 - 12" PCC ** FAA 14 15 E-7 Re 12" P-154 - 12" PCC ** E-7 Re 12" P-154 -						ᆫ		<u> </u>		L		ا ــــــــــــــــــــــــــــــــــــ			<u> </u>	L			
11 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 12 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 13 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 14 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 15 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 16 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 17 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 18 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 19 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 20 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 21 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 22 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 23 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 24 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 25 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 26 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 27 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 28 FCC ** 1½" AC COUNTY 1 29 E-7 Rc - 8" PCC ** 1½" AC COUNTY 1						_		~	 -						***	-111			
12 E-7 Re 9" P-154 - 12" PCC ** FAA 1 13 E-7 Re 9" P-154 - 12" PCC ** FAA 1 14 E-7 Re 9" P-154 - 12" PCC ** FAA 1 15 E-7 Re 9" P-154 - 12" PCC ** FAA 1 16 E-7 Re 9" P-154 - 12" PCC ** FAA 1 17 E-7 Re 12" P-154 - 12" PCC ** FAA 1 18 E-7 Re 12" P-154 - 12" PCC ** FAA 1 19 E-7 Re 12" P-154 - 12" PCC ** FAA 1 20 E-7 Re 12" P-154 - 12" PCC ** FAA 1 21 E-7 Re 12" P-154 - 12" PCC ** FAA 1 22 E-7 Re 12" P-154 - 12" PCC ** FAA 1 23 E-7 Re 12" P-154 - 12" PCC ** FAA 1 24 E-7 Re 12" P-154 - 12" PCC ** FAA 1 25 E-7 Re 8" PCC ** 1½" AC COUNTY 1 26 E-7 Re 8" PCC ** 1½" AC COUNTY 1 27 E-7 Re 8" PCC ** 1½" AC COUNTY 1		1953				┡							***	_					
13 E-7 Re 9" P-154 - 12" PCC ** FAA 1 14 E-7 Re 9" P-154 - 12" PCC ** FAA 1 15 E-7 Re 9" P-154 - 12" PCC ** FAA 1 16 E-7 Re 9" P-154 - 12" PCC ** FAA 1 17 E-7 Re 12" P-154 - 12" PCC ** FAA 1 18 E-7 Re 12" P-154 - 12" PCC ** FAA 1 19 E-7 Re 12" P-154 - 12" PCC ** FAA 1 20 E-7 Re 12" P-154 - 12" PCC ** FAA 1 21 E-7 Re 12" P-154 - 12" PCC ** FAA 1 21 E-7 Re 12" P-154 - 12" PCC ** FAA 1 21 E-7 Re 12" P-154 - 12" PCC ** FAA 1 22 E-7 Re 8" PCC ** 1½" AC COUNTY 1 23 E-7 Re 8" PCC ** 1½" AC COUNTY 1			1958			┢	_						100		 				
14 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 15 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 16 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 17 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 18 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 19 E-7 Rc 12" P-154 - 12" PCC ** COUNTY 1 20 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 21 E-7 Rc 12" P-154 - 12" PCC ** COUNTY 1 91 E-7 Rc - - 8" PCC ** 1½" AC COUNTY 1 92 E-7 Rc - - 8" PCC ** 1½" AC COUNTY 1		1959				⊢				-					 				
15 E-7 Re 9" P-154 - 12" PCC ** FAA 1. 16 E-7 Re 9" P-154 - 12" PCC ** FAA 1. 17 E-7 Re 12" P-154 - 12" PCC ** FAA 1. 18 E-7 Re 12" P-154 - 12" PCC ** FAA 1. 19 E-7 Re 12" P-154 - 12" PCC ** FAA 1. 20 E-7 Re 12" P-154 - 12" PCC ** COUNTY 1. 21 E-7 Re 12" P-154 - 12" PCC ** FAA 1. 21 E-7 Re 12" P-154 - 12" PCC ** FAA 1. 21 E-7 Re 8" PCC ** 1½" AC COUNTY 1. 22 E-7 Re 8" PCC ** 1½" AC COUNTY 1.		1960 1960				╄	\rightarrow								 		-		
16 E-7 Rc 9" P-154 - 12" PCC ** FAA 1 17 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 18 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 19 E-7 Rc 12" P-154 - 12" PCC ** COUNTY 1 20 E-7 Rc 12" P-154 - 12" PCC ** FAA 1 21 E-7 Rc 12" P-154 - 12" PCC ** COUNTY 10 91 E-7 Rc - - 8" PCC ** 1½" AC COUNTY 1 92 E-7 Rc - - 8" PCC ** 1½" AC COUNTY 1		1962				⊢				-				_	†				
17 E-7 Rc 12" P-154 - 12" PCC ** FAA 11 18 E-7 Rc 12" P-154 - 12" PCC ** FAA 12 19 E-7 Rc 12" P-154 - 12" PCC ** COUNTY 12 20 E-7 Rc 12" P-154 - 12" PCC ** FAA 12 21 E-7 Rc 12" P-154 - 12" PCC ** COUNTY 12 21 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 22 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 23 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 24 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 25 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 26 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 27 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 27 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 27 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 28 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 29 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 1\frac{1}{2}" AC COUNTY 12 20 E-7 Rc - - 8" PCC ** 11		1963				₩				<u> </u>			100						
18 E=7 Re 12" P=15\(\) = 12" PCC ** FAA 10 19 E=7 Re 12" P=15\(\) = 12" PCC ** COUNTY 10 20 E=7 Re 12" P=15\(\) = 12" PCC ** FAA 10 21 E=7 Re 12" P=15\(\) = 12" PCC ** COUNTY 10 91 E=7 Re - 8" PCC ** 1\(\) 1" AC COUNTY 10 92 E=7 Re - 8" PCC ** 1\(\) 1" AC COUNTY 1		<u>1963</u> 1965				┢	_			 					T				
19 E=7 Rc 12" P=154 - 12" PCC ** COUNTY 1 20 E=7 Rc 12" P=154 - 12" PCC ** FAA 1 21 E=7 Rc 12" P=154 - 12" PCC ** COUNTY 1 91 E=7 Rc 8" PCC ** 1½" AC COUNTY 1 92 E=7 Rc 8" PCC ** 1½" AC COUNTY 1	_	1965				┢╾	_	_	⇥	 					}				
20 E-7 Rc 12" P-154 - 12" PCC ** FAA 12 21 E-7 Rc 12" P-154 - 12" PCC ** COUNTY 19 91 E-7 Rc 8" PCC ** 1\frac{1}{2}" AC COUNTY 19 92 E-7 Rc 8" PCC ** 1\frac{1}{2}" AC COUNTY 19		1966			_	┢	_		-										
21 E-7 Re 12" P-154 - 12" PCC ** COUNTY 10 91 E-7 Re 8" PCC ** 1\frac{1}{2}" AC COUNTY 10 92 E-7 Re 8" PCC ** 1\frac{1}{2}" AC COUNTY 10		1967	_	_	_	┢			\dashv	\vdash					 				
91 E=7 Re 8" PCC ** $1\frac{1}{2}$ " AC COUNTY 1 92 E-7 Re 8" PCC ** $1\frac{1}{2}$ " AC COUNTY 1			1967			┢	_			 									
92 E-7 Rc - 8" RCC ** 1\frac{1}{2}" AC COUNTY 1		1966				┢	_		_	-	-	TIN AC				12 Pe154			
50 E-7 Rc 12" P-209 - 15" PCC ** FAA 10		1966				┢╌			-										8
		1967				H			\neg			12 11				12" P-209			50
	· V 1	701	- / / /			_	•							^					
22 E-7 Rc 9" P-154 - 12" PCC ** CAA 19)53	1953	1953	195	19	Г	A I	CAA				_	PCC **	12"	-	9" P-154	Re	E-7	22
23 E-7 Rc 9" P-154 - 12" PCC **			1955						-1						_	9" P_154			
		1957				T			7					12"				E-7	
25 E-7 Re 9" P-154 - 12" PCC ** FAA 19		1958					A I	FAA	╗				PCC **	12"	-				25
	59	1959	1959	1959	19		AΙΙ	FAA	\Box				PCC **	12"	-	9" P-154	Re	E-7	26
تنب بالنابات والنبي والنبين والمسار والمسارات والمسارات فأساراني والراز والماران				111	1.7			1772.00											
	62	1962	1962	1962	19		TY_	COUNTY					PCC **	12"		9" P-154	Rc	E-7	28
			1965				_						PCC **	12"	-	12" P-209	Rc		
			1965				TE	STATE					PCC **	9"	-	12" p-702	Rc	E-7	
			1965			Г	ΤΥ	COUNTY	\Box				PCC **	12"	_	9" P-209	Re	E-7	33
	765							C of E	\dashv			2" PCC	PCC	9"	-	12" P-209	Rc	E-7	34

^{*} Safety Factor = 1.5 ** Mesh Reinforced

⁺ Flexural Modulus; Safety Factor = 2 ++ Thickened Joint

Table A2 (Continued) **RPORT PAVEMENT CHARACTERISTICS** Jan. '73 Michigan ROD, BRADI EAC, Detroit Metro. Detroit DESIGN ALLOW YEAR K MASS HALL ROSE CAA CAA 1969 3750psd: 3750ps1 1971 00 1967 FAA FAA CAA 1950 $\overline{\infty}$ 375 Ops 1 CAA 1950 00 1958 FAA 1962 1971 FAA 1971 FAA FAA 1971 1969 FAA FAA FAA 1969 1970 325ps1+ CAA FAA FAA FAA FAA FAA FAA 1965 1965 FAA COUNTY 1966 COUNTY 1967 1966 1966 1967 COUNTY **(2)** COUNTY CAA COUNTY 1955 1957 FAA 1958 1959 FAA COUNTY 1965 STATE COUNTY C of E lus; Safety Factor = 2

(Sheet 24 of 44)

A

AIRPORT PAVEMENT CHARA MOD. SUBGRADE REAC. CONSTRUC. SUB-GRADE CLASS DESIGN ALLOW, L D. SOIL SUBBASE BASE SURFACE OVERLAY YEAR COURSE COURSE COURSE K RUNWAYS TAXIMAY-14" P-201 | 1½" P-401 - | 15" PCC* - | 8" PCC* E-7 E-7 Rc Rc COUNTY 1970 1969 130&'40 1966 COUNTY P-209 53 54 E-7 Rc 12" PCC * 12" P-154 COUNTY E-7 Rc 12" P-209 15" PCC * COUNTY 1970 E-7 Rc APRONS -12" P-209 12" P-209 15" P-209 12" P-209 16" P-209 12" PCC * E-7 Rc COUNTY 1966 12" PCC * 32 E-7 1966 Rc COUNTY 9" PCC * 15" PCC * 17" PCC * 1962 1969 93 2" PCC C of E Rç 35 36 E-7 Rc 9" P-201 E-7 325ps1+ FAA 1970 Rc

REMARKS

- * Mesh Reinforced
- + Flexural Modulus; Safety Factor = 2

Table A2 (Continued)

			111 011	*****	CTERIST					
OD. GRADE				STATE	Michigan		Detroit	AIRPORT NAME	Detroit Metro.	Jan. '73
EAC.	ALLOW.	CONSTRUC.	YEAR							
K		L	l	ł						
				Į						
			 	ł						
-				ł						
	-									
				1						
]						
				1						
				ł						
\rightarrow		-		ł						
-				1						
				1						
				1						
				1						
		COUNTY	1970	ł						
_		COUNTY	1969	1						
		COUNTY	1969 '30&'40	1						
		COUNTY	1966]						
		COUNTY	1970	1						
				ļ				(3)		
				ł				Ÿ		
			<u> </u>	İ			٦			
				1						
				Ì			ہا ہ	-}		
							•	ha		
\rightarrow				l				//		
_				1			@ <i> </i>	# ,		
				1			45			
		CQUNTY	1966	1			(3) \ ////	1/2-13		
		COUNTY	1966	1			\/\/\/\/\/	//		
_		CofE	1962 1969	1						
-+	205	COUNTY	1969							
-+	325psi+	FAA	1970	l						
				1		%	_/ / //			
				1			7///			
T				l		/				
							/ //			
						/ (
					3	<i>_/ \</i> `	50/			
						7//	/ 🌱			
					(55)	A				
					ઝ્					
				1						

AIRPORT PAVEMENT CHARACTE Washingt

							AIRPC	<u>iki pp</u>	A EMIE	AI CU
L D. NO.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE	BASE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW.	CONSTRUC.	YEAR
				•	RUNWAYS -					
R-1	E-6	Re	-	-	12" PCC	8" P-401	300	400 ps	EDAP	1958
R-2	E-6	Re			12" PCC	8" P-401	300	400 ps	EDAP	1955
R-3	E-6	F4		 	8" PCC	5" AC	300	550ps1*		1963
R-4	E-6	F4		† <u>-</u>	6" PCC	ii" AC	300	550ps1		1963
R-5	E-6	Rc		8" CA	12" PCC	8" P-401	300	400ps1	•	1961.
R-6	E-2	Ra	-	10" CA	14" PCC		300	400psi		1970
(1 =)										
			· · · · · · · · · · · · · · · · · · ·							
		<u> </u>	···		TAXIWAY-				· · · · · · · · · · · · · · · · · · ·	
T-1	E-6	Rc		10" CA	14" PCC		300	1+00ps1		1370
T-2	E-6	Rc	-	10" CA	14" PCC		300	400ps1	EDAP	1770
Ť-3	E-6	Rc	-	10" CA	14" PCC		300	400ps1	ELAP	1,70
T-4	E-6	Re	-	10" CA	14" PCC		300	400psi	EDAP	1.70
T-5	E-2	Ra	_	10" CA	14" PCC		300	400ps1	EDAP	1970
T-6	E-2	Ra		10" CA	14" PCC		300	40 jps1	¥-+	1,470
T-7	E-6	Rc	-	<u> </u>	10" PCC	<u> </u>	300	•	ELAP	1 44
T-8	E-6	Rc	-		10" PCC		300	*	EDAF	1744
T-9	E-6	Re		10" CA	1," PCC		300	400ps1*	* *	1,70
T-10	E-6	R¢		6" PCC	6" CA	3" AC	300	*	* -¥	1970
T-11	E-6	Re	-		12" PCC	<u> </u>	300		ELAP	1,75
T-12	E-6	Rc		8" CA	12" PCC	<u> </u>	300		EDAP	1961
T-13	E-2	Ra	-	10" CA	14" PCC		300	+00ps1*	**	1.70
T-14	E-2	Ra		10" CA	14" PCC	ļ	300	+00ps1*	**	1,770
Ţ• <u>1</u> 5	E-2	Ra		10" CA	14" PCC		300	+00psi*	**	1.970
A 1	E-6	Re			APRONS	-	300	*	ETAP	1944
A-1	E-6			B" CA	12" PCC		300	*	ELAP	19:4
A-2 A-3	E-2	Rc Ra	-	10" CA	14" PCC		300	+00ps 1 *	**	1970
A-5	E- 2	Ra	_	10" CA	14" PCC		300	+00ps 1 *	N- *	1970

REMARKS:

* Safety Factor - 1.75 ** FAA AC 150/5320-6A

CA - Crushed Aggregate

Runway 16L-34R - (a) 1974-75; 8" AC overlay of center section, (b) 1979; 8" AC overlay of runway ends, (c) 1982; 8" AC overlay of center section.

Runway 16R-34L - 1985; 8" AC overlay of runway.

Aprons - 1976; Modify "A-1" to 10" CA base and 14" PCC surface course.

AIRPORT PAVEMENT CHARACTERISTICS

Table A? (Continued)

AIR	-	KIL	VEIVIE	11 011	AKACIEKIJII						
MOI SUBGR REA	RADE V.	DESIGN ALLOW.	CONSTRUC.	YEAR	Washington	CITY	Seattle	AIRPORT NAM	Seattle -Tacome.	International	Jan. 173
											:
1 30 1 30		400 ps:		1958	1		LEGEND				
1 30		400 ps:		1955			ASPHALTIC CONCRETE OVERL				
30		550psi		1963	1	-		••	BROD TO A 11'	ų.	
30 1 30	<u>0</u>	550ps1		1963	1	•	CRUSHED ROCK			,	
1 30	0	400psi	EDAP	1961	ł	¢	- CONCRETE SLAP				<u> </u>
30	<u> </u>	400ps1	- ' '	1970	{					, `	
+-					1						
+					1				13 M. A.		
					1					,	
					1					14	
1		-			1				13/1		
]					•	
	\Box]						
1	\dashv				1						
			L		į .				1.1 1.2 .		
-			F10: 1 F2				,-	- M			
30	0	1:00ps1		1970 1970	ł		\i	0		* * *	
30		400ps1	EDAP EDAF	1:170	4) j	1.			
30		400ps1	ELAF	1 170	†		© +	8			
1 30		400pst		1970			▲ #	@ti	1 7 7 1		
30	0 10	400ps1	**	1970	1		W _ !	₩ :		`.	
30	5	*	EDAP	1,44	1		·	6 P	1111111	· .	
30		*	EDAP	1944	1		-N 60 !	311			
30	(.)	+1corsi	**	1970	1		100		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,	
30		*	4.4	1970]		the Time	(F)		•,	
30			El'AF =	1956	1					· • =	
30			EDAP	1001) ⁷		X.Y.				1
30	0	00psi	¥+	1970	1		(i) V	11.00	\		f
30		100p si * 100ps i *	• • •	1970 1970	1		· (4)		1		
30	0 1	OCPSI.		1,10			• 1	11/2 114	¥1.		1
30	00 [*	EDAF	1994	1		4	101 /3	Pri line		
30		*	EDAP	$=\frac{1}{1}$	1		4111	10 12	2 1		
30		00ps1*	**	1970			20010	V	III Ida		
					1		30	64. N	/U (T)		
30	Ю <u>Н</u>	COrsi*	**	1970			1:1	(a)	11 11 12	_	
1							()				
 	-) 1	Sellion II			
3					ľ		• 11	11 / A	1 17:		
1					}	M	F.		1.1		1
+					ł		. 84	36.39			
				_	1	Ţ	. ()	H. W	1 1.1	AIRPORT PAVING	SECTIONS
rushe	d Ag	gregate	2			Ţ	/ 100	17 里。	15.5		
		,uu- /						10	L1 [1]		
						1			17.	SCAL E	
							/ : TE	4 1 11	1.1	1000 0 10	000 2000FT
secti	on,	(b) 197	79; 8" AC	over-			/ /				
secti	on.										
							(, 9	北空珠字 仄	, • .		
surf	ace	course.					1	A China	1-1 1.888.		
- 41.1							1				

(Sheet 26 of 44)

YEAR	CONSTRUC.		MOD. SUBGRADE REAC. K	OVERLAY	SURFACE COURSE	BASE COURSE	SUBBASE	SUB- GRADE CLASS	SOIL CLASS,	L D. NO.
					— RUNWAYS —					
	-		 							
			+							
			 			 				
					_					
			}							
			 			<u> </u>				
			<u> </u>		TAXIWAY	·				
1970 1970	*	**	300		14" PCC	10" CA	-	Ra	E-2	-16
1970	*	**	300		14" PCC	10" CA		Ra	E-2	17
1970	*	**	300		14" PCC	10" CA		Ra	E-2	-18
1970 1970	*	**	300 300		14" PCC 14" PCC	10" CA 10" CA		Ra	E-2	-19
1969	*	**	300		14" PCC	10" CA		Ra	E-2	-20 -21
1969	*	**	300		10" AC	14" CA		+		22
										
										
					- APRONS -					
										
										
									-	
					1				I	
	$\overline{}$									
									\longrightarrow	
	——			——						

REMARKS:

- * FAA AC 150/5320-6B ** Safety Factor = 1.75.

CA - Crushed Aggregate. AC - Asphaltic Concrete.

IRPORT PAVEMENT CHARACTERISTICS

Table A2 (Continued)

VIKEC	KIPA	AEWIE	NI CH	<u>AKACI EKISI IC</u>	3		The state of the s				
MOD, JØGRADE REAC, K		CONSTRUC.		Washington Washington	CITY	Seattle	AIRPORT NAME	Seattle-Tacoma	International	Jan.	173
K	ALLOW			l							
	-	,		4							
				1							
				1							Ì
				1							
										3	- 1
			ļ								Ş., .
				1							#
				1							,
				ļ							
	-			ł							
				1							
				1							
				4							1
300	**	*	1070	4							
300	**	*	1970 1970	1							
300	**	*	1970	1							
300 300	**	*	1970]							
300	**	*	1970	4							
300 300	**	*	1969 · 1969								
			<u> </u>								
9											
				ł							
				4							
				1							
				i .							
				4							
-											
											1
				4							
				j							
				1							
				i							
				1							
				ĺ							
				L							

	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW.	CONSTRUC. SPEC	YEAR
_	Overl	aid			RUNWAYS					
L_		1972								
+	E-7	Re	4-19" CS	-	18" Bit C**	7" Bit.C			FAA	1972
	E-7	Re	8" cs		12" PCC	6" Bt.C			FAA	1972
-	E-7	F7	10" CS 8" CS	8" WBM	43" Bit.C.	7" Bit.C			FAA	1972
٠.	E-7	Re		12" WBM	12" PCC	6" Bit.C	}		FAA	1972
L R	E-7	F7	2" CS	12" WBM	Bit.C.	10.5"Bit.C	├		FAA	1972
_	E-7	Re	18-26" cs		17" PCC				FAA	1973
-	E-7		18-26" CS		17" PCC				FAA	1973 1973
•	E-7		18-26" CS	-	17" PCC					1973
•	E-7	Re	16"/8" CS	-	15"/10"PCC				FAA FAA	1962
t	E-/	AC	TO 10 CP	-	12 /10 PCC	<u> </u>	 		- FAA	1902
t	E-7	Rc	4-19" CS		13" PCC		 		FAA	1973
	E-7		4-19" CS	_	10" RCC	9.5"B1t.C	<u> </u>		FAA	1973
-	E-7	F7	2" CS	12" DBM	41" Bit.C.	9.5"Bit.C			FAA	1973
•	E-7	F7	6" cs	S" DBM	3" Bit.C.	2" Bit C			FAA	1966
•		1.0			-TAXIWAY-			•		700
Γ	E-7	Re	_	-	12" PCC					
	E-7	Rc	10" CS		12" PCC					
	E-7	F7	2" CS	12" DBM	3" Bit.C.					
	E-7	Re	8" cs	-	12" PCC	5"Bit.C.			FAA	1972
L	E-7	F7	17" CS		6" Bit.C.	4"+ 10.5"	Bit.C.		FAA	1973
	E-7	Re	-	-	12" PCC					
	E-7	Re		-	10" PCC					
	E-7	Rc	9" CS		12" PCC		I		FAA	1962
	E-7	Rc	26"CS 8" CS		15" PCC				FAA	1973
	E-7	F7	8" CS	-		4-3/4"Bit.	c.		FAA	1962
L	E-7	Rc	-	-	12" PCC				100,0	
L										
L										
├-										
_					APRONS					
1	E-7 T	Re	-		12" PCC		T			
ť	==-	V.C			ar ruu				-	
\vdash									 	
+	+									
1	+				1				 	
H	+				 					
-				-	 					
1					 				 	
 				•	 				 	
┢				····					├	

CS - Crushed Slag

WBM - Water-bound Macadam

Bit.C.- Bituminous Concrete

DBM - Dry-bound Macadam

PCC - Portland Cement Concrete

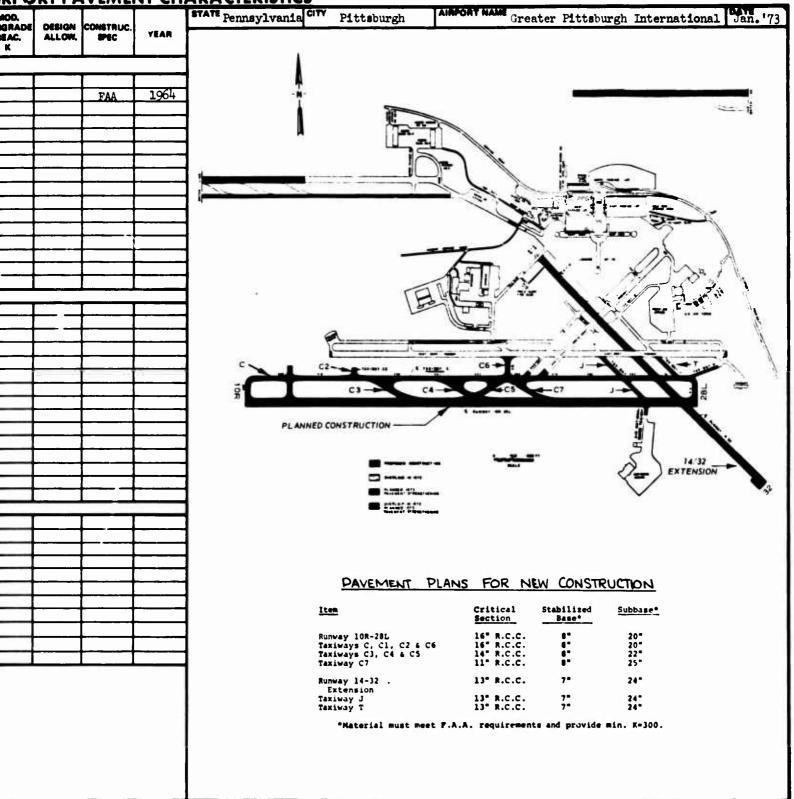
CRCP - Cont.Rein.Concrete Pavement

- * To be rebuilt in 1973. 100' center section will have 18-26" CS and 17" PCC.
- ** Only for 50' center section; other is 10"
- + To be rebuilt in 1973. R-10 is for 75' center section.

