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ABSTRACT 

This paper considers an  Infinite stage linear decision 
problem with random coefficients.     We assume that  the 
randomness can be defined by a finite Markov chain.    Under 
certain assumptions we are able to calculate an upper bound 
to an optimal value of the decision problem and to use that 
bound to determine a useful initial decision. 
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A NEW APPROACH TO MULTI-STAGE STOCHASTIC LINEAR PROGRAMS 

by 

Richard C.  Grlnold 

1.     INTRODUCTION 

Tills paper presents a novel and hopefully useful way of looking at 

multi-stage stochastic linear decision problems.    We assume that the parameters 

that govern the evolution of the system are random variables with finite range 

and that  the values of these parameters are determined by the state of a finite 

Markov chain.     This assumption is a limitation on the general case of stochastic 

linear programs,  however  the loss in generality is offset by an ability to 

perform useful computations. 

Our discrete time system can be viewed as a two stage decision process;  the 

initial decision followed by all future decisions.    The initial decision is 

subject to known constraints, leads to a known expected reward, and produces 

a random input into  the second stage of the decision process.    Our procedure, 

in effect,  calculates an upper bound for the expected present value of the 

random input into the second stage of  the decision process.    If we make  the 

assumption that   this upper bound is a reasonable approximation for the value of 

the input, then we are able to calculate the initial decision that maximizes the 

expected first period reward plus the expected present value of all future 

decisions.    Notice that the number of future decision stages is not important. 

In fact there can be an infinite number of future decisions. 

Section 2 describes the decision process in detail while Section 3 defines 

the set of feasible policies.    In Section A we see that each feasible policy 

leads to a sequence of conditional expectations of future decisions and a solution 

to an infinite horizon linear programming problem.    In Section 5 we developed an 



upper bound for the Infinite horizon linear program and In Section 6 we use this 

knowledge to construct an Initial feasible decision for the stochastic program. 

Section 7 is a summary and an outline of some Interesting open questions. 

The paper Is based directly on two streams of  thought.    First, the study 

and solution of infinite horizon linear programs by Manne [6], Hopkins  [5],     ^ 
i 

Grinold and Hopkins   [4], and Evers  [1].     In particular, Assumption III In 

Section 5 and its consequences are based on ideas proposed by Evers [1].    The 

second idea Is from earlier papers  [2],[3]  on dynamic stochastic decision 

processes in which the Markovian assumption was first proposed and exploited. 

An Indirect and undoubtedly more important source has been the pleasure of 

learning from Roger Wets  [7]. 



2.    THE MODEL   

This section presents a description of  the stochastic decision process. 

Introduces notation and defines  terminology.    The  first part of the section 

describes a relatively simple model while the second portion of the section 

shows how more general models can be reduced  to the same simple form. 

We observe a system at discrete points in time    t ■ 0,1,2,   ...   . 

At  time    t    the system can be described by an    m + 1    dimension vector 

(s  ,1 )    where    s    e  R      and    1    e  {1,2,  ...,  k}   .    We refer to    s      as the 

veator-state and    i      as  the index-state.    The notation    (si    or    {1  }     refers 

to the sequence    s      or    i      for    t > 0  . 

e   nossihle   dprlsiona     v. Given state    (8,1)    at time    t    the possible decisions    u^    are constrained 

by 

(1) A(it)ut " VUt = 0 

where    A(l)    is  an    m    *  n    matrix.    Selection of a decision    u      results in a 

reward with expected present (time zero) value 

(2) etc(it)ut 

t 
where    ß    > 0    is a discount factor. 

The new index state at time    t + 1    is  determined by the transition 

probabilities of a finite Markov chain.    Thus 

(3) ^^t+l " J   I  it " il " Pij  • 

Given the transition from 1  to 1^..-i > the new vector state at time 

t + 1 is described by the linear relation 

(4) s^ - K(lt,lt+1)ut . 
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To avoid a conceptual and theoretical difficulty we shall assume that 

the system cannot  reach a situation where  (1)  has no feasible solutions. 

Assumption I: 

If    p. .   -■ 0   .  and v > 0  , then there exists a    u    satisfying 

(5) A(j)u = K(l,j)v, u  >  0  . 

We now consider several possible generalizations of the model described 

above and indicate how they can be reduced to  the simple case. 

