
^»•^" mijinin •inr«M^^np*^sv^^w.iUMii.Hi     ^—-     "  '" i  «»upmi.   i«. i «HUIIIIIM «l<M"i^»"""i"""""«w» "wji" ■■viia     ■■ 

AUTOMATIC  CODING: 
STRUCTURES 

James   Richard   Low 

Stanford   University 

AD/A-000  500 

CHOICE  OF   DATA 

Prepared  for: 

Advanced   Research   Projects   Agency 

August   1974 

DISTRIBUTED BY: 

um 
National Technical Information Service 
U. S. DEPARTMENT OF  COMMERCE 

■ 'H JMialiliftlilni   -'■■■■■■■■ ■ ■■■- -- -^ • — ■■ ^■-'■■- ■ mmmtma* 



^m^^ffmfB_. ..ß-ij: Him. v^mmmmm —-.i       i   ...   II.J .iq ■■■«). in i ijiHi vil  IL - Himil   i "i i.,. iiiyP-flJM»IHliWIUi|!illMlil 'Jiifl.fMÜPWIlWPflPUfP 

UNCLASSIFIED 
SECURITY  CLASSIFICATION  OF   THIS  PAGE (When  pata Entered) 

9 

REPORT DOCUMENTATION PAGE 
1.    REPORT  NUMBER 

STM-CS-74-i|-52 

12. GOVT  ACCESSION NO 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

3.    RECIPIENT'S CATALOG  NUMBER 

4.    TITLE (and Suhtlllv) 

AUTOMATIC CODING:     CHOICE OF DATA STRUCTURES. [technical,  August 1974 

7.     AUTHORfv 

James Richard Low 

5. TYPE OF REPORT 4 PERIOD COVERED 

6. PERFORMING ORG. REPORT NUMBER 

S TAN- OS -74-^2  
8.    CONTRACT OR GRANT  NUMBER''!.; 

DAHC-1W3-C-01+35 

9.    PERFORMING ORGANIZATION   NAME   AND  ADDRESS 

Stanford University- 
Computer Science Department 
Stanford,   California 9^305 

11      CONTROLLING OFFICE   NAME   AND   ADDRESS 

ARPA/IPT, Attn:  Stephen D. Crocker 
1400 Wilson Blvd., Arlington, Va. 22209 

HT    MONITORING AGENCY NAME b   ADDRESSi'/f rtillerenl from Conlrolling Ollice) 

ONR Representative:  Philip Surra 
Durand Aeronautics Bldg., Rm. 165 
Stanford University 
Stanford, California 9^305   

10. PROGRAM ELEMENT, PROJECT. TASK 
AREA & WORK UNIT NUMBERS 

12.    REPORT   DATE 

August,  1974 
13.    NUMBER OF  PAGES 

m 11$- 
15     SECURITY CLASS, fo/ this report) 

Unclassified  
'"is«.    OECLASSIFI CATION 'DOWNGRADING 

SCHEDULE 

'6      DISTRIBUTION   STATEMENT  {ol this Kcport) 

Releasable v/ithout limitations on dissemination. 

17     DiSFRIBUTION STATEMENT (ol the ahnlract entered in Block 20, II dillerent Irnrr. Report) 

18     SUPPLEMENTARY NOTES 

19     KFY  v/ORDS fCofK/nuo on rovemo .iltle il necessary and idenlllv In- block number; 

.    •■,■■. 

ii 1        ■ 
■  ■        • ' 

20     ABSTRACT  'Cnnllrnii> on reverse side II ne   o.isary and idenllly by block number) 

A system is described which automatically chooses representations for high-level 
information structures, such as sets, sequences, and relations for a given 
computer program. Representations are picked from a fixed library of 
low-level data structures including linked-lists, binary trees and hash 
tables. The representations are chosen by attempting to minimize the 
predicted space-time Integral of the user's program execution. Predictions 
are based upon statistics of Information structure use provided directly 
by the user and collected by monitoring executions of the user proKram (contin led) 

DD    |  JAM/        '473 EDITION  OF   1   NOV 65 IS OBSOLETE    « 

I- 
Unclassified 

SECURITY  CLASSIFICATION  OF   THIS PAGE  (When Data Eiflared, k   ■■ 

tfMMHMMH iüiafcibto^^,.   



Wtfm, IJJ»!-»» 4.^ nil•> I SP111 «MM ,W!liiiJJ|i-'«Sl.lLi«MIPMIlWJi™:."4MtfftlUJJi».w^..i*jiwii. .-wr.«   ip j IJIIJ.MIIJMIjiiuiLiiiijipiiiii^ ^    ^PJIWIVKMI^IUWJJ"*f7Tw™ 

E  E 

UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS P AGEfHTi«/. Oafa Ent.fad; 

using default representations for the high-level structures. A demon- 
stration system has been constructed. Results using that system are 
presented. 

l&y 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGEflWian Daf» Entered) 

 ——Ml Maa,..-.,......,,,. ,,..,.,-;•,;, .ü«!««;*»,rt «uä( 



UIUII K^mm*w9um M. ^ ^ 11nw«, ü iisi^^w^«,ui 4iyi JUMtuuw J """^-^^^^B^iiBp^fippBBfipwigiiifBipw^w^^i^wwi^^pitpflij?!^^ 

: STANFORD ARTIFICIAL INTELLIGENCE PROJECT 
MEMO A1M-242 

COMPUTER SCIENCE DEPARTMENT 
REPORT CS-452 

AUGUST 1974 

AUTOMATIC CODING, CHOICE OF DATA STRUCTURES 

James Richard Low 

ABSTRACT: 

A system is described which automatically chooses representations for high-level information 
structures such as sets, sequences, and relations for a given computer program, Representations 
are picked from a fixed library of low-level data structures including linked-lists, binary trees and 
hash tables The representations are chosen by attempting to mimmiie the predicted space-time 
integral of the user's program execution. Predictions are based upon statistics of information 
structure use provided directly by the user and collected by monitoring executions of the user 
program using default representations for the high-level structures. A demonstration system has 
been constructed. Results using that system are presented. 

A dissertation submitted to the Department of Computer Science and the Committee on Graduate 
Studies of Stanford University in partial fulfillment of the requirements for the degree of Doctor 

of Philosophy. 

v 

i 

The research reported here was supported in part by the Advanced Research Projects Agency of 
the Department of Defense under Contract DAHC-15-73-C-0435. 

The views and conclusions contained in this document are those of the author and should not be 
mterpreted as necessarily representing the official policies, either expressed or ImpUed. of the 
Advanced Research Projects Agency or of the U. S. Government, 

Reproduced in the USA. Available from the National Technical Information Service. Springfield, 

Virginia 22151, j^ 

MMM^MMHMMM -■ ■■■■  —^. 



• ■ nimmmi ii pppnvnwvp'i" JW.-HHI'-WH'II !^WBiBPipw?pHpi^p^piiflip^^p^^^^T^T^WS^^B!W!B(lPBP^B^^ 

ACKNOWLEDGEMENTS 

1 am iruly gra.tfül for the help and support of Ih. Artificial lm.llig.n« Laboralory and 

Computer Scene, Department here at Stanford, I would be negligen. if I did no, aUo mention my 

appreciation to the following people: Donald Knuth, who strongly mtluenced my ideas towards 

software monnonng during the summer of ,070 when I was par, of h,s FORTRAN opt.mUauon 

Study. and who later dneced me ,n read.ng and research ,„ ,he „eld of data structures, Terry 

W.nograd   and  Fores,  Baske,,, members ot m,  reading committee,  who  made  many  useful 

sugees„ons about .hi. d,sse„a„on: Dan Sw.neha,,. Russ Taylor, Hanan Same, and Bob Sproull. 

lhe SAIL hackers who acted as soundmg boards for m, ideas, and lasily, and most importantly, 

jert, Feldman. my ad.isor, wbo was always there when i needed him. read, a. an, time to think 

about, and talk with me about, any problems 1 was having. 

a^HM MBB «•■»■. -„,■.. ...i-u«iiä 



mHWPWJWVIPW iflMpf^pp^BW^W^l", M   i-P      l m,mi      llll   WJMNI   iJIPWipiilM^ W JiVV.**' '" l| IHfUI WW^^i^ »l   111    .1    llllllll     II    J IU L  I      II IKIl paj ■ ■■ ■■  •     ^-^m ■ . ■ II« i|   .. ill« UU« «■  lU^« 

I «' 

TABLE OF CONTENTS 

10 INTRODUCTION 
1 1 TRADIT'ONAL OPTIMIZATIONS 
1.2 INFORMATION STRUCTURES 
1 ^CODE GENERATION 
14 RELATED WORK IN HIGH LEVEL ALGORITHMIC LANGUAGES 
I^ LEAP 
1.6 EXAMPLE OF LEAP SUBPROGRAM 

2 0 OVERVIEW OF THE SYSTEM 
2.1 INFORMATION GATHERING 
2.2 SELECTION 
2.3 COMPILATION AND EXECUTION 

3 0 ABSTRACT DATA STRUCTURES AND THEIR REPRESENTATIONS 
3.1 SETS AND THEIR REPRESENTATIONS 
3.2 LISTS 
13 TERNARY RELATION 
3.4 ESTIMATING THE EXECUTION TIME OF PRIMITIVE OPERATIONS 

4.0 INFORMATION GATHERING 
4 1 EXAMPLE OF INFORMATION GATHERING 
4 2 STATIC ANALYSIS OF LEAP PROGRAMS 
4.3 STATIC ANALYSIS ALGORITHM 

5.0 SELECTION OF DATA STRUCTURES 
t | CRITERIA 
52 COMMON COST FUNCTIONS 
5.3 PARTITIONING THE INFORMATION STRUCTURES 
5.4 APPLICABILITY FILTERING 
5.5roST PREDICTION 
5.6 FINAL SELECTION 
5.7 FINAL COMPILATION 

1 
2 
5 
6 
6 
9 

14 

16 
16 
18 
21 

22 
22 
28 
30 
33 

36 
38 
39 
42 

45 
45 
45 
46 
47 
48 
48 
60 

6.0 RESULTS 
6.1 INSERTION SORT 
6.2 MERGE SORT 
6.3 TRANSITIVE CLOSURE 

51 
52 
55 
56 

in 

mmmm HMMMMi 



fM.flfVf' '-(MAiiMW!'«* j*.m)t^*m.K''^»m.^-.')i^*rT^r'r^fT-^**&^:» A IIIL^A«^HWJ9UPH|III mi««»m^^-w-v^i^-- '»<JW,-^I<Vr^iifap^nifvy ß^t^^t^^u,.,.,F_vwi/-«»*■'.•«*wi'^ä-*I»«w>--J.#,M,tvv^i-^»'^-r-^- ...... 

TABLE OF CONTENTS 

7.0 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 
7.1 TOPICS FOR FUTURE RESEARCH 
7.2 FINAL CONCLUSION 

8.0 APPENDICES 
8.1 APPENDIX A - SET PRIMITIVES 
8.2 APPENDIX B • LIST PRIMITIVES 
8.3 APPENDIX C - META EVALUATIONS 
8.4 APPENDIX D - 1NSRT2 
8.5 APPENDIX E-INSRT3 
8.6 APPENDIX F - MERGE 
8 7 APPENDIX G ■ TRANSFORMATIONS 
8 8 APPENDIX H - INSTRUCTION WEIGHTS 
8 9 APPENDIX I - EXECUTION TIME COST FUNCTIONS 

58 
58 
62 

63 
63 
66 
68 
69 
70 
71 
73 
74 
75 

9.0 REFERENCES 99 

IV 

. 

■"   - 



iJWiHV^JJf>»i|*P!«V»i.'_i..!yiMl*ii     «MW!"-.*'\±^'.J'-A-.V.kH"; \■ J ■,".■.«!*.JIMJl.%l«l»»Jl*,!*}^J11'"^JP^fl; T".^M« W11  "   '^^ ^ .■.IJIIP,«U,,WIW» I ■»<!!»»« •"■ i".' .  Mi   «•UlJiWWftiJJdyiiLiU!M*^WIf#«U^ 

LIST OF FIGURES 

FIGURE PAGE 

1. LOGICAL ORGANIZATION OF SYSTEM 

2. STORAGE LAYOUT OF ITEMS 

3. ONE WAY LINKED LIST 

4. HEIGHT BALANCED BINARY TREE 

5. HASH TABLE WITH SIGNATURES 

6. COMBINATION LINKED LIST, BIT VECTOR 

7. TWO-WAY LINKED LIST 

8. FLOW GRAPH OF TRANSITIVE CLOSURE 

17 

23 

23 

25 

25 

27 

29 

40 

B^IMifniim  -Ti ...-..., ,, .- ■ .-,. 



»•••^«•■^■■«^•■^■■""•Pl1"" ■"■■«»•!'^HP^i»p«|Bpp«i«nim^iWP«wimi >     "  "■ ■'■ ■ '■ 

1.0 

SECTION 1 

INTRODUCTION 

Many of the processes used in producing computer programs may be performed with 
less user effort by using specialized computer programs. There has been a continuous stream of 
developments which decrease the effort of a human programmer in producing a computer 
program, including symbolic assemblers, macro assemblers, algorithmic languages, text editors, 
debuggng systems and so forth An important part of this series of developments has been the 
development of higher levei programming languages. These allow the user to ignore low level 
details of implementation and have the system provide for them. 

Automatic Coding research involves the design and efficient implementation of very 
high level programming languages. Examples of features available In such programming 
languages Include pattern matching, extensible data types, associative retrieval, and complex 
control structures including backtracking, coroutines, multiprocessing, message passing etc. Current 
research ([Bobrow7?b,Smith73,Tesler73]) is aimed at developing techniques for efficient 
implementation of these features 

Automatic Coding includes such things as algonthm transformation, optimization and 
compilation. In general, it takes one form of a program and translates that form into another 
which can be executed more efficiently Traditional optimizing techniques involve transformations 
of the execution flow structure of the program, such as moving computations out of loops and 
elimination of redundant computations Until recently there has been little work done on having a 
compiler optimize the representation of data The reason for this is clear. Most programming 
languages offer only data types which have explicit implementations. If other data structures such 
as variable length strings are provided, their internal representations are also fixed. Common 
languages may allow the user to aggregate words into arrays or records, but do not provide the 
user »vith ? representation-free way of specifying his data structures with the generality needed for 
a translator or compiler to choose a suitable, tailor-made data structure. The complex data 
structures (PL/I structures, ALGOL 68 structs) some algorithmic languages allow are very detailed 
and maintain a close tie with their implementation. They are usually equivalent to the assembly 
language representations such as DSECTS in 360-ASSEMBLER ([IBM69]) which merely define 
the fields of a contiguous block of storage. 

Recently many languages, including 0,A4 ([Derksen??]), PLANNER ([Sussman70, 
Baumgart72]), SETL        ([Morris73]),     '   MADCAP[Motris73]),        VERS2([Earley73b]), 
CONNIVER([Sussman72,McDermott72]) and LEAP ([Feldman69]) have incorporated high-level 
abstract data structures (information structures) base*:, on relations and sets. These information 
structures provide not only the representation independence we desire, but also give the user good 
abstract models for his data A programmer can think in terms of such abstract information 
structures as sets rather than in terms of linked record structures provided by languages like PL/I. 
Usually this is much simpler and the programmer is able to design and debug hii programs more 
quickly. Unfortunately, users have often been reiuctant to use these information structures to then- 
fullest in production programs because of runtime inefficiencies These inefficiencies are caused 
by the suboptimal low-level implementations of these information structures; the implementations 
being a compromise over all mtendrd usages Thus, in most existing programming systems the 
user  must  choose  between  the conceptual  efficiency of expressing his data  using  high   level 

'—""^•—— -^-_-^-^-^—_ - _ .^ .^.M 
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10 INTRODUCTION 2 

information structures, and the runtime efficiency available using lower level data structures. We 
believe these runtime inefficiencies ran be remedied by providing a library of representations for 
the information structures and a user assisted automatic system to choose appropriate elements 
from this library for the user's programs. 

The main problems in such an automatic approach are: 1). Building a library of 
representa.ions; 2). Characterizing the properties of these representations; 3). understanding how 
the user's program actually uses the abstract information structures, and 4). efficiently matching 
the user program needs with the properties of the known representations. 

The research reported here is an attempt to demonstrate the feasibility of such 
automatic representation selection. We allow the user to express data in terms of relations, sets, 
and sequences. Our svstem then obtains information by analysis of the program, execution 
statement profiles and interrogation of the user Using that information, the system selects efficient 
(in terms of time and space) low level implementations for the user's information structures from a 
fixed library of information structure representations. Though we have considered only a few 
abstract information structures (those available in our programming language, SAIL) we believe 
the techniques used in this system ate generally applicable. 

We have constructed a demonstration system which we have used to process several 
example programs Example programs and the structures selected tor their information structures 
are included" in Section 6. A marked improvement in execution time (over using a default 
representation) is shown in several of these. Others gave us some surprises and indicate areas for 
future research. 

1.1 TRADITIONAL OPT1M ZATIONS 

We are concerned with optimization in our choice of representations for information 
structures in that we wish to decrease the cost of running the finished program. This is the same 
goal as that of classical compiler optimization. In this research we have emphasized solving 
problems in representation selection rather than using standard optimization techniques. 

Traditional optimizations ([Allen69, Cocke70, Geschke72, Kildall72, Wu1f73]) are 
concerned with reducing the execution time necessary for arithmetic calculations by performing 
equivalence preserving transformations on the program being optimized. Many of these 
optimizations are also applicable to operations involving information structures. Our system does 
not include such optimizations but it should not be extremely difficult to add such optimizing 
strategies to future data structure selection systems. 

CONSTANT FOLDING AND PROPAGATION 

Expressions involving only functions of constants may be evaluated at compile time if 
the functions do not have side effects and given the same argument always return the same value. 
If a constant valued expression is assigned to a variable and that variable is lot changed 
following such assignment then we may treat that variable as if it were the constant expression 
itself. Thus in the sequence. 

■■^■-■- -"     -.■■,■..,.,.... i MMMIiillMIMIiiliMliMitiliiiii ... 



^^^•-^ i      immt ^^*^*vjim*ui*\mMi9vm.*mmiiu.ti9m. rp^v^wf^wmiip.ii.   WPJ,«J»I   nv^y >  «"■     'v  JI« i IHP. wacwi^^^ii p ■■ m   i   n i^« iiuir«i'.iP*»> JMUVJUWIIW-.-PMPVII^ ■ m ^H        JI    WV« •»•     I I I       HH^ 

'    5 

1.1 TRADITIONAL OPTIMIZATIONS 

, . 

ROWS1ZE- 10; 
U I; 

INDEX - l*ROWSIZE ♦ J; 
A[INDEX*X]-t 

we can realize that INDEX will be 16 and that there is no need to compile the code to compute its 
value since its value may be computed at compile time. If the array A were statically allocated the 
address of AUNDEX] could also be computed at compile time. Thus, we would only need to 
generate code that will add the value of X to the computed value of the address of AUNDEX} tn 
obtain the address of ^[WD£X+X], ^^Jto 

Information structure constants such as constant sets or constant sequences do not 
appear to be as common as simple arithmetic constants but when they are present the above 
technique may beneficially be applied, 

COMMON SUB-EXPRESSION ELIMINATION 

We often see the same expression being computed several times without its arguments 
being changed. Common subexpression elimination is designed to recognize such occurrences and 
avoid the redundant computations by saving the expression in a temporary. For example: 

A[i * j] .- B[i * j] * A[i * j]; 

The expression hj must be computed only once. Similarly the addressing function for subscriotine 
array A need only be computed once ^    6 

Information structures such as sets and sequences usually take more than a single word 
to store. Therefore application of common sub-expression elimination must be carefully weighed 
to see if the time saved in avoiding redundant computation is more important than the added 
storage needed to save temporary results. 

