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ABSTRACT

This thesis introduces exploratory data analysis methods

into the question of categorizing pilots and relating theso

categories to accident potential. The usually recorded

flight data deals with the pilots' total flight experience,

recency, and frequency of flying. The purpose of categorizing

is to determine if the recorded flight data could help dis-

criminate between two original sample groups of fifty pilots

each, those pilots with accidents during FY73 and those

without.

The technique of linear discriminant analysis indicated

that there is a significant difference in the mean vectors

of flight data for the two groups. The computed discriminant

function produced an empirical correct classification rate

of 81%. Techniques of cluster analysis (with the aid of

prIncipal co".•onents hialysis) are also employed to detect

patterns or differences iri tne data. Ci.Aiously, the amount

of time flown in 4he last 48 hours' is associated with rela-

tively low accident potential, whereas time flown in the

last 24 hours seems to be correlated with a higher accident

potential.
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I. INTRODUCTION. A-D OBJECTIVES

Aviation safety in the United States Navy has always

received considerable attention. With the rapidly increas-

ing costs of naval aircraft and the increasing costs of

training naval aviators, it is imperative that every possi-

ble aspect of aviation safety be thoroughly investigated.

It is important to search all paths which may yield any

information at all having a bearing on aircraft accident

causation or prevention.

Over the last five years, approximately fifty per cent

of the major and minor aircraft accidents in the Navy have

included pilote'ror as either the primary factor involved

or as a contributing factor to the cause of the accident.

There have been many reasons purported as to the causes

of pilot error accidents, ranging anywhere from plain lack

of physical coordination to me"Lal incompetence. A general

term which relates to both physical and mental abilities is

experienoe. That I*, as flying experience inc.reases, the

learning process should' incmaasc both or these abilities.

Another general tem.• which affecto these two abilities Is

S~proficiency. That Is, recency and frequency of flying

• should also have- a direct bearing• on these abilities.

•- This thesis explores method3 f'or cla~sifying or care-

"experience and proficiency. Accident records are used to

6



determine if there is any relation between the classifi-

cations and the occurrence of accidents.

One would like to know if by investigating a pilot's

experience and proficiency data whether or not he shows a

high or low accident potential. Of specific interest is the

question of whether pilot error accidents are related to

lack of total flying experience, lack of experience in type

of aircraft, or lack of practice due to insufficient current

flying. If an individual were classified as having a high

degree of accident potential, then corrective action could

be taken to reduce this potential.

Only the pilots of Navy fixed-wing aircraft are studied.

Mariii and/or 'nlicopter pilots are not included. The study

encompasses those accidents that occurred during fiscal year

1973, Unfortunately, the data base contains the records of

only fifty aviators who have been involved in pilot error

accldento. Firty other pilots were selected as a control.

Even with these smaill numbers, a result appeared that ii-ay be

worth pursuing further. Recency of flying may be overdone.

The amount .,f time flown In the last 48 hours is positively

correlated with low accident potential, but a reversal Seems

to take place when looking Lt the ti4e flown in the !ast

24 hours.

S~7



II FACTORS INFLUENCING EXPERIENCE AND PROFICIENCY

There are many factors affecting experience and profi-

ciency. Situations encountered, crises faced, types of

missions flown, and many other qualitative factors have a

definite bearing. However, the only factors considered here

are quantitative variables which can be obtained from acci-

dent records and IFARS (IU.:di¢idual Flight Activity Reporting

System) pilot records.-

The Naval Safety Center at Norfolk, Virginia naintains

records or all accidents in which Naval aircraft are involved.

The recorded data items which reflect a pilot's total

experience a're the follcwing:

Number of years designated a naval aviator
Total flying hours

Total flying hours in the model aircraft in which
the accident occurred

Total day carrier landings

Total night carrier landings

The data itours which reflct hiM proficiency (i.e. hisI
recacncy and frequvncy of flying) are the following-

TAtme all series this aireaft in last 90 days

Time this model this aircraft In last 90 dayz

SElapsed tirte since last previous flIght

Time flown in the last 24 hc-rs

Time flown in the laat. 8 houM8

Number of -issionn flown in the last 24 hours
Number of risslons flown In the last 48 hours
Number day carrier landlnGs in last 30 days



Number night carrier landings in last 30 days
Instrument trainer time in last 90 days

Weapons system trainer time in last 90 days

The Individual Flight Activity Reporting System (IFARS),

a part of the Naval Safety Center, maintains flight records

on all naval aviators by fiscal year. The only data items

pertaining to pilot experience which are retrievable from

computer access for all fiscal years are:

Number of years designated a naval aviator
Total flying hours

At present, these following additional experience items are

L•retrievable by computer only from the beginning of fiscalyear 1969 and thus cannot be used as comparison variables

since many of the aviators in both sample groups began

flying prior to 1969.

Total time by model

Day and night carrier landings by model
Other type landings by model

Instrument time by model

A new compilation I* aow "n progres -by .the IFARS sec-

tion at the Naval Safety Center to reco,ýd all flights on

computer !iles for all fiscal years for all pilots so that

future studies can be more encom" isSing.

The proficiency indicator data items for those pilots

in the accident group have a natural base point from which

to be measured. That is, an Item such as "time flown in the

last t48 hours" mean~s the last LB hourS directly prior to th-e

accident in which the pilot was Involved, However, for

9



the non-accident (control) group, there is no such reference

point from which to measure. Thus, comparison of prof: cency

data items becomes rather nebulous.

One reasonable way to give significant meaning to v le

term proficiency is to artificially construct. simil .ata

items by an averaging procedure. For example, p-tor to each

flight (for the period in question) compute the 'Ame flown

in the preceding 48 hours. Do this for every flight during

the fiscal year and then obtain an average time flown in

the preceding 48 hours. The necessary data can be obtained

from a detailed flight listing for the pilots in the control

group for FY73. This procedure can be utilized for the

following data items:

Time P'l series this aircraft laa• 90 days

Elapsed time since last previous flight

Time flown in the last 24 hourz

Time flown in the last 48 hours

Number of missions flown it- the last 24 houirs
Number of missions flown in the last 43 hours
Number day carrier landings in last 30 days

Number night carrier landings in last 30 days

With these artificially constructed data items one can In-

clude proficiency In the criiov betwen the control

group and the accident group. The appropriateness o doinrg

this can be determined by comrparIng the results of statist*-

cal analyses performed with and without these added varlables.

,f these added variables E!ve a better delineation between I
groups, then it Is appropriate to Include them.

10
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To recap, the variables which are common to both groups

and which are used for the analysis are:

"(XI) Number of years designated a naval aviator

(X2 ) Total flying hours

(X 3 ) Time all series this aircraft last 90 days

S(X4) Time since last previous flight(X5) Time flown in the last 24 hours
(X6 ) Time flown in the last 28 hours

(X7 ) Number of missions flown in the last 24 hours

(X2) Number of missions flown in the last 28 hours

(X9 ) Number of day carrier landings in last 30 days

(Xl 0 ) Number of night carrier landings in last 30 days

'V
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III. SELECTION OF GROUPS

The accident group was composed of all those pilots

who were involved in pilot error accidents during fiscal

year 1973. This group comprised 66 different pilots; no

pilot had more than one accident attributable to pilot error.

Due to incomplete data in two cases, this was reduced to

64 pilots.

The control group was more difficult to establish since

there were several thousand aviators from which to choose.

A subset of these pilots was obtained that satisfied two

criteria: (1) it appeared to be a sample representative of

all naval aviators, and (2) the data was relatively easy to

obtain. The sample taken %as the first 100 aviators on the

IFARS files. Since the IFARS files are ordered by increasing

social security number and the increments betvjen successive

numbers was very large, examination of the "-.ographical data

leads us to believe that social security numbers had no

bearing upon age, length of time in aviation duties, or even

length of time in the Naval Service. There was no obvious

reason to think that the sample was unrepresentative.

From the 100 pilots initially assigned to the control

group, 20 were helicopter pilota and 15 were Naval Flight

Officers, thus leaving 65 subjects in the control group.

Since the size of the two groups under study is arbitrary,

a further reduction in the size of each group was made to

12
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meet a computational constraint which was imposed by a

computer program employed in the actual analysis. Because

of the extensive computational effort required in the

analytical techniques used, the use of a digital computer

was mandatory. One of the computer programs used for the

analysis had a limitation of 100 data units. Therefore, a

random selectioa of 50 subjects was chosen for each of the

two groups under study. (The random selection was accomplished

in the manner of drawing numbers out of a hat.)

13
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IV. INVESTIGATIVE APPROACHES

The data describing the subjects is composed of ten

pieces of information for each subject. This constitutes

a multivariate data set. Therefore, some sort of multi-

variate statistical technique is appropriate. Which sta-

tistical techniques to employ depends upon the information

desired to be obtained from the analysis, and is the primary

concern of this section.

"As stated in the introduction, one of the primary objec-

I tives is to e3tablish a classification scheme and then to

datermine if this classification is related to the occurrence

of acciderts. One statistical procedure which treats this

'I problem Is that oi discriminant analysis. Discriminant

analysis is a multivariate statistlcal tecnnique used for

constructing deciaion rul!L by whirh data units (subjects,

or pilots in the present eontext) can be classified as

members of one gioup or another. The goal is to assign

subjects to the groups to which they have the greatest

resemblance based up,'- a profile of their characteristics,

while at the same ti,,e to minizrie the effects of misclassl-

fication.

