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1. INTRODUCTION.

The simple fracticnal flow (or Markov-type) model of personnel movements
through an organization has been widelv analvzed (see for example Bartholomew
(1973), Blumen, Kogan and McCarthy (1955), Lane and Andrew (1955), Rowland and
Sovereign (1969) and has been widely applied, especially in military manpower
planning (see U.S. Navy (1973)). oOther models such as the "cohort" and "chain"
models (see Marshall (1973)) and Grinold and Marshall (tu be published)) satisfy
more realistic assumptions on personne! movement, but lack the convenient struc-
ture of the Markov model. The purposce of this paper is to present an extension
of the Markov Model to one with a Z-dimensional stave space. The state space
is chosen so that the fractional flow matrix has a special structure which is
then exploited.

In section L[I the stracture of the model 1s presented and in section
II1 examples are given. In scction IV we present the probabilistic properties
of the model with emphasis on computationally tractable formulae. In section
V the structure of the model is exploited in the personnel stock and flow

equations.

IT. STRUCTURE OF THE FRACTIONAL FLOW MATRIX.

We assume that for planning jurposes an organization considers time
in discrete periods, and that people arc counted at the end of each period.
When counted, a person is assumed to possess two characteristics 1 and j,
and is said to be in state (i,j), where 1 represents the tirst character-
istic (FC), 1 =i sn, and j represents the second characteristic (SC),
2(i) = j s u(i). Here 2(i) and wu(i) are the lower and upper limits
respectively for the SC when 1 is the FC. Also let J(i) = {j]e(i) = j = u(i)},
the set of SC's for FC i, and let W, be the number of elements in J(i).

Let qi(j,m), j,m € J(i) be the fraction of people in state (i,j)

in a time period who move to state (i,m) 1in the next time period, and let

/
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Qi be the w X W,  matrix [qi(J,m)J. Let pi(J,m), j €J(@), m € J({+)

be the fraction of peonle in state (i,j) in a time period who move to state
(i+1,m) in the next time pericd, and let Pi be the W, X wi+l matrix

[pi(j,m)]. A basic assumption of our two-characteristic model is that mcve-
ment in one time period from states with FC 1 can only be to states with FC
i or i+l, or out of the system. Following the notation of earlier papers,

let Q be the fractional flow matrix for all active states in the system.

Then Q has the following structure:

— ——

4 B

\ | n-1 Pn-l
[
il Q

where the zero matrices have been suppressed. Throughout this paper we assume

that people can leave the system eventually from any :tate and thus (I-Q)

has an inverse, where I 1is the identity matrix. This inverse (I—Q)_l is
called N, the fundamental matrix (see Kemeny and Snell (1960)). For each 1
let Ai = (I—Qi—Pi)i, where 1 1is a vector with every element equal to 1.
Then Ai is a vector of W, elements, each one an attrition fraction from

the appropriate state.

IITI. EXAMPLES.

a) The LOS Model.

Let the "length of service" that a person has completed with an organ-
ization be denoted LOS, and let the FC of a person denote his LOS. If the LOS
is measured in the same time units as the planning periods then each Qi matrix
is a zero matrix. In each planning period a person's LOS must increase by one

unit, so that Q has the structure




n-1

0

By appropriate choice of the second characteristic Pi often has special
structure too. Censide- a hierarchical system where the "rank" or "grade" of
an individual is used as his second characteristic. Then the structure of
cach Pi depends on the organization's promotion scheme. Assume that in one
period a person either stavs in the same grade or is promoted one grade. No

demotions occur. Then Pi would have the structurc

where x  represents a non-zero element.

b) The (Grade, LOS) Model.

If, as in a) no demotions occur, and ounly single promotions can occur
in a time period, then if 1 indexes the grade, and j the leugth of service,
then Q has the structure shown in (1). Each submatrix has special structure

also. Let




qij = probability a person in state (i,j) at end of one period
will be in state (i,j+1) at the end of the next period,
pij = probability a person in state (i,j) at the end of one

period will be in state (i+l,j+i) at the end of the next

period.

The transition matrix Qi has non-zero elements only immediately

above the main diagonal:
~
O Y03

: 9 2 (i)+1

O = 0

9 u@i)-1

The transition matrix Pi has non-zero elements only on a single
diagonal band. If &£(i+l) 22(i) + 1 and u(i+l) =2 u(i) + 1, then Pi has

the form shown below, wheve:
1) the top max {0,2(i+1)-(2(i)+1)} rows are zeros,

2) the last tox {0,u(i+l)-(u(i)+1)} columns are zeros.

P L (i+1)-1

Fa =)0 Pi 2 (i+1)

0

i,u(d)
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If g(i+1l) = ¢(i), the first £(i)+1-v(i+l) columns of Pi are zeros. If
u(i+l) = u(i), the bottom wu(i)+l-u(itl) rows of P,L are zeros. Under any
circumstances Pi has only one non-zero diagonal, and we call such a matrix

a diagonal matrix. Efficient methods of storing and multiplying diagonal

matrices are discussed in Hayne and Marshall (1974).

