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Testing for a Monotone Trend in a Modulated
Renewal Process
P. A. W. Lewis* and D. W. Robinson¥*

Abstract. In examining point processes which are overdispersed with re-
spect to a Polsson process, there is a problem of discriminating betwcen
trends and the appearance in data of sequences of very long interva.s. In
this case the standard "robust" methods for trend analysls based on log trans-
forms and regression techniques perform very poorly, and the standard exact
test for a monotone trend derived for modulated Polsson processes 1s not rec-
bust wlth respect to 1ts distribution theory when the underlylng process is
non-Polsson. However, experience with data and an examination of the depar-
tures from the Polsson distribution theory suggest a modification to the
standard test for trend, both for modulated renewal and general point process-
es. The utllity of the modified test statistic 1s verified by examining
several sets of data, and simulatlon results are given for the distribution of
the test statlstic for several renewal processes.

1. Introductlion. Stochastlc polnt processes or series of events can be

described elther through the sequence of times to events {Ti}’ or through the
counting process {Nt}’ where Nt is the number of events occurring in (0,t].
Trends on both serial number i1 and on time t are possible, but we only consid-
er the time trends here, nor do we consider grouped data.
A fairly complete description of trend analysis for Polsson point proc-
esses 1s given in Cox and Lewis [4], Lewils [11], Lewis [10]and Brown [2].
In these works there 1s another minor difference which complicates matters;
this 1s that observation may be for a fixed time interval (0,t,] or for a
fixed number n of events. Fixed time observation is more common in practice
but the fixcd number case is easler to simulate, so we consider both, depending
on convenlence. Except for messy detalls the results are essentlally the same.
We will also consider only the case of a simple monotone trend in time for

the process, extending the Poisson theory to the case of more general point

¥Naval Postgraduate School, Monterey, California. This research was supported
by the Office of Naval Research through grant NRO42-284,
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processes. In the case of a non-~homogeneous or modulated Polsson process a

simple model [4, pp. 45] for the rate A(t),
(1) A(t) = exp{a+Rt} = rexp{Bt}, t>0, A>0,

leads to a uniformly most powerful conditiocnal test for B=0 against B¥0 based

on the statistiec

Nto

T »
121 1

The conditioning 1s cn Nt s the observed number of events 1n (O,t,], since Nt
0 0
1s a sufficlent statistic for the nuisance parameter o for all 8. Conditional-

ly the statistic has mean Nt /2 and varilance Nt2/12, so the statistic
0 0

(2) U B ADE 5
(n/12)% ’

which converges rapidly to a unit normal variable under the null hypothesis, is
used to test for B=0, The hypothesis 1s rejected for large or small values
of U.

The test statistic U is computed in the SASE IV program for the analysis
of point processes [13] and the program stops if |U|>1.96, since subsequent
aralysils in the program 1s for statlonary processes. However, most users by-
pass this stop because it almost always occurs. Thls has led to the present
work, the supposition being that the distribution theory of U is very sensitive
to the Poisson hypothesls. Two sets of data which lead to this program stop
are discussed in the next section. Then other possible test statistics are
discussed Section 3, and the distribution of a statistic similar to iTi is
examined for the special case of a Gamma renewal process. This leads to a
simple modification of the test statistic to account for the overdispersion of

the intervals between events relative to the exponential distribution.



In subsequent sections simulation results for the null distribution of the
statistic are given for other renewal processes. Then the modification of the
test which 1s required for general point processes is discussed. It 1s the
simplicity of the rxtension 1n this general case which makes the test statistic
attractive when compared to other possibllities. The problem of the power of
different tests for trend has not been consldered.

Finally we note that the situation we are interested in is that in which
the point process 1s overdispersed with respect tc the Polsson process. This

will be defined %o be the situation in which the index of dispersion for counts

{4, pp. 711,

I = 1im J(t) = Zizlfi]’
S

is greater than one, 1its value for the Polsscn process. For the most part this
corresponds to the marginal distribution of times between events having a coef-

:i-~1lent of varilation

o~~~

g(x)

C(x) =

g

greater than 1. This 1is always true for renewal processes, and for cluster
processes (see [12] and [8]).

2. Data Analysis. Two sets of data are examined here and the results of

tests for trend based on U are discussed.