1Anderberg, M.R., Cluster Analysis for Applications,
p. 191, Academic Press, Inc.;197Y .

2 2Esenbels, R.A., and Avery, R.B., Discriminant Analysis
and Classificaticn Procedures, p. 3, Lexingtoh Books, 1972

t1



The procedure constructs a discriminant function based

upon input data in which subjects are members of known groups.

This discriminant function is usually linear but can be qua-

dratic or have other forms. The data are used to make the

function specific (determine the parameters). Typically,

it is then used to reassign the original subjects to one of

the two groups on the basis of their characteristics in order

to make an empirical determination of the rate of misclassi-

fication. If all subjects are reassigned to the group from

which they initially came, then there is zero percentage

misclassification and perfect discrimination between groups.

The discriminant function can also be used to categorize

other observations (subjects), whose group membership is

unknown, on the basis of their attributes.

If several (more than two) groups are present, then a

set of discriminant functions is constructed to assign

observations to the appropriate groups.

A linear discriminant function will be constructed for

the two pilot groups on the basis of their experience and

proficiency characteristics. If the function discriminates

well, then one can determine what particular characteristics

have the strongest influence on placing a subject in the

accid"nt group. Also, by applying the discriminant function

to subjects not in the original test groups one can determine

their accident potential.

3press, S.J., Applied tltutvartte Anayls, p. 376-379,* Holt, Rinehart and Winston, Inc., 1972
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The assumptions upon which discriminant analysis is

based and the actual mathematics will be covered in the

next section.

If the discriminant function fails to separate the groups

without a high rate of misclassification, the lack of success

can be attributed to one of two causes. The first is that

the variables characterizing the subjects do not distinguish

between the groups to a strong enough degree or the groups

overlap too much in the given measurement space. The second

is that the groups cannot be separated by a function of the

form chosen for the analysis. That is, maybe instead of a

linear discriminant function we should have a quadratic or

more complex one.

To illustrate the preceding concept, let the accident

group be denoted by "A" and the control group by "C". Now,

if one considers the groups in two dimensions only (instead

of the actual ten) the groups might be clumped as in Figure

(1).
SX

.• z

XX
X ALo

0
0000 00 0

0 0 C

Figur (1)
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In this case a linear discriminant function would serve to

separate the groups well and it is not necessary to construct

a quadratic function. If, however, the data ppeared as in

Figure (2), then one can see that a linear discriminant

function cannot discriminate among the groups without error.

However, a quadratic form of discriminant function such as

the curve depicted might very well have excellent discrimi-

nating capabilities.

SX X X X
0 0

0• 0 0

Figure (2)

The linear discrirrnrant function is a tool that i•

immediately available in term3s of computer programs. It

is based upon the assumption that the data came from a

multivariate normal population, •nd when this assumption is

f met, it works as well as any other discrimin~ant function..

i O~ther' discriminan; functions are not readily ava~lable for

i use. Also, the linear discrtiinant functIon could do a good

job even if the multivariate no~rral assumpt~I:•n is not met,

! i.e, when the natural separation of groups is so Sreat that

S, even a simple method would do the job.

1 0 . 0



For the problem at hand, the use of the linear discrimi-

nant function was encouraging, but since the assumption of

multivariate normality, is not appropriate (e.g. rotation

policies split variables X and X2 so that their distribu-

tions are multimodal) it was decided to explore the nature

of the data to see if a better Job could be done.

Exploratory data analysis on 100 points in Euclidian

10-space is not easy. Some form of cluster analysis is

called for, that is, cluster the subjects into groups.

This leads to the question of how many groups we actually

have and how the data are grouped.

Cluster analysis is actually a collection of techniques

that are used to group multidimensional entities according

to various criteria of their degrees of homogeneity or

heterogeneity. 5 For example, in this problem grouping will

be on the basis of the values of each variable which des-

cribes the pilot's flight experience and proficiency, Pilots

with high total flight time might tend to cluster into one

group while pilots with few carrier landings or with little

ttime sInce last flight might tend to cluster Into other

groups. How close should the values of the variables be

before subjects are grouped into the same cluster is the

question of the degree of homogeneity desired, and how many

5 0p. Cit., Press, S.J., p. 4o8_Ii4

18



clusters there should be is the question of the degree of

heterogeneity desired. This type of grouping is called

grouping by subjects; that is, the entities are subjects.

The entities can also be the variables themselves, in which

case the clustering is said to be by attributes.

There are several pertinent questions to bear in mind

when performing a cluster analysis. How many clusters are

inherent in the data? Since attributes may be measured in

different units, should the attributes be standardized

before they are clustered? How large should the errors be

before they are considered intolerable? There will be one

type of error made bY not assigning similar entities into

the same group, and another type of error made by grouping

dissimilar entities into the same cluster. Should all

possible pairs of points (or attributes) be scrutinized for

slmlarities?6 Not all of these questions have definite

wiswers, but they will be addressed in the next section.

In most other statistical techniques, such as analysis

of variance, the variables usually possess some structure

of belonging to particular populations a priori. Consequently,

it is often possible to assume particular distributions for

the populations and make associated inferences. In clustering

problems, however, the principal concern is how to establish

I6 bid.
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appropriate populations. Thus, clustering analysis logically

precedes the application of most other multivariate proce-

dures when the data do not possess structured form.7

There are two possible approaches to cluutering. These

are enumerative procedures and non-enumerative. Enumerative

means simply to list all the possible groupings of subjects

(attributes if the clustering is by this form of entities).

The number of possible groupings is rzpresented by a Stirling

Number of the Second Kind. For example, in clustering

twenty-five subjects into five groups there are between two

and three quadrillion possibilities from which to choose

the best grouping. 8 This is not feasible even with

ter, especially when the problem is much larger than •,.

Some feasible non-enumeiative techniques are described in

the next section.

If through the use of cluster analysis one can find a

feasible set of groupings that have meaning to this problem

then the groupings can be analyzed by a discriminant analysis

to obtain the desired classification procedure.

ClusterirW bY variables can also prove to be worthwhile

In that it can help to determine if some of the variables

are 'redundant and not providing any additional information.

71bid.

80p. Cit., Anderberg, M.R., p. 3
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If so, those redundant variables can be eliminated or com-

bined, thus simplifying the required computations. A

method of combining variables which was utilized was that

of principal components analysis.

Multivariate analysis by the principal components

model attempts to reduce the dimension of the problem while

retaining as much information (i.e. variation) contained in

the original data as possible. TVe method produces linear

combinations of the original variables which maximize the

variance of the resultant weighted stun. Thus attention is

centered primarily on the variable with the greater varia-

bility by the appropriate assignment of the weights. This

linear combination of the variables is called the first

principal component and reduces our set of old variables to

one variable. tft is desired to extract more variance

from the data, one can cota•truc% a Gecond principal component

which is orthogonal to the first. The proces4 can be repeated

until there are as many component* as original variable.ý,

and thus have extracted one-hundred percent of' the total

variance. 9

The objective of principal corponents analysis is not

merely to reduce the size and complexity of the problem,

but also to glean Informtation from the data which might not

9 0p. Cit., Press, S.J., p. 283-205
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otherwise be obvious. Specifically, in the problem under

study here, the fifth, sixth, seventh and eighth variables

listed on page eleven can be regarded as prime indicators

of frequency of flying. However, when the data is analyzed

(by cluster analysis) the exact effects of these variables

might not readily be apparent, When all these variables

are combined into one variable (i.e. the first principal

component) the effect of frequency might be quite obvious.

That Is, it might be observed that frequency of flying has

an invers4 relationship with the occurrence of accidents.

For this analysis, of those variables listed in page

eleven, the first and second (years designated naval aviator

and total hours flown) were combined to get a "total

experience" variable; and the fifth, sixth, seventh anO

eighth (time flown in the last 24 hours, time flown In the

last 48 hours, number missions flown in the last 24 hours,

and number missions flown in the last 48 hours) were combined

to set a "frequency" variable.

2
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V. ANALYTICAL TECHNIQUES

The first analytic technique applied to the two groups

of pilots was that of discriminant analysis with the primary

objective being to develop an accurate linear discriminant

function. (Actually, the purposes of discriminant analysis

are first to determine if there is a difference among popu-

lation means or equivalently if there are any overlaps among

the groups, and secondly, to construct classification schemes

based upon the descriptive variables.)

There are three basic underlying assumptions of dis-

criminant analysis. They are (1) that the groups being inves-

tigated are discrete and identifiable, (2) that each observa-

tion (subject) in each group can be described by a set of

measurements on m characteristics or variables, and (3) that

these m variables are assured to have a multivariate normal

distribution in each population and equal covariance matrices

among populations. The first two asswuptiotls are seen to be

satisfied as discussed In previous sections. The third assur.4-

tion indicates the need for separate ttatistIcal tests to

determine if the variables are -mu-_- * #a'ate normal and if the

covariance matrices are equil. It has been mentioned that

non-normal multivariate Ca&a does not necessarily bias the

results of a discrininant analysis. Also, since no satis-

factory tests exist for testing populations to be multivarlate

23



'II
normal, It is dIfficult to routinely test the normality

assumption. Finally, the central limit theorem suggests

that as the number of observations increases, the discri-

minant values for each group approaches a normal distribu-

tion.1 O

The assumption of equality of covariance matrices

(i.e. equality of within group dispersions) appears to be

more critical in biasing the results. Eisenbeis and Avery-

3uggest that linear classification-rules are not adequate

when unequal covariance matrices exist and that quadratic

classification rules should be employed.I1

The within group dispersion matrices for the two groups

of data were computed and are shown in Table VI in Appendix

C. The pooled within-groups dispersion matrix is also

shown. The group .dispersion matrices were tested for equality

by the procedure given in Appendix D.