¢)  The (Grade, TIG) Model.
In certain applications a person's "time in graae,' denoted TIG, is
more important than his time in the system (LOS). If again we allow no demo-
tions and c¢nly single promotivns per period and if the FC indexes the grade

and the SC the TIG for the appropriate grade, then § has the same structure

(1). Each Qi has Lhe same structure as in b), but now %£(i) =1 for each
grade 1i. However, cach matrix Pi has a single column of non-zeros,

) 0 0

Pl

P, =
i 3
p. . 0
L ECE)

since promotions to the next highest grade lead always to a TIG of 1. Here
pij is the fraction those in grade i, with time in grade i equal to j,
who are promoted to grade i+l.

If demotions are not allowed and only single promotions can occur per
period, then grade is a characteristic which can be used as the FC. A larger
number of possibilities occur for the SC. In addition to those above some
useful ones are (i) skill category, (ii) physical location in a multi-location

crganization, and (iii) educational level. Note that educational level could

also be used as the FC.
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IV. SOME PROBABILISTIC PROPERTIES.

Let Ti be the set of states associate with FC i; thus
o R ) | 5 €3}, LS I T

Also let w, = u(i) - 2(i) + 1, the number of states in Ti (and J(1)).
Finally let T, be the single state "out of the system."

In this section we develop the probabilistic properties of:

1) any set of states Ti’

2) any union of consequtively indexed sets Ti’

m

i.e. u T,
, i
i=k

3) the union of all transient states, which we call T.
One of the purposes of this development is to show that the stochastic proper-
ties of Q, typically a large matrix, are readily calculated in terms of the
smaller matrices Qi and Pi’ and as seen in section III these often have
extremely simple structure which leads to simple computation.

The format of this section follows closely that of Chapter 3 of Kemeny
and Snell (1960). The notation (K&S,3. . ) indicates that a result follows
from theorem 3. . in Kemeny and Snell, albeit usually not directly.

a) First-Order Prorerties.

Recall that we assume system matrix Q has a fundamental matrix
N = (I—Q)_l, and each element of N is the expected number of visits to
the column state starting from the row state (K&S5,3.2.4). Since Q has the

structure shown in (1),




where

that the large matrix

Pi' Thus the only matrix inversions required are those of

_ Al
[ = (10

N

N

P

1

]NZ N1P1N2P2N

N2 NZPZN
N

1,...,n,

(Nipi)Nn

E (Nipi)Nn

the fundamental matrix for FC

is completely determined by the matrices

(I—Ql) )

k.

N,

(2)

Note

and

115 % 0 c

This is of considerable computational significance because as previously men-

tioned

Q is usually a large matrix.

Each matrix

has a probabilistic interpretation.

We pursue this

interpretation and show that these matrices can be used to determine other

probabilistic properties of interest.

by Dk.

states

D1.

D2.

equals the expected number of visits to state

entered in state

B seali™ ™

is entered in state

w

Ti and define:
vi(J,m) =
v, =a w, X
i i
j-{i)+1

i

(1,1,

expected number of visits to state

matrix having vi(j,m)

and column

m-¢ (i)+1.

In this section we make numerous definitions and denote the

(i,m)

kEE

one

Let us consider first tne properties associated with a single set of

given that FC

as the element in row

From (2) the element of Ni in row j-2(i)+1 and column m-¢(i)+1

(1,3).

(K&S,3.2.4).

(i,m)

given that FC

i

is

So, from definitions D1 and D2, we have,




T ¥ T

Vv, = N,. (3)

Note that the rows and columns of Ni and Vi correspond to states in

T; in the same order as the rows and columms of Qi'

Now define:

D3. Ti(j) = expected time in FC i given that FC i 1is entered
in state (i,j),
D4. Ty = [Ti(ﬂ(i)),...,ri(u(i))], a w, x 1 vector.

The expected time spent in FC i equals the sum of the expected number of

visits to the various states in FC i. From (3) and D3,
Ti(j) = component (j-2(i)+1) of Nii,
and from D4,
T, = N.,1, a w, X 1 vector, (4)

where 1 1is a vector with all components equal to one.

We next turn our attention to where the process goes when it leaves

FC 1i. The process upon leaving T, must enter either Ti+l (if 1 <n) or
TO. Next define
D5. bi(j,m) = probability of entering FC i+l in state (i+l,m) given
that FC i is entered in state (i,j),
D6. Bi =a w X wi+l matrix having bi(J,m) as the element in
row j-2(i)+l and column m-2(i+1)+1,
D7 bi(j) = probability of ever entering Ti+1 given that FC i 1is
entered in state (i,y),
D8. bi = [bi(ﬁ(i)),...,bi(u(l))], a w, X 1 vector,




: - s ) . ) L ,
D9. biO(J) probabili'y of never entering T 4y 8liven thacr FC i
, is entered in state (i,j),
3 = 2 (1 500 gl € . g
D10 biO [biO( (1), ,bio(u( )1 a W, x 1 wvector
From these definitions it follows that
B, = N.P,, a w, xw, matrix (K&S$,3.5.4), (5)
ik ii i i
b, = M.i, a w, <1 wvector,
i i i ,
and '
biO =1-05D
=N.,A,, a w, X1 wvector.
ii i
The matrix Bi is prnrticularly useful in manpower policy analyses.
A
L For example let fi be 2 1 x wi vector of the number of people entering
Ti' Then fiBi is a 1 x Wi vector of the number of thise people who will
eventually enter Ti+1' (K&5,3.3.6). Such applicatiors will b:: the subject
of future papers.