Statistics for the first set are tabulated in Table 1. This set consists
of 3 sequences of page exceptions in a multiprogrammed two-level memory comput-
er with demand paging [14]. There is no particular compelling reason to expect
a monotone trend in the data, except for an initial transient. This transicnt
occurs because no page exception can occur until the memory 1s filled to the
exception levels, which are 76, 197, and 512 in the three sequences examined.
The transient is almost negligible at level 76, where the test tased on U
(column 4) rejects homogeneity at a 1% level. The rejection 1s stronger for

the other levels, and at exception level 512 there is a very long transient and




therefore inhomogenelity.

Note however that the intervals between events are very skewed with res-
pect to the exponential distribution, the coefficlents of variation glven in
column % belng on the order of 3, compared tc 1 for an exponentially distrib-
uted varlate, and the coefficlents of skewness Yy gilven in column 6 of Table 1
being greater than the value Y1-2 for the exponential distribution.

An even more striking failure for the test occurs in the second set of
data explored in Table 2. The events are occurrences of earthquakes with
energles greater than 4.0 on the Richter scale in California and Nevada from
1932 to 1969. Six sections with equal numbers of events (except for the last)
were analyzed and thelr statistics are given on the first six rows of Table 2.
Columns 5 tc 7 show that the 1lntervals are very skewed, and the estimated
serial correlation coefficients 61 in column 8 show the intervals to be
correlated.

There 1s no particular reason to expect a monotone trend in thils data,
but |U| is greater than 1.96 for all sections. The average of the U values is
-0.72 and the estimate of the standard deviation of U for the sections (the
sample standard deviation of the 6 U's) 1s shown in row 9, column 4 to be
6=7.82. This is far in excess of the value of o=l for the U statistic under
the hypothesis of a homogeneous Poisson process.

We willl return to thils data later on.

3. Gencral remarks on the test statistic. Nelther of the series consid-

ered above can be modelled as a renewal process since the estimated first
serial correlation coefficients 61 are large. In fact the first set has been
modelled as a univariate semi-Markov process by Lewis and Shedler [14] and the
earthquake data 1s well known to be some kind of cluster process (Lewis,[12];
Vere-Jones [18]).

It is useful to consider renewal situations however, even if they occur
rarely in practice, because of analytical possibilities. Cox [3] has extended

the model (1) to modulated renewal processes by defining the intensity function

A(t) as

(3) A(t) = z(u(t)) exp{at+Bt} ,




Table 1. Page exceptions in a multiprogrammed two-level memory computer with
demand paglng f
| Level Nto t, (page U C(x) ;, 6, U
(# pages) references) {c(x)}
76 1,807 8,802,464 -2.83 3.34 10.34 +0.188 -0.85
197 820 8,802,464 -8.67 3.27 7.14 +0.177 -2.60
512 517 8,802,464 -18.11 3.70 6.87 +0.130 =4.9¢C
!
Table 2. Earthquake Data - All earthquakes with energles greater than 4.0 in
California and Nevada; 1932-1969
’ Section Nto t, (hours) U C(x) ;, ?2 3‘ .U
L {C(x)}
‘ 1 L68 72,200 4.4 1.8 5.50 k2.9 +0.49 2.4y
2 468 58,921 -6.7 1.65 3.67 22.4 +0.16 -4.06
3 Le8 49,733 9.9 1.70 2.80 12.8 +0.22 5.82
4 468 29,403 2.1 1.70 3.30 17.5 +0.14 1.23
5 L68 48,061 -11.7 1.50 2.40 9.8 +0.34 -7.80
Average -0.72 1.6 3.01 19.67 0.245 -.702
r , §i (3.19)  (0.81) (0.68)  (4.99) (0.059)
o 7.82 0.197 1.67 12.22 (0.144)
TOTAL 2771 338,004 -0.527
Record
Ll* . N | e
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where 2(+*) 1s the hazard (4, pp. 135] or hazard rate in the terminology
of some workers 1n rellabllity theory. However, although a complete 1likelihood
can be set up [3] it has not been possible to derive any explicit tests for

=0 from 1it.

We tnerefore continue to examine modifications of the U statistic., For
convenience, however, we consider the case of observation for a fixed number of
events n. There are several reasons for this:

(i) Trhe fixed number case is much simpler to simulate and statistical dif-
ferences tetween the two sltuaticns will be mircr, especially for large
sampies.

