
^1     ' ■ m 
^BBBBf"""W«Bp* 

^£ZKZZ 

AD/A-00     261 

TWO   CHARACTERISTIC   MARKOV-TYPE   MAN- 
POWER   FLOW   MODELS 

K n e a 1 e   T .    Marshall,   et   a 1 

Naval   Postgraduate   School 
Monterey,    California 

July    1974 

r 

DISTRIBUTED BY: 

National Technical Information Service 
U. S. DEPARTMENT  OF  COMMERCE 

J 



r .. 

Best 
Available 

Copy 



Betftt^^«—■—iirnji 

NAVAL POSTGRADUATE SCHOOL 
Monterey,  California 

Rear Admiral Isham Linder 
Superintendent 

Jack R.  Borsting 
Provost 

The work  reported herein was  supported in part by  a Grant  from the 
U.S.   Marine Corps. 

Reproduction of all or part of this report  is authorized. 

This  report was  prepared by: 

tt~JlT.K 
KNEALE T.  MARSHALL,  Ass^ 
Department of Operations 

and Administrative Sciences 

WILLIAM J.  HAYNE 

Reviewed by; 

VWID A. SCHRADY, Chairma 
Department of Operations/Research 

and Administrative Sciences 

Released by: 

DAVID B.  H0IS1NGT0N 
Acting Dtian of Research 

CSifilÖÜflON AVAIUIlUn MOES 
 .  

_ Dm.        AiAIL. Mi/« SfCCUl 

vamätam, m 



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (Whan Dmtm Bnlersd) /4./)///   C i  i   ■2C'/ 

II                     REPORT DOCUMENTATION PAGE READ INSTRUCTIONS                     S 
BEFORE COMPLETING FORM 

1 1.    REPORT NUMBER 

|      NPS-55Mt74071 
2. GOVT ACCESSION NO. 3.    RECIPIENT'S CATALOG NUMB'ER                       | 

1 
IA.    TITLE fand Subtitle) 

|      Two-Characteristic  Markov-Type  Manpower 
I      Flow Models 

5.    TYPE  OF   REPORT &  PERIOD COVERED       j 

Technical  Report                         |i 
6.    PERFORMING ORG.  REPORT NUMBER           ij 

I?.    AUTHORfsJ 

|      Kneale T.   Marshall 
j     William J.   Hayne 

8.    CONTRACT OR GRANT NUMBERC») 

|9.    PERFORMING ORGANIZATION NAME AND ADDRESS 

Naval Postgraduate School 
|     Monterey,   California      9 3940 

10.   PROGRAM ELEMENT, PROJECT, TASK         1 
AREA a WORK UNIT NUMBERS                         3 

P.O.   3-0092                                  | 

111.    CONTROLLING OFFICE NAME  AND  ADDRESS 

1     Headquarters, U. S.  Marine Corps 
1     Washington, D.  C,    20380 

12.    REPORT DATE 

July  197A                                        | 
13.    NUMBER OF FACES                                                    t 

1  1*     MONITORING  AGENCY  NAME &   ADDRESSC/' ditlerant from Controlllnt Olllco) IS.    SECURITY CL AS 1. ,0/(h/a raport;                    1 

Unclassified                               j 

15o.    DECLASSIFICATION'DOWNGRAniNG          j 
SCHEDULE 

116.    DISTRIBUTION STATEMENT fo/(hi« R«por(J                                                                                                                                                                                  j 

j     Approved  for  public  release;   distribution  unlimited.                                                            | 

1 17.    DISTRIBUTION STATEMENT (ot lha abcttmct orKarod In Bloc* 20, II dlllmrenl from R'.^ott)                                                                                    1 

1 (B.    SUPPLEMENTARY NOTES                                                                                                                                                                                                                       | 

\                                                                                                                                       ■     •   • ;      •. • • ■        1 (   ; ' 1 1 '■; 1'    ,'.!                                                                                                                                                          j 

j 19.    KEY WORDS (Contlnum on ravaraa afda 11 nacaaaary and Identify by block nuoibar)                                                                                                       | 

1     Manpower                                                                                                                                                        l 
j     Markov                                                                                                                                                             ! 
j     Personnel planning                                                                                                                                         1 

|20.    ABSTRACT fContlnua on ravaraa a/da 1/ nacaaaaty and Idmntlfy by block numbor)                                                                                                        i 

j     A two-dimensional   state  space Markov Model  of  a Manpower   System with                       I 
]     special structure  is analyzed.     Examples are  given  from  the military                       | 

services.     The probabilistic  properties are  discussed in detail with                     I 
\     emphasis on computation.     The basic equations  of manpower  stocks  and                       j 
1     flows are analyzed.                                                                                                                                 1 

DD   1 JAN  73   1473 EDITION OF  I NOV 65 IS OBSOLETE 
S/N  0103-014-6601 I 

UNCLASSIFIED 
StCURITY CLASSIFICATION OF Tl-MS PAOE Cifjian Dais Ontor*d) 

™*     ■ i IIIIMM mtntmin ■ 



CONTENTS 

I.  Introduction 

Page 

1 

II.  Structure of the Fractional Flew Matrix 

III.  Examples 

IV.  Some Probabilistic Properties 

V.  Stock and Flow Equations 18 

Mhwrf—H&whM nsnaa 



I. INTRODUCTION. 

The  simple   fractional   flow   (or  Markov-type)   model   oi   personnel movements 

through an organization  has  been widely analyzed   (see   for example   Bartholomew 

(1973),   Blumen,   Kogan  and  McCarthy   (1955),   Lane  and Andrew   (1955),   Rowland and 

Sovereign   (1969)   and has been widely applied,   especially   in military manpower 

planning   (see  U.S.   Navy   (1.972)).     Other  models  such  as   the   "cohort" and  "chain" 

models   (see  Marshall   (1973))   and   Grinold  and   Marshall   (to  be   published))   satisfy 

more   realistic  assumptions  on  personnel   movement,   but   lack  the  convenient  struc- 

ture  of   the  Markov  model.     The   purpose  of   this   paper   is   to   present  an  extension 

of   the Markov Model   to  one  with  a   Z-dimensional  state  space.     The  state  space 

is  chosen so  that   the   fractional   flow matrix has a  special   structure which  is 

then exploited. 

In  section   1.1   tht   Structure   ol    the  model,   is   presented   ^nd   in  section 

III examples are   given.     in   section   IV we present   the  probabilistic properties 

of   the  model  with  emphasis  on   computationally   tractable   formilae.     In  section 

V  the  structure  of   the model,   is  exploited   in   the   personnel   stock  and  flow 

equations. 

