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ABSTRACT 

This report deals with the general problem of estimating the 

incremental detection capability of a seismic station,  i.e. ,   the probability of 

detection as a function of event magnitude.    A maximum likelihood procedure 

is introduced to estimate the station detection thresholds by comparison with 

an independent reference station or network.    Approximate confidence limits 

for the estimated parameters are computed.    The results obtained by this 

(direct) method are compared to estimates derived from applying the expon- 

ential magnitude-frequency relationship of natural seismicity.    It is found 

that the latter (indirect) method in general gives significantly lower 90 per- 

cent detection thresholds.     This is explained theoretically as resulting from 

the fact that the indirect met^ ^d fails to take into account the global variance 

of observed signal amplitudes for given seismic events.    It is concluded that, 

if a good reference system is available,   the direct method will produce esti- 

mates that are more reliable than those provided by the indirect method. 
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SECTION 1 

INTRODUCTION 

The detection capability of a seismic station or network for 

events from a specific region is usually referred to in terms of its incremen- 

tal detection probability.    This is defined as the probability of detecting an 

event,  given the event magnitude.    In particular,  the 90 percent detection 

threshold is often quoted as a measure of performance; this is the magnitude 

at which the station is expected to detect 90 percent of all events. 

Several methods have been devised to estimate the detection 

probability function of a seismic system. In general, such methods can be 

assigned to one of three main classes: 

• Estimates based on seismic noise studies    -    By measuring 

the seismic noise level,  estimating the signal-to-noise ratio 

required for detection and assuming a signal variance,  one 

can reasonably well predict the actual detection performance 

of a system. 

• Estimates based on seismicity and observed detection perfor- 

mance    -   This is a two step procedure.    First the seismicity 

of a region is estimated by extrapolating the observed data, 

using the exponential magnitude-frequency relationship.     Then 

the observed number of events is compared to the estimated 

seismicity in order to establish detection thresholds. 

• Estimates based on comparison to a reference system    -    A set 

of events reported by an independent reference system is first 

selected.    The percentage actually delected at each maunitude 

1-1 
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by the station in question is then used to obtain threshold esti- 

mates. 

We will ..   this report refer to the second and third estimation 

methods described ibove as indirect and direct estimation,   respectively. 

The main topic of this report is to pret.L~t a new approach to 

the direct method of estimation,  using a maximum likelihood technique.    Ex- 

amples of application are included,  and the result- are compared to those ob- 

tained by other methrds. 

Section II of this report establishes a model of the detection 

probability funoion which has been found useful for threshold estimation.    In 

this model,   the probability of detecting an event of a given magnitude   m   is 

assumed to be a cumulative Gaussian distribution function: 

P(Detect m) # M (i-i) 

where   H    and    9   are unknown parameters.    It is shown that the parameters 

should be interpreted differently according to which method of estimation ic 

being used.    This has the very important implication that different methods 

of estimation may be expected to produce different results,   so that a careful 

in »rpretation is necessary. 

In Section III the likelihood function for the direct estimation 

method is developed,   and a,  )roximate confidence limits for the estimated 

parameters arc« computed.     Tht validity of the approximations is examined 

by applying a simulation model.     We also include a brief description of a 

maximum likelihood   method for the indirect estimation problem,  as develop- 

ed by Lacoss and Kelly (1969).     We chocse an approach which is slightly dif- 

ferent from theirs in order to show that no hypothesis of Poisson distribution 

of natural seismicity is  required to develop the likelihood function. 

^m« 
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Section IV presents some examples showing how the direct es- 

timation technique can be applied in practical situations.    A comparison be- 

tween the results obtained by *he direct and indirect methods is carried out 

for two aftershock sequences recorded by the NORSAR and LASA arrays.   It 

is found that the two methods yield significantly different results,   but that the 

apparent disagreement can be adequately explained by the considerations pre- 

sented in Section II. 

,v!" main results from this report are summarized in Section 

V. 

1-3 
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SECTION II 

THE GAUSSIAN MODEL FOR EVENT DETECTION PROBABILITY 

This section addresses the general problem of establishing a 

model for the detection probability curve of a seismic system,  i. e. ,  the pro- 

bability that the system detects an event as a function of event magnitude   m. 

The case of single station or seismic array detection is dis- 

cussed first,   and il is shown that under reasonable assumptions the detectioi 

curve will have the form of a Gaussian distribution function: 

2 -1 
Pt Detect/m=x)   =    (Zntr   ) "7 

Jt-M) 

e     Z(TZ    dt (11-1) 

This holds true whether the magnitude   m   is defined as the magnitude esti- 

mated by a specific station or as a "true" event magnitude measured by a 

hypothetical "perfect" network.    However,  the resulting values of the para- 

meters    M   and   (r   will be different in the two cases. 

The detection probability curve of a seismic network is also 

discussed briefly.     It is concluded that the Gaussian model does not apply 

directly to this case,   but that it may still be useful as an approximation to 

part of the detection curve. 

A. SINGLE STATION 

1. Derivation of the Detection Probability 

In order to determine the probability of a seismic  station or 

array detecting an event from a specified region,  we make the following as- 

sumptions (illustrated in Figure II-l): 

11-1 
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• Given that an event has true magnitude    m=x ,  then the magni- 

tude   m      of the corresponding signal arriving at the station is 
2 

a normai variable:     m    ~ N{x , rr    ) 

• The event Is detected at the station provided   m    >m     ,  where 

m      is a threshold magnitude determined by the seismic noise 

level and the characteristics of t'     detection algorithm.     We 
2 

assume that   m       is a normal variable:   m    ~ N(u    ,'r    ) . 

• The random variables   m      and   m       are assumed independent. 
R T 

Under these assumptions,  the probability cf detection,  given 

m=x,    is as follows: 

P(Detect/m=x)   =   P(m    >mT/m=x) 

=    P{mR - mT>0/m=x) in-2) 

Since the conditional distribution of   (m   -m   ),   given   m=x,   is Gaussian,   we 

obtain: 

where 

P(Detect/m=x)    = 

2 2 2 
ex      ■   VT    ♦   (rR 

♦{^) (H-i) 

(II-4) 

and     <t>   denotes the standard cumulative Gaussian distribution function. 

The validity of this model for station detection capability rests, 

or course,  with the validity of assuming a normal distribution for   m       and 

mT. 

• For the station magnitude   m     ,  the   normality af dertion means 

that for a given event,  world wide observed magnitudes follow a 

II-3 
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normal distribution,  vi-ith a standard deviation    9     that arises 

mainly from source effects and differences in radiation patterns. 

This has been substantiated by several studies (Lanz,   1966; 

Freedman 1967).     Furthermore,   we assume that the variance 

of this distribution is independent of event magnitude.     To our 

knowledge,   this has noi been explicitly demonstrated by any 

author,   although data from Bungum and Husebye (1974) com- 

paring NORSAR and PDF magnitudes give some support to this 

assertion. 

• For the threshold magnitude    m     ,  the main influencing  random 

factor is the time variability of the noise level for the station. 

Evidence for a lognormal distribution of the seismic noise am- 

plitudes for a given station as a function of time has been found 

by Gerlach et al. ,   (1966) and Alsup and Becker (i97i) and is 

supported by results from Barnard and  Whitelr.w (197Z).    Ob- 

viously,   a lognormal distribution of r.oise anplitudes implies 

a normal distribution of noise "magnitudes". 

Besides th.. above considerations,  we mention briefly some 

additional factors that influence the distributions of   rr       ana   m   .     Meas ire- 

ment errors of amplitude and period are obvious examples,   another potential 

source is systematic errors in the distance factor.    The spectral chara-.U ris- 

tics of the received signal are important for delectability purposes,   and .here- 

fore influence   m   ,  whether an automatic detector or visual inspection is ap- 

plied.    In the automatic detector case,   our normality assumption means that 

filter SNR gain (in dB) is normally distributed.    Similarly,  the distribution of 

beamformin^ loss influences the variance of   m       in the case of an «irray sta- 

tion. 

One final important consideration is the effects of applying the 

Gaussian model to events within a large region.    In this case,   the   normality 

assumption is only valid if the geographic seismicity distribution of the region 

D 
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is such that the observed B-factors are normally distributed.    This is clearly 

not valid m general; therefore,   it is necessary to require that the model only 

be applied to a region for which the variation in B-factors are negligibJe com- 

pared to the variation of the other components in our random model. 

This last requirement is not very restrictive,   for example, 

over the epicentral distance 30-80 degrees,  the bodywave distanc" factor 

\ aries only by + 0. 1 m    units.    This is well below the value c f (T     = 0. 4 

found by Veith and Clawson (19'»7-) as a typical value of the standard d-viation 

of magnitude measurements at single sensor stations,   assuming that standard 

B-factor tables are used.    In the case of large aperture arrays,  such as LASA 

and NORSAR,  one can expect a lower value of   T   ,  due to the fact that local 
K 

effects are smoothed out when the signal is averaged over a number of sen- 

sors.    A value of     (T      betwee.i 0.25 and 0.30 seems reasonable in these two 
R 

cases;    thus the B-fartor variation is still relatively insignificant. 

2. Examples of Application 

In the following subsection several examples are given of pos- 

sible situations to which the Gaussian model could be applied.     It is important 

to note the conditional nature of the probability expression II-3,   since this i§ 

the key to a proper understanding of the various viewpoints that are presented. 

