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NOMENCLATURE

b Dynamic viscosity coefficient

L c Velocity of sound

C Friction coefficient

d! Transformed coordinate

1). Body diameter

f g3  g5, h 5  Velocity functions

8 Parameter defined in Eq. (2.8)

h Convective heat transfer coefficient

jj Parameters defined in Eq. (2.17)

k Thermal conductivity

N a Mach number

Nu Nusselt number

P Pressure

Pr Prandtl number

q Heat flux

Re Reynolds number

19 S-l 2 Parameters defined in Eq. (2.7)

S k~lative enthaiy difference

Sl0 z 2 z4 , '4 Temperature functions

"T Temp-erature

u Tangeatial ve.c, city

u9, '3, ur Coefficients of velocity series

U Boundary layer edge velocity

x, x Coordinates along body surface
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I Transfotmed coordinate

y Coordinate normal to body surtace

M Angle

0, 8 Velocity parameters defined in Eqs. (2.7) and (2.9)

Y Specific heat ratio

Ti Similar independent variable

P Dynamic viscosity

v Kinematic viscosity I

p Density

T Shear stress

Subscripts

0 Stagnation

1 Boundary layer edge

w Wall
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I. INTRODUCTION

Aerodynamic heating of a blunt body is a result of flow of air, at

high speed about it. Direct compression and internal friction at and

near the stagnation regions of forward surfaces of the body convert the

•- kinetic energy of motion into heat within the boundary layer of air

which surrounds the body. Consequently, aerodynamic heating problem

dictate the design of blunt bodies, not only for structural reasons,

but also because of thermal problems associated with protecting vital

internal components, such as electronic packages which are unually

located in the forward part of the body.

Previous investigations concerning aerodynamic heating problems

have concentrated in the area of high supersonic or hypersonic flows

at high altitude low density atmospheric flight, such as in entry or

re-entry cases.[l)]* However, current interest in blunt bodieo which

fly at moderate qupersonic speeds, but in the dense low altitude atmos-

phere, call for further investigation in aerodynamic htating problems

characterized by relatively lower Mach and Reynolds numbers. The

objective of this study is primarily to obtain heat transfer coefficients

and recovery factors along the forward surfaces of the body to allow

for coupling these parameters into a complete heat-transfer analysis

inside the body. This informatitn can be obtained by solving a three-

dimensional, compressible boundary layer around a body with a blunt

nose, which may or may not have an additional rotating speed complication.

Bracketed numbers refer tc entries in REFEREN(.ES.

I
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The basic nonlinear partial differential equations [2] which

govern the mot.-, of a steady, axiesyitric, compressible nonrotating

laeminr boundary layer flow about a body of r wolution have bow.

transformed into a more convenient form by a modified Illingworth-

Stewvrtson transformation [3]. A special procedure to relate the

physical sensible external flow conditions with the transformed ones

was presented. Similarity variables were found by applying the 2yetem-

&tic one-parameter group theory. The simplified governing equations

were then transformed again hy the well-known similar analysis [3].

A perturbation scheme based on the transformed coordinates was con-

structed to render a earies of coupled nonlinear ordinary differential

equations which are readily solved by standard numerieal integration

subroutines to provide the desirable flow property distributions* In-

cluding heat transfer rates. The purposes of this report are to present

solutions to the differential equations and to examine velocity and

temperature profiles within the boundary layers as wall as shear

stresses and heat transfer rates at the surface of the body.

I
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2. ANALYSIS

2.1 Governing equations

The basic nonlinear partial differential equations which describe

mass, momentum and energy transport for steady, azisyumetric, compress- i

ible, nonrotating laminar boundary layer flow about a body of revolution
I.

have been transformed into a series of coupled nonlinear ordiuary dif-

ferential equations. Details describing this analysis are presented

elsewhere [3] and are not cited here. For convenience, however, only

the ordinary differential equations are presented. These equations are

given, after some modification, from those previously reported [3]

S f~lit - 2± f, ' +f 2  I

f 11 1 -S 0

(2.1)

S;' -- 2 f S'(

3:
" " = 2 f + 'S' - 4f,''3 2 f"

1fg' 4f3g3 -f1.i i

- 4(1 + S - z2 (2.2)

zf 2f z' + 2f,' - 2 (2gfS
2 z 2 - g3(2 + fl)sO1

j5•

11" " - 2f1 8' + 6 - 6 fi'a 5 -4fij'

- 6(1 + S) - z4 (2.3)

- - 2f z + 4f'z - 6 - 4fjs'
41 4 1z4 S~g5 -4f 0S



F I

S1 - 1 5; + 6 5h; - 6f 'h 5  + 3g;2 - 4s3s '

- 2f'8 3 - 2flg;' + 2f 1 ' - 3(1 + So)

-4z2 -W (2.4)
2 4I

w''~~ -2w'4 - -

4w1 2f1w + 4fw + 2g;z2 4g 3 z- 2flZ

S6sh 2 +

05 S;& 3  fS

with corresponding boundary conditions

Ul :
f jf 0 g3=0 g m 0 h 0o

f" !-i = 0 0,
- 3 - o5.o

fl 0=0 g' 0 h;=0

(2.5)

i, S0' -; 0 z2' =0 zj-0 wJ"0

or

s0 = w z2 0 z4 -0 w4 -0

g; 1' h; 0' i g3 g1

(2.6)

so 0 z 2 &A 0 z 4 =0 w 4 =0

Solution of these differential equationF with associated boundary con-

ditions is presented in Chaptar 3 with results discussed in Chapter 4.

--- - ---- .... .
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L 2.2 Boundary layer characteristics

Once solutione to the ordinary differential equations given in

Sec. 2.1 are available, quantities such as velocity and temperature

profiles within the boundary layer as well as shear stresses and heit

transfer rates at the surface of the body can be evaluated. The purpose

of this section is to present expressions which may be utilized to

evaluate these quantities as well aa others that are generally employed

to describe boundary layer characteristics. It is convenient to intro-

duce certain dimensionless variable which allow presentation of resulta

and discussion to be considerably sO.mplified. Examination of definitions

and expressions for transformed variables, stream function and relative

enthalpy difference as presented in Ref. [3] reveals that the following

dimensionless variables can be defined in terms of the previously intro-

duced parameters.

