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ABSTRACT

This report deals with the general problem of estimating the
incremental detection capability of a seismic station, i, e., the probability of
detection as a function of event magnitude. A maximum likelihood procedure
is introduced to estimate the station detection thresholds by comparison with
an independent reference station or network. Approximate confidence limits
for the estimated parameters are computed. The results obtained by this
(direct} method are compared to estimates derived from applying the expon-
ential magnitude-frequency relationship of natural seismicity, It is found
that the latter (indirect) method in general gives significantly lower 90 per-
cent detection thresholds. This is explained theoretically as resulting from
the fact that the indirect methd fails to take into account the global variance
of observed signal amplitudes for given seismic events, It is concluded that,
if a good reference system is available, the direct method will produce esti-

mates that are more reliable than those provided by the indirect method.
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SECTION 1
INTRODUCTION

The detection capability of a seismic station or network for
events from a specific region is usually referred to in terms of its incremen-
tal detection probability. This is defined as the probability of detecting an
event, given the event magnitude. In particular, the 90 percent detection
threshold is often quoted as a measure of performance; this is the magnitude

at which the station is expected to detect 90 percent of all events,

Several methods have been devised to estimate the detection
probability function of a seismic system, In general, such methods can be

3

assigned to one of three main classes:

® Estimates based on seismic noise studies - By measuring
the seismic noise level, estimating the signal-to-noise ratio
required for detection and assuming a signal variance, one
can reasonably well predict the actual detection performance

of a system.,

Estimates based on seismicity and observed detection perfor-

mance - This is a two step procedure. First the seismicity

of a region is estimated by extrapolating the observed data,
using the exponential magnitude-frequency relationship. Then
the observed number of events is compared to the estimated

seismicity in order to establish detection thresholds.

Estimates based on comparison to a reference system - A set
of events reported by an independent reference system is first

selected. The percentage actually detected at each magnitude




by the station in question is then used to obtain threshold esti-

mates.

We will .. this report refer to the second and third estimation

methods described above as indirect and direct estimation, respectively.

The main topic of this report is to presc~t a new approach to
the direct method of estimation, using a maximum likelihood technique. Ex-
amples of application are included, and the results are compared to those ob-

tained by other rnethcds.

Section 11 of this report establishes a model of the detection
probability function which has been found useful for threshold estimation. 1In
this model, the probability of detecting an event of a given magnitude m is

assumed to be a cumulative Gaussian distribution function:

P(Detect m) = & (-'-“(T“—> (1-1)
where # and @ are unknown parameters., It is shown that the parameters
should be interpreted differently according to which method of estimation is
being used. This has the very important implication that different methods
of estimation may be expected to produce different results, so that a careful

in.erpretation is necessary.

In Section 111 the likelihood function for the direct estimation
method is developed, and a, >roximate confidence limits for the estimated
parameters are computed. The validity of the approximations is examined
by applying a simulation model. We also include a brief description of a
maximum likelihood method for the indirect estimation problem, as develcp-
ed by Lacoss and Kelly (1969). We choose an approach which is slightly dif-

ferent from theirs in order to show that no hypothesis of Poisson distribution

of natural seismicity is required to develop the likelihood function.




for two aftershock sequences recorded by the NORSAR and LASA arrays. It

= & s e

is found that the two methods yield significantly different r2sults, but that the

sented in Section 1l.

o e

r‘
Section IV presents some examples showing how the direct es-
timation technique can be applied in practical situations., A comparison be-
tween the results obtained by *the direct and indirect methods is carried out
apparent disagreement can be adequately explained by the considerations pre-
‘ The main results from this report are summarized in Section

.o
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SECTION Il
o THE GAUSSIAN MODEL FOR EVENT DETECTION PROBABILITY

This section addresses the general problem of establishing a
model for the detection probability curve of a seismic system, i.e., the pro-

bability that the system detects an event as a function of event magnitude m.

i The case of single station or seismic array detection is dis-
cussed first, and it 1s shown that under reasonable assumptions the detection

curve will have the form of a Gaussian distribution function:

P(Detect/ m=x) = (Zmrz)'”2 [ s ¥ (11-1)

-00

This holds true whether the magnitude m is defined as the magni‘ude esti-
mated by a specific station or as a "true' event magnitude measured by a
hypothetical 'perfect'' network. However, the resulting values of the para- 4

meters K and o will be different in the two cases.

The detection probability curve of a seismic network is also

discussed briefly. It is concluded that the Gaussian model does not apply

directly to this case, but that it may still be useful as an approximation to

| part of the detection curve.

A, SINGLE STATION
1. Derivation of the Detection Probability

In order to determine the probability of a seismic station or
array detecting an event from a specified region, we make the following as-

sumptions (illustrated in Figure 1I-1):

I1-1
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Given that an event has true magnitude m=x , then the magni-

tude m,. of the corresponding signal arriving at the station is

2
a normai variable: ~ N(x, (rR) 5

Mg

el =
°

The event .s detected at the station provided mR>mT , where
e m.. is a threshold magnitude determined by the seismic noise
' level and the characteristics of t' . detection algorithm. We
4
assume that m__ is a normal variable: m_~ N .
T et mp~ N5, o)

=]

) The random variables« mp and m,, are assumed independent.

Under these assumptions, the probability cf detection, given

- m=x, is as follows:

- P(Detect/ m=x) P(mR> mT/m=x)

P(m

- R mT>0/m=x) (11-2)

Since the conditional distribution oi (m -mT), given m=x, is Gaussian, we

R
i obtain:

T P(Detect/m=x) = & (——(-r—T—-) (11-3)

o =o_ + 0 (11-4)

f and @ denotes the standard cumulative Gaussian distribution function.
i
|

The validity of this model for station detection capability rests,
or course, with the validity of assuming a normal distribution for mp and

5 mT.

o For the station magnitude m_ , the normality assertion means

R
that for a given event, world wide observed magnitudes follow a




normal distribution, with a standard deviation UR that arises
mainly from source effects and differences in radiation patterns.
This has been substantiated by several studies (Lanz, 1966;
Freedman 1967), Furthermore, we assume that the variance

of this distribution is independent of event magnitude. To our
knowledge, this has not been explicitly demonstrated by any
author, although data from Bungum and Husebye (1974) com-
paring NORSAR and PDE magnitudes give some support to this

assertion,

° For the threshold magnitude m.. the main infivencing random
factor is the time variability of the noise level for the station,
Evidence for a lognormal distribution of the seismic noise am-
plitudes for a given station as a function of time has been found
by Gerlach et al., (1966) and Alsup and Becker (1973) and is
supported by results from Barnard and Whitelaw (1972), Ob-
viously, a lognormal distribution of tioise ariplitudes implies

a normal distribution of noise ''magnitudes''.

Besides th. above considerations, we mention briefly some
additional factors that influence the distributions of e and m .. Measire-
ment errors of amplitude and period are obvious examples, another potential
source is systematic errors in the distance factor. The spectral characteris-
tics of the received signal are important for detectability purposes, and 'here-
fore influence mT, whether an automatic detector or visual inspection is ap-
plied. In the automatic detector case, our normality assumption means that
filter SNR gain (in dB) is normally distributed. Similarly, the distribution of

beamforming loss influences the variance of m,. in the case of an array sta-

tion,

One final important consideration is the effects of applying the
Gaussian model to events within a large region. In this case, thc normality

assumption is only valid if the geographic seismicity distribution of the region

11-4
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B IR~
is such that the observed B-factors are normally distributed. This is clearly
not valid in general; therefore, it is necessary to require that the model only
be applied to a region for which the variation in B-factors are negligible com-
pared to the variation of the other components in our random model.
This last requirement is not very restrictive, for example,
over the epicentral distance 30-80 degrees, the bodywave distance factor

varies only by + 0.1 m units. This is well below the value cf R = 0.4

found by Veith and Clawson (1972) as a typical value of the standard dcviation
of magnitude measurements at single sensor stations, assuming that standard
B-factor tables are used. In the case of large aperture arrays, such as LASA
and NORSAR, one can expect a lower value of (rR, due to the fact that local
effects are smoothed out when the signal is averaged over a number of sen-
sors, A value of e betwee. 0.25 and 0, 30 seems reasonable in these two

cases; thus the B-factor variation is still relatively insignificant.
2s Examples of Application