Next we consider the fiist-order properties related to FC's i and
k where 1 = k. Define:

Dl1i. b(ti,j),(k,m)) probability of entering FC k in state (k,m)

li

given that FC i is entered in state (i,j),
D12. Bik =aw X Wi matrix having b((i,j).(k,m)) as the

elemen* in row j-2(i)+1 and column wm-2(k)+1.

From definitions D5 and D11 and a simple conditioning argument we have,

u(i)
b((1,1),(142,m) = ] b, (3,0)b, ., (r,m).
r=2(1i)
So, from D12,
B BB s
9




Notice from D11 that B,.,, is an identity matrix and from D5 that B, .,, =
ii i,i+l

ore generally it can be shown that for i = k,

B., = [ B, a w, xw matrix.
ik r

Define:

i

p13. wv({(i,j),(k,m)) expected number of visits to state (k,m) given

that FC i 1is entered in state (i,j),

D14. Vik = a v X wk matvix having v({(i,j),(k,m)) as the
element in row j-2£(i)+]1 and column m-2(k)+1,

D15. bik(j) = probability of ever entering FC k, given that

FC i 1is entered in state (i,j),

Dl15. bik = [bik(l(i)),...,bik(u(i))], a W, x 1 vector.
Considering each row of Bik as the part of an initial probability vector
that applies to Tk’ we then have,

Vik = Bika’ a w, X Vi matrix (K&S,3.5.4), (6)
and,
bik = BikI’ a wi x 1 wvector.

Define:
D17. Tik(j) = expected time in FC k given that FC i was entered

in =state (i,j),

D18. Tk = [Iik(z(i)),...,rik(u(i))], a W x 1 wvector.

The expected time in an FC is the sum of the expected number of visits to

states in that FC, so

a wi x 1 vector.

Tik T Vil

£

T




This completes our study of the first--order properties related to the
various FC's of the system. The foregoing Jefinitions by no means exhaust
the first-order properties of the two-characteristic model that might con-
ceivably be of intercst. It is felt, however, that these properties will
often be of practical interest and that other first-order properties may bhe

readily derived from those given above.

b) Two Special Cases.

The elements of the fundamental matrix for FC i, Ni have a somewhat
different interpretati~n when the states in FC 1 have what we call the "0-1
visiting property." We say that a state has the 0-1 visiting property if
the state can be visited no more than one time. Important examples of two-
characteristic models in which all transient states have the 0-1 visiting
property are the models in which the FC or SC is length of service or where
the SC 1s time in grade.

If each state in Ti has the 0-1 wvisiting property, then the expected
number of visits to a state in 'l‘i is equal to the probability of visiting
the state. The element of Ni in row j-2(i)+1 and column m-2(i)+1 may
then be interpreted as the probability of visiting state (i,m) given that
FC i 1is entered in state (i,j).

Another property of interest is the ''no return property.'" We say that
a set of states has the no return property if it is impossible to ever make a
transition into the ~.tate after a transition has been made out of the state.
The 0-1 visiting property implies the no return property, but they «re not
equivalent. For example, in modelling manpower flowes in the U.S. Civil Service
one might use "GS grade" as the FC and "pay step" as the SC. Each state is

then a couple (grade, pay step). A person can stay in the same pay step for
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more than one period, so if there are no demotions then each state would have
the no return property but not the O0-1 wvisiting property.

If the states in Ti have the no return property then it is possible
to order the states in Ti so that Qi is upper triangular. When Q. is
upper triangular so is I-Qi and the computation of the inverse of I-Q,,
i.e. the fundamental matrix for FC 1i, Ni’ is considerably easier than in
the general case.

If the states in Ti have the 0-1 visiting property, then not only
is Ni upper triangular but also the elements of Ni on the main diagonal

are all ones.

c) Variances.

The format in this section follows closely that of section a), but here
we are concerned with various sccond moment properties of the two-characteristic
model.

Define:

D19. 23 i(j,m) = variance of the number of visits to state (i,m) given
y

that FC 1 1is entered in state (i,j),

=)
[\
[e]
<
]

4 a w, Xw, matrix havin v, .(j,m as the element
2,1 i i 5 2,1(3’ )

in row j-2(i)+1 and column m—-2(i)+1.