Note: Apron construction data is not readily available.

Table A2 (Continued)

AIRPO	RT PA	VEME	<u>NT CH</u>	ARACTERISTICS		Table A2 (Continued)		_
MOD. SUBGRADE REAC. K		CONSTRUC.		Pennsylvania City	Pittsburgh	AIRPORT NAME Creater Pittsburgh International	Jan.	73
		<u></u>	I	₹				
				1				
		FAA	1972	1				
		FAA		1				
		FAA	1972 1972	1				
		FAA	1972	1				
		FAA	1972	1				
						707 16		
		FAA	1973	1		R 5. TO LOC		
		FAA	1973]		T-7 3 22		
		FAA	1973]		T -2 R -13		
		FAA	1962	1		A 7 - 3		
		1.74		1		R-14-10		
100 00		FAA	1973	1		(: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		FAA	1973]		A-1 1 7 3 22 1		
		FAA	1973	F				
		FAA	1966			TO THE PROPERTY OF THE PARTY OF		
				1				
				1		7 7 11 10		
				1		N 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
				1		\$\$T - 24 24 126 2		
		FAA	1972	1				
Bit.C.		FAA	1973	4		(T-10 ()		
				1		HRZ T 11-		
						[
		FAA	1962	4				
<u> </u>		FAA	1973 1962	4		R-9 \$		
c.		FAA	1902	1		↑		
1				1				
├				4		- / PU - 8 2		
				1		N 108		
1				1				
				1		9 7		
				1		J		
h				į		R-8		
 						₩ # - R '		
 				1		\$2/1		
		-		1		A		
1						R-8		
				1				
				1				
				1				
		-		1		R-7		
				1		4		
NAME OF STREET	1001	150179	CVALLE	1				
t in 197	5. 100	center a	ection.			V***		
-20 CS	and ly	PCC.				11.		-
center	sections	other i	ls 10"			10L		
t in 197; on.	3. R -1 0	is for	75'					
				L			4	
							00 0	


AIRPORT PAVEMENT CHARACT MOD, SUBGRADE REAC, I, D. NQ. SOIL CLASS. SUB-GRADE CLASS SUBBASE COURSE BASE COURSE SURFACE COURSE DESIGN ALLOW. CONSTRUC. OVERLAY YEAR RUNWAYS 5-23 R-14 1964 E-7 F7 6" CS 8" WBM 3" Bit.C 2" Bit.C FAA TAXIWAY-APRONS -REMARKS: CS - Crushed Slag WBM - Water-Bound Macadam Bit.C.- Bituminous Concrete

建筑的的现在时间的现在分词的现在分词,以为以下,。

IRPORT PAVEMENT CHARACTERISTICS

Table A2 (Continued)

(Sheet 29 of 44)

AIRPORT PAVEMENT CHARAC

							AIRPO	KIPA	VAFWE	NI CI
i, D. NO.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE	SURFACE COURSE	OVERLAY	MOD. SUBGRADE REAC. K	DESIGN ALLOW.	CONSTRUC.	YEAR
		·			RUNWAYS					
R-1	E-6	Re	6" SM	-	12" P-501			400ps1	FAA	1968
R-2	E-6	Re	6" SM	-	10" P-501				FAA	1968
R-3	E-6	Re	9" CS	-	14" P-501			100psi*	FAA	1968
R-4	E-6	Re	9" CS		13" P-501			+00ps1*	FAA	1968
R-5	E-6	Re		-	12" P-501			+00ps1*	FAA	1968
R-6	E-6	Re	9" CS	-	11" P-501				FAA	1968
R-7	E-6	Rc	6" SM		12" P-501			+00psi*	FAA	1968
70 7	n 6	Re	6" s::		12" PCC		1	+00psi*	FAA	1969
r <u>-1</u> r-2	E-6 E-6	RC	9" CS		14" PCC		+	+00ps1*	FAA	1966
T=3	E-6	Re	o" cs		12" PCC		 	+00psi*	FAA	1068
T-4	E-6	Re	12" CS		14" PCC			Opsi*	FAA	1965
T-5	E-6	Re	12" C S		12" PCC			100ps1*	FAA.	196
T-6	E-6	Re	6" SX		12" PCC		1	100ns1*	FAA	1965
T-7	E-0	Re	9" CS		12" RCC			.OCpsi	FAA	1968
					APRONS					
A-1	E-6	Re	6" SX	-	12" P-501	- -	1	:00ps1*	FAA	1968
A-2	E-6	Re	9" cs	•	12" P-501			+0\psi+	FAA	19.
A-3	E-6	Re	12" CS		12" P-501			100psi*	FAA	1962
A=4	E-6	Rc	12" CS	_	14" P-501			00vsi*	FAA	1968
- 5	E-6	Rc	9" CS	-	14" P-501			100psi*	FAA	1968

REMARKS:

SM - Selected Materials
CS - Cement Stabilized Soil

* Safety Factor = 1.5

Note: Runway 14-32 and its parallel and connecting taxiway will be overlaid. Future pavements and overlays of existing pavements will be designed for 747 and other wide-body jets.

IRPORT PAVEMENT CHARACTERISTICS

Table A2 (Continued)

		AEWE	VI CH			1103			
MOD. BGRADE	DESIGN	CONSTRUC.	YEAR	STATE	Texas	CITY	Houston	AIRPORT NAME Houston International	Jan. '73
REAC.	ALLOW.	SPEC	YEAR						
				1					
	400ps1	FAA	1968]					
		FAA	1968	ł	1				
	100psi*	FAA FAA	1968 1968	1	A				
	+00psi*	FAA	1968	i	T -N-				
		FAA	1968	1	4				
	+00ps 1 *	FAA	1968	1	T.				
				ł	М		E-W		
				1			7 3 7 4		3(0
		1		1		4.5-26		Grow Grown	- 2A-8
				1		4-45		V7-3 (-5/13) (-5/13)	ر مولا
				1		4-3	J-5-5-0	7.5-2-4 27.5	ے ر _ا ہے۔
		-		-		41/20	(3)	A - 3	
=-				f		()	1/10		
				1		His	7/20		
	+00ps1*	FAA	1968	1		3/4	1/2/1		
	+00ps!*	FAA	1968	1		<i>i.</i>	1/5/1/	4-3	
	400psi* 400psi*	FAA FAA	1968 1968	ł			15/12/	4-3	
	400psi*	FAA	1968	1			H-11 / 50	f	
	400ps1*	FAA	1968	1			at 151		
	+00ps i *	FAA	1968	1			8/2/ 5/4/	-	
							A. 611.1	۷,,	
				ł			11.00		
				1			1.19		
				1		/	1 4 17	<i>[C]</i>	
				1			11 ; 14	1/2/:	
_				1			11 ~ 3/3	11:11	
				1			14 0	15/15/	
	+00ps1*	FAA	1968	1			// ~	E VICTORY	
	+00psi*	FAA	1968]			11 (3	F.: (U)	
	+00psi*		1968	1			1		
+	+00psi* +00psi*	FAA FAA	1968 1 9 68	1				32	
	. OODBI		-200	1				et u	
				1					
				1					
_					N	0 7 7			
_				1		TARIN 475	ARE 75	2018	
				ı					
									9
l be o	verlaid	. Future							
		and other							
_									

(Sheet 30 of 44)

L D. NO.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW.	CONSTRUC.	YEAR
			<u></u>		- RUNWAYS -				·	
11R/29	9L									
₹-1	1 E-4	Rb	_	-	11" PCC				CAA	1952
}-2	E-4	Rb	-	-	9" PCC				CAA	1951
}-3	E=4	Rb	-	-	9" PCC	1			CAA	1951
?-4	E-6	Rc	-		11" PCC	-			CAA	1951
}-5	E-4	Rb	_	_	9" PCC				CAA	1951
?- 6	E-4	Rb	-	_	11" PCC				CAA	1952
R-7	E-4	Rb	8" CA	-	12" PCC				FAA	1962
≀- 8	E-4	Rb	8" CA	-	10" PCC				FAA	1962
₹-9	E-4	Rb	8" CA	-	10" PCC				FAA	1962
₹-10	E-4	Rb	8" CA	-	12" PCC				FAA	1962
/22	•									
₹-11	E-4	Rb	-	_	12" PCC				CAA	1958
-12	E-4	Rb	-	_	12" PCC	1			CAA	1958
-13	E-4	Rb	_	-	11" PCC				CAA	1950
1-14	E-4	RЪ	_	-	9" ICC				CAA	1950
					-TAXIWAY-					
-1	E-4	Rb	-	_	Ill" PCC				CAA	1951
-2	E-2	Rb	8" CA	_	12" PCC	<u> </u>			CAA	1959
-3	E-7	Rc	12" CA	_	6" PCC	4" BIT.	1		FAA	1963
7-4	E-4	Rb	8" CA	_	12" PCC				FAA	1962
·-5	E-4	Rb			11" PCC	4" BIT.	1		CAA	1951
r - 6	E-4	Rb	12" SAM	_	7" PCC	1	1 1	•	MAC	1955
r-7	E-4	Fb			6" PCC	4" BIT.	1 1		FAA	1962
:-8	E-2	Rb	6" CA		6" 100	4" BIT.	1	**	CAA	1956
1-9	E-2	Rb	12" CA	-	11" PCC	*****	1		CAA	1952
-10	E-4	Rb	8" CA	-	12" PCC		1 1		FAA	1960
-11	E-4	Rb	8" CA		12" PCC	i	 		CAA	1958
1-12	E-2	Rb	8" CA		12" PCC	<u> </u>	 		FAA	1959
1-13	E-5	- Rb	8" CA		12" PCC	 	 		MPA	1967
1-14	E-4	Rb	- CA		11" PCC				CAA	1948
1-15	E-3	Rb	8" P-209		12" CRCP				FAA	1969
			<u> </u>		- APRONS -					200
-1	E-4	Rb	8" CA	_	12" PCC				FAA	1960
-2	E-4	Rb	<u> </u>		11" PCC	 	 		CAA	1952
-3	E-4	Rb.	12" CA		11" PCC	4" AC			MAC	1956
				<u></u>		7 80				
					7					
	1	-	+		<u> </u>	 	 			

REMARKS:

CA - Crushed Aggregate SAM - Selected Aggregate Mat's. AC - Asphaltic Concrete

CRCP - Continuous Reinforced Concrete Pavement

MRPO	RT PA	VEME	NT CH	<u>ARACTERISTIC</u>	<u>CS</u>		ble A2 (Continued)	
MOD. JOGRADE REAC. K	DESIGN	CONSTRUC.		STATE Minnesota	CITY Minneapolis	AIRPORT NAME	Minneapolis - St. Paul	Jan. '73
REAC.	ALLOW.	CONSTRUC.	YEAR			2		4
		<u></u>		1		(7 + R-2)	~~	1
		1		1		24	31 R-16	A
		CAA	1952	1	•	(1) X	R-15	-N-
		CAA	1951	l		115/	~ <i>7//</i>	1
		CAA	1951	ĺ	R	-23 +++	XX 1.2	Ņ.
		CAA CAA	1951 1951		6	R-14	97	
		CAA	1952		R.	22	37/7/	į
		FAA	1952 1962	Re1	1111			
		FAA	1962		IK II.	א אלעויי	The same of the sa	2
		FAA	1962				il Well o	
-		FAA	1962	1	R-12			×-2
		CAA	1958	1	R-35-	ROLL	~~~	R-34
		CAA	1958]	R-12 -	MO	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	11/20
		CAA	1950				₩ .7 '	2000
		CAA	1950		//)//	-3 / III	J200	Y
·		CAA	1951		11-11-1/S/	- 111 104	A CONTRACTOR OF THE PARTY OF TH	
		CAA	1959		-((//	-2114L >	5/10/	
		FAA	1963		7	35	M7	
		FAA	1962			376		Ä
-	_	CAA MAC	1951 1955				***) .
		FAA	1962	1			1-1	R .
		CAA	1956				اعدا	*
		CAA	1952			0.010.000.0		
		FAA CAA	1960 1958			72-9		
		FAA	1959			7-13	.1-8 ≥.	1
		MPA	1959 1967 1948			*************************	1 1	95
		CAA	1948		202			
		FAA	1969		T-1	10 to 10 to	1-13 // -1-7	
		FAA	1960		T-9	. 110 🚫	×∕?i∥	
		CAA	1952		• •• ••		>> <~	
		MAC	1952 1956		7-1 A-1	2 -11/12-67/	7-13	
				•	11/11	. 441//		
						1-10V//X		
						V///Q	11/200	
					111.	XXXX.	1-1 V V 1-4	
)	CARC	7-12	
					//	WILK.	7-10 7-13	100
		<u> </u>			///		1-16 T-16	>>V
					// 7/2.	s N	200	10071
						72-2	COMP.	
					<i>(//</i>	الااحد	••×	
	•				1 0 1-11	35	- ///	
) _~
							>	· C

						<u> </u>	<u> AIRPO</u>	RT PA	VEME	<u>NT CH</u>	1
L D. NG.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW.	CONSTRUC.	YEAR	
		<u>. </u>			RUNWAYS -		<u> </u>		<u></u>		1
4/22							T				٦
R-15	E-4	Rb	_	-	9" PCC				CAA	1950	1
R-16	E-4	Rb	-	-	12" PCC				CAA	1955	7
R-17	E-4	Rb	-	-	12" PCC	<u> </u>			CAA	1955	
R-18	E-4	Rb	•	-	11" PCC				CAA	1955	
R-19	E-4	Rb	-	-	11" PCC				AF_	1955	
17/35											
R-21	E-4	Rb	•	-	9" PCC	4" AC			CAA	1953	
R-22	E-2	Rъ	•	1	9" PCC	4" AC			CAA	1953	
3-23	E-6	Re	12" CA	•	11" PCC		ĪI		MAC	1951	
3-24	E-6	Rc	12" CA	•	12" PCC				MAC	1962	
R-25	E-6	Rc	12" CA	1	12" PCC				MAC	1955	
3-26	E-7	Rc	8" CA	_	12" PCC 6" PCC	1			FAA CAA	1968 1942	
R_27	E-7	Rc	12" CA	-	6" PCC				CAA	1942	_
					<u> </u>	ļ					4
	L				1	<u> </u>	<u> </u>		L1		_
- 17			- AW = -		TAXIWAY_						_
r-16	E-3	Rb	8" CA	-	13 CRCP	Ļ	├ ──-		FAA	1970	4
					↓	Ļ	+		\longmapsto		4
							 		 	 -	4
						Ļ	1				4
							 		├ ──		4
							↓		<u> </u>		-
							+		 -		4
							 			•	4
					 		 				4
					i	 	 		\vdash		4
					 		 				-
					 	 	++				4
					 	 	 		-		4
		1			+		! 				4
					- APRONS -						4
	· - · - · · · · · · · · · · · · · · · ·		····		1		T T				4
						 	+				4
					 		} 				4
					 	 					1
				·	†	t	1				1
				·	1	 	† - 				1
					 						1
					1		 				1
					 		 				1
					 						1

REMARKS:

CA - Crushed Aggregate AC - Asphaltic Concrete

CRCP - Continuous Reinforced Concrete Pavement

Note: 17/35 is no longer an active runway; used primarily as a taxiway.

RPORT PAVEMENT CHARACTERISTICS

Table A2 (Continued)

		VEME	NI CH	<u>ARA CIERISTIC</u>	-3			
IOD,				Minnesota Minnesota	CITY Minneapolis	AMPORT NAME	Minneapolis - St. Paul	Jan. '73
IOO. BRADE EAC, K	DESIGN	CONSTRUC. SPEC	YEAR					
K	ALLON							
			111/	1				
				1				
		CAA	1950	1				
		CAA	1955	1				
		CAA	1955	1				
		CAA	1955	1				
		CAA AF	1955 1955]				
				<u>}</u>				
		CAA	1953 1953]				
		CAA	1953					
		MAC	1951 1962	1				
		MAC	1962	4				
-		MAC	1955	i				
		FAA CAA	1968 1942					
		CAA	1942	1				
				1				
				1				
		FAA	1970	1				
]				
				İ				
				4				
				ł				
				ł				
				İ				
-								
				1				
				i				
				ł				
				ł				
		-		i				
				Í				
-				i				
				i				
	taxiwa	v.						
, 45 6	- AGVTAG	J •						
								·

	WEN.	· · ·	T -	4465				I	. 1		
EAR			DESIGN ALLOW,	MOD, SUBGRADE REAC, K	OVERLAY	SURFACE COURSE	BASE COURSE	SUBBASE	SUB- GRADE CLASS	SOIL CLASS.	I, D. NO.
					_	- RUNWAYS -					
											L1L/29
967	A	FAA				12" PCC		8" CA	Rb	E-5	}-31
967	A	FAA FAA				10" PCC 12" CRCP		8" CA	Rb	E-5	}-32
969_	A]	FAA		ĪI		12" CRCP	-	8" P-209	Rъ	E-3	-33
970	A	FAA				13" CRCP		8" CA	Rb	E-3	-34
971	A	FAA	 	1		16" PCC	-	8" CA	Rb	E-4	-35
								<u> </u>			-37
				ļ — — ļ							
			 								
				 		-					
						TAXIWAY					
			 	 							
	-		 	 		-					
			†	 							
	-		ļ								
			 	1	•						
				ļ.——I							
				<u> </u>		- APRONS -					
				ı	-	7.00			Τ		
				1		-					
								1			
						ļ					
				 	 				\longrightarrow		
				 		<u> </u>					
				-					-		
	-					 			+		
				├ ───						1	1

CA - Crushed Aggregate

CRCP - Continuous Reinforced Concrete Pavement

Continued)

Table A2 (Continued) VIRPORT PAVEMENT CHARACTERISTICS CITY Minneapolis Minnesota Minneapolis - St. Paul 1967 1967 1969 1970 FAA FAA 1971 FAA

اسر
ò
C

L D. NO.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE	SURFACE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW,	CONSTRUC. SPEC	YEAR
					- RUNWAYS -					
R-1	E-12	Re	8" SS	-	12" PCC	VAR. P-401	50	400ps1	CAA	1956
R-2	E-12	Re	6" ss (10)	_	12" PCC	1"P-401(2	50	100ps	FAA	1968
R-3	E-12	Re	- 9	-	9"/7" PCC	3"HM Bit(3)		FAA	1968
R-4	E-12	ће			9"/7" PCC	3"HM Bit	(4)		FAA	1968
R-5	E-12	Re	6" ss (10)	-	12" PCC	VAR.P-401	50	400ps (1	FAA	1968
R-6_	E-12	Re	16" RS (5)	-	12" PCC		50	100ps (1)	CAA	1943
R-7	E-12	Re			9"/7" PCC	10" HM B1			FAA	1965
R-8	E-12	Re	-		9"/7" PCC	10" HM B1	10		FAA	1965
R-9	E-12	Re	-		9"/7" FCC	10" HM.B1			FAA	1965
R-10	E-12	Re	8" SS (10)	-	10" PCC		50	400ps.	FAA	1963
R-11	E-12	Re	8" ss (0)		12" PCC	2011		400ps		1963
R-12	E-12	Re	-		17/1-00	12" HM B1			FAA	1964
R-13	E-12	Re	-	<u>-</u>	9"/7" PCC	12" HM B1			FAA_	1964
					— TAXIWAY—					
r-1	E-12	Re	8" ss 10	-	12" PCC		50	100ps 11	FAA	1964
r - 2	E-12	Re	6" SS 40	-	12" PCC	1" HM.Bit		Oos C	FAA	1965
T-3	E-12	Re	6" SS 40		I12" PCC	-34	50	400ps (1)	FAA	1964
r-4	E-12	Re	15" RS	_	12" PCC		50	400ps (I	FAA	1963
T-5	E-12	Re			9"/7" PCC	12" PCC		935	CAA	1956
r-6	E-12	Re	15" SS		9"/7" PCC	10" HM.B1	9		FAA	1965
T-7	E-12	Re	15" SS		12" PCC		50	400psi	FAA	1964
					APRONS					
A-1	E-12	Re	15" SS		12" PCC		50	+OOpsi	I	
A-2	E-12	Re	11" SS		8" PCC					
1-3	E-12	Re	6" ss (0)		12" PCC		50	100ps 1		
A-4	E-12	Re			9"/7" PCC	$7\frac{1}{5}$ " Bit.				
\- 5	E-12	Re	15" SS		15"/12"PCC		50	100ps		
	-				 					

REMARKS: SS - Sand Shell

VAR - Variable Thickness

1) Safety Factor = 1.75 2) 3" P-401 Additional Overlay 3) 10" PCC Additional Overlay 4) 12" PCC Additional Overlay 5) 6" Lime Stabilized Subgrade

RS -River Sand HM -Hot Mix

(6) 12" PCC Additional Overlay (7) 10" PCC Additional Overlay with 12" PCC at T/W intersection.

8 Variable Bituminous Overlay

9 12" FCC Additional Overlay
9 24" River Sand as top of subgrade

20	RT PA	VEMEN	NT CH	ARACTERISTI	CS	Table A2 (C	,	
ADE	0	CONSTRUC.	YEAR	STATE Louisiana	New Orleans	New Orleans	International	lan. '73
				4				
ļ	00ps1	CAA	1956 1968	1				
	00ps		1968	1 1				
+	-	FAA FAA	1968 1968	4				
1	00ps 41	FAA	1968	j				
	00ps (1	CAA FAA	1943	1				
+		FAA	1965 1965					
+		FAA FAA		1				
-	00ps:0	FAA	1965 1963	1				432
4	00ps	FAA	1963]				< a.
4		FAA	1964	}				
+		FAA	1964	1			r./>	11 14
+				1				7/ /4/
1				1				\mathbb{H}
į	00ps 1	FAA	1964	1				H
-	00ps (1)	FAA	1965	ł			7-2-7	' П
	00ps (1)	FAA FAA	1964 1963	- 100			\mathcal{A}	Н
†	ODS.E	CAA	1956	فنفتح			//_	14
1		FAA	1956 1965	òbr			15	N_{ω}
+	00psi	FAA	1964		922.		1	7300
+	-							
+						150	13/ 11/1	
\Box				r.,2	7		~ '.sz/!!/	
4				1	N C		7 7/3/	
+				-	7.7			
土				1	7.5	3		
4	Opsi			ł			1	
- [00ps(L)					A-2-3 SECTION A-3		
T				1		08 /4		
1	XXDs (L)			1		r.7	50 (. E)	
+						7.7		
T				1	WEST APPON WILL	BE EXTENSIVELY 2	1300 1	
T				1	MODIFIED IN THE	L BE EXTENSIVELY ?	7	
T]			•	
1				NOTE	TAZIWAYS 75'			
				1	OTHERWISE NUTE			
ay.				i				
ay	with 1	2" PCC at	T/W					
lay	7							
ay								

(Sheet 34 of 44)

AIRPORT PAVEMENT CHARAC

							AIRPO	KI PF	VAEWE	NI CH
L D. NO.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD. SUBGRADE REAC. K	DESIGN ALLOW.	CONSTRUC.	YEAR
					RUNWAYS			**		
R-1	E-4	F2	-	10" P-208	2" P-401	2" P-401	T		FAAP	1964
R-2	E-4	F2		10" P-208	2" P-401	2" P-401	1		FAAP	1964
R-3	E-4	F2	_	10" P-208	2" P-401		1		FAAP	1950
R-4	E-1	F2	-	12" P-208	21" P-401	2" P-401			FAAP	1964
R-5	E-4	F2	_	12" P-208	2" P-401	2" P-401			FAAP	1964
R-6	E-6	F4	9" P-154	8" P-208	2" P-401	2" P-401			FAAP	1968
R-7	E-6	F4	11" P-154	10" P-208	3" P-401	2" P-401			FAAP	1968
R-8	E-6	F3*	4" P-208	7" P-209	3" P-401				FAAP	1965
R-9	E-6	F3*	5" P-208	10" P-209	3" P-401				FAAP	1965
R-10	E-4	F2	•	12" P-209	2" P-401				FAAP	1950
R-11	E-6	F3*	4" P-208	7" P-209	3" P-401				FAAP	1965
R-12	E-6	F3*	5" P-208	10" P-209	3" P-401				FAAP	1965
R-13	E-4	F2	•	12" P-208	25" P-401	2" P-401			FAAP	1965
R-14	E-7	F5	4" P-208	6" P-209	3" P-401			-	FAAP	1970
m a	(F) (c)	TIO .		1 12" P-208	TAXIWAY	2" P-401	, ,		FAAP	1065
T-1 T-2	1 일 일	F2	-	12" P-208	2 P-401 2½" P-208	2" P-401	 		FAAP	1965 1965
T-3	E-4	F2	-	12" P-208	2" P-401	2 F4401	 		FAAP	1950
T-4	E-6	F3*	11" P-154	10" P-208	3" P-401	2" P-401	 		FAAP	1968
T-5	E-4	F2	2" P-154	9" P-209	3" P-401	2 P=401			FAAP	1959
T-6	E-4	F2	3" P-154	10" P-209	3" P-401		+		FAAP	1959
T-7	E-6	F3*	5" P-208	10" P-209	3" P-401		 		FAAP	1965
т-8	E-U	F2	F-200	12" F-208	2" P-401		 		FAAP	1948
T-9	E-2	Fl		11" P-209	3" P-401		 		FAAP	1966
T-10	E-5	F3	15" P-208	7" P-201	4" P-401				FAAP	1970
T-11	E-7	F5	4" P-208	6" P-209	3" P-401				FAAP	1970
										-
A-1	E-4	F2		14" P-208	3" P-401	•	1		TAAD	1948
A-2	E-4	Rb		6" P-208	13½/9°P-50		 		FAAP FAAP	1948
A-2	E-4	F2		6" P-208	1" P-609		 		FAAP	1951
A-4	E-4	F2		6" P-208	1" P-609		 		FAAP	1951
A-5	E-4	F2		14" P-208	3" P-401				FAAP	1950
A-6	E-4	F2		14" P-208	3" P=401				FAAP	1951
A-7	E-4	F2	_	14" P-208	3" P-401				FAAP	1956
A-8	E-4	F2	2" P-154	9" P-209	3" P-401				FAAP	1959
A-9	E-4	F2	2" P-154	10" P-209	3" P-401				FAAP	1961
A-10	E-4	F2	6" P-154	6" P-209	2" P-401				FAAP	1961
A-11	E-4	Rb			12" P-501				FAAP	1961
					/		<u> </u>		1	-/-