CODE MOTION 

Often, computations can be moved from portions of the program which are executed 
very often (such as inside loops) to places where they would be executed fewer times without 
changing the meaning of the program. For example: 

for I ^ I step I until N do 
A[I]-J*X * I, 

The expression / * A' need only be computed once before the loop and then saved   in  a 
temporary. Thus we might compile the above as if it were: 

TEMP - J* X; 
for I .- I step I until N do 

A[IKTEMP ♦ I; 

-iHUUAlttMMttflMHMiMflAi iijffMw'inn       ■ >   .     ....i-«***^^,... 
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11 TRADITIONAL OPTIMIZATIONS 4 

Application of these techniques to multiword information structures involves tradeoffs 
similar to those in common sub-expression elimination. We must determine if the execution time 
saved is more important than tht space used to store the temporary result. 

REGISTER ALLOCATION and DEAD VARIABLE ANALYSIS 

Modern day computers often have a number of fast working registers. It is often 
beneficial to keep the most commonly used variables and common subexpressions in these 
working registers rather than memory. There are usually very few of these registers so a compiler 
wants to know when it no longer needs to retain the value of an expression. For example in the 

sequence: 

B *- A * 1; 
1 .- X * B, 
B <- 5; 

we would calculate the value of /4 ♦ / in a register and would notice that the use of B in the 
multiplication is the last use of S before fl is given a new value ß is said to be dead after the 
multiplication Therefore any register that was known to contain 8 may be reused. In the above 
example we would be able to compute the value of the multiplication in the same accumulator as 
we computed A * I. (In this example, a smart compiler would realize that the value A * I need 
never be actually stored into the memory location S) 

The notion of dead variables is quite important in operations involving high level 
structures. To make a copy of a simple arithmetic value is usually quite cheap, but making a copy 
of a set can be very expensive. Consider the statements: 

A - B u C; 
B-{x.y,z 

The subroutine implementing the union operator might simply insert all the elements of its second 
argument in the first argument Thus, in the first statement above, we would normally have to 
make a copy of B and pass the copy to the union subroutine This, however, is the last use of S 
before it is given a new value Therefore the copying operation is unnecessary. This copy 
avoidance has tremendous payoff ([Schwartz74a]) 

We will not discuss classiral optimizations in any more detail. They are very important 
and should be included in compilers which select data structures. We imagine new optimization 
techniques (including interactive application of the above techniques [Knuth7-l]) will be found 
which are even more helpful to optimizing programs involving high level data structures, than 
the traditional ones mentioned above. 
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INFORMATION STRUCTURES 

1.2 INFORMATION STRUCTURES 

Example of common abstract information structures which would be nice to have in 
our programming languages include simple queues, stacks, pnonty queues, sequences, sorted 
seauences se's disjoint sets, ordered sets, relations and mapping functions Each has some 
particular semantic properties which make it conceptually appropriate for expressing certain 
algorithms The right information structure provides the important proper'ies of the data, and the 
essential primitive's necessary for manipulating the data. At the same time, non-essential (and 
implementation restricting) details are suppressed. For example, consider an mformation structure 
which is loeically a set; that is, an unordered collection of unique objects, In the absence of the 
.et data-type a programmer would probably use a sequence for that data, or end up programming 
his own set representation, While the operations on a set may be easily coded as appropriate 
noerations on sequences, there is a conceptual overhead (and chance for bugs) in making sure that 
only a single copy of each object is in the sequence. It should be much easier to prove properties 
of the program knowing that the information structure is a set rather than having to derive that 
knowledge fiom the representation of the set in term, of a sequence or other construct, and from 
the way t'.ie representation is updated and accessed 

An important attribute of a system having the righi information structures, and the 
attribute on which our system is based, is that optimizers can do a much better job of selecting 
data representations when they are given a free hand and are not encumbered by non-essentia 
details With our set example above, we can see that an optimizer given the program in terms of 
sequences would find it extremely difficult to recognize that the information structure was really a 
set Therefore it would not be able to consider such other set representations as boolean arrays or 
hash tables. The optimizer would be forced to represent the data in some sequence representation 
which might be inferior to available set representations. 

A commonly held view is that the user should have originally expressed his information 
structure in terms of its final representation, say a hash table. This opposes many high level 
ianeuaee principles As stated earlier it is much more difficult to prove properties of (and to 
debug) programs at the representational level. What may be the best representation when the 
nrocram is designed may not be the best later when such attributes as number of data objects 
change Thus enormous reprogrammmg costs may occur in order to change representations 
during the lifetime of a program, or increased computer costs from using mefficient 
representation'- may be incurred Similarly the best representation for the data on one machine, 
mieht be decidedly inferior on another machine Programming at the representational level, rather 
than at the information structure level, is therefore costly in terms of debugging, maintenance, and 

pottability of programs. 

Our final rationale for use of abstract data structures is that we are working towards the 
day when computer programs are mechanically generated by other programs ([Balzer72. 
Feldman72al) It should be much easier to generate programs at the abstract level than at the 
representational level. 
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1.3 CODE GENERATION 

1.3 CODE GENERATION 

To generate code for manipulating information struciures, we must consider which 
primitives are necessary in the generated code to accomplish a high-level operation. These 
primitives normally will be either closed subroutines, or in-line code. In some representations 
certain primitives may essentially be null operations. For example, certain representations may nut 
need explicit copy or explicit release storage primitives because these operations will be performed 
inside other primitive operations. 

Consider an assignment statement involving a set variable and a set expression 

SETVAR -SETEXPR; 

A single assignment primitive could take the two sets as arguments and do the assignment. 
Another implementation might make a copy of the right side {SETEXPR). if necessary; release 
the storaee occupied by the^set on the left side, if necessary; and then put the descriptor for the 
copy in the set variable. This implementation has the advantage that it knows whether it has to 
make a .opy of the right side {SETEXPR) or whether the right side is simply the result of a 
computation. In an optimizing compiler, we could also recognize special cases where the space 
occupied by the set variable on the left {SETVAR) need not be released because it is known to be 
empty or previously released. To get the same effect with an assignment primitive, we would really 
need four assignment primitives, each called depending on knowledge ot whether the left side 
needed to have its storage reclaimed or the right side needed copying. 

Alternatively, an assignment primitive is sometimes more efficient in expressing the 
concept of assignment than lower level primitives. Consider the representation of two sets as fixed 
length arrays. An assignment primitive could simply copy from one array to the other, but if we 
had expressed the assignment in terms of copy and release primitives we would have to create and 
destroy some temporary array. Allocation and deallocation of temporary arrays can be quite costly 
in execution time. 

The design of a set of low level primitives is an art very similar to the design of the 
instruction set of a computer. We feel that much benefit could be derived from studying the ways 
Information structures are used in orde: to decide which primitives are most beneficial. (See 
appendices A and B for the description of he primitive operations which we use to describe sets 
and sequences.) 

14 RELATED WORK IN HIGH LEVEL ".GORITHMIC LANGUAGES 

There are several research projects which are investigating the use of abstract 
information structures in high-level programming languages The following are projects which 
have recently been conducting sudi research. 

SETL([Morm73]), This language is being developed at the Courant Institute at NYU It is based 
on set-theoretic principles. Data structures are expressed in terms of finite sets and tuples of 
heterogeneous objects, where objects are elementary types like integers and character-strings, or 
more complicated objects such as sets and tuples. Mapping functions are expressed as sets of 
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ordered pairs of function argument and function value. Most of the work on the SETL project 
seems to have been spent in designing programming language constructs .vhich are closely related 
to mathematical set constructs. Major effort has also been spent on a series of progressively more 
efficient implementations. Recently ([Schwartz74a, SchwartzV-Jb]), work has been done on 
optimization techniques involving data-type inference (there are no variable declarations in 
SETL). SETL researchers are also interested in computation avoidance. For example in the 
expression x ^ (AuB) there is no need to actually construct the union of A and ß as we can simply 
test whether x is an element of either set. SETL researchers have also investigated other more 
classical optimizations including dead variable analysis. As mentioned earlier dead variable 
analysis has a large payoff in avoiding unnecessary copy operations. 

MADCAP([Morris73]).The latest of the series of MADCAP languages (MADCAP VI) being 
developed at the Los Alamos Scientific Laboratory by Morns and Wells is very similar to SETL. 
There are minor differences in some semantics, e.g sets must contain objects of a single type, and 
some not so minor differences. One such difference u that MADCAP is a pointer language 
rather than a value language. For example, the sequence; 

A = <1,3> 
B = A 
Bi =2 

causes A to have the value <2J> rather than the expected value of <!,$>. The emphasis again 
has been on the language design and not in optimizing the implementation. 

ELI. This is the first of a family of extensible languages being developed by the ECL group at 
Harvard ([Wegbreit7l]). The base language itself does not include constructs of higher level than 
tuples. It does, however, include extension mechanisms with which the user can define his own 
abstract data-types and operators to act upon these types (See VERS2 below). The goal of this 
research has been to provide an extensible language which has several levels of implementation 
from LISP-like interpreters (highly useful in debugging programs) to very complex optimizing 
compilers. One important feature of these compilers is the CLOSURE mechanism ([Webreit??.]). 
To understand this mechanism we must realize that ELI operators are defined in terms of user 
written subroutines. These routines normally will do different things depending on the type of 
their operands. At the lowest level, for example, the operator "♦" will do a floating point addition 
if its arguments are both real, a fixed point addition if its arguments are both integer, and a 
floating point addition preceded by changing an integer argument to a real value if one" argument 
is integer and the other is real. The purpose of closure is to tailor special versions of routines 
(both operator definitions and user defiiT-d procedures) which know the data-types, and perhaps 
even the values of certain parameters and/r« variables. With such knowledge unnecessary type 
checking or computation of constant-valued expressions may be avoided. Thus, for the operator 
"+" it would often be possible for a compiler to generate the single add instruction m-lme rather 
than to generate a call to a generic routine which does the type checking of arguments and then 
eventually an add instruction As closure is sometimes a very expensive operation for a compiler 
to perform, closure is currently invoked by user requests which are very specific as to wh?t 
quantities are bound. Future research will likely try to automate these decisions. Work is alr.o 
being done to be able to include invariants in the closure mechanism. For example, we may be 
able to prove that because of certain types and values being constant, other relationships will hold 
between certain expressions. We can then often improve the code. In a trivial example we might 
be able to prove that some set is always empty at a given point In a prog-am. If there is a 
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conditional expression based on that property, we could transform the expression into an 
unconditional one. 

VERS2([Earley73b]). This is a language being developed by Earley at the University of 
California at Berkeley. It is actually being implemented as an extension of ELI (above). It has 
much of the flavor of SETL, sharing many of the same constructs. It includes relations and 
sequences of objects (both values and variables). One of the features of this language of great 
interest to us is the implementation facility. With this facility the user can tell the programming 
system how he wants various data-structures implemented. For example, he may state that he 
wants a particular set implemented as a sequence, run his debugging tests using the default 
sequence representation, and then later specify that he wants that sequence implemented using 
doubly linked lists for production use. Earley has also been inteiestcd in high level concepts of 
loops which he calls iterators ([Earley74a, Earley74b]). These iterators are at a high enough level 
that algorithm transformation can often be used to circumvent actual execution of loops. For 
example, consider the iterative operation {x US I P(x)), which constructs the subset of set S 
whose members satisfy the predicate P. Normally this would be implemented using a loop. An 
intelligent optimizer could realize that no loop needs to be present if we keep an auxiliary set SP 
which contains all those elements of 5 which satisfy P. If P is sufficiently tractable (eg P(x) = x > 
0 ) then to maintain SP we need merely to check P every time we add (remove) an element to 
(from) .S, to decide if we should add (remove) that element to (from) SP. The interesting problems 
of such iterator inversion include deciding when it is the more efficient thing to do, and how to 
handle complex iterators. The whole concept of iterator inversion, though not currently 
implemented In VERS2, should strongly influence automatic coding research. 

LEAP([Feldman69]). This language wai originally implemented at MIT's Lincoln Laboratory by 
Feldman and Rovner. Apart from normal ALGOL-like features, it contained sets of objects and a 
single ternary relation between these objects. The original implementation was geared to handling 
large data bases, much larger than could fit into a single core image. It was used with much 
success in diverse applications including interactive graphics. The data structure elements of 
LEAP have since been incorporated into an ALCOL-60 based artificial intelligence language 
called SAIL. Here the emphasis on handling very large data bases was dropped, and the current 
implementation allows only small core-resident data bases. Recently the LEAP subset of SAIL was 
used as part of a basis for adding powerful control structures to SAIL including multiprocessing, 
coroutines, and message passing as well as a limited form of backtracking ([Feldman72b]). In our 
demonstration system we use a subset of SAIL as the language in which a user expresses his 
programs. A more detailed description of the impoitant LEAP features will be given in the next 
section 

Other related research projects ([Anderson72, Bobrow73a]) involve the development of 
programming languages for use in Artificial Intelligence research These programming languages 
usually have associative data retrieval and complex control mechanisms including call by pattern 
match and backtracking. 
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[ 
All the projects described above have some central notions as to what types of data 

structures should be available to the user. Data structures should be expressed in very general 
terms to rid the programmer of unnecessary implementation details. The programmer at least at 
first, should only have to worry about his algorithm and not about details such as bit masks and 
hash-tables. It is much easier to debug a program and prove it correct if we are dealing with sets 
rather than some linked structures. Portability of programs is becoming more significant When 
we move a program from one computer to another it should be much simpler to change the 
representation of high level data-structures such as sets and sequences to those more suitable to 
the new machine than to reprogram application programs using low level structures Even when 
we do not consider portability we still derive great benefits from using the higher level data 
structures. It is a rare production program that does not get modified as its requirements change 
A programmer usually finds it simpler to understand (and thus be able to modify) programs 
written in ALGOL or PL/1 than the same programs written in assembly language; similarly he 
finds it easier to understand set and sequence manipulations than the corresponding pointer 
structures which might have been used to represent sets and sequences. 

1.5 LEAP 

In order to explore the problems involved in doing automatic selection of 
representations, we decided to build a demonstration system The programming language we chose 
to work with is a subset of SAIL ([VanLehn73]). SAIL is a good choice for such a demonstration 
system because of the LEAP sublanguage. LEAP contains sets, sequences and a ternary relation 
Sets and sequences are common information structures and the problems in selecting 
representations for them are very similar to the problems in selecting representations of other 
abstract structures such as simple queues, priority queues and stacks. The LEAP ternary relation 
presents problems similar to those found in partial mapping functions and n-ary relations The 
version of LEAP we use is core-resident, so we also restrict ourselves to relatively small data bases 
Problems involving large (disk size) and very large (tape library size) data bases are left for future 
research. 

LEAP consists of items (variable names), each of which may have typed datum' sets of 
items; linear lists (sequences) of items; and a single ternary relation between items (also called the 
associative store or triples). 

The important properties of items are; 

1. They are allocated either statically (declared) or from a heap (using the NEW generic function) 
The.r lifetime does not follow ALGOL block structure. A given item ceases to exist only when 
it is ;>.iven as the argument to the f)£L£r£ procedure. 

2. Each item may have a DATUM. A datum is a algebraic, set. or list variable. The datum of an 
item has the same lifetime as the item itself. We often classify items according to the data-type 

olLhAlLdatUm-,ThUS We may Speak 0f We-Iess or b,ank ltems (wh'ch  have no datum) 
ZpZr TJi^036 datUm ,S a Stnng Var,able)• STRlN0 ARRAY ,tems (wh°" datum is a STRING ARRAY) etc, 

■Ml .  . 
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3. Items may be referred to by their name (if declared), or as the contents of an item variable 
(itemvar) In ALCOL-68 notation an itemvar would be known as a ref item. Itemvar's may 
receive values by assignment of item expressions, or by pattern matches against the associative 
store, sets or lists. 

SETS 

LEAP has finite sets of items Normal mathematical considerations, such as 
{a a b} = [a b] = { b a}, hold. The empiy or null set is denoted by the name phi. Set expressions 
may be stored in set variables. It is important to note that the semantics of set assignment is to 
make a copy of the set expression. Thus in the code sequence. 

XSET»- { a, b, c, d }; 
YSET - XSET; 
put e in XSET; 

the resulting sets will be 

YSET . { a, b, c, d } 
XSET- { a,b,c,d,e) 

LISTS 

Linear lists of items (sequences) are also available. They behave much like variable 
length one dimensional arrays of items. The notation used for an explicit list is {{ o, b, c.d ]} . 
"{{" and ")}" are called list brackets. 

XLIST^ ({a, b,c, d )}; 
XLISTUl-b; 

will result in XLIST - {{ 6, b, c, d ]]. Other operations on lists include concatenation, removal of 
items from a list either by index position within the list or by giving the item to be removed, and 
insertion of items into lists either by index position or after or before named items The null list is 
denoted by the name NIL. 

TRIPLES 

The most powerful abstract data structure in LEAP is the single ternary relation also 
known as the associative store. The relation instance (a,o,v) is denoted by: 

a » o s v. 

The first component is called the attribute, the second, the object; the third, the value. When we 
are indicating an unspecified element (which might be returned from a search of the relational 
data base) we will mark that as"?". 

_-_^_^_ 
—- ■  ■ • -■■  ■■ - ... 
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Normally we fix one of the elements (usually the first) and use that as a binary relation 
name. Even when this is done, we may still do searches of the form "? • o H ?". For example, 
assume we have a number of relation instances involving a certain item A and we wish to copy 
ihem to another item B. The simplest way of doing this is to search the associative store (see 
FOREACH's below) for all triples whose second component is A and for each such triple, create a 
new relation instances which differs from the original only by having B as its second component. 

In order to take advantage of the high level data structure., we must have loops which 
sequence through sets of items, lists of items and items which satisfy pattern matches on the 
ternary relation. The mechanism provided by LEAP is called a FOREACH statement. 

FOREACH STATEMENTS 

A foreach statement consists of three parts; a binding list of itemvars (also called foreach 
locals, or local itemvars) whose elements are analogous to the loop control variable of an ALGOL 
FOR statement; an associacive context, and a statement to be iterated. An associative context 
consists of elements separated by "A", where an element is a boolean expression, a set iterator, a 
'«st iterator or an iterator based on a pattern match on the associative store. 

Each element of the associative context, other than boolean expressions, is said to bind 
one or more of the foreach local itemvars. That is, the iterator successively will give various item 
values to the local itemvar. The first element of the associative context which refers to a given 
local itemvar, binds it. Later uses of the local itemvar in the associative context will use the Item 
previously bound to the local itemvar. 
For example. 

foreach par,grarid I PARENT   »   JOHN   H   par A PARENT * par ü grand do 

will iterate thought all the pairs of (parent.grandparent) of JOHN. The first element, 
PARENT « JOHN = par, binds the foreach local par and then that binding is used in the 
second element to find bindings for grand. 

FOREACH ITERATORS 

Set iterators are written in the form; 

local i setexpression 

These successively bind the local to each element of the setexpression. Since a set is conceptually 
unordered, the order in which the items of the setexpression are bound to the local is also 
undefined. 

List iterators are written in the form; 

local i listexpression 

These will successively bind the local to the first element of the list, second element of the list and 

so on. 
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The FOREACH statement: 

foreach X | X ( LIST I do 
5; 

is thus equivalent (in absence of changes to LISTl within the loop) to: 

for 1 - I step 1 until LENCTH(LISTI) do 
begin 

X^LISTUl]; 
S; 

END. 

