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Testing for a Monotone Trend In a Modulated 

Renewal Process 

P. A. W. Lewis* and D. W. Robinson» 

Abstract.  In examining point processes which are overdlspersed with re- 

spect to a Polsson process, there Is a problem of discriminating between 

trends and the appearance in data of sequences of very long intervals.  In 

this case the standard "robust" methods for trend analysis based on log trans- 

forms and regression techniques perform very poorly, and the standard exact 

test for a monotone trend derived for modulated Polsson processes Is not ro- 

bust with respect to Its distribution theory when the underlying process Is 

non-Polsson.  However, experience with data and an examination of the depar- 

tures from the Polsson distribution theory suggest a modification to the 

standard test for trend, both for modulated renewal and general point process- 

es.  The utility of the modified test statistic is verified by examining 

several sets of data, and simulation results are given for the distribution of 

the test statistic for several renewal processes. 

1.  Introduction. Stochastic point processes or series of events can be 

described either through the sequence of times to events {T.}, or through the 

counting process {N.}, where N. is the number of events occurring in (0,tj. 

Trends on both serial number 1 and on time t are possible, but we only consid- 

er the time trends here, nor do we consider grouped data. 

A fairly complete description of trend analysis for Polsson point proc- 

esses is given in Cox and Lewis CO, Lewis [ll] , Lewis [10] and Brown [2], 

In these works there is another minor difference which complicates matters; 

this is that observation may be for a fixed time interval (0,t0] or for a 

fixed number n of events. Fixed time observation is more common in practice 

but the fixed number case is easier to simulate, so we consider both, depending 

on convenience. Except for messy details the results are essentially the same. 

We will also consider only the case of a simple monotone trend in time for 

the process, extending the Polsson theory to the case of more general point 

•Naval Postgraduate School, Monterey, California. This research was supported 
by the Office of Naval Research through grant NRC42-28'4. 
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processes.  In the case of a non-homogeneous or modulated Polsson process a 

simple model [4, pp. 45] for the rate X(t), 

(1) X(t) '  exp{a+Pt} » Xexpfet}, t>0, X>0, 

leads to a uniformly most powerful conditional test for 6»0 against MO  based 

on the statistic 

1 = 1  1 

The conditioning is en N. , the observed number of events in (0,t.] , since N. 
to t0 

is a sufficient statistic for the nuisance parameter a for all  ß.     Conditional 

ly the  statistic has mean N.   /2 and variance N. 2/12,  so the statistic 

(2) U « 
KVt.) - §• 

(n/12)' 

which converges rapidly to a unit normal variable under the null hypothesis, is 

used to test for 6-0. The hypothesis is rejected for large or small values 

of U. 

The test statistic U is computed in the SASE IV program for the analysis 

of point processes [13] and the program stops if |u|>1.96, since subsequent 

ar.alysls in the program is for stationary processes. However, most users by- 

pass this stop because It almost always occurs. This has led to the present 

work, the supposition being that the distribution theory of U is very sensitive 

to the Poisson hypothesis. Two sets of data which lead to this program stop 

are discussed in the next section. Then other possible test statistics are 

discussed Section 3, and the distribution of a statistic similar to ^ is 

examined for the special case of a Gamma renewal process. This leads to a 

simple modification of the test statistic to account for the overdlspersion of 

the intervals between events relative to the exponential distribution. 



In subsequent sections simulation results for the null distribution of the 

statistic  are  given for other renewal processes.    Then the modification of the 

test which is required for general point processes is discussed.     It  is the 

simplicity  of the extension in this general case which makes the  test   statistic 

attractive when compared to other possibilities.    The problem of the power of 

different  tests  for trend has  not been considered. 

Finally we note that the situation we are Interested in is  that  in which 

the point process is overdispersed with respect to the  Polsson process.    This 

will be defined to be the situation in which the Index of dispersion  for counts 

[^  PP-   71], 

var [N  ] 
I  «  lim J(t) = —T^—r , 

t- E(Nt) 

Is greater than one, its value for the Polsson process. For the most part this 

corresponds to the marginal distribution of times between events having a coef- 

ililent  of variation 

C(x) o(x) 

greater than 1.  This is always true for renewal processes, and for cluster 

processes (see [12] and [8]). 