II. STRUCTURE OF  THE  FRACTIONAL  FLOW MATRIX. 

We  assume   that   for  planning  ;urposes   an   organization   considers   time 

in  discrete  periods,   and   that   people   are  counted   at   the   end   of  each  period. 

When counted,   a  person   is  assumed   to  possess   two  characteristics     i    and    j, 

and  is  said  to be  in state     (i,j),     where     1     represents   the   first  character- 

istic   (FC),     1 s. i  s. n,     and     j     represents   the  second characteristic   (SC), 

£(i)  ^ j  s> u(i).     Here     Hd)     and    u(i)     are  the   lower  and  upper  limits 

respectively  for   the SC when     i     is   the  FC.     Also  let    J(i)   =  {j|£(i)  ^ j  s. u(i)}> 

the  set of SC's   for  FC    i,     and  let    w.     be   the  number of  elements  in    J(i). 

Let     q.(j,m),     j,m  i. J(i)     be   the   fraction  of  people   in   state     (i,j) 

in a  time period who move   to  state     (i,m)     in  the next  time  period,   and let 

/ 
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Q.  be the \:.   * w.  matrix  [q.(j,m)].  Let p.(j,m),  j t J(i),  m 6 J(i+1) 

be the fraction of people in state  (i,j)  in a time period who move to state 

(i+l,m)  in the next time period, and let P.  be the w. x w    matrix 

[P-(j>m)]-  A basic assumption of our two-characteristic model is that move- 

ment in one time period from states with FC i can only be to states with FC 

i or  i+1,  or out of the system.  Following the notation of earlier papers, 

let  Q be the fractional flow matrix for all active states in the system. 

Then Q has the following structure: 

1 

0 = 

Vl Pn-1 

(1) 

where the zero matrices have been suppressed.  Throughout this paper we assume 

that people can leave the system eventually from any ;itate and thus  (I-Q) 

has an inverse, where  I  is the identity matrix.  This inverse  (I-Q)   is 

called N,  the fundamental matrix (see Kemeny and Snell (I960)).  For each i 

let A. = (I-Q.-P.)l,  where  1  is a vector with every element equal to 1. 

Then A.  is a vector of w.  elements, each one an attrition fraction ftom 
i i 

the appropriate state. 

III.  EXAMPLES. 

a)  The LOS Model. 

Let the "length of service" that a person has completed v.'i rh an organ- 

ization be denoted LOS, and let the FC of a person denote his LOS.  If the LOS 

is measured in the same time units as the planning periods then each Q. matrix 

is a zero matrix.  In each planning period a person's LOS must increase by one 

unit, so that Q has the structure 

_MCZ1^I*. i. m llhulrtu BWMini 
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1- 
n-1 

By appropriate choice of the second ch.'iracteristic  P.  often has special 

structure too.  Conside" a hierarchical system where the "rank" or "grade" of 

an individual is used as his second characteristic.  Then the structure of 

each  P.  depends on the organization's promotion scheme.  Assume that in one 

period a person either stays in the same grade or is promoted one grade.  No 

demotions occur.  Then P.  would have the structure 
i 

P. = 
i 

x  x 

X    X 

\ \ 

\ 

\ 

where     x    represents  a non-i;ero  element. 

b)     The   (Grade,   LOS)   Model. 

If,  as  in a)   no demotions  occur,  and only  single promotions  can occur 

in a   time period,   then  if    i     indexes  the grade,   and    j     the   length of service, 

then    Q    has  the structure shown  in   (1).    Each  submatrix has special structure 

also.     Let 

f      IIIWü ■«■mBUirtu MhMWftl rtmrnm 
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probability a person in state  (i,j)  at end of one period 

will be in state  (i,j+l)  at the end of the next period, 

probability a person in state  (i,j)  at the end of one 

period will be in state  (i+lj+l)  at the end of the next 

period. 

The trausition matrix Q.  has non-zero elements only immediately 

above the main diagonal: 

Qi = 

o    q,- i,Mi) 

0       qi,£(i)+l 

a 

'i.uCD-i 

o 

The transition matrix P.  has non-zero elements only on a single 

diagonal band.  If  £(i+1) £ £(i) + 1  and u(i+l) ^ u(i) + 1,  then P.  has 

the form shown below, where: 

1) the top max  {0,£(i+l)-(£(i)+l)} rows are zeros, 

2) the last :..JX  {0,u(i+l)-(u(i)+l)} columns are zeros. 

0 

0 

Hi,Mi+l)-l 

0 pi,Ui+l) 

0 

0  p.  ,.,  0 . . . 0 tiJu(i) 

.^JL HiMta 
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If     2,(1+1)  s. f,(i),     the   first     I{i)+1-1(1+1)     columns  of    P       are   zeros.     If 

u(i+])   ü '^(i),     the  bottom    u(l)+l-u(i-t 1)     rows  of     P.     are   zeros.     Under any 
v 

circumstances  P.  has only one non-zero diagonal, and we call such a matrix 

a diagonal matrix.  Efficient methods of storing and multiplying diagonal 

matrices are discussed in Hayne and Marshall (1974). 

c)  JJi1! lf;.r_a_di,-?._ liG.)_Model_. 

In certain applications a person's "time in graoe," denoted TIG, is 

more Important than his time in the system (LOS).  If again we allow no demo- 

tions and only single promotions per period and if the FC Indexes the grade 

and the SC the TIG for the appropriate grade, then Q has the same structure 

(1).  Each Q.  has the same structure as in b), but now £(i) = 1  for each 

grade  1.  However, each matrix  P.  has a single column of non-zeros, 

11 

P. ,.-.       0 
i,u(i) 

since promotions to the. next highest grade lead always to a TIG of 1.  Here 

p..  is the fraction those in grade  1, with time in grade  1 equal to  j, 

who are promoted to grade  i+1. 

If demotions are not allowed and only single promotions can occur per 

period, then grade is a characteristic which can be used as the FC.  A larger 

number of possibilities occur for the SC.  In addition to those above some 

useful ones are (1) skill category, (11) physical location in a multi-location 

organization, and (ill) educational level.  Note that educational level could 

also be used as the FC. 

* iri>i. watm *mm 



IV.  SOME PROBABILISTIC PROPERTIES. 

Let  T.  be the set of states associate with FC  i;  thus 
i 

^ = Ui.j) I j t J(i)},    i = 1,2,...,n. 