In the following subsection several examples are given of pos-
sibie situations to which the Gaussian model could be applied. It is important
to note the conditional nature of the probability expression [I-3, since this is

the key to a proper understanding of the various viewpoints that are presented,

To be specific, let us analyze three cases; dealing with the
NORSAR P-wave detection probability in terms of "true" m, , NORSAR m, and

LASA m, . respectively. We will assume that:

° Given that an event has "true' magnitude m=x, then

- the distribution of the NORSAR magnitude my is
2

N 'N)

- the distribution of the LASA magniutde m, is

N(x + bL' lri)

N(x + b

=]

L—-—.—-_ e e e e e e



\‘

] The NORSAR '"threshold magnitude' m. is N(uT,c'?r)

° The random variables m_, m

N , and m,, are independent. i

L
a. NORSAR Detection Curve in Terms of '"True'' Magnitaide m

2
og_.), so that

Given that m=x, then m is N(x+bN, N

N

P(Detect/ m=x) P(mN>mT/ m=x)

(x -4, )+ b
= c‘b( 2 N) (11-5) y

|

where

L e (11-6)

b, NORSAR Detection Curve in Terms of NORSAR Magnitude

m

N
In this case, the prublem is to determine the probability of de-
tection, given that a signal arrives at NORSAR corresponding to a magnitude

my = X. (Thus it is implicitly assumed that the signal has an my value even

if it is not detected.)

Given that mN = x , itis clear that detection occurs provided

x>mT , Sso that

X -MT
P(Detect/m_-=x) = & (———-) (11-7)
N O’T

It is evident that an indirect procedure is required in order to .
estimate NORSAR detectability in terms of m . One such procedure wculd

be to analyze the distribution of the seismic noise level, and thereby estimate

11-6
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“T and O Another procedure is to assuime that the number of earthquakes

N(x) exceeding a given NORSAR magnitude x may be expressed by

log N(x) = a - bx (natural logarithm). (I11-8)

and use this expression in conjunction with the observed number of events to
determine detection thresholds, (Lacoss and Kelly, 1969; Bungum and Huse-

bye, 1974).

Note that the formula (II-8) is more commonly expressed in
terms of base 10 logarithms, If this is done, a and b become a' = a/logl0

and b' = b/logl0, respectively.

€. NORSAR Detection Curve in Terms of LASA Magnitude

mL.

Given that m, = x, it is not a straightforward task to find the

distribution of m__. It will be shown in Appen-ix A that the conditional dis-

N
tribution of mN is Gaussian, and that
E(m_/m_ =x) = x ba'2 + (b b ) (11-9)
Nk IR ¥ N L }
Var ( / = xX) = (12 + (7‘2 (I1-10)
ar (m/m =x) = L N =

if it is assumed that only earthquakes (as opposed to explosions) are consider-

ed, and that the seismicity observed at LASA may be expressed by (I11-8). The
2

correction factor - b(rL in (II-9) arises from the skew distribution of earth-

quake magnitudes, and is typically around 0. 1 m, units,

From the above considerations, it is easy to show that the

NORSAR detection probability in terms of LASA m, values becomes




2
X -M_ -bo. +(b., -b )
P(Detect/m  =x) = ¢>( 4 M- L) (11-11)

e

where

O'ZT + (r; + (rz (I1-12)

“3 L

The NORSAR detection curve in terms of LASA magnitudes can

easily be estimated directly, by selecting reference events reported by LASA

and verifying whether or not a NORSAR detection occurred. (Ringdal and
Whitelaw, 1973a, 1973b.)

d. Discussion

When considering the three cares discussed above, it is evident
that we would desire to estimate the NORSAR detection capability in terms of

a "true' magnitude as discussed under a,

A comparison of the detection curves obtained by the three
methods discussed here is presented in Figure 1I-2 for a typical situation. It
is assumed that both LASA and NORSAR are unbiased, that IJT = 3,70, (TT=
0.15, and that (TN =7 =0.25. Avalueof b =2.0 has been used (this

L
corresponds to a slope of 0.9 in the base 10 seismicity curve).

It is seen that the 50 percent detection threshold has a slight
positive bias for the curve based on LASA m, . The 90 percent threshold in
terms of the NORSAR m_ curve is significantly lower than the corresponding

threshold based on LASA mb values (by about 0.4 m_ units in this case),

b
while the 'true'' 90 percent threshold is about midway between these two values,
Altkough we will give a miore detailed discussion of how to esti-
' . . : g \
mate detection curves in Sections 11l and IV of this report, it seems appro-

priate to give an example of the importance of the above considerations.

P T N —
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Ringdal and Whitelaw (1973b) estimate the "optimum' 90 percent incremental
detection threshold for the NORSAR SP array to be slightly below m = 4,3

for the Kuriles- Kamchatka region (essentially in terrns of LASA magnitudes).

Yet Bungum and Husebye (1974) report that the operational NORSAR 90 per-
{ cent incremental detection threshold for the same region is about 1, = 4,0
in terms of NORSAR magnitudes. NORSAR and LASA can be considered

mutually unbiased for this region.

This apparent contradiction stems from the fact that two dif -
ferent detection curves are estimated in the two cases, (method b and ¢
respectively). By the preceding considerations, we can relate both estimates

to the "true' detection curve, since it is reasonable to assume that the situa-

tion illustrated in Figure 1I-2 applies.

In this way, we find that Bungum and Husebye's estimate cor-
responds to a "true' 90 percent detection threshold of L 4,1 - 4,2, while
Ringdal and Whitelaw's estimate corresponds to & "true'' m = 4,0 -4,1,
Thus the apparent contradiction is removed, and the proper conclusion ir that
the NORSAR array has an operational capability for the Kuriles-Kamchatka
region which is very close to the optimum capability that can be obtained us-

ing the beamforming/filtering detection algorithm.

3 Applications to Surface Wave Detectability

The Gaussian model described previously may also be applied
to the detection probability of long period surface waves. An added considera-
tion in this case is how to compare estimates in terms of MS to estimates in
terms of s This has previously been discussed in papers by Harley and
Heiting (1972) and Lacoss (1971); we will in the following briefly summarize

the relevant considerations. Our nssumptions are:

. Given an event of true bodywave magnitude m=x, then the true

surface wave magnitude M is given by

- s = — !J
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M= f(x)+r (11-13)

where f is a deterministic function and r is sampled from

e . 2
a normal distribution of zero mean and variance o
r

° The NORSAR surface wave detection threshold magnitude M
).

T

. S ] 2
is normally distributed; MT ~ N‘“N’T ; UMT

° Given that the true surface wave magnitude M =y, then the
NORSAR surface wave magnitude MN is N(vy + bMN' 4 iAN)
° MT and MN are independent,

. NORSAR LP Detection Curve in Terms of True Surface

Wave Magnitude.

Given that M =y, it is found in a way similar to Example 2a

that the detection probability becomes:

y-H ..+ b
P(Detect/M=zy) = & ( M(TI‘ MN) (11-14)
3
where
2 2 2
(r3 - (rMN+ (rMT (11-15)

b. NORSAR LP Detection Curve in Terms of True Bodywave

Magnitude.

2
Given that m=x , it follows that M is N(f(x), O'r). It is then

found that the conditional distribution of MN is Gaussian, and that

E(M/m=x) = f(x) + b, (11-16)

N




2 2
Var (MN/ m=x) T N + o (11-17)

This implies that the NORSAR LP detection probability in terms of true body-

wave magnitude m becomes:

a

f(x) - H + b
P(Detect/ m=x) = & ( MY MN) (11-18)
4

(11-19)

By comparing expression (11-18) to (11-14) it is seen that it is
not correct to transfer between the two detection curves si mply by substituting
y = f(x); one must also take the inherent scatter in the MS - mg relationship

into account.