After satisfying the assumptions preparatory to the

actual analysis one can first test the equality of group

m-.ans. The null hypothesis is:

"Kirk, R.E., Eo er ntl11 '12Pern: for theSbehavior al p b.76.,e• CWolt Me Mb.1 I-n Co,,

10op. it., Eisenbels, R.A., and Avery, RiB., p. 16 "i
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where

and

52 ('2,i' 52,22 ... 112,10)-

The following steps are used by the BIMED04M computer

program to test for the equality of group means:

Step (1) -- the means for each group are computed

i-j- = ,i ,~2 ' "''' xi ) i0 i 1•,2

Step (2) -- the differences in group means are computed.

X1  X 2  131~ 21 I.10 - -X 2 31 0)

Step (3) -- the matrices S1 and S2 are computed where an

element of Si is given by

n

u)v Jl (1 - 'iau(ijv - , and

i = 1,2; U 1,2,..., 10; and v 1 2,..., 10

25



Step (4) --. the matrix A is computed

1 2.

A SI+ S2

where (a , a , ... , a ) is the jtrow of A

Step (5) -- the Mahalanobis D2 statistic is computed

m m
"D2 (nI+n 2 -2) Z Ea( - X-

1=1 j=i

Step (6) -- the F statistic is computed

n ln2 -n 2  -m -1) n"2 D2 i

where nI and n are the respective sizes of the two
21

groups and m is the number of variables.

The null hypothesis can be rejected when the value of the

test statistic is greater than the tabled value of F for

the desired level of significance.

The construction of the discrirtinant function is predi-

cated upon minimizing the effects of misclassification and

assigning subjects to the group to which they have the

greatest resemblance. The effects of misclassification

12BMD ,anua'., Biomedical Comnuter Programs, Health
Sciences Cormputln• i:aci ity, UCLA, University of Cal fornia
Press, 1973, P. 211-220
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depend upon the a priori knowledge of group membership and

tb2 costs or penalties of misclassification. The BIMED

programs assume no special a priori probabilities of group

* membership, i.e. the probability of belonging to either

group (in the two-group case) is one-half. They also assume

the costs of misclassification to be equal, i.e. the cost

of assigning an actual member of group number one to group

number two is the same as assigning a member of group number

two to group number one.

The measure of resemblance is determined by the m char-

acteristics which describe each subject. By substituting

the values of the characteristics into each group's proba-

bility density function it is determined how closely the

subject resembles the group as compared with the rest of the

population. The BIMED programs yield the coefficients and

constants for the linear discriminant function for each
13

group in the total population.

In order to determine what effect the chosen variables

had on proficiency and experience it was desirable to mea-

sure the association among the variables. The association

measure employed was the product-moment correlation coeffi-

cient. The correlation computations and correlation matrix

for the entire data set is given in Appendix F.

13 1bid.
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The problem of how to group the variables given this

association measure can be solved through the use of hier-

archical clustering techniques. These techniques can also

be useful to cluster by data units (subjects) which have a

different association measure.

For the associaticn measure among data units, most

investigators use metric measures when the data units are

described by interval variables. Metric measures must

satisfy certain properties. If E is a given measurement

space and X, Y, and Z are points in E, then an association

function D is a metric measure if and only if it satisfies

the following conditions: 14

(1) D(XY) = 0 if and only if X = Y

(2) D(XY) > 0 for all X and Y in E

(3) D(XY) D(YX) for all X and Y in E

(4) D(XY) < D(XZ) + D(YZ) for all X, Y and Z in E

The most common metric measure is the Euclidian distance

function, D2 (Xj, Xk) £ (xij - xik)2 31. This is a special

case of the general class of metrics called Minkowski metricsn

which have the form Dp(Xj, XC n [ * 1/P

where p > 1 and XJ (Xl xj, ... , xn) is the vector

Op. Cit., Anderberg, M.R., p. 98-102
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of scores on the Jth1 data unit. In this analysis the

Euclidian distance function was used to cluster the data

units.
1 5

The hierarchical methods are used to construct a tree

(dendrogram) depicting the relationship among the entities.

The entities are grouped into clusters in order of their

association measures or similarities. The ordering provides

a hierarchy, thus the name. The similarities can be of many

forms of association measures; the general term applied to

the matrix being a similarity matrix.

A breakdown of hierarchical methods yields agglomerative

and non-agglomerative procedures. The agglomerative proce-

dures start with the branches (each entity) and combine these

entities until there is but one remaining cluster (the root).

The alternative procedures work from the root backward.

Only the former was used in this analysis.

There are many actual techniques and criteria of hier-

archical clustering. Initially each entity is considered to

be a cluster of one. The first method searches the similarity

matrix for the pair of entities with the highest degree of

association (e.g. largest correlation among the variables)

and groups these two entities. It then searches all remain-

ing clusters and groups those two clusters which are closest,

I5 lbid.
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i.e. the correlation among their closest members is highest.

This step is repeated until there is but one cluster remain-

ing. This method is called the "single linkage" method by

Anderberg or the "connectedness" method by Johnson.1 6 The

names derive from the fact that each cluster Is Joined by

the single shortest or strongest link (thus most etrongly

connected) between them.

The second procedure, called complete linkage, is the

same as single linkage except that the association between

groups is the association between their farthest members.

Johnson calls this the diameter method because all entities

in a cluster are linked to each other at some maximum distance

A (or diameter).

Hierarchical clustering is usually not too enlightening

for the clustering of data units. The non-hierarchical

methods are more appropriate for classifying the data units

into a single classification of k clusters. The basic con-

cept In most of the non-hierarchical methods is to begin

with an initial partition of the data units and adjust the

cluster mertbers to obtain a "best" partition.

The simplest and most common non-hierarchical clustering

procedure is that of centrold sorting. Beginning with the

initial partition of k clusters (each usually consisting of

Johnso S.C. I'll"lie rarchical Clustering Schemes",
Psychompetrika, Vol. 32, No. 3, p. 24I-254, 1967
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one data unit) a new data unit is assigned to the clu3ter

with the nearest centroid by some sort of distance measure.

Centroids are recomputed after a data unit is assigned ani

the procedure repeated for remaining data units. After all

data units are assigned, the entire procedure can be reapplied

to all data units over and over until there are no more
17

changes in cluster memberships, i.e. until convergence.

There are more complex methods than the centroid methods

for clustering data units and these are based on multivariate

statistical analysis techniques. The scatter of two variables

is the inner product of two centered score vectors. The

scatter matrix T is a square matrix that has the entry t

which is the scatter of variables i and J computed over all

the data units. Each of the h clusters has its own scatter

matrix Wk computed over the data units in the k-cluster.h
The within groups scatter matrix is given by W E Z W

k'lk=l

The between groups scatter matrix is denoted by B. An
h

element b V iki_ k where m. is the number of data

units in the k- cluster, 'ik is the mean (centered around

the grand mean in the entire data set) of the i- variable

I
170

Op. Cit., Anderberg, M.R., p. 156-173

31

),

tyi



'I

in the kth cluster. The three scatter matrices can be

shown to satisfy the relation T = B + W. 18

An important element in many clustering criteria is

the determinantal equation lB - )Wj a 0. The eigenvectors

of the matrix W IB provides the XI solutions to this equation.

D. J. McCrae has developed a FORTRAN IV computer program

called K-MEANS which utilizes these concepts to cluster the

data into k clusters. He provides for four possible criteria

for determining when assignment of a data unit to a particu-

lar cluster results in the "best" partition of the data set.

These criteria are: (1) minimize the trace of W; (2) maximize

the largest eigenvalue of W-B; (3) maximize the trace of

W- B: and (4) minimize the ratio of the determinants IWI/ITL.

This last criterion is more commonly known as Wilk's Lambda

statistic. Since T is the same for all partitions, this is

equivalent to minimizing det W. The last procedure was the

one used to cluster the data units in this particular analysis. 1 9

McCrae's K-MEANS also allows three choices of diatnce

measures between clusters. These are Euclidian distance ,

scaled Euelidian distance, and Mahalanobis distance. Assum-
ing normal populations, N(eO, , ), with equal covariance

180. Cit., Anderbere, M4.R., p. 173-176

%19lbid.
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matrices El Z 2  ."' so that the populations differ

only in location, the Mahalanobis distance between the

populations is given by D2  (ei - eJ)T 'i(oi - e ). This

was the distance measure used in this cluster analysis. 20

The question of how many clusters are present in the

data was mentioned in the previous section. It can be shown

that one prime indicator of the discriminability of variables

in the data set is given by the log of the ratio det T/det W.

When this quantity is plotted against the number of clusters

one can gain insight as to the appropriate number of clusters

within the data set. As the number of clusters is increased

the ratio begins to reach a stabilizing value indicating

that the discriminability of the data is decreasing. Thus,

one can approximate the maximum number of natural clusters

by observing when the curve levels off. It should be

reemphasized that it is a primary objective of most cluster

analysis problems to produce a set of clusters that are well

differentiated from each other.