To be specific,   let us analyze three cases; dealing with the 

NORSAR P-wave detection probability in terms of "true" m   ,   NORSAR mb and 

LASA m, ,   respectively.     We will assume that: 
b 

• Given that an event has  "true" magnitude   m = x,  then 

the distribution of the NORSAR magnitude    m       is 

th« distribution Of tiM  LASA magniutde    m       is 

N(x + b^. ir   ) 

ll-s 

IMM 
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The NORSAR "threshold magnitude"   m      is   Niß^,^^) 

The random variabies   m^.,   m    ,   and m     are independent, 
ML T 

a. NORSAR Detection Curve in Terms of "True" Magnit ide m 

Given that   m=x,  then   nri  ,    is     N(x+b   , (r    ),   so that 
N N      N 

P( Delect/m=x)   a    p(rn
N>m

T/  rn=x) 

where 

..(. 
(x -MT) +   b 

(T, "•) 
(II-5) 

2 2 cr       +   V 
T N 

(11-6) 

b. NORSAR Detection Curve in Terms of NORSAR Magnitude 

"V 
In this case,   the problem is to determine the probability of de- 

tection,  given that a signal arrives at NORSAR co-responding to a magnitude 

m     = x.    (Thus it is implif.itly assumed that the signal has an   m      value even 
N 1N 

if it is not detected. ) 

Given tnat   m     = x ,    it is clear that detection occurs provided 
N 

x>m     ,   so that 

/X'UT\ 
P( Detect/m=x)    =   <t>       I 

N \    «T      / 
(II-7) 

It is evident that an indirect procedure is required in order to 

estimate NORSAR detectability in terms of   m   .    One such procedure would 

be to analyze the distribution of the seismic noise level,   and thereby estimate 

- 

.1 

J 

. 
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u      and    a   .     Another procedure is to assume that the number of earthquakes 

N(x)   exceeding a given NORSAR magnitude   x   may be expressed by 

log N(x)   =   a - bx       (natural logarithm). (II-8) 

and use this expression in conjunction with the observed number of events to 

determine detection threshrids, (Lacoss and Kelly, 1969; Bungum and Huse- 

bye,   1974). 

Note that the formula (11-8) is more commonly expressed in 

terms of base  10 logarithms.     If this is done,   a     and   b   become    a' = a/loglO 

and   b' = b/loglO,   respectively. 

c. NORSAR Detection Curve in Terms of LASA Magnitude 

mL- 

Given that   m    = x,   it is not a straightforward task to find the 

distribution of   rn,.    It will be shown in Appendix A that the conditional dis- 
N 

tribution of   rn,   is Gaussian,   and that 
N 

E(mN/mL = x)    .   x-b.rL   *   % - bj 

Var(mN/mL = x)    =   " ^   +   •** 

(II-9) 

(11-10) 

if it is assumed that only earthquakes (as opposed to explosions) are consider- 

ed,   and that the seismicity observed at  LASA may be expressed by (11-8).     The 

correction factor    - brr      in   (II-9)   arises from the skew distribution of earth- 

quake magnitudes,   And is typically around 0. 1  m    units. 

From the above considerations,   it is easy to show that th»' 

NORSAR detection probability in terms of LASA m    values     becomes 

II-7 
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where 

P( Detect/m     = x)   = • ('-vyvv) (n. 
2 2 2 2 

-2   =   -T
+   -N+   -L 

11) 

(11-12) 

The NORSAR detection curve in terms of LASA magnitudes can 

easily be estimated directly,   by selecting reference events reported by LASA 

and verifying whether or not a NORSAR detection occurred.    (Ringdal and 

Whitelaw,   1973a,   197 3b.) 

D 
Ü 

d. Discussion 

When considering the three cares discussed above,   it is evident 

that we would desire to estimate the NORSAR detection capability in terms of 

a "true" magnitude as discussed under a. 

A comparison of the detection curves obtained by the three 

methods discussed here is presented in Figure II-2 for a typical situation.     It 

is assumed that both LASA and NORSAR are unbiased,  that   M      = 3.70,     »r   = 

0.15,   and that   (J^ =  r    = Q. 2.5.    A value of   b = 2. 0   has been used   (this 

corresponds to a slope of 0.9 in the base  10 seismicity curve). 

It is seen that the SO percent detection threshold has a slight 

positive bias for the curve based on LASA m,  .     The 90 percent threshold in 
b 

terms of the NORSAR m^ curve is significantly lower than the corresponding 

threshold based on  LASA m    values (by about 0. 4 m    units in this case), 

while the  "true" 90 percent threshold is about midway between these two values. 

Although we will give a more detailed discussion of how to esti- 

mate detection curves in Sections III and IV of this report,   it seems appro- 

priate  to give an example of the importance of the above considerations. 

II-8 
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Ringdal and Whitelaw (197 3b) estimate the "optimum" 90 percent incremental 

detection threshold for the NORSAR SP array to be slightly aelow mb = 4. 3 

for the Kuriles-Kamchatka region (essentially in terms of LASA magnitudes), 

yet Bungum and Husebye (1974) report that the operational NORSAR 90 per- 

cent incremental detection threshold for the same region is about uv   =4.0 

in terms of NORSAR magnitudes.    NORSAR and LASA    can be considered 

mutually unbiased for th-s region. 

This apparent contradiction stems from the fact that two dif- 

ferent detection curves are estimated in the two casts,   (method   b   and   c 

respectively).     By the preceding considerations,  we ran relate both estimate.- 

to the  "true" detection curve,   since it is reasonable to assume that the situa- 

tion illustrated in Figure 11-2 applies. 

In this way,   we find that Bungum and Husebye's estimate cor- 

responds to a "true" 90 percent detection threshold of n^   = 4. 1  - 4.2,  while 

Ringdal and  Whitelaw's estimate corresponds to a "true" mb = 4. 0 - 4. 1. 

Thus the apparent contradiction is removed,   and the proper conclusion ir that 

the NORSAR array has an operational capability for the Kuriles-Kamchatka 

region which is very close to the optimum capability that can be obtained us- 

ing the beamforming/filtering detection algorithm. 

3. Applications to Surface  Wave Detectability 

The Gaussian model described previously may also be applied 

to the detection probability of long period surface waves.     An added considera- 

tion in this case is how to compare estimates in terms of M    to estimates in 

terms of m   .     This has previously been discussed in papers by Harley and 
b 

Heiting (1972) and Lacoss (1971); we will in the following briefly summarize 

the relevant considerations.    Our assumptions are: 

• Given an event of true bodywave magnitude   m=x,  then the true 

surface wave magnitude    M   is given by 

i 

11-10 
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M =   £(x) +  r (11-13) 

where   f   is a deterministic function and   r   is sampled from 
2 

a normal distribution of zero mean and variance    9   . 
r 

The NORSAR surface wave detection threshold magnitude   M 
2 

is normally distributed;    MT ~  Nyß^T. <*MT)' 

fl 

Given that the true surface wave magnitude   M = y ,   then the 

NORSAR surface wave magnitude    M       is     N(v + bwN »  "" MN) 

M       and   M..,   are independent. 
T N 

a. NORSAR LP Detection C irve in Terms of True Surface 

Wave Magnitude. 

Given that    M  = y •   it is found in a way similar to Example 2a 

that the detection probability becomes; 

where 

/ y ' ^MT 
+   bMN\ ...  ... 

P( Detect/M=y)   =   <1>   I I (11-14) 

(r
2    =   <rZ       +   rr2 (11-15) 
3 MN MT 

b. NORSAR LP DetecHjn Curve  in Terms of True Bodywavc 

Magnitude. 

2 
Given that   m=x ,   it follows that    M   is    N(f(x), a   ).     It is then 

found that the conditional distribution of   M       is Gaussian,   and that 

E(MN/m=x)   -   f(x) + bMN (11-16) 

11-11 
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Var (MN/m=x)   .   (T^ +  rj (H-H) 

This implies that the NORSAR LP detection probability in terms of true body- 

wave magnitude   m   becomes: 

P(Detect/m = x)   ■   <i>   I ) (11-18) 

where 

cr2   =   fr2       +   rr2      +   o-2 (11-19) 
4 MN MT r 

By comparing expression (11-18) to (11-14) it is seen that it is 

not correct to transfer between the two detection curves si mply by substituting 

y = f(x); one must also take the inherent scatter in the    Ms -   mb   relationship 

into account. 

In its simplest form the relationship between   M     and   m      is 

approximated by a linear function f ,  such as the Gutenbe rg-Richter   (l^fe) 

relation: 

M    = 1.59 m    - 3.97 (11-20) 
s b 

In this linear case,   the detection curve as a function of m    becomes Gaussian. 

However,   if   I   is assumed to be a non-linear function (Evernden et.   al. ,   (1971) 

and Tsai (1972)),  this no longer holds true.     In order to obtain a Gaussian 

curve,   in this case,   it iF  necessary to plot dett ctability as a function of   f(m, ). 

This of course re^uirrs that   f   is known a priori. 

Similar considerations as given above apnly to detection curves 

in terms of rrugnitude cstimaces that are not necessarily "true" (such as  LASA 

magnitudes).     We will not elaborate this point any further here. 

11-12 
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B. A NETWORK OF STATIONS 

It is not a straightforward task to apply the Gaussian model 

to jeismic detection probability using a world-wide network.    Clearly the de- 

tection probability is a function of the network detection algorithm; the most 

common algorithm is to declare an event if at least   M   individual stations 

(out of a total of N) show cor-esponding detections. 