First, suppose it « i, i = j and B - K(i,j)ut + d(i,j) . Then 

we could first expand the vector-state by one dimension and write 

As a second variation,  suppose 

8t+1 = D(i.j)st + K(i,j)ut   , 

Define   K(1,J) - D(i,j) A(l) + K(i,j)   ; since    A(i)ut - s     we have 

st+1 =   [D(i,j)A(i) + K(i,j)]ut = K(i,j)ut  . 

For a third extension, suppose    A(j)    is    m^  ^ n    and 

A(j)ut+1 - HiU^ 

where    H(j)    has  full row rank.    Then (by suitably  interchanging columns) we 

can write    H(j)  ■ B(j)[I,N(j)]    where    B(j)    has an inverse.    Let    s • s +1  , 

and   u    .. ■ u      and partition    s 

:• 

thus    H(j)8 - B(J)81 + B(j)N(J)s2 

-1 1 1 2 ~     - so    B(j)    A(j)u    » s    + N(j)s    .    Now expand the control space and define 

2        3        2 
u    - u    * s We have 



B(j)"1A(j) -N(j) N(j) 

-I   J L 

r i"i u   1 - r IT s 

u2 

3 ' .u   J 2 .8    J 

1    2    3 . n u  ,u ,u    > 0 . 

A fourth and trivial extension is to allow the dimension of    u      to vary 
nl with    1    , i.e.,    u    e R      .    However, we can compensate for this by setting 

n = max n.    and adding zero columns to the    A(i)    and    K(i,j)    matrices. 

Finally, we can use all the Markov chain state space expansion tricks that 

transform apparently time dependent stochastic processes into Markov processes. 



3.    POLICIES 

In this section we define the set of feasible policies and the value functions 

associated with them. 

A realization of the system Is defined to be the Initial state    (s  ,1 )    and oo 

the sequence    1      for    t > 1  .    A policy Is a function from the set of realizations 

to the set of decision sequences    {u }  .    To be feasible a policy must have 

three properties. 

(1)    It Is nonantlclpatlve.    Given two realizations with    s    , and    1 

for    0 <  t < T    identical, then the selection of    u.   will be 

(1) identical.    In other words the value of    u      is independent of the 

values of    1      for    t > T  . 

(11)    The policy satisfies (2; i). 

(Hi)    The policy satisfies (2; 4). 

Note that the Initial conditions    (1  ,8 )    and the specification of a policy    ip 

are sufficient to recursively determine    {u }    and    {Sf..*)}    for any realization    {1  } 

We shall let    ^    denote a policy and    V    the set of feasible policies. 

Given   s    ■ s    and    1    > 1 , we can define the value of a policy    i|) . o o r        #     T 

(2) 

(1) 

(ID 

V^.s.i) • E 118tc<I^l 
V (t|»,s,i) - lim inf V (ip.s.l) 

T -»• » 

We can also define the optimal value functions. 

(3) 

(1) 

(11) 

VT(s,i) - sup VT(4',s,i) 

V (s.i) - sup V («,s,l) 



4.     CONDITIONAL EXPECTATIONS 

Given a policy    ■>    and Initial conditions    s     ,  and    1      we can define 

the expected decisions for all    t    conditional on the value of    1    .    This 

section will show how these conditional expectations correspond to feasible 

solutions of an infinite horizon linear program. 

Let 

\i " Probfit = i^ 

Uit = Etut  I   ^ " il 

(1) 8it.El8t  I   it=i] 

Note that 

W =   TI U it       ti    it 

xit = nti slt 

(2) 
r. n. 

E[ut] = ^ hi uit = ^ wlt  . 

From Bayes'  rule we can calculate 

(3) Prob[it-i 1 l^-j]      ir 
^ti pi1 

t+l,j 

where we Interpret    0/0    to be    0  .    Thus 

k    "  .  P 
(4) ^i^^(Ka*J)uit>-A^<Vi 



or if we multiply  (4) by    n   ..   .    we obtain 

(5) *<   M.1-I    P^K(l,j)w.t - A(j)w 
J.t+1 iSl    ^ j. t+1 

Define 

K = 

P11K(1,1)     P21K(2,1)   .   .   .   PklK(k,l) 

P12K(1,2)     p22K(2,2)   .   .   .   Pk2K(k,2) 