(11) The sufficient statistic for o in the model (1) for a Poisson process 1is

n
Yln = ] Xi, where Xi are the times between events and the test statistic
1=1
(4, p. 52] is
g
(4) Y, = S
2n 121 i
n
(5) = ] (n+1-1)x,
i=]

Although thls statistic can be considered conditionally on Yln’ it follows
from well known characterizing results for exponential and Gamma distributed
variate: (see Lukacs and Laha [15]) that this is equivalent to considering the

test statistic

i
S
(6) Y 'Yz_n-i-li
n Yln n )
1 X
i=]

Moreover for any renewal model with intensity function (3, this statiscic
will be free of the nulsance parameter o for any 8, as can be easlly shown.
This 1s an important simplification.

(111) Analytical results for the fixed number case are simpler to obtaln than
those for the fixed time case. Moreover (6) suggests several other possibili-

ties. From the form (5) for the numerator it can be seen that it is like an

6
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emplrical serlal correlation between the natural numbers and the serially
ordered times hetween events xi. This is the form of several standard tests
for trend [7, Ch. 45). A possibility would be to replace the Xi's by exponen-
tial scores and correlate the serially ordered scores with the index numbers {.
Permutation tests of this sort have been discussed by Guillier [6]; we do not
pursue them here because they depend on the independence assumption in the re-
newal hypothesls and we wish to consider more general point processes with
dependent times-between-events.

Two other posslble tests for trend are noted here.

One 1s based on log transformations of the data and standard regression
techniques, but as noted in Cox and Lewis [4, pp. 41] these methods are likely
to have poor relative power for intervals X1 which are more dispersed than
exponential variates. (For fairly regular processes they are likely to be the
favored procedures.)

The second possibility arises from an analogy between Yn and goodness of

fit tests. Defilne

Sy

G7) § =

n,i i=1, ..., (n=1).

f x
g=1d

Then 1if fn(y) denotes [17] the empirical cumulative distribution

function for & g0 1=, .., (n-1), we have
3SR
(8) fo{Fn(u) - ujdu = (n+l) - Y .

Thus Yn 1s essentially a one sided Cramer-von Mises statistic and other norms
could be tried to measure the deviation of Fn(u) from the function u between
0 and 1.

Because the statistic Yn and tests for trend based on 1t can be extended
to non-renewal processes, we consider its distribution first for Gamma renewal

processes, then for several other renewal processes and then for cluster




processes,

4, Testing in modulated Gamma renewal processes. The Gamma renewal

process has independently distributed intervals with probability density func-

tion [4, pp. 136]

k k xk-le-kX/u ,
(%) f‘x(x) = (a] T x>0, k>0,

where (k) is the complete Gamma function. For k=1 we have an exponentially
¢Ystributed variate, and for k=¥ the square cof a normal random variable. We

wi.1l be concerned with the case ks<sl. We also have

(10 E(X) = u; var (X) = %; i C(X) = i,

'k

Consider now the distribution of Yn given by (6), which we write for

convenlence as

n
iZl(n+l-i)xi,n Yén
(11) Yn = = = YT
) X, /n in
i=]

The moments of the numerator and denominator are
(12) E(Yin] a u, var [Yin] = g2/n,
(13) E(Y;_n] = (n+l)w/2, var (Yén] = (n+l)(2n+1)o?/(6n).

Now 1t is a characterizing property of Gamma distributed variates
L1155 E- 58] that the expected value of ratios of linear functions of the
Gamma variates such as those appearing in (11) 1s the expected value of the

ratio of the expectations. Thus we have, for Gamma renewal processes,
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(14) E(Yn] = (n+l)/2;

o (n=1) (n+1) _ (n-1) (n+1)
e ) -
(16) var {Yn] = %ﬁ% cex) .

Since C?(x) equals one for a Poisson process (k=1), this checks with re-
sults for the statistic U given in (2).

Hote further that

n
-4
¢ =y oDl ja1 1l 2n n
n n 2 n
) X,/n
i=]
2
n+l 21
1zl[x1 xn+1-1]( n n
(17) = ? y
X,/n
1a1 1
‘n
2- ]
(18) 121X1a1 ’
n
! X;/n
i=]

where (%l is the greatest integer less than or equal to n/2, x; = x1 - xn+1-i
is a symmetric random variable and a1 is an odd scquence.

Using (18) we can show the following results:
(1) The centered statistic Y; has odd moments which are all zero. This fol-
lows because the numerator in (18) is a sum of independent symmetric random
variables and is therefore (5, Lemma 2, p. 149] itself symmetric.
This implies that the odd moments of the numerator (including the first) are

zero and by the Lukacs and Laha result cited above, so are tho.o of Y;.