As stated before, when cluster analyses are performed

on data with several variables actually measuring the same

characteristic, it might be profitable to reduce the problem

to one of only a few primary variables bY the techniques of

principal components analysis.

S~200ps. Cit., Press, S.J. p. 372-323
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For this analyuis, the computer program BIMEDOM was

utilized to extract the first principal component from the

first two variables and the first principal component from

the fifth, sixth, seventh and eighth variables. BIMEDO1M

performs the following four basic steps: (1) the data are

normed and centered; (2) the correlation matrix of the

centered and normed data is computed; (3) the eigenvalues

and corresponding eigenvectors of the correlation matrix

are calculated; and (4) the centered and normed data are

transformed into their orthogonal components. 21

i21

.21 MD MIanua, Bomedial Computer P~ro•rars, Health

Sciences comrputing XFacility-,IURLA; Uihl 91sty of California
Press, 1973, P. 193-201
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VI. RESULTS OF ANALYSIS

The two data groups, control and accident, were first

investigated by discriminant analysia with the use of the
computer program BIMEDO4M.

The test for equality of group covariance matrices (or

equivalently, group dispersion matrices) was performed

according to the procedure developed by 0. E. P. Box and

illustrated in Appendix D. They were found to be equal at.

the .10 level of significance so it was appropriate to apply

the discriminant analysis procedures.

Testing for the equality of group means, BIMED04M

computed an F statistic of 8.94. For the a = .001 level of

significance, the tabled F value is Fnl~n2_m-l(l-)O

U1-.001) = Fl9(.999) = 3.39 and one can conclude

that there is definitely a difference ii. location of goup

means.

The computed discriminant function coefficients were

(-0.00152, 0.00001, -0.00035, 0.00360, -0.00988, 0.00685,

0.00218, -0.00191, -0.00245, 0.00231). If after applying

the coefficients to a data unit vector XjP

-0,00151xjl + 0.00001X + .. , + O.O0231xj,lO < 0 thenJ2
data unit J is assigned to group number two. Otherwise,

the data unit is assigned to gr-oup number one.

Those subjects who had high valueo for the variables

with positive coefficients and low values for the variables
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with negative coefficients were classified as being in the

control group, and those with opposite attributes were

classified as belonging to the accident group.

The discriminant function was applied to the original

data units to determine the performance of the function.

Fifteen subjects of the fifty in the control group were

classified as being in the accident group, while only four

of the fifty in the accident group were classified as being

in the control group. It is important to observe that

although the overall misclassification rate is nineteen

percent, the misclassification rate of the original accident

group is only eight percent. This is encouraging. The

question of identifying correctly those in the accident

group is of greater concern than that of misclassifying

those individuals in the control group.

To obtain the preceding results, it should be noted

that the discriminant analysis was performed on the raw data

as listed in Appendix A. An analysis was also performed on

the standardized data, listed in Appendix B, but the results

were much poorer. Using standardized data, the overall

misclassification rate was fifty-five percent, quite a loss

of discriminatCIng power. It should be recognized that

standardizing data has the drawback of provldlng answers to

a problem different than the onre originally posed. 2 2

0p. Cit., Press, S.J., p. 416,
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In addition to learning the misclassification rates, it

was also desired to determine which variables had the

strongest effect on classifying the data units and in which

direction the effect was observed. The discriminant function

coefficients indicate whether each variable has a positive

or negative effect, but because of the difference in magni-

tudes of the variables, the discriminant function coefficients

alone do not tell how much of an effect. It is of interest,

therefore, to compare how much a one standard deviation

change in each variable will affect the discriminant function.

Table I presents the standard deviations of each variable in

the second column, the discriminant flinction coefficients in

the third column, and in the last column the effect on the

discriminant function of a one-sigma change in each variable.

TABLE I

Standard Disc. Funat. Effect of a
Variable Deviation Coefficient la Change

1 6.03 -0-00152 -0.00916
2 1390.00 0.00001 0.01390
3 28.20 -0,00035 -0.00987

2.99 0.00360 o.0o080

5 .42 -.o.00988 -o.o140o
6 1.78 0.00685 0.01219
7 0.68 0,00218 o.00148
8 1.03 -0.00191 -o.0o248
9 5.14 -0.00245 -0.01259

10 2.45 0.00231 0.00565
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"The results of Table I indicate that variable two (total

hours) has the strongest positive effect in classifying a

subject as not being in the accident group. A surprising

result, however, is that variable five (time flown in the

last twenty-four hours) has the strongest negative effect

while variable six (time flown in the last forty-eight hours)

has a strong positive effect. This would suggest that flying

every other day is beneficial, but that too much flying (i.e.

everyday) is detrimental. Similar interpretations can be

made for the remaining variables although their effects are

less pronounced.

Although an overall misclassification rate of nineteen

percent tends to indicate that there are meaningful differ-

ences between the two groups, the classification cap-bilities

of the discriminant function are not as sharp as one would

like. One cannot say with assurance how a pilot not

initially a member of either group should be classified.

It was desired to learn more about the variables' effects

to t- able to apply conclusions to subjects beyond the range

of the data. To do this, a second method of analysis was

e!ployed; that of cluster analysiS.

The first type of cluster analysis u6ed was hierarchical

clustering by data unitu. The computer program RI-CLUST was

used with Euclidean distance r,4asure between data units as

the Indicator of asaoclat'on. The results rrom both the

single linkage and comp.lete linkage m-ethods weze not at

all oatisfactory. When clustered into the flnal, twc groups,
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one cluster consisted of ninety-nine units and the other of

a single unit. The cluster of ninety-nine units was composed

of clusters of ninety-three units and six units; again

shedding no light on relation to accidents. Therefore, the

clustering on data units was reworked using the non-

hierarchical techniques of the computer program K-MEANS.

Initially, the one hundred data units were clustered

into two groups to ascertain if there was any association

directly with the two original groups, control and accident.

Unfortunately, there did not appear to be any association,

as cluster number one contained thirty-three subjects from

the control group and thirty-seven from the accident group

while cluster number two had seventeen and thirteen,

respectively.

Figure (3) graphically depicts the cluster means of the

two-group cluster results, and the number of subjects in the

clusters. It is interesting to note that fifty-three percent

of cluster number one was composed of subjects from the

accident group while only forty-three percent of cluster

number two was from the accident group. By inspecting the

cluster means of variables one and two, one can see that the

cluster compositions are inversely related to total experience,

i.e. cluster number one has higher accident composition and

fewer years designated naval avaiator and fewer total hours.

The same kind of relation is spen to apply to the recency and

frequency variables (variables four through ten) but the

separation is not as great. Cluster number one which has the

S .39
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higher accident composition has cluater means which indicate

more recent and frequent flying than the subjects of cluster

number two. Again, the results here are in basic agreement

with those of discriminant analysis in that they indicate

less frequent flying is beneficial. But of course, the

support is very thin and the results are far from conclusive,

especially since the cluster means are seen to be relatively

close for all of variables four through ten.

It was stated in Section V that it is possible to get

a rough idea of the number of natural clusters present in

the data by plotting log(det T / det W) versus the number of

clusters. Figure (4) is a plot of this information for the

data under study. As the number of' groups is increased the

curve begins to level off. It appears that beyond nine groups

there is not much additional information to be gained by

grouping further.

The primary interest lies in the analysis of two groups,

since there were two groups initially, and in the analysis

of the natural number of groups. Between two and nine groups

the results are believed to be less useful.

Figure (5) graphically portrays the cluster means of the

nine cluster results, and the number of data units in each

cluster. The relationships among clusters here are not

apparent and there is no one-to-one correspondence such as

an inverse relation between the cluster means of total hours

flown and composition of clusters by accident percentages.
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It is desirable, therefore, to plot the proportion of each

cluster from the accident group versus the cluster means

for each variable. By so doing, trends might appear and

factors influencing the accident proportions might become

more readily observable. These plots are depicted in Appendix

E as Figures (10) through (19). Figures (10) through (19)

are similar in that none of them reveal any prominent

relationships that their respective variables have with the

proportion of the clusters composed of accident subjects.

Intuitively, one might have hypothesized that as the cluster

means increased (as In Fig. (11) for instance) that the

proportion of the clusters composed of accident units would

decrease. Since this kind of relationship did not appear

for the total hours variable, nor did similarly anticipated
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relations hold for the other variables, a final type of

analysis was performed on the data.

It seemed plausible that although the variables individ-

ually did not reflect the contributions they had upon

accidents, certain variables collectively might demonstrate

such an effect. To determine which variables to combine, a

hierarchical clustering analysis was performed by the computer

program HI-CLUST. Product-moment correlation was used as

the association measure between variables. Both the methods

of single linkage and complete linkage clustering as discussed

in Section V were employed. The results are shown as

hierarchical trees (dendrograms) in Figures (6) and (7).

The results of both hierarchical methods are similar.

Variables number one and two are highly correlated and

variables five, six, seven and eight are highly correlated.

Therefore, it was decided to combine those respective variables,

calling the first the experience variable and the second the

frequency variable. In order to eliminate all unnecessary or

distracting influences it was also considered prudent to

eliminate variables nine and ten since very few accidents

involved carrier landines and many subjects in both groups

were not Involved In carrier operations during the period

Investigated.