Following (K&S,3.3.3),

Vg,1 7 W W gD = W) e
where for any square matrix A, Adg and Asq both have the same dimensions
as A; A is defined when A 1is square and is formed by setting all elements

dg

in A not on t.ue main diagonal to zero; Asq is formed by squariug all the

elements in A.




Define:

D21. Ty i(j) = variance of the time spent in FC 1 given that FC i .
is entered in state (i,])
D22. Tz’l = [Tz’i(z(l)),...,rz’i(u(1))], a w, % 1 wvector.

Following (K&S,3.3.5),

T, 4 = @NEDT - (1) ::3
Define:
1 D23. v2((i,j),(k,m)) = variance o! the number of visits to state (k,m)
given that FC i 1is entered in state (i,j),
v D24, Vz(i,k) =a w; X Wi matrix having vz((i,j),(k,m)) as

the element in row j-2(i)+1 and column m=-2(k)+1,

Following (K&S,3.3.6),

)

Vz(i,k) = Vik(Z(Nk)dg-I) - (Vik

sq’

Define:

D26. 12((i,j),k) variance of time spent in FC k given that FC i

is entered in state (i,j),

D27. t,(i,k) (1, ((1,2(1)),k) 5.0 1, ((E,u(i)) )], 2w, X1
vector.

Following (K&S,2.1.6),

12(1,k) = Bik(ZNk—I)Tk - (Tik)sq'
If each state in Ti has the 0-1 wviciting property, then the diagonal

elements of Ni are equal to one, and,

13
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(Ni)dg =1,
V?,l . Ni - (Ni)sq’
gkl Sl S e Ve

d) Matrices of t-Step Transition Probabilities.

In this section we consider the probability of being in state (k,m)

t steps after being in state (i,j). The matrices of these probabilities
are called the t-step transition matrices. They are used in section V to

represent the s -nck vectors as a sum of steady-state and transier. components.

Define:

it

D28. m(t:(i,j),(k,m)) probability of bteing in state (k,m) t steps

after being in state (i,j), t = 0,1,2,...

D74, Mik(t) =a w, X Wi matrix having m(t;{(i,j),(k,m)) as the

element n row j-2£(i)+1 and column m-2(k)+1.

(v)

The rows of Mik(t) are associated with states in Ti; the columns of Mik

are associated with states in Tk'

We have immediately that
Mii(O) = I.

From our assumptions on the structure of Q we have,

|
o
-

n

Mik(t) = i> k,

Mik(t) =0 if t < k-i.
If the process is to he in state (k,m) exactly t steps after being
in state (i,j), then it must be in some state with FC k or k-1 exactly

t-1 steps after being in state (i,j). Conditioning on this fact leads to the

recursive equation,




(&) = T 5= = 1,2,...
Mik‘t) Mik(t 1)Qi + Mi,k—l(L 1)Pi_l, t =1,2, (7)

For any 1 arnd k the sum over t of the probability matvices Mik(t)

gives the matrix of the expected number of visits to states with FC k start-

ing from states with FC i. So we have,

= i<k,
t-Z—O L AR
(8)
= 0, vrherwise,

Recall that the Qj matrices are transient, so Vik is matrix of
firite elements. This implies that,

lim Mik\t) = 0. 9)

Lt

From (/) it can be shown by an inductive argument that
t-1 r
HR @ rZO M e (L OB Qe (10)

The t-step transition matrices provide a rather compreiensive picture

of how people move through a two-characteristic system.

e) Conditioning on Promotion When the FC is Grade.

In manpower planning one is often interested in conditional probabilities,
e.g. the probacility of attaining grade + ;iven that grade 1 1is attained.
The stochastic properties of the transient matrix Q under conditioning on
promotion when the FC is grade are briefly developed in this section.
Define:
D30. (i,j;t) = the event "in state (i,j) at time t"
*

D31. Tk = the event "a transition is made into Tk before leaving

the system."

15




*
Conditioning on the event Tk is the same as conditioring on promotion to
grade k.
Define:

D32. q,(i,m = Prii,mel)|(1,550)]

* . v . . i *
D33, qi(J,m) = Pr[(1,m;t+1)I(l,g,c),Ti+l]

* )
Provided that Pr[Ti+l|(i,j;t)] # 0, we have by conditionai urouments,

" bt(m)
qi(J,m) = qi(],m) x E;(}j : (11)
Define:
D34. Ci =a w, x W, matrix having the elements of bi (see DB) on its

main d.agonal and zeros elsewhere.

We assume that promotion to grade i+l 1is possible from ever: state
. . . -1 : : ; ; ;
in Ti' Under this assumption Ci exists. It promotion to grade i+l is
impossible from sor2 state (i,j) then we must avoid conditiering on an
impossible event. This is readily accomplished Lv temporarily tre~s.ing state

,j) as part of T (out of the system) and redefining J(i), Q., P. and

0 i i
Ai accordingly.
Define:
* *
D35. Qi =a w, X Wy matrix having qi(j,m) as the element in row

j-2(i)+1 and column m-%{.)+1.
Then from (11) and D34,
* -1
QG 75
*
The matrix Qi is the matrix of within grade one-step transition probabili-

ties conditioned on the attainment of grade i+l.