2.  Data Analysis. Two sets of data are examined here and the results of 

tests for trend based on U are discussed. 

Statistics for the first set are tabulated in Table 1. This set consists 

of 3 sequences of page exceptions in a multiprogrammed two-level memory comput- 

er with demand paging [14]. There is no particular compelling reason to expect 

a monotone trend in the data, except for an initial transient.  This transient 

occurs because no page exception can occur until the memory is filled to the 

exception levels, which are 76, 197, and 512 in the three sequences examined. 

The transient is almost negligible at level 76, where the test based on U 

(column H)  rejects homogeneity at a It  level. The rejection is stronger for 

the other levels, and at exception level 512 there is a very long transient and 
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therefore Inhomogenelty. 

Note however that the Intervals between events are very skewed with res- 

pect to the exponential distribution, the coefficients of variation given in 

column 5 being on the order of 3, compared tc 1 for an exponentially distrib- 

uted varlate, and the coefficients of skewness Y, given in column 6 of Table 1 

being greater than the value Y1"2 for the exponential distribution. 

An even more striking failure for the test occurs in the second set of 

data explored in Table 2. The events are occurrences of earthquakes with 

energleti greater than M.O on the Richter scale in California and Nevada from 

193? to 1969.  Six sections with equal numbers of events (except for the last) 

were analyzed and their statistics are given on the first six rows of Table 2. 

Columns 5 to 7 show that the Intervals are very skewed, and the estimated 

serial correlation coefficients fL In column 8 show the Intervals to be 

correlated. 

There is no particular reason to expect a monotone trend In this data, 

but |U| is greater than I.96 for all sections. The average of the U values Is 

-O.72 and the estimate of the standard deviation of U for the sections (the 

sample standard deviation of the 6 U's) is shown in row 9, column ^ to be 

5=7.82.  This is far In excess of the value of o»l for the U statistic under 

the hypothesis of a homogeneous Poisson process. 

We will return to this data later on. 

3.  General remarks on the test statistic. Neither of the series consid- 

ered above can be modelled as a renewal process since the estimated first 

serial correlation coefficients p, are large. In fact the first set has been 

modelled as a univariate semi-Markov process by Lewis and Shedler [14] and the 

earthquake data is well known to be some kind of cluster process (Lewis,[12]; 

Vere-Jones [18] ). 

It is useful to consider renewal situations however, even if they occur 

rarely in practice, because of analytical possibilities. Cox [3] has extended 

the model (1) to modulated renewal processes by defining the intensity function 

\{t)  as 

(3)      X(t) - z(u(t)) expio+ßt} , 



Table 1.  Page exceptions In a multlprogrammed two-level memory computer with 

demand paging 

Level 
\ 

t0   (page 

references) 

U C(x) Yi Pi U 
{§ pages) {C(x)} 

76 1,807 8,802,^614 -2.83 3.3^ 10.3^ +0.188 -0.85 

197 820 8,802,neu -8.67 3.27 l.U +0.177 -2.60 

512 517 8,802,K6H -18.11 3.70 6.87 +0.130 -1.9C 

Table 2. Earthquake Data - All earthquakes with energies greater than M.O in 

California and Nevada; 1932-1969 

Section Nt t0(hours) U C(x) Yi Ya Pi u 
(eu)} 

1 K68 72,200 4.4 1.8 5.50 42.9 +0.49 2.44 

2 M68 58,921 -6.7 1.65 3.67 22.4 +0.16 -4.06 

3 468 49,733 9.9 1.70 2.80 12.8 +0.22 5.82 

4 468 29,403 2.1 1.70 3.30 17.5 +0.14 1.23 

5 468 48,061 -11.7 1.50 2.40 9.8 +0.34 -7.80 

6 431 79,686 -2.3 1.25 2.40 12.6 +0.12 -1.84 

Average -0.72 1.6 3.01 19.67 0.245 -.702 

Sx (3.19) (0.81) (0.68) (4.99) (0.059) 

O 7.82 0.197 1.67 12.22 (0.144) 

TOTAL 
Record 

2771 338,004 -0.527 1.63 - - - -0.323 



where z{')  is the hazard     [4, pp. 135] or hazard rate in the terminology 

of some workers in reliability theory. However, although a complete likelihood 

can be set up [3] it has not been possible to derive any explicit tests for 

ß»0 from It. 