REMARKS:

^{*} Subgrade classified F_3 due to arid conditions

DO. RADE AC.	DESIGN			STATE Nevada C	TV Las Vegas	AIRPORT NAME	McCarran International	Jan. '73
	ALLOW.	CONSTRUC.	YEAR	Hevada	ras vekas	1	McCarran International	Jan. 73
- 7						is the	~ 4 ~	
	-	FAAP [1964			* (₹₩	
		FAAP	1964			m	\mathcal{M} \mathcal{H}	
		FAAP	1950 1964			// / / @	9	
		FAAP	1964	1		11 110		
		FAAP	1968	4		11 11 19	@#/ / @	
+		FAAP FAAP	1968 1965	- h -	(Rid	11 400	~\ \\\\	
		FAAP	1965	1	<u> </u>	//(Right/	7/11/1	
		FAAP FAAP	1950 1965	,	<i>)</i>	11211	// /k _ X\	
		FAAP	1965		//	//@//L	// W \ \\	
		FAAP	1965		~ 4	DAH.		
-+		FAAP	1970		@ // /	753////		
				2055	^ // //	WH II	11 12	
		FAAP	1965	(A)		// //	[]	
		FAAP	1965	•	λ /// //	// //		
		FAAP	1950	1	/`	// //_	(a)	
\dashv		FAAP FAAP	1968 1959	./	' // //	// // 10	- 11 11	\ @\
		FAAP	1959	/				\ Re
+		FAAP	1965 1948	~	THEN	α		17
		FAAP	1966	(E)	t/	N 11	// Darge \\	//
\dashv		FAAP	1970 1970	(As) /7/		M 172	// [][]	//
		FAGE	1910	(AG) Y/F	74V/ //V	300// // 300// //	5000-01	///
				\mathcal{L}	\sqrt{M}	// //	// 00 mg/m/	
					IJ// / / @	// //	1// 01/04	
			2010	AS _		@ \ \	11 1 88 1 1	- White
		FAAP FAAP	1948 1948	(A4)(T8)[-]	412 //	~ //	1111111	(A9)
		FAAP	1951		//W//	7,	100	\neg
		FAAP FAAP	1951 1950		4	7		
		FAAP	1951 1956	0 74	~ // rt	9	// // // /	1
		FAAP	1956	(B)	[2]//	₉		-
		FAAP FAAP	1959 1961	_// // //	110		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		FAAP	1961 1961	A) 7/A			ROLL IV	6
		FAAP	1961		4	6	@/\\/\@	@ 1
				A3 7	<i>y</i>		7-14-14	
				@/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>			
								ス る
						A.	3)	(R) (R)
				€		Ų	ש	

(Sheet 35 of 44)

— TAXIWAY— — TAXIWAY— — TAXIWAY— — TAXIWAY— — APRONS — 13* 5" P-15½ 10" P-209 3" P-½01 PAAP 1965 13* 5" P-15½ 10" P-209 3" P-½01 PAAP 1966 13* 5" P-15½ 10" P-209 3" P-½01 PAAP 1965	STA	YEAR	CONSTRUC. SPEC	DESIGN ALLOW.	MOD, SUBGRADE REAC, K	OVERLAY	SURFACE COURSE	BASE COURSE	SUBBASE COURSE	SUB- GRADE CLASS	SOIL CLASS.	D. D.
							- RUNWAYS -		······································			
	1											
	ł				 							
	1				 							
	1											-
-TAXIMAY	1											
-TAXIMAY]											
	l				 			•				
	Į.											
	ł				 							
	ł						·					
	1							·				
	1											
	1											
	l											
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	1						TAXIWAY					
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	ł											
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	1											-+
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	i											
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	1											
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	}											
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	1											
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	Į											
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	ł											
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	ł											
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	1											
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	1											
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	1											
"3* 5" P-154 10" P-209 3" P-401 FAAP 1965	l											
7" P-209 3" P-401 FAAP 1965 7" P-209 2" P-401 FAAP 1966 3* 5" P-154 10" P-209 3" P-401 FAAP 1965								2011 - 200			-/-	- T
7 P=209 2 P=401 FAAP 1966 F3* 5" P=154 10" P=209 3" P=401 FAAP 1965	1						3" P-401	10 b-500				-12
13° 7 F=174 10 F=209 13 F=401		1966 1066	FAAP			-	2" P-401			F2	E-3 E-6	-13 -14
		1307	TAME				3 P=4UI	10 P=209	3 P-154	* 3* 	-E-0	-44
												
			1									
							ľ		i		i i	- 1

^{*} Subgrade Classified F_3 due to arid conditions

Table Table

Table A2 (Continued)

CONSTRUC.	YEAR	ARACTERIST STATE Nevada	GIV	Las Vegas	AIRPORT NAME	McCarran Internati	onal Jan. '7
OW. SPEC	YEAR						
		1					
	 						
		1					
	 	1					
	†	1					
		1					
		1					
		4					
	ļ	1					
	+	1					
		1					
		1					
	<u> </u>	Į					
	ļ	4					
	 	1					
<u> </u>	1	1					
		Ì					
		1					
	ļ	1					
	 	4					
	 	1					
		1					
		1					
FAAP	1965	j					
FAAP	1966						
FAAP	1905	1					
		1					
		I					
	ļ	ļ					
							
	 						
	FAAP	FAAP 1965 FAAP 1966 FAAP 1965	FAAP 1965 FAAP 1966 FAAP 1965	FAAP 1965 FAAP 1965 FAAP 1965	FAAP 1965 FAAP 1965 FAAP 1965	FAAP 1965 FAAP 1966 FAAP 1965	FAAP 1965 FAAP 1966 FAAP 1965

Re 4" P-154 6" P-201 14" P-401 FAA-C1ty 1970 Re 4" P-154 6" P-201 12" P-501 FAA-C1ty 1967 Re 4" P-154 6" P-201 10" P-501 FAA-C1ty 1967 F8 - - 6\frac{1}{3}" P-201 FAA-C1ty 1972	D. SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW.	CONSTRUC.	YEAR
Re 4" P-154 6" P-201 14" P-401 FAA-C1ty 1970 Re 4" P-154 6" P-201 12" P-501 FAA-C1ty 1967 Re 4" P-154 6" P-201 10" P-501 FAA-C1ty 1972 - 63" P-201 FAA-C1ty 1972 - 7AXHMAY Re 8" P-154 6" P-201 12" P-501 FAA-C1ty 1970 Re 9" P-154 6" P-201 14" P-501 FAA-C1ty 1970 Re 4" P-154 6" P-201 12" P-501 FAA-C1ty 1960 Re 4" P-154 6" P-201 12" P-501 FAA-C1ty 1967 Re 4" P-154 6" P-201 12" P-501 FAA-C1ty 1967 Re 4" P-154 6" P-201 12" P-501 FAA-C1ty 1967					- RUNWAYS -	_			.	
Re 4" P-154 6" P-201 14" P-401 FAA-C1tv 1970 Re 4" P-154 6" P-201 12" P-501 FAA-C1tv 1967 Re 4" P-154 6" P-201 10" P-501 FAA-C1tv 1972 - 63" P-201 FAA-C1tv 1972 - 7AXIMAY Re 8" P-154 6" P-201 14" P-501 FAA-C1tv 1970 Re 9" P-154 6" P-201 12" P-501 FAA-C1tv 1960 Re 4" P-154 6" P-201 12" P-501 FAA-C1tv 1960 Re 4" P-154 6" P-201 12" P-501 FAA-C1tv 1967 - APRONS Re 4" P-154 6" P-201 12" P-501 FAA-C1tv 1967	1 E-7	Re	8" P-154	_	12" P-501	6" P-401	*		CAA-City	1970
Re 4" P-154 6" P-201 12" P-501 FAA-City 1967 Re 4" P-154 6" P-201 10" P-501 FAA-City 1972 FA	2 E-7	_								
Re 4" P-154 6" P-201 10" P-501 FAA-C1tx 1967 F8 63" P-201 FAA-C1tx 1972	6 E-7				12" P-501					
F8	7 E-7		4" P-154							
TAXIMAY— Re 8" P-154 6" P-201 14" P-501 CAA-City 1955 FAA-City 1960 FAA-City 1960 FAA-City 1960 FAA-City 1967 Re 4" P-154 6" P-201 12" P-501 FAA-City 1967 Re 4" P-154 6" P-201 12" P-501 FAA-City 1967 Re 4" P-154 6" P-201 12" P-501 FAA-City 1967	8 E-8				61" P-201		 			
Re 8" P-154 12" P-501 CAA-City 1955 Re 4" P-154 6" P-201 14" P-501 FAA-City 1970 Re 4" P-154 6" P-201 12" P-501 FAA-City 1967 Re 4" P-154 6" P-201 12" P-501 FAA-City 1967										
Re 8" P-154 12" P-501 CAA-City 1955 Re 4" P-154 6" P-201 14" P-501 FAA-City 1970 Re 4" P-154 6" P-201 12" P-501 FAA-City 1967 Re 4" P-154 6" P-201 12" P-501 FAA-City 1967										
Re 8" P-154 6" P-201 14" P-501 FAA-City 1955 Re 4" P-154 6" P-201 14" P-501 FAA-City 1960 Re 4" P-154 6" P-201 12" P-501 FAA-City 1967 Re 4" P-154 6" P-201 12" P-501 FAA-City 1967										
Re 8" P-154 12" P-501 CAA-City 1955 Re 4" P-154 6" P-201 14" P-501 FAA-City 1970 Re 4" P-154 6" P-201 12" P-501 FAA-City 1967 Re 4" P-154 6" P-201 12" P-501 FAA-City 1967					TAVIMAV					
Re 4" P-154 6" P-201 14" P-501 FAA-City 1970 Re 9" P-154 6" P-201 12" P-501 FAA-City 1967 Re 4" P-154 6" P-201 12" P-501 FAA-City 1967 APRONS Re 4" P-154 6" P-201 12" P-501 FAA-City 1970	1 E-7	Re	8" P-154						CAA-City	1955
Re 9" P-154 6" P-201 12" P-501 FAA-City 1960 Re 4" P-154 6" P-201 12" P-501 FAA-City 1967	2 E-7			6" P-201	14" P-501		1			
Re 4" P-154 6" P-201 12" P-501 FAA-City 1967	3 E-7		9" P-154		14" P-501		· · · · · ·			
Rc 4" P-154 6" P-201 12" P-501 FAA-City 1970	6 E-7			6" P - 201						
Rc 4" P-154 6" P-201 12" P-501 FAA-City 1970										
Rc 4" P-154 6" P-201 12" P-501 FAA-City 1970										
Rc 4" P-154 6" P-201 12" P-501 FAA-City 1970										
Rc 4" P-154 6" P-201 12" P-501 FAA-City 1970										
Rc 4" P-154 6" P-201 12" P-501 FAA-City 1970					APPONE					
	6 E-7	Re	4" P-154	6" P-201 I					FAA-C1tal	1970
FAA-City 1970	-	I								
	7 E-7	KC	0 **	6 P-304	13" P-501				FAA-City	1970
		├								
		+ +		† · · · · · · †						

REMARKS:

- * The overlay on the original runway 18 36 (9000') is 6" on centerline, and constantly sloped to 2" at the runway edges. Subgrade class based on E-7 soil, with severe frost and poor drainage.
- ** Lime and asphalt stabilized soil

Table A2 (Continued)

0	RT PA	VEME	NT CH	ARA CTERISTIC	CS	Table A2 (Continued)	
				STATE Missouri	Kansas City	Kansas City International Jan.	'73
	ALLOW.	CONSTRUC.	YEAR				
-		<u> </u>	<u> </u>				
\Box		CAA-City	1970				
\dashv		FAA-C1ty					
\dashv		FAA-City					
\vdash		FAA-City					
\exists		100-0110	1912		الجا		
\dashv					_ [[] 0]		
\dashv					(R2)41 11	Ĩ.	
\vdash		·				A	
コ 1						n-5 (18-36) 10800' x 150'	
\Box					Ю	T .	
\dashv						E-W (9-27) 9500' × 150'	
-					11 11		
ゴ					11 11		
_			1055				
+		CAA-City FAA-City	1955 1970		11/10		
+		FAA-C1ty	1960		IMI		
\Box		FAA-City	1967		1-4-25'		
Π.					IN!		
\vdash					INI		
+					1210		
ユ							
\Box					1 North		
\vdash				1		1	
H				1			
士				- 1		l 10 l	
ユ				- 11	SUI C		
-		FAA-City	1970		$\mathcal{M} \sim$	^ @ ∥ ~	
1		TAX-CICY	1970	പി	(a)	{ \ \ . (6)	
		FAA-City	1970	@ 4	#@\\((@)¬		
┥		W. C. C.		- 11	$ \Theta \mathcal{V} \Theta$		
┝┼				4			
				>			
I				a '			
┵							
\vdash				(A)	9) (87)		
					, ,		
nt	erline,	and					
8.5	ed on E	E-7 soil,					
							

(Sheet 37 of 44)

AIRPORT PAVEMENT CHA MOD. BOIL CLASS. SUB-ORADE CLASS COURSE SURFACE PEAC, L D. BASE DEGION ALLOW CONSTRUC. OVERLAY YEAR RUNNAYS 10/28 13" CA 13 + 54"A 15 + 4"AC E1/E3 Fa/F1 " Bit. 1973 3" AC 13" CA El/E3 Fa/Fl 7" Bit. 1973 3" AC 3" AC 3" AC E1/E3 Fa/F1 10" CA Bit. 58" AC 4" AC 10" CA 13" CA E1/E3 Fa/F1 E1/E3 Fa/F1 E/E3 Fa/F1 1973 Bit. 7" Bit. 13" + 33"AC 1973 R-5 7" Bit. 3" AC 4-3" AC 10" CA R-6 1973 4/22 7" Bit. 3" AC 15" AC F1/E3 Fa/F1 13" CA R-7 TAXINAY 1973 Bit. 3" AC El/E3 Fa/Fl 10" CA F1/F3 Fa/F1 E1/E3 Fa/F1 E1/E3 Fa/F1 E1/E3 Fa/F1 13" CA 13" CA 13" CA 13" CA 41" AC 1973 1973 Bit. T-2 AC Bit. AC T_2A L" AC 55" AC 15"+5" AC 1973 T-3 Bit. 3" AC Bit. T-4 1973 13" CA El/E3 Fa/F " AC T-5 Bit. 13" CA E1/E3 Fa/F 7" Bit. " AC 13" CA " AC E1/E3 Fa/F Bit. 41" AC 13"+45"AC 45" AC 13" CA 13" CA E1/E3 Fa/F 1973 1973 T-8 Bit. AC E1/E3 Fa/F1 E1/E3 Fa/F1 Bit. AC T-9 10" CA AC Bit. 1973 T-9A E1/E3 Fa/F1 13" CA Bit. " AC T-10 13" CA " AC T-11 E1/E3 Fa/F Bit. 7" Bit. 1973 1973 13" CA " AC E1/E3 Fa/F T-12 El/E3 Fa/Fl 13" CA Bit. 3" AC T-13 APRONS 13" CA 3" AC El/E3 Fa/F1 Bit. Term. Arron Exten. El/E3 Fa/Fl 10" CA 7" Bit. 3" AC Apron

ROMARION:

CA - Crushed Aggregate

AC - Asphaltic Concrete (Stone)

Bit. - Bituminous Concrete (Sand-Gravel)

* Overlay to be completed in 1973

Note: Apron data is unreliable

新州市中央部门西洋市

Table A2 (Continued)

			MOD.					SUG-		
YEAR	CONSTRUC.	DESIGN ALLOW.	SUBGRADE REAC. K	OVERLAY	SURFACE	BASE COURSE	COURSE	GRADE CLASS	SOIL CLASS.	I, D. NO.
				_	- RUNWAYS -	-				
									3	L-28
1950	FAAP-01				12" PCC		6" WB. MAC.		E-7	A
1950	FAAP-01				11" PCC	-	6" WB. MAC.		E-7	В
1966	FAAP-16			4" Bit.C.	12"/8" PCC	-	18" Slag	Rc	E-7	C
1957	FAAP-09			755	12" PCC	-	8" CA	Rc	E-7	D
										R-361
1950	FAAP-01				12" PCC	-	6" WB. MAC.	Re	E-7	A
1968	FAAP-19			4" Bit.C.	12"/8" PCC	-	18" Slag	Rc	E-7	Ċ
1968	FAAP-19			4" Bit.C.	12" PCC	-	6" WB.MAC.	Re	E-7	E
1968	FAAP-19			4" Bit.C.	9" PCC	-	18" Slag	Rc	E-7	F
									,	L-36I
1941	War Dept.				9" PCC		4" Slag	Re	E-7	G
1950	FAAP-01				12" PCC	_	6" WB. MAC.		E-7	Ä
1968	FAAP-09			14" Bit.C	1 1 Bit.C.	*	2" Slag		E-7	H
700					YAXIWAY					**
1942	War Dept.				9" PCC	-	18" Slag	Rc	E-7	c I
					8" PCC		18" Slag	Rc	E-7	SA
1962	FAAP-12				13" PCC	-	8" SAM	Rc	E-6	-1
1964	FAAP-15	_			12" PCC	-	8" SAM	Rc	E-6	-2
1967	FAAP-17				12" PCC		8" SAM	Rc	E-7	-3
1962	FAAP-12				13" PCC	-	8" SAM	Rc	E-6	(-4
1967	FAAP-18				12" PCC	-	10" CA		E-6	
1962	FAAP-14				12" PCC	_	8" SAM	Rc	E-6	
1967	FAAP-17	420psi	300		12" PCC	-	8" SAM	Rc	E-7	7
1966	FAAP-16			<u> </u>	11" PCC		8" SAM	Rc	E-7	$\overline{}$
		1.00		6" Bit.C.		*	2" Slag	F7	E-7	9
		420p si	300	- 0 = 2	12" PCC	-	8" Slag	Re	E-7	0-10
	L			3" Bit.C.	2"Bit.C.	8" WB.MAC.		F7	E-7	0-11
					$1\frac{1}{2}$ " Bit.C.	*	2" Slag	F7	E-7	-15
				·	- APRONS -					
									al I	rmin
1950	FAAP-01				12" PCC	-	6" WB.MAC.	Re	E-7	1
1951	FAAP-02	420psi	300		12" FCC	_	8" SAM	Rc	E-7	2
1954	FAAP-05	420psi	_300		12" PCC	-	O SAM	Rc	E-7	3 I
1956	FAAP-08	420ps1	300		12" PCC	-	8" SAM	Rc	E-7	4
1957	FAAP-09				12" PCC	_	8" SAM	Rc	E-7	
1954	FAAP-05	420ps1	300		12" PCC	-	8" SAM	Rc	E-7	6
1960	FAAP-10	420psi	300		12" PCC	-	8" SAM	Rc	E-7	7
1964	FAAP-15	420ps1	300	T	12"_PCC	- 1	8" SAII	Rc	E-7	8
		420psi			12" PCC	-	8" CA	Re	E-7	
1955				4" Bit.C.	8" PCC		4" CA	Rc	E-7	

REMARKS: * 5" Water Bound Macadam + 2" Penetration Macadam.

SAM - Selected Aggregate Materials. Bit.C. - Bituminus Concrete. CA - Crushed Aggregate.

PORT PAVEMENT CHARACTERISTICS

Table A2 (Continued)

<u> </u>	NIIA	VEIVE	TT CIT		CIEKIBIIC		
	DESIGN	CONSTRUC.	-	STATE	Ohio	Cleveland	Cleveland-Hopkins International Jan. 173
ADE	ALLOY!	SPEC.	YEAR				
							1
\Box		FAAP-01	1950	1			
\Box		FAAP-01	13:0]			
\rightarrow		FAAP-16	1965				
\rightarrow		FAAD-09	1957	l			
-+				ł			į
\neg		FAAP-OL	1950	1	1		1
\neg		FAAP-19	1968	1	N.		
\Box		FAAP-19		1	*		<u>ļ</u>
\dashv		FAAP-19	1968	l	ī		
\rightarrow				Į.	ı.		G7
-+		War Dept	1941	ł	и	AZ	BT AZZATES BY AZZETAZETA
-+	**	FAAP-01	1950			a	87 (37A) 0 3 X3577987 A7 0,
\dashv		FAAP-09	1968	1		*	
							12 AN WALL AND BY
\Box		War Dept	1942]		tw'o	
-	1.00		20/2			0	9\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		FAAP-12	1962			De 16 "E"	API API API
		FAAP-17	1964 1967			// 11.	A COLUMN IN THE PROPERTY OF TH
_		FAAP-12	1962	1		ATW'R'A	/ / / / / / / / / / / / / / / / / / / /
		FAAP-18	1967	1			TERMINAL BLAS
	420psi	FAAP-14	1967 1962	1		/63	
\Box	420psi	FAAP-17	1967	I		m///	10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
\rightarrow		FAAP-16	1966	1		1/0//0	
-	420psi			ł		187611	TERMINAL
-	420ps1		 	1		(2) 1/2	
				1		N-STORE N	
				1			-''@
				l	,	W/// /- The	"C" G" TM V"-1
\dashv			1050	1	,	///) (,
	1120-04	FAAP-01 FAAP-02	1950 1951	1		//-T/W'L'-6 5	
-	420ps1	FAAP-05	1954	1	6/	APE	
\Box	420psi	FAAP-08	1956	1	140		1 // '
\Box	420ps1	FAAP-09	1957	l	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	P'C	
-	420ps1	FAAP-05	1954	l			ARG 3 P
\rightarrow		FAAP-10		ļ			7mg-1 [1]
-	420ps1	FAAP-15	1964 1955	ł			Wette
-+	420psi	FAAP-05	1954	ł			
_		FART-0)	1 1974	ł			
				l			
				1			
_							

(Sheet 39 of 44)

		_					<u>AIRPO</u>	RT PA	VEME	<u>vt c</u>
NO.	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW.	CONSTRUC. SPEC	YEAR
				<u> </u>	RUNWAYS	_	-			
.8L-36R										
C	E-7	Rc	18" Slag	-	12"/8" PCC	4" Bit.C.			FAAP-16	1966
I	E-7	Rc	8" CA	-	12" PCC				FAAP-02	1950
J	E-7	F7	-	8" WB.MAC.	2" Bit.C.	3" Bit.C.			FAAP-02	195
K	E-7	Rc	8" SAM	-	12" PCC		Ļ		FAAP-17	196
_L	E-6	Rc	8" SAM		13" PCC	L			FAAP-12	196
M OOD	E-6	F6	2" Slag	*	13" Bit.C.				WPA	194
5L-23R	70.07	-	611 tm 1440		307 700				DAAD OI	305
A	E-7	Re	6" WB.MAC.		12" PCC	11 D1 T			FAAP-01	195
E	E-7	Re	6" WB.MAC.	- *		4" Bit.C.			FAAP-19	196
Н	E-7	F5	2" Slag 18" Slag		15" Bit.C. 12"/8"PCC				FAAP-09	195
C	E-7	Re		-		4" Bit.C.			FAAP-01	196 196
N	E-7	Rc	4" Slag	-	9" PCC	4" Bit.C.	-		CITY	190
					-					
- 1									 	
1					TAXIWAY				<u> </u>	
ASA						-			Ī	
3-12	E-7	F7	2" Slag	*	15" Bit.C.				CAA	194
3-13	E-7	Rc	8" SAM	-	12" PCC		300	420 psi	FAAP-14	196
3-14	E-7	Rc	8" SAM	-	12" PCC				FAAP-04	195
R-10	E-7	Rc	8" CA	•	12" PCC		300		FAAP-02	195
3-3	E-7	Rc	8" SAM		12" PCC		300	420 ps1	FAAP-17	196
S	E-7	Rc	8" SAM	•	12" PCC		300	420 psi	FAAP-02	195
T	E-7	Rc	6" WB MAC	•	12" PCC				FAAP-01	195
u	E-7	Rc	8" SAM	-	12" PCC				FAAP-10	196
W	E-7	Rc	8" SAM	-	11" PCC		300	420 psi	FAAP-16	196
Х	E-7	Rc	8" SAM	-	12" PCC		300	120 psi	FAAP-09	195
					APRONS					
ermin	1									
11	E-7	Rc	4" CA		8" PCC				WPA	194
12	E-7	Re	8" SAM		12" PCC		300	120 ns1	FAAP-17	196
В	E-6	Rc	8" SAM	•	12" PCC				FAAP-14	1962
Ċ	E-6	Rc	8" SAM		12" PCC		300	+20 ps1	FAAP-14	1962
Ď	E-6	Rc	8" SAM	•	12" PCC				FAAP-15	196
E	E-7		18" Slag	-	9" PCC			1	Var Dept	1942
F	= 3	UNKN								
G	E-6	Rc	8" SAM	-	12" PCC		300	120 ps1	FAAP-12	196
H		UNKN					<u> </u>			
Ī		UNKN								

SAM - Selected Aggregate Materials CA - Crushed Aggregate Bit. C.- Bituminous Concrete

^{* 5&}quot; Water Bound Macadam + 3" Penetration Macadam.