As discussed in Sections IV and V, BIMDOIr4 waz used to

extract the first principal components from those combina-

tions of variables listed above to obtain the total

i I4
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experience variable and the frequency variable, The principal

components (exhibited in Appendix G) were extracted from the

standardized data (exhibited in Appendix B) as required by

BIMEDOiM.

With the data reduced to four main variables, the cluster

analysis program K-MEANS was again used to investigate the

data. As was done with the data in ten variables (or

regular space) the data was first investigated by clustering

into just two groups. The cluster means are depicted in

Figure (8). As was true in the regular space analysis, there

does not appear to be any association between clustering of

data units and membership in the accident group. Again,

there were thirty-three subjects from the control group and

thirty-seven from the accident group in cluster number one,

and seventeen and thirteen respectively in cluster number

two. Thus, fifty-three percent of cluster number one was

from the accident group and forty-three percent of cluster

number two was from the accident group.

The graph of log (det T / det W) versus number of

clusters was plotted for the reduced space analysis in

Figure (9) and was also found to indicate that beyond nine

clusters, minimal information is gained. Therefore, a plot

of the proportion of clusters from the accident Sroup versus

the cluster means was constructed for each of the four

variables In the reduced space with nine cluster groupings.

Figures (20) through (23) in Appendix 11 are graphs of the

results.
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Ohe resultant plots in Appendix H are not too informative.

Three of the four "new" variables do not appear to reveal any

structure; but the first, the experience variable, may have

some interest. A parabolic fit has been drawn in freehand

and the accident rate seems to bottom out for experience in

the interval (-1,0). This is misleading however. The

Interval (-1,0) of the experience variable corresponds to

values of X and X which are between modes of their respec-

tive distributions. Only seven of the one-hundred aviators

are in this range.
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VII. CONCLUSIONS

The three analytical methodologies employed in this

investigation were primarily utilized as exploratory tools

to determine if there were significant differences in the

various flight time statistics recorded for sample groups

of pilots with and without accidents. The discriminant

analysis techniques provided the best indication that there

were differences which could be used to categorize the

pilots according to the probability of belonging to the

accident group.

It should be recognized that failure to distinguish

among pilots according to their flight statistic attributes

is not necessarily a fault of the analytical procedures, but

Inherent inability of the data as currently conceived to

discriminate among subjects. This does not suggest, however,

that this approach to accident analysis has no merit. It

does point out the need to expand the investigation to In-

elude more quantitative aspects of flying. Many other

varlablez such as instrument time, synthetic trainer time,

number or instrument apprLiches, average time spent brlefing

t!ights, and subjective attributes 3uch as training comxiand

flight grades and NATOPS quiz grades could be included.

Breaking the investigation down into many more restrictive

areas such as including only accidents in a particular phase

of flight, or including only accidents by a particular type
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of aircraft such as attack or patrol might also prove to

be more relevant. It should be informative to expand the

time span of the data base to include five or ten years so

as to have a larger sample size on which to base results.

Also, enlarging the size of the control group- would help

to eliminate the effects of non-randomness which could bias

the data.

Despite the fact that the data investigated in this

analysis did not contain those characteristics which could

identify the underlying accident generating mechanism, it

is still considered worthwhile to pursue the basic ideas

developed here in future accident analysis.

51i
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0ýAPPENDIX A .

TABLE II - Control Group Raw Data

Variables

Obs. 1 2 3 1+ 5 6 7 8 9 10
1 1 0137 10 10 0.5 0.7 0.4 0.6 00 002 15 3398 12 01 3.3 5.7 1.5 2.5 01 012 16 0589 36 0 0.9 1.8 0.5 0.9 (10 00

12 4940 35 0o 0.5 0.9 0.4 0.8 00 00
16 4 4'6 18 01+ 0.6 1.7 1.6 2.0 03 c0

6 1+ 3562 18 05 0.3 0.5 0.3 0.5 00 00
7 5 1681 32 05 0.9 1.6 0.5 0.7 00 00
8 A 1621 1I+ 09 0.9 1.3 o.5 0.6 m'0 0
9 4 1539 47 ¢! 0.0 1.9 0.7 1.0 00 Cc

10 2 09-68 30 06 0.5 1.2 01.' 0.5 00 c'0
1l. 1 0320 • 1 03 0.7 1.4 o6 1.• + oo ro
12 3 1532 04+ 17 0.3 0.3 0.3 0.6 m0 00
. 3 0803 4+2 03 1.1 1.8 0.9 1.3 03 01
1 2 1063 132 02 1.9 5.1 1.3 2.3 00 00
15 1 35 3 3 06 1.6 1.1 1.6 00 00
16 1 0285 13 02 0.9 2.3 1.0 1.8 00 00
17 1 0187 32 03 0.7 1.3 1.0 1.3 00 00
18 2 028o0 4 02 0.8 1.5 1.1 1.5 00 00
39 18 41131+ 61+ 03 (.8 2.2 o.6 o.9 00 00
20 16 3QO1 34 03 (.o6 1.2 0.7 1.1 CO C0
21 1+ "5LY, 13 13 0.? 0.3 0.2 O.? 0o 00
22 10 34-26 24 05 0.5 o.9 )P.4 .6 oi 011123 26 ,592 44 03 0.7 1.8 0.7 1.8 00 co
2 1ý 4+ 0208 19 06 o. 8 1.7 0.5 0 00 00
25 1 0,07 44) 03 0.9 1.6 1.1 1:3 03 01
261 14 187S 46 05 0. 4 (0.7 0.2 0 c o Co
2 ,7 3 231 18 1ic o, 1.7 o.4 o, 0o .o

1288 6 04 0.7 1. ).0 P.3 CI0 (o 0
29 1+ P52 52 01+ M' 1.3 0.5 0.7 ('0 00
30 3 1 2 ?7 46o0 0.6 .( (..3 e1

P3 • 1107 c, , e.6 0.5 o3 , n.cO
32 1 V 3321 37 03 0?7 1.1 0.9 143 (o 00

S 2 1511 69 op 0.8 1.4 o-• 1 0O O0
3710 VqV6 ' 0.7 1.10 0.3 0.5 030 '

A 39 1.4 1 o. 0 e tl
0. .1+ 0 .4

Lt47 14 1M~ i K. 1; 0 ri.712 1. ý•01o 1 04 1. z- 2. .31 cc

2. ' ! C. C-. - :. ".



TABLE II (Continued)

Obs. 1 2 -3 )+ 5 6 7 8 9 10

1+1 '3 2673 76 02 2.3 1-.0 1.3 1.9 10 03
42 5 1199 1+ 15 0,0 0.0 0.1 0.1 00 00114 3 I3 38 0, 0.3 0o.+ 0.1 o.1 0o0 o

13 0703 10 10 0.5 0.9 0.3 0.5 00 00
15 2 1000 1+6 05 0.5 0.8 0.7 0.9 00 00
46 1769 61 02 1.2 1.9 0.6 0.9 02 03
417 15 4+172 31 01 1.5 3.1 0.9 1.1+ 00 00
1+8 16 528 13 13 1.2 2.3 0.6 1.0 00 00
1+9 16 83 82 02 1.6 2.9 0.8 1.1 06 03
50 17 5123 23 05 0.8 16 .6 0o.9 ol Ol

4•.

kg•

JI

-:: 53
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TABLE III- Accident Group fRaw Data

Variables

Obs. 1 2 53 6 7 8 9 10

1 0405 78 01 0.3 1.1+ 1.0 1.0 O0 01
2 6 2232 130 01 2 .0 2.0 1.0 1.0 04 01,

S1760 90 05 0.9 0.9 1.0 1.0 00 00
3 01918 88 01 0.0 5.2 0.0 3.0 01 0
1 01+21 64 01 3.0 6.0 2.0

6 1 0150 78 01 0.7 0.7 1.0 1.0 00w 0
7 12 2860 1+5 00 35 4+,8 2.0 3.0 06 03
8 3 1121 76 01 0.0 05 0.0 1.0 11 02

9 22 3487 17 00 1.1 3.5 1.0 2.0 00 00
10 7 2760 104 04 0.0 0.0 0.0 0.0 18 00

11 5 1724 92 00 3.7 5.5 2.0 4.o 17 07
12 5 06 54 107 01 2.7 3.1 1.0 3.0 37 16

1162 3.1+ 5.1+ 2.0 3.0 15 00

R 01+05 51+ 00 1.5 3.0 1.0 2.0 1.9 08
15 12 3201 133.03 -.?7 .7 1.0 1.0 01 06
16 1 0919 120 00 4 .3 6.8 2.0 3.0 12 05

17 3 111+2 106 07 0.0 0.0 0.0 0.0 16 12
18 1 0357 61+ 0 1.0 1.0 2.0 3.0 o6 00

1085 1.9 1.9 1.0 1.0 07
20 2 0679 03 0.0 1.3 0.0 1.0 06 02
21 18 10i 77 03 1.3 1.3 1.0 1.0 06 00
22 41144 1+103 9.3 9.3 1.01000 00

9 2658 1+001 1.7 3.2 2.0 4.0
1153 86 01 3.1+ 5.6 2.0 3.0 10 05

6 1762 57 02 0.0 2.0 0.0 1.0 05 00
26 1 0+57 93 01 35 1+.o 2.0 3.0 10 02
27 4 121+1 69 02 1.8 2.9 1.0 2.0 11 00

28 3 1129 111 03 0.0 0.0 0.0 0.0 09 06

29 1 3933 27 0~ 0.0 0.0 0.0 0.0 00 00
3 17.0 0,0 0.0 0.0 00 0030 18 60,14- 73 0 -, O - -0

3 1 5 161+0 26 00 2.1 3.7 .3.0 3.0 00
32 12 ý285 20 01 1.3 1.3 1.0 1.0 00 00.