Under the assumptions presented earlier, let us assume that 

the probability of detection for station number i , given true evont magni- 

tude   m -■ x ,   is 

P (Detect/-n=x) 
/x -M. ; 

i ■ 1,2....N (11-21) 

If we set the network detection requirement to   M=l,   and assume that differ^ 

ent stations detect the event independently,  we obtain the following network 

detection probability. 

P(Netvork Detection/m=x) = 1 n(>-*(^)) <"-u. 
Similar expressions can readily be obtained for alternative 

values of   M ,  using binomial expansion. 

Clearly,  the resulting detection curve is not a cumulative 

Gaussian distribution.     An interesting question is how well it can be approxi- 

mated by a Gaussian curve,   .ind some insight into this is provided in Figure 

11-3.     "his figure shows the detection curve for a network of   N   stations 

(N = 1,   2,   10,   100) according to (11-22),   assuming that all   M. = 4. S,   (r.= 0.4 

i = 1,   2, . . . N.     The dashed curves are Gaussian distribution functions with 

the same 50 percent and 90 percent detection levels as the theoretical curves. 

It is seen that the Gaussian distributions  ,ive quite good approximations over 

limited magnitude ranges,   but do not seem to fit the entire curve. 

11-13 
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Part of the reason that the fit is not good at low magnitudes is 

the lack of symmetry around the SO percent level for the theoretical curves. 

Actually,   the case of   M=l    gives the least symmetric detection curve; so 

that the Gaussian approximations will be at least as good if multi-station de- 

tection is required.     The best approximation may be expected for   M = N/2, 

when the theoretical curve becomes symmetric around the 50 percent level. 

In practical situations,   the network detection probability func- 

tion is further complicated by variable detection capability of individual sta- 

tions and distance factor variations.     Furthermore,  occasional outages of one 

or more stations in the network may cause loss of detections.    It is clearly 

difficult to give general statements as to the applicability of the Gaussian 

model to practical network situations.    However,   for a reasonably stable, 

homogeneous network,   it might be anticipated that the Gaussian model can be 

used as an approximation to the detection curve over limited magnitude ranges. 

An example of this will be studied in some detail in Section IV. 

Finally,   it might be observed that the ne'.work situation pre- 

sents additional problems if it is desired to find the network detection pro- 

babilities in terms of the network's own magnitudes.    (Similarly to Example 

üb in this subsection. )   This is because network magnitudes are usually com- 

puted by averaging the magnitudes of the detecting stations.    Thus the network 

magnitudes will be biased high for events of low (true) magnitude,  that are not 

detected by all stations.     Better methods of network magnitude determination 

(Herrin and Tucker,   1972) would be required to overcome this problem. 
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SECTION III 

MAXIMUM LIKELIHOOD ESTIMATION 

D 

This section presents a detailed description of the maximum 

likelihood method for direct detection threshold estimation.     Asymptotic con- 

fidence limits are computed for the estimated parameters,   and the validity of 

using these as approximations in practical cases is investigated by performing 

computer simulation.     A brief description of the indirect estimation technique 

developed by Lacoss and Kelly (1969) is also included. 

A. DIRECT ESTIMATION METHOD - GENERAL DESCRIPTION 

The purpose of the estimation process described below is to 

estimate the  "detection curve" for a seismic station or network; i.e. ,  the 

probability of detection as a function of event magniti de. 

The basic assumption is that the detection curve belongs to 

some general class of functions,   and can be completely characterized by the 

values of a set of parameters.    In particular,   we will deal with the Gaussian 

model which was described in Section II.     We recall that,   in this model,   the- 

detection curve is of the general form] 

m 

P(m)   =     ^n-rr2)"1 

"/ 
<it (III-l) 

Thus, in the Gaussian case, the station detection potential is cnaracterized 

by th" actual values of the parameters \i and (r . The problem therefore 

is to estimate these two parameters. 

■ 
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_ 



The general procedure in estimating the parameters of the de- 

tection curve for a seismic station is as follows: 

• Obtain a reference set of randomly selected events of various 

magnitudes (as reported by the reference source). 

• For each event in the reference set,   make a decision as to 

whether or not the station has detected this event. 

• Establish the likelihood function for the observed pattern of 

decisions; detection versus no detection,   using the general 

form of the detection curve. 

• Find the set of parameter values of the detection curve that 

maximizes the likelihood function. 

To establish a formal model,  we will assume that the reference 

data base consists of   n   seismic events of magnitudjs   m  t...m   ,   respectively. 
1 n 

These magnitude values are as reported by the reference source,   and must 

therefore be considered as statistical estimates of the true event magnitudes 

(see Section II).     To simplify the notation,   we will assume (with no loss of 

generality) that all the   m.   values are different.    (Note that   m   is a continu- 

ous variable. )    We thus arrive at a statistical ti &t situation,  where    n   inde- 

pendent tests are carried out; for each test the probability of success (i. e. , 

detection) is specified by equation (1II-1),  for the proper value of   m . 

Let   x.  =  1    if the station detects the    i       event,   i = 1,2,...   n; 

x. = 0 otherwise.     The probability of a particular combination   x,  . . . ,  x 
J 1 n 

occurring is 

n 
\(xI  .   .   .  x   )   =     If   F(m.)Xi   •    (1  - P(m.))        Xi (III-2) 

1 n ** i i 
i = l 

u 
.1 

0 

For a given outcome of this experiment,   x=a x    =a,  the maximum 
11 n        n 

I1I-2 
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likelihood estimates of    ß   and    a    ire obtained by maximizing the log likeli- 

hood function 

n 

(111-3) 
1 IT 1 

i = l 

I 
I 
I 

Log MU.(T) = XjV L08 r'.'ni) 
+ n-a.) • Log(l-P(m.)) 

I 
B 
0 
0 
D 
Ü 

D 
. 

,: 

:: 

A A 
We will denote by   ß    and    rr   the  pair of parameter values that maximizes 

(111-3). 

For information about the general properties of maximum 

likelihood estimators,   we refer to Cramer (1945).     Before discussing further 

the mathematical aspects of the estimation method,  we find it appropriate to 

comment briefly on some of our assumptions. 

The most important assertion in the above estimation method 

(apart from the validity of the general form of the detection curve) is the ran- 

domness criterion in the selection of reference events.    The essential point 

here is to select events independently of the station for which we want to esti- 

mate the detection curve.    In this way,  the events in the reference set,   for 

any given magnitude,   will represent a randomly chosen subset of the total 

number of everts occurring.     Thus the percent detected will be an unbiased 

estimate of the percentage that the station would detect of the whole event 

population for each magnitude. 

It is clear that the procedure described here will estimate the 

detection curve of a seismic station in terms of magnitudes from an indepen- 

dent station or network.    Thus the uncertaimics in these magnitude estimates 

affect the resulting detection curve as described in Section II. 

Further,   it should be noted that the actual decision; detection 

versus no detection can be made in several ways,   such as 

• Check to see if the reference events have been reported in the 

routine seismic bulletin from the station in question (thus esti- 

mating "Operational detection threshold"). 

Ill-3 
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• Inspect visually the station waveforms for each reference 

event to verify detection or no detection (thus estimating the 

"event verification threshold" which might be expected to be 

superior to the operational threshold). 

• Apply new detection algorithms to the station waveform for 

each reference event,   thus estimating the performance of these 

algorithms, 

• For a seismic network,  determine the detection threshold as 

a function of the number of individual station detections re- 

quired for network detection. 

It is important to remember that the Gaussian model (or other 

models) are to be considered only as approximations to the true station de- 

tection curve.    Tne estimation method described here is in a sense mainly 

a curve-fitting technique,   and will .vork best in the magnitude range where 

the largest number of events are available.     Inference about detection pro- 

babilities obtained by extrapolating the curve to magnitudes where data are 

scarce should therefore be avoided.    In many cases it might be advisable to 

select only a specific magnitude interval of interest,   and fit the Gaussian 

curve to the observed data in this interval.     Examples of this will be given 

later. 

B. DERIVATION OF APPROXIMATE CONFIDENCE LIMITS 

1. Asymototic Properties of the Estimators 

One of the most prominent features of maximum likelihood 

estimators is that they often possess very desirable asymptotic properties. 

Under reasonably general conditions,  the following may be proved (Cramer, 

194S,   pp S00-S04). 

1II-4 
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• The solution of the likelihood equation converges in probability 

to the true parameter value as the rumber of observations In- 

crea^ es. 

• The maximum likelihood estimator is    asymptotically efficient. 

(Informally,   an efficient estimator is one that has lower var- 

iance than any other unbiased estimator). 

• The maximum likelihood estimator is asymptotically normally 

distributed. 

In order to verify that these properties apply to our particular 

case,   we find it convenient to regard the selection of reference events as a 

random experiment.     Thus we assume that the probability density function for 

selecting a reference event of magnitude   m   is of some fixed form,    s(m) , 

cid that individual selections are independent. 

In this way we can view our direct estimation procedure as 

consisting of observing the outcomes   (m,x)   of   n   independent experiments, 

each with the likelihood function: 

Ajfm^M.rr)   =   s(m) • P(m)X .  (1-P(m)) (111-4) 

The original likelihood function (III-2) is then equivalent to a product of     n 

functions of the form (III-4); in the sense that the factors originating from 

s(m)   do not depend upon   ß    and   <r ,   and therefore will not influence the 

maximum likelihood estimates. 