THus Y; is a symmetric random variable.

(11) The numerator in (18) divided by (n)k is asymptotically normal. Moreover
since the denominator converges with probability one to u, which is non-zero,
results from Blllingsley [1, Corollary 2, p. 31] show that the reciprocal of
the denominator converges with probability one to 1/u. Slutsky's Theorem (see

Billingsley (1] ) then says that

121

Y, L
(19) “—EIX 2+ N(O,1).

(111) Convergence to the normal distributlon 1s likely to be very rapid be-
cause of the symmetry of the distribution of Yé.

To examine the small sample distribution of Yn for the Gamma renewal case
an extensive simulation was undertaken. Detalled results are given in Robinson
[1€] . The results are 1llustrated in Table 3, which 1s extracted from
Rotinson [16].

The simulations involved 100,000 replications using the random number
generator LLRANDOM (Learmonth and Lewis [9]) and a Gamma random number gener-
ator developed Ly Robinson [1f]. The computations were checked by comparing
the theoretical results for the mean and varlance of the statistics with the
simulated mean and variance.

Only the case k=0.1 (C’(X)-IO] is given in Table 3 because this was the
most extreme case simulated and has the greatest departure from normality and
the slowest convergence to the asymptotic normal form. Simulated quantiles of
Yn’ normalized by subtracting the mean (14) and dividing by the square root of
the variance (15) (these are listed in the last two rows of the table) are
shown in Table 3. Because of the symmetry of the distribution, only the lower
quantiles corresponding to levels &=0.001, 0.002, 0.005, 0.010, 0.020, 0.025,
0.050, 0.100, 0.200, 0.300, 0,400, 0.500 are given. They are actually the
average of the simulated upper and lower quantiles and have a standard devia-
tion of approximately 0.001.

The distribution can be seen to be a little more peaked than a normal dis-

tribution, with shorter tails, but even by n=50 a normal approximation to the

10




Table 3. Slimulation results for the statistic Yn for Gamma distributed inter-

3 vals with k=0.10 under the null hypothesis of no trend ($=0). ¥

Quantiles of Yn are normalized by subtracting E(YJ) and dividing by

o(¥,). :u
a n=10 n=30 n=50 n=100 Normal quantile 0
0.001 -2.202 -2.740 -2.915 -3.001 -3.090
0.002 ~2.191 -2.607 -2.750 =2.812 -2.878
0.008% -2.148 -2.460 -2.500 -2.545 -2.576
0.010 -2.078 -2.231 -2.290 -2.313 -2.326
; 0.020 -1.944 -2.014 -2.049 -2.054 -2.054
L 0.025 -1.875 -1.935 -1.960 -1.965 -1.960
| 0.050 ~1.654 -1.665 -1.665 -1.656 -1.645
0.100 -1.343 -1.320 -1.307 -1.297 -1.282
0.200 -0.924 -0.881 -0.871 -0.856 -0.842
0.300 -0.591 -0.554 -0.549 -0.537 -0.524
0.400 -0.279 =-0.272 -0.265 -0.261 -0.253
0.500 -0.001 -0.005 0.002 -0.003 0.000




distribution of Yn 1s adequate for purposes of hypothesis testing.
The proposal for testing a monotone trend in a Gamma renewal process
derived from these results is to estimate the ccefficient of variation from

the data and test for B8=0 using

and assuming that 1ts cistribution is that of a unit nermal distributicn. This
essentially uses the Poisson test statlistic divided by E(x). This modified
statistic is given in the last columns of Tables 1 and 2. The test results

are mcre in line with expectations, but stli. do not reflect inflation of the
variance of U because of correlation between intervals between events, 7This is
discussed in Section 6.

5, Distributional results for other renewal cases. The result (14) holds

-

for any statlonary sequence X,, ..., Xn, including a renewal (1.1.d.) sequence.

This 1is because

Xl + ... + Xn Xi
By x| "™y b
; n 1 n

or;S{Xi/[Xl + ...+ xn]}- % for i=1, ..., n. Taking expectations in (6) and

using the form (5) for Y,, vields

This result merely says that Yn’ which 1s a normalized centroid of times to
events in an interval stationary point process, always has the expected value
(n+l)/2.