METID iel 5
a1 Py APy s S PN

et
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Define:

D36. p,(j,m) Pr{(i+l,m;t+1) | (i,5:¢c)]

1
* . : 3 . *
D37. p.(j,m) = Pri(i+l, merD) [ (1,550, T, ]
* *
D38. P, =a w, Xw, ., matrix having pi(j,m) as the element

in row j-2(.¥+1 and column w-0(i+l)+1.

We then have,

Epp . : 1
BrCEESCER o Epp

Thus from D34 and D38,

*
The matrix Pi is the matrix of oune-step promotion probabilities conditioned

on the attainment of grade i+].

* r -1 r
Beca 1se (Qi) = Ci Qici’

the fundamental matrix for grade i when we condition on promotion to grade

i+l is
* x -1
Ni = (I*Qi)
= ] @)F
r=0
- ey,
r=0
-clwec,.
i iTi
Define:
*
D39. vi(j,m) = expected number of visits to st..e (i,m) given that

grade i is entered ir state (i,j) and grade i+l 1is

attained.

17




* *
D40, Vi =a W, xw matrix having v, (j,m) as the element in
s

row j-2(i)+1 and column m-2(iY+1

D4l. b?(j,m) probabil .cy of entering grade (i+l) ia state (i+l,m)
given that grade 1 1s entered in state (i,j) and
grade i+l 1is attained.

D4". B, =a w, X v, matrix having b:(j,m) as the element

i i i+l

in row j-2(i)+1 and column m-%(i+1)-1.

Then one may show that,

* *
V., = N,_,
L
and
* * k
B, = N.P.
11
S o
1 1

* *
Note that Bl is simply Bi with its rows normalized, but Qi is not
simply a row normalized form of Qi'
. 3 . * . 3

As with the matrices Bi’ products of matrices Bi with successive
indices are well defined: their meaning is that of a matrix Bik as defined
in D11 and D12 with conditioning on attainment of grade k.

The conditioned and unconditioned matrices may be used together. For

*

example, the elements of BiBi+1 give the probabilities of entering grade

i+2 1in the column state conditioned on starting from the row state in Ti

and eventually attaining grade i+2.

V. EQUATIONS OF STOCKS AND FLOWS.

We begin by defining the terms "stocks'" and "flows," and then discuss

why stocks and flows are important in manpower planning models Next the

18
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relations between stocks and flows in a two-characteristic model are developed.
Fipally, we show how the stocks can be represented as the sum of a "steady-

state'" component and a ''transient' component.

a) Definitions and Background.

A period is the interval of time from immediately after an integer
value of the time parameter t wup to and including the next integer value of
t. A period is identified by the value of the time parameter at the end of

the period. Thus,

- o= - =
period ty & £y 1<t tl}

where tl is an integer.

The number of people in a state at the end of a period is referred to
as the "stock" in that state. Thus, stocks are counted only at integer values
of the time parameter t.

The number of people who change their scatus in the system from one
state to another during any period is referred to as a '"flow.'" Flows occur
during a period, but we do not specify the exact time at which they occur.

Stocks and flows are of primary importance in most manpower planning
models. The most obvious reason for this is that costs are closely related
to stocks and flows, e.g. total payroll depends on stocks, transportation
costs or retraining costs depend on flows. Recruiting policy and promotion
policy depend in the short term on present stocks and in the long term on how
we model future stocks and flows. Determining the feasibility of a retirement
plan and evaluating the effects of a change in billet structure are other
instances in which the planner needs to be able to model stocks and flows in

a manpower system.
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We now define the variables that are used to model the stocks and
flows in the two-characteristic model. Recall that Ti is the cet of states
associated with FC 1, wi is the number of states in Ti’ and for conven-
ience of notation we assume the second characteristic takes on successive
integer values for FC 1i.

In a Markov model the stocks and flows are in general random variables.,
In this sec:ion we deal only with the expected values of stocks and flows.
Such a model is called a '"fractional flow model" becausc the transition proba-
bilities of the Markov model are in effect treated as fractions which direct

fiows through the system in a deterministic manner.

Let,
sij(t) = expected stocks in state (i,j) at time t,
Si(t) = (Si,g(i)(t)""’si,u(i)(t))’
a 1 x v, vector of expected stocks in Ti’
s(t) = (sl(t),...,sn(t)),

a 1 x W, vector of expected stocks in the

e~

i=1

system.

By our basic assumption, flows into any state in Ti must come from a

state in either Ti or We also make provision in our model for

T, ;-

' The source of such flows is unspecified. However, we may

"external flows.'
consider external flows as consisting of people hired into the system. The
external flows may be deterministic or random, but we deal only with their

expected values.