As   n —♦ « ,  we can nowapply the two-dimensional form of the 

limiting theorem in Cramer (1945),  in order to show that the asymptotic 

properties described above apply to our case. 

III-S 
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Var (i)]"1   ■    (1  - pZ{ß,a)) Ei*Jft±) (1II-5) 

Var(^)]-1   ^    (1-P2(;.;r))   .   E(   a^L ) (III.6) 

Cov(/i,^)   =    />(/!,^)   .    [var(i)   .   Var (5-) ] 
1/2 

(II1-7) 

A    A 
P{ß.a)   ^  -E /a Log 

I    du 
a Log 

^) 

(^2 • *h^)' -1/2 

(III-8) 

Because of the simple form of the likelihood functions (III-2) 

and (III-3),  it is relatively easy to obtain analytic expressions of the quantities 

2. Computation of Asymptotic Confidence Limits 

Our next step is to find approximate values of the variances 
A A 

of   u    and    (7   and their covariance.    In view of the preceding considerations, 

it is reasonable to compute the corresponding quantities for an unbiased,  ef- 

ficient estimator of   ß   and   a    (usually known as the Cramer-Rao bounds), 

and use these values as approximations.    Following Cramer (1945,  pp 490- 

495) we obtain: 

In the above formulae,    E   denotes the statistical expectation,  with the sam- 

ple space consisting of all possible outcomes   x,,.  .  .  x     of detections/no 
1 n 

detections,  each combination of   x.'s   having a probability of occurrence de- 

fined by equation (III-2). 

A     A 
The correlation coefficient     P(ß,a)   used in the above ex- 

pressions can be approximated by 

III-6 
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defined in equations (111-5) through (III-8). By carrying out the necessary 

computations, and in particular observing the independence of the n test 

situations,  we find (setting   P(m.) = P.): 

i=l 

(III-9) 

n 

0 
fl 

0 

•(«^ • ^ • i: *> - p
i'--O (5) <"-' 

i=i 

' i=l 

(111-11) 

Note that expressions (111-9 through UJ-ll) are not restricted 

to the Gaussian model (111-1),   and that extension to classes of detection curves 

with more than two   parameters obviously is possible. 

In the Gaussian situation,  the function   P   is given by (111-1), 

and we obtain after evaluating the partial derivatives: 

n 

x 1=1 

i=l 

F: BH2 ■ t (-^)2-«. 
i=l 

(111-12) 

Z.      (111-13) 

(111-14) 
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:.    =   exp(.(m.-/i)   Ar   ) . I 2™    P(rn.) . {1 -  P(m.)) (111-15) 

Once the variances of   u  and   o- and their covariance are known, 

it becomes easy to find the uncertainty involved in estimation e. g. ,  of the 90 

percent incremental detection threshold.    In fact,   according to the Gaussian 

model (111-1),    he 90 percent limit    /i        is given by 

90 /i   +   f   •   cr 

.th 

(111-16) 

where    f - 1.28   is the 90     percentile of the standard normal distribution.   Thus 
. A 

we obtain an estimate    u   n   and its variance as follows: 

90 
A A 

P   +   f   • 9 

Var(^90) ■ Var (a) +   f   .  Var ((r) + Zf • Cov (/!,£■) 

(111-17) 

(111-18) 

By assuming that     /igg   is approximately normally distributed,   we can then 

use (111-17) and (111-18) to obtain confidence limits on    u 
90 

It is in this way possible to construct "confidence curves" for 

the detectability curve (1II-1) as shown in an example in Figures III-l and 

III-2.     Figure III-l  gives a hypothetical combination of events and detection 

status.    The co-responding maximum likelihood detection curve and its 90 

percent confideme limits are shown in Figure III-2.    In this particular case, 

most events in tht   reference set have magnitudes greater than the apparent 

value of the 50% detectability limit    ß .    Thus,   as can be expected,  the con- 

fidence in the 90 percent detection estimate is greater than e.g.,  the confi- 

dence in the 10 percent estimate. 

1II-8 
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C. SIMULATION 

The properties of our maximum likelihood estimators derived 

previously in this section are only asymptotically valid.    This means that 

although the given approximations can be expected to work well for large 

reference event sample^,  nothing is said about their validity when the number 

of events is limited.    It is clearly important to obtain some information about 

how well the given expressions approximate the real distribution of the esti- 

mators in practical situations,   and a convenient way to do this is to establish 

a simulation model.    The simulation procedure is as follows: 

• Assume that the detection curve is known; e.g.,   that the Gau- 

ssian model (111-1) is valid and that   /i = ^    ,   ^ -    (T    . 
o o 

111-10 

.. 

.1 

It is important to interprete these confidence carves properly. 

First of all,   is should be pointed out tha* the confidence lim'..i are derived 

without reference to how "well" the experimental data actua'ly fit the Gaussian 

model (III-l).     The term confidence in this case just means t. at if the detec- 

tion probabilities are according to the model (III-l),   then we can expect a 

maximum likelihood estimated based on,   say,   100 events to reflect the true 

parameter value with the given level of confidence.    However,   if,   for some 

reason,  the Gaussian model (III-l) does not appropriately describe the situa- 

tion,  our maximum likelihood estimate as well as its confidence limits will 

of course be meaningless. 

Secondly,  the confidence limits represent a smoothing over 

all data points.    Thus there is no reason to expect 90 percent of all the ob- 

served percentages (marked as asterisks) to lie within the 90 percent confi- 

dence limits.    This becomes more evident if we decrease the size of the mag- 

nitude bins such that only one event corresponds to each magnitude.    In that 

case all "observed" percentages will be either   0   or 100; thus all correspond- 

ing points will lie outside the 90 percent confidence limits. 
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• Assume further that the reference event set is specified; i.e., 

that the magnitude distribution   m.,  .   .   .  m    is known. 
" 1 n 

Under these assumptions,  we are able to proceed as follows: 

• Simulate the outcomes of 100 test situations,  where each sit- 

uation consists of the following two steps: 

Create a pattern of decisions; detection/no detection for 

the reference events,   using the predefined detection pro- 

babilities in a random model. 

Find maximum likelihood estimates    u   and    ir   based 

upon the outcome. 

• Compute the thecretical approximate 90 percent confidence 

ellipse for the maximum likelihood est -nators; based upon the 

equations (III-5) through (111-8),  with  M - M    ,   cr -  r 

• Compare the observed (simulated) outcomes with the theoretical 

confidence ellipse to determine how well the approximations 

work in practice. 

The theoretical 90 percent confidence ellipse corresponding to 

two binormally distributed estir-^tors   X    and   Y   with correlation      I'      and 
2 ! 

mean and variance   (m   , a   )   and   (m   , (r   )   respectively,   is (Cramer,   194S): 
xx y     > 

(^1 iP(x - m   ) (y - m   ) 
 5 JL   t 

frx • ^y m a2(l  -f>Z)    (111-19) 

where   a   is given by 

1  - exp (- —)   =   0.90 (111-20) 
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In our case,   we can apply these equations by substituting the 

values given by (III-1)) through (1II-8) and approximating the distribution of 
A A 
U   and   (T by a joint normal distribution. 

Figure III-3 presents the results from one such simulation 

experiment.     The reference event set contained   n=100   events,  of a magni- 

tude distribution identical to that shown in Figure IiI-1.     Parameter values 

of    M  = 3.76   and    <r = 0.41    were used as  "true" parameters of the detection 
A        A 

curve (111-1).    The resulting 100 pairs of estimates (ji,<r)   are plotted in Fig- 

ure 111-J together with the 90 percent confidence ellipse based upon the theo- 

retical considerations presented earlier. 

It is seen that the ellipse reflects well the simulated distribu- 

tion of the estimators in this case.    Thus we can conclude that ihe "confidence 

cur\es" of Figure 111-2 covering this particular case provide reasonably ac- 

curate indications of the uncertainties in the estimated parameter values. 

A second simulation case is presented in Figures 111-4 through 

III-6.     Again,   a reference event set is given,  this time with   n=Z0   events,  of 

a magnitude distribution as shown in Figure 111-4.    A hypothetical combination 

of detection/no detection decisions gave estimates of the detection curve as 

shown in Ficure 111-5.     By simulatint"  100 cases with    /i  = 4. 10,     «r = 0. 39, 0 / o o 
we obtained the results presented in Figure 111-6.    The 90 percent confidence 

ellipse is -een to contain 85 of the observed values; thus reflecting reason- 

ably well the uncertainties   Df the estimators.    However,   the distribution of 

points is clearly not symmetric,   and for eight test c.ises (marked as arrows) 

a very large estimate of     ir (greater than 1.0) was found.     This indicates a 

lack of stability in the estimation process  »vhich we attribute to the low num- 

ber of events (n=20) in the  reference data base. 

In conclusion,   it is clear that no general statement can be madi- 

as to the minimum number of events    n   that is required for our approximations 
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to be reasonable.     This is because the performance of the approximations 

depend on the event magnitude distribution relative to the detection curve 

as well as on the number   n .    However,   it may be postulated that,   given a 

situation with at least 100 reference events,  our approximations may be 

used with confidence,  provided that the magnitude range and the distribution 

of detection/no detection decisions are reasonable.     For smaller event popu- 

lations,   the approximate confidence limits must be used only with great cau- 

tion,   and with the understanding that the estimation process may occasionally 

lead to results with a very large error margin. 