S- x/D ,- 8 D/c 0  1- JD- 2  2Y 2 1 2

Sd- x/bD

22 (2.7a-f)
S 3b D (2 + 3)
s1 u 1  - 6

4 4u bD -2 2
- 5- J5b44 (28g + 72& + 45) )s 2 " u 120

where

g 2 - 1 (2.8)S=2(y - 1)

-). ~ ' ~ -
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0 is expressed as

3L(•- 1) M!. + 2) (Y- 1) M. + 2
(8(..)2+22 2
(Y+, 2y M;- (Y - j

(2,9)

Employing the above dimensionless variables, the distance along the

surface measured from the tip of the blunt body is expressed as

K~ ~ -+ a3 js a g L~3 (2.10a)
3 30

For positions near the tip of the body, d is small and Eq. (2.4) reduces

tu

S-(2.lOb)

Because of the method employed in the analysis to describe the boundary

layer edge velocity, x is limited to values less than about 0.611 which

corresponds to an angle a as defined in Ref. [3] of 35°. The maximum
value of the transformed coordinate d is dependent on the limiting

value of x. In terms of x, d can be written as

am -X2 +~T 1 9 .Z.. (2.11)3 10

In expressing Eqs. (2.10) and (2.11),.uo to ',ae fifth order results were

retained in the perturbation scheme [3]. Similar expressions for the

distance measured normal to the body surlace can be developed but are

not presented here.



In most applications, the tangential velocity component within the

boundary layer is of luterest since it's gradient determines the drag

experienced by the body as it passes through a gas. Consequently, only

results for the tingential velocity are presented. Expreasion for the

normal velocity component may be developed using the definitions as

reported in Ref. [3]. Utilizing the definitions for the stream function

as well as for the boundary layer edge velocity, the normal velocity

component is expressed as

- I + 8, g, g+ (S 2 g+ sh;)
-- + i2 -- a (2.12a)

u 1+ a2 - + a4 ;2

where U1 represents the boundary layer edge velocity. Velocity functions

fil g3 ' g5 and h5 are solutions to the ordinary differential equations

and are understood to be dependent on the similar independent variable

n. At a sufficiently large value of n corresponding to the boundary

layer edge, the velocity ratio in Eq. (2.12a) attains a value of unity.

For small values of d, this ratio is given by

S" f(n) (2.12b)

which is a solution to Eq. (2.1). At the surface of the body where

n - 0, the velocity ratio is zero as can be observed by imposing the

boundary conditions given in Eq. (2.5).

Temperature profile within the boundary layer is determined from

the definition of the relative enthalpy difference [3]. After some

- -- ~~ -~~-~- --- - - -
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manipulztLons and recognizing the dimensionlesa variables, the gas

temperature nortualized with the free stream stagnation temperature is

[ written asI
,TO (S + 1)- y - (2.13a)

T2 2ax

The relative enthalpy difference S introduced in Eq. (2.13) is given

in terms of solutions to the differential equations as

Fa d (- +2)(2.14)

where temperature functions SO, z 2 , z4 and w4 are functions of 1. On

the surfae of the bcdy, Eq. (2.13) reduces to

TT -s + 1 (2.15)

T 0

where Tw is surface temperature which may vary with c. Values of SW

less than zero correspond to cooled surface T /T < 1 end greater than
wO0

zero to a heated surface T w/T0 > 1. At the boundary layer edge, S - 0

by boundary conditions cited in Eq. (2.6) and the te-.perature is

1-lTo 1 Y - I2 (i) 2(.1):
T 2 (2.16)

where subscript "1" refers to the boundary layer edge. Thus, the

boundary layer edge temperature is just a function of xand free stream

Mach number. In the analysis [3], the Prandtl number was assigned a

LJ



value of unity. Hence, the adiabatic wall boundary condition yields

S - 0 within the boundary layer which implies that the temperiature

distribution is solely dependent on the tangential velocity distribution

for a given x position [4]. This can be observed by substituting a

value of zero for S in Eq. (2.13a). In addition, the wall temperature

for Pr - 1 with adiabatic boundary condition equals the free stream

stagnation temperature and the recovery factor is unity [5]. For

sufficiently small values of a, Eq. (2.13) may be written as

T
O S +1 (2.13b)

0 n

where it waL further assumed that the velocity is small. This is justi-

fiable since small values of d correspond to the stagnation region of

the blunt body where the velocities are small.

Shear stress at the body surface indicates the drag on the body

and is evaluated from the following expression

(flt' + a- "+ d4- + I h5")]
Sl5 13(2h 0 (2.17a)

Second derivatives of the velocity functions are thu3 rt1-ted to the

shear stress. Equation (2.17) reduces to the following for small values

of d

- 0•x f,'(0) (2.17b)
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Another quantity of interest is skin friction coefficient given by
A

T 2 (S + 1)

f 2 2
2 11

L ({'+ + d s2 g;t + a h;')] -
-]aw (2.18a)

-2- 2 _ -
(1l+ d s + d a2

For small values of d, skin frictioL coefficient in

2(S +1) I
C- " d f'"(0) (2.18b)
f d uD 2  1

Finally, the Reynolds number-skin friction parameter is expressed as

Cf 4~e' I

2,,dl2nxx

(fit+a 1 4 g, 2bt

3/2i. (1 + •2 -1 + a4 -2 21a

where(2.19a)where

d In 1 + d2T x/3 + S (7g + 3)/30 (2.20)d •1 + d2 g + d4 j S(7g + 3)/6



The Reynolds number introduced in Eq. (2.19) is defined as

Re U xlv (2.21)w

where all properties are evaluated at the body surface. Near the

6tagnation region of the blunt body, this parameter assumes the form

2 f"'(0) (2.19b)