In its simplest form the relationship betweea Ms and m, is
approximated by a linear function f , such as the Gutenberg-Richter (1956)
relation:

" - 22
MS 1,59 m, 3. (11-20)

In this linear case, the detection curve as a function of mb becomes Gaussian,
However, if { is assumed to be a non-linear function (Evernden et. al., (1971)

and Tsai (1972)), this no longer holds true. In order to obtain a Gaussian

curve, in this case, it i necessary to plot detcctability as a function of f(mb).

This of course renuires that { is known a priori.

Similar considecations as given above apnly to detection curves
in terms of magnitude estimates that are not necessarily "true' (such as LASA

magnitudes). We will not eiaborate this point any further here,




B, A NET WORK OF STATIONS

It is not a straightforward task to apply the Gaussian model
to seismic detection probability using a world-wide network., Clearly the de-
tection probability is a function of the network detection algorithm; the most
common algorithm is to declare an event if at least M individual stations

(out of a total of N) show cor.-esponding detections.

Under the assumptions presented earlier, let us assume that
the probability of detection for station number i , given true event magni-

tude m=x, is
Pi(Detect/“n=x) = i G (11-21)
If we set the network detection requirement to M=1, and assume that differ-

ent stations detect the event independently, we obtain the following network

detection probability,

N X -H,
P(Network Detection/ m=x) = 1 - 1 -® ( 1) (11-22)
i=1

a.
1

Similar expressions can readily be obtained for alternative

values of M, using binomial expansion,

Clearly, the resulting detection curve is not a cumulative
Gaussian distribution. An interesting question is how well it can be approxi-
mated by a Gaussian curve, and some insight into this is provided in Figure
11-3. This figure shows the detection curve for a network of N stations
(N=1, 2, 10, 100) according to (Il-22), assuming that all “i = 4,5, U’i= 0.4
i=1, 2,...N. The dashed curves are Gaussian distribution functions with
the sarme 50 percent and 90 percent detection levels as the theoretical curves.
It is seen that the Gaussian distributions i ive quite good approximations over

limited magnitude ranges, but do not seem to fit the entire curve.
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Part of the reason that the fit is not good at low magnitudes is
the lack of symmetry around the 50 percent level for the theoretical curves.
Actually, the case of M=l gives the least symmetric detection curve; so
that the Gaussian approximations will be at least as good if multi-station de-
tection is required., The best approximation may be expected for M = N/2,

when the theoretical curve becomes symmetric around the 50 percent level.

In practical situations, the network detection probability func-
tion is further complicated by variable detection capability of individual sta-
tions and distance factor variations, Furthermore, occasional outages of one
or more stations in the network may cause loss of detections, It is clearly
difficult to give general statements as to the applicability of the Gaussian
model to practical network situations, However, for a reasonably stable,
homogeneous network, it might be anticipated that the Gaussian model can be
used as an approximation to the detection curve over limited magnitude ranges.

An example of this will be studied in some detail in Section 1V,

Finally, it might be observed that the network situation pre-
sents additional problems if it is desired to find the network detection pro-
babilities in terms of the network's own magnitudes, (Similarly to Example
2b in this subsection.) This is because network magnitudes are usually comn-
puted by averaging the magnitudes of the detecting stations, Thus the network
magnitudes will be biased high for events of low (true) magnitude, that are not
detected by all stations. Better methods of network magnitude determination

(Herrin and Tucker, 1972) would be required to overcome this problem.

11-15
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SECTION III
MAXIMUM LIKE LIHOOD ESTIMATION

This section presents a detailed description of the maximum
likelihood method for direct detection threshold estimation. Asymptotic con-
fidence limits are computed for the estimated parameters, and the validity of
using these as approximations in practical cases is investigated by performing
computer simulation. A brief description of the indirect estimation technique

developed by Lacoss and Kelly (1969) is also included.

A, DIRECT ESTIMATION METHOD - GENERAL DESCRIPTION

The purpose of the estimation process described below is to

estimate the ''detection curve' for a seismic station or network; i. e., the

probability of detection as a function of event magnitude.

The basic assumption is that the detection curve belongs to
some general class of functions, and can be completely characterized by the
values of a set of parameters, In particular, we will deal with the Gaussian
model which was described in Section II. We recall that, in this model, the

detection curve is of the general forra:

2
m -\t -u)
%
P(m) = (Zmrz)'”2 / e i dt (111-1)

Thus, in the Gaussian case, the station detection potential is cnaracterized

by the actual values of the parameters u and ¢ . The problem therefore

is to estimate these two parameters,

1II1-1



The general procedure in estimating the parameters of the de-

tection curve for a seismic station is as follows:

° Obtain a reference set of randomly selected events of various

magnitudes (as reported by the reference source).

® For each event in the reference set, make a decision as to

whether or not the station has detected this event.

° Establish the likelihood function for the observed pattern of
decisions; detection versus no detection, using the general

form of the detection curve.

) Find the set of parameter values of the detection curve that

maximizes the likelihood function,

To establish a formal model, we will assume that the reference

data base consists of n seismic events of magnitud:s m_,...m , respectively.
n

1
These magnitude values are as reported by the reference source, and must
therefore be considered as statistical estimates of the true event magnitudes
(see Section I1). To simplify the notation, we will assume (Wwith no loss of
generality) that all the m, values are different. (Note that m is a continu-
ous variable.) We thus arrive at a statistical t¢st situation, where n inde-

pendent tests are carried out; for each test the probability of success (i.e.,

detection) is specified by equation (11I-1), for the proper value of m .

th
Let xi =1 if the station detects the i event, i =1,2,... n;

x, = 0 otherwise. The probability of a particular combination x, ..., x

1
occurring is

n
. ]l =
P R 1I:[1 P(mi)xl + (1 - P(m,)) X (111-2)

For a given outcome of this experiment, X, = al, .+ ., X =a, the maximum
n n

111-2




likelihood estimates of 4 and o are obtained by maximizing the log likeli-
hood function
n
Log L{u,0) = Z[ai- Log F-,"ni)+(l-ai) J Log(l-P(mi))] (1I1-3)

i=1 s

A
ol We will denote by 4 and o the pair of parameter values that maxin.izes

(I111-3).

For information about the general properties of maximum
] likelihood estimators, we refer to Cramer (1945). Before discussing further
the mathematical aspects of the estimation method, we find it appropriate to

comment briefly on some of our assumptions.

The most important assertion in the above estimation method
(apart from the validity of the general form of the detection curve) is the ran-
domness criterion in the selection of reference events. The essential point
here is to select events independently of the station for which we want to esti-
mate the detection curve. In this way, the events in the reference set, for
any given magnitude, will represenrt a randomly chosen subset of the total
number of everts occurring, Thus the percent detected will be an unbiased
estimate of the percentage that the station would detect of the whole event

population for each magnitude.

- It is clear that the procedure described here will estimate the
detection curve of a seismic station in terms of magnitudes from an indepen-
. dent station or network, Thus the uncertaintics in these magnitude estimates

affect the resulting detection curve as described in Section II.

Further, it should be noted that the actual decision; detection

versus no detection can be made in several ways, such as

. ° Check to see if the reference events have been reported in the
1 routine seismic bulletin from the station in question (thus esti-

pe mating ""Operational detection threshold"),

ve 11-3



° Inspect visually the station waveforms for each reference

event to verify detection or no detection (thus estimating the
"event verification threshold' which might be expected to be

superior to the operational threshold).

® Apply new detection algorithms to the station waveform for
each reference event thus estimating the performance of these

algorithms,

° For a seismic network, determine the detection threshold as
a function of the number of individual station detections re-

quired for network detection,

It is important to remember that the Gaussian model (or other
models) are to be considered only as approximations to the true station de-
tection curve, The estimation method described here is in a sense mainly
a curve-fitting technique, and will work best in the magnitude range where
the largest number of events are available. Inference about detection pro-
babilities obtained by extrapolating the curve to magnitudes where data are
scarce should therefore be avoided. In many cases it might be advisable to
select only a specific magnitude interval of interest, and fit the Gaussian
curve to the observed data in this interval. Examples of this will be given

later,

B. DERIVATION OF APPROXIMATE CONFIDENCE LIMITS
1. Asymptotic Properties of the Estimators

One of the most prominent features of maximum likelihood

estimators is that they often possess very desirable asymptotic propertics.