D. INDIRECT ESTIMATION METHOD 

Indirect estimation of detection thresholds is,   in our termin- 

ology,   a two-step process: 

• The first step is to estimate the seismicity of a certain region 

over a certain time period, L>y observing the number of events 

detected by a seismic system as a function of magnitude. 

• The second step is to use the estimated seismicity curve toget- 

her with the observed data to estimate detection thresholds. 

In practice,  the seismicity is estimated by fitting the well 

known frequency magnitude distribution (111-21) to the data: 

N(m)   =   e a-bm 
(111-21) 

where    N(m)   is the number of events of magnitude exceeding   m ,   and   a 

and    b   are parameters that characterize the seismicity.     (The corresponding 

base 10 parameters are   a' ■ a/log 10   and   b' ■ b/log  10 (natural logarithms) 

respectively. ) 
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The actual curve fitting can be done by a least squares tech- 

nique (as applied by Hunßuni and Husebye,   1974) or by a maximum likt-lihood 

procedure.     We will prefer the second approach in the following; more spec- 

ifically,  we will apply a method developed by Lacoss and Kelly (1969) for 

joint determination of seismicity and detection parameters. 

1. The  Likelihood Function 

Our assumptions are as follows: 

• The number of detected earthquakes,   K,   from a specific re- 

gion and their magnitudes    m   , .   .   .   ,m      (listed in non- 
1 k 

decreasing order) have been observed over a certain time in- 

terval by a seismic station or network. 

• The seismicity corresponding to the above region and time 

period is given by (111-Z1). 

• For given values of a and b , the probability p(m)dm that 

an earthquake occurs with magnitude between m and m+dm 

is obtained by differentiating (Ill-Zl). 

p(m) dm = b • e • dm (111-22) 

and the occurrence of earthquakes in noti-overlapping mag. itude 

intervals are statistically independent. 

The likelihood function can now be derived by assuming that a 

and    b   are given,   and that the detection curve    P(m)   is known.     We choose 

the following informal   approach,   which can be extended to a formalized proof 

if desired; 

Suppose that the magnitude axis is partitioned into small inter- 

vals of length   dm .    The probability of detection an event in the interval (m, 

m+dm) is 

111-17 
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F{m)dm   =   P(m) ^(1x1)001 (111-23) 

The probability of detecting precisely   IC   events in the magni- 

tude ranees   (m   ,   m   + dm.)   i = 1,  2,  .   .   .   K,   respectively,   is giv .. by: 
i»i 

J ! 

J 

L(K, m  ,. . . , m   /a, b, P)dm  , . .. dm     = 

ft *•»,>*»,■      n (l-Km)dml 
i=l all other J       J \ > 

intervals 

The second part of the right-hand side of (111-24) is an infinite product,   and 

we can clearly replace it by a similar product representing all intervals on 

the   m   axis without changing its limiting value.     We thus obtain: 

lim      ij_     (1  - F(m.)dm.) =   lim exp 
all j J        J 

all j / 

exp j      F(m)dmj (111-25) 

where we have used the approximation     e    2r 1  + x   for small values of   x.   The 

integral in (111-25) is seen to be the total expected number of detected events 

N,   given a,   b,  anc P. 

00 

N   =      f    b . ea-bm • P( m) dm (111-26) 

It is,  of course,   assumed that this integral converges. 

The expression (111-24) for the likelihood function thus 

becomes: 

111-18 
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L(K.  nv-.-m   /a,b.P)=   e^ .    fl    b . e^^i. P(m )     (111-27) 
1 K i=l 

m1<«2<...<mK 

which is identical to the expression found by Lacoss and Kelly (1969),  using the 

Poisson distribution. 

We would like to point out that our derivation of the likelihood 

function does not assume that the observed number of earthquakes follows a 

Poisson distribution.     This is very important,   since it has repeatedly been 

obseived that the occurrence of earthquakes cannot be adequately represent- 

ed as a Poisson process.    Figure 111-7 shows as an example the actual dis- 

tribution of the daily number of events reported by PDE during the year   1972, 

and compares it to the Poisson distribution with the same mean.     The two 

distributions clearly do not match. 

However,   it is interesting to notice that when integrating equa- 

tion (111-27) in order to obtain the marginal distribution of the nurr^er of re- 

ported events    K ,   given a, b,   and P,  we find as a result the Poisson distribu- 

tion,  with parameter   N .     This is not a contradiction,   it only means that if 

(hypothetically) our experiment could be repeated I number of times with 

fixed seismicity parameters    a   and   b ; and with a constant detection proba- 

bility function   P ,  then the total number of observed events    K   would follow 

a Poisson distribution. 

In practice,  of course,   the seismicity parameters are highly 

variable as a function of time (in particular the parameter    a); this    explains 

why   natural seismicity does not follow the Poisson law. 

It follows from the   preceding considerations (by appropriate 

choice of the function   P ) that the number of earthquakes in any given magni- 

tude range follows a Poisson distribution in the hypothetical case of constant 

seismicity. 

« 
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2. Derivation of Estimators 

We will from now on assume that the detection curve is Gau- 

ssian,   i.e.,   that    P(m)   is given by (II1-1).    This implies that the expected 

number of events    N ,   is: 

N   =   e 
L2   2.., 

i-bß + b  <T   /Z (111-28) 

Following Lacoss and Kelly (1969),   we obtain the maximum 
A A 

likelihood estimates   a   and   b   of   a   and   b   respectively as follows (ex- 

pressed as functions of  ß   and a ): 

/it 
A 

1/b 
1      ,_ 
T(m -M) 

(m -ß) 
(111-29) 

A 

a b • M +   iog K    - 
u2   2 
b  (T (111-^0) 

where   fh   is the aveiage of the observed magnitude».    Substituting these 

values back into the likelihood function (111-27) then yields a function of ß ar.d 

(T   that can be maximized by a computer procedure.    The values of    ß   and <r 

that maximize this function are the desired maximum likelihood estimates 

of the parameters of the detection curve. 

I. A Simulation Case 

In order to obtain some information about the fluctuations in 

the parameter estimates obtained by the indirect maximum likelihood method, 

we carried out a simulation experiment as follows: 

Suppose that an experiment has resulted in estimate values of 

a,   b, ß and rr.     Keeping these values fixed,  we can simulate the outcome of 

a number of similar experiments (e.g.,   100),  using the Poisson distribution 

111-21 
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as a random model to obtain the number of detected events in each magnitude 

bin.    (This is acceptable since the Poisson assumption is valid when the sys- 

tem parameters are fixed.)   Subsequently we can estimate the parameter 

values based on the outcomes of the experiments,   and see how they fluctuate 

relative to the original,   "true" values. 

Results frum a simulation experiment are presented (for the 

parameters   ß   and (r ) in Figure 111-8.     The  original parameters were    ß  - 

3.91,     CT-Q.\Z,    a'  = 6. 00 (base  10),   b' = 1. 00 (base  10).    This corresponds 

to an expected number of detections    N -  133.     A total of 100 cases were sim- 

ulated.    The results indicate the following: 

• 90 percent of the estimates of  \i   are between 3,85 and 4.00. 

• 90 percent of the estimates of  <r   are between 0. 08 and 0. 17. 

• 90 percent of the estimates of  b1 are between 0,83 and 1,2S 

(not shown on the figure). 

It is also observed that the distribution of points appears to be 

reasonably symmetric,   and that no significant bias can be seen.     As stated 

by Lacoss and Kelly (1969),  the estimators process the desirable asymptotic 

properties described previously for the direct estimation case; thus we know 

that the performance of the estimates will improve as     N   becomes large. It 

is thus concluded that the method can be appiifd with good confidence if sev- 

eral hundred events are available.    However,   we stress again the importance 

of verifying the statistical assumptions before applying the method,   since 

outliers in the event distribution can very easily distort the resulting estimates. 

' I 
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SECTION IV 

DATA ANALYSIS 

This section presents some examples of detection threshold 

estimation,  with emphasis on the direct maximum likelihood method.      In 

addition,  a comparison is carried  out between the direct and indirect methods 

of estimation,   based upon data from two earthquake aftershock sequences  re- 

corded by the NORSAR and LASA arrays. 

A. DIRECT ESTIMATION METHOD 

In this subsection we give several examples of application of 

the direct estimation method to seismic stations or networks.    These exam- 

ples are all taken from evaluation reports published recently by Texas In- 

struments Incorporated.    The general estimation procedure has been as 

follows: 

• Obtain a reference event set (typically up to 500 events) from 

one or more of the following sources: 

The PDE bulletin (Preliminary Determination of Epi- 

centers from the  World-Wide Seismic Network), 

The LASA weekly event summary issued by the Seismic 

Data Analysis Center. 

The NORSAR weekly event summary compiled at Kjeller, 

Norway. 
The bulletin from the International Seismic Month,   ISM, 

(February 20 - March 19,   1972) compiled at Lincoln 

Laboratories. 

IV-1 



• For each event,   compute the expected arrival time at the sta- 

tion to be evaluated,   and display the waveforms for this sta- 

tion for a time interval covering the signal arrival. 

• Make a decision as to whether or not the station has a detec- 

table signal corresponding to this event.     Usually this decision 

is made by the analyst,   based upon visual inspection of the 

filtered and beamformed signal traces. 