Also let w = u(i) - £(i) + 1,  the number of states in T.  (and  J(i)). 

Finally let  Tn be the single state "out of the system." 

In this section we develop the probabilistic properties of: 

1) any set of states T. , 

2) any union of consequtively indexed sets  T., 

m 
i.e.   Ü T., 

i=k 1 

3) the union of all transient states, which we call T. 

One of the purposes of this development is to show that the stochastic proper- 

ties of Q,  typically a large matrix, are readily calculated in terms of the 

smaller matrices Q.  and P.,  and as seen in section III these often have 
i       i 

extremely simple structure which leads to simple computation. 

The format of this section follows closely that of Chapter 3 of Kemeny 

and Snell (1960).  The notation (K&S,3._._) indicates that a result follows 

from theorem 3._._ in Kemeny and Snell, albeit usually not directly, 

a)  First-Order Properties. 

Recall that we assume system matrix Q has a fundamental matrix 

N = (I-Q)  ,  and each element of N is the expected number of visits to 

the column state starting from the row state (K&S,3.2.4).  Since Q has the 

structure shown in (1), 

JB- ■i i. tn n* 



N = 

M   NPN   NPNPN 
1   112   11223 

N       NPN 
2       2 2 3 

n-i 
n  (N.P.)N 

. ,   i i  n 
i=l 

n=l 
n  (N.P.)N 

t=2 
n-1 

.I', (N.P.)N 
i=3  ii  n 

(2) 

where N, = (I-Q.)  ,  i = I,...,!!,  the fundamental matrix for F'C  i.  Note 

that the large matrix N  is completely determined by the matrices N  and 

P..  Thus the only matrix inversions required are those of  (I-Q.),  i = l,...,n. 

Tliis is of considerable computational significance because as previously men- 

tioned Q  is usually a large mattix. 

Each matrix N.  has a probabilistic interpretation.  We pursue this 

interpretation and show that these matrices can be used to determine other 

probabilistic properties of interest. 

In this section we make numerous definitions and denote the k— one 

by Dk. 

Let us consider first tne properties associated with a single set of 

states  T.  and define: 
i 

Dl.  v.(j,m) = expected number of visits to state  (i,m)  given that FC i 

is entered in state  (ijj), 

D2.  V.     = a w. x w  matrix having v.(j,m)  as the element in row 

j-£(i)+l and column m-£(i)+l. 

From (2) the element of N. in row j-S,(i)+l and column m-£(i)+l 

equals the expected number of visits to state (i,m) given that FC i is 

entered in state  (i,j).  (K&S,3.2.4).  So, from definitions Dl and D2, we have, 

.—Ä. »M-JBMb ■..-.•,..:«V    ■  : 



V. = N. . 
i   i 

(3) 

Note that the rows and columns of N.  and  V.  correspond to states in 
ii 

T-    in the same order as the rows and columns of Q.. 
i i 

Now define: 

D3.  T.(j) = expected time in FC i  given that FC i  is entered 

in state  (i,j ), 

D4.  T.    = [x. (Mi)), . .. ,T. (u(i))],  a w x 1 vector. 

The expected time spent in FC i equals the sum of the expected number of 

visits to the various states in FC i.  From (3) and D3, 

T.(j) = component (j-£(i)+l)  of N.l, 

and from D4, 

T. = N.l,  a w. x 1 vector, 
ill 

(A) 

where  1  is a vector with all components equal to one. 

We next turn our attention to where the process goes when it leaves 

FC  i.  The process upon leaving T.  must enter either T.,, (if  i < n)  or r i i+l 

T .  Next define 

D5.  b.(j,m) = probability of entering FC i+l  in state  (i+l,tn)  given 

that FC i  is entered in state  (i,j). 

D6.  B. a w. x w...  matrix having b.(i,m)  as the element in 
i   i+l D  i J 

row j-J!.(i)+l and column m-£(i+l)+l, 

D7.  bi(j) 

D8.  b. 
i 

probability of ever entering T    given that FC i  is 

entered in state  (i.j), 

[bi(Jl(i)),...,b.(u(i))],  a wi * 1 vector. 

■tfwtifeBNHHnrti rfMHH II liiiMff 
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Ü9.     b     (j)     =  probability of never entering    T.,-,     given   than   FC     i 

is   entered   in  state     (i,j), 

D10.     b. 
iO 

[b     (£(i)),....b     (u(i))],     a    w.   x   i    vector. 

From these definitions it follows that 

B. = N.P,,  a w, x w.  matrix (K&5,3.5.A), (5) 

and 

b, = 11,1,  a w. x l  vector, 
iii 

b.  = 1 - b. 
iO       i 

N.A.,  a w. x 1  vector, 
ii      i 

flie matrix  B.  is p.-.rticularly useful in manpower policy analyses. 

For example let  f.  be ^  1 x w.  vector of the number of people entering 

T. .  Then  f.B.  is a  1 x w    vector of the number of thtise people who will 
i ii i-l i 

eventually enter T  .  (K.&S, 3.3.6).  Such applicatiors will b^ the subject 

of future papers. 

Next we consider the fiist-order properties related to PC's  i and 

k where  i ^ k.  Define: 

Dll.  b((i,j),(k,m)) = probability of entering FC k in state  (k,m) 

given that FC i  is entered in state  (i,j), 

D12.  B., 
ik 

= a w. x w  matrix having b ((i, j) ., (k ,m))  as the 
1     K 

elemen*: in row j-£.(i) + l  and column m-S.(k)+l. 

From definitions D5 and Dll and a simple conditioning argument we have, 

u(i) 
b((i,j),(i+2,m)) =   I        b (j,r)b   (r,m). 

r=X,(i) 

Sov from D12, 

B. _„ = B.B.a0. i,i+2   i i+2 
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Notice from Dll that  B..  is an identity matrix and from D5 that B. . , 
11 J 1,1+i 

More generally it can be shown that for  i ^ k, 

k-1 
B.. - n B ,  a w. ^ w,  matrix, 
ik    .  r      i   k 

r=i 

Define: 

D13.  v((i,j),(k,m)) = expected number of visits to state  (k,m)  given 

that FC i is entered in state  (i,j), 

D14.  V., 
ik 

D15.  b.^) 

Dlo.  b 
ik 

a w. x w  matrix having v((i,j),(k,m))  as the 

element in row j-S,(i)+l  and column m-£(k)+l, 

probability of ever entering FC k, given that 

FC i is entered in state  (i,j), 

[bik(«-(i)),... ,bik(u(i))] ,  a w^ x 1 vector. 