Under reasonably general conditions, the following may be pro;ed (Cramer,

1945, pp 500-504).




€ 4 b=

° The solution of the likelihood equation converges in probability

to the true parameter value as the rumber of observations in-

I
o creares,
4 |
i ] The maximum likelihcod estimator is asymptotically efficient,
.
t (Informally, an efficient estimator is one that has lower var-
| -
i | iance than any other unbiased estimator).
1 ‘d
o The maximum likelihood estimator is asymptotically normally
i distributed.

In order to verify that these properties apply to our particular
case, we find it convenient to regard the selection of reference events as a

random experiment. Thus we assume that the probability density function for

selecting a reference event of magnitude m is of some fixed form, s(m),

and that individual selections are independent,

In this way we can view our direct estimation procedure as
: consisting of observing the outcomes (m,x) of n independent experiments,

| each with the likelihood function:
x 1-x
:\l(m,x;u,n-) = s(m) e+« P(m) « (1-P(m)) (111-4)

The original likelihood function (I1I-2) is then equivalent to a product of n
functions of the form (I11-4); in the sense that the factors originating from
s(m) do not depend upon g and ¢ , and therefore will not influence the

maximum likelihood estimates.

As n— o, we can nowapply the two-dimensional form of the
limiting theorem in Cramer (1945), in order to show that the asymptotic

properties described above apply to our case.

111-5
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2, Computition of Asymptotic Confidence Limits

Our next step is to find approximate values of the variances
of ﬁ and (Ar and their covariance., In view of the preceding considerations,
it is reasonable to compute the corresponding quantities for an unbiased, ef-
ficient estimator of 4 and o (usually known as the Cramer-Rao bounds),

and use these values as approximations. Following Cramer (1945, pp 490-

495) we obtain:

-

- 2
A | A A
| var (1) |7 = (1 - PPaae) - E ﬂgfi) (111-5)

2
> (1- 50,60 « EY i%"(—f—l—‘—) (111-6)

Var (3’) i}

s

1/2
A A A A A A
Cov (H,0) = p(U,0) - [Var () « Var (0)] (1I1-7)

In the above formulae, E denotes the statistical expcctation, with the sam-
ple space consisting of all possible outcomes Xpse oo X of detections/no
detections, each combination of xi's having a probability of occurrence de-

fined by equation (III-2),

A A
The correlation coefficient p(u,o) used in the above ex-

pressions can be approximated by

P(ﬁ.G)z-E(angL , OloglL ).
u

Q

-1/2
sfoeg LY e (8108 LY
o o (111-8)

Because of the simple form of the likelihood functions (III-2)

and (III-3), it is relatively easy to obtain analytic expressions of the quantities
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defined in equations (III-5) through (1I1I-8). By carrying out the necessary
computations, and in particular observing the independence of the n test

situations, we find (setting P(mi) z Pi):

2 - oP 2
g(dleg LY | Z wol (- i . i (111-9)
o i i oK
i=1
n
9P.\ /oP.
dLlog L . dlog L) _ Z '1. . -1 __‘) (__1.) b
E( P 1 ) P, +(l - P) '(au 5/ (111-10)
i=1
2 - aP.\°
dlog LY _ Z -1 e i .
E(—E—a(r ) P .(1-P) -5 (111-11)
i=1

Note that expressions (I111-9 through IlI-11) are not restricted
to the Gaussian model (111-1), and that extension to classes of detection curves

with more than two parameters obviously is possible.

In the Gaussian situation, the function P is given by (III-1),

and we obtain after evaluating the partial derivatives:

2
E(_a_.l_‘ig_l‘_.) = % (111-12)
ou 1
i=1
n
dLog L dlog LY\ _ - L
E( - . s ) = (———U -2, (I-13)
i=1
] 2 2 m, - 4 2 '
E(__&___am L ) % Z (_1__) ¢ Z. (111-14)
60 ag b1 4
i=1
111-7




2, 2 2 "1
Zi = exp(-(mi-y) [ 7). [Zmr P(mi) e (1 - P(mi))] (I111-15)

A A
Once the variances of # and o and their covariance are known,
it becomes easy to find the uncertainty involved in estimation e. g.,» of the 90
percent incremental detection threshcld. In fact, according to the Gaussian

model (III-I), ‘he 90 percent limit u is given by

90

"90 = U+ {0 (i1I-16)

th
where f =1.28 is the 90 percentile of the standard normal distribution. Thus

A
we obtain an estimate u and its variance as follows:

90

‘A‘qo = g+ feo (111-17)

A sl 2 A AN A
Var(ugo) = Var () + f < Var (0) + 2f « Cov(l, o) (11I-18)

A
By assuming that “90 is aprroximately normally distributed, we can then

use (III-17) and (III-18) to obtain confidence limits on “90'

It is in this way possible to construct "confidence curves' for
the detectability curve (III-1) as shown in an example in Figures IlI-1 and
III-2. Figure 1lI-1 gives a hypothetical combination of events and detection
status, The corresponding maximum likelihood detection curve and its 90
percent confidence limits are shown in Figure 1II-2. In this particular case,
most events in the reference set have magnitudes greater than the apparent
value of the 50% detectability limit 4, Thus, as can be expected, the con-
fidence in the 90 percent detection estimate is greater than e. g., the confi-

dence in the 10 percent estimate,

I11-8




!

4 = m
|
|
|
|
n

v o M '/ Doﬂfmfo
E Euj " K;? ,/# M r_‘ |Z] NOT DETECTED :
S | .
| 2 aliiit |
| s Al

rr:xlnur‘r |t B TT"T‘TF'II"IIIIlIllI]lllllJ

i 2.5 30 4,0 5.0 60 609
L) MAGNITUDE (MB)
MB DISTRIBUTION OF PROCESSED EVENTS
‘ FIGURE III-1
Ly EXAMPLE OF EVENT MAGNITUDE DISTRIBUTION AND
DETECTION/NO DETECTION STATUS (100 EVENTS)
1.0 = e — - e I -
0.% o— A — . . '/ I¥ ) P =
l : Ovm - ,’ * 1]
- — x % . MAX LIKELTHOOD
‘ = w4 L CURVE
£ ER4 0 PERCENT
o.w - ] ! - - . i
o £ . T CONF TDERCE LIMITS
; i e S x  CBSERVED DETECTION
( S 0.40 o ,'* PERCENTAGE 5
5 g r 4 % MBSO = L6 * 0,08
’L_L__J i ’ / ‘ Mﬂgo = Q.P’J x UI]O
w ’ , SIGMA= 0.41 & 0.C3
a 02 gl 8 W FHC = -0, %0
’ % {
0.10 5 b |

‘|-‘| |'_1._T—r_7‘_f—'*-T_*°I“I-IT-]'I“1““I"""‘lr‘l]'."‘l
2.5 300 ‘l.O 3'0 Gl ‘J.

MAGNITUDE. (MH)
MAXIMUM LIKELIHOOD DETECTRBILITY CURVE
FIGURE I1I-2

)

1 EXAMPLE OF DIRECT MAXIMUM LIKELIHOOD ESTIMATION OF
A DETECTION CURVE (100 EVENTS)

11-9




It is important to interprete these confidence curves properly.
First of all, is should be pointed out that the confidence lim'is are derived
without refererce to how ''well'' the experimental data actually fit the Gaussian
model (I1I-1). The term confidence in this case just means tiat if the detec-
tion probabilities are according to the model (1l1-1), then we can expect a
maximum likelihood estimated based on, say, 100 events to reflect the true
parameter value with the given level of confidence. However, if, for some
reason, the Gaussian model (I1I-1) does not appropriately describe the situa-
tion, our maximum likelihood estimate as well as its confidence limits will

of course be meaningless.