2

Heat flux at the body surface is evaluated from

q =-k iT - k TO u ). S'(O) (2.22a)Sw By w V 0 7-T 0} s+

where S'(0) is found by taking derivative of Eq. (2.14) with respect to

rn and evaluaciig at rn - 0. Thus, heat transfer is related to fiist

derivatives of the tamperature functions. For small a values, Eq. (2.22)

is written as

q -k T S(O) (2.22b)V a (0)0 Sw

Positive and negative values of heat flux imply heating and cooling of

the surface, respectively. The boundary condition with S'(O) - 0 yields

a zero heat flux which corresponds to adiabatic or insulated wall. A

convective heat transfer coefficient can be defined as follows

q nh(T - T0 ) (2.23)
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where the free stream stagnation temperature has been employed. Several

'p other definitions [4,5] employ the adiabatic wall temperature which is

the temperature acquired by an adiabatic surface. However, for the

existing analysis with Pr 1 1, the adiabatic and free stream temperatures

are identical. The local Nusselt number can then be written as

AM hx _ _ __n a I"Nu- k d/2((2.24a)
2- -4- 1/2

•.-w ( + a2 -' + a4 -s2

This expression reduces to the following form for small values of d

4-e

Nu = -. - S (O) (2.24b)

The dependency of the Nusselt number on the Reynolds number as displayed

in Eq. (2.24) is similar to that observed for a flat plate, cylinder or

sphere for laminar boundary layer flow [6].

A final parameter that is useful in examining boundary layer

characteristics is the Reynolds analogy parameter which for the present

analysis acquires the form

2 -It + a4 h--2

Cf Re Sw If' + a4 -93 g + h5X -
2Nu 1/2( -~2 - + a4 - s

S+s2) S()

(2.25a)

For small -,aues of d, this parameter reduces to

C Re S f'1(0)
f " - w 1 (2.25b)

6 
i(,)



The Reynolds analogy parameter illustrates the interrelitionship

between fluid friction and heat tr,•nsfer processes. If the Prandtl

I number is included in this parameter, then the dimeasionl*a. grouping

of Nu/Re ?r is known as the Stanton number. Laminar boundayy layer on
w

I Ia flat place with zero pressure gradient yields a value of one for the

Reynolds analogy .ara.eter (7].

IA

'. Ii

I-
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3. METHOD OF SOLUTION

1W'

The method employed tz obtain solutions to the ordinary differen-

tial equations as given in Sec. 2.1 was a fourth-order Runge-Kutta

i" integration scheme tieing double precision arithmetic on 134 360165

digital computer system. It was found advantageous to first solve the

set of equations given in E(. (2.1) with appropriate boundary conditions.

Using these results, solutions to Eqs. (2.2) and (2.3) were a&quired.

Finally, the results for Eqs. (2.1) and (2.2) were employed to obtain

solutions to Eq. (2.4). ihe technique for solving each set of equations

is now outlined with additional information for solving ordinary dif-

ferential equations of the boundary layer type available elsewhere [8,9].

Since the integration scheme requires knowledre of values for the £unc-

tions as well as their derivatives at n -O, initial guesses for the

"unknown derivatives (for example, in Eq. (2.1), f"(O) and So(o) are

unknown) were made and the integration carried out to some TI.. value

(initially 2) where boundary conditions specified in Eq. (2.6) must be

satisfied. If these boundary conditions were not met, then the guesses

for the derivatives must be adjusted and the integration repeated. The

method employed to obtain new estimates for the derivatives is attri-

buted to Nachtscheim and Swigert [9]. Upon satisfaction of the boundary

conditions for the particular value of nmax, it was then necessary to

establish if nmax corresponded to a sufficiently large value as

required by Eq. (2.6). n was then increased (for example, next

value was 4) and the integration scheme as well as adjustment of values

• -for the unknown derivatives repeated until the boundary conditioni were



again satisfied. This procedure was continued until va]'s: for the

k unknown dtri-ative. at in 0 did not vary. In all cases, the maximum

value for n was 8 where all boundary conditions vere generaily within

-1210 of the required values. An integration step size of 0.005 was

found to give sufficiently accurate results of at least eight dqciml

digits for all initial derivatives and reasonable computational times.

A listing of the digital computer program to obtain values of

- unknown initial derivatives is given in Appendix A. Also, a program
* La

which uses these results to generate the values for all functions at

L different n values for listing, plotting and analysis purposes is

supplied. Results from this numerical method are presented in

Chapter 4.

L"

z.
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4. DISCUSSIOSN OF RESULTS

-4.1 Solutions of governize aquMtion

Utill1xing the method of solution ac discussed in Chapter 3,

j so1i. olitions for the unknown values of darivativew at the bad, surface

were acquired for several values of aill enthalpy difference SW frou

-1 to 6 and results preseuted in Table 4.1. Employing these values as

vell as those in Eq. (2.5) at inittia conditions for the Runge-Kutta

integration scheme, velo.tity and temperature functions were evaluated

for different valuta of the similar independent variable and are pre-

sented in Figs. 4.1, 4.2, 4.3 and 4.4 for Eqs. (2.1), (2.2), (2.3) and

(2.4), respectively. Only first and second derivative results for the

velocity functions are displayed since these correspond to velocity

and shear stress, respectively. A. dentified in Sec. 2.2, the various

quantities used to describe boundary layer characteristics are expressed

in terms of tht functions f1 and S for positions near the stagnation

point. These functions are shown in Fig. 4.1. Only results are

illustrated for values of n up to 4 where it can be observed in the

graphs that the boundary conditions specified by Eq. (2.6) are adequately

satisfied. Several general comments can be made concerning results

presented in these figures. First, tangential velocities within the

boundary layer may exceed the boundary layer edge velocity. This can

be observed by recognizing the greater than unity values shown by the

first derivatives of the velocity functions. Furthermore, the second

derivativeb of the velocity functions increase as wall cnthalpy dif-

ference increases, and the shear stress is expected to exhibit
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a similar trend. The adiabatic boundary condition yields S -0

throughout the boundary layer. This implies that the total energy

(cp T 0 ) remains constant within the boundary layer and the surface

If, is at the free stream stagnation temperature. Finally, heating of the

surface by the gas occurs for vail enthalpy differpnces less than zero

and cooling for wall enthalpy differences greater than zero.