Considering each row of B   as the part of an initial probability vector 

that applies to T. , we then have, 

and, 

V  = B-i,\'  a w- x wk matrix (K&S,3.5.4), 

b.. = B.,1,  a w. x 1 vector, 
ik   ik       i 

(6) 

Define: 

D17.  T., (j) = expected time in FC k given that FC i was entered 

in p'_ate  (i,j) , 

D18.  Tik   = [Tik(3,(i))1...,Tik(u(i))],  a wk x 1 vector. 

The expected time in an FC is the sum of the expected number of visits to 

states in that FC, so 

T., - V.,1,  a w. x 1 vector, 
ik   ik      i 

10 
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Ulis completes our study of the first--order properties related to the 

various PC's of the system.  The foregoing definitions by no means exhaust 

the first-order properties of the two-characteristic model that might con- 

ceivably be of interest.  It is felt, however, that these properties will 

often be of practical interest and that other first-order properties may be 

readi.ly derived from those given above. 

b)  Two Special Cases. 

The elements of the fundamental matrix for FC i, N. have a somewhat 

different interpretati'-m when the states in FC i have what we call the "0-1 

visiting property." We say that a state has the 0-1 visiting property if 

the state can be visited no more than one time. Important examples of two- 

characteristic models in which all transient states have the 0-1 visiting 

property are the models in which the PC or SC is length of service or where 

the SC is time in grade. 

If each state in T.  has the 0-1 visiting property, then the expected 

number of visits to a state in T.  is equal to the probability of visiting 

the state.  The element of N,  in row j-?(i)+l  and column m-^(i)+l  may 

then be interpreted as the probability of visiting state  (i,mj  given that 

FC  i  is entered in state  (i,j). 

Another property of interest is the "no return property." We say that 

a set of states has the no return property if it is impossible to ever make a 

transition into the .täte after a transition has been made out of the state. 

The 0-1 visiting property implies the no return property, but they <!re not 

equivalent.  For example, in modelling manpower flows in the U.S. Civil Service 

one might use "GS grade" as the PC and "pay step" as the SC.  Each state is 

then a couple (grade, pay step).  A person can stay in the same pay step for 

JL ■MMfiE 
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raore than one period, so if there are no demotions then each state would have 

the no return property but not the 0-1  visiting property. 

If the states in T.  have the no return property then it is possible 

to order the states in T.  so that Q.  is upper triangular.  When Q.  is 

upper triangular so is  I-Q.  and the computation of the inverse of  I-Q., 

i.e. the fundamental matrix for FC i,  N.,  is considerably easier than in 

the general case. 

If the states in T.  have the 0-1  visiting property, then not only 

is N.  upper triangular but also the elements of N.  on the main diagonal 

are all ones. 

c)  Variances. 

The format in this section follows closely that of section a), but here 

we are concerned with various second moment properties of the two-characteristic 

model. 

Define: 

D19.  v  .(j,m) = variance of the number of visits to state  (i,m)  given 

that FC i is entered in state  (i,j), 

D20.  V        = a w. x w.  matrix having v„ .(j,m)  as the element 

in row j-£(i)+l and column m-5,(i)+l. 

Following (K&S,3.3.3), 

V9 . - N (2(N,), -I) - (N.)  . 
2,i   i   i dg       i sq 

where for any square matrix A, A,  and A   both have the same dimensions 
'  dg       sq 

as A:  A,  is defined when A is square and is formed by setting all elements 
dg 

in A not on t.ie main diagonal to zero;  A   is formed by squaring all the 0 sq 

elements in A. 

12 
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Define: 

D2.1. \      .(j) = variance of the time spent in FC  L  given that FC  i 

is entered in state  (i,j) 

D22.  T      - [T  (j?,(i)),. ..,r9 . (u(i))],  a w - 1 vect>r. 

Following (K&S,3.3.5) 

Define 

T„ . = (2N.-I)T. - (T.) 
2,I     x   i     i sq 

D23.  v ((i, j) , (k,n))) = variance of the number of visits to state  (k,m) 

given that FC i  is entered in state  (i,j), 

D2A.  V (l,k) a w. x w  matrix having v0((i,j),(k,m))  as 

the element in row j-£(i)+l  and column m-S,(k)+l, 

Following (K&S,3.3.6), 

V (i,k) = V., (2(N,), -I) - (V.,)c . 
2        ik   k dg       ik sq 

Define: 

D26.  t ((i,j),k) = variance of time spent in FC k given that FC  i 

is entered in state  (i,j), 

D27.  T2(i,k)    = [T2((i,£(i)))k),...,T2((i)u(i)))k)],  a w. x i 

vector. 

Following (K&S,3.3.6)S 

T2(i,k) = Bik(2Nk-I)xk - (xik)sq. 

If each state in T.  has the 0-1 visiting property, then the diagonal 

elements of N.  are equal to one, and. 

13 
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V„(i,k) = v., - (v..)  . 
2        ik    ik üq 

d)  Matrices of t-Step Transition Probabilities. 

In this section we consider the probability of being in state  (k,m) 

t steps after being in s'ate  (i,j).  The matrices of these probabilities 

are called the t-step transition matrices.  They are used in section V to 

irepresent the £ rock vectors as a sum of steady-state and transient components. 

Define: 

D28.  m(t:(i,j),(k.m)) = probability of being in state  (k,m)  t steps 

after being in state  (i.j),  t = 0,1,2,... 

Ti?^.     M  (t) = a w. x w  matrix having m(t; (i, j) , (k,m)) as the 
IK. IK 

element  MI  row    j-£(i)+l    and column    m-£(k)+l. 

The rows of    M., (t)     are associated with  states  in    T.;     the columns of    M.. (t) ik L ik 

are associated with  states   in    T. . 
k 

We have immediately that 

M. .(0) = I. 

From our assumptions on the structure of Q we have, 

M., (t) =0  if  i > k, 
ik 

M  (t) =0 if  t < k-i. 