• For selected regions,  compile the number of events detected 

and not detected by magnitude,   and apply the direct maximum 

likelihood estimation method to determine the station detection 

curves for those regions. 

When applying the estimation method,   it must first be asserted 

that the conditions for validity are fulfilled.    In particular,   the following points 

should be observed: 

• Independence between reference source and station t'   bv? eval- 

uated. 

• Validity of the Gau nodel.    In particular the selected seis- 

mic region should be sufficiently limited in siz-e so that B- 

factor variation can be ignored.    Also the limitations of the 

Gaussian model for network detection should be remembered. 

• Consistent reference magnitude estimates.     This is essential 

to obtain unbiased estimates.     While single station magnitude 

variance can be mathematically compensated for (Appendix A), 

a problem like the PDE magnitude bias for small events 

(Herrin and Tucker,   1972),   is essentially untractable,   and 

therefore  represents a serious drawback in applying the method. 

1 

1 
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False alarm problems.     The possibility clearly exists that a 

"refe  ence event" is really a false alarm.     Likewise,   it might 

happen that the analyst verifies an event by mistaking a noise 

burst for a signal.    Caution is required to minimize bias cau- 

sed by this effect. 

NORSAR SP Detection Threshold 

The detection capability of the short period NORSAR array was 

evaluated by Ringdal and Whitelaw (197ib).    Figures 1V-1 and 1V-2 show the 

results for the two subregions; the Kuriles-Kainchatka arc and the remainder 

of the Eurasian continent,   respectively. 

Of special interest is Figure 1V-Z,   which shows very few non- 

detections and hence gives an estimate of very low confidence of the 50 per- 

cent detection threshold.    In fact,   it might be questionable whether the Gau- 

ssian model can reasonably represent the detection curve in this case,   since 

B-factors vary significantly over the 15   -60    epicentral distance range for 

this  region.     Therefore  statements based on extrapolation of the Gaussian 

curve below the mai  utude range of the observed data should be avoided in 

this case. 

2. NORSAR  LP Detection Threshold 

The detection capability of the NORSAR  LP array has been 

evaluated by Laun,  Shen and Swindell,   (1973).     The detection curve for their 

total earthquake ensemble as a function of  bodywave magnitude is presented 

in Figure IV-3.     It is seen that the Gaussian curve fits quite well in spite of 

the large epicentral distance variation involved,   (20-70 degrees). 

As in the case of NORSAR SP estimation,   it was necessary to 

eliminate events that had been reported with NORSAR as the primary source. 

This is because SP detection and LP detection at NORSAR are not independent; 

clearly both probabilities fluctuate with the NOKSAR microseismic noise level. 
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It was obviously necessary to eliminate presumed explosions 

from the even'     nsemble in this case,   since their M  - m    relationship iF 
s        b 

functionally different from that of earthquakes. 

3. VLPE Network Detection Threshold 

Our final example concerns the estimation of the network de- 

tection capability of the Very Long Period Experiment stations during the 

winter of 1972.    Figure 1V-4 is taken from Lambert et. al. ,  (1973),  and 

shows the Eurasian LP detection capability for a network of 6 stations as a 

function of bodywave   magnitude. 

In view of the considerations from Section II,  it is reasonable 

to ask whether the expected lack of symmetry in the theoretical network de- 

tection curve has adversely affected the threshold estimates.    To inv<?f-tigate 

this,  we performed a series of estimation procedures for subsets of the ori- 

ginal reference »»vent set,   and the results are shown in Table IV-1.     It is 

seen from this table that by ignoring reference events of low magnitudes,  the 

50 percent threshold estimate tends to increase slightly,   while the 90 percent 

estimate decreases.    This trend is fairly stable up to a cutoff point d   about 

m  = 4. 5; if more events are eliminates,   the reliability of the estimates de- 
b 

creases sharply due to the low numbe.  of non-detections. 

Thus we conclude that one must show caution when applying 

the Gaussian model to a network situation.     If one is primarily interested in 

the 90 percent threshold.,   a possible approach would be to use the Gaussian 

model to estimate the upper part of the detection curve,   by ignoring low mag- 

nitude reference events.     It would seem reasonable to choose a cutoff point 

somewhere around the 50 percent detection threshold '.i that case. 

It should be added that theoretical ronsiderations in this parti- 

cular case arc further aggravated by the failure ol stations within the VLPE 
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network to remain operational during the entire time frame.    Thus,  for a 

significant part of the time,  only one of the six VLPE stations was operation- 

al; while the most typical    ituation was two or three stations operational 

(Lambert,   et al. ,   1973). 

B. COMPARISON OF THE DIRECT AND INDIRECT ESTIMATION 
METHODS 

As was stated in Section 11,  the direct and indirect estimation 

methods estimate different detection curves,   so that different results must 

be expected.    In the following we will try to verify the considerations from 

Section II by applying *he two methods to identical test situations and com- 

pare the results. 

Two large aftershock sequences were selected for this purpose; 

one from South of Honshu,  Japan December 3-20,   1972 and one from Kurile 

Islands/Hokkaido region June 17-30,   1973.    We chose to estimate the opera- 

tional detection capability for the NORSAR array by the two methods for each 

aftershock sequence,   and compare the results.     Thus we considered an event 

as being detected by NORSAR provided it had been reported in the NORSAR 

seismic event summary compiled at Kjeller,   Norway.     It should be noted that 

swarm situations    annot be considered as typically representing natural seis- 

mic activity.     Nevertheless,   we hove found these two examples useful to ill- 

ustrate the theoretical consideration^ presented earlier. 

1. Direct Estimation 

A direct estimation of the NOKSAR operational detection thres- 

hold for these two aftershock sequences was carried out by Ringdai and White- 

law (1973b).     They used the SDAC/LASA bulletin as a reference,   and thus 

checked each event reported b/ SDAC/LASA to see if NORSAR had a corres- 

po iding detection.     Time intervals when the NORSAR array was out of opera- 

tion were not considered.     Thus (he total reference data base was  194 events 

for the Honshu swarm and 364 events for the Kuriles swarm (Table IV-2). 

Out of these,   NORSAR detected 106 and 284 events,   respectively. 
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TABLE IV-2 

NORSAR AND LASA EVENT DETECTION PERFORMANCE FOR EARTHQUAKE 
SWAAMS FROM SOUTH HONSHU (DECEMBER 3-20,   1972) 

AND THE KURILE ISLANDS (JUNE 17-30,   1973) 

Distance from NORSAR (degrees) 

Distance from LASA (degrees) 

LASA total detected events 

NORSAR total detected events 

Common events 

Honshu Swarm 

78 

80 

192 

133 

106 

Kuriles Swarm 

70 

69 

364 

452 

284 

' 
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Figures 1V-5 and 1V-6 show the distributions by magnitude 

(LASA m,   values) of the events detected and not detected,  together with the 
b 

resulting maximum likelihood detection curves.    Two important differences 

may be observed: 

• The NORSAR array has significantly better detectability for 

the Kuriles swarm t^an for the Honshu swarm.     This reflects 

a much lower seismic noise level it NORSAR during June 197 3 

than during December i?72. 

• The Kuriles detection curve haa a significantly larger spread 

than the Honshu curve ( <r = 0. 47 to tr = 0. 31). 

This significant difference in values of    (T   is a very interesting 

point by itself,   and gives us an opportunity to verify one of the basic assump- 

tions of the model described in Section II.    According to equation (11-12) of 

that section,  the variance of the detection curve is given by 

2 2 2 2 
rr      =   fr     + (T     + (T 

T N L (IV-l) 

where    (f_   denotes the standard deviation of tht   "threshold magnitude" while 
(T       and    V     are the standard deviations of the NORSAR and LASA magnitudes, 

respectively,   relative to a hypothetical true magnitude. 

In order to evaluate the individual terms of equation (IV-l),   we 

first examined the variations in seismic noise level at NORSAR within the time 

period covering each event .»warm.    It was found that the noise level remained 

essentially constant in both cases,   so that   ""      would be relatively insignificant. 

A value of   <T     = 0. 15   would be about right in both cases. 

The next step was to estimate   fr      and    «r   .     For this purpose, 

we selected randomly SO events from each aftershock sequence,   and plotted 
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NORSAR m    against LASA m    as shown in Figures 1V-7 and 1V-8.    We actu- 
b b 

ally selected the first 50 events reported by PDE of m   > 4. 0 in each case; 
b 

for our purpose PDE can be considered to be independent of LASA and NOR- 

SAR.    Events occurring when one array was out of operation were disregard- 

ed.     A total of four events (marked as asterisks) were not detected by both 

.LASA and NORSAR; the "missing" magnitudes were then set equal to the ap- 

parent "threshold magnitude".    The slight bias introduced by this procedure 

should not be significant. 

The most striking observation from Figures IV-7 and IV-8 is 

the much larger spread between NORSAR and LASA magnitudes in the latter 

case,   which corresponds to the Kuriles swarm.    The observed standard de- 

viations are 0.25 and 0.40,   respectively.    Because of the randomness in 

event selection,   it is clear that,   with the notation in the figures: 

a (m 
N 

2 2 .,   )   =   (r     +   tr 
L'       ML 

(IV-2) 

so that we obtain an immediate estimate of the remaining terms of equation 

(IV-1). 