PlkK(l,k)     p2kK(2,k)   .   .   .   PkkK(k,k) 

x = 

^ 
v2t 

KtJ 

w = 

w 
It 

'2t 

Lwkt, 

c =   (c(l),c(2)   ....  c(k)) 

A = 

A(l)      0 

0        A(2)   ...     0 

[; 0      ...  A(k) 

With these definitions  (5) becomes: 

(7) xt+1 - Kwt - Awt+1 



In addition, note that 

(8) 

T 
VT(iM,l) - I 3tcw    ,    since 

0 t 

V^^.s.l) - E      £ Btc(lt)ttt 

I   t*   TT I       C(1)U 
0 C1 1-1 " 

T t 

0 Z 

We have demonstrated how each policy corresponds to a feasible solution of 

the horizon linear program; 

T    , 
(9) maximize    11m Inf £ 3 cw    . 

T -► "      0 

Subject to 

Aw    ■ x o        o 

AW      ■   ^t.l t   m   i 

wk > 0  .    t > 0 t - ■ 

Although each policy defines a feasible solution to this infinite horizon 

linear program,  the converse of  this Is not true.    There exist feasible solutions 

of  (9)  that cannot be generated by a feasible policy   t|/ e t .    Consider this 

example: 
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0    1/2 1/2    0* 

0      1 0      0 

0      0 0      1 

1      0 0      0, 

with 

A(l) = A(2)   - A(3)  - K(1.2)  - K(l 

A(4) 

•3) ■ (1 \ 0 

K(2,4) 

and   K(A,1) 

\ 1 2 o) 

(0l0l0l)'    K^"(2l2l2l) 

i    - 1 

For this system the feasible solutions of the Infinite linear program are 

t = 0 Wä ■  (win,0,0,0)    where    A(l)w10 ■ (^J , 
"'o      ^10' 

w10 ^ 0  * 

t = 1 wl "  (0»w21'w31,0)    Where 

W2l - ^(1.2)w10 - ^(l)w10 - (j) .    w21 > 0 

iw31 - >*(1.3)w10 - »«A(l)w10 « {yj ,    W31 > 0 

t - 2 w2 - (0,0,0,w42)      where 

A(4)w42 - K(2,4)w21 + K(3,4)W31 -^2j  ,    «42 - 0 

t >  3 wt - (0,0,0,0)   . 
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Notice there Is a feasible solution of the infinite horizon linear program with 

w42 =  (0,1,I)1 . 

Now let's examine the stochastic decision problem.    At time 2, we shall 

surely be in index state A,  i.e.,    v  ,  ■ 1 , and due to the special structure 

of  the example the state vector can take one or two possible values,  depending 

on the value of    i. Ll  ' 

s2 

j with probability k 

j with probability h 

A feasible policy must Indicate what to do in either situation.     Let    u„(l) 

and    u (2)    be the decision in either of the two cases.    The expected decision 

is    u.» ■ ^»(1) + '2^(2)   .    However, notice the first component of the three 

dimensional vector    u.(l)    must be positive.    Thus if a feasible policy generates 

w&2 * 7r2&uÄ?  '  t^e ^•'■rst component of    w,2    must be positive.    We know, however, 

that a feasible solution of the infinite horizon linear program exists with the 

first component of    w.?    equal  to zero.     Thus all solutions of the infinite 

horizon linear program are not necessarily generated by feasible policies in the 

stochastic decision problem. 
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5.    UPPER BOUNDS 

In Section 4 we demonstrated that an infinite horizon linear program could 

be derived that must have an optimal value greater or equal to    V(s,i)   ,  the 

optimal value of the multi-state stochastic decision problem.    Let    U(s,l)    be 

the optimal value of the Infinite horizon linear program as a function of the 

Initial condition.    We know that    V(8,i)  < U(s,l)  .    In this section we develop 

a linear program with optimal value    W(s,i)    and show that under appropriate 

conditions    V(s,i) < U(s,i) < W(8,i)   . 

Let    n    be the set of all feasible solutions to the infinite horizon linear 

program, a sequence    {w } c II    if and only if 

(1) 

Aw    = x    , w    > 0 o        o        o » 

Awt - Kw^  ,    wt.   > 0  ,    t > 1 . 