If the process is to he in state  (k,m)  exactly  t steps after being 

in state  (i,j),  then it must be in some state with FC k or k-1 exactly 

t-1 steps after being in state  (i,j).  Conditioning on this fact leads to the 

recursive equation, 

14 
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Mlk(t) -Mik
(t-1)Qi + Mi,k-l(t-1)pl-l'    t =l'2' 

(7) 

For any  i ai^d  k  the sum over  t  of the probability matrices  h  (t) 

gives the matrix of the expected number of visits to states with FC k  start- 

-ini? from states with FC i.  So we have, 

J0
Mik(t) =Vik'     iik' 

0, wrlu-rwise . 

(8) 

Recall that the  Q.  matrices are transient, so  V ,  is matrix of 
i ik 

fir.ite elements.  This implies that. 

lim M., u) = 0. 
ik 

(9) 

Mik(t) = l\,*-i{t-l-^\-Ä- (10) 

From (/) it can be shown by an inductive argument that 

t-1 

I 
r=0 

The   t-step   transition matrices  provide  a  rather  compre lensive  picture 

of how people move  through a   two-characteristic  system. 

e)     Conditioning on  Promotion When  the   FC  is  Grade. 

In manpower  planning one  is often interested  in  conditional  probabilities, 

e.g.   the probability of  attaining grade    V     tJv-n  that  grade    i     is attained. 

The  stochastic  properties  of   the  transient matrix    Q    -ander conditioning on 

promotion when  the  FC is  grade are briefly  developed  in  this section. 

Define: 

D30.  (i,j;t) = the event "in state  (i,j)  at time  t" 

D31.  T,     = the event "a transition is made into T,  before leaving 
k k 

the system." 

15 
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Conditioning on the. event T   is the sa:ne as conditioning on promotion to 

grade k. 

Define: 

D32.  q.a.m)  = Pi[ (i .m; t+1) | (i , j ; t) ] 

D33. q.(j,m)  = Pr[(l,m,-t+l)|(i,j,c),Ti+1] 

Provided that  Pr[T.,n (i,j;t)] ^ 0,  we have by conditional arguments, 
i+i 

* b.(m) 
qi(j,m)   -  q.(i,m)   x ^"TTT   . 

i 
(11) 

Define: 

D34.     C.   = a    w.   x w.     matrix having  the  elements of    b,   (see  D8)   on  its 
111 i 

main diagonal and   zeros elsewhere. 

We assume   that  promotion   to  grade     i+1     is  possible   from ever}   state 

in    T..     Under  this  assumption     C.       exists.     If  pronotion  to  grade    i+1     is 

impossible   from sor°  state     (i,j)     then we must avoid  conditioning on an 

impossible event.     This  is   readily accomplished  ly  temporarily   tre? .ing state 

,j)     as  part of     Tn     (out  of  the  system)   and  redefining    J(i),     Q.,     P.     and 

A.     accordingly. 

Define: 

* * 
D35.  Q.  = a w. x w.  matrix havinp  0.(1,m)  as the element in row 1       11 (.  -^ \J > / 

j-S.(i)+l and column m-fc(i.)+l. 

Then  from  (11)   and  D34, 

* -1 
Q.     = C.   Q.C.. 

1 111 

The matrix Q.   is the matrix of within grade one-step transition probabili- 

ties conditioned on the attainment of grade  i+1. 

16 
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Define: 

me.     p.(j,m) 

D37.  p*(j,m) 

D38.  P. 

= Pr[(i+l.m;t+l)l(i,j;t) 

= Prf(i+1, .i;t+l) |(i,j;t),T 
i+iJ 

= a w. x w.   matrix having  p.Cj,^)  as the element 

in row j-J?, (i.">+l and column m-5, (i+l)+l. 

We til en have. 

Thus   from D3A  and   D38, 

P*(1.m) =• p.Cj.m) x ^- . 

* -1 
P. = C. P.. 

i    i  i 

T^e matrix P.   is the matrix of one-step promotion probabilities conditioned 

on the attainment of grade  i+]. 

Becaise   (Q.)r = cT'Vc. , 
i     i  i i 

the fundamental matrix for grade  i when we condition on promotion to grade 

1+1 is 

*      * -1 
N. = (I-Q.) 

00 

r   * r 
= I CQ/ 

r=0 

GO 

= I CTVC. 
r=0  1 X  1 

= cT1 N.C.- 
1  11 

Define: 

* D39.  v (j,m)  = expected number of visits to st .^.e  (i,m)  given that 

grade i is entered ir state  (i,j) and grade i+1 is 

attained. 

17 
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D40.  V. 
i 

D41.  b.Cj.m) 

DA ^.  B. 
i 

a w. •"< w.  matrix having  v. fi.m)  as the element in 
11 D   i '^ 

row  j-£(i)+.l  and column m-!i{i)+l 

probabil .cy of entering grade  (i+1)  i.i state  (i+l,in) 

given that grade  i  is entered in state  (i,j)  and 

grade  i+1 is attained. 

a w. x V7    matrix having  b.(i,m)  as the element 
i   i+l i -^ 

in row j-£(i)+l  and column m-£(i+l)-I. 

Then one may show that, 

V . = N . , 
L     1 

and 

B. = N.P. 
i    ii 

-cTV. 
1 1 

* * 
Note   that     B is  simply     B.     with  its   rows  normalized,  but    Q. is not 

simply a row normalized form of Q.. 

* 
As with the matrices  B.,  products of matrices  B.  with successive 

i i 

indices are well defined:  their meaning is that of a matrix B..  as defined 
ik 

in Dll and D12 with conditioning on attainment of grade k. 

The conditioned and unconditioned matrices may be used together.  For 

example, the elements of  B.B    give the probabilities of entering grade 

i+2 in the column state conditioned on starting from the row state in T. 

and eventually attaining grade i+2. 

V.  EQUATIONS OF STOCKS AND FLOWS, 

We begin by defining the terms "stocks" and "flows," and then discuss 

why stocks and flows are important in manpower planning models  Next the 
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relations between stocks and flows in a two-choracteristic model are developed. 

Finally, we show how the stocks can be represented as the sum of a "steady- 

state" component and a "transient" component. 

a)  DoCinitions and Background. 

\  period is the interval of time from immediately after an integer 

value of the time parameter  t  up to and including the next integer value of 

t.  A period is identified by the value of the time parameter at the end of 

the period.  Thus, 

period  t = {t:  t -1 < t ^ t 1 

where  t   is an integer. 

The number of people in a state at the end of a period is referred to 

as the "stock" in that state.  Thus, stocks are counted only at integer values 

of the time parameter  t. 

The number of people who change their status in the system from one 

state to another during any period is referred to as a "flow."  Flows occur 

during a period, but we do not specify the exact time at which they occur. 