33 86 03 0. 0.0 0.0. 0.0 09!

5 1595 1%9 1 3.3 6.7 3.0 6.0 00 00
35 0 0329 P6 01 1.0 110 1.0 1.0 00 00.
36 3 0577 89 03 0.0 0.0 0.0 0.0 05 01M•66 4•.2 P.0 2.0 ol 0
37 5 k56 1+3 01 4+? 1.2 C. 20 o
3 - 3Q67 P 01 3 .3 3.3 1.0 1.0 12 V4

12 3772 10901 6,.6 6.6 3.0 3.0 r? 04
6 3 ('957 1+9 0r 0.0 0.0 0.0 0.0 13 o6

41 3 1393 32 01 1. 0 1.0 0 , .0 v 6 01
5 1457 0 01 4 I. ý 2.0 2.0 10 ol

18 4717 77 !,1 1.7 1-7 1.0 '.0 11 06,
c 1560 1+5 01 2.5 2,5 1.0 1.0 ( re

0c591+ " .7 .0 1.0 1,0

1+6 1),' I1+ P1 M0 33 3.3 3.0 3.0 m co
17 2939 20 01 .6 i.O 1.0

1+8 5 6 0 0.0
75 o 3.I r.1.o . ...
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APPENDIX B

TABLE IV -Control Group Standardized Data

I - Variables

Obr'. 1 2 .3 4

1 -1.0751 -1.3095 -1 .1P29 1.195 -.0.5698
2 1,1200 0.5506 :1.092q .1 1 37ý

3 1.2769 -1.0101 -0.0126 -0.2C0I0 0.1330
0.6i+94 1.P7?1 -0.05ý76 -0 -361q -0.5698

5 1.2769 1.5581, -0.0576 -0.3639- -0.3929
6 0.9631 0.99 0.8228 -0:1040 -,0.9238

o:44 ~+6 -0.2867 -0.19216 .0.104+0 0.138
0.0220 -0.3265 -1.0028 0.9358 0.1-380

9 -o.o55 -0.3808 0 25-0.3539 0.13,80
10 .0.9192 -0.7591. -0.2827 0.1560 -0.5698

11 -1.0761 -1.1883 0.2124F -0.6239 -0.2159
12 .. 0-7624 -0-385 -. 4.)529 3.0153 -.0 :9238
13 0-07624 .088 .2575 -0.6239 0. 4920
1'f -0.919?2 -0.0909 4 .3804 _0:8838 1.9077
15 -1.07-51 -1.1850 _0.0126 -0.6239 -0-3929

16 -1.0761 -1.2115 0.3025 -0.8838 0.1380
17 -1.0761 -1.2764+ -O.1926 -0.6239 -0.2159

18 -0.9192 -1.211+8 0.37 -083 00389
19 115Qr06 1.3389 1 .27? . 0.6239 -0.0389
20 1.2769 1.1838 -0.102,6 I 0.6239 -0-3929
21 0.9631 0.9507 -1-01+78 1.9755 -1.1007
22 0.3357 0.869 -0.:552-7, -0.10+01 -0.5698
23 2.8'+55 ?.040 0.31±75 -0 6239 -0,2159

2 0.6055 -0.0559 -0.3277 0:1560) -.003F9
25 -1.07ý1 1i. 0644+ 0: 375 :0.6?239 0_ 13I0M

26 -0.6055 -0.1563 0 1+375 -. Ct0 IC 0.7+8
27 -. 349 -o051+9 08 2 28 1.1957 -0o.0389

28 -06055 -0.6P566 -.0.02 033 025

29 -0.60 5 0'2710 0.7076 -0. 3263 -0.0389

30 .0.?V124 O0.q564 o.4175 -0.3639 .-0. 7458
31 --0 -91'" -0.4"70 87'~7 -0.3039 -0.3q29
32 -1 .071"1 -1 1~04 0.314 -0.16239 -0.2159

3 -0~,9192 -0.390'+ 1:1+7P7 0,PJF38 :0 0389

36 0.:¶i~ -07328 -0*3'*39 -0c-P218
3714 : 10-9.'31 0-m 33 I -. t"? -0. , 3j -fj. q? ý8

o.hý-.0" -0.,237? 0. 151( 1.100,
-0 10.3357 0-9613 n0.5527 i-O. ic~o 0.13rlO
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TABLE IV (Continued)

Variables

Obs. 6 7 8 9 10

1 -0.8123 -0.681+7 -0.7165 -0.3559 -0.3736
2 3.6807 2:a281 2.5094+ 0.2181 0.9608

0.1761 -0.!08 --. 2071 -00'3559 -0.3736
-0.6326 -0.681+7 -0.3769 -0.3559 -0.3736

5 0.0863 2.6020 1.6605 1.3660 "0.3736
6 -0.9921 -0.9586 -0.8862 -03736
7 -0.0036 -0.4i(8 -0.5467 -0.3559 -0.3736

-0.2732 -0.4108 -0.7165 -0.3559 -0.3736
9 0.2660 0.1370 -0.0373 -0.3559 -0.3736

10 -0.3630 -0.9586 -o.8860 -0.3559 -n..3736
11 -0.1833 n.4109 0.6418 -0.3559 -0.3736
12 -1.1718 -0.9586 -0.7165 -0.3559 -0.3736
13 0.1761 0.681+8 0.4720 1.3660 0.9608
14 3.2314 1.7803 2.3396 -0.3559 -0.3736
15 -0.0036 1.23?5 0.9813 -0.3559 -0.3736
16 0.6254 0.9586 1-3209 -0,3559 -0.3736
17 -0.2732 0.9586 0.4720 -0.3.559 -0.3736
18 -0,0934 1.2325 0.8116 -0o3559 -,.3736
19 0.5356 -0.1369 -0.2071 -0.3559 -0.3736
20 -0.363n 0.1370 0,1324 -0.3559 -0.3736
21 -1.1718 -1.232.5 -1.3956 -0.3559 -0.3736
22 -0.6326 -0.681+7 -0.7165 0.21811 0.9608
23 0.1761 0.1370 1.3209 -0.3559 -0.3736
24 0.0863 -0.5,108 -0.2071 -0.3559 -0.37363
25 -0.0036 1.2125 1.3209 1.3660 0.9608
26 -0.P223 -1.2325 -!2258 -0.3559 -0.3736
27 0.oP63 -0.6•R47 -0.37A9 -. 359 -0.37363
28 0.2660 0.9056 1.8302 -0.3559 -0.3736
29 -0.2732 --. r08 - .5•I67 -0.3* 9 -0.3736
30 -0.0022 -1.2125 -1.225 -0.3&59 -0.3736
31 -0.2732 -O.O-•P6 -0.8862 -N.35,39 -0.3736
3? -O.I.529 r.6'8 0.h720 -0,3559 -0-3736
33 -n.131 C.6?48 0.3022 -0.3r55 -e.3736
34 0.2660 -P.n586 -o.n 862 -0.3559 -0.3736
35 O.9040 o.6P48 0.9P13 0.2181 -0.3736
36 -I.3559 ,n.•P17 10.7,-, .3$9 ,o.3735
37 -0-t2 ~~~c (1.117 13559 -0.33

S -1.2516 -1. 54 -1.P56 0.355 -0.37-46
0.7153 p.986 0.641q -n.35cq -373

-- _0.0,.63 -0.4113 -0.2071 -0.3559 -0.3736

- x 3 -. 0-----3.



TABLE IV (Continued)

Variables

Obs. 1 2 3 1+

41+ -0.2918 0.3704+ 1.7878 -0.8838 2.6156
42 -0.W,86 -0.6060 -.1.0028 2.1+951+ -.1+547
*.1 -0.7621+ -0.6431 0.0771+ -0.10+•0 -0.9238

-0.7621+ -0.9346 -1.1829 1.1957 -0.5698
45* -0.9192 -•0.,77M9 0.4375 0.0104O -0.5698
46 -0.7621+-0.2285 :1.1127 -0.8838 0.6689
+7 1.1200 1.3633 .0.2377 -0.3639 1.1998
48 1.2769 -1.050o -1.478 1.9755 0.6689
49 1.27019 1.8078 2.0579 -0.8838 1.3768
50 1.31337 1.4-933 -0.5977 -0.1010 -0.0389

•.5. 1
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TABLE IV (Continued)

Variables

Obs. 6 7 8 9 10

1+ 2.ira3l 1.7803 1.+907 5*.3837 3.6296 ,
42 1:.W4 .1.5064 1i4. 651 -0.3559 -0.3736
1 -1.0819 -1.5064 -1.56 5+ -0.3559 -0.3746

-0.6326 -0.9586 -0.8862 -0.3559 -0.3736
45 .0.7225 0.1370 -0.2071 -0.3559 -0.3736
46 0.2660 -0.1369 -0.2071 0.7921 3.6296
1*7 1.323 0.6 1+8 0.61+18 -0.3559 -0.3736

8 0.6251+ -0.1369 -0.0373 -0.3559 -0.3736
1+9 1.16146 0.:+109 0.1321a 3.0879 3.6296
50 -0.0036 -0.1369 -0.2701 O.2181 0.9608
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TABLE V - Accident Gr-oup Standardized Data
Variables