Inserting the above numbers in equation (IV-1) we obtain values 

of o" = 0.29 for the Honshu swarm and (r = 0.43 for the Kuriles swarm, which 

compare well to the respective values of 0.31 and 0.47 estimated by the maxi- 

mum li'.elihood method. 

The important conclusion from the preceding considerations 

is not so much the numerical results,   but rather the fact that there is a 

direct connection between the spread in magnitude distribution and the spread 

in ihe station detection curve as estimated by the direct method.    It would 

appear that the large spread in the Kuriles magnitude ensemble reflects a 

greater variation in source mechanisms for this event set than among the 

Honshu aftershocks. 
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n(m)   =   b • e 
a-bm 

(IV-3) 

is shown as a dashed curve.    A curve showing the (incremental) expected 

number of detections   E(m)   is also drawn.    This curve is specified by 

E(m)   =   n(m) • P(m) (1V-4) 

I, Indirect Estimation 

The indirect maximum likelihood method was also applied to 

the two aftershock sequences described previously.    The number of events 

reported in the NORSAR bulletin in each case is shown as a function of mag- 

nitude in the histograms of Figures IV-9 and IV-10.    These figures corres- 

pond to the Honshu swarm and the Kuriles swarm,   respectively.    Since NOR- 

SAR did not report a magnitude for the main shock of the Honshu swarm (due 

to system saturation),  the LASA magnitude for this event was used instead. 

The two figures also list the estimated seismicity parameters 

and the parameters of the detection curves.    The incremental seismicity 

n(m)   which is given by 

.1 

.1 

where   P(m)   is the estimated detection probability for an event of magnitude 

m.    The "goodness of fit" of this curve to the histogram is an indication as to 

how well the theoretical model with the estimated parameters actually fits the 

experimental data.     We observe  that the fit appears to be quite good in both 

cases. 

Confidence l.mits have not been computed for the indirect es- 

timates.    However,   an idea about the confidence of the estimates of the Hon- 

shu swarm can be obtained from the simulation experiment in Subsection II1-D, 

which dealt with a very similar situation.    The confidence in the parameter 

v.'-lues for the Kuriles swarm should be somewhat better,   since the number of 

events is higher by a factor of three. 
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I 
i. Comparison of Results 

The estimated parameter values by the two methods (H,(f and 

90 percent threshold    M     ) are summarized in Table IV-^.     The following 

observations may be noted: 

• The parameter    <r   estimated by the indirect method is signi- 

ficantly lower in both cases (0. IZ versus 0. 31  and 0. 14 ver- 

sus 0.47,   respectively).    This is in excellent agreement with 

our considerations in Section II,   equations (11-7) and (11-12), 

which imply that the indirect method estimates the variation 

'r      in the threshold magnitude only,  and does not relate to 

the signal variations   <T      and   O   . 

• As expected from the above observation,   the 90 percent detec- 

tion thresholds estimated by the indirect method are much low- 

er than the direct estimates in both cases (0.25 and 0.4 m, 
b 

units,   respectively).    In fact,  our considerations in Section II 

imply that the  "true" 90 percent threshold is somewhere be- 

tween the direct and indirect estimates. 

• The 50 percent detection threshold    ß   is about the same in the 

two cases,   after compensating for the bias between NORSAR 

and LASA magnitudes for the Kuriles swarm.     We had actually 

expected the direct estimates to be higher by an amount of 
2 

b(r       (Figure II-2); i.e.,   about 0.07 m    units for the Honshu 
■L* b 

swarm and 0. 13 m    units for the Kuriles swarm.    However, 
b 

the^e deviations are within the uncertainties of the mathema- 

tical model. 

In conclusion,  we again stress that the important point is not 

so much the numbers involved,   but rather the fact that the direct and indirect 

methods estimate two different detection curves,  and that the resulting «-stimates 
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Honshu Swarm Kuri es Swarm 

M (T MO P a ^90 

Estimates by the direct method 

Estimates by the indirect method 

3.92 

3.90 

0. 31 

0. 12 

4.31 

4.06 

3.47 

3. S7* 

0.47 

0. 14 

4. 07 

3.7S* 

Note that the NORSAR-LASA m,   bias of 0. 10 should Oe subtracted 
b 

from these values in order to make them compatible with the direct 

estimates. 

.1 

TABLE IV-3 

COMPARISON BETWEEN DETECTION PARAMETER ESTIMATES 
OBTAIKED BY THE DIRECT AND INDIRECT METHODS FOR 

THE NORSAR SP OPERATIONAL PERFORMANCE FOR 
TWO AFTERSHOCK SEQUENCES 

. 
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of threihold parameters must be interpreted accordingly.     In our opinion, 

the failtre of the indirect method to take the signal variation into account is 

a serioi s drawback with this estimation technique. 
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SECTION V 

SUMMARY AND CONCLUSIONS 

The first topic of this report was to define the detection curve 

of a seismic station or network as the probability of detection as a function of 

event magnitude.    The following observations were made: 

• Under reasonable assumptions,  the detection curve of a single 

station (or   jeismic array) for a limited region can be approxi- 

mated by a cumulative Gaussian distribution function.     In this-- 

Gaussian model,   then,   the parameters    y    and   cr   of the dis- 

tribution completely define the detection curve. 

• The Gaussian model does not theoretically apply to seismic 

networks,   but may still be useful as an approximation to the 

network detection curve within limited magnitude ranges. 

• A very important observation is that the detection curve of a 

seismic system varies with the choice of reference magnitudes. 

Thus a detection curve estimated from a station's own magni- 

tudes tends to give a significantly lower 90 oercent detection 

threshold than if a different station's magn-'udes are chosen 

as reference. 

A maximum likelihood method for estimating the detection 

capability of a seismic station or network in terms of magnitudes from an in- 

dependent reference   system was presented.    The method is based upon a 

direct verification of detection or no detection for a set of reference events. 

Our presentation can be summari/.ed as follows: 
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• The likelihood function for the method was derived and asym- 

ptotic confidence limits for the estimated parameters were 

computed. 

• A simulation experiment showed that I .e asymptotic confidence 

limits were good indications of the stability of the estimates in 

a test case with 100 reference events (of which 75 were detect- 

ed). A test case with 10 reference events (10 detections) indi- 

cated that the method should be used only with caution for data 

samples of this size. 

• It was emphasized that the estimation procedure is only as 

valid as the model.    The method is sensitive to "bad" data 

points,   such as a large event that is not detected or a very low 

magnitude event   hat is detected.     A careful data screening is 

necessa  y to eliminate observations that either violate the in- 

dependence requirement or h     <> questionable reference mag- 

nitudes.    Thus,   as an example,  the lack of consistency in PDE 

m    estimates suggests that LASA and NORSAR may in many 

cases be better suited as reference systems than PDE. 

A brief description of the indirect maximum likelihood estima- 

tion method developed by Lacoss and Kelly (1969) was also included.     A simu- 

lation experiment showed that this method gave reasonable stable estimates 

in a test case with an expected number of   133 events.    Data screening in this 

case would be easier than for the direct estimation,   and the major concern 

would be to make appropriate limitations to the seismic region considered,   so 

that the Gaussian model is valid. 

Finally,  examples of applications were shown,   with emphasis on 

the direct method.    For two earthquake aftershock sequences,   a comparison 

was carried out between the direct and indirect estimation method.     The result 
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was found to be in agreement with the theoretical considerations regarding the 

detection curves. 

In conclusion,   it is felt that maximum likelihood estimation is 

a feasible approach to obtaining estimates of the detection thresholds of seis- 

mic  stations and networks.     When choosing between the direct and the indirect 

methods of estimation,  we observe that the latter method has the following 

two major disadvantages: 

• The seismicity estimates by the indirect method are based upon 

detections by the statiou itself,   and may not always be reliable. 

For excimple,   suppose we want to estimate the NORSAR opera- 

tional detection capability for a region with poor beam coverage. 

The seismicity estimates for this region based on NORSAR de- 

tections will then clearly be biased low,  thus causing the in- 

direct method to estimate too high detection probabilities. 

• The indirect method fails to take the signal variance into ac- 

count when estimating detection thresholds.     Therefore the 90 

perci   i thresholds found by this method will always be signifi- 

cantly lower than the  "true" threshold when estimating station 

detection capability. 

For the above reasons,  we feel that the direct method of esti- 

mation is a superior approach to obtaining reliable detection threshold esti- 

mates.    This method has the added advantage of giving easy visual control 

of the results.     However,  the direct method does require that a good reference 

network or station be available.     In the hypothetical case of a "perfect" refer- 

ence network,   the resulting estimates from the direct method would represent 

the  "true" detection probabilities.     In practical situations,   the variance of the 

reference magnitude estimates must be considered when evaluating the results. 
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As in all applications- of statistical estimation theory,   it is 

necessary to do a careful data screening prior to applying the mathematical 

tools.     It is important to remember that the estimators,   being random vari- 

ables,   sometimes will produce results that deviate significantly from the 

true parameter values.    Thus,   a careful interpretation of the results is re- 

quired when applying the techniques described in this report. 
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APPENDIX A 

STATISTICAL PROPERTIES OF STATION MAGNITUDE DISTRIBUTIONS 

We will in the foUowinj; focus upon some statistical properties 

of station magnitudes that follow from the assumptions made previously in 

this  report.     We will in general not refer to the detection performance of any 

seismic system during these considerations,  thus,  we assume that for any 

sexsmic event the station magnitude is defined regardless of whether or not 

a signal is actually detected.     To be specific,   we will refer to LASA and NOR- 

SAR  station magnitudes as estimates ol a hypothetical "true" magnitude. 