Thus the centering in (17) 1s correct for all sequences and we discuss

1
Yn from here on.

Another useful result is that Y; is a symmetric random variable for any

12




renewal sequence. To see this note that -Yg can be wrltten exactly in the

form (18) with Xi = X - Xi, but since these are symmetric random variables

n+l-1

and the Xi's are independent, the functional form for -Yé is exactly the same
as that for Yé. Thus they have the same distribution and thus Y; 1s symmetri-
cal random varlable. All odd moments are thus zero. In addition by arguments
of the previous section, Y; is asymptotically normal with variance (16) if
var (X)<e for any renewal process. .

To explore the small sample distribution of Yn further for renewal pro-
cesses .ing simulation we chose two other density functions for the intervals.

Tie first is the Welbull density function
(26) £ (1) = k¥ x*Lexp(-gKx¥) 8>0, k>0, x20

which reduces to the exponentlal for k=1. 1In the simulaticn the parameters
were chosen so that the means and coefficients of varlatlons of the intervals
X ware the same as for the Gamma cases.

The second density function chosen was the log-normal density, again with
parameters chosen to match the means and coefficlents of variations in the
Cai'ma cases. Note that bot* these densities ire, for given coefflclent of
variation, more skewed than the Gamma density, the log-normal more so than the
Welbull. In addition both have hazard functions which approach zero as x-w,
in ccn:rast to the Gamma density which has an exponential tall.

It is possible to compute var(Y;) for finite n in both these cases, but
the results are messy. In general the varlances are smaller than for the
Gamma case; simulation results give, when C*(X) =10.0 and n = 50, values of
5.891, 5.182 and 4.355 for the Gamma, Weibull and log-normal cases
respectively.

Only the torst case of the simulations for the Weibull and log-normal in-
tervals, i.e., those matching the Gamma case with C?(X) = 10.0 are given, in
Table 4 and 5 respectively. Again 100,000 replications were used.

The normalized quantliles show distributions for Y; at n = 10, 30, 50, 100

for both densities and, in addition,for n = 200 for the log-normal case. In

13
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Table 4. Simulation results for the statistic Yn for Welbull distributed in-
tervals iith C¥*(x) = 10.0 under the null hypothesis of no trend
(B=0). Juantiles of Yn are normalized by subtracting E(Yn) and
dividing by G(Yn).
Normal
a n =10 n = 30 n = 50 n = 100 Quantile
Ju.L -2.533 -2.922 -3.067 -3.214 -3.090
oc2 -2.473 =2.772 -2.845 -2.973 -2.878
.005 -2.343 -2.521 -2.570 -2.635 -2.576
.010 -2.188 -2.30% -2.326 =-2.373 -2.326
020 -1.987 -2.042 -2.052 -2.069 -2.054
025 -1.920 -1.954 -1.960 -1.971 -1.960
.050 -1.653 -1.652 -1.644 -1.641 -1.645
100 -1.324 -1.294 -1.280 -1.272 -1.282
.200 -0.883 -0.850 -0.845 -0.831 -0.842
. 300 ~0.557 -0.531 -0.528 -0.516 -0.524
. 400 -0.271 -0.255 -0.259 -0.249 -0.253
500 -0.,002 -0.000 0.000 -0.002 0.000
B T 5.500 15.490 25.527 50.495
a(yn] 1.678 3.703 5.182 7.953
;1 (Yn] -0.002 -0.001 -0.001 -0.001
?2(5{ ] 2.52 2.86 2.96 3.14




v

Table 5. Simulation results for the statistlc Yn for log-normal distributed
intervals wi~h C2(x) = 10.0 under the null hypothesis of no trend
(B=0). Quautilaes of Yn are normalized by subtracting E(Yn) and
dividing by G(Yn).
Normal
o n =10 n = 30 n = 50 ns= 100 n = 200 Quantlile
.001 -2.941 -3.342 -3.452 -3.662 -3.831 -3.060
.002 -2.80% -3.084 -3.167 -3.361 -3.411 -2.878
.005 -2.550 -2.725 ~2.775 -2.845 -2.868 -2.576
.010 -2.325 -2.434 -2.445 =2.471 -2.472 -2.326
.c20 -2.073 -2.104 -2.098 -2.106 -2.094 -2.,054
.025 -1.975 -1.997 -1.991 -1,988 -1.978 -1.960
. 050 -1.656 -1.638 -1.629 -1.621 -1.606 =1.645
.100 -1.289 -1.252 -1.246 -1.230 -1.224 -1.282
.200 -0.843 -0.813 -0.804 -0.791 -0.786 -0.842
<308 -0.524 -0.502 -0.495 -0,487 -0.484 ~-0.524
L 400 -0.255 -0.241 -0.236 -0.236 -0.231 -0.253
.500 0.001 0.000 0.003 -0.003 0.003 0.000
é(yn] 5.501 15,484 25.518
a{yn] 1.365 3.059 4.355
y,(yn) -0.004 0.004 -0.015
Y, (¥,) 2.89 3.35 3.51
——— . — A,__- B .