Relation iterators bind one or two locals. 

foreach X | a » X = b do 

will iterate through all items in the associative store which are the object component of an relation 
instance with a as the attribute component, and b as the value component. 
Thus, if the associative store contained: 

a«d s b 
a « e = b 
a * f s b 

then the above FOREACH would be equivalent to 

foreach X | X ( { d. e, f) do 

As with sets, the order which the bindings are given by this iterator to the local(s) is undefined. 

DECOMPOSITION OF FOREACH's 

When a FOREACH statement has more than a single element, it behaves as if it were a 
nest of FOREACH statements each containing a single element. A boolean expression element acts 
much like an IF statement. 
Thus; 

foreach X, Y, Z | ASXSYA (datuin(X) > datuni(Y)) A Z ( ZLIST do 
5; 

will be semantically equivalent to: 

foreach X, Y | A ä X 2 Y do 
if (datuni(X) > datum(Y)) then 

foreach Z | Z ^ ZLIST do 
S, 
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CHANGES TO THE INFORMATION STRUCTURES DURING ITERATION 

A difficulty in the semantics of FOR EACH statements (inherent in any data structure 
iterator) concerns changes to an information structure which is currently being processed by some 
iterator. 

For example consider: 

foreach X | X ( SETI do 
begin 

remove F(X) from SETI; 
CNT^CNT *h 

end, 

foreach X |X ^SETl do 
begin 

put F(X) in SETI; 
CNT-CNT ♦!; 

end; 

Should changes to the set affect which items are returned by the future iterations of this loop' 

If SETI in the first FOREACH were ( a, b, c. F(a). F(b), F(c) ] and the FOREACH 
would return the items in that particular order, would the statement be executed 3 times, 6 times 
or some number in between. Similarly if the SETI in the second FOREACH were executed with 
the set { a.b.c ] would the statement CAT - CNT *l be executed only 3 times, or maybe an 
indeterminate number of times as the foreach produced the set: 

{ a, b, c, F(a), F(b), F(c), F(F(a)),  

It seems desirable to minimize the differences in program execution caused by the 
ordering which FOREACH iterators give to to semantically unordered quantities. Therefore the 
best semantics would ha"e the FOREACH not be affected by changes to the data structure during 
its executions. Two ways of doing this are apparent. The first is to outlaw operations which alter 
a data structure which is being processed by an iterator. This unfortunately removes many highly 
usefi'l constructs such as: 

foreach X | X ^ SETI do 
if pred(X) thtn remove X from SETI; 

The other way of solving this problem is to define the semantics as if the set were 
copied before the FOREACH was entered and then the copy was used to produce the items for 
the iteration.  Thus the above FOREACH would be equivalent to: 

TEMP-SETI, 
foreach X 1 X ( TEMP do 

if pied(X) then remove X from SETI; 

We see that any changes to SET"/ would not change TEMP and thus alter which items 

. 
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are returned by the FOREACH Note that an optimizing compiler might be able to determine 
that there is no possibility of a set or sequence variable being changed inside a given FOREACH 
and could then suppress the copy operation. In our demonstration system we always form copies of 
sets and lists being iterated. 

1,6 EXAMPLE OF LEAF SUBPROGRAM 

Now let us look the procedure TRANSCLO (below), written in SAIL, which uses the 
LEAP features We will use this procedure to demonstrate some of the problems and techniques 
of representation selection. This procedure computes the transitive closure of a reflexive binary 
relation (RED upon some set of items {BASE). 

set procedure TRANSCLOiiiemvat REL; set BASE\ 
begin "TRANSCLO" 

set RELATED. NEWLYRELATED. FOUND, itemvar X.Y; 
RELATED *■ plii, NEWLY RELATED *■ BASE; 
while {NEWLYRELATED * phi) do 

begin 
FOUND *- phi; 
foreach X.Y \ X < NEWLY RELATED * REL * X z Y do 

put Y in FOUND; 
RELATED - RELATED u NEWLY RELATED; 
NEWLY RELATED - FOUND - RELATED; 

end; 
refurii(/?£i./ir£D); 

end "TRANSCLO". 

The binary relation is represented by a LEAP triple, whose first component is the 
relation name. REL » A s B means that A is related to B by the relation REL. The input to this 
procedure is the relation name, REL; and the original set of items, BASE. The set RELATED will 
be used to collect all those items which are directly or indirectly iplated to the original BASE. The 
set NEWLY RELATED consists of those items which have been found on the previous iteration 
of the while loop to be related directly or indirectly to the base. The set FOUND is used to collect 
all those items found to be directly related to the items of the set NEWLYRELATED during a 
single iteration of the while loop. At the end of the while loop, we add all those elements of 
NEWLYRELATED to the collection RELATED. The set NEWLYRELATED is then given all 
the objects which were found in this iteration yet were not processed by some previous iteration. 

Now let us attempt to select efficient implementations of the information structures of 
this procedure. We must consider how the various structures aie used and their sizes in making 
such selections. In the absence of global knowledge of how the relational store is used outside the 
procedure and how the input and output sets are used, we would probably not be able to choose 
the best representations, but let us see how we might approach the selection process. 

First of all we must determine what abstract data structures appear in the procedure. 
We notice that the only such structures are the tour set variables: BASE. RELATED. 
NEWLYRELATED, and FOUND, and the associative store. 

-•——— -      '  - --■--   
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Next we must determine which operations are performed on the individual sets. These 
are assignment element insertion (Pf'T). set union, set subtraction and foreach iteration. The only 
operation performed on the relational store is the foreach search with the first two components 

bound. 

We notice that BASE and NEWLYRELATED are both arguments to a smg'e 
assignment statement. As a simplification let us assume that this will influence us to choose a 
common representation for base and newlyrelated. (Motivation for this will be presented later in 

Sections 2, and 3). Similarly the statement; 

RELATED - RELATED u NEWLYRELATED: 

will cause RELATED and NEWLYRELATED to have the same representation. In fact, all the 
sets of this procedure will end up with a common representation. 

With this information, we will attempt to choose a representation for these sets. We 
^mediately realize that we still do not have enough information to choose the best representation. 
We need to know how large the sets are on the average, and the relative frequency of the various 
operations. Let us assume that each set is potentially very large though its average size is a small 

proportion of its potential maximum. 

We probably would eliminate set representations such as binary trees and hash tables 
because set union and set difference operations are time consuming using these representations. If 
there were a fixed maximum number of items which could be elements of these sets we might 
consider usin^ a fixed length bit vector, since bit vectors are efficient for union and difference 
operations However, depending on set density they may not be very efficient in terms of space, or 
time needed for the foreach search. Without more concrete information we cannot really decide. It 
may turn out that the insertion operations so dominate the execution time of the program that we 
really should consider use of a binary tree or hash table set representation. The savings from 
using them for insertion may make up for their added costs in doing the other set operations. 

We have similar considerations in choosing an appropriate representation for the 
relation If we find that the program in which this procedure appears does not have other types 
of searches on the associative store, we will not have to provide for such searches. We will be able 
to choose a very specific repiesentation which is sufficient and efficient for this program yet 
which is not capable of handling all possible operations on the associative store. 

In the next section we will examine the overall design of a system which automatically 
chooses appropriate representations of the high level information structures of LEAP. 

t 
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.. SECTION 2 

OVERVIEW OF THE SYSTEM 

.. 

We have implemented a data structure selection system to demonstrate the feasibility of 
our ideas. The system consists of several computer programs written in SAIL and PDP-10 
assembly language. The assembly language parts of the system have been abstracted from the 
standard SAIL compiler, and are used to parse user programs and do the machine code emission 
in the final compiler. All the rest is written in SAIL. We make extensive use of the LEAP 
information structures in the SAIL coded portions. Communication between programs is 
accomplished by having each program write the contents of the LEAP Information structures to a 
disk file which is later read by the next program in the series. The system we have designed to 
perform selection of low-level data structures logically consists of three major components: 
information gathering, structure selection, and final compilation and execution (See Figure 1). We 
will note other techniques which we feel are applicable to a selection system which are not part of 
our system. 

I 
I 
I 
I 
I 
I 

2.1 INFORMATION GATHERING 

The information our selection phase needs about the abstract information structures of 
the user's program includes such things as their size, the primitive operations performed on them, 
and values of other parameters which affect the execution time of the primitive operations as 
implemented for the various representations. 

We do not want to require that all of the structures of the same abstract type, such as 
sets, be represented the same way. We therefore need information as to how to partition the 
abstract structures into equivalence classes, the members of each class having a common 
-epresentation Classes will contain individual information structures of the same type which are 
connected to each other in some way. Such connections include being the same positional 
parameters to some procedure, and being operands to a single instance of some operator. A single 
representation for a class is necessary to avoid dynamic checking of representation, as well as to 
avoid potentially costly translations of representation. It also eliminates the need for coding 
implementations of the primitive operations which take arguments with different representations. 
Consider the example of a set assignment statement: 

BASE *■ NEWLYRELATED, 

It may, because of other uses of the sets in the program, be more efficient to have 
different representations for BASE and NEWLYRELATED and have the assignment do a 
translation between them.   We realize that this flexibility requires a much larger library of set 

o 
manipulation routines   If there are n difleient set representations we will need ir assignment 
routines if we implement this directly, or 2 n routines if we translate into a single intermediate set 
representation In order to decrease the library size, our system sacrifices this flexibility and insists 
that both the arguments to an assignment be in the same representation, thus needing at most n 
different assignment routines. Similarly we will insist that both operands to any othei binary set 
operation  be in  the same representation and that the results of set union,  intersection, and 

■MBIIiaHiMMiMta   -■■ *—■"  
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1 

1 

difference be in same represen-ation as the operands to those operators. These representation 
constraints will usually produce several disjoint classes of set variables, each of which will be 
forced to have a single representation. We note that this decision to avoid translation of 
representation may well not be optimal, as is the decision to disallow codings of the primitive 
operations taking arguments of different representations. We feel that these restrictions were 
reasonable in a first implementation. 

There are m?nv wayr. of obtaining the required information, including assertions or 
declarations by the mer; monitoring the execution of the user's program (using default 
representations); static analysis of the program; and interactive interrogation of the user. In the 
demonstration system we have constructed, we collect statement counts by nonitonng the execution 
of the program. Other statistics of the dar-, use are gathered by asking the user. Partitioning 
information is obtained by a static analysis to be described later. 

h      -!»■ 
2.2 SELECTION 
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TIME AND SPACE COST FUNCTIONS 

A prime prerequisite for making intelligent choices between alternative ways of 
representing an information structure is a knowledge base containing information about the 
properties of different representations We need to know when a representation may be used 
(applicability), how much space a given representation will require as a function nf the number of 
data objects (storage cost), and the expected time necessary for the primitive operations on this 
representation as a function of the size of the information structure and other parameters 
(execution time cost). 

The attributes of the various representations are not independent of the programs in 
which they are used. For example, assume we have a set represented as a binary tree. The time 
needed to do an insertion into this set is (on the average) proportional to the logarithm of the 
length of the set. However, if the program inserts elements into this set in ascending order, the 
binary tree degenerates into a linear linked list and the time needed to do an insertion becomes 
proportional to the number of elements in the set rather than the logarithm of the number of 
elements. As a first approximation, though, we consider such attributes of representations as 
invariant over the programs in which they are used. Thus, the time required for element insertion 
into a binary tree will be approximated by the average time (i.e. proportional to the logarithm). 
The predicted execution time is thus a function only of number of elements in the set and not the 
order m which elements are inserted. Note that the deficiencies of the model for this particular 
example may be overcome by noticing that elements are inserted in ascending order. In this 
example the programmer might have used a different information structure if he considered order 
an important property (perhaps an ordered set). We would expect a good programming language 
to include a ..multitude of abstract data types or facilities for creating them. As extension 
mechanisms become more powerful we would hope users would be also be able to define their 
own abstract information structures, supply the appropriate cost evaluation functions and let the 
system select representations from a user supplied library for the new information structures. 

MMMi^MMiM-M 
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The number of computer words used to store references to n objects can usually be 
expressed as a simple function of the maximum number of objects, and the current number of 
objects. The expected time required for a primitive operation such as union of two sets, is a 
function of the maximum and current sizes of the abstract structures as well as certain other 
parameters unique to the primitive operation With set union we would expect the time for union 
to be dependent on the percentage of overlap between the two sets. 

The attributes of the possible representations are: the applicability predicate; the space 
function for the representation; and the individual time functions for the primitive operations. 
These would usually be calculated once by the person who has constructed the selection system. 
These cost functions may appear either as input data to a structure selector, or actually be 
explicitly contained in the structure selection component of the system. It is, of course, easier to 
add new representations if we need only update a data set and not a program, but it is simpler to 
construct an automatic selection mechanism if the information is explicitly present (so we may 
make ad hoc adjustments) rather than being present only as data. For our implementation, we 
chose to obtain the best of both techniques. All information about the representations of 
information structures Is present In the form of procedures. To add a new representation of some 
information structure to our system, we need only add a new set of procedures to the system which 
indicate when the representation is applicable, how much storage it requires, and how much 
execution time is required for each primitive operation. When the attributes of data structures are 
expressed either as procedutes or data to the structure selector, it is a very simple matter to change 
the structure selector to select structures for a different implementation of the primitive operations 
(such as when we move the program from one computer to another) by merely changing the cost 
functions. 

PRELIMINARY PROCESSING 

The first thing the selection process must do is partition the set and sequence variables 
and expressions into equivalence classes, members of which have a common representation. The 
selector then computes which primitive operations are performed on the classes. 

The selection process next does some preliminary filtering to weed out obviously 
undesirable representations. Some representations are incomplete. They may be used only when 
specific primitive operations are not performed on the class of information structures. If we find 
that the user has performed such primitive operations we can immediately eliminate those data 
representations. Another reison for discarding certain representations is that their implementation 
may depend on knowing certain information at compile time, such as the maximum size of the 
information structure. In cases where this information is not computable at compile time, but is a 
function of data at runtime, we must discard these potential representations. 

Next, the selector predicts, using time and space prediction functions for each remaining 
representation, how much time and space would be needed to. each information structure 
equivalence class using each of the remaining representations. If the system notices that with two 
representations for the s; ^e class, one requires both more time and space, the system removes that 
representation from further consideration. The preliminary selection phase uses this hfiiristic to 
filter out representations unlikely to be chosen by the final selector. It also ranks [according to 
some cost dependent criteria), the representations which have not been discarded as to their 
likelihood of being the be$t. In our system the possible representations are ranked in Increasing 
order of the products of their expected sp'.  and execution time requirements. 
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SELECTION 

After the preliminary selection we should have only a small numbei of representations 
which are still candidates for any given class of information structures from tl^e user's program. 
The Selection phase must worry about the second order effects which arise from having more 
than one information structure. For example, assume the user's program creates two sets and that 
our measure of cost is simply the space time product. Also assume that the two sets quickly achieve 
their maximum size and thereafter remain constant in size throughout the remainder of the 
program. 

let Sjj - the space occupied by set / using representation J 

let Tyy • the time used by the primitive operations on set / 

using representation J 
let Si^ - the space occupied by set 2 using representation K 

let T2K - the time used on set 2 using representation K 

let SQ   = the space used by the non-set operations of the program 

let TQ •= the time used by the non-set portion of the program 

The cost of the program is thus approximately 

{SQ* SJJ* Si^) * {TQ * Tjj ♦ Ti^) 

The preliminary selector has ranked representations to minimize the expected space time product 
(such as SJJ * TJJ) for a single abstract data structure, but because of the cross terms (such as 

S;y * T2K) above, this may not be the best choice for minimizing the total cost function. These 

cross terms indicate that the Selection Phase must consider the representations for all the 
structures together, and cannot simply approach the individual structures independently. Our 
final selection phase uses, as an initial approximation, those representations which provide the 
minimum space time product for the individual structures. It then proceeds to attempt to change 
individual representations to minimize the predicted TOTAL cost. When it can not improve the 
TOTAL cost by changing the representation of a single structure It returns the best set of 
representations It has found. 

MMi ■     -     - li i 11 mm «—mfm _u.- i ; .   i , ^_ -'.. 



*m~^i^vw^nimam*^**—*^***mw*r,>   >    iimm^*Bmmvmmm*^**'m^m*nMmmmnm^^*m'i. "in   '    >••    <«^ 

23 COMPILATION AND EXECUTION 21 

2.3 COMPILATION AND EXECUTION 

REPRESENTATION DEPENDENT OPTIMIZATIONS 

The final stage of the system prepares the user's program for final compilation. In a 
production system, representation dependent optimizations may be performed during this stage. 

For example, consider a program which has statements of the form; 

if length (SETI)- 0 then 

It might be more efficient for certain representations to check the expression; 

if SETI - phi then 

and vice-versa. Another example is expressions of the form: 

SETI -SETI u { a. b, c} 

With some representations this might be .nore efficiently implemented as: 

put a in SETI; 
put b in SETI; 
put c in SETI; 

In our implementation no such representation dependent optimizations are performed. 

POST-SELFCTION MONITORING 

Once the system has compiled the user's program it should run it with a special runtime 
package which gathers statistics to see if there are biases in the way the data structures are used 
which were not apparent originally. For example, assume the system represents a set as a binary 
tree (not balanced). It is possible that, because of biases, the tree always degenerates, resembling a 
linked list. We should be able to go back to the structure selection phase with this adc'd 
information and see if the system might better select some other data structure to represent the set. 
We did not have the time to include post-selection monitoring in our demonstration system, so its 

benefits have not been fully determined. 
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SECTION 3 

ABSTRACT DATA STRUCTURES AND THEIR REPRESENTATIONS 

In Section I, we mentioned many abstract data structures which we fee! should be 
available in high level programming languages, including various kinds of queues, stacks, and 
napping functions. This list is far from complete. We would imagine other programmers to have 

their own lists. The ones we those hopefully form a basis for others. We hope that future systems 
will not only include the information structures mentioned, but will provide extension mechanisms 
to allow the user to define new information structures. These extension mechanisms should allow 
representations for user defined structures to be chosen much the same way as for built-in 
information structures. In our demonstration system, we have limited ourselves to those abstract 
data types already available in LEAP: sets, sequences and a single ternary relation. Let us now 
consider these information structures. 

In the following, the reader should remember that a LEAP item is essentially the name 
of a variable (arithmetic, set or sequence) allocated from a heap. Its internal representation will 
normally be a contiguous block of storage in the computer's memory (in our implementation this 
means each reference to an item is an IS-bit pointer) Thus, an item in our implementation is a 
tuple (PL/I type structure) with a type field, possibly a datum field, and perhaps various other 
fields which are used for representing certain information structures Figure 2 shows the layout of 
our items in storage. These other fields are used in the attribute bit representation of sets and the 
offset representation of triples mentioned below. In certain representations of sets it is beneficial 
to have an alternate representation of an item such as a small integer index. Translation functions 
are required for these set representations to take the full i1 bit representation of an item to the 
small integer index representation and vice-versa. Often we will refer to the item as if it were a 
value (as in a sorted list of items). Here we are really referring to the integer value of the pointer 
to the item. 

The representations we use do not pack more than one piece of information per 
computer word, except as explicitly noted below. Thus, even though our representations of items 
take no more than 18 bits and a PDP-IO computer word consists of 36 bits, we make no attempt 
to pack two items per word in any representation. In our storage requirements below we will 
count the number of computer words actually used. Storing a single item with nothing else in the 
same word will cost one word in storage, not one half a word. 