Stocks and flows are of primary importance in most manpower planning 

models.  The most obvious reason for this is that costs are closely related 

to stocks and flows, e.g. total payroll depends on stocks, transportation 

costs or retraining costs depend on flows.  Recruiting policy and promotion 

policy depend in the short term on present stocks and in the long term on how 

we model future SCOCKS and flows.  Determining the feasibility of a retirement 

plan and evaluating the effects of a change in billet structure are other 

instances in which the planner needs to be able to model stocks and flows in 

a manpower system. 
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We  now define  the variables  that  are  used  to  model   the stocks and 

flows  in  the   two-characteristic model.     Recall  that    T.     is   the cet  of  states 
i 

associated with FC i,  w.  is the number of states in T.,  and for conven- 
i i 

ience of notation we assume the second characteristic takes on successive 

integer values for FC  i. 

In a Markov model the stocks and flows are in general random variables. 

In this section we deal only with the expected values of stocks and flows. 

Such a model is called a "fractional flow model" because the transition proba- 

bilities of the Markov model are in effect treated as fractions which direct 

flows through the system in a deterministic manner. 

Let, 

s..(t) 

s.Ct) 

expected stocks in state  (i,j)  at time  t, 

(Sl,£(i)(t)'---'Si.u(i)(t))' 

a     1   x w.     vector of  expected  stocks  in    T., 
i i 

s(t)  = (s.Ct),....s (t)), 
1        n 

n 
a  1 x  y w.  vector of expected stocks in the 

i=l  1 

system. 

By our basic assumption, flows into any state in T.  must come from a 

state in either T  or T. ,.  we also make provision in our model for 
i      i-l 

"external flows." The source of such flows is unspecified.  However, we may 

consider external flows as consisting of people hired into the system.  The 

external flows may be deterministic or random, but we deal only with their 

expected values. 

Let, 

20 
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d  (t) = expected flow from states in T.  to state  (i,j) 

dui in(; period  t,  a scalar: 

d.(t)  - (d.    N(t),...,d.     (t)),  a  ixw  vector; 
L 1,1(1.) 1>UU) 1 

f  (t) = expected external flow into state  (i,j)  during 

period  t,  a scalar; 

h{t)     "   (fi,Mi)(t)'---'fi,u(i)(r))'  a  1 X Wi  VeCt0r; 

Sj ä..(t) = expected flow from states in T    to state  (i,j) 

during period t,  a scalar; 

B.(t)  = Cgi)i(l)(t)5...,gi)U(i)(t)),  a  1 x w.  vector. 

When i = 1,  g..(t)  is defined to be zero. 

The relation between the flow vectors and the stock vector in grade i 

is depicted in Figure 1 where "T.;t" denotes the states with FC i at time 

t. 

Figure 1.  Stocks and Flow with FC i  in Period t, 
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b)  Basic Stock Equation. 

Clearly, from our assumptions, 

s.U) = d.Ct) + f.(t) + g.(t) 

(See Figure 1.) 

It will be convenient to define, 

s (t) =0,  a vector of zeros. 

0 
= 0,  a matrix of zeros, 

Using conditional expectation we then have 

di(t) = s.Ct-DQ., i = 1,. . . , n, 

g.Ct) = s.^Ct-DP.^,    i = l,...,n. 

The basic  stock equation  is   then; 

s.(t)  = s.Ct-DQ.  + f.Ct)  + s^^t-DP.^^, 1,.. . ,n. (12) 

The basic stock equation for FC i can be written in terms of the 

expected or actual stocks with FC i  in previous periods.  By recursively 

applying the basic stock equation for s.(t) ,s.(t-1),...,s.(1)  one obtains 

s.(t) - si(0)Qi
t + 1 fi(t-r)Qi

r + "l    s.^it-r-l)?^/., 
r=0 r=0 

t = 0,1,2,..., 

i = 1 , . . .,n. 

(13) 

which we will refer to as the cumulative stock equation. 

Equations (12) and (13) are used frequently in the remainder of this 

paper.  Some manpower models used in the U.S. military for short-range fore- 

casting consist principally of an application of an equation similar to (12) 
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c)  Trans!c nt Ptoperties of the Stocks. 

In this section we develop a method for expressing the stock vector 

as a sum of a "steady-state" component and a "transient" component.  This 

method helps one to understand hcv. ihe stock vectors change in going from 

any present stock vector to future stock vectors.  This method also helps 

one interpret the character of the limiting ;;tock vector. 

We do not want to restrict ourselves to cases in which the stock vector 

converges (as  t  increases) to a finite vector.  We say that the vector 

function s,(t)  is a steady-state component of the stock vector  s.(t)  if, 

lim (s (t)-s.(t)) = 0. 

For any sequence of stock vectors  <s.(t)>  there is more than one choice of 

the steady-state component.  In applications one would prefer a steady state 

component having a relatively simple mathematical form.  We show that in some 

cases a judicious choice of s.(ü)  makes this possible.  The following theorem 

shows the properties of a class of steady-state components which are quite 

useful. 

Theorem.  For any collection of  1 x w.  vectors  s.(0),  i = l,...,n, 

let the vector functions s.(t)  satisfy 

~.(t) = s.Ct-DQ. + f.Ct) + si_1(t-l)P._1,    t = 1,2,..., 

i = 1, . ..,n, 

i.e. the vector functions  s,(t)  satisfy the basic stock equation (12).  Then 

(a)  the actual stocks w.  time  t fve 

1 
s.Ct) = si(t) + I     (sk(0)-3k(0))Mki(t), 

k=l 
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(b) I     (s,(t)-7.(t)) = I     (s, (0)-s^'0))B^.N., 
t:=0 k=l ki i! 

£  1 x w.  vector having finite, components, 

(c)  s.(t)  is a steady-state component of the stock vector s.(t),  i.e. 

lim (s.CO-s.Ct)) - 0. 

Before proving the theorem we explain why one might be interested in 

such a theorem.  Part (c) of the theorem says that  s.(t)  is a steady-state 

component of the stock vector s.(t),  and part (a) shows how the stock 

vector s.(t)  can be expressed as the sum of a steady-state component and a 

transient component.  Part (b) of the theorem says that the total over all 

periods of the difference between the stock vector and its steady-state com- 

ponent is a readily calculated finite vector. 