Let,




a,..{t) = expected flow from states in Ti to state {(i,j)

i]
during period t, a scalar:
di(t) = (di,l(i)(t)""’di,u(i)(t))’ a 1 x W, vector;
ij(r_) = expected external flow inte state (i,j) during
period t, o scalar;

;i = F X W, B d
fi(t) (fi,ﬁ(i)(t)""’fi,u(i)(t))’ 11 Wy vector
gij(t) = expected flow from states in Ti—l to state (i,j)

during period t, a scalar;
4 = d < x . .
gi(t) (Bi,i(i)(t)"'"gi,u(i)(t))’ a 1 W vector

When 1i =1, gij(t) is defined to be zero.

The relation between the flow vectors and the stock vector in grade 1

"

is depicted in Figure 1 where ”Ti;t denotes the states with FC 1 at time

t.

T _q3t-l

L)
fi{tl

d, (L) s, (1)
T.5-1 T — T it F— Ti:t

Figure 1. Stocks and Flow with FC i in Period t.
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b) Basic Stock Equation.

Clearly, from our assumptions,
si(t) = di(t) + fi(t) + gi(t).

(See Figuvre 1.)

It will be convenient to define,

so(t) 0, a vector of zeros,

PO = 0, a matrix of zeros.

Using conditional expectation we then have

di(t) Si(t_l)Qi’ i=1,...,n,

gy @) =te, 1 (e-BRs 151 il ks oan.

The basic stock equation is then,

si(t) = si(t—l)Qi + fi(t) + Si—l(t_l)Piw i=1,...,n. (12)

l’
The basic stock equation for FC i can be written in terms of the

expected or actual stocks with FC i in previous periods. By recursively

applyiug the basic stock equation for si(t),si(t—l),...,si(l) one obtains
. t-1 r t-1 .
s; (t) = s.(0)Q; + ¥ £, (=00, + 0 s,_,(t-r-1)P,_.Q,,
r=0 r=0
t I=LIOPSIN N (13)
1= 1'! ’n’

which we will refer to as the cumulative stock equation.

Equations (12) and (13) are used frequently in the remainder of this
paper. Some manpower models used in the U.S. military for short-range fore-

casting consist principally of an application of an equation similar to (12).
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c¢) Transicnt Properties of the Stocks.

In this section we develop a4 method for expressing the stock vecFor
as a sum of a "steady-state" compenent and a "transient" component. This
method helps one to understand hcw 1nhe stock vectors change in golng from
any present stock vector to future stock vectors. This method also helps
one interpret the character of the limiting stock veertor.

We do not want to restrict ourselves to cases in which the stock vector
converges (as t increases) to a finite vector. We say that the vector

ol . .
function Sl(t) is a steady-state component of the stock vector sj(t) if,

ii: (si(t)—si(c)) = 0.

For any sequence of stock vectors <Si(t)> there is more thain one cnoice of
the steady-state component. In applications one would prefer a steady state
component having a relatively simple mathematical form. We stow that in some
cases a judicious choice of 21(0) makes this possible. The following theorem
shows the properties of a class of steady-state components which are quitce
useful.

Theorem. For any collection of 1 x w, vectors g;(O), i=1,...,n,

let the vector functions Si(t) satisfy

si(t) = si(t-l)Qi + fi(t) + si_l(t—l)Pi_l, t =1,2,...,

i=1,...,n,

i.e. the vector functions g;(t) satisfy the basic stock equation (12). Then
(a) the actual stocks & time t eoce
i -

S4B Fis(t) i k2=1 (s, (0)-35, (0¥, (t),

Loy




i
- aa(Bes (NS kzl (s, (0)-s, (0))B, N,

(b)

i ~18

t

e 1 x W, vector having finite components,
(c) Si(t) is a steady-state component of the stock vector si(t), i.e.

lim (si(t)—si(t)) = 0,
o

Before proving the theorem we explain why one might be interested in
such a theorem. Part (c) of the theorem says that g}(t) is a steady-state
component of the stock vector si(t), and part (a) shows how the stock
vector si(t) can be expressed as the sum of a steady-state component and a
transient component. Part (b) of the theorem says that the total over all
periods of the difference between the stock vector and its steady-state com-
ponent is a readily calculated rfinite vector.

Such information can be useful when long-range planning has been done
using an "equilibrium model." As an example consider an organization which
intends to change from its present size of 250,000 to a size of 200,000. The
manpower planner may use an equilibrium model to develop policies that are in
some sense optimal, and these policies will maintain the size of the organiza-
tion at 200,000 people once the organization has been reduced to
this size. So the equilibrium model tells the planner what to do once
the size of the organization reaches the desired equilibrium level but it
doesn't tell him how to change the organization from its present
level (250,000) to the desired equilibrium level (200,000). This problem of
finding an optimal transition policy to go from present stock levels to a future
equilibrium stock distribution is a very difficult one (see Chapter 4 , Bartho-

lomew (1973)). One method for making the transition is to immediately implement




the hiring, promotion and attrition policies that have been derived from the
equilibrium model. Because of the transieut nature of the system these policies
will eventually bring the stocks in the system to their equilibrium levels.