We therefore continue to examine modifications of the U statistic. For 

convenience, however, we consider the case of observation for a fixed number of 

events n.  There are several reasons for this: 

(i) The fixed number case is much simpler to simulate and statistical dif- 

ferences tetveen the two situations will be mircr, especially for large 

samples. 

(11)  The sufficient statistic for a In the model (1) for a Poisson process is 
n 

Y, = I X, , where X. are the times between events and the test statistic 
m iii i     1 

[4,  p. 52] is 

CO '2n 

n 

1»1 1 

(3) 
n 
I   (n+l-l)X. 

1-1      1 

Although this statistic can be considered conditionally on Y1 , it follows 

from well known characterizing results for exponential and Gamma distributed 

variatei. (see Lukaos and Laha [15] ) that this is equivalent to considering the 

test statistic 

(6) 

n 

Y     I  Si 2n _ !■! 1 

n  Yln   * 

1-1 1 

Moreover for any renewal model with intensity function (3) this statiscic 

will be free of the nuisance parameter a for any 6, as can be easily shown. 

This is an important simplification. 

(ill) Analytical results for the fixed number case are simpler to obtain than 

those for the fixed time case. Moreover (6) suggests several other possibili- 

ties. Prom the form (5) for the numerator it can be seen that it is like an 

6 
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empirical serial correlation between the natural numbers and the serially 

ordered times between events X..    This Is the form of several standard tests 

for trend  [7,  Ch.  M5].  A possibility would be to replace the X  's by exponen- 

tial scores and correlate the serially ordered scores with the index numbers 1. 

Permutation tests of this sort have been discussed by Guilller [6] ;    we do not 

pursue them here because they depend on the independence    assumption in the re- 

newal hypothesis and we wish to consider more general point processes with 

dependent times-between-events. 

Two other possible tests for trend are noted here. 

One is based on log transformations of the data and standard regression 

techniques, but  as noted in Cox and Lewis  [4,  pp.  i)i]   these methods are  likely 

to have poor relative power for intervals X.   which are more dispersed than 

exponential variates.     (For fairly regular processes they are likely to be the 

favored procedures.) 

The  second possibility arises  from an analogy between Y    and goodness  of 

fit  tests.     Define 

s1 
(7) Cn,l ' ~n 1-1,   ....  (n-1). 

J-l J 

Then if Fn(y) denotes   [17]   the empirical cumulative distribution 

function for £   -, 1«1,      ..,  (n-1), we have 

(8) / {Pn(u)  - u}du ■ (n+1) - Yn  . 

Thus Y Is essentially a one sided Cramer-von Mlses statistic and other norms n 
could be tried to measure the deviation of F„(u)  from the function u between n 

0 and 1. 

Because the statistic Y and tests for trend based on it can be extended n 
to non-renewal processes, we consider its distribution first for Gamma renewal 

processes, then for several other renewal processes and then for cluster 

m* 
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processes, 

4.    Testing In modulated Qamma renewal processes.    The Gamma renewal 

process has Independently distributed Intervals with probability density func- 

tion [1,  pp.   136] 

(9) fx(x) [I] 
k    k-l -kx/w x      e 

TTkT X>0,   'K>0, 

where [(k) is the complete Gamma function. For k«! we have an exponentially 

distributed varlate, and for k«is the square of a normal random variable. We 

will be concerned with the case ksl.    We also have 

(10) E(X)  - ui  var (X) - H- I    CW " —    • K /F 

Consider now the distribution of Y given by (6), which we write for 

convenience as 

(11) 