~ r       t Let    II C IT    be the set of solutions such that      j»    S w      is finite.    For 
00      t t-0        t 

{w } e n  , define   w »    [    ß w      and note that 
1 t=l        t 

cw < U(s,l) 

(2) (A - ßK)w - x 

w > 0  . 

o 

Thus we can discover an upper bound on the value of the best solution in 

II by solving the finite linear program 

Max cw 

subject to 

(3) (A - ßK)w - xo 

w > 0 . 
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Let W(s,l} be the optimal value of (3). To show that W(s,l) Is an upper 

bound for ü(s,i) we must demonstrate that an optimal solution for the 

Infinite horizon linear program can be found In the class II . We must make 

two assumptions. 

Assumption II; 

An optimal solution to problem (3) exists. 

Assumption III; 

There exist (y,z) which satisfy 

(4) y(A - 3K) - z = c 

z > 0 , and either    yA - c > 0  , or    yA > 0  . 

A consequence of Assumption III Is  that solutions not in    IT    are infinitely bad. 

Let     {w  } t n   ,   from (1) and (4)  we can obtain  for all    T 

T T 
,T+1 

yx ■ « 1 ß w + | s or + ß     yAwT+i 0      o o 
(5) 

T T+l 
=    2 J aV +    I      ^cw.  + ßT+1(yA - c)w_.1   . 

0        z        0 z L 

T 
If Assumption III  is satisfied,  and    {w }  e  n^lf ,  then    z  [ $ w    -* + <»  . 

1 0 
However, nonnegativity of    yA    or    yA - c    allows us to write 

t T 

yxo - ^ e wt + ^ ßtcwt 

(6) or 

T T+l 

yxo -z ^0 wt+ l   ß ^t 
0 0 



■ 
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The term on the left is constant,   the first term on the right diverges to 

+ *> ,  thus we must have the second term on the left diverging to    - <*> . 

This indicates the value of any solution    {w } e HXIT   is    - • .    Since, 

by Assumption II, the linear program has an optimal solution, we can conclude 

(7) V(8,i)   < U(8,i)  < W(s,i)   . 
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6.     OBTAINING DECISIONS FOR THE STOCHASTIC MULTI-STAGE LINEAR PROGRAM 

This section Indicates how the theory developed In Sections 2-5 can be 

used to generate a decision for the stochastic optimization problem.    We 

know that    W(s,i)   ,  the optimal value of 

Max cw 

(1) (A - ßK)w « x 

w >  0   , 

is an upper bound for    V(s,i)    and we hope that    V(s,l)    is close to    W(s,i)   . 

Even if  this is so, an approximation of    V(s,i)    is not extremely useful; we 

must  determine an initial decision that  is  consistent and with that value. 

We show in  this section how such an Initial decision can be obtained. 

Without loss of generality we can assume that    1    ■ 1 , and that 

p,, - 0    for    1 ■ 1,2,   ..., k .    Thus we cannot return to the initial index- 

state.    In this case problem (1) becomes  (for    k • 3)   : 

Max. 

12 3 c.w    + c-w    + cw 

subject  to 

A(l) 

-ßp12K(l,2)       A(2)-jJp22K(2,2) -Bp32K(3,2) 

^-ßp13K(l,3) -ßp23K(2,3) A(3)-ßp33K(3,3)J  ^ 

VI ■      n 

8o 

2 w -    1 0 

3 
w o J 

12 3 
w>0,    w    >0,    w>0 
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i r        t where    w    ■    >     3 w.     . 
t-0        1C 

■ 

However,  from the structure of    K    It Is obvious that   w.    - 0    for 

t > 1  , thus    w    - W.Q , a feasible Initial decision that attains the upper 

bound    W(s,i)   . 

.• 



17 

7.     SUMMARY AND OPEN QUESTIONS 

This paper has presented a simple operational method of finding a good 

initial decision  for a multi-stage stochastic programming problem and for 

calculating an upper bound on the optimal value of  the stochastic program. 

The key modeling assumption is that the stochastic evolution of the system 

can be described by a Markov chain.    The hope is that  the upper bound is 

nearly exact and therefore the initial decision is nearly optimal.     In a 

related paper  [3],  a special case was described in which the bound Is exact, 

and the policy  is optimal. 

Several interesting related questions remain open.    When does an optimal 

policy exist for  the stochastic optimization problem?    Is there an optimal 

stationary-Markov  (u    depends only on    1    and    s) policy?    When does  the 

optimal solution of the  Infinite horizon linear program correspond to a 

realizable policy in the stochastic program? 
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