3.1 SETS AND THEIR REPRESENTATIONS 

Sets in LEAP are conceptually unordered collections of items. There is no restriction 
that these items be of the same datum type. We have created a collection of seventeen primitive 
operations, which are sufficient to perform any of the high level LEAP constructs involving sets, 
such as assignment, set insertion, removal of items from sets, set union, set difference, set 
intersection, and FOR EACH iteration through a set. (See appendix A for descriptions of each of 
the primitive operations.) 
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3.1 SET REPRESENTATIONS 24 

REPRESENTATIONS OF SETS 

In each of the representations we have implemented, a null descriptor (0) is always a 
valid representation of the empty set. For certain representations, as noted below, there may also 
be additional valid representations of the empty set. in the following, the storage requirements are 
those for our implementation on the PDP-10 computer. Other implementations are likely to have 

similar storage requirements. 

a Sorted one-way linked list (See Figure 3). The descriptor contains the length of the set and a 
pointer to the first of a chain of one-word nodes. The first node contains pointers to the last 
node in the chain, and the next node in the chain. The remaining nodes in the chain each 
contain the 18-bit internal representation of an item and a pointer to the next element in the 
chain. The pointer field of the last element of the chain contains a null pointer (0). An empty 
set is uniquely represented by a null (0) descriptor. 

The additional storage (in words) occupied by a set is one more than the number of elements in 
the set unless the set is empty, in which case no additional storage is required. 

b  Height Balanced Binary Tree (See figure 4) - The descriptor contains the leng:h of the set and 
' a pointer to the root node of an AVL (for Adel'son-Vel'skn, and Landis) tree, a binary tree 
with the property that at any node, the height of the left subtree differs from the height of the 
right subtree by at most I ([Fostei65, Ciane72. Knuth73]). 

Each (two-word) node contains the reference to an item, the balance factor (Left Heavy. 
Balanced. Right Heavy), and the pointers to the left and right subtrees (perhaps null). An 
empty set is uniquely represented by a null (0) descriptor. 

The storage required is twice the number of elements in the set. 

c Fixed Length Bitstnng (also known as boolean array, bit array, bit vector). The descriptor 
contains the number of words making up the bit string and a pointer to a contiguous block of 
storage of that size. We pack 32 bits per word, rather than the available 36 so that indexing 
operations may be performed using shifts rather than divisions. The empty set is represented 
by a null descriptor or by a bitstnng of all O's. 

The storage required is rMAXSIZE(SET)/32l. 

d Ha;.h Table (See figure b). The descriptor contains the length of the set and a pointer to a 
block of 33 words. In our implementation, we restricted ourselves to a single sized bucket hash 
table ([MorrisSS]). In a more advanced system we would expect a number of different sized 
tables to be available. In this implementation a hash function maps each item into a number 
between 0 and 31 corresponding to a word within the the block of 33 words. This word is a list 
head containing pointers to the first and last nodes of the chain of items (conflict list) that 
hashed to the same bucket. The other word of the 33 word block contains a mask (signature) 
([Harrison72]) with a I bit on corresponding to every bucket with a non-empty conflict list. 

The storage required is zero for an empty set; otherwise. 33 plus the number of elements in the 

set. 
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e Fixed Length Sorted Array The descriptor contains a pointer to a block of words (multiple of 8 
' in length) and the length of thai clock. The first word of the block contains the current length 

of the set. The next n words (where n is the length of the set) contain the items of the set in 
ascending order according to their 18-bit representation. 

The storage required is zero for an empty set; otherwise, five plus the number of elements in 
the set This is not always accurate since our implementation will never decrease the size of an 
array. Thus, if the set becomes very large and then decreases in size it will continue to take up 

the larger amount of space. 

f Attribute Bit of item. The descriptor contains a number between I and IS. This corresponds to 
' a bit position in the left half of the word pointed to by the internal representation of an item. 

This is an incomplete representation and can not be used if operations other than inserting an 
element into a set removing an element from a set, or testing an element for set membership are 
required Since our implementation uses a single haifword to contain attribute bits (see figure 
2) a maximum of 18 sets per program may use this representation. There is no explicit 
representation for a null set. A null set is indicated by every item having a zero in the bit 

position corresponding to the set. 

As the storage occupied by this representation would go to waste (in our implementation this 
half word in each item is normally unused) if it were not used, we have associated a zero 
storage cost to this representation. 

g Combination of Fixed Length Bitstnng and Unsorted Linked List (see figure 6). The descriptor 
contains a pointer to a two word block. This blork contains descriptors of the form for 
representations (c) and (a) above, with the exception that the linked list is not necessarily in 
descending order of internal representations of items. A null set is uniquely represented by a 

null descriptor. 

The storage required is zero for an empty set; otherwise, rhree plus rMAXSIZE(set)/32l plus 

the number of elements in the set 

In all of the representations above, except the boolean array, and the combination of 
boolean array and linked list, we use the full 18-bit pointer to reference items. With the boolean 
array representations we use small integer indices to reference items. Two translation functions are 
necessary to translate from the full I8 bit reference of items to the bitstnng index (between one 
and the maximum size of the set) and vice-versa. 

OTHER SET REPRESENTATIONS 

There are many other representations for sets which we have not implemented. Any 
sequence representation may be used, since we may represent a set as an ordered or unordered 
sequence of items Other possible representations include 3-2 trees (B Trees) ([Knuth73]) and 
linked items The last is similar to our standard linked list representation, but the list actually runs 
through the items rather than through nodes pointing at them. With our standard representation 
we have a linked list of nodes, each of which points to ai item. With the linked items 
representation, each item (represented much like a PL/1 based stiucture) contains a field which is 
a pointer to the next element of the set. Thus, each item tuple would have to have a field (see 
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figure 2) for each set of which it might potentially be a member Other forms of hash coding 
([Morris68, Maurer68, Brent73, Feldman73, Knuth73]), such as linear probing or quadratic 
hashing may also prove beneficial for set representations. 

3.2 LIST REPRESENTATIONS 

LEAP lists are sequences of items. The same item may appear an arbitrary number of 
times in the list. The order of items is that imposed by the user's program. As with sets, we have 
chosen a set of primitive operations which are sufficient to do all the list manipulations available 
in our subset of SAIL, eg., assignment, FOR EACH iteration, concatenation, selection and removal 
based on index position. There are twenty primitive list operations (See appendix B for their 
description). 

REPRESENTATIONS FOR LISTS 

1. One-Way Linked List (see Figure 3).Thi$ is the same data structure as the one-way linked list 
used for set representation, except of course the order of items is not necessarily in descending 
internal representation, but is that imposed by the user's program. 

The storage (in words) required is lew for the empty list; otherwise, one plus the length of the 
list. 

2. Two-way linked list (see figure 7). The descriptor contains a pointer to a two-word header node. 
The header node contains the length of the list and pointers to the first and last nodes of the 
list. Each two-word node contains an item, a forward pointer to the next node in the list, and a 
back pointer to the previous node in the list. The forward pointer of the last node and back 
pointer of the first node both point to the heauer node. 

The storage required is zero for an empty list; otherwise, two plus twice the length of the list. 

3. Variable Length Array. This is the same as the data structure used for sets except again the 
order of items is that prescribed by the user's program and is not dependent on the Internal 
representation of items. 

The storage required is zero for the empty list; otherwise (on the average) five plus the length 
of the list. 

OTHER LIST REPRESENTATIONS 

In addition to the representations mentioned above, we may use most of the 
representations used for character strings since our lists are really strings of items ([Madnick67]). 
Thus, we might also use fixed length arrays. A circular buffer is another representation which 
may be useful. In a circular buffer, we have a block of storage and two pointers to the beginning 
and end of the list. The block of storage is thought of as circular. That is. conceptually, the next 
element after the last element of the block is the first. Another interesting list representation is that 
of a height balanced binary tree ([Crane72]). 
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3.3 TERNARY RELATION 

TERNARY RELATION 30 

LEAP contains a sirrgle ternary relation. Relation instances are written A*0 = V. A 
ternary relation can be represented by eight mapping functions. 

1. Given A , O, V ->-* true, false (does relation instance exist) 
2. Given A.O ■*•* {V} such that A «-O = V 
3. Given A , V -~ {O} such that A * O s V 
4. Given O . V —► {A} such that A » O s V 
5. Given A -♦-• {<0,V>} such that A * O s V 
6. Given O --• {<A,V>} such that A ® O s V 
7. Given V -»-♦ {<A,0>} such that A «• O H V 
8 -,-. (<A,0,V>} such that A «  O s V 

"o.b:." is a meta notation the ordered tuple (a.b). The eighth function which produces the 
universe of ordered triples has not been implemented. 

It is not common for the ternary relation to be used in the most general sense (I. e. 
needing all of the mapping functions). For most programs, any given triple (relation instance) 
may be referred to by only a small subset of the mapping functions. This is even more likely when 
we partition the single ternary relation into several disjoint ternary relations (See description of 
partitions of the ternary relation in Section 4) 

To simplify the selection process by eliminating some redundancy, we wish to implement 
only the most specific mapping functions which can not be easily derived from other mapping 
functions which will be present. Let MF be the subset of the mapping functions which are needed 
for the user's program (this can be determined by a static analysis of the source program). Now 
remove from MF those functions which can easily be derived from others in MF. (I) can be 
derived from any of the others. (2) can be derived from (5) or (6). (3) can be derived from (5) or 
(7) and so forth. We now have MF containing three, two or one mapping functions. We will have 
a representation for each of these mapping functions. These mapping functions may be classified 
by the number of bound arguments they have (5). (6). and (7) each have only a single bound 
argument. (2), (3), and (4) have two bound arguments, and (1) has all three arguments bound. 

IWe immediately notice that by considering permutations of the components of the 
ordered triple representing the relation instances, we can always act as if the first; first and second; 
or all three positions within the triple were bound. This may mean we are actually keeping track 
of up to three different permutations, one associated with each mapping function within MF. 

' Before we actually list those data structures which we will use to implement these 
mapping functions, let us note that there are other ways of implementing relations which involve 
a single data structure which is good for several mapping functions. ([Rivest74. Delobel73]). 
Some hardware associative processors ([Minter72. Minsky72. Paihami72]) have even designed to 
directly implement associative retrieval. 
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3.3 

PRIMITIVE OPERATIONS ON THE RELATION 

The primitive operations necessary for the assoc.at.ve store are: 

ncr^nrp thp ternaiv relation. If more than one mapping function may 

data structures corresponding to each mapping function. 

f „™ ,hB tpmsrv relation   If more than one mapping function may 

a single data structure as with MAKE. 

...ur.nn instance exist   We will use the most specific mapping 
3. ^^\-^;j::ZtZ>^'^ "-a. we have maPp,ng funcons C) and functwn which can answer the quesnon 8 clflc mapp,ng 

,„ „„.able. To e.aua,e  he hoc a         0    K .                      ^ |f ^^ ^ on,y one 

^^rp.lJÄr^bm'ly r-t each <A0> we wouW he hene, off us.ng mapp.ng 
function (7). 

4. FOREACH uerahon ■ as w„h essence .esnng, w. use the mos. specf.c apphcabie mapping 

function. 

REPRESENTATIONS FOR THE MAPPING FUNCTIONS 

system. 

ALL THREE ITEMS BOUND 

We have a block o, smrage ,28 words long »" we u» as hu ke,s for a hash rabl. 

We ra.. all ^«X^eTa »S ^E r^^nT:!'!« Us. chains .he 
Kt:" If ^ ret,,r msra'n^d'L pointer .0 ,he n„. nod. m ,he confhcr Us,. 

The srorag. (in words) quired for .U.s represemauon Is ■Uus 128 words plus mice the 

number of relation instances. 
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TWO-THINGS BOUND 

Hashing 

We hash the two 6oum/ items together to get an index into a 64 word bucket hash table. 
This e.ves us a linked list of three word nodes, contammg the two bound .terns thepomter to the 
next node in the conflict list, and a set descnptor for the set of .terns wh.ch are the th.rd 
component of relat.on instances with the two bound items. 

In our design there ate three variants of this which differ in the representation used 
for the set of third components. Apart from the storage used for the set. the storage requirement is 
64 Is three times the number of different pairs <first component, second component in the 
data st ucture. Us.ng a sorted linked list as the set representat.on, we need an addiUonal word pe 
<fist component, second component pair and one word per relat.on instance. Using an he.gh 
balanced blnaiy ree, we additionally need two times the number of relat.on instances. Us.ng a 
nxed length bitstnng. we need an additional n words, where n is [number of possible th.rd 
components/321 per distinct «first component, second component* pa.r. 

F.eld Select.on 

We use the second item to select a field (offset) to the st -.ture of the first item (See 
fieure 2) The field contains a descnptor of standard set representat.on. We need a translation 
function wh.ch translates the 18 ■ bit representat.on of the second .tern into a field index. (In our 

design this funct.on must be executable at compile time). 

The base storage requirements are the number ot possible first components times the 
number of possible second components. The additional storage needed for the set of third 
components for each active <A.O> pa.r may be calculated the same way as was done w.th the 

hashing representation above. 

ONE-THING BOUND 

Th.s mapping funct.on has an ordenng to the components of the triple. The first item 
is the one wh.ch is always specified, the second item will be the one next most often specified, and 

the third will be the least often specified. 

We use the first item to find (via hashing, or sorted linked list) the head of a sorted 
linked list of ordered pairs cons.st.ng of the second item and a set of the th.rd items. 

The storage required is the number of distinct/inf items plus initial hash table (if any) 
plus tw.cc the number of second items per first item, pius the storage necessary for the set of third 

items. 
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3.4 ESTIMATING EXECUTION TIME 33 

3.4 ESTIMATING THE EXECUTION TIME OF PRIMITIVE OPERATIONS 

We have previously stated that there are three classes of information that our selection 
phase needs to know about the representations available. The first, applicability, is found by 
looking at which primitive operations have actually been implemented using this representation. If 
any primitive operation is used by the user's program which has not been implemented, then this 
representation is not applicable. The second piece of information, the storage cost function, has 
been treated in the previous sections. Here we will discuss the third class of information, 
prediction of the execution time which would be used by the routines implementing the primitive 

operations 

We believe in precise analysis of program segments. It is not enough to know that one 
routine takes time proportional to the sue of a data structure and another takes time proportional 
to the log of the size of the data structure. The proportionality constants and any other constant 
overheads are important in making a wise choice between the two routines. 

To demonstrate the importance of knowing the precise proportionality constants let us 
consider two subprograms which are logically equivalent. The expected execution time of the first, 

is 

19 * 12 * \o%2M 

time units, where X is the number of data objects, and the expected execution time of the other is 

40 ♦ 5 * X/32 

time units Which should we choose? The answer clearly depends on X, the number of data 
objects. If X were only 2, the first program would be expected to take 31 time units and the second 
slightly over 40 time units, so we would choose the first. If X were 32 the first program would be 
expected to take 79 time units and the second would take only 45, so here the second is superior. 
If X were 1024 the first program would be expected to take 139 units, and the second , 200 io the 
first program would again be superior. The only way we can determine this analytically, is to have 
precise knowledge of the constants 19 and 12 for the first algorithm and 40 and 5/32 for the 
second. The problem to be solved now is, how do we determine the constants, and the very 
dependencies on log2(X) or X? 

Two methods are apparent. One is to simulate the routines on a large number of 
collections of random data of different sizes then use statistical techniques to derive the 
dependencies on functions of size and the corresponding constants. This technique is valid only 
for a large enough sample, and we would not expect to be able to simulate in a large range. The 
results would thus be valid only in a small range. 

The other method, which we have chosen, is to analyze mathematically the various 
subprograms which are used to implement the primitive operations using the techniques of Knuth 

(vol Mil). 

We are interested in the application of the analysis of algorithms techniques to the 

concrete subprograms to determine both the order dependence (an order n2 or order log n 
algorithm) anc! :he proportionality constants of all terms in the execution time cost function. 

 "  -         
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Clearly any results we obtain are not of theoretical importance (i.e. no claim is made that they 
reflect the minimum amount of time necessary to accomplish the primitive operation on the given 
data structure) but reflect only the expected time using our particular enconings of the primitive 
operation. A better encoding of a given routine that may reduce the proportionality constants, or 
even order dependency may be found in the future. 

We wish to stress again the Importance of precisely determining the proportionality 
constants as well as the order dependency When the size of the data structures is small a 1000 n 

encoding will be worse than a 10 rr encoding. The running time of a program which uses these 
subprograms depends on  the actual number of machine instructions executed   within  these 

subprograms not on some order dependency such as rr. 

Our basic method is to weight each subprogram statement with its expected execution 
time, multiply that by the number of times it is expected to be executed (normally a function of 
size of data structures etc), and then sum these numbers over all the statements of the subprogram. 

We have chosen to use assembly language to implement all the primitive operations on 
our representations. We have a much better idea as to how much time a machine instruction is 
expected to consume than how much time a statement in a higher level language will take (See 
appendix H). There has been some work on predicting execution time of ALGOL, FORTRAN 
and LISP programs (tWichman72, Ingalls?!, Knuth71, Wegbieit74]) but current methods are still 
very crude. As demonstrated above we must know precisely the r» levant proportionality constants 
in order to determine whether given representations are better or inferior to others. 

Our method of calculating execution time cost functions Is thus to associate with each 
instruction a weigh' proportional to its average execution time. We also associate with each 
instruction the number of times the mstrurtion is expected to be executed as a function of the size 
of data structure and perhaps other parameters. Finally we take the sum of the products of 
instruction weight and number of times the instruction is executed, to construct the time function. 

For example, consider the loutine for fetching the Nth item in a sequence using the one- 
way linked list representation (My apologies to those who are not familiar with PDP-10 assembly 
language. Hopefully, the comments will help). Let INDX, LPTR, and RESULT be symbolic 
names for accumulators. Also, assume that the list index is in the variable named N, and the list 
descriptor is in the cell named THELIST. The numbers to the right are the weights we have 
assigned to the individual instructions. 

move indx.n 
move Iptr.thelist 

lp:      hrrz lptr,(lptr) 
sojg mdx.lp 

hlrz result.d^tr) 

;LOAD N INTO ACCUMULATOR INDX ; 3 
;LOAD THE DESCRIPTOR INTO ;3 
;     REGISTER LPTR 
;GET POINTER TO NEXT NODE IN LIST ; 3 
DECREMENT INDEX, IF GREATER THAN ;2 
;    ZERO GO TO LP. 
;FETCH THE DESIRED ITEM ; 3 

1 

We immediately see that the two MOVE instructions and the HLRZ instruction are each executed 
only once. The two instruction loop will be executed N times, where N is the list index. As it is 
not clear here what N is, we will assume that it is equally likely to be /, 2,. . . x, the length of the 
list. The average value of N is thus easily determined as (/ •> 2 ♦ ... \)l\ - (\*1)I2. Therefore, 
the average number of executions of the HRRZ, SOJG loop is also (\ * 1)12. 

■tM^MMMBMBIH ,    __  ■  kjk 



3.4 ESTIMATING EXECUTION TIME 35 

Our predicted time for this routine is thus: 

3 ♦ 3 ♦ 3 * (X ♦ l)/2 * 2 * (X ♦ l)/2 ♦ 3 - 11.5 ♦ 2.5 * X 

Our analysis was dependent on the assumption that the indices were randomly distributed over all 
possibilities. However, if the user were actually using the sequence as a model for a stack, he 
might be biased toward the lower or higher indices only, thereby invalidating our assumption. 
Other forms of analysis of programs can give us worst case estimates if need to worry about the 
maximum program execution time. , perhaps because of real time constraints. Our analyses give 
us average estimates which we feel are the most generally useful, We feel that the real answer to 
problems involving biases in the use of data structures, either explicit semantic level ones as 
above, or hidden ones that result from interactions involving internal representations, is careful 
monitoring. Both pre-selection monitoring (using default representations) and post-selection 
monitoring should help us alleviate problems involving such gross biases. We would expect future 
execution time estimators to have more parameters. In the above case we would want the estimator 
to depend at least on the average index value, if not the distribution of index values. 