Table A2 (Continued)

IRPORT PAVEMENT CHARACTERISTICS AIRPORT NAME Ohio Cleveland Cleveland-Hopkins International CONSTRUC FAAP-16 1966 FAAP-02 1950 FAAP-02 1950 FAAP-17 1967 FAAP-12 WPA FAAP-01 FAAP-19 1957 1968 FAAP-09 FAAP-01 CITY 1968 1943 CAA 1962 300 420 Dai FAAP-14 420 psi FAAP-04 420 psi FAAP-02 420 psi FAAP-17 1952 1950 300 1967 300 420 DE1 FAAP-02 300 1951 FAAP-01 1950 300 420 pai FAAP-10 300 420 DS1 FAAP-16 420 DE1 FAAP-00 1941 1967 1962 WPA 420 dsi FAAP-17 420 psi FAAP-14 1962 1964 1942 420 ps1 FAAP-14 420 psi FAAP-15 lar Dept 1962 420 psi FAAP-12

	YEAR	CONSTRUC.	DESIGN ALLOW,	MOD, SUBGRADE REAC, K	OVERLAY	SURFACE COURSE	BASE	SUGGARE	SUB- GRADE CLASS	SOIL CLASS.	D. 60.
_						- RUNWAYS -	_				
_	/ 0		1.78	444	1 7 5 1 4						-23L
<u>,</u>	1968	FAAP-10	467		4" Bit.C.	13" PCC	-	8" SAM	Rc	E-6	0
<u>ا</u>	1968	FAAP- 10			4" Bit.C.	11" PCC	-	8" SAM	Rc	E-6	P
1	1966	FAAP-16	390ps1		3" Bit.C.	12"/8"PCC	-	18" Slag	Rc	E-7	9
_	1966	FAAP-16	467	300	4" Bit.C.	12"/8"PCC		18" Slag	Rc	E-7	C .
-											
_											
_											
_											
_											
_						TAXIWAY			I		
_		T				I				Т	
_											
-											
											7
_											
									I	I	
_											
_											
_											
_											
_		-			-			-	\rightarrow		
_		-								+	\longrightarrow
-						- APROMS -		1			
_					· · · · · ·	- ~ ~ · · · ·		.n. T	,,,,,,		
_				-				MIN	UNKNO		J
_			$\overline{}$						─		
_									-		\rightarrow
_											
_										\rightarrow	\rightarrow
_											
_											
_											
				I	i						

SAM - Selected Aggregate Materials Bit.C.- Bituminous Concrete

Table A2 (Continued)

PO	DT PA	VFMFI	NT CH	APA	CTERIST	ICS			Table A2 (Contin	iuea)	$\overline{}$
_				STATE	Ohio	CITY	Cleveland	AIRFORT NAM	Cleveland-Hopkins	International	DATE 173
ADE C.	DESIGN	CONSTRUC.	YEAR		Onio		Cleveratio	·	Ole verand-nopalina	HITCHIAGONAL	Jours 13
]							
\sqsupset	10.5.7		(0]							
} 	407 300med	FAAP-10 FAAP- 10	1968 1968	ł							
	390psi	FAAP-16	1966	1							
\Box	467	FAAP-16 FAAP-16	1966 1966	1							
			··	1							
				1							
\Box											
				ł							
-				ł							
				ł							
-				1							
				1							
				l							
				•							
				ĺ							
				Ì							
				ŀ							
┵											
				1							
-+										•	
-											
										•	
_	_										

ALRPORT PAVEMENT CHARA

					<u> </u>		ALCEC	KIPA	VAEWEL	VI Cr
MO'	SOIL CLASS.	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	N-OD, SUB BRADE REAC, K	DESIGN ALLOW.	CONSTRUC. SPEC	YEAR
			_		- RUNWAYS -	_				
12-30	E-8	Rc	-	9" CA	15" PCC		260	500 psi	FAA	1960
	- 0									
1L-19R	E-8	Rc	-	9" CA	15" PCC		260	*1ag006	FAA	1960
1R-19L	E-8	Re		9" CA	15" PCC		260	500ps1*	FAA	1960
							ļ —			
					<u> </u>		 	-		
				·	TAXIWAY_	_				
N-1	E-8	Rc		9" CA	15" PCC		260	00ps1	FAA	1960
N-2	E-8	Rc		9" CA	15" PCC		260	500ps1	FAA	1960
N-3	E-8	Rc		9" CA	15" PCC		260	500psi	FAA	1960
N-4	E-8	Re	-	9" CA	15" PCC		260	500ps1	FAA	1960
N-5	E-8	Rc			15" PCC		260	500ps1	FAA	1960
W-1 W-3	E-8	Rc Rc		9" CA 9" CA	15" PCC	 	260 260	500psi 500psi	FAA FAA	1960 1960
W-4	E-8			9" CA	15" PCC	· —	260	500psi	FAA	1960
W-5	E-8	Rc	-	9" CA	15" PCC	 	260	500psi	FAA	1960
W-5 W-6	E-8	Rc Rc		9" CA	15" PCC	-	260	500ps1	FAA	1960
W-7	E-8	Re		9" CA	15" PCC	 	260	500ps1	FAA	1960
w-8	E-8	Rc	-	9" CA	15" PCC		260	500psi	FAA	1960
										
					APRONS					
JET	E-8	Rc	-	9" CA	15" PCC		260	500ps1		1960
Local	E-8	Rc		9" CA	9" PCC		260	500ps1		1961 1962
Con	E-8	Rc		9" CA	10" PCC		260	E00==4		
Gen. Aviati		N.C.		3 CA			-200	500ps1		
					 		 		+	
				·					<u> </u>	

-

* 680 psi non critical areas Safety Factor = 1.7 Critical Areas and 1.25 Non-critical Areas CA - Crushed Aggregate

Note: The 15" PCC surface course is only true for a 50' center section and at the intersections with taniways and high speed turns. The other pavement is tapered to 12" PCC. Jet apron will be widened by 80' on each side in the near future.

Table A2 (Continued) DRT PAVEMENT CHARACTERISTICS AIRPORT NAME an. Dulles International D. C. Washington DESIGN ALLOW, CONSTRUC SPEC YEAR 1960 500 pai FAA 1960 000s1* FAA 00ps1* FAA 1960 00ps1 500psi 500psi FAA FAA 500ps1 FAA FAA 500psi 500ps1 FAA 500ps1 FAA FAA FAA 500psi 500ps1 500ps1 FAA 1960 500ps1 FAA 1960 500ps1 FAA 1960 1960 1961 1962 500psi 500psi 30R 500ps1 rushed Aggregate r section and at the other pavement is tapered side in the near future.

(Sheet 42 of 44)

H	YEAR	CONSTRUC. SPEC	DESIGN ALLOW.	MOD, SUBGRADE REAG, K	OVERLAY	SURFACE COURSE	BASE COURSE	SUBBASE COURSE	SUB- GRADE CLASS	SOIL CLASS.	L D. NO.
						- RUNWAYS -					
_				ļI							
_				├ ──∔					\rightarrow		
_				↓							
_				} 							
_				├					\rightarrow		
_				├ 							
_				 							-
_				 							
_		-		 							
_				├							
				 	-						
_	2			 							
_				 							
-				 							
_			-	† †					-+	-	
-				<u> </u>		YAXIWAY					
_	1960	FAA	500ps1	260		15" PCC	9" CA		Rc I	E-8	1
_	1960	FAA	500ps1	260		15" PCC	9" CA		Rc	E-8	-3
	1960	FAA	500ps1	260		15" PCC	9" CA		Re	E-8	4
	1960	FAA	500ps1			15" PCC	9" CA	-	Re	E-8	-5
	1960	FAA	500ps1			15" PCC	9" CA	_	Re	E-8	-6
Τ	1960	FAA	500psi			15" PCC	9" CA	-	Re	E-8	-7
_	1960	FAA	500ps1			15" PCC	9" CA	-	Rc	E-8	-8
_											
							-				
				Ļ							I
_					•	- APROMS -					
	_							J			
_				igsquare							
_				\longmapsto							
_			+	∤					-		
_				\longrightarrow							
_											l
				<u> </u>							I
				I				T		T	
•								1			

CA - Crushed Aggregate

Table A2 (Continued) PORT PAVEMENT CHARACTERISTICS

STATE D. C. CITY Washington Jah. '73 Dulles International DESIGN ALLOW, FAA FAA FAA FAA 500ps1 500ps1 500ps1 FAA

(Sheet 43 of 44)

I, D. NQ.	SOIL CLASS,	SUB- GRADE CLASS	SUBBASE COURSE	BASE COURSE	SURFACE COURSE	OVERLAY	MOD, SUBGRADE REAC, K	DESIGN ALLOW.	CONSTRUC.	YEAR
			^	-	RUNWAYS -	_				
R-1	E-1	Fl	4" IR Stab.	8" P-211	2" Bit.	15" P-401			FAAP	1964
R-1(N		Fl	4" LR Stab.	64" P-211	2" Bit.	2" P-401			FAAP	1964
R-2(N		Fl	4" LR Stab.	8" p 211	2" P-401	*			FAAP	1961
R-3	E-1	Fl	6" IR Stab.	6층" P-211	2" Bit.	2" P-401			FAAP	1965
R-3A	E-1	Fl	6" LR Stab.	6½" P-211	$1\frac{1}{2}$ " Bit.				NAVY	1940
R-4	E-1	Fl	4" LR Stab.	8" P-211	2" Bit.				COUNTY	1965
R-5	E-1	Fl	4" LR Stab.	9" P-211	3" P-401	*			FAAP	1964
R-6	E-1	Fl	4" IR Stab.	8" P-211	2" P-401	*			FAAP	1964
R-7A	E-1	Fl	6" IR Stab.	6½" P-211	13" Bit.				NAVY	1940
R-8	E-1	Fl	4" LR Stab.	6" P-211	1½" P-401		 		FAAP	1966
R-9	E-1	F1	4" LR Stab.	8" P-211	2" P-401		L		FAAP	1961
	ļ				ļ				19	R-5
_		-			 		 		├ ─ []	
	-				 				 	L
					-		 		 	76
					TAXIWAY	<u></u>	<u> </u>		<u> </u>	/
T-1	E-3	F1	F -	12" P-211	2" P-401		T		FAAP-03	1959
T-2	E-1	Fl	4" LP Stab.	12" P-211	2" P-401	*			FAAP-04	1961
T-3	E-2	Fl	-	12" P-211	2" P-401	*	f		FAAP-03	1961
T-4	E-1	Fl	-	9" P-211	3" P-401			-	FAAP-05	1963
T-5	E-1	Fl	-	6½" P-211	15" Bit.				COUNTY	1964
т-6	E-1	Fl	4" LR Stab.	9" P-211	3" P-401	*			FAAP-06	1964
T-7	E -1	Fl	4" LR Stab.	6" P-211	13" P-401				FAAP-08	1966
т-8	E-3	F1	4" LP Stab.	6" P-211	14" P-401				FAAP-12	1970
T-9	E-2	F1	4" IP Stab.	6" P-211	1½" P=401				FAAP-11	19 68
T-10	E-3	F1	4" LP Stab.	9" P-211	3" P-401				FAAP-11	1968
T-11	E-2	Fl	4" LP Stab.	**	**	*	[]		ADAP-01	1971
T-12	E-2	Fl	4" LP Stab.	12" P-211	2" P-401	2분" P-401	*		FAAP-09	1970
T-13	E-3	F1	4" LP Stab.	9" P-211	3" P-401		L		FAAP-11	1968
					APRONS					
A-1	J,-3	F1		· · · · · ·	10" P-501			-	TAAD OO	1050
A-2	<u> </u>	Ra			6" P-501				FAAP-02	1959
	E-1	F1		8" P-211	2" Bit.				HAVY COUNTY	WW II 1964
	E=2	Ra		- A Tourishe	6" P-501				MAVY	WW II
	E-1	F1		9" P-211	3" P-401				FAAP-05	1963
	E-1	Fl	8" IR Stab.	6" P-211	1" Bit.				1201-V	±7U)
	E-1	Fl	8" IR Stab.	8" P-211	1" Bit.					
•	E1/E3	Fi	4" LR Stab.	6" P-211	15" P-401				FAAP-10	1967
	El/E3	Fl	4" IR Stab.	9" P-211	3" P-401				ADAP-01	1971
	E-3	Fl	4" LR Stab.	9" P-211	3" P-401				FAAP-11	1968
. =-	~ ~		, Lat Doddo	/ 1	7 1-401				* * ** * * - ** **	<u> </u>

REMARKS:

LR - Lime Rock

- * An additional 3" asphalt concrete overlay is programmed for 1973 on runway 9L-27R and parallel taxiway. The pavement at this location is old and is showing signs of distress (rutting, oxidation, cracking, etc.), and the overlay is necessary to bring the pavement up to a strength of 350,000 lbs. dual tandem gear gross load.
- ** Old Navy Base with a 41" surface.

Table A2 (Continued)

STATE Florida CITY Laudandala AIRPORT NAME Halland Tutana Alana I	T PAVEMENT CH	IARA CTERISTIC	CS	1	Cable A2 (Continued)	
FAAP 1064 FAAP 1	DESIGN CONSTRUC.	STATE	Ft. Lauderdale	AIRPORT NAME	Hollywood International	Jan. '7
FAAP 1360. FAAP 1360.	ILLOW, SPEC YEAR					
FAAP 1360. FAAP 1360.]				
FAAP 1965 RAWY 1946 RAWY 1946 PAAP 1966 RAWY 1946 PAAP 1966 RAWY 1946 PAAP 1966 RAWY 1946 PAAP 1966 RAWY 1946 PAAP 1966 RAWY 1946 PAAP 1966 PAAP 1		-ļ -ņ.				
NAVY 1945 FAAP 1954 FAAP 1954 FAAP 1954 FAAP 1954 FAAP 1954 FAAP 1954 FAAP 1954 FAAP 1954 FAAP 1954 FAAP 1954 FAAP 1954 FAAP 1955 FAAP 1956 FAAP 1	FAAP 1961	1 1			· ·	
COUNTY 1966 PAAP 1964 PAAP 1964 PAAP 1964 PAAP 1964 PAAP 1964 PAAP 1964 PAAP 1964 PAAP 1964 PAAP 1966 PAAP		-		\Box		A7
PAAP 1960 PAAP 1	COUNTY 1965	1	1000 N] [[[L A4	1 7
NAVY 1040. PAAP 1066. PAAP 1066. PAAP-01 1950. PAAP-02 1951. PAAP-03 1966. PAAP-04 1966. PAAP-04 1966. PAAP-05 1966. PAAP-01 1970. PAAP-11 1966. PAAP-02 1967. PAAP-01 1967. PAAP-01 1967. PAAP-01 1967. PAAP-01 1967. PAAP-01 1967. PAAP-01 1967. PAAP-01 1968. PAAP-02 1969. PAAP-02 1969. PAAP-03 1966. PAAP-04 1966. PAAP-05 1966. PAAP-06 1966. PAAP-07 1968. PAAP-08 1966. PAAP-09 1970. PAAP-09 1970. PAAP-01 1968. PAAP-02 1969. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-02 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968. PAAP-01 1968.			√ ∧\&		1 L	I //
PAAP 1966 PAAP 1966 PAAP 1966 PAAP-01 1960 PAAP-03 1963 COUNTY 1964 PAAP-03 1970 PAAP-01 1968 PAAP-01 1968 PAAP-02 1969 PAAP-11 1968 PAAP-03 1969 PAAP-11 1968 PAAP-04 1969 PAAP-11 1968 PAAP-05 1964 PAAP-05 1964 PAAP-06 1964 PAAP-07 1969 PAAP-11 1968 PAAP-11 1968 PAAP-11 1968 PAAP-10 1967 PAAP-11 1968 PAAP-11 1968 PAAP-11 1968 PAAP-11 1968 PAAP-11 1968 PAAP-11 1968	NAVY 1940	1 750	752			//
FAAP-03 1959 FAAP-04 1961 FAAP-05 1963 COUNTY 1964 FAAP-01 1960 FAAP-11 1966	FAAP 1066	-			7	?
FAAP-03 1950 FAAP-04 1961 FAAP-05 1963 COUNTY 1964 FAAP-06 1964 FAAP-01 1970 FAAP-11 1968 ADAP-01 1970 FAAP-01 1970 FAAP-01 1970 FAAP-01 1968 ADAP-01 1970 FAAP-02 1979 WAIY WA II COUNTY 1964 WAIY WA III FAAP-05 1963 TAAP-01 1970 FAAP-01 1968		1 5	1 1 16		<u> </u>	0. 10.51
FAAP-03 1951 FAAP-05 1963 COUNTY 1964 FAAP-12 1970 FAAP-11 1968 FAAP-11 1968 MAY MM II COUNTY 1964 NAVY MM II FAAP-05 1963 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-12 1970 FAAP-11 1968 FAAP-13 1964 FAAP-14 1967 FAAP-15 1967 FAAP-11 1968 FAAP-11 1968	F R-5 R	R-2(N)	7 3650	20.	1 C S C N - 1 (N)	F-1 103
FAAP-03 1951 FAAP-05 1963 COUNTY 1964 FAAP-12 1970 FAAP-11 1968 FAAP-11 1968 MAY MM II COUNTY 1964 NAIY MM II FAAP-05 1963 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-11 1968 FAAP-12 1970 FAAP-13 1964 FAAP-14 1967 FAAP-15 1967 FAAP-11 1968			1 3/2			76
FAAP-03 1963 CAAP-04 1963 CAAP-05 1963 COUNTY 1964 CAAP-01 1960 CAAP-11 1968 CAAP-1		and the same of th	7/12/			-
FAAP-03 1961 FAAP-05 1963 COUNTY 1964 FAAP-06 1966 FAAP-11 1968 FAAP-11 1968 ADAP-01 1970 FAAP-01 1961 NAVY WW II FAAP-05 1963 FAAP-11 1968 FAAP-11 1968 TAAP-11 1968	FAAP-03 1359	1	(3) (3)	1/2	2	
FAAP-08 1966 FAAP-11 1968 FAAP-11 1968 FAAP-09 1970 FAAP-01 1971 FAAP-01 1964 NAVY WM II COUNTY 1964 NAVY WM II FAAP-05 1963 FAAP-01 1971 FAAP-01 1971 FAAP-01 1971 FAAP-11 1968	FAAP-04 1961	-	1, 1,0,0	11/2	150 NS	Alo
FAAP-08 1966 FAAP-11 1968 FAAP-11 1968 ADAP-01 1970 FAAP-09 1970 FAAP-11 1968 ADAP-01 1970 FAAP-09 1970 FAAP-09 1970 FAAP-01 1964 NAVY WW II FAAP-05 1963 FAAP-01 1971 FAAP-01 1971 FAAP-11 1968		1	X //	11:5	(ve/ 1 - 43	710
FAAP-12 1970 FAAP-12 1970 FAAP-11 1968 FAAP-11 1968 AAAP-01 1971 FAAP-09 1970 FAAP-11 1968 FAAP-10 1967 ANY WW II COUNTY 1964 NAVY WW II FAAP-05 1963 FAAP-01 1971 FAAP-11 1968 Trunway 9L-27R showing signs is necessary to	COUNTY 1964	7	1 4/	7+17	100	
FAAP-11 1968 FAAP-02 1959 NAVY WW II COUNTY 1964 NAVY WW II FAAP-05 1963 FAAP-01 1971 FAAP-11 1968 TAAP-11 1968 TAAP-11 1968 TAAP-11 1968 TAAP-11 1968		1	/,5 /	1/2/	114 7	
ADAP-01 1970 FAAP-09 1970 FAAP-11 1968 FAAP-02 1959 NAVY WW III COUNTY 1964 NAVY WW III FAAP-05 1963 FAAP-01 1971 FAAP-11 1968 n runway 9L-27R showing signs is necessary to	FAAP-12 1970	1)	1)0	ا ا ا کفر	
ADAP-01 1970 FAAP-09 1970 FAAP-11 1968 FAAP-02 1959 NAVY WW III COUNTY 1964 NAVY WW III FAAP-05 1963 FAAP-01 1971 FAAP-11 1968 n runway 9L-27R showing signs is necessary to		1		- 4	0 ()	
FAAP-02 1959 NAVY WW JI COUNTY 1964 NAVY WW JI FAAP-05 1963 FAAP-01 1971 FAAP-11 1968 n runway 9L-27R showing signs is necessary to	ADAP-01 1971]		/ >		
FAAP-02 1959 NAVY WW II FOUNTY 1964 NAVY WW II FAAP-05 1963 FAAP-10 1967 ADAP-01 1971 FAAF-11 1968 n runway 9L-27R showing signs is necessary to		1	, (120	V3 7	\
FAAP-02 1959 NAVY WW II COUNTY 1964 NAVY WW II FAAP-05 1963 FAAP-10 1967 ADAP-01 1971 FAAP-11 1968 n runway 9L-27R showing signs is necessary to	1900	1	1.0/	X 4/	1/1/6	
NAYY WW II COUNTY 1964 NAVY WW II FAAP-05 1963 FAAP-10 1967 ADAP-01 1971 FAAP-11 1968 In runway 9L-27R Showing signs is necessary to		1	\ \\\\	*>	\ \\ \\ \\ \\ \	1
NAVY WW II COUNTY 1964 NAVY WW II FAAP-05 1963 FAAP-10 1967 ADAP-01 1971 FAAP-11 1968 on runway 9L-27R showing signs is necessary to])/\`•	<i>'</i> /		\ \
NAVY WW II FAAP-05 1963 FAAP-10 1967 ADAP-01 1971 FAAP-11 1968 n runway 9L-27R showing signs is necessary to	NAVY WW II	1	<u></u>		XLIP	V
FAAP-10 1967 ADAP-01 1971 FAAP-11 1968 n runway 9L-27R showing signs is necessary to	NAVY WW II	1	A LA	3200	ا ا	1.77
FAAP-10 1967 ADAP-01 1971 FAAP-11 1968 n runway 9L-27R showing signs is necessary to	FAAP-05 1963	1	120-47 B	11	197	
ADAP-01 1971 FAAP-11 1968 n runway 9L-27R showing signs is necessary to		1	•	70		
runway 9L-27R showing signs is necessary to		1)	
showing signs is necessary to		1				
showing signs is necessary to						
showing signs is necessary to						
showing signs is necessary to						
is necessary to						

(Sheet 44 of 44)

APPENDIX B

CONTROLLING PAVEMENT CHARACTERISTICS USED TO DETERMINE PAVEMENT THICKNESS REQUIREMENTS

The CBR's of subgrade soil and the moduli of subgrade reaction k are input parameters essential to the determination of required thickness. These values, determined as described in the main text for the pavement section that controlled the evaluation of each pavement item, are listed in the following tabulation.

Airfield	Pavement Item*	Controlling ID No.*	Subgrade CBR	Foundation k**
Chicago	Runway 1	30	6.5	360
(O'Hare)	Runway 1 30 6.5	390		
	Runway 3	24	6.5	270
	Taxiway 1 & 6	41	5.5	380
	Taxiway 2	25	6.5	260
	Taxiway 3	11	6.5	360
	Taxiway 4	42	5.5	340
	Taxiway 5	10	6.5	300
	Taxiway 7	9	6.5	360
	Apron 1	12	6.5	260
Atlanta	Runway 1	R-6	8.5	280
	Runway 2	R-2	8.5	280
	Taxiway 1	T- 7		280
	Taxiway 2	T-6		280
	Taxiway 3	T-1		390
	Taxiway 4	T-2		280
	Apron 1	A-1	8.5	260
Los Angeles	Runway 1	R-1	8.5	260
(Interna-	Runway 2	ID No.* CBR 30 6.5 38 5.5 24 6.5 24 6.5 25 6.5 11 6.5 42 5.5 10 6.5 9 6.5 12 6.5 R-6 8.5 R-2 8.5 T-7 8.5 T-1 8.5 T-2 8.5 R-1 8.5 R-3 22 T-2A 22 T-8 22 T-7 8.5 R-5C & T-2B 8.5 T-11 8.5 T-11 8.5 T-10 22	460	
tional)	Taxiway 1			290
	Taxiway 2	T-8		290
	Taxiway 4	T- 7		305
	Taxiway 5	T-5E		490
	Taxiway 6	R-5C & T-2B		340
	Taxiway 7	T-11		460
	Taxiway 8	T-10	22	380
	Apron 1	A-11	22	360

^{*} Identification of pavement items and controlling ID numbers are shown in Table A2.