I  (n+l-DX./n  Y, 
1-1 .. 2n 

n 
I X /n 

i-1 1 

Y' lln 

The moments of the numerator and denominator are 

(12) E[Y^n)   -  u,    var  (Y'J  - a2/n, 

(13) EfY^)   -  (n+l)w/2,    var JY^)  •  (n+1) (2n+l)ol/(6n), 

Now it is a characterizing property of Gamma distributed varlates 

[15, F«   58]       that the expected value of ratios of linear functions of the 

Gamma varlates such as those appearing in (11) is the expected value of the 

ratio of the expectations.    Thus we have,  for Gamma renewal processes, 



(HO EfYl   -   (n+l)/2; 

(15) var (vj .^T^7 (n±l) 
(n/C2(x)+l) 

(16) n-1 var N ~ ^nr ci<* 

Since C2(x)  equals one for a Polsson process  (k"l), this  checks with re- 

sults  for the statistic U given In (2). 

Note further that 

(17) 

(18) 

?y fn+l.i] 

^ 
-  v         n+1  . Yn        2 

1-1 ^ cu 

n 
I X /n 

1-1 1 

"; 

T    (v Ix.- 
-    l-l1    1 

Y              1 fn+1 

n+l-llI   n - ^1 nj 
n 
I X^n 

1-1 1 

III 
I x;a 

n 1-1 1 1 

I X^n 
1-1 1 

i 

where *■ Is the greatest Integer less than or equal to n/2, X. - X. - Xn+1-1 

Is a symmetric random variable and a. Is an odd sequence. 

Using (18) we can show the following results: 

(1) The centered statistic Y* has odd moments which are all zero. This fol- n 

lows because the numerator In (18) is a sum of independent symmetric random 

variables and is therefore  [5, Lemma 2, p. 119] itself symmetric. 

This Implies that the odd moments of the numerator (including the first) are 

zero and by the Lukacs and Laha result cited above, so are tho-o of Y*. 



'xnus i^  is a symmetric random variable. 

(li) The numerator In (18) divided by (nK Is asymptotically normal. Moreover 

since the denominator converges with probability one to y, which Is non-zero, 

results from Bllllngsley   [1, Corollary 2, p. 31] show that the reciprocal of 

the denominator converges with probability one to 1/y. Slutsky's Theorem (see 

Bllllngsley [1]  ) then says that 

(19) i^-ü ^ N(0.1). 

(Ill) Convergence to the normal distribution Is likely to be very rapid be- 

cause of the symmetry of the distribution of Y*. 

To examine the small sample distribution of Y for the Gamma renewal case n 

an extensive simulation was undertaken. Detailed results are given In Robinson 

[16j .   The results are illustrated In Table 3, which is extracted from 

Robinson [16] . 

The simulations involved 100,000 replications using the random number 

generator LLRANDOM (Learmonth and Lewis [9] )  and a Gamma random number gener- 

ator developed Ly Robinson [16].   The computations were checked by comparing 

the theoretical results for the mean and variance of the statistics with the 

simulated mean and variance. 

Only the case k»0.1 (C2(X)»10) is given in Table 3 because this was the 

most extreme case simulated and has the greatest departure from normality and 

the slowest convergence to the asymptotic normal form. Simulated quantlles of 

Y , normalized by subtracting the mean (1^) and dividing by the square root of 

the variance (15) (these are listed in the last two rows of the table) are 

shown in Table 3- Because of the symmetry of the distribution, only the lower 

quantlles corresponding to levels a»0.001, 0.002, 0.005, 0.010, 0.020, 0.025, 

0.050, 0.100, 0.200, 0.300, O.UOO, 0.500 are given. They are actually the 

average of the simulated upper and lower quantlles and have a standard devia- 

tion of approximately 0.001. 