4.2 Results fatr boundary layer characteristics

J Velocity and temperature profiles within the boundary layer for

several locations along the body and for various wall enthalpy dif-

ferences are illustrated in Fig. 4.5 for a Mach number of 1.5 and

specific heat ratio of 1.4. Results for x - 0 correspond to the stag-

nation region where the boundary layer edge velocity is zero. At this

location there wculd be no hydrodynamic boundary layer. Positions

slightly removed from the stagnation point have velocity profiles

represeuted by those for x - 0 as illustrated by Eq. (2.12b). Tangen-

tial velocities greater than the boundary layer velocities are dis-

played f or the higher values of wall enthalpy difference. Velocity

ratios greater than unity are attributed to the increase in volume

imparted to0 the gas due to the high wall temperatures. The gas oE

lower density is accelerated by the pressure in spite of it being

decelerated by viscous forces. A thermal boundary exists near the

stagnation region f or wall temperatures different from the free stream

stagnation temperature and grows along the body. The decrease in tem-

perature ratio along the body is a result of an i~acrease in the amount

of stagnation energy being transformed into kinetic energy. The
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boundary layer edge velocity increases from the stagnation point with

a corresponding reduction in boundary layer edge temperature. Results

for nonuniform vail 1i-zmperatures can be obtained from those presented

in Fi-. 4.5 by specifying the vail temperature for each position and

j selecting the corresponding curve. Boundary layer edge velocity and

-. . temperature results are not influenced by the wall temperature.

I. As previously mentioned, surface shbar stress is related to the

drag experienced by a body as it passes through a gas. Representative

values for shear stress normalized with respect to the factor of

_______,, are illustrated in Fig. 4.6 ae a function of distance along

the body f or a free stream Mach number of 1.5 and specific heat ratio

of 1.4. The maximum distance along the body for which the analysis [33

* -applies is limited by the applicabilit~y of the method to descilbe the

boundary layer edge velocity. Results for a particular value of wall

enthalpy difference correspond to an isothermal surface. For noniso-

thermal surfaces, similar results can be obtained from those presented

in Fig. 4.6 provided the distribution of wall enthalpy difference along

the body is specified. Results illustrate that wall shear stress is

lover when the surface is cooled. This is attributed to wall dynamic

viscosity Gi~ w I T w) and second derivatives of velocity functions (see

Table 4) exhibiting smaller values on a cooled surface. Near the

stagnation region, shear stress increases almost linearly with distance

as also can be observed from Eq. (2.17b). The shear stress is found

not to be a strong function of wall temperature. For example a twofold

increase of wail enthalpy difference from 1.0 to 2.0 yields only about a
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20% increase in shear stress at a location of 0.4. The decrease in

shear stress with increasing distance is believed to be a result of the

boundary layer beginning to separate from the body. However, further

investigation is needed to establish the validity of this conjecture.

a. Results for the Reynolds number-skin friction parameter as defined in

Eq. (2.19a) are displayed in Fig. 4.7 as a function of distance for a

Mach number of 1.5 and specific heat ratio of 1.4. Values of this

parameter for points near the stagnation region are given by values

of f!'(0) which are tabulated in Table 4.1. This parameter is observed

not to be a strong function of distance along the body.

Heat transfer and local Nusselt number results for isothermal sur-

faces are p~sented in Fig. 4.8 for several values of wall enthalpy

differences with Mach number of 1.5 and specific heat ratio of 1.4.

The surface is cooled for values of wall enthalpy difference less than

zero and heated for values greate~r than zero. Results corresponding

to zero heat flux are for adiabatic surface where the wall temperature

is equal to the free stream stagnation temperature. For S w - -1.0,

the wall temperature 15 at absolute zero and, thus, there would be an

infinite heat transfer rate to the surface. Near the stagnation region,

heat flux is given by the function S'(0) and is nearly independent of

distance. A twofold increase of wall enthalpy difference from 1.0 to

2.0 yields approximately 40% increase in heat flux for the stagnation

region. The decrease of heat flux with distance is believed to be

attributed to boundary layer separation. Evaluation of.Nusselt number

for adiabatic wall condition poses problems since both S wand S'(0) are
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SLzero. However, results from some prelainiary numerical experiments

ii±ustrate that as Sv approaches zero, the ratio of the first term forIV
S'(O) to S, namely, S)(0)/S approaches a value of about 0.76. Thus,

it appears that the Nusselt number is defined for adiabatic wall boun-

dary condition. Additional information is needed to further define

this ratio.

The relationship between fluid friction and heat transfer is

[ Iexpressed by the Reynolds analogy parameter which is shown In Fig. 4.9

as a function of distance along the body for several wall enthalpy

difference values with Mach number of 1.5 and specific heat ratio of

1.4. Near the stagnation region, this parameter is given by Eq. (2.25b)

which includes the ratio of Sw/S'(0). For the adiabatic wall condition,

this ratio appears to acquire a value of 1.3. This then results in a

value of 1.7 for the Reynolds analogy parameter. This parameter

Sexhibits values which are greater than unity and which increase with

wall enthalpy difference. These trends are similar to those found in

a- other investigations [7,10].

I
I

elj .

~-- - ~ - -
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5. CONCLUSIONS

j An analysis has been developed which transforms the governing

transport equations for steady, axisymmetric, compressible, nonrotating

boundary layer flow about a body of revolution into a set of nonlinear

coupled ordinary differential oquations. Solutions to the ordinary

differential equations subjected to specified boundary conditions were

j •obtained using a standard numerical integration technique. Results

were presented for velocity and temperature profiles within the boun-

dary layer as well as skin friction and heat transfer rates along the

body.