We have performed analyses (average case) like the one above on all the routines 
implementing the primitive operations on our representations. (See APPENDIX I for our 
execution time cost functions.) 
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SECTION 4 

INFORMATION GATHERING 

A system for selecting data representations mu:t have information about representations 
and about the use of the abstract data structures for which it is going to choose representations. In 
the previous chapter we discussed two techniques for obtaining information about the time 
functions of the primitive operations as implemented for given representations: simulation and 
mathematical analysis. We will now discuss techniques for obtaining information about the use of 
the abstract structures of the user's program. 

The information we wish to obtain includes which primitive operations are performed, 
the expected sizes of the abstract structures when the various primitive operations are performed, 
the values of the other parameters of the time functions of the primitive operations, and partitions 
of the information structures into classes. 

It is common within a program to have many different abstract data structures of the 
same type. Often, it is not necessary or desirable to represent all these structures the same way. We 
may find that a program uses two structures of the same abstract type quite differently, even 
emijloying different sets of primitive operations on them. If we are forced to represent both 
structures the same way, we end up with a compromise representation that is probably inferior to 
ones we would have chosen if we had approached each structure independently. However, there 
are also gooc reasons for representing some groups of data structures the same way. We find that 
with many operators we can take advantage of the internal structure to obtain more efficient 
implementations. For example, assume we wished to add the elements of one set to another, c. g., 

SETI -SETI uSET2; 

An obvious way of implementing this would be to iterate though SET2 and insert those elements 
into 5£T/. If we were representing SETI by a sorted (on the internal representation of data 
objects) linked list, this implementation would take a time proportional to the product of the 
number of elements in SETI and the number of elements in SET2. If, on the other hand, both 
sets were represented the same way, as sorted linked lists, we could traverse both lists in parallel 
and accomplish the union in time proportional to the sum of the lengths of the two sets. In theory 
we could have a different union implementation for every pa.r of possible input representations, 
and every output representation but the cost of this is very large in terms of the size of the library 
of implementations of the primitive operations. If we had ten set representations we might need 
five hundred (ten cubed divided by two since union is commutative) union routines. The other 
alternative is to have only one union routine per representation, and translation functions which 
change the representation of a set from one representation to another. To perform the union, we 
would make sure both arguments were in the same representation and then use the representation 
dependent union routine. These translations are usuallly expensive operations to perform, yet we 
wish to use the highly efficient representation-dependent routines. Our solution, though 
admittedly suboptimal, is to avoid the expensive translation operations by insisting that both 
operands to an operator be kept in the same representation. Note that even if we were willing to 
have such large libraries or translations of representations we might still wish to insist that certain 
information structures be represented the same way. One reason might be to avoid runtime 
representation checking of procedure parameters when they appear as operands to primitive 
operations. 
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We have chosen to require that all information structures which are operands to an 
instance of an operator, or structures acting as the same positional parameters to a procedure, be 
in the same equivalence class. This gives us the smallest classes possible that retain the property 
that there is no conversion necessary from one representation to another. This also gives us the 
property that no dynamic determination of representation is necessary and the proper routine for 
a primitive operation can be totally specified at compile time Determinations of the tradeoffs 
involved in having translations of data structures from one representation to another, as well as 
benefits versus costs of dynamic representation checking are left to future research 

One of the goals of the information gathering phase is thus to find the information 
necessary to partition the set and sequence variables into equivalence classes. 

There is another important use of partitioning. This occurs when we wish to split a 
single information structure into several. Let us consider the ternary relation as simply a set of 
triples It is often possible to view this set as the union of several disjoint sets of triples. This 
separanon is useful if each update or access of the associative store in the user's program refers 
only to one cf the disjoint subsets Now, instead of having one large data structure we have 
logically several disjoint data structures which are independent of one another It is quite likely 
that each of these is less general in terms of the primitive operations performed on it than the 
original data structure. We will thus be able to tailor a representation for each of the smaller 
structures that is likely to be more efficient than the compromise representation we would have 
had to choose for the original structure. Note that splitting in general may be a useful concept in 
the representation of high level data, and often it may not even be necessary that the results of 
splitting be disjoint (No^attempt is made in this system to split sets or sequences). One of the goals 
of our information gathering phase will be to find information which will let us later compute a 
natural disjoint split of the ternary relation 

In general, several techniques are applicable to the problem of information gathering. 
First we may let the user give us the required information. This may be done by requiring the 
user to make declarations or assertions about his program (this is not d'.ne in our demonstration 
system) This information can be augmented by an interactive session in which the system asks the 
values of additional parameter which had not been declaied This method has the obvious 
drawback that the user often does not have such information. With the current state of the art 
there are many programs which can not be analyzed mathematically to the detail we require. Our 
choice of data representation will be determined by this information. If dependent only on crude 
guesstimates our choice will be just as crude. Another reason for not depending on the user is that 
a voluminous amount of information is required. An enormous amount of patience is required to 
sit at a terminal for many minutes (hours') to answer detailed questions. A good strategy is to ask 
the user only when the system is not able to determine a piece of information in any other way. 
During the evolution of a system like ours, this should require the user to provide less and less 
information directly. 

A prime means of obtaining information is the use of monitoring The user runs his 
program with his own sample input data with the system providing default representations for the 
abstract information structures. A special compiler and runtime environment is used which is 
geared to collecting statistics about the use of the information structures The only statistics we 
gather in our system concern the number of times each construct of the user's program is executed. 
Other information which we could easily obtain in a production system would be the distribution 
of sizes of the information structures at particular places in the user's program (e.g every time a 
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I 4.0 INFORMATION GATHERING 38 

primitive operation is performed), and the parameters of our time functions for the primitive 
operations. In our current system we ask the user to provide this information during a question- 

answer session. 

The other technique which we depend on is a static analysis of the program. In our 
system this takes the form of a meta-evaluatwn of the program by actually following all possible 
paths of control and computing the possible contents of variables and the associative store. 

4.1 EXAMPLE OF INFORMATION GATHERING 

Before we describe the last technique of information gathering, static analysis, let us see 
how the information gathering portions already described would process our transitive closure 

procedure. 

set procedure TRANSCLO (itemvar REL; set BASE); 
begin "TRANSCLO" 

set RELATED, NEWLY RELATED, FOUND; itemvar X.K; 
RELATED - phi; NEWLY RELATED - BASE; 
while {NEWLYRELATED * phi) do 

begin 
FOUND - pin; 
foreach AT 1 X * NEWLYRELATED A REL » X B Y 6o 

put Y in FOUND; 
RELATED - RELATED u NEWLYRELATED; 
NEWLYRELATED - FOUND ■ RELATED; 

end, 
return (RELATED); 

end "TRANSCLO", 

We first have a monitoring phase. The above procedure is compiled with a special 
compiler which inserts counters before every statement and every FOREACH iterator. We obtain 
a count of how many times each construct was executed by monitoring a sample run of the 
program using the user's own input data with the system supplying default representations for all 
the LEAP data structures. 

The system then asks the user many questions concerning the average size of various 
data structures at particular program points. In the above example the system asks for the 
average size of BASE when used in the assignment statement, the average size of 
NEWLYRELATED in the equality test and the probability of it being empty, the average size of 
NEWLYRELATED in the foreach search and again the probability of it being empty, the size of 
FOUND at the PUT statement, 'he size and probable overlap of RELATED and 
NEWLYRELATED at the union statement, and so forth Most of these statistics could be more 
easily obtained if there existed special versions of the data structure manipulation routines used 
during the monitoring phase which actually recorded the information necessary to compute these 
statistics. Even in the absence of such mechanisms we could possibly decrease the number of 
questions the user is asked by doing some inference on the program, For example, above we 
mentioned that the system asks the user the probability of NEWLYRELATED being empty at the 
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FOR EACH search This question is clearly superfluous because the probability can be inferred to 
be zero from the conditional at the top of the while loop. Other inferences could be made on the 
basis of certain operations not changing the sue of their operands All these inference techniques 
are left to future research. 

4.2 STATIC ANALYSIS OF LEAP PROGRAMS 

PRIMITIVE CLASSES OF ITEMS 

A primitive item class consists of either * single declared item or all the items potentially 
allocated from a single source language call to the heap allocator (NEW). This is the finest gram 
to which we can partition all the items in the user's program There is essentially no way, at 
present, to distinguish between different items produced by the same source language call to 
NEW. We will use these primitive classes to model the contents of variables and the associative 
store. A relatively small number of primitive classes, can be used to take the place of the usually 
much larger (and sometimes indeterminate at compile time) number of items actually present 
during the execution of the user's program. 

Meta-evaluation 

Meta-evaluation, as we use the term, means a simulation of the user's program 
symbolically rather than with real data. In our system we express the values of LEAP variables as 
sets of primitive item classes. 

Let us consider the transitive closure procedure we looked at earlier and note how we 
would process it, before we give the actual static analysis algorithm in detail. 

set procedure TRAN5CLO (itemvar REL; set BASE); 
begin "TRANSCLO" 

set RELATED. NEWLY RELATED. FOUND, itemvar X.Y; 
RELATED - phi; NEWLYRELATED - BASE: 
while {NEWLYRELATED * phi) do 

begin 
FOUND *- phi; 
foreach X.Y \ Xi NEWLYRELATED /\ REL s> X s Y do 

put Y in FOUND; 
RELATED - RELATED u NEWLYRELATED: 
NEWLYRELATED - FOUND ■ RELATED, 

end; 
return (RELATED), 

end "TRANSCLO", 

To begin processing we form a flow graph of the program which we will then analyze. 
(See figure 8 for the flow graph corresponding to this procedure) 
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; 

Figure   8 
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We only arrive at the proceduie entry point via having encountered a call to this 
procedure in the flow graph of the program in which this procedure is found. We will therefore 
know what the possible values of REL are in terms of the primitive item classes. Similarly we 
will know the possible elements of the set BASE, as well as having a model about what 
associations can possibly exist, all in terms of the primitive item classes. 

When we encounter the first two assignment statements, we attach to the corresponding 
flow graph nodes, the appropriate information. In this case, at the first assignment we know that 
the set RELATED will be given the value PHI, i, e. that its set of possible values in terms of the 
primitive item classes is empty. Similarly, at the second assignment node we can determine the 
possible set of values for BASE, and we will attach that same set as the potential set of values for 
NEWLY RELATED at this node. In general we keep track of the nodes at which either changes 
to the value sets of some variable occur, or where the value sets of all variables are known. We 
will explicitly compute all the value sets at control points. This will allow us to determine the 
possible set of values for any variable we encounter in the program. 

We next encounter the while loop node. This is a control point so we will attach to this 
node our knowledge as to the possible contents of all the variables. In this case it means merely 
attaching the value set of the variable REL, as copied from the entry node; the value set of 
BASE, as copied from the entry node, RELATED, as copied from the first assignment node; and 
the value set of NEWLY RELATED as copied from the second assignment node. 

We now encounter the equality test, NEWLY RELATED * Pril. This statement has no 
effect on the value sets of any variables so it is essentially treated as a null statement. In a more 
advanced system, other booleans could possibly alter our views as to the value sets of certain 
variables, For example, if we had the expression X i SETI'AR then on the true path (if this were 
an if statement conditional), we would know that the possible value set for X could only be our 
previous value set for X intersected with the value set of SETVAR. Our system as currently 
implemented, makes no such use of boolean expressions. 

The next node encountered is the assignment FOUND «- PHI, We treat this the same 
way we did the first assignment node 

Now we come across the FOR EACH loop. We treat the search X « NEWLY RELATED, 
much like an assignment. The value set for X at the foreach node is thus the same as the current 
value set of NEWLYRELATED. The search REL *X sY is slightly more complicated. We 
know the value sets of REL, and X. We then use our model of what possible associations exist, to 
compute the possible value set of primitive items which could be assigned to >' by this pattern 
match. 

The put node will take the union of the value set of Y and the value set of FOUND 
and make that the new value set of FOUND at this node 

We now encounter the continue node for the foreach. We notice that during the 
execution of the foreach node, value sets for certain variables were changed. We must therefore 
simulate the loop again until a fixed point is reached; that is, until no new primitive items are 
added to any of the value sets of the variables at the various nodes within the loop (The reason 
why a fixed point is always --eached will be discussed with the description of the static analysis 
algorithm). This guarantees that we will correctly compute the possible sets of values for variables 
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after loop exhaustion. As an example of why simulating until reaching a fixed point is necessary 

consider: 

SETI ~ { a 1. 
COUNT - 1; 
SET2 - { b 1; 
while COUNT < N do 

begin 
COUNT - COUNT ♦ 1; 
SET2-SET2USET1; 
SETI He}; 

end, 

If we had merely simulated the while loop once, the possible set of values for 5£r21 when the 
loop is exhausted, would have been computed as { a , 6 } which of course Is incorrect. By Insisting 
that we have a fixed point we will simulate the loop three times and obtain the correct result 

{a.b.c}. 

The union node is easily handled. The new value set for RELATED is the union of the 
old value sets of RELATED and NEWLY RELATED. We cannot tell if the set difference will 
find any values In common, so we take the conservative approach and assign as the new value set 
of NEWLY RELATED the current value set of FOUND. In general if we err in a computation of 
a value set, we want it to be on the side of being larger than necessary. This may force the system 
to later choose a slightly less efficient representation, but it also restrains the system from choosing 
a representation which is not applicable (i. e. doesn't provide essential primitive operations). 

We now come across the continue node of the while loop. Just as in the case of the 
FOR EACH loop we must continue processing until we reach a fixed point. So we again return to 
the while node At this point we have to insert in the value sets of the variables FOUND, 
RELATED, and NEWLY RELATED all the elements of the corresponding value sets at the end 

of the while loop. 

Eventually we will obtain a fixed point and can then reach the return node. Here we 
will take the current value set of RELATED and make it the value set of the procedure. This Is 
the value set that the caller of the procedure will use in its meta-evaluatlon. 

4.3 STATIC ANALYSIS ALGORITHM 

The first step is to form a graph of the user's program As our system is only dealing 
with the choice of data structures, we do not include constructs fiom the user's program which are 
totally devoid of LEAP statements and expressions in this graph. For simplicity, we have also 
outlawed the ^o to in this system, thus giving our program graphs a nicely nested structure. 

We will implicitly associate with each node (expression, or statement) of the program 
graph, a set of primitive item classes (the value set) for each variable of the user's program which 
is accessible at that node. The value set for a given variable at a given node will eventually 
contain all the primitive items which that variable could possibly have at that point of the user's 
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piogram We also maintain a mocld of the associative store (ternary relation) in terms of what 
relation instances can exist between the primitive item classes This model contains all associations 
which could exist at any point in the program. We do not have separate models of the contents of 
the associative store at every node of the program. 

Before describing the details of the meta-evaluation piocess, let us define a some terms. 
A value changing node is a node where assignment is done to some LEAP vanablp itemvar, set or 
list This may either be an explicit assignment statement, ur some FOR EACH search A control 
node is a node representing a control point in the user's program This can be the beginning of a 
loop, exit of a loop, if-then-else node, case node, join node (node inmediately following case or if- 
ü en-else), procedure entry node, and so forth. We keep a list {NODELIST) consisting of the most 
recently encountered control node, preceded by all the value-changing nodes encountered since 
that control node. The value sets (as constructed so far) of every known LEAP variable are 
associated explicitly with each control node. With each value changing nodi we associate the 
value sets for all LEAP variables whose values were possibly changed by that nude Thus, as we 
encounter any node in the program, we can find the value-set associated with a given variable 
known at that point by chaining back the NODELIST until we find the first node which has a 
value set for that variable. If there are no nodes in the NODELIST which ha.e value sets for the 
variable, then we know that this is the first encounter with that variable so it has a null value set 
so far 

To begin the meta-evaluation. we initialize NODELIST to contain the program entry 
point. Now we traverse the progiam graph nodes in the natural uider. As we come IO any set, list 
or item expression we can compute the possible value set of that expression by substituting the 
value sets of the constituent components of the expression and using some special rules.(See 
META-EVALUATIONS appendix C) For example we might encounter the expression, 

SETI udatum(SETITMVR) 

We can directly compute the value set for the set variable SETI by the algorithm given above. To 
evaluate the value set for dnum(SETITMl/R) we must first compute the value-set for 
S ET IT MV R, and then form the union of all the value-sets of the datums of the primitive item 
classes in the value-set for SETITMVR. Now that we have the two value sets for SETI and 
datum(S£77r/Vf^/?) we simply take the union of them to get the value-set for the entire 
expression 

At any value changing node we will compute the new value set and either merge that 
with the existing value-set (from NODELIST) for this variable (s) or make it the value set for the 
variable at this node. We then add this node to the front of NODELIST. 

At a MAKE node we evaluate the three item-expressions and insert the appropriate 
ternary relation instances into our modrl ERASE nodes arc ignored during this phase. 

When we encounter any control node, we form explicit value-sets for each variable 
known at that point. We do this by stepping through the NODELIST and finding the value sets 
for each variable known. We then merge these value-sets with those already present (if any) for 
these vanab'es at the control node. After this is complete we throw away NODELIST and make a 
new one consisting only of this control node. 
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When we encounter a branching structure in the program (case, if-then-else) we stack 
the current status, follow one branch to its completion (the join node following the case or if). 
Then we pop the status (NODELIST etc) and traverse any remaining branches at this level. Join 
nodes are control nodes, therefore, our model of the contents of each variable contain the union of 
the models resulting from traversing each branch. 

Loops are handled in a similar way to branching structures with one exception. When 
we reach the end of a loop, we note whether any value sets have been changed during the 
simulation of this loop, or whether any associations have been added to our model of the 
associative store. If there have been any such changes then we simulate the loop again. Note that 
this process is guaranteed to terminate because: we never remove things from the^value-set of a 
variable at any node; we never remove associations from the associative store; there are only a 
finite number of variables (standard, datums of primitive item classes), there are only a finite 
number of primitive item classes These all combine to give us the knowledge that we can only 
add primitive item classes to the value-sets, a finite number of times. Thus the loop simulation 
always terminates Though this process is finite, and in most of the test cases we have processed 
the execution time is not more than we're willing to spend, static analysis of loops is potentially 
very costly. We continue to look for ways in which the cost of this analysis can be reduced. 

Procedure calls are handled in a straight-forward manner We treat value parameters as 
if they were variables which had been assigned as their initial values, the values of the actual 
parameters at the procedure entry point Reference parameters are slightly more complex. We 
must keep track of the set of variables which they could represent. Except for these minor 
distinctions and the fact that we have to remember where to continue simulation after procedure 
exit, we treat procedure calls just as if they were simple in-line blocks of code. This method does 
not allow recursive procedures. There is no condition implemented which would cause the meta- 
evaluation process to terminate for recursive procedures, as each time it encountered a self call to 
the procedure it would suspend its current evaluation and stau to evaluate the recursive call. This 
process would continue indefinitely. Thus our demonstration system outlaws recursion One 
condition which could cause termination in future systems is to require that we not simulate any 
procedure if there is a pending simulation of the same procedure with the same state (all 
parameters have the same value sets, and no associations have been added to our model of the 
associative store). 