The distribution can be seen to be a little more peaked than a normal dis- 

tribution, with shorter tails, but even by n-50 a normal approximation to the 

10 
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Table 3. Simulation results for the statistic Y for Gamma distributed Inter- n      _——.   

vals with k"0.10 under the null hypothesis of no trend (U"0). 

Quantiles of Y_ are normalized by subtracting E(YT) and dividing by n "   j 

(KYj). 

a. n-10 n«30 n»50 n-100 Normal quantile 

0.001 -2.202 -2.740 -2.915 -3.001 -3.090 

0.002 -2.191 -2.607 -2.750 -2.812 -2.878 

0.005 -2.1U8 -2.460 -2.500 -2.545 -2.576 

0.010 -2.078 -2.231 -2.290 -2.313 -2.326 

0.020 -1.9^ -2.014 -2.049 -2.054 -2.054 

0.025 -1.875 -1.935 -1.960 -1.965 -1.960 

0.050 -1.65^ -1.665 -1.665 -1.656 -1.645 

0.100 -1.3^3 -1.320 -1.307 -1.297 -1.282 

0.200 -0.92U -0.881 -0.871 -0.856 -0.842 

0.300 -0.591 -0.55^ -0.549 -0.537 -0.524 

0.400 -0.279 -0.272 -0.265 -0.261 -0.253 

0.500 -0.001 -0.005 0.002 -0.003 0.000 

E(Yn) 5.5 15.5 25.5 50.5 

o(Yn) 2.031 4.328 5.891 8.703 

11 



distribution of Y is adequate for purposes of hypothesis testing. 

The proposal for testing a monotone trend In a Gamma renewal process 

derived from these results is to estimate the coefficient of variation from 

the data and test for ß«0 using 

n-l  ''n 

{C(X)1 

and assuming that its cistrlbutlon is that of a unit normal distribution.  This 

essentially uses the Poisson test statistic divided by C(X).  This modified 

statistic Is given in the last columns of Tables 1 and 2.  The test results 

are mere In line with expectations, but still do not reflect inflation of the 

variance of U because of correlation between intervals between events. This is 

discussed in Section 6. 

s. Distributional results for other renewal cases. The result (I'O holds 

for any stationary sequence X^ ..., X , including a renewal (i.i.d.) sequence. 

This is because 

X, + ... +xn 

X. + ... + X nE X. + ... + X_ 1. 
nj 

or^ix./fXj + ... + X U« - for i-1, ..., n. Taking expectations in (6) 

using the form (5) for Y2 yields 

and 

n+1 cfy ■ ^ 

This result merely says that Y , which is a normalized centroid of times to n 

events in an interval stationary point process, always has the expected value 

(n+l)/2. 

Thus the centering in  (17)   is correct  for all sequences and we discuss 

Y    from here on. n 
Another useful result  Is that Y*  is a symmetric random variable for any 

12 
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renewal sequence.  To see" this note that -Y* can be written exactly In the 
n 

form (18) with X. ■ ^n+i-i ~ ^1 » 1:>ut slnce these are symmetric random variables 

and the X's are Independent, the functional form for -Y Is exactly the same 

as that for Y'. Thus they have the same distribution and thus Y Is symmetri- 

cal random variable.  All odd moments are thus zero.  In addition by arguments 

of the previous section, Y is asymptotically normal with variance (16) if 

var (X)<" for any renewal process. 

To explore the small sample distribution of Y further for renewal pro- 

cesses  -ing simulation we chose two other density functions for the intervals. 

Tr.e first is the Welbull density function 

(20) fy(x) - kßkxk"1exp(-ßkx1<) ß>0, k>0, x*0 

which reduces to the exponential for k*l.  In the simulation the parameters 

wer0 chosen so that the means and coefficients of variations of the intervals 

X were the same as for the Gamma cases. 