In the theorem the vector functions g;(t) play the role of what the
stocks would be at time t if the system were in equilibrium. The stock
vectors si(t) indicate what the stocks will be at time t if we start with
the present stocks si(O) and implement the policies of the equilibrium model
(which are reflected in the external flows, fi(t), and the transition matrices
Qi’ Pi and Ai)' From part (a) of the theorem we may readily calculate the
difference between actual stocks and equilibrium stocks in any grade and any
period. 1If there is a penalty associated with having more people than the
equilibrium stqcks in the system, then part (b) of the theorem may be used to
calculate the total penalty. Part (c) of the theorem assures the planner thet
the difference between the actual and equilibrium stociks does converge to a
zero vector as the time parameter t increases.

The proof of the theorem follows.

Proof. By hypothesis the vector functions g}(t) satisfy the basic stock
equation (12), so they must also satisfy the cumulative stock equation (13):

t-1

- t_
s (t) = g}(O)QE + [ £ (t-0Q) + ]
r=0 r=

1
T
) si_l(t-r—l)Pi_lQi.

Jf course the stock vectors si(t) also satisfy the cumulative stock equation

(13), so we have,

t-1
~ ~ t ~ r
s;(t) - s.(t) = (s,(0)-s,(0))Q, + rZO (sq_ e=r=1)=8 , , Cc-v=199P; Q-
When i =1 this implies,
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~ ~ &
sl(t) Sl(t) + (sl(O)—sl(O))Ql
1

s (t) + kzl (5, (-5, (O™, (1),

so we have shown that part (a) of the theorem is true whem i = 1. Suppose

part (a) of vhe theorem is true for grade i-1, 1i.e.

1-1
s;_1(8) =5, (6) + kzl (5, (0)=s, (0¥, ().
Then,
~ i_l ~
sy g (eor=l)=5g  (ar-1)) = kzl (5, (0)=5, (O ;) (t-r-1),

and

- N g DL N .
s;(t) = s, {t) = (5,(0)-s,(0))Q; + rZO kzl (5, (0)=s (ONM ;_, (e-r-1)P, Q.

- . il e t=1 .
(s (0)-5, (0))Q; + kzl (s, (0)-5, (0)) rzo M g (er-DP, 0,

From equation (10) in Section IV

£-1
r
rZO M, i- (7T DB 10 = 1, (6D,

so we have shown by induction that,

i-1
5;(8) = 5,(8) = (s,(0)-5,(0))q; + 1 e @500, 0.

This proves part (a) of the theorem.
From part (a),
o oo i

(s, (£)-5. (t)) (s, (0)=5, (0))M, . (t)
tZO S :Zo kzl A

]

i

Y (s, (0)-5,(0)) § M (t)
Ly Bk k e M
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kiNi’

-]

k

) (sk(O)—sk(O))B

a 1 x we vector having finite components.

The last step above follows from equations (6) and (8) of Section TV. This
proves part (b) of the theorem.

Part (c) follows from the fact that the sum in part (b) is finite, and
the proof of the theorem is complete.

Tre utility of this approach depends on our ability to find vectors

(Y’ . 3 e I3 .
si\u) such chat the vector functions Si(t) are simple and readily calculated.

Some examples follow.

1. Fixed External Flows.

The equilibrium models previously mentioned enjoy some popularity in

military manpower planning in the United States (see for example, RAND Corpora-

ticn (1973)). The rationale underlying the use of such models is that one
should determine the organization structure and the policies to maintain this
structure which are optimal (or "leas* infeasible'). Among the policies

derived from an equilibrium model is the hiring poliey. This has the form,

fi(t) = fi’ (SR B s

where the vector of the number of people to be hired into the states in grade
each period, fi’ is specified from the equilibrj .m model.

Define,

51(0) = lel.

Then using (12) it is easy to show that

sl(t) = lel for all t.
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Thus, from the theorem

s, (6) = 57(8) + (s,(0)-5] (0))M,, ()

t
lel + (sl(O)—lel)Ql.
Now recursively define,

§) = sl(t) = lel,

s (f.+

~ o _—
i i Si—l”i-l)Ni’ i 2, ...y, (14)

It is straightforward to verify that these gi satisfy the basic stock

equation (12), so we have from the theorem, wien fi(t) = fi’
"~ i Lo d
s (t) =8, + kzl (s, (0)-s )M, , (t).

The steady-state component can also be written,

o1

~
153 =

. f
i

B..N., 3 E A yeoapfs (15)
k=1 k ki i

i
Note that X f.B . 1is a non-negative 1 X w. vector, so the limiting
k ki i
k=1
vector of stocks in grade i must be a non-negative combination of the rows
of Ni' Thus, in general, not all non-negative 1 X W, vectors are possible

limiting stock vectors undel constant external flows.

2. Linear Growth of External Flows.

In this section we consider the case in which the number of people hired
into each state increases by the same amount each period. Such a hiring policy
may not be natural over a long period of time, but it may provide a simple
approximation to planned hiring policies.