Secondly, the confidence limits represent a smoothing over
all data points., Thus there is no reason to expect 90 percent of all the ob-
served percentages (marked as asterisks) to lie within the 90 percent confi-
dence limits, This becomes more evident if we decrease the size of the mag-
nitude bins such that only one event corresponds to each magnitude. In that
case all '"'observed' percentages will be either 0 or 100; thus all correspond-

ing points will lie outside the 90 percent confidence limits,

C. SIMULATION

The properties of our maximum likelihood estimators derived
previously in this section are only asymptotically valid, This means that
alt hough the given approximations can be expected to work well for large
reference event samples, nothing is said about their validity when the number
of events is limited. It is clearly important to obtain some information about
how well the given expressions apprnoximate the real distribution of the esti-
mators in practical situations, and a convenient way to do this is to establish

a simulation model. The simulation procedure is as follows:

° Assumc that the detection curve is known; e. g., that the Gau-

ssian model (111-1) is valid and that u= IJO , O = (To 3

111-10




° Assume further that the reference event set is specified; i.e.,

that the magnitude distribution m_, . . . mn is known,

1

-

Under these assumptions, we are able to proceed as follows:

<

® Simulate the outcomes of 100 test situations, where each sit-
uation consists of the following two steps:

- Create a pattern of decisions; detection/no detection for
the reference events, using the predefined detection pro-
babilities in a random model.

- Find maximum likelihood estimates ﬁ and (Ar based

upon the outcome,

L ° Compute the theoretical approximate 90 percent confidence

ellipse for the maximum likelihood est mators; based upon the

i equations (III-5) through (I11-8), with K = uo , o= Jo ~

° Compare the observed (simulated) outcomes with the theoretical
confidence ellipse to determine how well the approximations

work in practice,.
The theoretical 90 percent confidence ellipse corresponding to

two binormally distributed estimators X and Y with correlation # and

)
mean and variance (mx.(ri) and (my'(r).') respectively, is (Cramer, 1945):

2 2
i X -m 2P(x -m ) (y - ) -m
<___x.> X . 4 (Y—Y.)= af(1 -p%) (111-19)

o (r
X (rx * (Ty y

where a is given by
2

1 - exp (- 32—) = 0.90 (111-20)
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In our case, we can apply these equations by substituting the
values given by (111-5) through (111-8) and approximating the distribution of

A
# and o by a joint normal distribution.

Figure 111-3 presents the results from one such simulation
experiment. The reference event set contained n=100 events, of a magni-
tude distribution identical to that shown in Figure 1il-1. Parameter values
of I-lo= 3.76 and A 0.41 were used as '"true' parameters of the detection
curve (llI-1), The resulting 100 pairs of estimates (/3,(/;-) are plotted in Fig-
ure 111-3 together with the 90 percent confidence ellipse based upon the theo-

retical considerations presented earlier.

It is seen that the ellipse reflects well the simulated distribu-
tion of the estimators in this case, Thus we can conclude that the ''confidence
curves' of Figure 1l1-2 covering this particular case provide reasonably ac-

curate indications of the uncertainties in the estimated parameter values.

A second simulation case is presented in Figures 111-4 through
111-6. Again, a reference event set is given, this time with n=20 events, of
a magnitude distribution as shown in Figure 111-4, A hypothetical combination

of detection/no detection decisions gave estimates of the detection curve as

shown in Figure 111-5, By simulating 100 cases with uo= 4,10, o= 0. 39,

we obtained the results presented in Figure 111-6, The 90 percent confidence
ellipse is seen to contain 85 of the observed values; thus reflecting reason-
ably well the uncertainties >f the estimators. However, the distributicon of
points is clearly not symmetric, and for eight test cases (marked as arrows)
a very large estimate of « (greater than 1.0) was found. This indicates a
lack of stability in the estimation process which we attribute to the low num-

ber »f evenis (n=20) in the reference data base.

In conclusion, it is clear that no general statement can be madc

as to the minimum number of events n that is required for our approximations
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to be reasonable. This is because the performance of the approximations
depend on the event magnitude distribution relative to the detection curve

as well as on the number n. However, it may be postulated that, given a
situation with at least 100 reference events, our approximations may be

used with confidence, provided that the magnitude range and the distribution
of detection/no detection decisions are reasonable, For smaller event popu-
lations, the approximate confidence limits must be used only with great cau-
tion, and with the understanding that the estimation process may occasionally

lead to results with a very large error margin,

D, INDIRECT ESTIMATION METHOD

Indirect estimation of detection thresholds is, in our termin-

ology, a two-step process:

o The first step is to estimate the seismicity of a certain region
over a certain time period, Ly observing the number of events

detected by a seismic system as a function of magnitude,

The second step is to use the estimated seismicity curve toget-

her with the observed data to estimate detection thresholds,

In practice, the seismicity is estimated by fitting the well

known frequency magnitude distribution (1I11-21) to the data:

-b
N(m) = > °™ (111-21)

where N(m) is the number of events of magnitude exceeding m, and a

and b are parameters that characterize the seismicity. (The corresponding

base 10 parameters are a' = a/log 10 and b' = b/log 10 (natural logarithms)

respectively.)
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The actual curve fitting can be done by a least squares tech-
nique (as applied by Bungum and Husebye, 1974) or by a maximum likelihood
procedure. We will prefer the second approach in the following; more spec-
ifically, we will apply a method developed by Lacoss and Kelly (1969) for

joint determination of seismicity and detection parameters.
1. The Likelihood Function

Our assumptions are as follows:

) The number of detected earthquakes, K, from a specific re-

gion and their magnitudes rnl,. 5 % ,mk

decreasing order) have been observed over a certain time in-

(listed in non-

terval by a seismic station or network.

® The seismicity corresponding to the above region and time

period is given by (111-21),

° For given values of a and b, the probability p(m)dm that
an earthquake occurs with magnitude between m and m+dm
is obtained by differentiating (111-21):
a-bm
plm)dm =b . e « dm (111-22)

and the occurrence of earthquakes in non-overlapping mag. itude

intervals are statistically independent.

The likelihood function can now be derived by assuming that a
and b are given, and that the detection curve P{(m) is known. We choose
the following informal approach, which can be extended to a formalized proof

if desired:

Suppose that the magnitude axis is partitioned into small inter-
vals of length dm . The probability of detection an event in the interval (m,

m+dm) is

11-17




F(m)dm = P(m).p(m)dm (111-23)

The probability of detecting precisely X events in the magni-

tude ranges (mi " mi + dmi) i=1, 2, ... K, respectively, is giv-.. by:

L(K,ml,.. . ,mK/a,b, P)dml, ...de =

K

IT F(m )am, - IT  (-F(m,)dm)

iz ail other >
intervals

(111-24)

The second part of the right-hand side of (111-24) is an infinite product, and
we can clearly replace it by a similar product representing all intervals on

the m axis without changing its limiting value. We thus obtain:

im 11 O - F(m )dm ) = lim exp |- Z F(m,)dm,

all j all j

=  exp -/ F(m)dm (111-25)
-
where we have used the approximation e*~1+x for small values of x. The
integral in (111-25) is seea to be the total expected number of detected cvents
N, given a, b, anc P,
)

N = f be & P B e (111-26)

-Q0
It is, of course, assumed that this integral converges.

The expression (111-24) for the likelihood function thus

becomes:




i Bl D

=1 MoA

L.

.

N S a-bm
,oeom /a,b,P) = e IT v-e*"Mivpim) (m-27)
=1

... <
m1< m2< mK

which is identical to the expression found by Lacoss and Kelly (1969), using the

L(K, m

—e

.

Poisson distribution.

We would like to point out that our derivation of the likelihood
function does not assume that the observed number of earthquakes follows a
Poisson distribution. This is very important, since it has repeatedly been
observed that the occurrence of earthquakes cannot be adequately represent-
ed as a Poisson process, Figure 111-7 shows as an example the actual dis-
tribution of the daily number of events reported by PDE during the year 1972,
and compares it to the Poisson distribution with the same mean. The two

distributions clearly do not match,

However, it is interesting to notice that when integrating equa-
tion (II1-27) in order to obtain the marginal distribution of the numter of re-
ported events K, given a, b, and P, we find as a result the Poisson distribu-
tion, with parameter N . This is not a contradiction, it only means that if
(hypothetically) our experiment could be repeated i number of times with
fixed seismicity parameters a and b ; and with a constant detection proba-
bility function P , then the total number of observed events K would follow

a Poisson distribution.