The second density function chosen was the log-normal density, again with 

parameters chosen to match the means and coefficients of variations in the 

Gainraa cases. Note that botv these densities ^re, for given coefficient of 

variation, more skewed than the Gainma density, the log-normal more so than the 

Welbull.  In addition both have hazard functions which approach zero as x-"», 

in ccn;rast to the Gainma density which has an exponential tall. 
t 

It is possible to compute var(Y ) for finite n in both these oases, but 

the results are messy.  In general the variances are smaller than for the 

Gamma case; simulation results give, when C2(X) »10.0 and n » 50, values of 

5-891, 5.182 and ^.355 for the Gainma, Welbull and log-normal cases 

respectively. 

Only the 'orst case of the simulations for the Welbull and log-normal in- 

tervals, i.e., those matching the Gamma case with C2(X) ■ 10.0 are given, in 

Table 4 and 5 respectively.  Again 100,000 replications were used. 

The normalized quantlles show distributions for Y' at n « 10, 30, 50, 100 

for both densities and, in addition,for n ■ 200 for the log-normal case. In 

13 
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Table y.  Simulation results for the statistic Y for Weibull distributed In- n        — 

tervals ;lth C2(x) ■ 10.0 under the null hypothesis of no trend 

(8"ü). .luantlles of Y are normalized by subtracting E(Y ) and 

dividing by 5(Yn). 

a n ■ 10 n ■  30 n = 50 n  -  100 
Normal 
Quantile 

. JO^. -2.533 -2.922 -3.067 -3.214 -3.090 

.002 -2.473 -2.772 -2.845 -2.973 -2.878 

.005 -2.3^3 -2.521 -2.570 -2.635 -2.576 

.010 -2.188 -2.301 -2.326 -2.373 -2.326 

.020 -1.987 -2.042 -2.052 -2.069 -2.054 

.025 -1.920 -I.954 -I.96O -1.971 -1.960 

.050 -1.659 -1.652 -1.644 -1.641 -1.645 

.100 -1.324 -I.294 -1.280 -I.272 -1.282 

.200 -0.883 -O.85O -0.845 -O.83I -0.842 

.300 -0.557 -0.531 -0.528 -0.516 -0.524 

.400 -0.271 -0.255 -0.259 -0.249 -0.253 

.500 -0.002 -0.000 0.000 -0.002 0.000 

E-'n 
5.500 15.490 25.527 50.495 

°N 1.678 3.703 5.182 7.953 

Y     Y -0.002 -0.001 -0.001 -0.001 

MM 2.52 2.86 2.96 3.14 
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Table 5. Simulation results for the statistic Y for log-normal distributed n     " —-   

Intervals wi"-h C2(x) e 10.0 under the null hypothesis of no trend 

(ß«0). Quaatiles of Y are normalized by subtracting E(Y„) and n n 

dividing by S(Y_). 

a n ■ 10 n «  30 n »  50 n -  100 n ■  200 Quantlle 

.001 -2.941 -3-342 -3.452 -3.692 -3.831 -3.0S0 

.002 -2.805 -3.084 -3.167 -3.36I -3-411 -2.878 

.005 -2.550 -2.725 -2.775 -2.845 -2.868 -2.576 

.010 -2.325 -2.434 -2.445 -2.471 -2.472 -2.326 

.020 -2.073 -2.104 -2.098 -2.106 -2.094 -2.054 

.025 -1.975 -1.997 -1.991 -1.988 -1.978 -1.960 

.050 -1.656 -1.638 -1.629 -1.621 -1.606 -1.645 

.100 -1.289 -1.252 -1.246 -I.23O -1.224 -1.282 

.200 -0.843 -0.813 -0.804 -0.791 -O.786 -0.842 

.300 -0,524 -0.502 -0.495 -0.487 -0.484 -0.524 

.400 -0.255 -0.241 -0.236 -O.236 -O.23I -0.253 

.500 0.001 0.000 0.u03 -0.003 0.003 0.000 

5.501 15.484 25.518 50.492 100.463 

5(Yn) 1.365 3.059 4.355 6.889 10.699 

MYn) -0.004 0.004 -0.015 -0.002 -0.001 

YJYJ 2.89 3.35 3.51 3.87 4.11 
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both cases the distributions have heavier tails than in the Gamma case, and 

estimated kurtoses Y2 greater than one. The convergence to the asymptotic 

normal distribution is particularly slow for the log-normal case, but in no 

case is the normal approximation too far off at the quantiles corresponding to 

the usual significance levels used in hypothesis testing. Actually division 

of the quantiles by C(X)((n-l)/12)^ from (16) rather than by the true standard 

deviation of Y* provides a better normal approximation than does division of 

the quantiles by the true Var (Y*). 