Several additional studies are necessary in order to completely

K establish the applicability of the present analysis. First, the

accuracy of including each successive term in the perturbation scheme

needs to be examined. Neat the stagnation region of the body, the

first term would be sufficient. However, the effect of additional terms

for points removed from this area needs to be established. Second,

additional results from this analysis for other values of the parameters

should be acquired and analyzed for trends. There is a need to better

define the ratio of S'(O)/Sw as S apprcaches zero. Third, comparison

of results from the analysis with experimental results would help to

establish the range of applicability of the analysis. Comparison of

present results with iumerical solutions of the governing transport

equations she ild be considered. Finally, temperatures within the

boundary layer may attain sufficient levels where gaseous radiation

w..



32

can contribute significantly to surface heat flux. Effects of radiant

transport within the boundary layer and at the body surface need to be

defined.
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APPENDIX A

Computer programs employed to obtain solutions to the ordinary

differential equations as well as to obtain lists and plots of these

solutions are furnished. For convenience in discussing the programs,

Eqs. (2.1), (2.2), (2.3) and (2.4) are referred to by AERD, ABRl, ABR2

• j and AER3, respectively. The computer program called AER used to solve

for values of the unknown derivatives at n - 0 includes MAIN, READ,

RUNKUT, FCN and INCON routines. The purpose of each routine is briefly

noted in Table A-i. The FCN routine is different for each AER. Further-

more, as observed by boundary condition in Eq. (2.6), the routine INCON

is slightly different for AER3. Initial values for the functions as

well as their derivates at n - 0 may be substituted into the AERL pro-

gram to generate lists or plots. Routines which make-up AERL are

briefly described in Table A-2. Listing of routines for AERL is also

supplied.

4c.

*9
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TABLE A-i Computer Program AER

Routine Description

MAIN Controls calling sequence for other routines.

READ Tnput of program parameters as well as initial
slues for known and unknown functions at n - 0.

RUNKiT Fourth-order Runge-Kutta integration scheme from
n = 0 to m in steps of An.

FCN Evaluates functions at specified value of n.
Includes perturbation equations for adjusting
guesses [9].

INCON Adjusts initial values for unknown derivatives
and checks for convergence.

!,1

I:



L 36

MAIN

C I'JTEGRATIO'l 3F ORDPJARY DIFFERENTIAL EQUATIONS
IMPLICIT REAL*R(A-H,U-I)
DImP4Ifj F(3,15h#FOI3,15)

C READ IP-lIT VARIARLIES
1 CALL REA)P4Ofl,NflR,H,ETAO,ETAM,EMAX,F0,NE0JL NADJ=l
C RUNIGE-KUiTTA 14rE;,RATIn~4
2 CALL ;kU'JKU)T(*(P,0[v4RiliTAOET'AM.FflF,NEU)
C ADJUST PIITIAL CONOITIONSI:CALL 1PJCYJI4F TAM, EMAX, F09 F,NA0J,-NEQNtD)

WAITEH6,101D) NADJ

IFePjADJ.'4E*D) GO TO Z

L100 FJRMAT(l0X,1IN4ITIAL COiJDITION1,151

READ

SIJBRDIJTPIE READ(NODNODRHETAOETAMtt:MAXFONEQ)
C 14IPUT PAIRAMET~aS

IMPLICIT lE4L*8(A-H9U-7)
OIM:F-lIS4 F9(3,191,TITL;E(10)

C N3D N.J4UBEA OF FU'JCTlO*JS AND DtERIVATIVaS
C 43R NU4BEA OF DiESIRED FWX4TIONS AND DERIVATIVES
C 14EQ 0 JMBEI OF EOUATIO'A SETS
C H ItITERVAL SIZE FOR ETA
C ETAO J14JTJAL VALUE FOlR ETA
C FTAM PJITIAL VALUE FOR MAXIMUJM ETA
C EMAX MAX IMUiM ETA
C FJ INI1TIAL BflUNOJARY CONDOITIONS AT FTA=ETAOl

C READ 1~4 TITLE ZA'RF
READ) (5,102,E'ID-991 TITLE

C READ 1%J rj~O-AAM PAPMETERS
REAW)5 ,!.O) 'IflD,%4r)R,:4E-J,H,ETAU,FTAM,EMAX

C KFAD 14 141TIAL VALUES OF ILJNCIONS A~4U THiEIR DERIVATIVES

C PRINdT )IJT PI'UTS
WqIT(6,103) TITLF,FO( 1,4),H

RETUA.d
99 CALL EXIT
100 FJRMAT(315.4fl15.7)
10. FDAAT(3D25*16)
102 FJRMATI13A8)
103 FI1IMAT(1-Ii,1r.A8//I/1X,'SW-',D15.7/

11OXSTEP SIZEu',F6.'.//10X,*I4ITIAL CONDITIONS')
* E4 D
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j SUBROUTI'4 :kUSIKUT(NO[),NOqHETAOPETAMFOFNEQI
C RU4JGE KUTTA Z'4TEýRATI(P4 SCHEME

IMPLICIT AEAL*8(A-HtO-Z)
0I'4ENIQ' FD(3,l5)tF(3,15) ,FO(3,15),FC(3,I5btAK1(3,15),AK213,15),
I AK3(3,15)*AK4(3tl5l

C ZERO ARRAYS
DO 7 Iai,9dEG
DO 7 J-i,'40D

FC (lJ).h*DO
FD (I*J)x3eO0
AKi(IgIJ)zO.DO
AK2( IJ)=O.DO
A(3( jJ)a).f')