Such information can be useful when long-range planning has been done 

using an "equilibrium model." As an example consider an organization which 

intends to change from its present size of 250,000 to a size of 200,000.  The 

manpower planner may use an equilibrium model to develop policies that are in 

some sense optimal, and these policies will maintain the size of the organiza- 

tion at 200,000 people once the organization has been reduced to 

this size.  So the equilibrium model tells the planner what to do once 

the size of the organization reaches the desired equilibrium level but it 

doesn't tell him how to change the organization from its present 

level (250,000) to the desired equilibrium level (200,000).  This problem of 

finding an optimal transition policy to go from present stock levels to a future 

equilibrium stock distribution is d very difficult one (see Chapter A , Bartho- 

lomew (1973)).  One method for making the transition is to immediately implement 
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the hiring, promotion and attrition policies that have been derived from the 

equilibrium model .  Because of the transient nature of the system these policies 

will eventually bring the stocks in the system to their equilibrium levels. 

In the theorem the vector functions  s.(t)  play the role of what the 

stocks would be at time  t  if the system were in equilibrium.  The stock 

vectors s,(t)  indicate what the stocks will be at time  t  if we start with 

the present stocks  s.(0)  and implement the policies of the equilibrium model 

(which are reflected in the external flows,  f.(t),  and the transition matrices 

Q.,  P.  and A.).  From part (a) of the theorem we may readily calculate the 

difference between actual stocks and equilibrium stocks in any grade and any 

period.  If there is a penalty associated with having more people than the 

equilibrium stocks in the system, then part (b) of the theorem may be used to 

calculate the total penalty.  Part (c) of the theorem assures the planner thst 

the difference between the actual and equilibrium stocks does converge to a 

zero vector as the time parameter  t  increases. 

The proof of the theorem follows. 

Proof.  By hypothesis the vector functions  s.(t)  satisfy the basic stock 

equation (12), so they must also satisfy the cumulative stock equation (13): 

~i(t)=VK+X fi(t-^i+ X si-i(t-r"i)pi-iQi- r=0 r=0 

Of  course  the  stock vectors    s.(t)   also satisfy  the cumulative  stock equation 

(13),  so we have, 

t-1 
s.tt)  -  s.tt)  =  (si(0)-s.(0))Q^ +    I     (s^a-r-D-s^t-r-im^Q^. 

r=0 

When    i =  1     this   implies, 
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si{t) = ^(t) + (s1(0)-~1(0))Qj 

x 
~i(t) + ^  (sk(0)-^k(0))Mk ^t), 

k=l  '     '      ' 

so we have shown that part (a) of the theorem is true when i = 1.  Suppose 

part (a) of vhe theorem is true for grade  i-1,  i.e. 

Vi(t) **i.iM\l (\^-\W\,i-iM- 

Then, 

i-1 
s.^Ct-r-D-^^t-r-l) = I     (sk(0)-7k(0))Mk .^(t-r-l), 

k=l ' 

and 

t-1 i-1 
(t) -7 (t)  = (s (0)-s (0))Qt + I       I     (s, (0)-s, (0))M, .  ft-r-DP. 1Q

r 

r=0 k=l  K    K lc'1 i       1"-L 1 

i-1 t-1 
= (s (0)-s (0))Q + I     {s   (0)-7,(0))     I    K    .   .(t-r-DP. 1Q

r 

i  k=1  ic    K r=0 k,i-i       i-l i 

From equation (10) in Section IV 

t-1 

J^.i-l^-^^i-l^i^i^)' 

so we have shown by  induction  that, 

i-1 
s.(t)   - r.(t)   =   (s.(0)-si(0))Qj +    I     (sk(0)-^k(0))Mki(t) 

This  proves  part   (a)   of   the  theorem. 

From part   (a), 

I     (s   (t)-s   (t))   =    I I     (s   (0)-s   (0))M     (t) 
t=0                                     t=0 k=l      k           k           ki 

i "> 
=    I (s   (0)-s   (0))     I    K(t) 

k=l *■         fc          t=0    kl 
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=    l     (Sk(0)-sk(0))Bk.Ni, 
k=l 

a    1 x w.     vector having finite components. 

The  last  step  above   follows   from equations   (6)   and   (8)   of  Section  TV.     This 

proves  part   (b)  of   the  theorem. 

Part   (c)   follows   from the  fact  that   the sum in part   (b)   is  finite,   and 

the proof of  the  theorem is  complete. 

The  utility of  this  approach  depends  on our ability  to  find  vectors 

s.vU)     such   that  the vector  functions     s.(t)     are  simple  and readily  calculated. 

Some examples  follow. 

1.     Fixed External  Flows. 

The equilibrium models  previously mentioned  enjoy  some popularity  in 

militaiy manpower planning  in  the United  States   (see   for example,   RAND Corpora- 

tion   (1973)).     The rationale underlying  the  use of   such models  is   that one 

should determine  the organization structure and  the policies  to maintain  this 

structure which are optimal   (or "leas^   infeasible1').     Among  the policies 

derived  from an equilibrium model is   the hiring policy.     This has  the  form, 

fi(t)   =  f., t  =  1,2,..., 

i   -  1,...,n 

where the vector of the number of people to be hired into the states in grade  i 

each period,  f.,  is specified from the equilibrJam model. 

Define, 

s^O) = f^. 

Then using   (12)   it  is  easy  to show that 

s   (t)  =  f N       for all     t, 
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Thus, from the theorem 

s^t) = s^t) + (s1(0)-s1(0))M11(t) 

= f1N1 + (s1(0)-f1N1)qJ. 

Now recursively define, 

7i = 7i(t) = fiV 

^i = (fi+Vri-i)Ni'   i = 2'--"n- (1A) 

It is straightforward to verify that these  s.  satisfy the basic stock 

equation (12), so we have from the theorem, w'^en  f.(t) = f., 

s.(t) = si+  I (\(0)-\>«ki(t). 
k=l 

The steady-state component can also be written, 

^ j MkiV    i = l.---.n. (15) 
k=l 

i 
Note that  l    ^h^v     ^s  a non~negative  1 x w.  vector, so the limiting 

k=l 
vector of stocks in grade  i must be a non-negative combination of the rows 

of N..  Thus, in general, not all non-negative  1 x w.  vectors are possible 

limiting stock vectors under constant external flows. 

2.  Linear Growth of External Flows. 

In this section we consider the case in which the number of people hired 

into each state increases by the same amount each period.  Such a hiring policy 

may not be natural over a long period of time, but it may provide a simple 

approximation to planned hiring policies. 