^{**} Where flexible pavement is base pavement, k shown represents k on top of flexible pavement. Where rigid pavement is base pavement, the k shown represents k of foundation layer directly under existing pavement slab.

Airfield	Pavement Item	Controlling ID No.	Subgrade CBR	Foundation k
	Apron 2 Apron 3 Apron 4 Apron 5	A-12 A-15 A-1 A-20	22 22 8.5 22	315 315 350 400
San Francisco	Runway 1 Runway 2 Taxiway 1 Taxiway 2 Taxiway 3 Apron 1	R-1 R-3 T-2 T-9 T-5 A-3	18 18 18 18 18	400 400 400 400
Miami	Runway 1 Runway 2 Taxiway 1 Taxiway 2 Taxiway 3 Taxiway 4 Taxiway 5 Apron 1	R-1A R-2 T-1 T-3 T-3 T-5 T-1B A-8	23 23 23 23 23 23 23 23	450 490 450 410 410 430 450 370
New York (JFK)	Runway 1 Runway 2 Taxiway 1 Taxiway 2 Taxiway 3 Taxiway 4 Apron 1	13R-31L 4L-22R P O I K Terminal	23 23 23 23 23 23 23	370 370 370 430 430 430
New York (La Guardia)	Runway 1 Runway 2 Taxiway 1 Taxiway 2 Apron 1	13-3i 4-22 13-31 4-22 Terminal and Hanger	23 7.5 23 7.5 7.5	400 330 390 330 340
Newark	Runway 1 Taxiway 1 Taxiway 2 Apron 1, 2, 3	4-22 T-2 Taxi-B B	23 23 23 23	410 410 410 400
Denver	Runway 1 Runway 2 Taxiway 1 Taxiway 2 Taxiway 3 Taxiway 4 Aprons	R-8 R-1 T-10 T-8 T-7 T-8 A-1	23 7.5 23 6.5 7.5 6.5 7.5	200 390 200 220 325 220 165
Boston	Runway 1 Runway 2	C B (Continued)	6.5 6.5	500 500

Pavement Airfield Item		ControllingID No	Subgrade CBR	Foundation k
	Taxiway 1 Taxiway 2 Taxiway 3 Taxiway 4 Taxiway 5 Apron 1 Apron 2	P D N S Apron Cb Expons 1 Expons 2	6.5 6.5 6.5 6.5 6.5 22	450 450 410 410 500 450 410
Phildelphia	Runway 1 Runway 2 Taxiway 1 Taxiway 2 Taxiway 3 Apron 1	Critical Noncritical T-1 T-2 Critical A-1	18 18 18 18 18 18	390 360 390 500 390 280
St. Louis	Runway 1 Taxiway 1 Apron 1	5 6 7 & 11	8.5 8.5 8.5	180 180 180
Honolulu	Runway 1 Taxiway 1 Taxiways 3, 4, 8, & 10	T-24	14.5 14.5 14.5	500 500 500
	Taxiways 5, 6, 7, 11, & 13 Taxiway 12 All Aprons	T-6 T-23 A-5	14.5 14.5 14.5	500 500 500
Detroit	Runway 1 Runway 2 Taxiway 1 Taxiway 2 Taxiway 3 Taxiway 4 Apron	2 6 13, 12, 10 12, 13 11 12 29	6.5 6.5 6.5 6.5 6.5 6.5	200 200 200 200 200 200 200
Seattle/ Tacoma	Runway 1 Runway 2 Taxiway 1 Taxiway 2 Taxiway 3 Taxiway 4 Aprons	R-3, R-4 R-6 T1, T2, T6, T9 T-19 T-12 T15, T16, T20 A-1	10 18 10 18 10 18	200 340 300 340 200 340 200
Pittsburgh	Runway 1 Runway 2 Taxiway 1 Taxiway 2 Taxiway 3 Taxiway 4	R-7 R-4 T-9 T-10 T-5 T-9 (Continued)	6.5 6.5 6.5 6.5 6.5	220 220 220 220 375 220

Airfield	Pavement Item	Controlling ID No.	Sub grade CBR	<u>k</u>		
	Taxiway 5	T-2	6.5	250		
	Apron 1	A-1	6.5	150		
Houston	Runway 1	R-5	10	400		
	Taxiway 1	T-3	10	400		
	Taxiway 2	T-7	10	400		
	Taxiway 3	T-3	10	400		
	Taxiway 4	T-1	10	400		
	Apron 1	A-3	10	400		
Minneapolis/	Runway 1	R-2, R-3, R-5	10	200		
St. Paul	Runway 2	R-13	10	200		
St. Paul	_	T-2	10	275		
	Taxiway 1	T-10	10	275		
	Taxiway 2		10	275		
	Apron 1	A-1		_=_		
New Orleans	Runway 1	R-6	3.5	160		
	Taxiway 1	T-4	3.5	145		
	Taxiway 2	T-1	3.5	270		
	Apron 1	A-1	3.5	145		
	Apron 2	A-3	3.5	270		
	Apron 3	A-4	3.5	50		
Las Vegas	Runway 1	R -6	10	370		
	Runway 2	R-2	14.5	250		
	Taxiway 1	T-4	12.5	370		
	Taxiway 2	T-6	14.5	370		
	Apron 1	A-9	14.5	360		
Kansas City	Runway 1	R-7	6.5	250		
(Interna-	Runway 2	R-1	6.5	220		
tional)	Taxiway 1	T-1	6.5	220		
CTOHAT /	Taxiway 2	T-2, T-3	6.5	230		
		T-6	6.5	250		
	Taxiway 3	A-6	6.5	200		
	Apron					
Baltimore	Runway 1	10-78	18	430		
	Runway 2	15-33	18	410		
	All Taxiways	B,C,D,E,F,G	18	430		
	Apron 1		18	430		
Cleveland	Runway 1	Q	6.5	300		
	Taxiway l	L-6	6.5	300		
	Taxiway 2	T	6.5	300		
	Apron 1	AP-12	6.5	300		
	Apron 2	AP-3, AP-4, AP-2	6.5	300		
	Apron 3	AP-10	6.5	300		
Washington (Dulles)	All Pavements		7.5	260		
Hollywood	Runway 1	R-1, R1(N) (Continued)	18	380		

Airfield	Pavement Item	ControllingID No.	Subgrade CBR	Foundation k	
	Taxiway 1	T+5	18	335	
	Texivey 2	T-12	18	410	
	Apron 1	A-2	18	280	

APPENDIX C

PAVEMENT THICKNESS REQUIREMENTS FOR OPERATION OF CATEGORY I AND II AIRCRAFT

The flexible pavement thicknesses for new construction were determined by entering the design curves shown in Figures 32 through 35 of the main text with the appropriate subgrade CBR value from Appendix B and reading the corresponding thickness. For rigid pavement new construction, the design curves shown in Figures 36 through 39 of the main text were entered at a working stress of 350 psi, and the required thickness was determined using the k-value of the foundation under existing pavements and the gross weight of the aircraft.

All overlay thicknesses were determined in accordance with FAA procedures and methods presented in Reference 10. The base pavement for all overlays was assumed to be in good condition. Calculations were made for flexible, bituminous, and rigid overlays on rigid and flexible pavements. Overlay thicknesses were calculated for each cross section on a pavement item (i.e., runway, taxiway, apron, etc.) and the overlay thicknesses deemed most logical was selected for the entire pavement item.

The results of these calculations are shown in this appendix.

Appendix C
Pavement Thickness Requirements for Operation
of Category I and II Aircraft

	Payement	Base Payenent	Aircraft		12.00	Thickness I Construction			
Airport *	Item	Type	Category	Cent	Rigid	Flexible	Flexible	Overlayst Bituminous	Rigi
Chicago (O'Hare)	Runway 1	PCC	1	Median Optimized	17			11.0	n
			II	Median Optimized	16			9.5 17.0	10
	Branch 5	PCC	I	Median Optimized	17			6.0	6
			II	Median	16 20			4.5	1
	Runway 3	PCC	I	Optimised Median Optimized	18 19			11.5 3.0 4.0	1:
			11	Median Optimized	18 23			3.0	1.
	Taxiway 1 and 6	PCC	. 1	Median Optimized	17 17			3.0 4.0	11
	and 0		11	Median	16 24			3.0	
	Taxiway 2	PCC	I	Optimized Median	18			13.0 3.0	1
			II	Optimized Median	19 18			3.0 3.0	
	Textvey 3	AC	1	Optimized Median	23	55, 4, 14		6.5 17.5	1
			11	Optimized Median		56, 4, 14 58.5, 4, 14		18.0 19.0	1
	Taxivay 4	PCC	1	Optimized Median	17	64.5, 4, 15		26.5 4.0	2
	•		11	Optimized Kedian	18			4.5 3.0	
	Taxivay 5	AC	1	Optimized Median	21	55, 4, 14	4 + 8 4 + 14	9.5 13.5	1
		. =	•	Optimised		56, 4, 14 58.5, 4, 14	h + 14 h + 17	13.5	1
			II	Median Optimized		69.5, 4, 15	4 + 28	22.5	2
	Textvey 7	AC	I	Median Optimized		55, 4, 14 56, 4, 14	4 + 18	16.0 16.0	1
			11 .	Median Optimized		58.5, 4, 14 69.5, 4, 15	4 + 20	17.5 24.5	1 2
	Apron 1	PCC	1	Median Optimized	18 19			3.0 3.0	
			II	Median Optimized	18 23		4 + 4	3.0 6.5	1
tlanta	Runway 1	PCC	I	Median Optimized	18 18			3.0 3.0	
			II	Median Optimized	17 22			3.0 4.5	1
	Bunnay 2	PCC	I	Median Optimized	18 18			3.0 3.0	
			11	Median Optimized	17 22			3.0 4.5	1
	Taxivay 1, . 2, and 4	PCC	I	Median Optimized	18 18			3.0 3.0	
			II	Median Optimized	17 22			3.0	1
	Taxivay 3	AC	I	Median Optimized		42.5, 4, 14 43.5, 4, 14	4 + 8.5	9.5 10.5	1

Dalias-Fort Worth Regional Airport was not included because it is designed for operation of the Category II aircraft.

Multiple entries such as 55, 4, 14 indicate total thickness, thickness of wearing course, and thickness of base

(Sheet 1 of 11)

course.
† Flexible payment is defined as asphaltic concrete wearing course plus granular foundation courses; bituminous pavement in defined as full-depth asphaltic concrete.

Appendix C (Continued)

Pavement Item	Pavement	Aircraft Category	Genr	High	Construction		Overtayo	
				M14"141	Plexibie	Flexible	Rituminous	Histo
Taxivay 3	AC '	11	Median Optimised		44, 4, 14 54, 4, 15	4 + 10.5	11.0 17.5	16
Apron 1	PCC	1	Median Optimised	18		4 + 4.5	6.0	11
		11	Median	18			6.0	10 16
Runway 1	PCC	1	Median	16		4 + 5	7.5	10 11
		11	Median	18	**	4 + 4.5	7.0	10
Hunway 2	AC	1	Median		15, 4, 11	0	0	0
		11	Modian		15.5, 4, 11.5	0	0	0
Taxivey 1	AC	1	Median		15, 4, 11	0	0	0
		11	Nedian		15.5, 4, 11.5	0	0	0
Texivey 2	PCC	1	Median	18			5.0	10 10
		11	Median	17			4.0	9
Taxivey 4	PCC	1	Nedian	18		4 + 10.5	11.0	13
		11	Median	17		4 + 9.5	10.5	13 18
Taxivey 5	AC	I	Median		42.5, 4, 14	0	0	0
		11	Hedian		44.1, 4, 14	••	. 3.0	15
Textvey 6	AC	1	Median		42.5, 4, 14	4 + 18	16.0	17 18
		11	Median		hh. h. 14	4 + 18.5	16.5	16
Taxivay 7	AC	I	Median		42.5, 4, 14		3.0	16
		11	Medjun		44, 4, 14	4 + 0	3.0	15 19
Taxivey 8	PCC	1	Median	17			3.0	8 9
		11	Median	16	••		3.0	7
Apron 1	PCC	1	Nedian	17 1			3.5	8
		11	Mediun	16			3.0	8
Apron 2	PCC	1	Median	17			6.0	10
		11	Nedian	17			5.0	9
Apron 3 .	PCC	ı	Hedian	17	••	4 + 10.5	11.0	13
		11	Mediun	17		4+9	10.0	12 18
Taxivay 6	AC	1	Median Optimized		42.5, 4, 14 43.5, 4, 14	4 + 18	16.0	17 18
			chetersag		73.7, 7, 14	- + 1y	16.5	10
	Runway 1 Runway 2 Taxiway 1 Taxiway 2 Taxiway 4 Taxiway 5 Taxiway 6 Taxiway 7 Taxiway 6 Apron 1 Apron 2 Apron 3	Runway 1 PCC Runway 2 AC Taxiway 1 AC Taxiway 2 PCC Taxiway 4 PCC Taxiway 5 AC Taxiway 6 AC Taxiway 7 AC Taxiway 7 AC Apron 1 PCC Apron 2 PCC Apron 3 PCC	II	Apron 1 PCC I Median Optimised Runway 1 PCC I Median Optimised Runway 2 AC I Median Optimised Runway 2 AC I Median Optimised Runway 1 AC I Median Optimised II Modian Optimised II Median Optimised Apron 1 PCC I Median Optimised II Median Optimised	Apron 1 PCC	Apron 1 PCC	Apron 1 PCC I Median 18	Agron 1 PCC I Median 18 4 6.0 Optimized 23 4 + 4.5 7.0 Runway 1 PCC I Median 18 4 6.0 Runway 1 PCC I Median 18 4 + 5 7.5 Optimized 23 4 + 13 12.5 Runway 2 AC I Median 15, 4, 11 0 0 0 Optimized 15, 5, 4, 11.5 0 0 0 II Median 15, 5, 11.5 0 0 0 Taxivay 1 AC I Median 15, 5, 4, 11.5 0 0 0 Taxivay 2 PCC I Median 15, 5, 4, 11.5 0 0 0 Taxivay 4 PCC I Median 18 5, 0 Optimized 18, 4, 14 0 0 0 0 Taxivay 5 AC I Median 18 5, 0 Optimized 18, 4, 14 0 0 0 0 Taxivay 5 AC I Median 18 5, 0 Optimized 22 4 + 10 11.0 Taxivay 5 AC I Median 18 4 + 10, 11.0 Optimized 22 4 + 10 11.0 Taxivay 5 AC I Median 18 4 + 10, 11.0 Optimized 22 4 + 10 11.0 Optimized 22 4 + 10 11.0 Optimized 22 4 + 10, 11.0 Taxivay 5 AC I Median 42.5, 4, 14 3.0 Optimized 33.7, 4, 15 4 + 6 6.5 Taxivay 6 AC I Median 42.5, 4, 14 4 + 19 16.5 II Median 42.5, 4, 14 4 + 19 16.5 Taxivay 7 AC I Median 42.5, 4, 14 4 + 19 16.5 Taxivay 8 PCC I Median 42.5, 4, 14 4 + 19 16.5 Taxivay 7 AC I Median 42.5, 4, 14 4 + 19 16.5 Taxivay 8 PCC I Median 42.5, 4, 14 4 + 19 16.5 Taxivay 8 PCC I Median 42.5, 4, 14 4 + 19 16.5 Taxivay 8 PCC I Median 42.5, 4, 14 4 + 19 16.5 Taxivay 8 PCC I Median 42.5, 4, 14 4 + 19 16.5 Optimized 54, 5, 15 4 + 9 10.0 Taxivay 8 PCC I Median 42.5, 4, 14 3.0 Optimized 54, 5, 15 4 + 9 10.0 Taxivay 8 PCC I Median 17 4, 9, 9, 0 Apron 1 PCC I Median 17 4, 9, 9, 0 Apron 2 PCC I Median 17 4, 9, 9, 0 Apron 3 PCC I Median 17 4, 10.5 II Median 17 5, 0 Optimized 22 4 + 11.5 II Median 17 4, 10.5 Optimized 22 4 + 11.5 II Median 17 4, 10.5 Optimized 22 4 + 11.5 II Median 17 4, 10.5 Optimized 22 4 + 11.5 II Median 17 4, 10.5 Optimized 22 4 + 11.5 II Median 17 4, 10.5 Optimized 22 4 + 11.5 II Median 17 4, 10.5 Optimized 22 4 + 11.5 II Median 17

(Sheet 2 of 11)

Appendix C (Continued)

		Pavement	Bane Pavement	Aircraft		N. U	Thickness F Construction		s, in. Overtays	
Aire	ort	Item	7714	Category	Conv	deid	Flexible		Bituminous	High
Los Angeles national)		Taxivay 7	AC	1	Median Optimized		42.5, 4, 14 43.5, 4, 14		3.0 3.0	16 16
				11	Median Optimised	••	44, 4, 14 54, 4, 15	4 + 9	3.0 10.0	15 19
		Taxiway 8	PCC	I	Median Optimised	17 17			3.0 4.0	8
				11	Median Optimized	16		4 + 13.5	3.0 13.0	7 17
		Apron 1	PCC	1	Median Optimized	17 17			· 3.5	8 9
				11	Median Optimised	16 21		4 + 7.5	3.0 9.0	8 13
		Apron 2	PCC .	1	Median Optimised	17 18			6.0 6.5	10 11
			•	11	Modian Optimized	17		4 + 11.5	5.0 11.5	9 15
		Aproa 3 '	PCC	1	Median Optimised	17 18		4 + 10.5 4 + 11.5	11.0	14
				II	Median Optimised	17		4 + 9 4 + 19	10.0	12
		Apron 4	AC	I	Median Optimized		42.5, 4, 14 43.5, 4, 14	4 + 15.5	14.5 15.0	17
				II	Median Optimized		44, 4, 14 54, 4, 15	4 + 17 4 + 26.5	15.5	16
		Apron 5	AC	ī	Median Optimised		15, 4, 11 15.5, 4, 11.5		3.0 3.0	16 17
				. 11	Median Optimised		15.5, 4, 11.5 17.5, 4, 13.5		3.0 3.0	16
San Francisc	•	havey 1	AC	1	Median Optimized		19, 4, 12 19.5, 4, 12		3.0 3.0	16
				11	Median Optimized		19.5, 4, 12		3.0 5.5	16
		Rummay 2	AC	1	Median Optimised		19, 4, 12 19.5, 4, 12		3.0 3.0	16
				II	Median Optimized		19.5, b. 12 23, 4, 13		3.0 4.0	16
		Taxivay 1	AC	1	Median Optimized		19, 4, 12 19.5, 4, 12		3.0 3.0	16 17
				11	Median Optimized		19.5, 4, 12		3.0 3.0	16
		Texivey 2	PCC	I	Median Optimized	16 17	23, 4, 13		3.0 3.0	6
	•			,II	Median Optimized	16 20			3.0 5.5	6
		Taxivay 3	PCC	1	Median Optimized	16			3.0 3.0	6
				11	Median Optimised	17 16 20		4 + 4.5	3.0 7.0	5
		Apron 1	AC	1	Median		19,4,12 19.5, 4, 12		3.0	16 17
	•			11	Optimised Median		19.5, 4, 12		3.0 3.0 4.0	16
Kieni		Runway 1	AC	1	Optimized Median Optimized		14, 4, 10 14.5, 4, 10.5	0	0	0
				11	Median Optimised		14.5, 4, 10.5 16.5, 4, 12.5	0	0	0
•		Runvey 2	AC	1	Median		14, 4, 10	0	0	0
				11	Optimized Median		14.5, 4, 10.5 14.5, 4, 10.5	0	0	0
				(Con	tinued)				(Sheet 3 o	r 11)

	12	Bane					<u>courrements</u>		
Airport	Pavement	Pavement Type	Aircruft Category	Gear		<u> </u>		<u>Bituminous</u>	Ricid
iami (Continued)	Runway 2	AC	II	Optimized		16.5, 4, 12.5	0	0	0
	Taxivey 1	AC	ī	Modian		14, 4, 10	ŏ	0	0
				Optimised	-	14.5, 4, 10.5	0	0	0
			11	Median Optimized		14.5, 4, 10.5 16.5, 4, 12.5	0	0	0
	Taxivay 2	AC	ı	Median		14, 4, 10		3.0	16
•.			•	Optimised		14.5, 4, 10.5		3.0	17
			11	Medium		14.5, 4, 10.5		3.0	15
	Texivey 3	AC	1	Optimised Hedian		16.5, 4, 12.5		, 3.0 3.0	20 16
			•	Optimised		14.5, 4, 10.5		3.0	17
			11	Hedian		14.5, 4, 10.5		. 3.0	15
	Taxivay 4	AC .	ī	Optimized Median		16.5, 4, 12.5	0	3.0 0	20
	101100	AL.	•	Optimized		14.5, 4, 10.5	ŏ	ŏ	ŏ
			11	Median		14.5, 4, 10.5	0	0	0
	#00.00000 # 1		_	Optimized		16.5, 4, 12.5	0	0	0
	Taxivey 5	AC	1	Median Optimised		14, 4, 10 14.5, 4, 10.5	0	0	0
			11	Median		14.5, 4, 10.5	0	0	0
•		200	_	Optimized		16.5, 4, 12.5	0	0	0
	Apron 1	PCC	I	Median Optimised	17 17			4.0 4.5	10 11
	•		11	Median	16			3.0	9
			_	Optimized	21		4 + 9	9.0	15
w York (JFK)	Runway 1	PCC	1	Median Optimised	17 17			3.5 4.0	8
			11	Kedian	16			3.0	7
				Optimized	21	••	4 + 7	8.5	13
	Runvey 2	PCC	1	Median Optimized	17 17	·	0	0	0
			11	Median	16		0	0	0
				Optimised	21			3.0	13
	Taxivay 1	PCC	1	Median Optimised	17. 17			3.0 3.0	7
			II	Median	16			3.0	6
				Optimised	21		4 + 4.5	7.0	12
	Taxivey 2	AC	I	Median Optimized		14, 4, 10	0	0	0
			11	Median		14.5, 4, 10.5	0	0	0
			••	Optimized		16.5, 4, 12.5	ŏ	ŏ	ŏ
	Taxivays 3	AC .	1	Median		14, 4, 10	0	0	0
	and 4		**	Optimised		14.5, 4, 10.5	0	0	0
			11	Median Optimized		14.5, 4, 10.5 16.5, 4, 12.5	0	ŏ	ŏ
	Apron	PCC	I	Median	17			3.5	8
				Optimized	17			4.0	9
			11	Median Optimised	16 21		4 + 7	3.0 8.5	7 13
ow York (La Guardia)	Runway 1	AC	1	Median		14, 4, 10		3.0	16
				Optimized		14.5, 4, 10.5		3.0	17
			11	Median Optimized		14.5, 4, 10.5 16.5, 4, 12.5		3.0 3.0	16 20
	Runway 2	AC	1	Nedian		48, 4, 14	4 + 19	16.5	17
	5.47			Optimised	•-	49, 4, 14	4 + 20	17.5	18
			11	Median Optimized		51, 4, 14 61, 4, 15	4 + 22	18.5 25.0	17
						14, 4, 10			17
	Taxivay 1	AC	1	Median		14. 4. 10		3.0	4.1

(Sheet 4 of 11)

Appendix C (Continued)