7 A'(4(ItJ)23*DO
C 141ITIAL CJY4DITIONS

03 L JulptIEO
0) 1 Ia1,t3f)
F(J, I nFJ( Jt!)

1 FC(JvI)uF0(JI)
w kITE( 6, 11)
WIITE(691DO) fTAO,(FlNEQ9,~I blAlOR)
CALL FC'4(ETA0,FCtFD)

C, 4TEGRATID!4
2 ETAxETA3*(IE-1)*H

00 3 J-l,'iEO
S 03 3 11,\'Dfl

3 FC(JJ )-F(j,I).0*5D0*AKl(JJ)
ETAzETA+09500*H
CALL FCN(ETA,FC,Frfl
DO 4 Ju1,01E.Q
D3 4 I1'Y

4 FC(J,I )=F(JI)+Oo500*AKZ(JtI)
CALL FC4(ETAtFC,FD)
DO 5 Jz1,'N.)
DO 5 I1,-19 10
AK3(JI 3=H*FD(JtI

5 FC( JI)=F ( J ) +AK3( .1,)
ETA a 2TA4 350 ()0 H
CALL Ft24(FT4,FC,FD)
00 6 Jzl#NEQ
03f 6 I=1,13DL
AK(4(J, I)al-*FO( Ji)

6 F(jI)zF(JI)4IAK1(JI)+2.DO*(AK2(JI RiAK3EJ~lfleAK4(JIl)/6.D0

IF(ETA&LTeETAM) GO TO 2
WR:TC(69100) ETA,(F(NEQ, I ),I19NOR)
RET()R4

100 FJRMAT(F7*Z,5I)25el6)
101 FORMAr(/3X,'ETA',lzE,'F' ,24XOF*',?3X,'F**',24X,'G',23XOG**)

EUI
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A F-'-"eN PFOR Z

SUBRO1UT14E FCN(ErA,F,FDI
C FUN4CT13NS FOR AERý)

IMPLICIT REAL*fllA-r1,0-Z)

C DIPFEREVJTAL EQUATIONJS

FD(1,3)z-'.DO*F(1 4 )*F(1,3)4F(I1,Z)*F(1,2)-FI1,4)-1.DO
L. FD(194):.F(1,51

C X PERTLD~AT13*4
FD('.,6)mF( 1,7)

FD ( 1#7 )uF ( 1, 14)1

FL)( t9 )sF (1,10)

C Y PEstuoT~il:T)-I

FU(' ,12)nF(i,.3)
FD(1,13)=-2.r)O*(F(l1,11J*F(l,3)4F(II,)*F(1,13))+2000*FI1,2)*F(1,12

1)-Fl:, 14)

FD(±,15)z-2.DO*(F(1,il)*F(1,5)*F(1,1)*F(I,15)I
F; -- RE TUIN

E 4



39

r7CN FOR AERI

SIJ8ijUrI4E FCN(ETAFFO)

DIMENSr114 Ff 3t15)tFO(39I5)
C AFRO EQIJATIMJ4

FDI(1,1)-F(1, 2)

ILFD)( 2)uBF( 3)I 1

FUl2,5)u=2oD)*F(1,1)sF(2,5),2.DO~*F(192)-F(l,4)-14D*F(21)

FDf v2, ) F(I2, 8)
FD(293)--2.DC)*F(1,1)*F(293)+4.DO*F(1,2)*F(2,7)-4.OO*F(l,3)*

3F( 2,6)-Fl2,n9)ll*(,)4D*(,DF141F24
FD(2,49kF(2t5.)
FD(2,1))=-2.OO:*F(1,l)*F(2,1O)42.DO*F(lt2)*F(2,9)-4.DO*F(2,5)*

C X-PERfURRAT134
FD(2~,il) F (2,12)

FD(2,13)--2.D'*F(1,1)*F(2,13)+44eD*F(1,2)*F(2,712)4.OO*F(,3)*
F 5~F(2,61)-F(2t9')

FD(2,14)=Ff2v150)

4F( 2,6)
CYDREU~iTUI4

E4Df,2-(,3

FD'1U-.)JF 11 * ( 93+4D* (, 1F 21 )4 0* f* 15F(2 11)- (29'* 4
FD21)UI 5

- - V-2 DF 1 1) F 2 1 )2*)* ( 9 )* ( 9 4 - *0 * ( 9 )

ow6F 2# 1
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FCN FOR AER2

SURROUT14JE FCN(ETA,F,FD)
1MPLI:IT AEAL*8IA-Hv0-Z)
DIMENSICIM Fl 3,15) ,FD(3915)

C AERO :ýUATUNl'S
FD( 1.1) =F( 192)
FD(,92)aF( 1,3)
FOI 1,3) =-2,DO*F( 1. 1*F (1,3 ),F(1,2 )*F(1,2 )-F( 1,4)-1.DO
FD (. ,.) =F I l,5)

& C AER2 EQtJNTIOJIS*
C DIFFFRFJTIAL EQUJATIONS

FO(e92)zF4293)+ij FO(293)=-2.DC*F(1,1)*F(293)46*DU*Ff1,2)*F(2,2)-6.tjO*F(193)*F(2,1)

FD12,4)=FIZ,5)L FO(2,5)m-2.flC*FA1,1)*F(2,5).4.flO*F(l,2)*F(2,4)-6.DO*F(L,5)*F(2,11
2-4oD'AeF C19:)*F(1#5)

C X-PERTURB3ATIOi
FD(":,b)=FCZ,7)
FD(',?)=F12,8)

1L.FD(Žý,8)=-2.Dr*F(1,1)*FI2,e)6*6DO*F(1,2)*F(2,71-6.DO*F(l,3)*FI2,6)
7-F (299)

FD(2,10)a-2.o)OuF(1,1)*F(2,10)44.fln*F(1,2)*F(2,9)-6.DDj*Ft1,5)*
3F(Zt6)

C Y-PERTURBATIT4
-~ FD(Ztl1)OF(2,12)

FO) 1, 12) =F(2 ,13)