Let the 1 x w.  vector  f.  be the increase in the number hired into 
i i 

states with FC i each period.  Then the external flow vector for FC  i is, 
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Let, 

fi(t) = tf.L,    t -- 1,2,..., 

i = 1,...,n. 

s1(0^ - -f^xQ^!' 

Let the vector function  s (t)  satisfy the basic stock equation (1), 

^(t) = 71(t-l)Q1 + f^t). 

Using the identity N.Q +1 = N  one can show that 

s^t) = tf1N1 - N1Q1N1. 

Thus from the theorem. 

s^t) = tf1N1 - f1N1Q1N1 + (s1(0)+f1N1Q]N1)Q1. 

We note that s (t)  is of the form 

s1(t) = tL1 + C1 

where  L = f N  is a  1 * w.  vector. 

and  C1 = -f^.Q-N,  is a 1 x w.  vector. 
1    1 11 1 i 

Consider some FC  i t {2,...,n}.  Suppose that 

s^Ct) = tLi_1 + C.^, 

where  L. ,  and Cj   ,  are 1 x w, ,  vectors, 
i-l       i-1 i-1 

Using the identity 

(tf.N.-f.N.Q N )Q. + (t+l)f. = ((t+l)f.N.-f.N.O.N,), 
ill i i i ^i       i        iiiiii 

one may show that if 

s^t) = tf.N. - f.N.Q.N, + s. .(t-DP. nN. - L. .P. .N.Q.N., 
i       i i   i ixi i   i-l     i-l i   i-l i-l ii i 
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then    s.(c)     satisfies  the basic  stock  equation   (12).     Note   that    s.(t)     has 

the  form, 

where, 

and. 

s.(t)   =  tL.   + C. , 

L.   =   f.N.   + L.   .P.   -,N. 
1 11 i-l   i-l   i 

(fi+Li-lPi-l)Nr (16) 

C. 
i 

(f.+L.     P     JN.Q.N,   -   (L4   ,-C.   .)P.     N. 
i     i-l  i-l    ixi i i-l    i-l    i-l  i 

= -(^i-l-Ci-l^Vl + fiNiQi)Ni- 

Thus we have  shown   that when  the  external  flows  grow  linearly  the steady-state 

component of  the  stocks  also  grows   linearly. 

By  recursive  substitution  in   (16) we  have, 

i 
L.   =     I     f, B, .N. . 
i       ,    ,     k. ki  i 

k=l 

Note that this vector gives the expected number of visits to states with FC 

i of f = f (t+1) - fk(t)  entrants with FC k,  k = l,...,i.  That is, the 

growth in the stocks with FC  i each period,  L.,  equals t^e expected number 

of visits to FC  i of the growth in the external flows each period in the 

FC's less than or equal to  i. 

Both L.  and C.  have the fundamental matrix N.  as a right factor, 
ii i 

so the steady state component of the stock vector,  s.(t)  must be a non- 

negative combination of the rows of N..  This same result was observed in 

the case of constant external flows. 

In summary we have shown that by choosing 

s". (t)   = tL.  + C. 
i ii 
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wh ere 

L.   =   f  N       when     i   =   1, 

■tljl I IIIMillli« 

=       (W^i-l^i' 2, >n, 

and 

C.   =  -f   N  Q  N       when     i   =   1, 

= -((Li-rci-i)Fi-i+fiNiQi)Ni'      i = 2---'n' 

then   from the  theorem  the  stock equation may be written 

s.(t)=s.(t)+     I     (s, (0)-s   (0))R .(t). 
1 L ,       . K K ;C i 

k.= l 

3.  Geometric Growth of_ lixternal Flows . 

In this subsection we show that geometric growth of external flows I'jads 

(eventually) to geometric growth of the stocks.  We consider the case in which 

the external flows into the states in grade  i are proportional to a known 

vector  f.  and grow geometrically at a r<?ta 6..  Thus, 

fi(t) = 8ifi'    t = 1'2>---' 

i = 1, . . . .n 

6. > 0. 
i 

When  0 < 9. < 1,  the external flows contract rather than grow. 

If 6,  is not an eigenvalue of Q.  for k ^ i ^ n we may define, 

Ni(V = ^--rV1- k 

If   the  states in grade     i    have   the    0-1    visiting property  then all  eigenvalues 

of     Q.     are  zero and   thus    9.    >  0     is  never equal  to  an eigenvalue of    Q.     In 

this  case. 

The  following  identity will  be  useful: 
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H^mHm^pKv. p^m&m^^mmmjiam 

CO 

Ni(0k) = l rrQi)r 
r=0      k 

Ni(9k>Qi " \   l   (eu 
Qi) 

r=0       k 

r+1 

= e. (-I+N.(G   )). 
k i     k 

Define, 

Then it can be shown that if 

s^O) = ^^(Oj) 

si(t) -Qi[iVöi^ 

then  s.(t),  t = 0,1,...,  satisfies the basic stock equation, and from the 

theorem. 

s1(t) = ^fjVV + (-V^-^VV^U^)- 

Note   that   the  steady-state  compoi.ent of  the  FC     1     stock vector  grows  geometri- 

cally  at   the same   rate  as   the  external   flows  into  FC     1. 

Define, 

1-1 
13, .(6. )   =   n      (N   (6, )P  ), l i k s i ^ n. 
ki     k . m     k    m 

Then it can be shown that if 

(t) = I ,t-(i-k) 

k=l 
f, B, .(6, )N,(e, ) 
k ki  k  :  k 

then  s'. (t),  t = 0,1,...,  satisfies the basic stock equation (12).  Note that 

in the limit the stocks with ^C  i  grow geometrically at the rate of the 

largest  6 where  k ^ i. 
K. 
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Define, 

L, = maxlB, ;   k=l.,. . . ,i}, M k 

The  steady-scate  component  of  the  stock vector  is  not   in general  a non-negative 

combination of  the  rows of    N.     (as was  the  case with  constant   external  flows 

and  linear growth  of external   flows).     Rather  the  steady-state   stock distribu- 

tion   is a non-negative  combination of   the  rows  of     N.(6   ).     The  rows  of    N.(9   ) 

neea  not be non-negative  combinations of  the  rows  of    N. ,     so   the   lir.iting 

stock  distributions  that  are  possible under geometric  growth of  exuernal   flows 

need not be  the  same  as   the   limiting stock distributions  under  constant external 

flows  and   linear  growth of  external   flows. 
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