Obs. I 2 3 1 5
- -09374 -1o.0456 0.1 -o.4195 o0T121
2 -0.0531 0.401+7 1.7109 -0.4195 0,0621

-0.2299 0.0300 0.5n35 1:814.79 -0.50-69
-0.5836 -0.6381+ 0.4431 -0.4195 -0.9721+

5 -0.9371+ -1.n-129 -0.2813 -o.14195 -0.5793
6 -0.9371+ -1.24,80 0.1413 -o.)1+q5 -0.6103g 1.0081 0.9032 -o.8548 -0.9863 0.8379

- Po.36 -n.1+772 O.-0M9 -0.4195 -0.9721+
9 2.7767 1.4009 -1.7000 -o.9863 -0.4134
10 0.1238 0.8238 0.9261 1.2810 -0.97214
11 -0.2299 O.0o14 0.5639 -0.9863 0.9411+
12 -0.2299 -n.8479 1.0166 -0.,195 o.1+241

R -0.937 1.0546 -0.5832 -0.986 -°.1965

15 i.oo81 1.1762 1.8014 0.7142 1.4586
16 -0.9371+ -0.6376 1.4090 -0.9863 1.2517
17 -0.5836 -o.46M6 0.9264 2.9815 -0.9724+
18 -0.9371 : -1.0837 -0.2813 -0.4195 -.04552
19 -0.7536 0.5058 1.7713 -0.4195 0.o103
20 -0.7605 -0.8281 0.4733 0.7142 -0.972a
21 2.0693 1.8089 0.1111 0.7142 -0.97214
22 -0.4068 -0.+590 -0.9756 0.7142 3.8378
2a 0.1+775 0.7428 -1.0058 *-0.1+195 -0.0931
2 -0.5836 -0.4518 0.1827 -0.4195 0.7862
25 -0.0531 o.o016 _o.419261 0.1471+ -0.9724
26 -0.9374 -1.0064 0.591+0 -0,4195 0.8379
27 -0.4068 -0,3820 -0.130! 0.1471+ -0.0411+i
28 -0.5836 -0.4709 1,1374 0.71112 -0.9724
29 1.0081 1. 751+9 -. 3982 O.7142 -.0.9721+
30 2.0639 1.2406 -o0.0097 3.5481+ -0.9721+
31 -0.2299 -0.0652 -. 14281+ -.0.9863 0.1183
32 1.0C81 1.2405 -1.6095 -0.1195 -0.30M0
33 2.0693 2.1740 0,3827 0.7142 -0.0721+
31. -0.2299 -n.1010 2.5P62 -0.41905 0.731+5

35 -.1.111+2 .1.1059 -1.4+284+ 40.4195 .0.1+552
36 .-0.5836 -0.0090 0.4733 0.711+2 -0,9724
37 .-0.229P -0.6796 -(0.9152 -0.4195 1.2000
38 1. 00,S 1.V8o 0.2620 -o.h19Q 0.7145

1.0001 1.6271 1.0770 -0.1015 2.11413
-o.0.L6 --.007h .-o7341 2.4147 -.0.972a

S.0.5,3 -0. 3! -i.21k72 -0 .431 -0.4552
1+ -.0.22 ....- 0.210¢ 0.71,50 -0.I•!95 1. 20•0

1•5 -0.7fA5 -0.9035 0.-2P1 0.1174 -0.9724
I,46 .I.0.l-qni 0.130 .' 73 -.0 63 0,73/

487 20603 04_.059 -_1.'48 -0.142 --0.9711

I9 -0.5P16 -o.5141 -.0.7945 - P.9i63 0.C'21
S50 -0.9 174 -1-1757 0.0507 -O.9___ 0.3207
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TABLE V (Continued)
Variables

Obs. 6 7 8 9 10
1 -0.5903 -.0140 -0.5100 0.3115 -o.381+2
2 -0.:252 -0.1140 -0.-100 -0.3965 -0.3842
3 -0.8111 -0.1140 -0.5100 -0.9628 -0.6797

1.0888 -1.2536 0.9901 -0.8212 -0.6797
I.4ýL23 1.0256 1.7401 -0.9628 -0.6797

6 -0.8 9 Q7  -0.1140 -0.5100 -0.9628 -0.6797
7 0.9120 1.0256 0.9901 -0. 133 0.2069
8 no. 9 8R0 -1.2536 -0.5100 0.509 7 -0n.0887
9 0.3376 -0-o140 O.2400 -0.9628 -0.6797

10 -1.2090 -1.2536 -1.2601 1.5858 -0.6797
11 1.2213 1.0256 1.7401 1.44+2 1.3890
12 0.1603 0.1140 0.9901 4.2761 4-.0487
I 1.1772 1.0256 0.9901 1.1611 -0.6797

0.1167 -0.1140 0.2400 1.7274 1.6845
15 0.8678 -0.I140 -0.5100 -0.3965 1.0935
16 1.7958 1.0256 0.9901 0.7363 0.7979
17 -1.2090 -1.2536 -1.2601 1.3026 2.8666
18 -0.7671 1.0256 0.9901 -0.1133 -0,6797
19 -0.3694 -0.1140 -0.5100 0.0283 0. 5024
20 -0.7671 -1.2536 -0.5100 -0.I133 -0.0887
21 -0.6345 -o.1140 -0.5100 -0.1133 -0.6797
22 2.9005 -0.1240 -0.5100 -0.9628 -0.67971

0.2050 1.0256 1.7401 -n.9628 -o.6797I
R 1.2655 1.0256 0.9901 0.4531 0.7970.
25 -0.3252 -1.2536 -0.5100 -0.2549 -0.6797
26 o.55?85 1.0256 0.9901 o04531 -0.8807
27 0.0725 -0.1140 0.2400 0. 59§7 -0.6797
28 -1.4"2o07 -1.2536 -1.2'01 0.3115 1.0935
29 -1.20?0 -1.2536 -1,2-01 -0.9628 -0.6797
30 -!.20ýO -1.2•36 -1.2601 -0.962" -0.6797
31 0.426c ,: f.2400 -0.9625 -0.6797

S32 -'•,34 -n.114n -0.5100 -0.952F. -1%6797
33 -1.2('•0 -1.2516 -1,.201 0.311, 0.5n2

34 I~5- 2.165 3.2402 1-0$23 -('.6797
S35 -0,7671 ,A-li40 _.•o-.02 -'.79?

36 -!.2cO -!36 -1.2601 -0.2549 -0.3842

1+37 0.;4-9 1.02r6 0.240f -0.8212 -n.6797
39 1 -7074 2. 165" 0.91,3 ,502N3

-1 7. 7 1 -,'.1140 04- 0 5 0.1133 -. 3fi42

45 -NPt•59 -1.2516 -4%I0 0.4c:1 1.093v;
56 o 0.242 2.15';,1 0.9101 -. J628 -0.6Ž97
47 -(%.91+3p, -n,!!lr - PO -r%.n62A -(6.60'

4 8 . l ..n '01 D o eQ 7 - jO, 6 7,. . - 1,r. ] - 26 1 , . _
•9 07705 -0.2140 0.24-Me -A. l!13 -c•77
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APPEDIX C

DISPERSION MATRICES

An element of the group dispersion matrix is given by

the formula

1 -50

I (Xii - 'I) (zj k - xa)k=1

where i 1,2,...,i0 and J = 12,...,10. kn element of

the dispersion matrix is readily seen to differ from an
1element of the covariance matrix only by the factor iN-1

where N is the number of data units or observations.

An element of the pooled within groups dispersion matrix

Is given by the formula

1 2 50
E1 kE (Xki )(X X

where i 1,2 ,...,,0 and J 1,2,...,10, and N and N

are the number of observations of the respective groups.
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TABLE VI -Control Group Dispersion Matrix

Variable
1 z 2 3 " .

x 41.7 7700.1l -25.90 0.71 0.58
2 77PO.1+l 232511.33.00 827.55 -608.69 95087

-25.90 82 503.67 -52.11 4.87
0.71 -6089:69 52.11 15.10 -0.95

Variable 5 0.58 95.87 14.87 -0.95 0.33
6 1.21 219.13 12.76 -2.00 0.61

0.05 -9-39 3.:8 -0.8)+ 0.11+
0.29 24.17 5.7T -1.30 0.2,

9 0.78 538.38 14.62 "1.6 0.4
10 0.22 235.05 6.01+ -0:93 0.21

Variable

6 7 8 9 10

1 1.21 0.05 0,29 0.78 0.22
2 249.13 -9.39 24.17 538-38 235.05

3 12.76 3.48 5.71 114.62 6.C14
-2.00 -o.814 -1.30 -. 76 -0.03

Variable 5 0.61 O.14 0.23 O.48 0.21
"6 1.26 0.30 0.52 0.77 0.32K 0.30 0.14 0.21 0.27 0.07

0.52 0.21 0:15 0.34 0.09
9 0.77 0.27 0.3 3.10 1.11

10 0.32 0.07 0.09 1.11 0.57

62
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TABLE VII -Accident Group Dispersion Matrix

Variab. o

1 2 3 1
1 32.62 6776.32 -31.67 1.43 -0.45
2 6776.32 1619479-00 -2719.64 120,05 -.9.87-31.67 -2719.64 1119o93 9.76 7.69

.1+3 420.05 9.76 3.18 -1.23
Variable 5 -0.)+5 -9.87 7.69 -1.23 3.81

-1.+6 I32223 115 -1.97 3.82
7 -0.32 -66.75 0.93 -0.93 1.17
8 -1.33 -31+6,63 6.4+7 -1.143 1.29
9 -6.55 -130487 86.96 0.6o -0.37

10 -1.1+2 -269041 441.58 0.86 0.29So.2

Variable

6 7 8 9 10

1 -1.16 -0.32 -1.33 -64. .-.1
2 .322.23 -66.75 -346.63-13C4-8.7 -269.104n.1.5 0.93 6.47 86.96 .44o58

-97 -0,93 -1.,+3 0.60 0.86
Variable 5 3.P! 1?17 1.29 -0.37 0.29

6 5.23 1.35 2.2R -0.85 .0.10
1:35 0.79 0:9? -0.96 .o.01,+
2021 o.97 181 -0.13 -0.19

9 -0.85 -0:96 -0,13 50.90 19.,410 .0-.10 -o.t4 -0.19 19.,1+ 11.6 8J
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TABLE VIII - Poolad Within Groups Dispersion Matrix

Variable

1 2 3 .