5FI 2, 11)F(v4

RETURN
EN
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IL $U(IROUTIdE FCNIETAlFFD)
IMPLI:IT REAL*8(A--H,U-z)

C AE'RO ErQU.ArMnS
FD(2,1 )cF(1.jfl
FDh1,2)=F(1, 3)

C AERI EUTM

FD(;2,)wF(293)

IF(21,)-2,D,*F(1,1)*F(193)4DOl*+F14)(2)

C AER3 EOI)ATIO"4S
C DIFF&EAENTJAL EZUA1!ONS

FD( 3v. )=F( 3t2)

FOI 3t2)=F(3, 3)

3F(1,3)-4*DD*F(2t4)
FD(3,AI=F(395)
FD( 35 ) =-2. D''F( 1,1) *F( 3,5 )+4.DO*F( ,2 )*F( 3,4)42.OO*F(2t2,

IFI 2,4)-4,flD*F(12,1)*F(2t5)-2.Ur2*F(1,1)*F(295)-6.DO*F(195)*
2F(3,iI-2z.DD*F(1951*F(z,1 )+2.DO*F(Il,)*Fil,5)

C X-PERTURVpAT134
FD( 3, 6)=F(3,7)

FO(3,8)=-2.Or*F(1,I )*F(3,8)46oDOaF(1,2)*F(3,7)-6.DO*F(1,3)*
F1F(3,6)-F (3,9)

JF(3,6)
C Y-PERTURHATIJN'

FD(3,11)zF(3,12)
FD(3,12)-F(3,13) ]
F013,13)z-2.DC*F(1,1 )*F(3,13)+6.oO*F(1,2)*F( 3,12)-6.OO*F(1,3)*

I F( 3, 11 -F ( 3,'-4)

FD3t3,5)=-2.()O*F(1,1)*F( 3,15)+4eDO*F(L,2)*F(3,14)-6.DO*Flt15)*
IFt 3,11)

RETUkRl
Md

. ....
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fl4CONd rOR AE'ROAERI ANID AER2

SUBRflUTI '%4E INCO4(ICTAf,EMAXF0FFFNADJNeQmnoD
C ADJUST 1'41TIAL CONIDITIONS

IMPLIZIT REAL*8(A-HqO-Z)

FO(I)sF3F(V4Q91)
I F(1)wFFV4EQ91)

A1lSFI7)*F(7),F(9)*FI9)*F(8)*T-(8).F(1O)*F(IQ)
A12uF(7)*F(12)*FI9)*F(14)+F(t3)*F.(13)*F(1O)*F(15)
A2luAIZ2
A22mF(12)*F( 12)+F(14)*F(14)4F(13 *F(i31.F 15)*F(15)

B2z.-((F(2)-L.Oo)*F(12)4Ft4)*F(1411F(3)*F(133,F(5)*F415))
DEIaAl14'A22-AlZ*A21.
OEXm(A22*Al-Al2*B2 I/DEN
OEYc(A11*32-A2j*R1 i/lEN
F t) (3)uF ( I+D E X

FOF(JEQ,(3)uF)(3

F 3F( F Q 5 1 -F 1( 5)
C C04JVERGENCE NHECKS

W'R!TL(69133) DEX,'IEY
t ~~~IF (DA~SS( DEX/ FO (3 )G T 10-12* OReDABSI OEY/FO 5) 1 GT* 10-121 RE TURN

Ex(FE2I-1.)0)**2+F(4I*Ft41+F(3)*F(3).F(5)*F(5I

r ETA14-2*DOi*ETAM
W.AITE(6t10ZI ETAM
IF(ET4M*LEoE'4AX) RETURN
ETAMzE4AX
NADJu=i
RETUR'4

100 F3RF4AT(12E,~rIEZK DEX AND DEY',201~.57)
101 FOiRMATOOWECHECK E'tlOXtDlS.7I
102 FORMAMOX3OCHECI( ETAMlt7X,0!5.7)

E4D
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INCON FOR AER3

SUBIOUTI4 1'IC4EAeEA OoF9iD9'E940
C ADJUST HI~TIAL CONDITIONS.L. IJ4PLl:IT REAL*O(A-I4,O-Z)

DP4F'4S134 Fnf115) ,Ft15),FOF(3,15)FFPI3,15)

r FO(I)aF3Ff(iEQ9I)
F( FI )FFtNIE~t I)

A21wA12

A228-F(12)*F(12)+F(14)*F(14)+F(13)*F(13)+FI5)*F(15)I

DEXa( A22*RU-A-;2*B2 3/()EN
OEYa(A11*H2-A21*B1)/bEN
F2313mFJ 3)+EX
FO(i)wF3'%5)+DEY

F~3F(NEQt5)mFfl15)
C COW4VER5lc.E NHECK~S

WAI1E(69103) DEXDEY
IF(U.ABS()Ex/FO(3) ).GT..1O.-12.OR.DABSIOEY/FOIS) ).GT..1D-12) RETUAM
EuF(2)*F(2)4FE4',*F(4).F(3)*F(3),FI5)*F(5)

A. WRITE(6,1O!.) E
ETAMz2&.*E TAM
WatITE(69132) FTAM

L J IFIE7AM*LEoEMAX) IIETURN
ETAI4UEMAIC
NADjs0
RE TUq '1

100 F rý(1)X,OCH.ECK DEX AND DEYO,2015.71

12 FLJAMATtl3X,fCHECK ETAI4'97XPD15*71
M4
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"TABLE A-2 Computer Program AE L

Routine Description

MAIN Input of program parameters and boundary conditions
at n - 0 for all functions and their derivatives.
Lists results and controls all routines.

•"RUFM Fourth-order Runge-Kutta integration scheme.