In practice, of course, the seismicity parameters are highly
variable as a function of time (in particular the parameter a); this explains

why natural seismicity does not follow the Poisson law.

It follows from the preceding considerations (by appropriate
choice of the function P ) that the number of earthquakes in any given magni-
tude range follows a Poisson distribution in the hypothetical case of constant

seismicity.
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Derivation of Estimators

We will from now on assume that the detection curve is Gau-
ssian, i.e., that P(m) is given by (111-1). This implies that the expected

number of events N, is:

ea-bu + bz(rz/z

N = (111-28)
Following Lacoss and Kelly (1969), we obtain the maximum
A A
likelihood estirnates a and b of a and b respectively as follows (ex-

pressed as functions of g and o ):

1/6 —;(m w2 . (111-29)

beg+ log K - (111-30)

where m is the average of the observed magnitudes. Substituting these
values back into the likelihood function (111-27) then yields a function of u and
o that can be maximized by a computer procedure. The values of u and &
that maximize this function are the desired maximum likelihood estimates

of the parameters of the detection curve.

3, A Simulation Case

In order to obtain some information about the fluctuations in
the parameter estimates obtained by the indirect maximum likelihood method,

we carried out a simulation experiment as follows:

Suppose that an experiment has resulted in estimate values of
a, b, 4 and 0. Keeping these values fixed, we can simulate the outcome of

a number of similar experiments (e.g., 100), using the Poisson distribution




as a random model to obtain the number of detected events in each magnitude
bin. (This is acceptable since the Poisson assumption is valid when the sys-

tem parameters are fixed.) Subsequently we can estimate the parameter

values based on the outcomes of the experiments, and see how they fluctuate

relative to the original, 'true' values.

Results from a simulation experiment are presented (for the
parameters y and o ) in Figure 111-8. The original parameters were U =
3.91, o =0.12, a'=6.00 (base 10), b' = 1,00 (base 10). This corresponds

to an expected number of detections N = 133. A total of 100 cases were sim-

ulated. The results indicate the following: i
° 90 percent of the estimates of u are between 3.85 and 4. 00,
° 90 percent of the estimates of o are between 0.08 and 0.17.
° 90 percent of the estimates of b' are between 0.83 and 1.25

(not shown on the figure).

It is also observed that the distribution of points appears to be

reasonably symmetric, and that no significant bias can be seen. As stated |
by Lacoss and Kelly (1969), the estimators process the desirable asymptotic

properties described previously for the direct estimation case; thus we know

that the performance of the estimates will improve as N becomes large, It

is thus concluded that the method can be applied with good confidence if sev-

eral hundred events are available. However, we stress again the importance

of verifying the sta*istical assumptions before applying the method, since

outliers in the event distribution can very easily distort the resulting estimates.
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SECTION 1V
DATA ANALYSIS

This section presents some examples of detection threshold
estimation, with emphasis on the direct maximum likelihood method, In
addition, a comparison is carried out between the direct and indirect methods
of estimation, based upon data from two earthquake aftershock sequences re-

corded by the NORSAR and LASA arrays.

A, DIRECT ESTIMATION METHOD

In this subsection we give several examples of application of
the direct estimation method to seismic stations or networks, These exam-
ples are all taken from evaluation reports published recently by Texas In-
struments Incorporated. The general estimation procedure has been as

follows:

° Obtain a reference event set {typically up to 500 events) from
one or more of the following sources:
- The PDE bulletin (Preliminary Determination of Epi-
centers from the World-Wide Seismic Network),
- The LASA weekly event summary issued by the Seismic

Data Analysis Center.

- The NORSAR weekly event summary compiled at Kjeller,
Norway.
- The bulletin from the International Seismic Month, ISM,

(February 20 - March 19, 1972) compiled at Lincoln

Laboratories.
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° For each event, compute the expected arrival time at the sta-
tion to be evaluated, and display the waveforms for this sta-

tion for a time interval covering the signal arrival,

° Make a decision as to whether or not the station has a detec-
table signal corresponding to this event. Usually this decision
is made by the analyst, based upon visual inspection of the

filtered and beamformed signal traces,.

° For selected regions, compile the number of events detected
and not detected by magnitude, and apply the direct maximum
likelihood estimation method to determine the station detection

curves for those regions.

When applying the estimation method, it must first be asserted
that the conditions for validity are fulfilled. Iln particular, the following points

should be observed:

° Independence between reference source and station t¢ be eval-
uated,
° Validity of the Gau nodel. In particular the selected seis-

mic region should be sufficiently limited in size so that B-
factor variation can be ignored. Also the limitations of the

Gaussian model for network detection should be remembered.

° Consistent reference magnitude estimates. This is essential
to obtain unbiased estimates, While single station magnitude
variance can be mathematically compensated for (Appendix A),
a problem like the PDE magnitude bias for small events
(Herrin and Tucker, 1972), is essentially untractable, and

therefore represents a serious drawback in applying the method.
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False alarm problems. The possibility clearly exists that a
"refeence event'' is really a false alarm. Likewise, it might
happen that the analyst verifies an event by mistaking a noise
burst for a signal. Caution is required to minimize bias cau-

sed by this effect,

NORSAR SP Detection Threshold

The detection capability of the short period NORSAR array was
evaluated by Ringdal and Whitelaw (1973b). Figures IV-1 and 1V-2 show the
results for the two subregions; the Kuriles-Kainchatka arc and the remainder
of the Eurasian continent, respectively,

Of special interest is Figure IV-2, which shows very few non-
detections and hence gives an estimate of very low confidence of the 50 per-
cent detection threshold. In fact, it might be questionable whether the Gau-

ssian model can reasonably represent the detection curve in this case, since

B-factors vary significantly over the 15°-60° epicentral distance range for

this region. Therefore statements based on extrapolation of the Gaussian
curve below the magnitude range of the observed data should be avoided in

this case,
2. NORSAR LP Detection Threshold

The detection capability of the NORSAR LP array has been
evaluated by Laun, Shen and Swindell, (1973). The detection curve for their
total earthquake ensemble as a function of bodywave magnitude is presented
in Figure IV-3, It is seen that the Gaussian curve fits quite well in spite of

the large epicentral distance variation involved, (20-70 degrees).

As in the case of NORSAR SP estimation, it was necessary to

eliminate events that had been reported with NORSAR as the primary source.
This is because SP detection and LP detec*ion at NORSAR are not independent;

clearly both probabilities fluctuate with the NORSAR microseismic noise level,
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It was obviously necessary to eliminate presumed explosions
from the even' . nsemble in this case, since their Ms- mb relationship ir

functionally different from that of earthquakes.

3. VLPE Network Detection Threshold

Our final example concerns the estimation of the network de-
tection capability of the Very Long Period Experiment stations during the
winter of 1972, Figure 1V-4 is taken from Lambert et.al., (1973), and
shows the Eurasian LP detection capability for a network of 6 stations as a

] function of bodywave magnitude.

In view of the considerations from Section 1lI, it is reasonable

Le to ask whether the expected lack of symmetry in the theoretical network de-

1 tection curve has adversely affected the threshold estimates. To investigate

. this, we performed a series of estimation procedures for subsets of the ori-
ginal reference event set, and the results are shown in Table IV-1. 1t is
seen from this table that by ignoring reference events of low magnitudes, tne
50 percent threshold estimate tends to increase slightly, while the 50 percent

estimate decreases. This trend is fairly stable up to a cutoff point of about

mb= 4.5; if more events are eliminateu, the reliability of the estimates de-

creases sharply due to the low numbe. of non-detections.

Thus we conclude that one must show caution when applying
the Gaussian model to a network situation. If one is primarily interested in
the 90 percent threshold, a possible approach would be to use the Gaussian
model to estimate the upper part of the detection curve, by ignoring low mag-
nitude reference events. It would seem reasonable to choose a cutoff point

somewhere around the 50 percent detection threshold "a that case.