We have now mentioned all the information gathering which is performed in the 
system, monitoring, user interrogation and static analysis. Each of these provides essential 
information which will be used in the next phase, selection of representation for the individual 
information structure classes 
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SECTION 5 

SELECTION OF DATA STRUCTURES 

5.1 CRITERIA 

Whenever we pick one representation of data over another, we need to have reasons 
why we consider that representation to be superior (or at least not inferior) to the other 
representation for the given purpose. The most common considerations used in such decisions 
involve the amount of storage space (working set size in a virtual memory) occupied by the data 
structures, and the execution time (cpu time) necessary for performing all the access and updates 
to the data structures. Also involved are the programming costs (original design and debugging) 
of implementing the representation. In this system we are totally ignoring these latter costs, 
because all the representations which are candidates for selection are fixed in advance, and we 
have already programmed and debugged the library of their implementation. 

We need some way of quantifying how good a given set of representations are in 
comparison with other sets of representations. If one takes both less space and less time it is 
clearly superior. However, what if no set of representations satisfies this? We must have some 
way of predicting a cost for running the program with the different representations, and then we 
shall pick the representation whose expected cost is least. One way of associating such costs is an 
objective cost function whose parameters are time and space occupied by a program. 

5.2 COMMON COST FUNCTIONS 

Let SMAX be the maximum amount of storage which may be 
necessary during a program's execution. 

Let TTOT be the total running time of the program 

Let S(T) be the actual storage in use by the program 
at time T,0 s T < TTOTAL 

1. Minimum space 

COST -SMAX 

Choose the set of representations which will use the least space. 

2. Time »(function of space) 

COST - /  F(S(t)) dt 

A. F(S) - if S < CORESIZE then I else » 
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Cost of program is the time required as long as it fits in the partition allotted to it. 

B. F(S) - if S < CORESIZE then S else « 

Cost of program is the time * space required 

C. F(S)- IF0<S <$, THEN Cj 

ELSE IPS] <S < S2 THEN C2 

ELSE IF Sj,,., < S < SN THEN CN 

ELSE« 

We have here a step function, C| < Co < Cj ... <C|sj are constants 

D. F(S) = IF 0 < S <CORESlZE THEN S2 ELSE cc 

Quadratic in memory size. 

3. Time * function(maxspace). Multiprogrammed systems will often require the user to specify in 
advance the maximum storage size he will use. The cost is then the cpu time multiplied by a 
function of maximum storage size. 

In addition, other constraints may be placed on the representations. For example, in a 
real-time system (e.g. process control), we may have the restriction that certain operations must 
never take more than some fixed time. 

Virtual memory systems with their pages and segments lead to other cost functions 
which may be described in terms of average working set size, maximum working set and so forth. 
These quantities are very difficult to predict with the current state of the art. In the sequel we are 
therefore considering only real memory or single-segment systems 

Our computer runs under an operating system whose costs are related to space 
multiplied by time so selection 2 (B) above will be the objective cost function which we will 
attempt to minimize. An important fact to note is that we have not assumed in the rest of the 
system the form of our objective function. It is therefore rather easy to change this to some other 
cost function without modification to the other parts of the system. 

5.3 PARTITIONING THE INFORMATION STRUCTURES 

After we have exhaustively processed the program graph in the information gathering 
phase we make one more pass to partition the set and list variables into their appropriate classes. 
Recall our requirement that two variables be in the same equivalence class if they are either 
operands to the same instance of a binary operator, or they are the actuals to the same formal 
parameter of some procedure   We also mark every set or list binary operation node of the 
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program graph with the name of the partition to which its arguments belong. 

We now partition the primitive items into disjoint item classes. Just as we wish to avoid 
dynamic representation checking with sets and lists we do not wish to have to dynamically check 
the representation of items. In our system all items are represented by dynamic records, but the 
length of these records may differ depending on whether the item in question has a datum, if we 
use the offset representation for associations involving the item, and so forth. Our criteria for 
putting two primitive items in the same class is that they are in the same value-set for som > 
variable at seme program node or they are elements of the different value-sets for the same list or 
set variable. Having these disjoint item classes will make the job of implementing representations 
involving transformation of item representation (such as in the bit vector representations of sets) 
much easier. We will not have to worry about having different transformations for different uses 
of a single item 

After partitioning the items, we partition our model of the associative store into several 
different ternary relations each of which will contain associations between the disjoint item classes. 
For example, consider: 

I 

item class I 
item class? 
item classS 

ITEMl , ITEM2. NEW(scan 20) } 
ITEM 9 1 
IT EM 4. IT EM 5 } 

where ITEMl, ITEM 2, ITEM?. ITEM4. ITEM) are declared items and NEW {scan 20) is the 
primitive item class for the call to NEW at the 20 th token in the source program. 

If we see that there are possible relation instances; 
ITEMl »ITEMS s 1TEM4 
ITEMl ® ITEM3s iTEM5 
ITEM4® ITEMl = ITEMS 
ITEM4®ITEM2 2 ITEMS 

we can classify them into two classes, modeled by 
class I « class2=class3 

and 
class1, o classl=cla;s2 

Each operation on the associative store within .ne user's program can refer to only one 
of these classes (otherwise we would have had the merger of two item classes into a single item 
class). Therefore we have achieved the split of the ternary relation into smaller disjoint ternary 
relations. 

5.4 APPLICABILITY FILTERING 

Our system now has partitioned the set and list variables into equivalence classes and 
split the ternary relation so we must now begin the selection process. We can immediately 
eliminate some representations from further consideration because they do not provide certain of 
the primitive operations required by the user's program for that class of abstract data structure. 
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5.5 COST PREDICTION 

We now will predict the time requirements and space requirements for each data 
structure using each possible representation. It is clear that the size of a high-level data structure 
varies over time. That is. the space for a data structure increases and decreases over the 
execution of a program However in this first approximation let us act as if the siie of the 
abstract data structure were just the average size over us lifetime This average can be 
approximated by taking the average of the average sizes of the data structure at each primitive 
operation on this data structure In on: demonstration system we have these average sizes of the 
data structure from information given to us by the user. In a production system this information 
would be gathered by monitoring as well 

The execution time required by primitive operations on this information structure class 
can be predicted by simply processing each primitive operation node of the program graph 
referring to this class in the following manner. First use the values of the size and other 
parameters in evaluating the time function using this representation for the given primitive 
operation. Then multiply the result by the number of times the node is executed (from the 
monitoring of the program). Now by summing up the time costs of the individual primitive 
operations we can get an estimate of the time cost for representing this class of high-level data 
structure using this representation. 

For each equivalence class of «nformation structures we now have a table consisting of 
how much time and space would be required using each applicable representation. If one 
representation dominates another, that is, both its predicted space and time costs are less, then we 
drop the dominated representation from any further consideration. Note that this is a heuristic 
rather than an absolutely optimal thing to do. This is not necessarily optimal because of cross 
terms in the objective function (time spent in procedure for manipulation times space occupied by 
other structures) and is similar to the reason which prohibited us from selecting each information 
structure representation independently. 

Now let us order the remaining representations by our objective function, in this case 
space-time product. The first of these representations (the one with the smallest space-time 
productdgnonng other data structures)) will be our initial guess as to the best representation for 
this class of information structures. 

5.6 FINAL SELECTION 

The total time-space product cannot be minimized by simply minimizing the time-space 
product of each data structure, because of the cross-terms of the frrm, time of operations on 
structure A multiplied bv the space occupied by structure B. We the.efore need a technique of 
minimization which sui ably treats these problems 

The quantity we are attempting to minimize is the space-time integral. We will 
approximate this quantity by taking the sum of the terms of the form: average space in use 
during a procedure multiplied by the average time spent inside ihi procedure, the summation 
being performed over all procedures. 
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In this research we have restricted ourselves to non-recursive procedures. Thus we can 
construct a simple sequence of all the procedures of the user's program with the property that if 
procedure A calls procedure B then a node representing procedure A precedes the node 
Tepresenting procedure S in the sequence. Another way of stating this, is that without recursion 
there is a partial ordering of the procedures where the relation calls or calls indirectly is used to 
provide this partial ordering. We construct a sequence which realizes this part.al ordering. 

Once we have constructed such a sequence we now have the property that the time of 
execution for a procedure depends only on itself and the time of execution of procedures later on 
in the sequence. Thus, to estimate the space-time integral for a given representation set we do the 

following: 

1 Processing the procedure list in reverse order, we estimate each procedure's execution time by 
using the already predicted average execution time of all procedures which it calls, the 
execution time required for non-leap constructs (provided by information gathering), and the 
estima. s of the LEAP constructs of the procedure found by using the primitive operation time 
cost functions associated with the representation under consideration. 

2 We then multiply the predicted time cost of a procedure by th   storage costs of all the variables 
^  allocated within the procedure.   Global constructs such as triples and the datums of items are 

counted as variables allocated in the outer block. The storage cost of a given construct is 
estimated by taking the average size of the construct and using that as a parameter to the 
storage cost function associated with the given representation. 

Using the above algorithm we can obtain a prediction (admittedly crude) of the space- 
t.me integral using any given set of representations for the data-structures of the user's programs. 
We now shall state how we use these estimates to pick the final set of representations. 

Our first guer-s of the set of representations consists of all those representations which 
minimize the local space-time product (that is only the average space used by a class multiplied by 
the execution time of the primitive operations on the class using a single representation). Using 
this set of representa:ions we can form a preliminary guess as to the minimal achievaole space- 

time integral. 

We now iterate through all the classes of data structures. For each class and each 
possible representation we estimate the new space-time integral if that particular representation 
were chosen rather than the one currently chosen. If the new estimate of the space-time integral is 
better than the best seen so far, we will record the new best representation for the data structure 
class and then continue by processing the next data structure class. We continue to iterate through 
all the data structure classes until we no longer get any improvement in the predicted space-time 
integral. We now have our fir.al set of representations for the data structures of the user's 

program. 
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5.7 FINAL COMPILATION 

The system has selected representations for all the LEAP data structures in the user's 
proeram the system now compiles the SAIL program substituting calls on the appropriate 
primitive operations to handle the LEAP constructs. In our demonstration system, all the 
primitive operations were Implemented as closed subroutines, but there is no inherent reason why 
the final Compiler could not generate in-line code for these primitive operations. 
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SECTION 6 

RESULTS 

We hav? implenented a demonstration system to test out many of these ideas. It works 
on a subset of SAIL which includes LISTS and SETS. It does not fully handle triples. All of the 
phases up to the user interrogation phase (monitoring, static analysis) process the operations on 
triple1;, only the intenogaticn and selection phase and final compiler would have to be modified. 
Also, of course, the library of primitive operations on associations (which has only been partially 
implemented) would have to be completed as well as analyzed. 

The system consists of several programs, most of which are written using the SAIL 
.;.iiguagc, 

The first program is a trivial modification to the Stanford SAIL compiler and is written 
in assembly language The only difference between this and the standard compiler involves the 
insertion of statement counter? in'o the object code. We needed more precise knowledge of 
statement and expression counts and so wp insert more counters into the object file than the 
standard compiler does. This first phase is used to obtain the statement frequency counts by 
compiling and executing the user's program using the user's data and our own default 
representations. 

The next phase takes as input the user's source file and the statement counter file 
produced by the monitoring phase above Its basic function is to parse the user's program into a 
flow graph and associate with each node m the flow graph the corresponding statement count. 
This program was formed by taking the parser and scanner from the standard SAIL compiler 
and substituting our own routines for the code generators. Thus part of it is written in assembly 
language and part in SAIL. The flow graph is in the form of LEAP triples. Other data that will 
be used in the successive phases is stored as the datums of items. The communication between 
phases takes the form of data files containing the items, datums of i^ms, and associations between 
items. At the end of each phase such a file is written, and the next phase reads the file as input. 

The static analysis, written entirely in SAIL, is the next phase. It performs the meta- 
evaluation of the program. It by far is the slowest of all the programs in the system. The next two 
phases (also written in SAIL) merely partition set and list variables and the associations into the 
appropriate equivalence classes. 

The next phase does preliminary filtering. That is, it notes which representations will 
not be allowed to represent certain list or set classes because they do not provide essential 
primitive operations. It also interrogates the user as to the expected sizes of the data structures 
which are operands to the LEAP operators. 

The penultimate phase uses the information gathered to select the representations of the 
sets and lists of the user's program. It may also be run in a mode in which the user can choose 
representations for some or all of the classes of sets and lists before the automatic selection. 

The last phase is a compiler which uses the selections from the previous phase to decide 
which library entries to use to implement the primitive operations. 
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Before analyzing several test cases let us make some general observations about the 
speed of this demonstration system and some of its limitations. The major limitation is in the size 
of programs that it can handle. The standard SAIL implementation allows only 4000 items, which 
is only enough to represent the flow graphs and other data of programs approximately ten pages 
or so in length. The execution time for the various parts of the system (apart from the static 
analysis) total about 10 times the time required for merely compiling the program. This does not 
include the tim" for writing and reading the LEAP data base between phases. This input-output 
takes approximately 20 times the other execution time and tends to dominate the whole process. It 
could be reduced by aggregating several phases into single phases to reduce that cost, or by 
substantial reprogramming of the input and output primitives Execution time for the static 
analysis pass varies dramatically depending on the depth of loop and procedure nesting but in 
typical programs takes as much execution time as the rest of the phases put together (not 
including input-output). In extreme cases it has been known to take two or three minutes of 
execution time to process a two page program that takes just a couple of seconds to compile. 
Clearly this is the phase which would have to be dramatically improved to make the whole system 
more cost effective. 

Let us now analyze the results of using the system on several test programs. The 
program texts may be found in the appendices. 

6,1 INSERTION SORT 

The original insertion sort (Appendix D ■ INSRT2) was processed using manual 
selection to choose representations for the set variable UNSORTED, and the list variable 
SORTED. 

Time to sort 300 integers (read from disk, originally in random order) 

AVL TREE for UNSORTED , VARIABLE LENGTH ARRAY for SORTED 
TIME = 6.7 (sec) SPACE - I0K 

SORTED LINEA" LIST for UNSORTED. LINEAR LIST tor SORTED 
TIME - 18.5 (sec) SPACE = 8K 

SORTED LINEAR LIST for UNSORTED, VARIABLE LENGTH ARPAY for SORTED 
TIME-4.5 (sec) SPACE = 8K 

The program was then modified to form INSRT? (Appendix E). The only difference 
being that the inner loop which iterated through the SORTED list was written as a FOREACH 
instead of an WHILE loop with list mdexir,;. This, as expected, dramatically changed the time 
required for the implementation using a LINEAR LINKED LIST for the list SORTED (because 
with list selection we have to process the header of the list every time, thus the time for traversing 

the list is proportional to N* rather than N). 
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AVL TREE for VNSORTED, VARIABLE LENGTH ARRAY for SORTED 
TIME-6.1 (sec) SPACE- 10K 

SORTED LINEAR LIST for VNSORTED. LINEAR LIST for SORTED 
TIME = 7.5 (sec) SPACE - 8K 

SORTED LINEAR LIST for VNSORTED, VARIABLE LENGTH ARRAY for SORTED 
TIME-6.0 (sec) SPACE - 8K 

We note that the time requited for the last representation increased While it is not 
definite (because of the inaccuracies of the timing mechanism) that this is significant, it probably 
is. This would be caused by the fact that using FOREACH'S (in our implementation) always 
copies the set or list variable being iterated while the FOR with list indexed selection does not. 

We also ran this program (INSRT?) with the standard SAIL system (which uses sorted 
unear linked lists to represent sets and linear linked lists to represent lists) and obtained a running- 
time of 12.9 compared with 7.5 above This time difference is probably caused by several factors. 
First, the list and set manipulation routines in our implementation (in particular the FOR EACH 
interpreter) have been carefully optimized. Secondly, we have one less level of indirection in 
fetching the da^ums of items. Finally the linear lists used for sets ire sorted in ascending order in 
SAIL, compared to descending order in our system. Since the NEW allocator in both systems 
allocates items in increasing order (in terms of the internal representation of items) a loop 
consisting of " 

put NEVV(x) in SET 

is likely to be much faster in our system since it will always insert the NEW at the head of the 
linked list, rather than having to traverse the entire list and then adding the new element at the 
end of the linked list This type of knowledge about the NEW allocator seems very hard to 
include in an time estimatoi function for the primitive operation. Perhaps the NEW allocation 
method should be chosen with knowledge of the representations of the data structures. In our 
system, though, we had fixed the allocation method in advance. 

The automatic selection on the program INSRT3 used statistics gathered from executing 
the program on the same data set of ?00 integers (a modified version of 1NSRT3 was used with 
explicit statistics gathering statements recording such things as average set size and so forth. 
These extra statements were inserted manually). 

The automatic selection mechanism had to consider only two information structures, the 
original unsorted set, and the final sorted list There were initially seven possible' set 
representations to chose from The applicability filter discarded the bit vector and combination of 
bit vector and linked list because these representations require knowledge of the maximum 
number of distinct elements which can be set members. The presence of NEW\ precluded the 
determination of this maximum size (Note in future systems, user assertions may provide 
information allowing such determination) The attribute representation was also discarded by the 
applicability filter because of the FOR EACH iteration through the set There is no 
implementation of iteration through a set represented by attribute bus in our library of 
implementations The preliminary prediction phase now had only four of the original seven 
representations to consider These were the sorted linked list, the height balanced binary tree the 
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hash table, and the variable length array The preliminary prediction phase discarded the 
variable length array representation because predictions indicated a small additional space 
requirement and a large additional time requirement compared with the sorted linked list 
representation Similarly, the height balanced tiee was discarded because of comparisons with the 
hash table representation The final selection phase initially chose the linear linked list 
representation and did not alter its decision 

There were initially three list representations to choose from: a one way linked list, a two 
way linked list, and a variable length array All are complete so the applicability filter did not 
eliminate any from further consideration. The preliminary prediction phase eliminated the doubly 
linked list because predictions indicated it would need both more time and space than the one-way 
linked list. The final selection phase initially chose the variable length array and did not alter its 
decision. 

Thus, the automatic selection picked a hash table representation for the set 
UNSORTED, and a variable length array for the list SORTED We then ran each representation 
pair 6 times to try and overcome the idiosyncrasies of our timer The numbers below indicate the 
average time of the 6 attempts with the ranges of times in parentheses The storage requirements 
are the same as before. 

HASH TABLE for UNSORTED, VARIABLE LENGTH ARRAY for SORTED 
(these are the representations automatically selected). 

5.9   (5.5,6.1) 

LINEAR LINKED LIST for both UNSORTED. and SORTED 
(these are considered the default representations) 

7.3 (6.4,8.5) 

LINEAR LIST for UNSORTED. and VARIABLE LENGTH ARRAY for SORTED 
(the author's own choice) 

5.9     (5.3,6.1) 

There is no significant difference between the first and third pairs above. We believe 
that the system chose the hashed set rather than the linked list because it overestimated the time 
required for set insertion using the linear linked list because it didn't consider the fact that items 
are allocated in increasing numerical (internal representation) order To include this type of 
knowledge in the automatic selection seems relatively hard. 

We then ran the same program over a data set containing 1000 elements with 2 trials 
per representation. We did not rerun the automatic selector, but just used its choices from the 300 
item sample. 

HASH TABLE for UNSORTED. VARIABLE LENGTH ARRAY for SORTED 
(these are the representations automatically selected from before). 

47.9 (45.0,50.1) 

LINEAR LINKED LIST for both UNSORTED, and SORTED 
(these are considered the d1 fault representations) 

1:09.4 (1:08.0, 1:10.9) 
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Before we get too ecstatic about the improvement (approximately 25Ä) let us note that 
another program sorting the same 1000 elements ran in slightly over 6 seconds. This program, 
however admittedly used a different algorithm (it inserted every integer read in into an AVL tree 
and then traversed the tree in preotder) Of course the selection of the appropriate sorting 
algorithm is a separate issue and has been considered elsewhere ([Knuth73]). 