FICN Evaluates functions at specified n
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MAIN

~ L C LIST DF AER
IMPLICIT REAL*8(ANwO-Z)
COMMO'4/3ATA/G(5, 1610

DI4E4SI34 F13q5)bFO(3,51 ,TITLEIIO)
C READ 1~4 141TIAL VALUES

I READl591009E~a99) TITLE
READ(5,I.31) N0R,NEQ,;APRqHqETAO,ETAM

) READ(5,132)((FOIloI,JZJ,INOR),Iin1,NEU)
C RUNGE-KUTTA I4TE^ZRATIO'N

CALL ;kU4UT.'4T(;4,N0R,9IETAO,ETAM,FoPN4E.Q)
C PRINT OUT RESULTS

NDATAvI ETAMi-ETAO)/l4,2*0O1D0

WRITE(691031 TITLE
D02 1-1,'4DATA
IF~I.'eWIPl.) GO TO 2

a. IPAI PR+4pA
ETA=FTAO+40( I-1

- -~ WRITE(6,1341 ETA*(5IJvI) ,J21,NOR)
2 C04TI4UE

G3 TO 1
99 CALL EXlIT
100 FOI4!AT(1AR)
101 FORMAT1315,3l15,7)
102 F.2RMAT13025*16)
103 F31MAT(1-l1,13A8/3Xo'ETA ,8X, .F,14X,'F*',11X,'F**',13X,'G0,14X,

1 'G*'I
104 F3U4.AT(F7*2#5D15*7)

E4



46

RUNKUT

SUBROUT14E RUNKUT(NO0,NORtiETAOETAMFOFv4EQ)
C RUNGE KUITA I1JTEGRATION SCHEME

IMPLICIT REAL*8(A--4,O-Z)
COMMOVD/fATA/G(5,1.610)

C ZERO ARRAYS

DO 7 Iwaq-J$EQ
F !,J)=C'.D)

FC (19J)zO*00

FD 41,J)-0.00O

AK2( tJ3=Q0*D

C 0 1 1.A ONIIN

008 1 ul,'IOR

DO IT)+ IE-91 )*

AK1(J, I ):I*FD(J,I1~~ ~ ~ 3 (,IE)-F(4E)+.50*K11JI

CALFCI(.ETAO,FCtFD)

4 FCEJvJ 4FD(J, 1)4050A2J

3 FC(JI J:F(J, [).AK3(JAI)ii

CALL FC.'4(ETAtFCFD)

DO 6 1-19'13Jo
AK2tJ, I =u+*Ff(JtlJ

4 FCIJII=F(JI4(K(,) 4!.OO*AK (AK(J)4K(,))A4JI )6D

I00 9 19,JEQ
9 G(J,IE zH*FI2 JEQI

ETA=ETAO.LT.TA)4H T
CAL RETU' AFtF
DO6 -,'F
DO61-1t4T

AKfTH*0JI
64.t )F J l+ A '(J l+ e D (K (t )A 3( , )+ K (, )/,D
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rCN FOR AIERo

SUBROUT14FJ FC~I(ETA9FtFD)
C FU4CT13NS FO AERO

, I )a=F(1,2?

FD(.1,4jwF(1, 51

RETuVJi
E4D

FCN FOR mw~
( ~SUSRnUTT'4i FC"I(ETA,F,FO)

IMPLICIT lEAL9:8tA-.4,o-Z)

FVU,5)t-Z.DZF( ,15J*FU(315)
C AElO EQUATIOJS

4, FDt2,1)ssF(2i,2)
FD(2,PZ):F(2,3)

2FD( 1 ) -2. O ý*(Il)*F1, , 3) +4,OF12 *( ,)4D *( P)

RETURN
EN~D
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FCN FOR AER2

SUBROJUT14E FC.4(ETA,F,FD)
1. IMPLICIT REAL*8(A-H,rJ-Z)

nIMENS13~4 F(3,15),F013,15)
C AERO EQUAT!0IS

FD(l,1 )xF(1,3)

FD(J.,2)F(1,:1)

FD( 1,5) -2.OfO*F( 1.1 )*F(1 5)
C AER2 EQU,.T1r4So

FD(2,I )=F(2,7)
FOE 2,2 ) -F* 4 2, 3)
FD(2#3)2-2*D1:*F(2,1.)*F(2,31+6onotF-(1,219FE2,2)-6sDO*F(l,3)*F(2,11

FD(7t4)-F(2,5)
FD(Z,5)u-2,DO*F(1,1)*F(2,5)+4.DOOFH1,2)*F(2,4)h6eDO*F(195)*F(2,l)

2-4vDC-*F(l1,1)*F (1,5)
RETUR4d
E4ID

FCN FOR AER3

SUJBROUT14E FC'j(ETA,FFD)
IMPLIC IT IEAL#S(A-H,O-Z)
OIME'IES104 F(3,15),FD(3,15)

C AERO EQ~IAT10J4S
FD(2t1 )-F(1,~ )
FD (1,2l F( 1, 3)
FD(lt3)s-2.DO'*F(1, 1)*F(1,3)+F(1,2)*F(1,2)-F(1,4)-1.OO
FD(1,4)-F( 1,5)

C AER1 EQUAT134S
* ~~FD( 2,.) zF (2,2)

FO 2,2) =F (2,3)

FD(2,3)xZ2.DflFI1,1)I*F(2,3)+4.DO*F(1,?)*F(292)b4aDO*F(1,3)*I

CA FD(2,4)=F(2,9)

Fr)(,3)-t'D,) i '1,)*F(3,3)46.DO'F(1,vz )*F(3,Z)-6.1)0*F(l,3)*
IFE311)-F (3,4)4 3.pOrj:E (2,2)*F(2 ,)40-'(.)F(9)20*-13
2*5(2,11)-2.(Y)*F (1,1 )*F(2t3)-3.r)O*(1.O(D4F(±,4) )+2.OO*F(1,1 )*
3F' 1,3)-4*D^Z*F(?,4)

- . FD(3,4)sF(3,S)
FD( 3, 5) r--2 * 0C 1 ( 1 * ) *F(3 #5 ) 4 eDCO"F (1,~ *F (39 4) +2eV*F (2, 2)

RETUR4d
E4D