It should be added that theoretical considerations in this parti-

cular case arc further aggravated by the failure ot stations within the VLPE

Iv-7
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network to remain operational during the entire time frame. Thus, for a
significant part of the time, only one of the six VLPE stations was operation-
: al; while the most typical : ituation was two or three stations operational

(Lambert, et al., 1973).

B. COMPARISON OF THE DIRECT AND INDIRECT ESTIMATION
METHODS
As was stated in Section 11, the direct and indirect estimation
methods estimate different detection curves, so that different results must -
be expected. In the following we will try to verify the considerations from
Section Il by applying the two methods tu identical test situations and com- a

y
] pare the results.
:

Two large aftershock sequences were selected for this purpose;

one from South of Honshu, Japan December 3-20, 1972 and one from Kurile
Islands/Hokkaido region June 17-30, 1973. We chose to estimate the opera-
tional detection capability for the NORSAR array by the two methods for each
aftershock sequence, and compare the results. Thus we considered an event
as being detected by NORSAR provided it had been reported in the NORSAR
seismic event summary compiled at Kjeller, Norway. It should be noted that
swarm situations ‘annot be considered as typically representing natural seis-
mic activity, Nevertheless, we hove found these two examples useful to ill-

ustrate the theoretical considerations presented earlier,

Direct Estimation

1,

A direct estim.tion of the NORSAR operational detection thres-
h>ld for these two aftershock sequences was carried out by Ringdal and White-
law (1973b). They used the SDAC/ LASA bulletin as a reference, and thus
checked each event reported by SDAC/ LASA to see if NORSAR had a corres-
poading detection. Time intervals when the NORSAR array was out of opera-
tion were not considered. Thus the total reference data base was 194 events
for the Honshu swarm and 364 events for the Kuriles swarm (Table IV-2),

Out of these, NORSAR detected 106 and 284 ev~nts, respectively.
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TABLE IV-2
il NORSAR AND LASA EVENT DETECTION PERFORMANCE FOR EARTHQUAKE
o SWAKMS FROM SOUTH HONSHU (DECEMBER 3-20, 1972)
AND THE KURILE ISLANDS (JUNE 17-30, 1973)
-
o
Honshu Swarm Kuriles Swarm

F ' =1
|
: Distance from NORSAR (degrees) 78 70

L Distance from LASA (degrees) 80 69

o LASA total detected events 192 364

4 NORSAR total detected events 133 452
i —_— Common events 106 284

IV-11




Figures IV-5 and IV-6 show the distributions by magnitude
(LASA m, values) of the events detected and not detected, together with the
resulting maximum likelihood detection curves. Two important differences

may be observed:

° The NORSAR array has significantly better detectability for
the Kuriles swarni than for the Honshu swarm., This reflects
a much lower seismic noise level at NORSAR during June 1973

than during December 1372.

. The Kuriles detection curve has a significantly larger spread

than the Honshu curve (0= 0,47 to o= 0., 31).

This significant difference in values of o is a very interesting
point by itself, and gives us an opportunity to verify one of the basic assump-
tions of the model described in Section II. According to equation (II-12) of
that section, the variance of the detection curve is given by

2 2 2 2
o = a + a0 =
T + N L (Iv-1)
where T denotes the standard deviation of the 'threshold magnitude' while
o and UL are the standard deviations of the NORSAR and LASA magnitudes,

N
respectively, relative to a hypothetical true magnitude.

In order o evaluate the individual terms of equation (IV-1), we
first examined the variations in seismic noise level at NORSAR within the time
period covering each event swarm, It was found that the noise level remained
essentially constant in both cases, so that er would be relatively insignificant,

A value of T = 0.15 would be about right in both cases.

The next step was to estimate TN and ”L' For this purpose,

we selected randomly 50 events from each aftershock sequence, and plotted
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NORSAR m against LASA m, as shown in Figures IV-7 and IV-8, We actu-

ally selected the first 50 events reported by PDE of mb> 4,0 in each case;
for our purpose PDE can be considered to be independent of LASA and NOR-

E SAR. Events occurring when one array was out of operation were disregard
ed. A total of four events (marked as asterisks) were not detected by both

i i LASA and NORSAR; the "missing' magnitudes were then set equal to the ap-

parent "threshold magnitude'. The slight bias introduced by this procedure

should not be significant,

ob
r n The most striking observation from Figures IV-7 and IV-8 is I
1 8 the much larger spread between NORSAR and LASA magnitudes in the latter i
[ [ case, which corresponds to the Kuriles swarm. The observed standard de-
t § o viations are 0.25 and 0,40, respectively. Because of the randomness in
event selection, it is clear that, with the notation in the figures: '

O'Z(m - ) = (T;-{- O'i (lV-Z)

so that we obtain an immediate estimate of the remaining terms of equation

(IV-1).

Inserting the above numbers in equation (IV-1) we obtain values

of 0=0,29 for the Honshu swarm and o = 0,43 for the Kuriles swarm, which

compare ‘vell to the respective values of 0.31 and 0,47 estimated by the maxi-

mum li'.elihood method.

The important conclusion from the preceding considerations

is not so much the numerical results, but rather the fact that there is a
direct connection between the spread in magnitude distribution and the spread
in the station detection curve as estimated by the direct method. It would
appear that the large spread in the Kuriles magnitude ensemble reflects a
greater variation in source mechanisms for this event set than among the

Honshu aftershocks.
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2, Indirect Estimation

The indirect maximum likelihood method was also applied to
the two aftershock sequences described previously, The number of events
reported in the NORSAR bulletin in each case is shown as a function of mag-
nitude in the histograms of Figures I1V-9 and IV-10. These figures corres-
pond to the Honshu swarm and the Kuriles swarm, respectively. Since NOR-
SAR did not report a magnitude for the main shock of the Honshu swarm (due

to system saturation), the LASA magnitude for this event was used instead,

The two figures also list the estimated seismicity parameters
and the parameters of the detection curves. The incremental seismicity

n{m) which is given by

n(m) = b.e (IV-3)

is shown as a dashed curve. A curve showing the (incremental) expected

number of detections E(m) is also drawn, This curve is specified by

E(m) = n(m) - P(m) (1V-4)

where P(m) is the estimated detection probability for an event of magnitude

m, The ''goodness of fit' of this curve to the histogram is an indication as to
how well the theoretical model with the estimated parameters actually fits the
experimental data, We observe that the fit appears to be quite good in both

cases,

Confidence limits have not been computed for the indirect es-
timates. However, an idea about the confidence of the estimates of the Hon-
shu swarm can be obtained from the simulation experiment in Subsection 1I1-D,
which dealt with a very similar situation. The confidence in the parameter
values for the Kuriles swarm should be somewhat better, since the number of

events is higher by a factor of three.
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o 35 Comparison of Results

The estimated parameter values by the two methods (g, ¢ and

[ %)

90 percent threshold M 0) are summarized in Table IV-3., The following

9

observations may be noted:

® The parameter « estimated by the indirect method is signi-

ficantly lower in both cases (0,12 versus 0,31 and 0,14 ver-

sus 0,47, respectively). This is in excellent agreement with
: our considerations in Section II, equations (1I-7) and (11-12),

' which imply that the indirect method estimates the variation

o in the threshold magnitude only, and does not relate to

T
the signal variations « and o _,
& N L

° As expected from the above observation, the 90 percent detec-

F tion thresholds estimated by the indirect method are much low- ‘
er than the direct estimates in both cases (0.25 and 0,4 m, |

| units, respectively). In fact, our considerations in Section 1l

imply that the 'true' 90 percent threshold is somewhere be-

tween the direct and indirect estimates,

° The 50 percent detection threshold g 1is about the same in the
two cases, after compensating for the bias betwecen NORSAR
and LASA magnitudes for the Kuriles swarm, We had actually
expected the direct estimates to be higher by an amount of
b(ri (Figure I1-2); i.e., about 0, 07 mb units for the Honshu
swarm and 0,13 mb units for the Kuriles swarm. However,
the<e deviations are within the uncertainties of the mathema-

tical model.