	Pavement		Aircraft			Thickness to Construction		Overlays	
Airport New York (La Guardia)	Taxivay 1	AC	Category	Gear Median	Rigid	Frexible 14.5, 4, 10.5	Flexible	Rituminous 3.0	Rigio
(Continued)	TEATIVELY I	~	11	Optimized		16.5, 4, 12.5		4.5	20
	Taxivey 2	AC	I	Median Optimized		48, 4, 14 49, 4, 14	4 + 22	18.5 19.5	17 18
			11	Median		51, 4, 14	4 + 25	20.5	17 21
	Apron 1	AC	1	Optimized Median		61, 4, 15	4 + 35 4 + 18	27.0 16.0	17
			••	Optimized Median		49, 4, 14	4 + 19	16.5 18.0	18 16
			11	Optimized		51, 4, 14 61, 4, 15	4 + 31	24.5	21
Soverk	Runway 1	AC .	1	Median Optimized		14, 4, 10 14.5, 4, 10.5	0	0	0
			11	Median Optimized		14.5, 4, 10.5 16.5, 4, 12.5	0	0 3.0	16
	Taxiveys 1	AC	1	Median		14, 4, 10	0	0	0
	and 2		11	Optimized Median		14.5, 4, 10.5	0 .	0	0
			**	Optimized		16.5, 4, 12.5		3.0	20
•	Taxivay 3		I	Median Optimized					••
			11	Median Optimized					
•	Aprons 1,	PCC	I	Median	16			4.5	9
	2, and 3		11	Optimized Median	17 16	,		5.0 3.5	9 8
				Optimized	50	••	4 + 8.5	9.5	14
Desver	Runway 1	PCC	1	Median Optimized	19 20		4 + 9.5 4 + 10.5	10.0	13 14
			11	Median · Optimized	19 25		4 + 9.5 4 + 20	10.0 17.5	13
	Runway 2	AC	ı	Median		48, 4, 14	4 + 9	10.0	17
			II	Optimized Median		49, 4, 14 51, 4, 14	4 + 10	10.5	17 16
				Optimized		61, 4, 15	4 + 22	18.5	20
•	Taxivey 1	PCC	I	Median Optimized	19 20		4 + 4.5	7.0 7.5	12
			11	Median Optimized	19 25		4 + 4.5	7.0 14.0	12 18
	Taxiveys 2	PCC	I	Median	19		4 + 7	8.5	11
	and 4		11	Optimized Median	19 19 .		4 + 8 4 + 6.5	9.5 8.5	12
	_0.00			Optimized	24	10 1	4 + 18	16.0	17
	Taxivey 3	AC	I	Median Optimized		48, 4, 14 49, 4, 14	4 + 24	20.0 20.5	17 18
			11	Median Optimized		51, 4, 14 61, 4, 15	4 + 27 4 + 37	22.0 28.5	17 22
	Apron 1	PCC	1	Median	20		4 + 11 4 + 12.5	11.5 12.0	13 13
			11	Optimised Median	50 51 ·		4 + 11.5	12.0	13
_ 101/00	•	40		Optimized		 55, 4, 14	4 + 24.5	20.0 3.0	19 15
Boston	Runway 1	AC	1	Median Optimized		56, 4, 14		3.0	16
			11	Median Optimized		58.5, 4, 14 69.5, 4, 15	4 + 10	3.0 10.5	14 19
	Runvey 2	AC	1	Median Optimized		55, 4, 14 56, 4, 14	0 0	0	0
			11	Median		58.5, 4, 14	0	0	0
				Optimized		69.5, 4, 15	4 + 5	7.5	19

(Cheet 5 of 11)

Appendix C (Continued)

		Baso	11				equirements		
Airport	Pavement Item		Aircraft . Category	Gear	Rigid	Construction Flexible	Flexible	Bituminous	Rigid
Roston (Continued)	Taxiveys 1	AC	I	Median Optimized		55, 4, 14 56, 4, 14	4 + 10	10.5	16 16
			11	Median Optimized		58.5, 4, 14 69.5, 4, 15	4 + 13.5 4 + 24.5	13.0	15
	Taxivay 3	AC	1	Median Optimised		55, 4, 14 56, 4, 14		4.5	16 17
			11	Median Optimized		58.5, 4, 14 69.5, 4, 15	4 + 4 4 + 15	7.0	15
-	Taxivay 4	AC	1	Median		55, 4, 14	4 + 12.5	12.5	16
			11	Optimised Median		56, 4, 14 58.5, 4, 14	4 + 13.5	13.0	17
	Taxivay 5	AC .	I	Optimized Median		69.5, 4, 15 55, 4, 14	4 + 27	3.0	15
			11	Optimized Mediun		56, 4, 14 58.5, 4, 14		3.0 3.0	16
	Apron 1	AC	1	Optimized Median		69.5, 4, 15 55, 4, 14	4 + 10	10.5 11.0	19 16
	-		11	Optimised Median		56, 4, 14 58.5, 4, 14	4 + 11 4 + 13.5	11.5 13.0	16 15
	Apron 2	AC	ī	Optimized Median		69.5, 4, 15 15, 4, 11	4 + 24.5	20.5	20
•	April 2			Optimised Median		15.5, 4, 11.5 15.5, 4, 11.5	ŏ	Ö	ŏ
			11	Optimized		17.5, 4, 13.5		3.0	20
Philadelphia	Resvey 1	AC	, I	Median Optimised		19, 4, 12 19.5, 4, 12		3.0 3.0	17
•			11	Median Optimized		19.5, 4, 12 23, 4, 13		3.0 4.5	16 20
•	Runvay 2	AC	1	Median Optimized		19, 4, 12 19.5, 4, 12		6.0 6.5	17 17
			11	Median Optimized		19.5, 4, 12 23, 4, 13	4 + 7	6.5 8.5	16
	Taxivay 1	AC	1	Median Optimised	·.	19, 4, 12 19.5, 4, 12		4.5 5.0	17 17
			11	Median Optimised		19.5, 4, 12 23, 4, 13	4 + 5	5.0 7.5	16 20
	Taxivey 2	AC	1	Médian Optimised		19, 4, 12 19.5, 4, 12	0	0	0
			11	Median Optimised		19.5, 4, 12 23, 4, 13	0	0	0
	Taxivay 3	AC	1	Median Optimised		19, 4, 12 19.5, 4, 12		3.0 3.0	17 17
			. 11	Median		19.5, 4, 12		3.0. 4.5	16
	Apron 1	PCC	1	Optimised Median	18	23, 4, 13		5.0	10
			11	Optimised Medium	18 17			5.5 4.5	9
St. Louis	Runvay 1	PCC	I	Optimized Median	5 0		4 + 10.5	11.0 10.5	15 11
		•	11	Optimized Median	20 20		4 + 11	11.5 10.5	11
	Taxivay 1	PCC	ı	Optimized Kediun	26 20		4 + 23	9.0	18
			11	Optimized Mcdian	20		4 + 8.5	9.5	11
	Anne 3	200		Optimized	26		4 + 20.5	18.0	17
	Apron 1	PCC	1	Median Optimized	50 50	••	4 + 8.5	9.5	10
			II (Con	Median tinued)	20		4 + 7.5	9.0	10

(Sheet 6 of 11)

Appendix C (Continued)

	Pavement	Base Payeshat	Airone		W		equirements	Overlays	
Airport	Item	Type	Aircraft Category	Gear	Higid	Construction Flexible		Bituminous	Rigid
St. Louis (Continued)	Apron 1	PCC	11	Optimized	26		4 + 20.5	18.0	17
Monolulu	Runvey 1	AC	1	Median Optimized		24, 4, 12 25, 4, 12	0	0	0
			11	Median Optimized		25, 4, 12 29, 4, 13	0	0	0
•	Taxiveye 3, 4, 8, and	AC	1	Median Optimized	•-	24, 4, 12 25, 4, 12	0	0	0
			11	Mediun Optimized		25, 4, 12 29, 4, 13	0	0	0
	Taxiveys 5, 6, 7, 11, and 13	AC .	I	Median Optimised		24, 4, 12 25, 4, 12	0	0	0
			11	Median Optimized		25, 4, 12 29, 4, 13	0	0	0
	Taxivey .12	AC	I	Median Optimized		24, 4, 12 25, 4, 12	· 0	0	0
			11	Median Optimized		25, 4, 12 29, 4, 13	0	0 3.0	20
. ·	Aprons	PCC	1	Median Optimized	17 18			4.0 5.0	9 10
	•		II	Median Optimized	17 22		4+9	3.5 10.0	8 14
	Taxivey 1	AC	I	Median Optimized		24, 4, 12 25, 4, 12	0	0	0
			11	Median Optimized		25, 1, 12 29, 4, 13	0	0	0
Detroit	Runvays 1 and 2	PCC	I	Median Optimized	19 20		4 + 7	8.5 9.5	13 13
			11	Median Optimized	19 25		4 + 7	8.5 16.0	13 19
	Taxiveys 1, 2, 3, and	PCC	1	Median Optimized	19 20		4 + 7	8.5 9.5	13 13
			11	Median Optimized	19 25		4 + 7	8.5 16.0	13 19
	Apron 1	PCC	1	Median Optimized	19 20		4 + 4.5	7.0 7.5	12 12
			11	Mcdian Optimized	19 25		4 + 4.5	7.0 14.0	18 18
Seattle/Tacoma	Runvay 1	PCC .	1	Median Optimized	18 18		4 + 9	15.0 16.0	13 14
			11	Median Optimized	17		4 + 8	14.5 22.0	13 18
	Emma 5	PCC	I	Median Optimized	18 18	:-		3.0 3.0	8
			11	Median Optimized	17 22		4 + 4.5	3.0 7.0	13
	Taxiways 1, 2, and 4	PCC	I	Median Optimized	18 18			3.0 3.0	8
			11	Median Optimized	17 22	••	4 + 4.5	3.0 7.0	6 13
	Taxivey 3	PCC	I	Median Optimized	18 18		••	4.5 5.0	10
			11	Median Optimised	17 22	••	4 + 9.5	10.5	9 15
	Aprons 1, 2, 3, and	PCC	1	Median Optimized	18 18	••	4 + 6	8.0	11 12

(Continued)

(Sheet 7 of 11)

Appendix C (Continued)

	Pavenent	Base Puvement	Aircraft		New	Thickness Construction	equirement:	overinys	
Airport	Item	Type	Category	Grar	Rigid	Figuible	Flex:ble	Bituminous	Rigid
Seattle/Tacoma (Cont'd)	Aprone 1,2, 3, and 4	PCC	11	Mcdien Optimized	17 22		4+5	7.0 14.0	11
Pittsburgh	Runway 1	PCC	I	Median Optimized	19 19		4 + 8.5	9.5 10.5	13 14
			11	Median Optimised	19 24		4 + 8	9.5 16.5	13 19
	Runway 2	PCC	1	Median Optimized	19 19		4 + 10.5	11.0	11
			II	Median Optimised	19		4 + 11.5 4 + 24	11.5	11
	Taxiveys 1	PCC	I	Median Optimized	19 19	••	4 + 7	8.5	11 12
		•	11	Median Optimized	19 24		4 + 6.5	8.5 16.0	11
	Taxivey 2	PCC	I	Median Optimized	19 19	••		3.5 4.5	11
			11	Mediun	19 24			3.5	11
	Taxivay 3	AC	ı	Optimized Median		55, h, 1h	4 + 11 4 + 19	11.5 16.5	17 17
			II	Optimized Median		56, 4, 14 59, 4, 14	4 + 20	17.0 19.0	17 16
	Taxivay 5	PCC	1	Optimized Median	19	70, 4, 15	4 + 33	26.0 5.5	21 10
•			11	Optimized Median	19 19	'		6.5 5.0	11 10
	-11.5	700		Optimized	24		4 + 12	12.0	16
	Apron 1	PCC	I	Median Optimized	21 21		4 + 15.5	13.5 14.5	13 13.5
		. 12	11	Median Optimized	21 27	***	4 + 20.5	23.0	13.5 20
Houston	Runvay 1	PCC	Ι.	Median Optimized	16 17			3.0 3.5	8
			.11	Median Optimized	16 20		4 + 6	3.0 8.0	13
	Taxivays 1, 2, and 3	PCC	I	Median Optimized	16 17			3.0 3.5	8.
•			11	Mediun Optimized	16 20	=	4 + 6	3.0 8.0	7 13
	Taxivay 4	PCC	I	Median Optimized	16 17			3.0 3.0	6
			11	Median Optimized	16 20			3.0 4.5	6 11
	Apron 1	PCC	1	Median Optimized	16 °			3.0 3.5	8
			11	Median Optimized	16 20	 .	4 + 6	3.0 8.0	7 12
Minneapolis/St. Paul	Runway 1	PCC	1	Median Optimized	19 20		4 + 16.5 4 + 18	15.0 16.0	14 15
			11	Median Optimized	19 25		4 + 16.5 4 + 29	15.0 23.0	14 20
	Runway 2	PCC	ı	Median Optimized	19 20		4 + 11.5	4 + 8	13 13
			11	Median Optimized	19		4 + 11.5 4 + 24	4 + 8 4 + 16	13
	Taxivays 1	PCC	1	Median	25 18			5.0	19
	and 2		II	Optimized Mediun	19 18			6.0 4.5	10 9
	Apron 1	PCC	1	Optimized Median	23 18		h + 11 	11.0 5.0	15 10
	•	-		tinued)					or 11)

Appendix C (Continued)

	Bearing	Barrens	Aircraft			Thickness R Construction			
Airport	Pavament	200	Category	Gear	Meid		Plexible	Dituminous	Mel
timespolis/St. Feul	Apron 1	PCC .	1	Optimised	19	a continue d	-	6.0	10
(Continued)	357.5		11	Median	18			4.5	9
			-	Optimised	23	***	4 + 11	11.0	15
ov Orleans	Branch 7	PCC	1	Median Optimised	20 21		4 + 6.5	8.0 9.0	11.5
			11	Nedian	21		4 + 7	8.5	10
	_	122		Optimised	26	<u></u>	4 + 18.5	16.5	15.1
	Taxivey 1	PCC	1	Median Optimised	21 21		4 + 7	9.0 9.5	13 14
			II	Nedian	21		4 + 8	. 9.5	14
4 4			_	Optimised	27		4 + 20	17.0	21
	Taxiway 2	PCC	1	Median Optimised	18 19			5.0 6.0	10
			II	Median	18		-	4.5	9
			_	Optimized	23	••	4 + 11	11.5	16
	Apron 1	PCC	I	Median Optimized	21 21	. =	4 + 8.5	9.0 9.5	13 15
	•		11	Median	21	_	4 + 8	9.5	14
			_	Optimised	27		4 + 20	17.0	21
	Apron 2	PCC	1	Nedian Optimized	18 19			5.0 6.0	10
·			II	Median	18			4.5	9
•	4550			Optimized	53		4 + 11	11.5	16
•	Apron 3	PCC	1	Median Optimized	25 26		4 + 24.5 4 + 26	20.0 21.0	20
			II	Median	27		h + 29	23.0	22
	Manager 1	40	9	Optimized Median	32	35.5, 4, 13	4 + 42	31.5	26
las Yegas	Munuay 1	AC	•	Optimised		37, 4, 13	4 + 10	9.5 . 10.5	17
			11	Median		37, 4, 13	4 + 10	10.5	16
	14.000			Optimised		45, 4, 14	4 + 18	16.5	• 21
•	Runvey 2	AC	1	Median Optimised		24, 4, 12 25, 4, 12	4 + 4	6.5 7.5	18 19
			11	Median		25, 4, 12	4 + 5	7.5	18
	Taxivay 1	AC		Optimised Median		29, 4, 13	4 + 9	10.0 3.0	23 17
•	restred 1		•	Optimised		29, 1, 12		3.0	17
			11	Median		29, 4, 12		3.0	16
	Taxivey 2	AC	I	Optimised Median		35, 4, 14 24, 4, 12	4+5	7.5 6.5	21
	Terrively 2	•	•	Optimised		25, 4, 12	4 + 5	7.5	17
			II	Median		25, 4, 12	4+5	7.5	16
	Asron 1	AC	ı	Optimised Median		29, 4, 13	4 + 5	10.0 7.5	21 17
			. •	Optimized		25, 4, 12	1 + 6	8.0	17
•			11	Median Optimised		25, 4, 12 29, 4, 13	4 + 7	8.5	16
Games City	Runway 1	PCC	1	Median	18	ey, •, 13	4 + 7.5	11.0 9.0	21 12
(International)			-	Optimized	19		4 + 8.5	9.5	13
			11	Median Optimised	18 23		h + T h + 17	8.5	12
•	Juney 2	PCC	r	Median	19			15.5 5.5	11
			•	Optimized	19	-		6.6	12
			11	Median Optimized	19 24		4 + 15	5.5 14.0	11
	Taxivey 1	PCC	ī	Median	19		4 + 10.5	11.5	11
			-		19		4 + 12		
				Optimised Median	73	_	4 + 11.5	12.0	12

(Sheet 9 of 11)

		Base	Aircraft		Marc		Requirement		
Airport	Pavement 	7790	Category	Coar	Rield	Construction Flexible	Flexible	Dituminous	Rigid
laneas City	Taxivey 1	PPC	п	Optimised	24		4 + 24	20.0	17
(International) (Continued)	Taxiway 2	PCC	1	Median	19	•		4.0	9
(Optimised	19			. 5.0	9
	•		ш	Median Optimized	19		4 + 10.5	4.0 11.0	15
	Taxivey 3	PCC	I	Median	18		••	5.5	10
••				Optimised	19			6.5	11
			11	Median Optimised	18 23		4 + 12	5.0 12.0	16
	Apron 1	PCC	1	Median	19	,	4 + 5.5	7.5	12
			11	Optimised	20 19	•-	4 + 6.5	8.5	12 12
•			14	Median Optimized	25		4 + 16.5	7.5 15.0	18
Maltimore	Busways 1	AC '	I	Median		19, 4, 12	0	0	0
	and 2			Optimised	-	19.5, 4, 12	0	0	0
			11	Median Optimized		19.5, 4, 12	.0	0	0
,	All Text-	AC	1	Median		19, 4, 12	0	0	0
	Ache			Optimised		19.5, 4, 12	0	0	0
			11	Median Optimised		19.5, 4, 12 23, 4, 13	0	0	0
	Apron 1	AC	1	Median		19, 4, 12	0	0	0
	1			Optimised	•	19.5, 4, 12	0	0	0
•	•		II	Median Optimized		29.5, 4, 12 23, 4, 13	0	ŏ	ŏ
Cleveland	Runvey 1	PCC	I	Median	18			3.0	9
			11	Optimised Median	18 17			3.0 3.0	10
· · · · · · · · · · · · · · · · · · ·	. . .			Optimized	22	1	4+5	7.0	15
	Taxivay 1	PCC	1	Median	18	-	4 + 4	7.0	9
	·		11	Optimized Median	18 17		4+5	7.5 6.0	10
			**	Optimised	22		4 + 13.5	13.0	15
	Taxivay 2	PCC	1	Median	18. 18		4 + 5.5	8.0 8.5	9
			II	Optimised Median	17	••	4 + 4.5	7,0	9
			**	Optimised	22		1 + 15.5	14.5	15
	Apron 1	PCC	1	Median	18		4 + 5.5	8.0	9
			II	Optimised Median	18 17		4 + 4.5	8.5 7.0	10
				Optimized	22		4 + 15.5	14.5	15
	Apron 2	PCC	I	Median	18		4 + 5	7.0	9
			II	Optimised Median	18 17		4 + 5	7.5 6.0	10
			••	Optimized	52	_	4 + 13.5	13.0	15
	Apron 3	PCC	I	Median	18 18	-+	4 + 16	14.5 15.5	13 13.5
			II	Optimized Median	17		4 + 15	14.0	12.5
				Optimized	22		+ 26	21.5	18
Mashington (Dulles)	All pave- ments	PCC	1	Median	18			3.0	6
	ments		11	Optimized Median	19 18			3.0 3.0	7
				Optimised	23		4 + 7	8.5	13
collywood International	Runway 1	AC	I	Median		19, 4, 12		3.0	17
			11	Optimized Median		19.5, 4, 12		3.0 3.0	17
			••	Optimised		23, 1 13		3.0	24
	Taxivay 1	AC	1	Median		19, 4 12	4 + 6	8.0	17

(Sheet 10 of 11)

Appendix C (Continued)

		Base				Thickness l	icquirement	s, in.	
	Pavement	Pavoment	Aircraft		Nev	Construction		Overlays	
Airport ·	Item		Category	Cear	Higid	Flexible	Flexible	Bituminous	Rigid
Hollywood International	Taxiway I	AC	I	Optimized		19.5, 4, 12	4 + 7	8.5	17
(Continued)		•	11	Median Optimized		19.5, 4, 12 23, 4, 13	4 + 7	8.5 19.5	17 21
	Taxivey 2	AC	1	Median Optimized		19, 4, 12 19.5, 4, 12	0	0	0
•			11	Median Optimized		19.5, 4, 12 23, 4, 13	0	4.0	0 20
	Apron 1	PCC	1	Median Optimized	18 18		4 + 16.5 4 + 17.5	15.0 15.5	15 16
			II	Median Optimized	17 22	••	4 + 15.5 4 + 37	14.5 28.5	15 20

(Sheet 11 of 11)

APPENDIX D

COMPUTATION OF TOTAL PAVEMENT PRICE FOR MAJOR HUB AIRPORTS (1972 DOLLARS)

The total pavement prices for the major hub airports were computed using Equation 3 from the main text. Computations made for the median and the optimized gear for Category I and Category II aircraft are shown on following tabulation.

Alrport	Alreraft		F 42.	i e		Optical sed	i de la	Nodian	Ortinised Section			m Optinized
Chicago (O'Mare)	H	1-12	٠	T401 0/L	11.0	11.5	0.76	81.393.336	81.456.440		\$2.044.015	10 941 53
		2-7		1401 O/L	0.9	6.5	20	1.175.467	1.175.467	3	1.726.090	1.64
		7-12	166.667	7401 O/L	9.0	4.0	0.76	380.000	56.647	3	500	1
			=	CAD: Beed	242							
		17-1 6	175.922	7401 O/L		6.4	2.0	401,102	534.802	1970	26.90	785, 310
			131.075	7401 O/L			36.0	200 853	204 851		77. 57.7	7
		į	3.07	100	17.5		X	410 483	50.0			
		1	182.814	10107	0.4		×	756 555	606 363			
		支	55.189			;						
			A11 - 801,428	CAZD: Used	1 - X6.239	. CID 60						
		1-1	2	7401 0/L			9.76	2,477,997	2,477,997	0.61	3,636,762	3,636,762
			A11 (442) Geed (452)									
	Total	Used:	2,424,192					10.893.002	10,681.511		14.020.850	15.445.120
	All	All:	184,974,181									
Atlanta	H	1	213,867	700 OV	0.9	0.9	0.60	769.921	769.921	27.0	***	77
		2-12	166.667	100 DI	0.9	0.9	3	600.001	100.009	0.775	776.195	774.195
			A . 380,534			1						
		14-1										
		114-2	525,000	100 OV	6.0	•••	9.60	1.890.000	1.890.000	6.775	2.438.710	2.434,710
		1										
		5-75	186,000	PCC 0/L	16.0	17.0	9.0	1.785.600	1.897.200	0.775	2,306,000	2,448,00
		AP-1	712,369	1/0 001	11.0	11.0	0.60	4, 701, 635	4, 701, 635	0.775	6.066.626	6.066.626
		ZE-3	166.667	2								
		14-5	311,405	2								
			A - 184 - 547.	547.201 (24%)/weed = 380.5% (22%)	- 380	534 (727)						
			A - TV - 1.022	1.022.405 (457)/	2	711 000 (107)						
				712,369 (312) (392)								
	Tota	Total Used: All:	1,803,903					9,747,158	9,656,756		12,576,977	12,720,977

* See Table A2 for locations of perement items.

Airport	Category 1	Pavenat	1	Area Sq Yd	Pavenne	Hedden Opi	Detinized	Defe	Hed! on	Nedlan Opelated	•	led es	des Ortigios
						-							
Los Angeles	H	=		257,778	700 OZ	0.0	11.0	7.0	\$2,423,113	\$2,665,425	0.775	\$3,126,597	\$3,439,258
		2-5			P401 0/L		0.0	0.54					
			- II		(232)								
			7000	- 257,778	575	ø							
		1-2-		169,724	160		0.0	0.54					
		TN-2		122,516		5.0	5.5	3.0	330,793	363,873		4.85.746	534.322
		7		32,034	7401		12.0	3.0	190,282	207,580		279,416	304.816
		-S-		10,116	1601		3.0	3.0	•	16.388		•	24.065
		9-25		22,480		_	16.5	*	194.227	200,297	0.681	285.209	294, 122
		7-2		21,256		_		*	34,435	34.435		50,565	50.565
		2-21		14,612		3.0	4.0	3.0	23,671	31.562		25.73	. 247.
			All -	392,738		•	\$ (212)						
			Deed	- 212.898	(147) Use	Z	14 (147)						•
		AP-1		151,605	P401 0/1			*	286,537	327.467	0.681	420.793	480.862
		AP-2		151,605	P601 0/1			3.0	491,200	532,134		721.292	781.461
		5-5		334,091	P401 0/1			3.0	1.984.501	2.074.705		2.914.098	3.066.557
		4-74		247.421	7601 0/1		15.0	35.0	1.937.306	2.004.110		2. 844. 796	2.642.893
		AP-S		181,926	P401 0/L	3.0	3.0	*	294. 720	294. 720	0.681	432.775	432.775
			T .	9,996,1	48 (567)	1							
			8	•	(692) (2692								
	Tot	Total All:	1,683,831	.831					8,190,782	8, 752, 694		11,596,007	12,377,982
Sam Prancisco	H	1-10			1/0 10%		3.0	3.0	360,003	360,003	0.681	528,639	538,639
				298,596	P601 O/L	3.0	3.0	4.0	483,726	4.83, 726	0.651	710,317	710,317
			ALI -		312								•
		1-1			70 10M		3.0	45.0	63,451	159'69	5.0	93,173	93.173
		14-2		20,000	TA01 0/L	3.0	3.0	3.0	113,400	113,400	0.681	166,520	166,520
		1		150,000	P601 0/L	3.0	3.0	4.0	243,000	243,000	0.681	356,828	356,828
		1	AII -	259,167	(1570								
		7-7	A11 -	908,821	75 07 07 07 07 07 07 07 07 07 07 07 07 07	3.0	0°C	*	1,472,290	1,472,290	9.0	2,161,953	2,161,953.
	Total	~	.688,808						2,735,869	2,735,869		4,017,438	4,017,430

256

	Atreraft	Item	So Yd	726	Median	Median Optivized	Price	Median Optiv	Optimized	•	Median Optim	Optimized
			ļ									
Hiami	н	E4-1	155,833	1/0 1674	0.0	0.0	¥.0					
		RW-2	233, 333	P401 0.7	0	0	7					
			A11 - 389, 166 (30%)	30.5	}	•						
		ra La										
		TW-1	129,000	P401 0/L	0.0	.0.0	35.0					
		14-2	37,625	P401 C/L	3.0	3.0	0.54	\$ 60,952	\$ 60,952	0.681	\$ 50,504	\$ 69.50
		TW-3	129,000	P401 0/L	3.0	3,0	0.54+	208,980	208.980	0.681	306.872	306.872
		7-MI	17,260	P401 O/L	0.0	0.0	0.54					
		TW-S	43,000	P401 0/L	0.0	0.0	45.0					
		7.5	A11 = 355,825 (27%) Used = 166,625 (22%)	(272)								
		AP-1	570.759	F401 0/L	0.4	1.4	+75.0	1.232.839	1.386.944 9.681	2.681	1.810.336	2.036.628
			A11 = 570,759 (432)	(437)								
	1961	TOTAL USed:	1,315,750					1,502,172	1,656,877		2,204,712	Z,433,004
New York (JFK)	H	1-12	220,000	P401 0/L	3.5	0.4	0.524	400,400	. 457,600 0.681	0.681	587.959	671.953
		RW-2	172,500	P401 C/L	0.0	0.0	0.52					•
				C -								
		1-1-1	85,000	PCC 0/L	7.0	0.8	1.37	815,150	931,600	0.775	1,051,806	1,202,065
		TW-2	125,000	PCC 0/L	0.0	0.0	1.37	•				
		TW-3 6	4	P401 0/L	0.0	0.0	0.52					
			A11 - 365,000 (177)	=								
			Used - 850,000	(05%)								
		AP-1	1,342,900	PCC O/L	8.0	9.0	1.37	14,718,184	16,557,957 0.775	0.775	18,991,205	21,365,106
			A11 = 1,342,900 (647)	(249) 0								
			Used = (822)									
	Tota	11 Used:	1.647,900					15.933.734	17,947,157		20 630.970	23, 239, 123
		A11:										

These weed T'r.