6.2 MERGE SORT 

We took a merge sorting program (Appendix F. MERGE) and processed it on a sample 
data set of 300 elements. The automatic selection phase considered three equivalence classes: one 
containing only the set UNSORTED; the second containing the two lists QLDLISTS, and 
NEWLISTS. and the third containing the lists SORTED. MERGER, and all the list datums. In 
processing the seven possible set representations for UNSORTED. the applicability filter 
eliminated the bit vector and combination (bit vector and linked list) because of the presence of 
NEWs, which make maximum size of the sets indeterminate at compile time. The applicability 
filter also eliminated the attribute bit representation because a FOREACH search was performed 
on SORTED and our implementation does not provide (he primitives for foreach searches on sets 
represented by attribute bits, Thus, applicability filtering eliminated three of the seven possible set 
representations. The four remaining were a sorted linked list, a height balanced binan tree, a 
hash table, and a variable length array. The first prediction phase eliminated the variable length 
array because predictions indicated both more execution time and more space needed than a 
linked list. The height balanced binary tree was also elir.iniated because predictions indicated 
larger execution time and space requirements using it than using the hash table. Thus, after the 
preliminary processing stage, we had only two remaining candidates from our original seven: a 
sorted linked list and a hash table The predicted time for set insertion dominated the final 
selection and the hash table was picked. 

LISTS, a 
filter did 
predictor 
time and 
and then 
the extra 
half. The 
structures 

I 

There were three candidates for representing the lists, OLDLISTS, and NEW 
one way linked list, a doubly linked list, and a variable length array. The applicability 
not discard any of these representations because they are all complete. The preliminary 
discarded the variable length array because predictions indicated it would take more 
space. The final selection phase initially chose the one way linked list representation 
changed its decision to use the doubly linked list representation. This occurred because 
space needed was very small (only 300 words) but the predicted time required was about 
cross-terms of the form time using this representation times the space of other data 
dominated. 

There were similarly three candidates for the last equivalence class. Applicability and 
preliminary prediction did not eliminate any representations. The final selection initially picked a 
one way linked list and did not alter its decision. 

Thus the selection picked linked list representations for the lists (linear one-way for one 
class and doubly linked for the other), and a hash table for the original unsorted set. This agrees 
somewhat with my own choice except that 1 would have chosen a linear linked-list for the set for 
the same reason we gave before (the NEW generator returns items in increasing internal order). I 
also would not have chosen the doubly linked list since it takes up twice as much spuce. It seems 
that   it  was  selected  because  of  some  list  indexing operations  would   be  expected   to take 
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approximately half the time using a doubly linked list compared with singly linked because we 
an count either forward from the head of the list of backward from the tail  However, in this 

particular program the indices used were the constant  1, therefore there was no advantage to 
using the doubly linked stiucture 

We ran the resulting program and it took approximately 4.2 seconds and the cr.e size 
grew to approximately 12K. To demonstrate that this was a good selection we then ran the 
program using variable length-arrays for the lists and got an average time of about b '.econds and 
a similar core sue 

We then ran the same programs with a sample data set of 1000 elements The linked list 
and hash table version took approximately 17 5 seconds and the array version took about 30 
seconds. The core sizes were 21K and 37K. respectively. Therefore we see again that the automatic 
selection procedure again made a reasonably good choice. (The best choice turned out to be to use 
linear linked lists for all of them 12.5 sec, 1CJK core.) 

One interesting observation is that the core size used by the variable length array 
implementation was 37K as opposed to 19K for the linked list representation According to our 
model of storage costs it shouldn't be more than about 2K larger yet it was 18K larger. This is 
caused by the problem of storage fragmentation or checkerboarding. In the merge sort we are 
continually allocating larger and larger blocks of storage while at the same time deleting twice as 
many blocks of half the si/.- The storage allocation routine we use just forms a free list of the 
deleted blocks (merging blocks when adjacent blocks become free). Therefore, when we wish to 
allocate a block of 2 N words it may be true that there are 2 N free cells, but no single contiguous 
block of 2 N free cells. The storage allocation routine is thus forced to increase the core size even 
though our model of storage would indicate that this is unnecessary, It is unclear how to include 
the fragmentation costs in a model of storage in a simple way. 

6.3 TRANSITIVE CLOSURE 

As our final example we look at the transitive closure procedure we have seen so often 
before. Here we represented the single binary relation REL & ,-) = fl as fi * datnniM), This is 
similar to the field selector (record offset) implementation of the ternary relation. We expressed 
this explicitly since our demonstration system does not handle triples in its final selection phases. 

The relation we created was equivalent to the son relation in a binary tree. That is, 
every node other than leaj nodes had two other nodes related to it. The size of the tree was 1000 
nodes. And we asked the procedure to find the descendants of a node in the third row of the tree. 
The time to perform the transitive closure itself was so small that we called the procedure 40 times 
to get a meaningful number 

There were two set equivalence classes: the first containing all the set variables of the 
procedure and the second containing the set datums we used to represent the binary relation. The 
applicability filter threw out the bit vector, bit vector and linked list, and the attribute bit 
representations because of the presence of NEW's and iteration as in the other two examples. The 
preliminary predictor chose the linear linked list representation because predictions indicated it 
would take both less time and space than any of the other available representations. 
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Thus the system selected the default representation (linked list for the sets). Execution 
time was about' (as the average of b trials) 28 seconds per program execution with a core size of 

17K. 

To see how this compares with what we believed to be the next best representation, we 
then ran the program with a variable length array representation and the program took an 
average of about 31 seconds with a core size of 17K. Thus, the selection process chose a 
representation about 107. more efficient than the next most likely representation, 

With most of the test cases we attempted there was a marked improvement in the 
execution time of the program (space did not vary as much). In cases where the system selected a 
suboptimal representation, specific defects were pinpointed (such as failure to notice constant list 
indices storage checkerboarding etc) which may be remedied in future selection systems. All in all, 
we feel that the ability to automatically choose from various representations for information 
structures has been shown to be feasible and obviously desirable. 
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rs.^  • ' .—■   '•'■.      i- — • —^^^^^^^^^^^^^^^^^^—^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

■ 

7.0 58 

SECTION 7 

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

We feel that the system has performed quite well. In general it has chosen appropriate 
data structures for the programs considered. Where it has failed to choose optimum structures, it 
has led us to specific defects in our models of storage and execution time. Some of these, like the 
use of constant list indices can be easily handled by simple modifications. Others such as storage 
fragmentation and using internal pro|jeities of other structures (such as the fact that the NEW 
allocator usually returns items in increasing order) are not so easily handled. 

The system we have described is far from complete It works only on a subset of a 
usable programming language. It is very slow and cannot process large user programs. However it 
is, we believe, a concrete demonstration of the validity of our original hypothesis. Namely, that it 
is possible to use high-level data structures such as sets and relations with their conceptual clarity, 
and have an automatic representation selector select efficient implementations of these abstract 
structures. Future systems of this type should indeed be usable in a standard production 
environment. 

The concepts we have mentioned here, partitioning of data structures into classes, flow 
analysis, analysis of algorithms, execution time monitoring, etc, are not new. However, to our 
knowledge, they have never befoie been combined to form a coherent system capable of 
automatically selecting representations of data. 

We would be the last to claim that this system solves all the problems of automatic 
selection of representations. We have barely scratch^ the surface Below, in our suggestions for 
future research we will list some of the hard problems that have occurred to us during our 
research in this area. Other research is needed in analysis of algorithms, and classical optimization 
techniques. There are potentially great payoffs in other automatic coding techniques, such as 
Earley's iterator inversion. 

7.1 TOPICS FOR FUTURE RESEARCH 

ADDITIONAL OPTIMIZATIONS 

I. Computation avoidance - takes advantage of properties of the abstract data structure. 

For example, the boolean expression 
X f (SETI uSET2) 

is logically equivalent to 
(X ( SETI)v(X ( SETS) 

it will in general be faster and take less storage space to evaluate the second expression rather 
than the first since the union does not have to be computed. See appendix G of 
transformations. 

■MMMHMaHMMMMHMMMMi 
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2. Change of variables 

Often we have expressions like SETI ■ SET2. Sometimes it is beneficial to keep this as an 
explicit set rather than recompute the expression every time it is used. In this case it would 
mean that every time we insert ;>n element into SETI we would insert it in the difference set if 
it were not a member of SET2. Every time we inserted an element into 5£r2 we would remove 
that element (if present) from the difference set and so forth. This is closely related with the 
concept of iterator inversion of Earley. 

3. Copy optimizations - mainly based on dead variable analysis and read-only access to data 
structures being iterated through. 

We often can suppress unnecessary copying operations if we use dead variable analysis. For 
example: 

SETI -SET2; 

SET2 <■ phi; 

put B in SETI; 

We would normally compile this as: make a copy of .$£72, release SETI, place descriptor to 
copy into 5£r/, Release the space used by 5£r2, insert B nuo S£7"/. However, when we realize 
that 5£r2 is dead after the assignment to 5£7/ we can eliminate the copy 5£r2, and release 
S£r2 operations. 

We can also use dead variable analysis to determine when we are through with a variable. 
Thus, we can release the storage it required, much earlier than its explicit release in the 
program. This technique will noi decrease the running time of the program significantly but 
may decrease the maximum size of the core image as we are able to reuse space sooner. 

Similar analysis can tell us when it is necessary to copy a data structure which is being- 
processed by an iterator. 

IDENTITY vs. ATOMIC OBJECTS 

One question arises when we talk of sets, sequences or relations in a programming 
language. What are the elements of these data structures? Are they values or variables? The 
system we have described acts only on variables 

Earley has named these concepts of value and variable by the corresponding terms of 
atomic objects and identity objects An atomic object is essentially a simple value, which can not be 
altered. That is, it is readonly To alter a set containing the values 1,2 and ? to contain the values 
1, 2 and 4 we would probably remove the value 3 and then add the value 4 to the set. With sets 
of atomic objects we often do not have to explicitly construct data structures but can utilize 
functions and generators to represent them. For example, assume we had knowledge that a given 
set was simply the set of integers from 1 to 100. To iterate through the elements of that set we 
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need not explicitly construct a data structure which contains 100 data objects, but could merely use 
an standard ALGOL FOR statement Similarly we could replace the set membership test with the 
simple range check. That is. the integer x is in the set if and only if the value x is greater than or 
equal to I and less than or equal to 100. 

An identity object is essentially a variable name. It has its own identity and its value 
(datum) can be modified at will. Thus if we had a set containing identity objects whose values 
were 1, 2 and 3 and we wished to modify it to contain the identity objects whose datums were 1, ? 
and 4. we could either change the datum of the identity object which was currently 3 or we could 
remove that object and replace it with another identity object whose datum was 4. If we w.shed to 
have the set of integers from 1 to 100, we would be constrained to actually having 100 different 
objects each of whose datum was some integer in that range. 

Both identity objects and atomic objects are valuable concepts for very high-level data 
structures. We can easily implement either one using the other but when we do so we are playing 
the same game as the fellow who wrote all his set operations in terms of sequence operations. We 
have expressed data in terms of an implementation rather than in terms of its high level 

properties. 

In our system we concerned ourselves only with the representation of identity objects. 
They are more easily handled than atomic objects because it is always clear when a new one is 
being created, which is not the case with atomic objects, Possible ways in which atomic objects 
could be handled in future systems include the obvious encoding in terms of read-only identity 
objects (via such "symbol-table" mechanisms as hash searches etc.). The most interesting problems 
involve the use of functions and generators to take the place of explicit data structures. 

REDUNDANT AND ALTERNATE REPRESENTATIONS 

l 

I 

1 
I 
I 
I 
I 

Alternate representations for different phases of program. 

Often we can partition a program into several logical phases (e. g. input, processing, 
output). A representation optimal for one such phase may be suboptimal for another (depending 
on which access operations are dominant) The problem is to recognize the phases and then decide 
if it is worth the translation time to get from one storage structure to another. For example we 
may have a file of employment records read in off of tape in random alphabetical order 
(INPUT). The program then will update the file accoiding to some other criteria, e.g, employee 
number (PROCESSING). Finally reports to be generated wanted in alphabetical order so desire 
sorting on employee name (OUTPUT) We may find it optimal to have different representations 
for the file in each different phase of the program. 

Simultaneous use of multiple representations of an information structure 

Often two accessing operations may be performed on the data structure. If no single 
representation is optimal for both operations it may be advisable to store the data redundantly by 
using two storage structures each containing the data structure organized in a manner optimal for 
one of the access operat ins. Recall that one of our set representations was a bit vector with a 

MMMMMMMM 
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redundant linked list. For example, we might have a set of possibly 72 different elements, with 
two operations performed on the set: existence test (is x in set), iteration ( Foreach x < set). The 
existence test is done best when representation is a bit string so only indexing is needed. 
However, iteration is done best when leprcsentation is a linked list of the elements. 

Note that the merger of two storage structures does not necessarily have the sum of the 
updating costs of the individual structures. Normally with a list of the set elements we would 
require that the list be sorted. However now this is not necessary The operation of insertion can 
be done by first seeing it the element is already in the set by using the.bit string and then adding 
it to the head of the list if is not. Similarly deletion can be avoided if the existence test fails. 

One way of approaching multiple representations is to consider this merger as a 
separate representation with its own attributes. One problem is that this can lead to a squaring of 
the size of the representation library if we do this with all pairs of representations. 

Data structures as unions (disjoint or not) of storage structures. 

We have mentioned this in the contt;.. of associations, This is applicable even with sets. 
Consider a program which is going to test membership m , .ery large set. For example a spelling 
checker might check to see if every word in a piece of text were in its dictionary 

The dictionary might be very large and thus would have to be stored in secondary 
storage We desire a way to minimize the number of accesses to this storage. One technique might 
be to keep a large number of words (say the last 1000 encountered) in core. Thus, our search 
algorithm would first search core for the desired word and only if it did not find it, make the 
appropriate search in secondary memory Thus, the set of allowable words is stored as a two data 
structures (in core, and on disk) with a partial redundancy. Other applications might require no 

redundancy 

RELAXATION OF CRITERIA FOR THE EOUIVALENCE CLASSES 

To reduce the combinatorics of representation selection we insisted that arguments to a 
si. e\e operator be in the same representation The alternatives are to have either a translation 
procedure which takes as argument a set in one representation and converts it into the other 
Tepresentation, to write code sequences for each operator which ate representation independent, or 
to represent one or both sets redundantly. 

We could thus write a representation free union code sequence as follows, where sets A 

and B are the inputs. 
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set procedure UNION(iet A,B), 
begin "UNION" 

itenvar LOCAL; 
set RESULT, 
RESULT *■ phi; 
foreach LOCAL | LOCAL c A do 

put LOCAL in RESULT; 
foreach LOCAL I LOCAL ( B do 

put LOCAL in RESULT; 
return(RESULT); 

end "UNION", 

The arguments A,B and the result may be in entirely different representations. The tvio foreach's 
and puts could check which representation is in use for the construct and use the appropriate 
routine for that representation 

It is quite easy to write similar iepresentation free codes for the other basic operators. However we 
notice that we lose any efficiency based on representation. For example when compared to the 
iepreser.tation dependent model with sorted linear linked lists we find that the representation free 

routine will take time proportionate to w compared to time proportional to n for the 
representation dependent union routine 

A basic problem for future research is the evaluation of the tradeoffs between using less efficient 
representation-free routines, using translations to a common representation, and insisting on 
common representations. 

USE OF PACKING 

String representations have traditionally packed more than one character per compoier word. 
Clearly the record type structures which a system like ours generates for items could benefit from 
the same type of packing Here we need to evaluate rhe tradeoffs between sometimes slower access 
to elements (because of unpacking and packing) and the storage savings. 

EXTENSIBLE LANGUAGES 

A user should be able to define his own abstract data structures and supply a library of primitive 
operations using various representations and still have the system do automatic selection of 
representation This is closely related to the work of Earley and the ECL group at Harvard. 
However, they are not currently working on this particular problem. 

7.2 FINAL CONCLUSION 

This research has demonstrated the feasibility of automating a significant part of the 
programming problem: the selection of low level representations for high level information 
structures Future work along these lines is likely to allow the techniques to be applied as a matter 
of course in an optimmng compiler.  We have demonstated the desirability of such work. 
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SECTION 8 

APPENDICES 

8.1 APPENDIX A - SET PRIMITIVES 

In this implementation a set is always be represented by a one-word descriptor. This descriptor 
usually contains a pointer to some other storage and perhaps additional information. In the 
following routine descriptions, a value set argument is represented by the one-word descriptor. 
Similarly, all set-valued primitives letuin a one-word descriptor 

1. PUT SET (itemarg, setaig) - inserts the item argument into the set represented by the set 
descriptor argument. Returns a descriptor to the resultant set. This routine has the effect of 
altering its original set argument 

{ item I, item?, item? } would thus be compiled as: 
TEMP- PUT SET(iteml,PHI), 
TEMP - PUT SET(item2,TEMP), 
TEMP - PUT SET(item3,TEMP), 

the result would then be in TEMP. 

put ITEMARG in SETA       would be compiled as: 
SETA - PUT SETdTEMARC, SETA); 

2. REMOVE SET (itemarg, setaig) - removes the item argument from the set represented by the 
set descriptor argument, RETURNING A DESCRIPTOR TO THE RESULTANT SET. 
The original set is altered. 

remove ITEM ARC from SETA; would be compiled as: 
SETA-REMOVE  SETdTEM ARG, SETA); 

3 LENGTH  SET (setaig) - returns   he number of elements in the set.   It does not alter its 
argument 

4 IN   SET (itemarg.setarg) - boolean returns TRUE if the itemarg is an element of the set, 
FALbE otherwise. Does not change the ^ct argument. 

6. COPY SET (setarg) - returns a copy of its argument. Does not change the argument. With a 
representation which tried lo share storage this routine might just copy the descriptor or 
increment a reference count [Schwartz74a]. 

MB UMi -—-■ ■    ■ ■-■— ■■ mmmmm 
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6. RELEASE SET (setarg) ■ releases the storage (if any) used by the set argument. Thus, it 
destroys its argument. With a representation which used garbage collection this routine would 
probably do nothing at all and all storage reclamation would be done by calls to a garbage 
collector located elsewhere 

1 

FOO *- BAZ would be compiled as: 
TEMP ^COPY SET(BAZ); 
RELEASE SET(FOO); 
FOO-TEMP; 

7. SET UNION (seta.setb) - forms the union of its two arguments. It has the side effect of 
destroying its first argument, but leaves the second unchanged (unless the second argument 
happens to be the same as the fust) 

Thus, FOO *- FOO u BAZ would be compiled as: 
FOO - SET  l)NION(FOO, BAZ), 

FOO •- BAZ u CARP would be compiled as: 
TEMP -COPY  SET(BAZ); 
TEMP - SET UNION(TEMP, CARP); 
RELEASE SET(FOO); 
FOO -TEMP; 

8. SET „INTERSECTION (seta, setb) • forms the intersection of its two arguments, destroying its 
first argument as a side effect. It leaves its second argument unchanged. 

Thus, FOO - BAZ n FOO would be compiled (using the commutativity of set intersection) as: 
FOO - SET 1NTERSECTION(FOO,BAZ); 

9. SET SUBTRACTION (seta, setb) ■ does the set subtraction, second argument subtracted from 
the first, destroying the original first argument as a side effect. Leaves second argument 
unchanged. 

FOO - FOO - BAZ would be compiled as: 
FOO - SET SLIBTRACTION(FOO,BAZ); 

10. SET._ EQUALITY (seta, setb) - does the boolean comparison between its two arguments. The 
two arguments are left unchanged. 