Let the 1 x v, vector fi be the increase in the number hired into

states with FC i each period. Then the external flow vector for FC i is,
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fi(t) = tfi’

= \ = .o
sl(O fiqulNl'

Let the vector function g&(t) satisfy the basic stock equation (1),
sl(t) = sl(t—l)Ql + fl\t).

Using the identity N1Q1+I = N, one caa show that

Thus from the theoren,

-— — e t
sl(t) & clel f1N1Q1N1 4 (s1(0)+lelQlNl)Ql.

We note that sl(t) is of the form

sl(t) = tLl + Cl

f N is a 1 xw vector,

where Ll 1N i

and Cl = —lelQlNl isa 1 x W, vector.

Consider some FC i € {2,...,n}. Suppose that

si_l(t) = tLL—l + Ci—l’

where Li—l and Ci—l are 1 x wi—l vectors.

Using the identity
(tfiNi—fiNiQiNi)Qi + (t+1)fi = ((t+l)fiNi~fiNiQiNi),
one may show that if

si(t) = tf Ni - fiNiQiNi + si_l(t-l)Pi_lNi - L QiNi’

i i—lPi—lNi
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then si(t) satisfies the basic stock equation (12). Note that si(t) has :
the form,
= = .-{- ' 0o
si(t) t:L1 C1’

where,

o
1

BNy +hygPigN

(F,4+L; P N, (16) J

and,

C, = -(f,+L, N
1 1 1-

158 B (L =) SCE Sl

= (g =Gy Py A - N Qg -

Thus we have shown that when the external flows grow linearly the steady-state
component of the stocks also grows linearly.
By recursive substitution in (16) we have,

£

| ke By

=
|
I} T~

k
Note that this vector gives the expected number of visits to states with FC

i of fk = fk(t+l) - fk(t) entrants with FC k, k =1,...,i. That is, the

growth in the stocks with FC i each period, Li’ equals the 7xpected number
of visits to FC i of the growth in the external flows each period in the
FC's less than or equal to 1i.

Both Li and Ci have the fundamental matrix Ni as a right factor,
so the steady state component of the stock vector, Si(t) must be a non-
negative combination of the rows of Ni' This same result was observed in
the case of constant external flows.

In summary we have shown that by choosing

s

si(t) = tLi + Ci
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where
Li = lel when 1 =1,
= (fi+Li—1Pi—l)Ni’ 15 =025 = . ng
and
Ci = —lelQ]N1 when 1 =1,
= - ~C,_ B FENQIN, i=2,...

then from the theorem the stock equation may be written

i
s, (t) = 5.(0) + Z (sk<0>—§%<o>)mki<t>.

k=1

3. Geometric Growth of External Flows.

In this subsection we show that geometric growth of external flows lcads

(eventually) to geometric growth of the stocks. We consider the case in which

the external flows into the states in grade 1 are proportional to a kncwn

vector fi and grow geometrically at a rete 6,. Thus,

t
fi(t) = eifi’ e R=l 2 S
eSS , N
6., > 0.
i

When O < ei <1, the external flows contract rather than grow.

If 6 is not an eigenvalue of Qi for ksi=n

k

(1 - Lq)y!
(0 = (Lo 0

If the states in grade 1 have the O0-1 visiting property then all eigenvalues

of Qi are zero and thus 8, > 0 1is never equal to an eigenvalue of Qi in

k

this case.

The following identity will be useful:
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= 1 r
N.(B,) = ) (- Q)) ‘
= r=0 ek t j
B el r+1 J
A, SR ,Z (o Q) F
r=(0 k

8 (-I+N, (06, ).
k ik

Define,

= (
SI(O) f NI‘O

Then it can be shown that if
S (t) = 000N (0,),
1 11171
then Zl(t)’ t = 0,1,..., satisfies the basic stock equation, and from the
theorem,
s (1) = 0ZE N (0)) + (s(0)=E,3, (0 )My, (1)
Note that the steadv-state compoient of the FC 1 stock vector grows geometri-
cally at the same rate as the external flows into FC 1.
Define, ?
i-1
Bki(ek) = J{k (Nm(ek)Pm)’ 1 &k =sisn.

Then it can be shown that if

~ E t-(i-k)
Sl@I= kzl 0y £.By ; (8N, (8))

then Si(t)’ t = 0,1,..., satisfies the basic stock equation (12). Note that
in the limit the stocks with “C i grow geometrically at the rate of the

largest ek where k = 1i.
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Define, .

8., = max{@

M i k=1,...,i},

k ]

The steady-state component of the stock vector is not in general a non-negative ¢

combinscion of the rows of Ni (as was the case with constant external flows

and linear growth of external flows). Rather the steady-state scock distribu-
tion is a non-negative combination of the rows of Ni(eM). The rows of Ni(eM)
neea not be non-negative combinations of the rows of Ni’ so the limiting
stock distributions that are possible under geometric growth of excernal flows
need not be the same as the limiting stock distributions under constant external

flows and linear growth of external flows.
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