I K-1 235,556 K-10 OL 3.0 0.56 395,734 395,734 18.25 17.5 0.56 191,700		Category	Pavenent	Area	Pavenant	Thickness, in.	18. in.	Unite	Pavement			Sub-Total	al Cost
The Case of the Ca	AITPORE	Afrerett	Item	Se Td	2	redian	Optimized	715e	Median	Optimized	-	Median	Optimized
National Color	kew York (La Cuardia)	H	K4-1	235,556	1/0 10%	3.0	3.0		\$ 395,734	\$ 395,734	0.681	\$ 581,107	\$ 581.107
TH-1 114, 125 F001 0/L 3.0 3.0 0.56 191,730 19				228,250	7/0 10h2	16.5	17.5		2,109,030	2,236,850		3,096,960	3,284,655
TW-1 114,122 FWO1 O/L 16.0 5.6 1,91,730 191,730 TW-1 1122,996 (643) TW-1 1,312,996 (64			All		32)								
Th-2 10.27/12 Feb1 0/L 18.5 19.5 0.56 1,064,096 1,121,615 AP-1 1,122,998 Feb1 0/L 16.0 16.5 0.56 11,654,062 12,224,502 All = 1,322,998 (642) Tocal 2,003,641 I RW-1 All = 155,557 Feb1 0/L 0.0 0.0 0.54 TN-1 6.2 134,966 Feb1 0/L 0.0 0.0 0.54 TN-1 6.2 134,966 Feb1 0/L 0.0 0.0 0.54 TN-1 6.2 134,966 Feb1 0/L 0.0 0.0 0.54 All = 156,412 (352) Used = - 0.54 AP-1, 2 6.3 141,289 Tocal Used: 141,289 I EB-1 111,111 Feb1 0/L 10.0 11.0 0.37 411,111 453,222 EB-2 115,044 Feb1 0/L 20.0 10.5 0.37 221,367 239,140 TN-2 6.4 115,044 Feb1 0/L 20.0 20.5 0.37 221,367 239,177 All = 255,143 (372) All = 255,143 (372) All = 255,143 (373) AP-1 4 155,443 (373) AP-1 5 6.50 0 (692) Tocal Used: 141,289 All = 255,143 (373) AP-1 4 115,044 Feb1 0/L 20.0 20.3 0.37 221,367 239,177 All = 255,143 (373) All = 452,000 (692) Tocal Used: 91,000 PC 0/L 13.0 13.0 1.27 7,462,320 7,462,320 Tocal Used: 914,874 All = 452,000 (692) Tocal Used: 914,874				114,125	P401 0/L	3.0	9.0	0.56	191,730	191,730		281,542	281,542
AP-1 A11 - 1,322,998 (662) Total 2,003,641 I RN-1			:	102,712	P401 0/L	18.5	19.5	%	1,064,096	1,121,615	0.681	1,562,549	1,647,012
I Ru-1 2,007,641 I Ru-1 1.322,996 (662) I Ru-1 1.352,557 Fe01 O/L 0.0 0.0 0.54 Tu-1 6.2 113,966 Fe01 O/L 0.0 0.0 0.54 Tu-1 6.2 113,966 Fe01 O/L 0.0 0.0 0.54 Tu-1 6.2 113,966 Fe01 O/L 0.0 0.0 0.54 Tu-1 6.2 113,966 Fe01 O/L 0.0 0.0 0.54 All = 155,412 (352) Lued =			114	1 322 998	P/01 0/T	16.0	3 31	3	11 854 062	12 224 663	189 0	13 404 844	119 050 11
Total 2,003,641 I RW-1 1155,557 (34%) Used = 1.55,412 (35%) TW-1 6.2 134,966 PW01 0/L 0.0 0.0 0.54 TW-1 6.2 134,966 PW01 0/L 0.0 0.0 0.54 All = 156,412 (35%) Used = . AP-1, 2 6.3 141,1289 PW01 0/L 4.5 5.0 0.547 343,332 381,480 Used = (100%) Used = (100%) Total Used: 141,289 PW01 0/L 4.5 5.0 0.547 343,332 381,480 Total Used: 141,289 PW01 0/L 10.0 11.0 0.37 411,111 453,232 EB-2 111,111 PW01 0/L 10.0 11.0 0.37 411,111 453,232 TW-1 111,111 PW01 0/L 10.0 11.0 0.37 411,111 453,232 TW-1 116,698 PW01 0/L 20.0 20.3 0.37 381,894 375,389 TW-2 4 115,044 PW01 0/L 20.0 20.3 0.37 381,813 404,380 TW-2 4 115,044 PW01 0/L 20.0 20.3 0.37 381,813 404,380 TW-2 4 115,044 PW01 0/L 20.0 20.3 0.37 381,813 404,380 TW-2 4 115,044 PW01 0/L 20.0 20.3 0.37 381,813 404,380 TW-3 411 = 255,143 (28%) AP-: A11 = 452,000 PWC 0/L 13.0 13.0 1.27 7,462,520 7,462,520 TW-1 014,874			AII		(667)			?	700 400 111	700' 477' 77	100.0	900000	11,930,011
I RW-1 155,557 FW01 0/L 0.0 0.94 TW-1 6-2 134,966 FW01 0/L 0.0 0.0 0.54 TW-3 2 1446 FW01 0/L 0.0 0.0 0.54 TW-1 2 134,269 FW01 0/L 0.0 0.0 0.54 AP-1, Z 4 3 141,289 FW01 0/L 4.5 5.0 0.547 343,332 381,480 All = 141,289 All: 453,238 I RW-1 111,111 FW01 0/L 10.0 11.0 0.37 411,111 422,222 KW-2 6 4 115,044 FW01 0/L 10.0 11.0 0.37 411,111 422,222 TW-1 108,698 FW01 0/L 7.0 7.5 0.37 281,500 301,637 TW-2 6 4 115,044 FW01 0/L 20.0 20.3 0.37 281,500 301,637 TW-2 6 4 115,044 FW01 0/L 20.0 20.3 0.37 281,500 301,637 TW-2 6 4 115,044 FW01 0/L 20.0 20.3 0.37 281,500 301,637 AP-1 A11 = 255,443 (28%) TW-2 6 4 115,044 FW01 0/L 20.0 20.3 0.37 281,500 301,637 AP-1 4.5 500 FCC 0/L 13.0 13.0 1.27 7,462,520 7,462,520 TW-2 6 4 115,044 FW01 0/L 20.0 20.3 0.37 282,367 288,177 AP-1 6 452,000 FCC 0/L 13.0 13.0 1.27 7,462,520 7,462,520 TW-2 6 4 115,044 FW01 0/L 20.0 20.3 0.37 282,367 288,177 AP-1 6 452,000 FCC 0/L 13.0 13.0 1.27 7,462,520 7,462,520 TW-2 6 4 115,044 FW01 0/L 20.0 20.3 0.37 282,367 288,177 AP-1 6 452,000 FCC 0/L 13.0 13.0 1.27 7,462,520 7,462,520 TW-2 6 4 13,04,054 FW01 0/L 20.0 20.3 0.37 282,367 288,177 AP-1 6 452,000 FCC 0/L 13.0 13.0 1.27 7,462,520 7,462,520		Tota		_					15,614,652	16,170,431		22,929,004	23,745,126
All = 155,557 (34%) Used = TW-1 6.2	Nevark	н	1-12	155.557	P401 0/L	0.0	0.0	35.0					
TN-1 6 2 134,966 P401 0/L 0.0 0.0 0.54 TN-3				155,557 (34	Ŗ		}						
TN-3					P401 0/1.	•	c	3					
All = 156,412 (35%) Used =				21.446	100	3 .	; ,	3					
AP-1, Z 43 141,289 P401 O/L 4,5 5.0 0.547 343,332 381,480 Jused = (1007) Total Used: 141,289 All: 453,258 I EM-1				156,412 (3	1520								
AP-1, Z & 3 14,289 P401 0/L & 5.5 0.54 343,332 381,480 All = 141,289 (31%) Total Used: 141,289 All: 453,256 I EN-1													
Total Used: 141,289 All: 453,256 All: 453,256 I				141,289 141,289 (3 - (1007)	P401 0/L	4 :5	2.0	0.54	343,332	381,480	0.681	504,159	560,176
No. No.		Tota		1,289					343,332	381,480		304,159	560,176
I EM-1 111,111 F401 0/L 10.0 11.0 0.37 411,111 EM-2 86,620 F401 0/L 10.0 10.5 0.37 357,494 A11,111 EM-1 10.0 10.5 0.37 357,494 A11 = 207,331 (237)				2									
96,620 F401 0/L 10.0 10.5 0.37 357,494 11 = 207,731 (233) 4 115,044 F401 0/L 7.0 7.5 0.37 281,500 11,401 F401 0/L 8.5 9.5 0.37 361,813 11,401 F401 0/L 20.0 20.5 0.37 232,367 11 = 255,143 (283) 11 = 452,000 FCC 0/L 13.0 13.0 1.27 7,462,520 7,11 = 452,000 (493) 914,874 914,874	Degree	H	1-10	111,111	P401 0/L	10.0	11.0	0.37	411,111	452,222	0.681	603,687	900.499
11 = 207, 731 (23%) 108,698				96,620	P401 0/L	10.0	10.5	0.37	357,494	375,369	0.681	524,954	551,203
108,698 P401 0/L 7.0 7.5 0.37 281,500 4 115,044 P401 0/L 8.5 9.5 0.37 361,813 11 = 255,143 (28%) 452,000 PCC 0/L 13.0 13.0 1.27 7,462,520 11 = 452,000 (49%) 914,874 914,874			A11	207,731	32				•				
4 115,044 F401 0/L 8.5 9.5 0.37 361,813 11 = 255,143 (28%) 11 = 255,143 (28%) 452,000 FCC 0/L 13.0 13.0 1.27 7,462,520 914,874 914,874 918,874 91,106,833				108,698	P401 0/L	7.0	7.5	0.37	281,500	301,637	0.681	413,404	442,932
31,401 F401 0/L 20.0 20.5 0.37 232,367 11 = 255,143 (28%) 452,000 FCC 0/L 13.0 13.0 1.27 7,462,520 11 = 452,000 (49%) 914,874 914,874				115,064	P401 0/L	8.5	9.5	0.37	361,813	404,380	0.681	531,297	593.803
11 = 255,143 (28%) 452,000 FCC O/L 13.0 13.0 1.27 7,462,520 11 = 452,000 (45%) 914,874 914,874 914,874					5	20.0	20.5	0.37	232,367	238,177	0.681	341,214	249,746
452,000 FCC 0/L 13.0 13.0 1.27 7,462,520 11 = 452,000 (49%) 914,874 914,874 914,874 914,874			Y:	255,143	25								
914,874 9.106,833				452,000 (4	FCC 0/L	13.0	13.0	1.27	7,462,520	7,462,520	0.775	9,629,058	9,629,058
914,874			!	2	*								
		Tota		6,874 1,874					9,106,833	9,234,304		12,043,615	12,230,798

Parent word Fire

	Category	Pavenne	Area	Pavenent	Thi ckness	4. is.	Dedt	Pavement	Cost		Sub-Total Cost	1 Cost
Afroort	Aircreft	Item	Se Yd	E	Median	Optinized	Fries	Median	Optimized	4	Medien	Opticised
beton	H	1-1-2	222,222	P401 0/L	3.0	3.0	924	.\$ 613,333	\$ 613,333	0.681	\$ 900.636	37 000 S
		E4-2	283,046	P401 0/2	0.0	0.0						
		- 111	505,268 (572)	ę		V 10 10 10 10 10 10 10 10 10 10 10 10 10						
			Used - 222,222 (42%	22)								
		17-1 6 2	28,480	P401 0/L	10.5	7.5	0.92+	564.917	403.512	0.681	629.540	542.524
		14-3	72,516	7401 O/L	4.5	5.0	0.92+	300.216	333,574	0.681	71.97	2
		7-AI	50,293	P401 0/L	12.5	13.6	0.92+	578.369	601.504	199	1	37.
		TV-5	88,890	P401 0/L	3.0	0.0	0.92+	245, 336	245.336	0.681	26.25	2
		- 11V	- 270,179 (312)	R								
			- (512)									
		AP-1	36,937	MO1 0/L	11.0	11.5	0.924	373,802	390,793	199.0	548,902	573,652
			66,571	70 107	0.0	0.0	0.92		•			
		Used	All - 103,508 (127) Used - 36,937 (072)	ឧទ								
	Tota	Total Used: 52 All: 87	522,338 876,955					2,675,974	2,586,052		3,929,476	3,800,370
hiledelphia		1-12	233,333	P401 0/L	3.0		0.73+	510,999	\$10.999	0.681	750 366	750 766
		M:-2	215, 556	PAD DA	9		42.0	366 776	1 000	1		
		38	- 446,889 (80Z) d = (81Z)	គួ	3						CCC 1995.17	1,321,328
		1-2	27,000	P401 0/L	4.5	5.0	0.734	88,695	98.550	0.681	130.262	244.774
		TV-2	5,750	P401 0/L	0.0	0.0	6.73		9			
		Ti3	41,250	P401 0/L	3.0	3.0	0.73	90.337	90.337	189	122.653	155 651
		-	A11 = 74,000 (132) Used = 68.250 (122)	C F								
		AP-1	37,500	PCC 0/L	10.0	10.0	1.37+	513,750	513,750	0.775	662.903	642.903
		Used	A11 = 37,500 (072) Used = (072)	•					•			
	J.											
		Tecal Osed: 55	360,389					2,147,917	2,236,450		3,062,560	3,192,564

These used Z

	Category		Area	Pavenent	Thickne	Thickness, in.	Unite	Pavement Cost	t Cost		Sub-Tot	Sub-Total Cost
Airport	Aircraft		So Yd	Lype	Median	Optimized	Price	Median	Optimized	-	취	Optinized
St. Louis	H	R4-1	222,222 PC	1/0 DOC 0/1	11.0	12.0	9.0	\$1,564,443	\$1,706,665 0.775	0.775	\$2,018,636	\$2,202,148
		1-1	119,792 PC	PCC 0/L	10.0	11.0	9.0	166,669	84,336	0.775	969,250	108,821
		AP-1 A11 •	A11 - 264, 141 (427)	rcc 0/L	10.0	11.0	3.0	1,562,502	1,716,753	0.775	2,016,132	2,217,746
	Tot	Total 586,155						3,693,614	4,268,753		5,024,018	4,528,715
Monolulu	H	IV.	A11 = 257,778 F4	7401 O/L 222)	0.0	0.0	9.54					
	H	TV-3,4,8410	4,8410 347,614	N01 0/L	0.0	0.0	0.54					
	н	TV-5,6,7,11	,6,7,114 51,958	P401 0/L	0.0	0.0	0.54					
	ннн	TV-12 AP-1-12 TV-1	13,291	7401 0/L 7401 0/L 7401 0/L	0.00	0000	2.2.2 2.2.2	968,615	1,210,764 0.681	0.641	1,422,342	1,777,926
		TV - All Used TF d Apron - A	TV = A11 = 452,738 (39%) Used = (0%) The data used. Apron = A11 = 448,433 (39%)	(39%) 33 (39%) 23								
		r«	Total 448,433	,433 949				968,615	1,210,764		1,422,342	1,777,928
Detroit	-	M-142	466,667 PC	FCC 0/L	ដ	ន	96.0	5,702,671	5,702,671	0.775	1,358,285	7,358,285
	H	74-1,2,3,4		P401 0/L	8.5	9.5	9.76	2,041,063	2,281,186	0.661	. 2,997,156	3,349,762
	H	AP-1	A11 - 823,621 FCC 0/L	PCC 0/L S12)	7.0	7.5	*:0	5,419,426	5,806,528	0.775	6,992,806	7,492,294
		-	1,606,242					13,163,160	13,790,367		17,348,249	18,200,341

k63<

	Category			Pavement	Thi ckne	se, in,	Unite	Pavement Cost	Cost		Sub-Total Cost	1 Cost
Afrport	Afreraft	Item	Sq Yd	Type	Median	Median Optimized	Price	Hed1 an	Optimized	*	Median	Optimized
sattle-Tacoma	нн	RW-1 RW-2	175,200	P401 0/L	3.0	3.0	0.41	\$1,077,480	\$1,149,312	0.681	\$1,562,203	\$1,687,683
		A11 -	A11 = 311,467 (23%)									
	н і	TV-1,2,6	TV-1,2,64 192,234	F401 0/L	D.0	3.0	0.41	236,448	236,448	0.681	347,207	347,207
			-3 19,467	1/0 10%	4.5	5.0	0.41	35,917	39,907	0.681	52,742	58,601
	Ħ	AP-1-4	627,138	P401 0/L	8.0	8.5	14.0	2,713,013	2,882,576 0.681	0.681	3,983,866	4,232,858
		- 117	#11 = 827,138 (61%)									
			1,350,306			•		4,230,475	4,475,852		6,212,138	6,572,468
Metaburg	H	-3	175,000	1/0 1074	9.5	10.5	0.93	1,546,125	1,708,875	0.681	8.414.133	8.737.754
	H	R2	166,667	P401 0,'L	11.0	12.0	0.93	1,705,003	1,860,004		2,503,675	2,731,283
		A11	341,667 (35%)	_								
	H	Th-154	86,512	P401 C/L	8,5	9.5	0.93	686,249	766,984	0.681	1,007,708	1,176,261
	H	T.4-2	,28,938	P401 0/L	3,5	4.5	0.93	94,193	121,106	0.681	138,316	177.836
	H	14-3	65,592	P401 0/L	16.5	17.0	0.93	1.006,509	1,037,010	0.681	1,477.987	1.522.775
	H		36,654	P401 0/L	5.5	6.9	0.93	187,485	221,573	0.681	275,308	325,364
		A11 -	- 217,995 (22Z)									
	~	AP-1	428,728	PCC 0/L	11	13.5	1.17	6,520,953	6,771,759 0.775	0.775	8,414,133	8,737,754
			988,391					11,746,518	12,487,310		16,087,501	17,130,735
	н	R4-1	Ru-1 156,667	PCC O/L	8.0	9.0	78.0	1,052,802	1,052,802	0.775	1,358,454	1,358,454
	-	A	23,007 (14.4)	10 July	•	•	**	1 402 746	. 403	***	200 070 0	
	н	7-21	58.275			9	2	201 200	203, 720	27.7	378 975	373 486
		A11 - 2	Ail = 296,925 (272)			;			200		200000	100
	н	AP-1	P-1 645,987 All = 645,987 (59%)	POC 0/L	0.0	9.0	9.0	4,341,033	4,341,033 0.775	0.775	5,601,333	5,601,333
			1,099,579					7,291,269	7,291,269		6,406,089	9,406,799

	Category		Area	Pavenent	Thickness, in.	e. in.	Unite	Pavement Cost	Cost		'	1 Cost
Alrport	ALFERETE	Item	So Td	1776	Hedi en	Optimized	rice	Median	Optimized	*	Median	Optimized
Mineapolis			233,333	P401 0/L	15.0	16.0	0.76	\$2,659,996	\$2,837,329		\$3,906,015	\$4,166,416
	4		507 . 607	7/0 104	•	• •	0.70	623.773	623,775		415,969	915,969
		411 - 647	205, 189	7/0 1974	•	•	0.67	1,099,813	1,237,290	0.681	1,614,997	1,816,872
	H	14-162	255.617	P401 0/L	5.0	0.4	76	971.345	1.165 614: 0.681	189.0	126 364 1	1 731 621
		A11 - 255	A11 - 255,617 (212)			Ó					***************************************	
		AP-1 A11 - 323	All = 323,563 (26%)	P401 0/L	5.0	6.0	92.0	1,229,539	1,475,447 0.681	0.681	1,805,490	2,166,589
		-	1.222.891					897 785 9	72. 110 454		* KKR 822	19 777 667
											330,000,0	1001111101
Mew Orleans	-		153, 783	P401 0/L	8.0	9.0	9.76	935,001	1,051,876 0.681	0.661	1,372,982	1,544,605
			(352)									
	+		75,833	PCC 0/L	13.0	14.0	6.3	778,805	838,713		1.004.910	1.062.210
	-		8,667	1/0 0/I	10.0	11.0	6.3	68,469	75,316	0.775	88.347	97.182
			64,500 (197)						,			•
	-	AP-1	52,577	P601 0/L	9.0	9.5	9. 0	359,627	379,606	0.681	528.087	\$57.426
	-	AP-2	116,497	P401 0/L	5.0	6.0	9.76	531,226	531,226	0.681	789 068	780.068
	H	AP-3	27,941	P401 0/L	20.0	21.0	97.0	424,703	445.938	0.681	623 646	654.828
		•	197,015 (467)					•				
			435,298					3.097.831	3.322.676		A. 108 030	4 716 317
								1				
Las Vegas		1-1	233,333	P401 0/L	9.5	10.5	35.0	1,196,996	1,322,998	0.681	1,757,706	1,942,728
	H		202.898	P401 0/L	6.5	7.5	3.0	712,172	621,737	0.681	1,045,774	1,206,662
	٠	A11 - 636	(312)	200	•	•	2					
	٠.	1	140 740	100	,	, ,	X 5	700.075	200,021	9	163,263	183,263
	•		217.798 (152)		}	?	ξ 5	990	370,018	100.0	163,304	637,119
	-	AP-1	759.293	P401 0/L	7.5	8.0	3.0	3.075,137	3,289,146	0.681	4.515.620	4.816.661
		A11 - 759	- 759,293 (542)									4
		-	1,413,322					5,603,176	6,119,760		8,227,866	8,986,433

=
8
-

	Catagory	Pavener	Arres	Personne	Thickness (h	.5	Fede	Parament Cost	Sas		Cob-Tabel Case	1 0000
Airport	Afrerafe	Ite	24 72	2	Kedien	Nedian Optimized		Median	Optimized	-	Ž	Getledeed
Kanasa City	H	1-1	233,333	7401 O/L	9.0	9.8	0.42		\$ 930,999	0.681	\$1,295,153	\$1,367,106
		A11 = 6%	23,33	7601 0/1	5.5	•.0	0.42	669'699	\$12,399		669,720	752,421
	H		124.050	700 O/L	11.0	12.0	0.45	1.759.867	1.265.310	0.775	1.496.403	29 (19.1
		TW-2	128,400	100 OV	9.0	9.0	0.85	982.260	982.260	0.775	1.267.432	1.267.432
	H		40,125	700 O/L	10.0	11.0	0.85	341,062	375,169	0.775	440,080	90.19
		•	1,575 (237)									
	~		527,992	70 07 10 07	12.0	0.21	0.85	5,385,518	5,385,518	0.775	6,949,055	6.949.055
		•	7.992 (421)									
		-	1,257,233					9,220,406	9,451,655		12,136,043	12,452,762
Jaltimere.	H	W-162	350,000	P401 0/L	0.0	0.0	0.52					
		All = 350	A11 = 350,000 (367)									
	н	TW-Total	253, 750	P401 0/L	0.0	0.0	0.52					
		A11 - 253	750 (262)		})						
		Lees .	(0.0									
	H	AP-1	378,675	101 O/L	0.	0.0	o. 22					
		Used -	() () () () () () () () () ()									
		1										
		Total	982,425									
Claveland	H		233,333	7401 O/L	3.0	3.0	9.70	531,999	531,999	199.0	781,203	781,203
	•	A11 - 233	233,333 (282)	40		;						
	4 p-		11 475	100 107		?	2	203 528	317,712			
	•		CSD 009	-		:		976 607			900 967	25.75
	H		127,308	7401 O/L	0.0	6.5	2.0	774,033	\$22,410	0.681	1,136,612	1,207,651
	H		120,943	7401 O/L	7.0	7.5	9.70	643,417	649,375	0.681	944.012	1.012.29
			224,911	7401 O/L	14.5	15.5	9.70	2,478,519	2,649,452	0.61	3,639,529	3,890,532
		•	1,162									
			830,095					5,110,961	5,423,197		7,505,062	7,963,577
											,	