- 1 37.05 7238.36 .28.78 1.07 0.06
7238.36 19724-56.00 -96.ol+ •.94,32 143.00
-28.78 -946.01 811.80 -21.18 6.28

1.07 -91+.32 -21.18 9.11+ -1.09
Variable 5 0.06 43.00 6.28 -1.09 2.07

6 -0.13 -36.55 11.96 -1.98 2.21
7 -0.13 -38.07 2.20 -0.89 0.66

-.0.52 -161.23 6.11 -1.37 0.76
9 -2.88 -383.2R 50.79 -0.58 0.05
10 -0.60 -17o41+ 25.31 0.01 0.25

Variable

6 7 8 9 10

1 -0.13 -0.13 -0.52 -2.88 -0.60
2 -36.55 -38.07 -161.23 -383.21+ -1 7 -h4

2.1.96 2.20 6.11 50.79 25.31
"0-1.98 -0. -1.37 -058 0.01

Variable 5 2,21 0.6*-6 0.76 0.05 0.25
6 3-21+ 0#83 1.38 -0.040-11
7 0 o .46 0.59 -.035 -0.18

8 1.3•00.59 1.08 0.11 -.005
9 .006 -.0.35 0.11 27.00 10.07

10 03.1 -0.18 -0.05 10.07 6.13
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APPENDIX D

STATISTICAL TEST FOR EQUALITY OF DISPERSION MATRICES

Given a sample of two groups and m variables with group

dispersion matrices S1 and S2,3 pooled within groups disper-

sion matrix SW, and total sample observations N = NI + N2$

the hypothesis that the dispersion matrices (and thus the

covariance matrices) are statistically equal may be deter-

mined by the following computations: 22

A lnE!Swl3 (N-2) - (N -1).In[EIS 1l)- (N -l)ln[IS2 13

2

6(2- 1)(m + 1)

2 + 2 •3 (M -)(m + 2)(N +) (N+1) (N-2)•

6

l+ IFE
abs JS C1

•Box, O.E.P., "A General Distribution Theory for a Class
of Likelihood Criteria," !Io etriIIa 36 (1949). p. 317-346

65

,......' ' " " '.. . ' ... ... , ', ;.. ." .. . . -' • :



If B2 is greater than C, the test statistic is:

E A(l- B + 2/E) D

If C is greater than B2 then the test statistic is:

A D

AU (1 Bl

66
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APPENDIX E

Figures (10) through (19) depict cluster analysis plots

for each of the ten variables being studied.. The label "P"

on the vertical axis of each figure represents the proportion

of each cluster that originates from the accident group.
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Figure (11)
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APPENDIX F

CORRELATION MATRIX

The product-moment correlation between two variables,

and X~ is given by p 4  Cov(X ,X An element
Var(X )Var(X

of the correlation matrix can be calculated by the equation

nE (x ik - i) (xjk - Yj )
- k=lPlj [E (Xl E~) (xjk•

TABLE VIII -- Correlation Matrix for all Data

Variable
1 2 3 4 5

1 -1.o0o 0.8o+94 -0.2080 0.1161 -0.0378
2 0.484 l1.0000 -0.0961 0.0539 -0.0288

-,.2080 -0.0961 1.0000 -0.4616 0.3111
0.3.161 0.0539 -0.4616 1.0000 -0.3818

Variable 5-0.0378 -0.028a 0.3111 -0.3818 1.0000
6 -0.o+97 -0.0558 0.3516 -00+539 0.8682
7 -0.071O -0.0817 0.2'44 -o,54-7 0.7092
8 -0.1163 -01364 0.3308 -0.)114 0. 5596
9 -0.01416 -0.116-4 0. 5238 .-0.29057 0.1851

10 L-0.0352 -0.0577 0.:46U4 -0.1973 0.1932

6 7 8 9 10
I -0.n4O7 -0.0 70 -. 1161 -0. 1436 -0.085;
2 -0.05ý3 -0.0817 -0.1Lv4 o0.i164 -0.0577A.-3103 o.5284 0.W48

-4•UZ -. 1147 -0.-5-li -0.5 -A.10173
Variablo 5 ,.), 2 0.7092 . 0.1O5! 0.!90I

S6 1.0nro 0.7053 0.7591 0.15•Q 0,,1,0
7 0,70(i !.0•~r 0.8•99 0.0836 0.0251
8 0.7591 Q.'%00 1.r'"c0 0.172_3 O.o•°9h

o.IeZ20 0.0?36 0.17?26 1.0000, O.A,60
1.0 0,1370 0.0251 0.0994 0.8169 1.O000
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APPENDIX 0

TABLE IX -Principal Components for Control Group*

- 'ariables Vatriables - Vhriablcs Vartivb:Fes
Obs. 1 .0, 2 596,7,& 8 Obs. I & 2 5.,67,& 8

1.6699 -1.3798 26 0.5332 -I.o33m
2 -.1 791+ 6.3810 27 0.1328 -o.0:991

.0.IP-67 -0.1988 28 0.8624 10.1 137-L 7-I. r:0 -~lg 20 0."n't-! -.0.5

5 - .9•: " .956, 30 0.9-. -
6 -1.3456 -1.8615 31 1.1103 -1.2411

0.5147 -0.4.092 32 1.5795 0.2381
0.2131 -,6300 33 0.9230 0.3750

"9 0.90.02V#5 34 0.2063 - 9931

11 1.5150 0O32)43 36 -0.7722 -1.7726
12 0O.P035 -1.8672 37 -3.1944 -1.i7"2
17 14.li+' 0.8991 "8-1. 032 2..; % e

. ,.71.3 4.5973 9 0.2-69 I.73`8
* 15 "582'7 0.9013 -0.907' -0.1941
3.6 1,6013 1.5121 ia! -0.0550 3.9734
17 1.6467 00.627 I-2 0.7382 2. 9538
18 1.193'a 0.9131 +3 0.9838 -2.5146
19 .-2.0501 0.0804h# 1.1878 -i.5082
20 -1.7221F .-0.2)0,6 5 1.1599 -0.6775
21 0.4.33 - 0.69,36 0.,o^,5
22 -0. 34 .1,2891 47 --. 71 1 1.9168

S--~2a ,4-S 6 -. 209 -2.1 592, I ,<
25 1-4963 1.3292 50 1-2.3989 -0.1913

"*Note: The principal components were extracted from
standardized data.
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TABLE X - Principal Components for Accident Group#

Vari ables Variables Variables Variables
Obs. 1 & 2 5,6,7,& 8 Obs. 1 & 2 5,6,7,& 8

1 238R0 .0 9997 26 1.3591 161
2 .-0.2461 -o4o. 6g6 0.5521 0.0758

0.8139 -0.06560 0.73CI -2.3258
0.38553 -0.0562 29 -1.9310 -2.1258

5 1.3791 2.371+3 30 -2.7369 -2.3258
6 1.99Q97 -.10603 31. 0.2065 o.OC,
7 -1.3378 1.8637 32 .1.57b-0 -0.7743
8 O.'25 -1.8509 3a -2.9702 -2.3N58
9 -2.9212 0.0313 0.2316 3-9012

10 -0.6613 -2.3258 3 1.o554 -0.9173
11 0.1599 2.4339 37 0.068 -21.5398
12 0.754+ 0.7056 37 0.6366 i.5398
13 0.0578 1.9759 -1.6751 0.1790
13 1.3880 0.0242 198L4 3.615725 -. 09 O4563 0.8336 .2.325816 1.1024 2.5191 41 0. 591'F -0.9173

17 0.7309 -2.3258 +2 0.3082 1.5398
18 1.4147 0.3751 ý2 RI
19 0.7525 -0.14883 0.8a : -0203
20 1.1120 -1.7367 1+5 1.161+7 -1.3t85
21 -2. ,7•47 -1.0970 4. 2932 2.0o27
22 0.6060 3.0390 -7 .2.12"6 J -1.Ie79

1.3280 -2: .323 .0.851+2 1.14120 90720.99t49 0.7825" O. 9o0
2O+. 721+7 2.0216

!25 0.0150 -1.5083 50 1.1791 1.3871

*Note: The princIpal components were extracted from

standardized 2ata.
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APPENDIX H
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