both cases the distributions have heavier talls than in the Gamma case, and

estimated kurtoses Y, Bgreater than one. The convergence to the asymptotic
normal distribution is particularly slow for the log-normal case, but in no
case 1s the normal approximation too far off at the quantiles correspornding to
the usual significance levels used in hypothesis testing. Actually division
of the quantiles by C(X)((n-l)/lZ);5 from (16) rather than by the true standard
deviation of Y; provides a better normal approximation than does division of
the quantiles by the true Var (Yé).

Ceonvergence 1s of course faster and the normal approximation better for
the cases not shown here, l1.e. for intervals with co:fficients of varlation
aprroaching the value one of the exponential distribution. Note that C?(X) =
10.0 approximates the values found for the computer data of Table 1.

€. Distributional results for general point processes. The finding from

the previous sections was that for renewal sequences the null hypothesis vari-
ance of Yé is inflated by approximately C?(X) over 1¢s value for a Poisson
process. The approximation 1s exact for large n.

However, 1n both examples cited in Section 2 the interva.is between evcnts
Xi are correlated (see the values 61 in Tables 1 and 2). It turns out that for
a simple statistic such as Yé falrly broad results can be obtained for general
point processes, the modification to the vari .nce of Yé again being simple to
compute from the data. Thus a rough test of trend can be performed.

Detalls of the derivation will be given elsewhere. For a broad class of

situations Y; is asymptotically normally distributed with variance

' . (n-l) 2
(21) var {Yn] - {rci(x)f, (04)},
where f _(0+) is the initial point on the spectrum of the intervals {Xi} of the
process. Since f’(0+) is related to the initial point of the spectrum of
counts, g+(0+),and the asymptotic slope,V'(m),of the variance time curve,

var {Nt},of the point process by the relationship [4, p. 78]

(22) V(o) = mg, (04) = IEK) £ (04)




we can write (21) as

(23) ver (1) - S (EGOV' (@)

The quantity V'(=) is simple to estimate from the data [4, pp. 115-120],
thereby providing an easy modification for the test statistic Y;.

For a renewal process, f (0+) = 1/m, and (21) reduces to (16). Poisson
cluster processes [12, 18] have been used to model the earthquake data ¢
Section 2. 1If the length of the cluster in the cluster process is dencted by

S, we have

(24) var [Yl,'l] - %1-1 E(S+1){1 + C%(S+l)},
L where C2(S+l1) is ihe coefficient of variation squarci of S+l. When there is no

—

cluster, 1.e. S=0 with probability 1, the result (24, reduces to that for the
Polsson rrocess.
For the earthquake data, which has long and very \iriable clusters, the

multiplier of (n-1)/12 in (24) has an estimated value of approximately u5.C.

Dividing the U values given in column 4 of Table 2 by (u9)5-7.o, we obtaln a
test statistic which accepts the hypothesis of no tread in all v sections of

the data.

7. Conclusions and further work. The recommendatiun put forward in this
P paper is to test for trend in a point process us. ng the U statistic (2) divided
by the estimated coefficient of variation E(X) in & renewal jrocess, or an
estimate of {E(X)V'(n)}s in (23) for a general poir process.

The test 1s not proposed as being in any sense cptimal, but because it can
be used without detailed knowledge of the structure of the process it 1s very
functional. It would be nearly optimal if the point process were close to a
Poisson process.

The power of the test needs to be investigated so that its utility can be
assessed relative to other tests, especially for processes which are hlghly

overdispersed relative to the Polssou process. Point processes of that type

17
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occur in many applications.

Other tests to be considered could be standard regression tests after a
loy transform or scoring of the intervals in the data; rank correlation tests
using, perhaps, exponentlal scores for the intervals, and other functionals
than that glven in (8) for measuring the "distance" of Fn(u) from u (=ee [U,

Ch. 6]). There are other possibilities explored in a recent thesis by Guilller
[5].
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