Afteret Afteraft Item Sq Yd Ann Sq Yd I K2-2 166,667 Ann Sq Xd	CEVENERS AFER	revenent	Thickne	Thickness, in.	Unite	Pavement Cost	t Cost		Sub-Trtal Cost	1 Cost
н ннн н нн н	Sq Yd	Type	Median	Median Optimized	Price	Y.edtan	Optimized	S	Mcdian	Cetimized
н нын н ны н		PCC 0/L	6.0	7.0	1.37	\$1.370.003	\$1.598.337		\$1.767.746	\$2.062.370
нн ннн н	166,667	PCC 0/L	0.9	7.0	1.37	1,370,003	1.598.337	0.775	1.767.746	2.062.370
нны нын н	- 333,334 (382)									
н нын н	100,000	PCC 0/L	0.9	7.0	1.37	822,000	959,000	9.775	1.060.645	1.237.419
н нын н	100,000	PCC O/L	6.0	7.0	1.37	822,000	959,000		1,060,645	1,237,419
н ннн н	- 200,000 (237)									
н нын	346,686 - 346,686 (392)	FCC 0/L	0.9	7.0	1.37	2,849,759	3,324,719	0.775	3,677,108	4,289,960
ннн н	680,020					7,233,764	8,439,392		9,333,890	10,889,539
I TW-1 I TW-2 All Used '	137,167	1601	3.0	3.0	9.54	222,211	222,211	0.681	326,301	326,301
I TW-2 All • Used ·	69,167	7401 0/L	8.0	8.5	9.56	298,801	317,477 . 0.681	. 0.681	438,768	466.192
All a Used '	90,378	10%	0.0	0.0	2.0					
I AAP	296,712 (647)									
I V	200,334 (304)									
1 Leach	370,965	P401 0/L	15.0	15.5	9.56	3,004,816	3,104,977 0.681	0.681	4,412,358	4,559,291
All • Used	370,965 (562)									
Total	577,299					3,525,828	3,644,664		5,177,427	5,351,784

267<

												200
Airport	Aircraft	Item	Se yes	Type	Medien	Thickness, in.	Tice of	Median	Pavement Cost	67	Median Optia	Opt introd
Atcago O'Hare	Ħ	1-14	166,657	P401 0/L	9.5	17.0	9.76	\$1,203,336	\$2,153,336	0.681	\$1.767.013	\$1.162.023
	Ħ	TH-2.	257,TTB	P401 0/L		11.5	9.0	861.601	2.252.980	0.661	1.20, 568	3,308,341
	H	M4-3	591,112	7/0 10%	3.0	10.5	92.0	360,001	1,330,003	0.681	558,004	1,953,015
	11	7	175,922	P401 0/L	3.0	13.0	92.0	401,102	1,736,109	0.681	500,990	2,552,209
	:	s i				,	,					
	;	7-5	256 126		0.0	ć. y	9.40	298,851	647,570	189	130.041	950,822
	111		162,614	PLOI O/L	9.0	90	0.0	16,816	1.319.917	681	612.065	1.936.204
	H	7-	55.189									
			746.239									
	Ħ		1,086,841	Ptol 0/L	3.0	6.5	92.0	2,477,997	5,368,995	0.681	3,630,762	7,863,967
		A11 - 1	A11 = 1.086.841									
		Used =	2,424,192									
		M	A11 = 2,479,381					9,762,524	19,975,311		14,335,571	29,332,323
Atlanta	Ħ	1	213,867	1/0 DA	6.0	0.11	9.6	769.921	141,522	0.775	944. 500	1.821.110
	#=	31.5	166,667	1/0 304	0.9	n.0	0.60	600,001	1,100,002	0.775	774,195	1,419,357
	:::	22	> 525,000	PCC 0/L	6.0	11.0	0.60	1,890,000	3,465,000	0.775	2,436,710	8,470,968
	H	7	186,000		16.0	20.0	9.6	1,785,600	2,232,000	0.775	2,304,000	2.880,000
	##	AP-1	712,369		10.0	16.0	0.60	4,274,214	6,838,742	0.775	5,515,115	8,824,183
	: ::	11-5	311,405	1/o 22								
		7/E										
		Total	Total 1,803,903					9,319,736	15,047,257		12,025,466 19,415,827	19,415,827

268<

1	
ö	
7	
Sheet	

	100	Pavement	Area	Pavement	Thicky	Thickness, in.	Unit	Pavene	Pavement Cost		Sub-Total Cost	Cost
Airport	4	Iten	Sq yds	Type	Sedian	Optimized	Price	Mer 160	Otpimized	67	Median	Optimized
Los Angeles	##	RW-1	257,778	PCC 0/L	0.0	0.0	9.0	\$2, 123,113	\$3,876,981 		\$3,126,597	\$3,126,597- \$5,002,556
	==	1.5	169,724	Ptc1 0/L	0.0	0.0	. v.v.	264,635	727,745	_	388,598	1,068,642
	HH	1-5-	32,034	Pho1 0/L	3.0	17.0	₩. 0.0	16,388	35,507		266,715	131,824 52,140
	==	TW-6	22,480	Pho1 0/L	3.0	23.5	4.00	200,297	285,271		294,122	118,900
	H	TW-8	151,605	Phol O/L	00	13.0	45.0	23,671	102,576		34, 759	150,626
	111	AP-2	334,091	Pto1 o/L	0.0	11.5	₹. 7.	1,804,053	3.066.955	-	601.076	1,382,477
	##	AP-t	181,926	Pto1 0/L Pto1 0/L	3.0	3.0	 	2,070,914	2,872,558	0.681	3,040,990	4,218,147 432,775
	Total 1,547,	044.742.						7,968,830	13,349,436		11,270,088	18,912,179
San Prancisco	==	RW-1	222,224, 208, 506		9.0	5.5	₹.0	360,003	660,005	-	528,639	969,170
	125		39,167		900		1 d d	63,451	63,53		93,173	93,173
	###	8-1-3 1-3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	150,000 908,821	Pto1 0/L	900	, c - 3		243,000 1,472,290	267,900 1,963,053		2,161,953	305,286 832,599 2,882,604
	Total 1,	Total 1,686,808						2,735,869	1,106,377		4,017,430	6.029,921
Man!	===	2-1-1 24-1	233,333		000	000	₹₹₹ 000					
		2525	12,000	Pto1 0/L	0000	, o o o o		60,952 208,5 ⁸ 0	60,952 208,980	 88.	89.504 306.872	89,504 306,872
	H	AP-1	570,759		3.0	0.6	1 1 1 1 1 1 1 1 1 1	954.630	2,773,869	0.661	1,357,753	1,073,258
	Total 737,38	17,384						1,194,562	3,043,621		1,754,129	469,634,4

266

Airport	Category	Pavement. Item	S Are	Personal Park	Thickness, Median Opt	Optinized	Vedt Price	Pavenent Median Ot	nt Cost Otpinized	50	Sub-Total Median	Cost Optimized
New Tork (JFK)	######	222222	220,000 172,500 85,000 125,000 155,000 155,000	7/0 0/1 1/0 0/1 1/0 0/1 1/0 0/1 1/0 0/1 1/0 0/1	3.0 0.0 6.0 6.0 7.0 7.0	8.5 3.0 12.0 no data no data 13.0		\$ 343,200 696,700 - 12,676,411	\$ 972.400 269.100 1.397.400 - - 23.917.049	0.681 0.175 0.175 0.681 0.681	\$ 503,965	\$1,427,900 395,154 30,860,708
	Tc:al 1,820,400	820,400						13,920,311	26,555,949		18,022,818	34,486,858
lev York (in Countis)	##### 2	14-2 14-2 14-2 15-12 15-13	235,556 276,750 114,125 102,712 1,322,998.	Pto1 0/L Pto1 0/L Pto1 0/L Pto1 0/L Pto1 0/L	20.00 20.00 20.00 20.00 20.00	25.0 27.5 27.5 2.5 2.5		395,734 2,364,670 191,730 1,179,134 13,335,820	395,734 3,195,500 267,595 1,553,005 18,151,533	8 95500	581,107 3,472,349 281,542 1,731,474 19,582,702	\$81,107 \$,692,364 \$22,313 \$,280,477 \$6,654,233
Remark	11 17-1 11 17-1 11 17-2 11 17-3 11 AP-3	4-2-4-1-1-4-4-1-1-4-4-4-4-4-4-4-4-4-4-4-	155,557 134,966 134,966 131,289 141,289 141,289	Pto1 0/L Pto1 0/L Pto1 0/L Pto1 0/L Pto1 0/L Pto1 0/L	000		*******	267,036 267,036 267,036	252.002 218.645 218.445 724.613 724.613	0.00 0.66 0.66 0.66 0.66 0.66 0.66 0.66	392,123 392,123 392,123	320,047 321,065 321,065 1,064,336 1,064,336 1,064,336
Denver	Marian Ma	1,812 84-1 14-1 14-2 14-4 14-4	111,111 96,620 108,698 115,044 115,044	Pto 0/L Pto 0/L Pto 0/L Pto 0/L Pto 0/L	12.0 7.0 6.5 6.5	1916 186 186 186 186 186 186 186 186 186 1	00000	267,036 128,993 281,528 361,528 361,813	1,195,460 719,484 661,364 563,056 661,060 681,060	66.00000 66.00000 66.000000000000000000	392,123 603,687 629,946 413,604 511,297 511,297	1,755,448 1,056,452 971,166 826,808 1,000,088 1,000,088 466,232
	II AP Total 914,674	1.671	\$52,000		13.0	19.0	1.2	9,201,579	10,906,760 13,862,807	0.775	9,629,058	14,073,239 18,413,985

270<

	Category	Pavement	Area	Peverent	Tricks	ess. in.	Unit	Pavere	Pavenent Cost		Sub-Cote Cost	110
Airport	Afreraft	Ites	Sq yds	Tyre	Ne Man	Nelico Optimized	Price	Median	Otpimized	80	Median	Optimized
Bosten	H	R4-1	222,222		0.0	10.5	0.92	\$ 613,333	\$2,146,665	0.681	\$ 900,636	\$3,152,225
	H	R4-2	283,046		0.0	7.5	0.92	•	1.953.017	0.681		2.867.866
	H	1-1-	58,480		13.0	8.5	0.92	699, 121	1,102,933	0.681	1.027.050	1,619,579
	H	TW-2	58,480		13.0	20.5	0.92	699,421	1,102,933	0.681	1.027.050	1,619,579
	H	74-3	72,516	P401 0/L	7.0	14.0	0.92	167,003	934.66	0.681	685,761	1.371.521
	H	14-4	50,293		14.5	22.0	0.92	670,909	1,017,930	c.681	985,182	1.494.758
	H	TW-5	88,890		3.0	10.5	0.92	245,336	858,677	0.681	360,258	1.250.906
	H	AP-1	36,937		13.0	20.5	0.92	191,14	696,632	0.681	648,703	1,022,954
	H	AP-2	66,571		0.0	3.0	0.95		183,736	189.0		269,803
	Total 878,955.	8,955.						3,137,768	8,893,596		4,607,590	13,059,612
Philadelphie	11	1778	223 222	Phot 0/1		ں عہ	-	900	266 100			
	;	0	210,000	DIO 1010	, u		5	200,000	66.00	200	150,300	1,125,5%
	111	1.4.1	27,000	1/0 1074	٠.	 	0.73	1,022,013	1,337,525	9.6	1,501,928	1,964,060
	1	2	5.750	Photo colt.			2 6	2000	C70° 1 *T	100	144° 174	217,070
	E	7.	1 250	Pho 10/1			200	100.00	702 361	700.0		9
	ļĖ	T-dV	2000	1/0 330	3			100.00	133,300	100.0	134,072	190,951
	Total Si	0.130	200	7/0 333	· .	2.0	7:4	206,317	2000	6.5	28.63	994.355
		65416						C10'COT'2	3,151,900		3,120,274	** >00° 010
St. Louis	11	RF-1	222,222		21.0	18.0	49.0	1.564.443	2,550,007	277.0	S ni 8 Kak	3 303 922
	H	1-2	119,792		10.0	17.0	3	766,669	130.337	27.0	989.250	1.681.725
	11	AP-1	244,141	PCC 0/L	10.0	17.0	0.6	1,562,502	2,656,254	0.775	2,016,132	3,427,425
	Total 586,155	6,155						3,693,614	6,519,588		5,024,018	6,12,372
Komlulu	11	177	24.7 T.M.		•	•	1					
	1=		247 A1			9 6	* d					
	H	1	419.74				X 0					
	H	7	347.614		0		1					
	H	14-10	347,614		0.0	0.0	0.5					
	Ħ	7-5	51.958		0.0	0.0	0.54					
	H	14-6	51,958		0.0	0.0	45.0					
	Ħ	Fi	51,958	P401 0/L	0.0	0.0	₹.º					
	::		51.956		0.0	0.0	٠. تر					
	:	51-84	21,930		0.0	0.0	0.5 1					

Airport	Category	Pavement	Area Sq yds	Pavement	Thick	Thickness, in. Median Optimized	Price Price	Nedlan	Pavement Cost	1	Sub-fotal Cost	Cost
Honolulu (Continued)	## #	TV-12 AP-1-12 TV-1	13,291 146,433 39,875	Pto1 0/L Pto1 0/L Pto1 0/L	9.50	3.0 0.0	₹ ₹ ₹	847,538	\$ 21,531 2,421,538	0.661	1,244,549	3,555,256
	Total 161	12.124						847,538	2,443,070		E;244,549	3,587,413
Detroit	###	TV-162 TV-1-4 AP-1	166,667 315,954 823,621	PCC 0/L Pt01 0/L PCC 0/L	13.0 8.5 12.0	19.0 16.0 18.0	9.00	5,702,671 2,041,063 9,290,445	8,334,673 3,842,001 13,935,667	0.45 168 175	7,358,265 2,997,156 11,967,611	10,754,417 5,641,705 17,981,506
	Total 1,60	606,212						17,034,179	26,112,341		22,343,112	34,377,638
Seattle-Tacoma	II II II II Total 1,35	RW-1 RW-2 TW-1,264 TW-3 HF-1-4	175,200 136,267 192,234 19,467 827,138	P401 0/L P401 0/L P401 0/L P401 0/L P401 0/L	3.0 3.0 7.0	22.0 7.0 10.5 14.0	0.41 0.41 0.41 0.41 0.41	1,041,564 167,608 236,448 31,926 2,373,886 3,851,432	1,580,304 391,086 551,712 83,805 4,747,772 7,354,679	0.681 0.681 0.681 0.681 0.681	1,529,463 246,120 347,207 46,881 3,485,883 5,655,554	2,320,564 274,282 810,150 12,062 6,971,769
Pittaburgh	######	74-1 17-12- 17-12- 17-2 17-3 17-5	175,500 166,667 86,812 28,938 55,592 36,654	Pto1 0/L Pto1 0/L Pto1 0/L Pto1 0/L Pto1 0/L Pto1 0/L	9.5 11.5 8.5 3.5 5.0 5.0	20.0 20.0 20.0 20.0 20.0 20.0 20.0	0.93 0.93 0.93 0.93 0.93	1,546,125 1,782,504 686,249 94,193 1,159,011 170,441 6,771,759	2,685,375 3,100,006 1,291,763 309,492 1,586,015 409,059	0.681 0.681 0.681 0.681 0.681 0.745	2,270,374 2,617,460 1,007,708 138,316 1,701,925 250,280 8,737,754	3.943,282 4.552,138 1.896,167 2.328,950 600,674 12.944,819
	Total 988,	18,391						12,210,281	19,413,944		16,723,838	26,721,192
Mouston	####	RV-1 TV-1-3 TV-4 AP-1	156,667 238,650 58,275 645,987	7/0 0/1 PCC 0/1 PCC 0/1 PCC 0/1	0.00.	13.0 13.0 11.0	ဆီဆီဆီ ဆီ ဝင်ဝပ	921,202 1,403,262 293,706 379,804	1,710,804 2,606,058 538,461 6,511,549	0.75 0.75 0.75 0.75	1,188,648 1,810,661 378,975 4,901,166	
	Total 1,099	615,660						6,416,574	11,366,872		8,279,450	14,666,932

269

	Category	Pavement	Area	Pavement	Thick	ness, in.	Unit	Pavene	Pavement Cost		Sub-Total	Cost
A'rport	Mircraft	Ites	Sq yds	13.De	Median Opt	Optimized	Price	Median	Otpinized	8	Median	
Minnespolis	11	RW-1	233,333	P401 0/L	15.0	23.0	0.76	\$2,659,996	\$4,078,661	_	\$3,906,015	\$5,989,023
	11	NA-2	205,189	P401 0/L	 00	4 Å	9.7	623,775	623,775	_	915,969	915,969
	11	T-11-2	255 617		v :	3 5	35.0	671, 210	020 8670	_	1,014,90	3,229,594
	H	AP-1	323,563			11.0	0.16	1,106,585	2,704,987	0.681	1,624,941	3,514,791
	Total 1,222	,222,891						6,364,379	11,744,006		9,345,637	17,245,238
New Orleans	11	RW-1	153,783	P401 0/L	8.5	16.5	0.76	993.438	1,926.430	0.681	1.458.793	2.831.775
	11	TW-1	75,833	PCC 0/L	14.7	21.0	0.79	838,713	1,258,069	0.775	1,082,210	1,623,315
	11	74-2	8,667	PCC 0/L	0.6	16.0	0.79	61,622	109,551	0.775	79.512	141,356
	ï	AP-1	\$2,577	P403 0/L	5.5	17.0	92.0	379,606	679,255	0.681	557 424	967, 166
	13 (AP-2	116,497	F401 0/L	4.5	11.5	0.76	398,420	1,018,154	0.681	585,051	1,495,131
	II	AP-3	27,941	7401 O/E	23.0	31.5	0.16	604.884	668,908	0.681	401,117	982,244
	Total 435,298	15,298						3,160,208	5,662,445		4,480,185	5,071,317
Las Vegas	11	RM-1	233, 333	-	10.5	16.5	0.54	1,322,998	2,078,997		1.342.728	3,052,959
	I	FW-2	202,498	-	7.5	0.01	9.5	821,737	1,095,649		1,206,662	1,608,833
	11	14-1	77.038	Pt01 0/L	3.0	2.5	0.54	124,302	312,004	0.681	183,263	458,156
	= 1	2-12	140,760	_	7.5	0.07	0.5	570,078	760,104		837,119	1,116,159
	11	1-a	759,293		8.5	11.9	0.54	3,485,155	4,510,200		5,117,762	5,622,907
	Total 1,413,32	,413,322						6,324,769	8,756,955		9,207,474	12,858,963
Mansas City	H	7	233,333	Pho1 0/L	8.5	15.5	0.42	832,999	1.518.998	0.681	1,223,200	2.230.540
	H	FW-2	203, 333	Phot 0/L	5.5	14.0	0.42	669.69	1,195,598	0.681	689,720	1.755,651
	Ħ	1	124,050	PCC 0/L	11.0	17.0	0.85	1,159,868	1,792,523	0.73	1,496,604	2,312,913
	Ħ!	2-5	128,100	7/0 0/1	9.0	15.0	5.82	873,120	1,637,100	0.775	1,126,606	2,112,387
	¥ !		40,125	PCC 0/1	10-0	16.0	0.85	341,063	545,700	0.T3	180,041	704,129
	=		321,992	1/0 30d	12.0	18.0	0.85	5,385,518	8,076,278	5.77	6,949,055	10,423,585
	Total 1,25T	,257,233						9,362,267	14,768,197		11,925,265	19,540,225

Ħ	
7	
Ħ	
Ę	
à	

						1	That	Pavel	Pavement Cost		Sub-Tot	2502
	Category	Pavenent	Sa vds	Pavent	Median Opt	Opt alted	N N	Median	Otpinized	S	Median Optian	Optimized
Airport	Alremit	-							•	683	•	**
	1			PLOI O/L	0.0	0.0	0.55		•	3	•	
Baltimore	#1	THE POST		Phot O/L	0.0	0.0	0.52					
	==	AP-1	378,675	PLO1 0/L	0.0	0.0	0.52					
											781.20	1.822,608
			200 000		3.0	7.0	92.0	531,939			603 LB	
Cleveland	Ħ	1-12	233,333			13.0	97.0	1,10,970				
	11	T-1-	90,125			1	92.0	178.087			107	
	1	T-2	33,475				2 4	677 270			994.53	
	: :	AP-1	127.308		٠.	14.5	9 7	551 500			8c9,83	
	1 =	AP-2	120.943		0.9	13.0	9 0	2 202 053	3,675,046	0.681	3,514,028	
	; :	4P-3	224.911	P401 0/L	14.0	2:5	<u>.</u>	6,030,000				
	1							1 712 ARA	8.773.558		6,964,593	3 12,883,345
	Tetal 830 005	30 005						2012				
	1000	112000						. 370 003			1,767,74	
	÷	HW.	166.667	PCC O/L	9	13	1.37	1,370,003			1,767,7	6 3,830,115
Washington	::	2-2	166.667	PCC O/L	۰	13		00 c.a			1,060.6	
	1 :		100,000	PCC 0/L	9	13	7.3	200			1,060,6	
	111	14-2	100,000	PCC 0/L	9,	E ;	 	2.840.759	6,174,478	0.775	3,677,108	
	: =	AP-1	346.686	PCC O/L	9	57	1.3					
	;	!						7.233.764	15,673,156		9,333,890	0 20,223,427
	Total 0	880,020										
			,	7		6	0.54	222,21			100.00	
Pr. Lauderdale	Ħ	R4-1	137,167	Page 0/1	9	10.5	7	774, F4E	7 392,177	9.6	1400	286 661
	11	1	107.60	10		0.	なら	•	195,216		•	
	: :	T4-2	8.30	100	2	98	1	2.904.656	121,607,8 3	0.681	4,265,280	80 8,363,482
	1	2	370.965	P401 0/L	£4:3							
		100						2 644 343	3 6,518,755		5,057,774	74 9,516,321
	Total	667,677										

REFERENCES

- 1. B. F. Goodrich Company, "Aircraft is es-Engineering Data," 4th ed., Revised Jan 1971, Akron, Ohio.
- 2. _____, "Wheel and Brake Design Guide for Airframe Engineers," 1 Feb 1970, Akron, Ohio.
- 3. Carter, R. C., "Effect on Airplane and Flexible Pavement Design of Varying Design Tire Pressure from 60 to 360 psi," Paper No. 650799, Oct 1965, Society of Automotive Engineers, New York, N. Y.
- 4. "747, L-1011, and DC-10 Operating and Cost Data Second Quarter, 1972," Aviation Week and Space Technology, 2 Oct 1972, pp 40-41.
- 5. Allegheny Airlines, Inc., "Landing Gear Costs to Stop Air Carrier Type Aircraft," 9 Feb 1970, Washington, D. C.
- 6. Davis, J. E. and Curry, R. C., "The Cost of Landing an Airplane," Paper No. 740C, Sep 1963, Society of Automotive Engineers, New York, N. Y.
- 7. Federal Aviation Administration, Department of Transportation, Office of Aviation Economics, Aviation Forecast Division, "Large and Medium Hub Aviation Activity Forecast, Air Carrier Airports, 1967-1983," Washington, D. C.
- 8. Air Transport Association of America, "Executive Summary, A.T.A. Airline Airport Demand Forecasts," Jul 1969, Washington, D. C.
- 9. Griffis, F. H., A Stochastic Analysis of the Competitive Bidding
 Problem for Construction Contractors, Ph. D. Dissertation, May 1970,
 Oklahoma State University, Stillwater, Okla.
- 10. Federal Aviation Administration, Department of Transportation, "Airport Paving," Advisory Circular AC 150/5320-6A, 9 May 1967, Washington, D. C.
- 11. Aerospace Industries Association of America, Inc., Transport Aircraft Council, "CTDL Transport Aircraft Characteristics, Trends and Growth Projections," 1st Rev, Apr 1970, Washington, D. C.
- 12. Townsend, L., "State of the Airport Industry," Airport World, Oct 1973.

GPO 883-308