Convergence is of course faster and the normal approximation better for 

the cases not shown here, i.e. for intervals with coefficients of variation 

approaching the value one of tne exponential distribution.  Note that C2(X) * 

10.0 approximates the values found for the computer data of Table 1. 

6.  Distributional results for general point processes.  The finding from 

the previous sections was that for renewal sequences the null hypothesis vari- 

ance of Y' is inflated by approximately C2(X) over its value for a Poisson 

process.  The approximation is exact for large n. 

However, in both examples cited in Section 2 the intervals between events 

X. are correlated (see the values pl  in Tables 1 and 2). It turns out that for 

a simple statistic such as Y* fairly broad results can be obtained for general 

point processes, the modification to the varl .nee of Y* again being simple to 

compute from the data. Thus a rough test of trend can be performed. 

Details of the derivation will be given elsewhere. For a broad class of 

situations Y* is asymptotically normally distributed with variance 

(21) var (Yn) ' iJiri hC2(X)ff(0+)}, 

where f (0+) is the Initial point on the spectrum of the intervals {Xj} of the 

process.  Since f (0+) is related to the initial point of the spectrum of 

counts, g+(0+), and the asymptotic slope, V
1(»), of the variance time curve, 

var {N },of the point process by the relationship [h,  p. 78] 

(22) V't») . lTg+(0+) 
TC
2
(X) 

TTTT f+(0+) 
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we can write (21) as 

(n-1) (23)     var (Y^j - &£l  {E(X)V'(«)}. 

The quantity V'(<») is simple to estimate from the data C1*, pp. 115-120] , 

thereby providing an easy modification for the test statistic Y1. n 
For a renewal process,  f+(0+)  ■  1/ir, and  (21) reduces to  (16).     Polsson 

cluster processes [12, 18]   have been used to model the earthquake data cf 

Section 2.     If the length of the cluster In the  cluster process Is denoted by 

S,  we have 

(?U) var  [YM   - ^^- E(S+1){1 +  C2(S+1)}. 

where C2(S+1) Is ihe coefficient of variation squarei of S+l.  When there Is no 

clustfer. I.e. S"0 with probability 1, the result (24; reduces to that for the 

Polsson rrocess. 

For the earthquake data, which has long and very variable clusters, the 

multiplier of (n-l)/12 In (2^) has an estimated value of approximately US.O. 

Dividing the U values given In column U of Table 2 by (49)^»7.0, we obtain a 

test statistic which accepts the hypothesis of no trend In all ti sections of 

the data. 

7.  Conclusions and further work. The recommendation put forward In this 

paper is to test for trend In a point process us.'ng the U statistic (2) divided 
A 

by the estimated coefficient of variation C(X) in a renewal process, or an 

estimate of {E(X)v'(«>)p in (23) for a general poln process. 

The test Is not proposed as being in any sense optimal, but because it can 

be used without detailed knowledge of the structure of the process it is very 

functional. It would be nearly optimal if the point process were close to a 

Polsson process. 

The power of the test needs to be investigated so that its utility can be 

assessed relative to other tests, especially for processes which are highly 

overdispersed relative to the Polssou process. Point processes of that type 
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occur In many applications. 

Other tests to be considered could be standard regression tests after a 

lor transform or scoring of the intervals in the data; rank correlation tests 

using, perhaps, exponential scores for the intervals, and other functlonals 

than that given in (8) for measuring the "distance" of Fn(u) from u (j»ee {k, 

Ch. 6]).  There are other possibilities explored in a recent thesis by Guilller 

[6] . 

. 

^ 
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