However,   the results are clearly valid lor other stations or networks that 

satisfy the basic assumptions. 

Our two basic assumptions,   as stated in Section 1,   are: 

• Given than an event has true magnitude    m=x ,   then 

The distribution of the NORSAR maunitude    m       is 

N(x + bN.<r2N) 

The distribution of the LASA magnitude   m       is 

N(x «- bL, rr^) 

Th" two random variables   rn ,   and   m.     are independent. 
N L 

• The number of earthquakes    N(x)   exceeding a given true magni- 

tude   m = x    may be expressed as* 

N(x)   =   e 
a-bx 

(A-l) 

1. Distribution of Tr." Event Magnitude Given Station Magnitude 

The first topic is to   ind what can be said about the true magni- 

tude of an event,   given e. g. ,  the v ilue of the LASA magnitude   m     of that 
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event.    lor this purpose,  we lind it convenient to considei  the true magnitude 

m   as being a random variable,  with a certain probability distribution.     For 

example,   if we consider all events of true magnitude greater than an arbitrary 

value   m    ,   then the probability density function   w(m)   of   m   can be derived 
o 

from (A- 1): 

b{m - m  ) 
w(ni)    =    b • e m > m {A-i) 

The probability density function (A-l) is often referred to aü 

the a priori distribution of   m .    Our purpose is to find the distribution of m, 

uiven that   m     = x.    This conditional distribution is called the a posteriori 
* L 
distribution of   m ,   given   m and we will denote it as   h(m/m   ). 

1 - ^ 

Followinc, Cramer (194S) page S08,  we obtain- 

h(m/m   )   - 
La 

w(m) . gjjm^m) 

j       w(m) . g, (ni, /ni)dn. 

; m > m (A- 5) 
o 

m 

where   g   (m   /m)   according to our first basic assumption is a Gaussian 
i - i - 

probability density function: 

gL(mL/m)    -   b**\)'U 

(mL.(m+bL)) 

"17 
(A-4) 

When inserting (A-2) and (A-4) in the expression (A-3) we first 

observ that the term 'n   w(m)    involving    m      cancels.     Thus it is evident that 

the expression (A-3) has a limiting', value rs    m   -. - oo ,   since the integral in 

the denominator is convergent.    It turns out that this infinite integral can be 

evaluated,   and we obtain  after some compulation: 
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h(m/m   ) 
Li ■ K)""' 

2     2 
(m - (m     - b   - b'rL)) 

7?. 
•    e (A-S) 

Thus,  we have shown that,   given that an earthquake has a LASA magnitude 

m     = y ,   then the true magnitude    m   will be normally distributed: 
Li 

E(m/m     = y)   =   y - b
L - lj'rL 

(A-6) 

Var (m/m     = y) cf (A-7) 

.. 
This is a quite interesting result,  which says in effect that even 

if LASA magnitudes    m,    were unbiased for any given event (i.e.,   b     n  0),   the 
Li L 

expected value of the true magnitude-,   given the value of   m     ,  would be differ- 

ent from   m     .     At first this may appear to be somewhat surprising,   but it 

can intuitively be explained as resulting from the skew magnitude distribution 

of earthquakes.     As an illustration,   consider the following example,   assuming 

b     =0:     Earthquakes of true    m = 4. 0   and    m = S. 0   have the same probability 
L 

of being seen at LASA with   m     ■ 4.5.    However,   since there are many more 

earthquakes of   m = 4. 0   than of   m = 5. 0 ,   it follows that among all the earth- 

quakes of   m     = 4. S; many more will have a true   m = 4. 0   than   m = 5. 0. 

Therefore,   given that m     = 4.5,   the probabilities favor   m = 4. 0   over m = S. 0 
L 

as the value of the true magnitude. 

2. Distribution of the NORSAR Magnitude,  Given the  LASA 
Magnitude 

Closely related to the topic described under 1. is the problem 

of determining ÜM probability distribution of NORSAR magnitude m , given 

that the  LASA magnitude for an event is   m     = y . 
Li 
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In order to find this distribution,   we first recall that,   given 

m   ,   then the true magnitude   m   has a probability distribution     h(ni/m   ) 

defined by (A-5).     Furthermore,   for each given   m ,   the probability density 

function   WM(ni
M/ri1)   according to our basic assumptions is given as: 

(n,N ■ (m + V* 

«N(niN/m) 

t(T 
N 

(A-8) 

It then follows that the conditional distribution     f(m   /m   )   of 
IN i^ 

m       given   m       can be expressed as: 
IN 1 . 

f(mN/mL)    - 
/ - 

m/mL) • «N<mN
/ni) dni (A-9) 

After evaluating this integral,  we find again a normal distribution,  with ex- 

pectation and variance as follows: 

E(mN/mL)   =    rnL + (bN-bL)-   bü L (A-10) 

Var {mN/mL) 
2 i 

(,L+   "N 
(A-ll) 

i. An Examplr of Application 

The « xpressions (A-10) and (A-ll) for the conditional expecta- 

tion and variance of NORSAR magnitude   m     ,  given LASA magnitude   m    , 

ran easily be illustrated by considering a plot of NORSAR magnitudes versus 

LASA magnitudes.     Figure  A-l  presents such a plot for the Kurile Islands 

aftershock sequence June 17-20,   197^.     This example was also addressed in 
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Section IV.     All earthquakes with either   m     >4.4   or    m    > 4. 2   were in- 
IN I 

eluded,  provided both arrays were operational.    For events that were not 

detected by both arrays,   the missing magnitudes were set equal to the ap- 

parent 50 percent detection threshold.    (It is important not to delete such 

events,   since the resulting diagram then would not reflect the true spread 

of the magnitude distribution.)   The cutoff limits 4.4 and 4.2 were chose.i 

somewhat arbitrarily,  witti the main consideration being to reduce the num- 

ber of non-detected events. 

According to equation (A-10),  the regression curves of Figure 

A-l  will be parallell,   straight lines.     We obtain from (A-10) and the sym- 

metric expression of   E(m   / ri\   )   that: 

2       2 2 
E(mN"mL/mL) + E(mL'niN/mN) ' "b(aN'aL)= "^       JA"UJ 

► 

Similarly,   we obtain from (A-ll) that 

St.   Dev(m   /m   ) = St.   D.?v(m    /m   ) - O 
IN ,L* i-* IN 

(A-l 3) 

We recall that,   when discussing this same example in Section IV,  we obtained 

estimates of   b's 0.72 (bas<   10) in Figure 1V-10,   and   (7= 0.40 in Figure IV-8, 

using equation (IV-2).    Therefore the right hand side of (A-13) becomes 0.40, 

and the ri',ht hand side of (A-12) becorres -2. 3 • 0. 72 • 0. 16 = -0.265.     We 

can now verify numerically that (A-12) and (A-l 3) hold true in this particular 

case by evaluating the left hand side of the two expressions di -ectly from 

Figure A-l. 

Doing this,   we obtain the following results,   when averaged 

over all magnitudes: 

St.   Dev(m   /m   )   =   0. 39 
IN XJ 

(A-14) 
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St.   Dev(m   /m   )   =   0.38 
1 ^ IN 

E(mK-mr /m, )   =   0. 01 
N       L      L 

Efm, -m   /mNI)   =    -0. 30 
L      N      N 

(A-15) 

(A-16) 

{A-17) 

It is seen that (A-14) and (A-15) compare well with the expect- 

ed result of 0.40,  while the sume of (A-16) and (A-17) is -0.Z9,  which also 

is close to the expected number of -0.265. 

Because of lack of data,   we cannot use this example to verify 

that the regression curves actually are straight lines,   but we may still con- 

clude that the numerical result found above   gives good support to the theo- 

retical model presented earlier. 

1. The LASA Seismicity Curve Compared to the True Curve 

A natural question to ask at this point is how the distribution of 

earthquake magnitudes affects the seismicity curve measured at a given seis- 

mic station.    Specifically,  let us assume that the "true'   seismicity curve hu.? 

the form   N(x)   given by (A-l),   and that the  LASA cur^e is 

.: 

NJy)   =   e a* - b*y 
(A-18) 

where    N   (y)   is the number of earthquakes occurring with  LASA magnitude 

exceeding   y. 

We can find   N      by evaluating the following integral: 

NL(y)=    f 
00 

/Nl(x) • K , (m , /m=x) dx dm v.A-'9) 

A-7 
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where   g      is given by (A-4).    Informally,  the inner integral is the sum over 

all   x   of the number of events of true magnitude   x   times the probability that 

the LASA magnitude is    m.   .  given   x 

Upon evaluating the integral,  we obtain: 

12     2 
a + T b "L " b * (y" bL) 

NJy)   =   e (A.20) 

Thus,   by comparing (A-18) and (A-20),   we have found 

that 

J-    2 
b
   ^L a*   ■   a +   b • b     +    —r-^ (A-21) 

1 - ^ 

b*   =   b (A.22) 

The conclusion is therefore that when estimating seismicity 

based on only one station,   thr estimate of   b   will be unbiased relative to the 

true value,  while this is not usually true for the estimate of   a .    This as- 

sumes,  of course,  that the estimation method itself does not introduce an 

additional bias. 
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