In conclusion, we again stress that the important point is not
' so much the numbers involved, but rather the fact that the direct and indirect

methods estimate two different detection curves, and that the resulting estimates




e comcot eem——

TABLE V-3

COMPARISON BETWEEN DETECTION PARAMETER ESTIMATES

[ OBTAIMNED BY THE DIRECT AND INDIRECT METHODS FOR

THE NORSAR SP OPERATIONAL PERFORMANCE FOR
TWO AFTERSHOCK SEQUENCES

Honshu Swarm Kuriles Swarm

| O (|| | O [Py

Estimates by the direct method 3.92 10,31 |4.31| 3. 47 {0.47 |4. 07

Estimates by the indirect method |3.90]0.12 | 4, 06| 3.57%|0, 14 |3, 75%

Note that the NORSAR-LASA m, bias of 0.10 should be subtracted
from these values in order to make them compatible with the direct

estimates,
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of threshold parameters must be interpreted accordingly. In our opinion,
the failure of the indirect method to take the signal variation into account is

a serious drawback with this estimation technique.
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SECTION V
SUMMARY AND CONCLUSIONS

The first topic of this report was to define the detection curve
of a seismic station or network as the probability of detection as a function of

event magnitude. The following observations were made:

° Under reasonable assumptions, the detection curve of a sinyle

station (or ,eismic array) for a limited region can be approxi-
mated by a cumulative Gaussian distribution function. In this
Gaussian model, then, the parameters y and o of the dis-

tribution completely define the detection curve.

° The Gaussian model does not theoretically apply to seismic
networks, but may still be useful as an approximation to the

network detection curve within limited magnitude ranges.

° A very important observation is that the detection curve of a
scismic system varies with the choice of reference magnitudes.
Thus a detection curve estimated from a station's own magni-
tudes tends to give a significantly lower 90 nercent detection
threshold than if a different station's magnitudes are chosen

as reference,

A maximum likelihood method for estimating the detection
capability of a seismic station or network in terms of magnitudes from an in-
dependent reference system was presented. The method is based upon a

direct verification of detection or no detection for a set of reference events.,

Our presentation can be summarized as follows:




° The likelihood function for the method was derived and asym-
ptotic confidence limits for the estimated parameters were

computed,

° A simulation experiment showed that t..e asymptotic confidence
limits were good jndications of the stability of the estimates in
a test case with 100 reference events (of which 75 were detect-
ed). A test case with 20 reference events {10 detections) indi-
cated that the method should be used only with caution for data

samples of this size.

® It was emphasized that the estimation procedure is only as
valid as the model. The method is sensitive to '"bad' data
points, such as a large event that is not detected or a very low
magnitude event ‘hat is detected. A careful data screening is
necessa 'y to eliminate observations that either violate the in-
dependence requirement or hi' e questionable reference mag-
nitudes, Thus, as an example, the lack of consistency in PDE
m, estimates suggests that LASA and NORSAR may in many

b
cases be better suited as reference systems than PDE,

A brief description of the indirect maximum likelihood estima-
tion method developed by Lacoss and Kelly (1969) was also included, A simu-
lation experiment showed that this method gave reasonable stable estimates
in a test case with an expected number of 133 events, Data screening in this
case would be easier than for the direct estimation, and the major concern
would be to make appropriate limitations to the seismic region considered, so

that the Gaussian model is valid,

Finally, examples of applications were shown, with emphasis on
the direct method. For two earthquake aftershock sequences, a comparison

was carried out between the direct and indirect estimation method. The result




was found to be in agreement with the theoretical considerations regarding the

detection curves.

In conclusion, it is felt that maximum likelihood estimation is
a feasible approach to obtaining estimates of the detection thresholds of seis-
mic stations and networks. When choosing between the direct and the indirect
methods of estimation, we observe that the latter method has the following

two major disadvantages:

() The seismicity estimates by the indirect method are based upon
detections by the statiou itself, and may not always be reliable.
For example, suppcse we want to estimate the NORSAR opera-
tional detection capability for a region with poor beam coverage.
The seismicity estimates for this region based on NORSAR de-
tections will then clearly be biased low, thus causing the in-

direct method to estimate too high detection probabilities.

The indirect method fails to take the signal variance into ac-

count when estimating detection thresholds. Therefore the 90
perc. ' thresholds found by this method will always be signifi-
cantly lower than the 'true'' threshold when estimating station

detection capability,

For the above reasons, we feel that the direct method of esti-
mation is a superior approach to obtaining reliable detection threshold esti-
mates. This method has the added advantage of giving easy visual control
of the results. However, the direct method does require that a good reference
network or station be available. In the hypothetical case of a "perfect' refer-
ence network, the resulting estimates from the direct method would represent

the "true' detection probabilities. In practical situations, the variance of the

reference magnitude estimates must be considered when evaluating the results,




As in all applications of statistical estimation theory, it is
necessary to do a careful data screening prior to applying the mathematical
tools. It is important to remember that the estimators, being random vari-
ables, sometimes will produce results that deviate significantly from the

true parameter values. Thus, a careful interpretatior of the results is re-

quired when applying the techniques described in this report.
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APPENDIX A
STATISTICAL PROPERTIES OF STATION MAGNITUDE DISTRIBUTIONS

We will in the following focus upon some statistical properties
of station magnitudes that follow from the assumptions made previously in
this report. We will in general not refer to the detection performance of any
seismic system during these considerations, thus, we assume that for any
seismic event the station magnitude is defined regardléss of whether or not
a signal is actually detected. To be specific, we will refer to LASA and NOR-
SAR station magnitudes as estimates of a hypothetical 'true' magnitude.
However, the results are clearly valid for other stations or networks that

satisfy the basic assumptions.
Our two basic assumptions, as stated in Section 1, are:

Given than an event has true magnitude m=x, then
- The distribution of the NORSAR magnitude my is
N(x + bN, U'N)
The distribution of the LASA magnitude m, is
2
N(x + bL' (rL)

The two random variables my and m_ are independent,

The nuniber of earthquakes N(x) exceeding a given true magni-

tude m=x may be expressed as:

a-bx

N(x) = e (A-1)

Distribution of Tr.e Event Magnitude Given Station Magnitude

The first topic is to ind what can be said about the true magni-

tude of an event, given e.g., the vilue of the LASA maynitude m, of that




event. FYor this purpose, we find it convenient to consider the true magnitude
m as being a random variable, with a certain probability distribution, For
example, if we consider all events of true magnitude greater than an arbitrary
value m then the probability density function w(m) of m can be derived
from (A-1):

-b(m - m )
w(im) = b.e - m2>m (A-2)

o

The probability density function (A-1) is often referred to as
the a priori distribution of m . Our purpose is to find the distribution of m,
given that o, T This conditional distribution is called the a posteriori

distribution of m, given m and we will denote it as h(m/mL).

s i

Following Cramer (1945) page 508, we obtain:

w(m) . gL(mL/m)

h(m/mL) z

f w(m) . gL(mL/m)dm

m
(o)

where gL(mL/ m) according to our first basic assumption is a Gaussian

probability density function:

(m -(mtb )’

20'2
SL(mL/m) = (Zfr(ri‘)'llz e L

(A-4)
When inserting (A-2) and (A-4) in the expression (A-3) we first
observe that the term in w(m) involving m cancels. Thus it is evident that
o
the expression (A-3) has a limiting value 25 m — -w, since the integral in
o
the denominator is convergent. It turns out that this infinite integral can be

evaluated, and we obtain after some computation:




(m - (mL - bL- bu'zL\)

¢

2
h(m/n\L) = (ZTT()'ZL)'I/Z . e ZU'L (A-S)

Thus, we have shown that, given that an earthquake has a LASA magnitude

o =y, then the true magnitude m will be normally distributed:
E(m/m_ =y) = b b(r2 (A-6)
R WS RN L
Var (m/m =y) = o (A-7)
ar (m m =y} = ; -
This is a quite interesting result, which says in effect that even
if LASA magnitudes m, =~ were unbiased for any given event (i.e., bL = 0), the

expected value of the true magnitude, given the value of m, would be differ-
ent from m, . At first this may appear to be somewhat surprising, but it

can intuitively be explained as resulting from the skew magnitude distribution
of earthquakes. As an illustration, consider the following example, a