FOO - {itma) would be compiled as, 
TEMP - PUT SETdtma, PHI); 
TBOOL - SET EQUALITY(FOO, TEMP); 
RELEASE SET(TEMP); 

the result of the comparison is contained in TBOOL. 
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11. SET INCLUSION (seta, setb) - does the boolean comparison and returns FALSE if there is 
an item in seta which is not in setb. Does not change either of its arguments. 

12. SET PROPER INCLUSION (seta.setb)- same as SET INCLUSION except also returns 
FALSE sf two set arguments were equal. 

13. COP SET (seta) - returns an arbitrary element of the set argument. It does not alter its 
argument. 

14. LOP SET (reference seta) - takes as argument the address of the set variable (not just the 
desciipror) Removes a single element from that set which it returns as its value. It alters the 
set argument. 

15. IN IT SET FOR EACH (reference scb; reference locality; seta) - This is called when the 
foreach is entered The scb is a variable which will contain status information for the iterator 
such as where we are in the set and so forth. The localitv is the itemvar which is receiving 
values from the FOREACH search, seta is a destroyable copy of the set through which we 
wish to iterate. 

16. ITERATE SET .FOREACH (reference scb) - this is a boolean procedure which takes the scb 
variable as its parameter. It places the next element in the set (if any) into the localitv which 
was mentioned In the initialization routine above. If the set has been exhausted it returns the 
boolean value FALSE, otherwise the value TRUE. On exhaustion it has the side effect of 
cleaning up everything, reclaiming space and zeroing out the scb. (search control block). 

17. END..SET FOREACH (reference scb) ■ this procedure forces termination of A foreach. It is 
used to clean vp sebs before transfer of control outside a foreach statement such as a done 
(loop exit) statement or return (procedure exit). 

foreach X | X < SETI do 
if X - FOG then remove X from SETI else done; 

This is compiled as: 
INIT SET FOREACIKSCB, X.COPV  SET(SETl)); 

while (ITERATE SET FOREACH(scb)) do 
if X » FOG then 

SET! - REMOVE SET(X,SET1) 
else      begin END SET FOREACH(SCB); 

done, 
end, 

We should note that there are other possible ways of choosing the set of primitive operations. For 
example we can conceive of an assignment primitive, or a primitive for constructing explicit sets. 
Copying and releasing sets is sometimes very expensive. Therefore we might have many entry 
points (as many as 4 for binary operations) depending on whether the arguments are dead, and so 
their storage might be reused immediately. In this system, each routine has but a single entry 
point. 
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8.2 APPENDIX B - LIST PRIMITIVES 

1. PUT  INDEXED (itemarg, reference  list, index)  -   inserts  the  item  argument   into  the   list 
specified by the list parameter after the specified index.   It has effect of altering the list 
argument. 

put X in LISTA after 10; 

is compiled into 

PUT  INDEXED{X, LISTA, 10); 

and 

put X in L1STB before 1, 

is complied into 

PUT INDEXED(X, LISTB, 0), 

2. PUT  BEFORE  ITEM (item 1, reference lista, item2) - inserts ileml into the list immediately 
before first occurenc;' of iim2. The list argument is altered. 

put X in LISTB before Y, 
is compiled into 

PUT BEFORE  ITEM(X, LIST, V); 

3. PUT AFTER   ITEM (iteml, reference lista, item2) - inserts iteml nto lista immediately after 
first occurrence of item!. The list argument is altered. 

put X in LISTA after V; 
is compiled into: 

PUT AFTER  ITEM(X, LISTA, V); 

4. REMOVE  ITEM (itemarg, reference Iistarg) - remove the first occurrence of itemarg from list. 
The list argument is altered. 

5. REMOVE  INDEXED (index, reference listi) - remove the index th element of listi.   The list 
argument is altered. 

6. REMOVE ALL (itemarg, reference lista) - remove all occurences of itemarg from lista. The list 
argument is altered. 

7. FETCH  INDEXED (listexpr, index) - returns the index th element of the listexpr.   The list 
argument is unchanged. 

8. REPLACE  INDEXED (reference listi, index, itemarg) - replaces the index th element of listi 
with the itemarg. The list argument is altered. 

9. LIST..MEMBERSHIP (itema, listb) ■ boolean TRUE if itema an element of listb.   The list 
argument is not altered. 
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10. LIST EQUALITY (list!, Iist2) • boolean, tests if two lists are equal.   Neither argument is 
altered. 

11. LENGTH  LIST (lista) - returns the length of lista. The list is unaltered. 

12. COPY LIST (listo) - given a list descriptor, returns a list descriptor pointing to a copy of the 
original list. Does not alter its argument. 

13. RELEASE LIST(listr) - release the space occupied by a list expression back to free storage. 
The argument is thus destroyed. 

FOOLIST »- BAZLiST 

is compiled into: 

temp - COPY  LIST(BAZLIST); 
RELEASE. LIST(FOOLIST); 
FOOLIST - temp; 

rt, COP  LIST (lista) 
unchanged. 

COP   of  list  (archaic  equivalent   to  list[l]).    The  list   argument   is 

i 

i 

15. LOP .LIST (reference lista) ■ Remove and return first element from list. The list argument is 
altered. 

16. CONCATENATION (listl, list2) - form a new list by concatenating two lists together. Both 
arguments are destroyed. 

FOOLST ♦- BAZ & FOOLST; 

is compiled into: 

S 

temp - COPY LIST(BAZ); 
FOOLST - CONCATENATION(temp,FOOLST); 

17. INIT. LIST lTERATOR(refemicc scb, reference localitv, list) ■ mitializp the foreach list 
element iterator. List argument eventually destroyed. (See set foreach iterators Appendix A). 

18. ITERATE LIST (reference SCB) ■ iterate through a list. Returns TRUE if it finds another 
element in list. FALSE otherwise. Side effect of storing item found in the localitv mentioned in 
INIT  LIST   ITERATOR 

19. END LIST (reference SCB) - forced termination of a FOREACH element iterating through a 

20. EXPLICIT.LIST (iteml, item2,... itemN, N) - constructs the descriptor for an explicit list. 
Takes a variable number of parameters. 

■■ 

■ 
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8,3 APPENDIX C - META EVALUATIONS 

Here are some examples of the meta evaluations we use during our static analysis phase. 

A. Set operations 

1. VALUESET(S1 U 82) - VALUESET(Sl) u VALUESET(S2) 

2. VALUESEKS! n S2) = VALUESET(Sl) n VALUESET(S2) 

3. VALUESET(S1 - S2) - VALUESET(Sl) 

4. after SI ^ SETEXPR 

a. If SI  is a simple variable (not datum, array element, procedure parameter) new 
VALUESET(Sl) = VALUESET(SETEXPR) 

b. If SI is not a simple variable, then the 

new VALUESET(Sl) = old VALUESET(Sl) U VALUESET(SETEXPR) 

5. put ITEMEXPR in SI, acts the same as SI «-SI ü {ITEMEXPR }; 

6. remove ITEMEXPR from SI, acts like SI - SI - {ITEMEXPR} i. e. no action. 

B. Associative operations 

1. MAKE lexpr » iexpr2 = lexpr?. 

Insert every instance of x. ® y = i (x ( valueset(iexprl), v ( valueset(iexpr2), 
: ( valuesetdexpr?)) into model of the associative store. 

2. ERASE lexpr ® iexpr2 s icxpi?. 

No action. 

3. SEARCH lexprl ® iexpr2 = iexpr3. 

No change to the model of associative store. If this is a foreach element binding some 
local, do an assign to that local consisting of the corresponding elements from model of 
associative store. 
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8.4 APPENDIX D - 1NSRT2 

begin "INSRT2" 

set UNSORTED, list SORTED; 
integer itemvar OBJ1. OBJ2; 
integer COUNT, I; string TEMP; 

comment FIRST CONSTRUCT AN "UNSORTED SET"; 

UNSORTEü - phi; 
COUNT - READ INTEGER; 
for I ♦- I step 1 until COUNT do 

put new(READ INTEGER) in UNSORTED; 

SORTED *• nil; 

foreach OBJ1 I OBJ1 < UNSORTED do 
begin "foreach OBJ I" 

COUNT - 1; 
while COUNT < length(SORTED) do 

begin "INNER" 
OBJ2 - SORTED[COUNT]; 
if datuin(OBJ2) > datum(OBJl) then done "INNER" 

else COUNT ^ COUNT* 1; 
end "INNER"; 

put OBJ1 in SORTED before COUNT; 
end "foreach OBJ1"; 

foreach OBJ2 | OBJ2 < SORTED do 
WRITE lNTEGER(datuin(OBJ2)); 

end "INSRT2" 

-       ^  fc-   ^   _ .   .  -                  . .       .-. 



IWpj■HWJi'^«,,^-'».!iy.':*■ J^if^fwm*#|I"HJ»IMvJH".-1.^..    j   ■ 1.i .i•.,■. i■.jj..wpwA.»"«'*iJim- -•■''^'«^w^"■ ^,'    -'■•■-'.-1^-,-1..«»»JAWJ«MI^.).IPIIPIPILU^U)|J< 1 iiyuW:-t»K";^ilH,WlMWI«W"JJ,"»-^HWJJ,J>"W>I.%I   ■•n^i-inr 

8.5 APPENDIX E - INSRT3 70 

8.5 APPENDIX E - INSRT3 

begin "INSRTS" 

set UNSORTED; list SORTED, 
integer itemvar OBJi,OBJ2; 
integer COUNT, 1; string TEMP, 

comment CONSTRUCT AN "UNSORTED SET"; 

UNSORTED - phi; 
COUNT <- READ INTEGER; 
for I <- I step 1 until COUNT do 

put new(READ. INTEGER) in UNSORTED; 

SORTED e nil; 

foreach OBJ1 | OBJ I ( UNSORTED do 
begin "foreach OBJ1" 

COUNT «- I; 
foreach OBJ2 I OBJ2 < SORTED do 

begin "INNER" 
if datum(OBJ2) > datum(OBJl) then done "INNER" 

else COUNT - COUNT ♦ 1; 
end "INNER"; 

put OBJ! in SORTED before COUNT; 
end "foreach OBJ I"; 

comment PRINT SORTED LIST; 

foreach OBJ2 I OBJ2 ( SORTED do 
WRITE INTEGER(datum(OBJ2)); 

end "1NSRT3" 

^ ^ ^. 



^^^^^^^^^^^^^^^^^^^^^^^^^^^— 
■ ■   ■ 

8.6 APPENDIX F - MERGE 71 

8.6 APPENDIX F - MERGE 

begin "MERGE" 

list OLDLISTS, NEWLISTS, SORTED. MERGER; 
set UNSORTED; 
integer itemvar OBJ1, OBJ2, INFINITY; 
integer COUNT, I; 
list itemvar LITM1,LITM2; 

comment CONSTRUCT AN "UNSORTED SET"; 

UNSORTED »-phi; 
COUNT - READ .INTEGER; 
for I *■ 1 step I until COUNT do 

put new(READ .INTEGER) in UNSORTED; 

comment CREATE LIST OF LISTS TO BE MERGED; 

OLDLISTS <- nil; 

foreach OBJ1 | OBJ1 ( UNSORTED do 
put new({{ OBJ1 }}) In OLDLISTS after 0; 

NEWLISTS *- nil; 
INFINITY ♦- new(2T30); 

tJMMM» _., 
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. 

while lengtli(OLDLI$TS) > I do 
begin "OUTER" 

while length(OLDLISTS) > 1 do 
begin "INNER" 

LITM1 »-lop(OLDLISTS); 
LITM2 *- lop(OLDLISTS); 
MERGER - nil; 
while (datiim(LlTM 1) * nil v datum(LITM2) * nil) do 

begin "INNERMOST" 
if datiim(LITMl) * nil then 

OBJ! .-cop(datuiii(UTM 1)) 
else OBJ 1 ^INFINITY; 

if datuni(LITM2) " nil then 
OBJ2^cop(datum(LITM2)) 

else OBJ2-INFINITY; 
if datum(OBJl) < datum(OBJ2) then 

begin 
put OBJ! in MERGER after length(MERCER); 
remove 1 from datum(LITMl); 

end 
else 

begin 
put OBJ2 in MERGER after length(MERCER); 
remove 1 from datum(LlTM2); 

end; 
end "INNERMOST"; 

put new(MERGER) in NEWL1STS after 0; 
delete(LITMl); 
delete(LITM2); 

end "INNER"; 
if OLDLISTS * nil then 

put lop{OLDLISTS) in NEWLISTS after 0; 
OLDLISTS ♦- NEWLISTS; 
NEWLISTS *- nil; 

end "OUTER"; 

LITM1 ♦- lop(OLDLISTS); 
SORTED ^datumaiTMl); 
delete(LITMl); 
delete(lNFINlTY); 

foreach OBJ | OBJ I < SORTED do 
WRITE .INTEGER(datum(OBJ 1)); 

end "MERGE SORT" 
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8.7 APPENDIX C - TRANSFORMATIONS 

The following are examples of transformations may be made to avoid certain computations. 
Caution must be taken with "side effects". None of these transformations were used in our 

demonstration system. 

1. x ( (setl uset2) 

2. x ( (set I n set2) 

3. x < (setl - set2) 

4. LENGTHdistl & li$t2) 

5. x ♦- x u {iteml, item2} 

(x( setl)v (x ( set2) 

(x(setl)A(x < set2) 

(x( setl) A-(x ( set2) 

LENGTHdistl) ♦ LENGTH(list2) 

=      put iteml in x; 
put item2 In x; 

(no need to explicitly create {iteml, item2}. 

6. x ♦- x - {iteml. item2} 

7. (setl u set2) - phi 

remove iteml from x; 
remove item2 from x; 

(setl - phi) A (set2 - phi) 

I 
I 
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8.8 APPENDIX H - INSTRUCTION WEIGHTS 

The table below contains our weightings of the individual machine instructions based on a time 
unit of approximately .7 microseconds. Data from PDP-10 SYSTEM REFERENCE MANUAL 
1969. Digital Equipment Corporation. Note: no different in execution time is noted if the source 
or destination of a memory reference is an accumulator. Thus, in our model, loading an 
accumulator from an accumulator will take as much time as loading an accumulator from the 

slower memory. 

MOVES (MOVE. HRR. HRL, MOVS , HLL , HLR etc.) 
memory to accumulator 3 units 

immediate to accumulator 2 units 

accumulator to memory 4 units 

EXCH 4 units 

BLT 
PUSH, POP 5 units 

LDB, 1LDB 9 units (middle byte(5)) 

DPB, ILDB 10 units " 

IBP 4 units 

LSH 6 units 

LSHC 7 units 

CAI 2 units 

CAM 
LOGICALS (OR, XOR, ANDCM. ANDCA, AND etc) 

(approximate) 
memory with accumulator 3 units 

immediate with accumulator 2 units 

accumulator with memory 4 units 

ADD.SUB 
memory with accumulator 3 units 

immediate with accumulator 2 units 

accumulator with memory 4 units 

AOBJN 2 units 

JUMP 2 units 

SKIP 3 units 

AOJ.SOJ 2 units 

AOS,SOS 
TL. TR 3 units 

TD 4 units 

XCT 
JFFO 5 units 

JSP 2 units 

JRST 2 units 

PUSHJ, POPJ 4 units 

; 

= 
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8.9 APPENDIX 1 - EXECUTION TIME COST FUNCTIONS 

75 

PUT_SET - insert itsm in set 
n - proportion of time item already in the set 
X - average size of set 
M - maximum size of set 

REPRESENTATION set empty set non-eirpty 

Linked 1i st 180 G4 - 42*n + B*X 

AVL tree 5G 180-lBGn+16.8*LOG2(A) 

Bit- Array 14G + 3*rn/32i 48 

Hash tabl3 521 82-40n + 3V1G 

Bit-string 
ui th unsorted 
1 inked 1i at 

2B5 + 3*rn/32l 104-53n 

Attribute bit 27 

Sorted var iable 
length array 140 

9G-80n+5.05*X + 
20.5*LOG2(X) -.3n*X 

■ ■ —■- _ 
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REMOVE SET - remove item from set 
n - proportion of time item in the set 
\ - size of set 

REPRESENTATION Set empty Set non-empty Removal of last 

Linked 1 ist 14 23 + 13A/2 + 27n 82 

AVL tree 11 32 + 88n + 28*L0G2(X) 148 

Bit- Array 48 

Hash table 11 42 + 3X/8 + 25n 294 

Bi t-string 
wi th unsorted 
1 inked 1 ist 

15 51+GnX + 50n 149 

Attribute bit 27 

Sorted variable 
length arrcy 

11 17 + 21.5*L0G2(X)+ 3n + 3nX 248 

MMM HMMMMMMki .■;.■. ..^J., -^-.,^-.»..;...^.^ 
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IN SET - test if item in the set 
n - proportion of time item in the set 
X - sue of set 

REPRESENTATION set empty set non-empty 

Linked 1 ist (sorted) 14 21 + 5X 

AVL tree 14 19 + 12*L0G2(X) -Sn 

Bit - Array A8 

Hash table (32 slots) 13 48 + 5X/32 

Bi t-string 
wi th unsorted 

1 inked list 
18 51 

Attribute bi t 2G 

Sorted variable 
length array 

14 28 + 43*L0G2(X)/2 
-5n/2 
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COP. SET - Choose element of set 
X - size of set 
M - maximum size of set 

REPRESENTATION TIHE 

Linked   1 ist   (sorted) 15 

AVL   tree 12 + 12.4*L0G2(A) 

Bit-  Array 21 + 12*r-irn/32lA)*LN(l-X/(rri/32l*32)"l 

Hash  table(32 slots) 27 

Bi t-string 
wi th  unsorted 

1 inked   list 
22 

Attribute bi t ÜO 

Sorted variable 
length array 

17 
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LOP.SET - pick item and remove from the set 
X - size of set 
M - maximum size of set 

new set empty new set non-empty 

Linked 1 ist (sorted) G5 48 

AVL tree 42 64 + 18.S*L0G2(X) 

Bit- Array 37 + 12*r-(rn/32lA)*LN(l-X/(rn/32l*32)1 

Hash table (32 slots) 2G5 52 + 16« (31/32)1^-1) 

Bi t-string 
wi th unsorted 
1 inked list 

us 89 

Attribute bit CO 

Sorted variable 
length array 

225 21 
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LENCTH^SET - count number of items in set 
X - size of set 
M - maximum size of set 

Linked   I ist   (sorted) 

AVL   tree 

Bit  - Array 

set empty .et  non-empty 

Hash  table   (32 slots) 

Bi t-string 
Mith uneorted 
I inked   I ist 

Attribute bi t 

Sorted variable 
length array 

28 + 12*riV32l + 9*X 

...-.—.„>   . 
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SET..UNION - union of two sets 
n - proportion of set 2 not in set 1 
Ml] - size of set I 
Xt2i - size of set 2 
M - maximum size of set 

set 2 empty set  1  empty sets non-empty 

L i nked   list 14 73 + 4G*X[2] 24+14*X [1] +(18+4770 X [21 

AVL   tree 14 G7 + 59** [2] 15 + 53X[2]  + lBGnX[2]   + 
17nXt2]*L0G2(X[l]) 

Bit-  Array 25 
iurn/321 

125 + I4*rn/321 25 + Il*rn/321 

Hash  table 14 G49+33M2]   - 
128n(31/32)tX[2) 

251 + 224(31/32)TX[1]   + 
14X[1]  +  (58n+18)X[2] 

Bi t-str ing 
wi th  unser ted 

1 inked   1 ist 
20 252 + 4B*X[2] 

+ G*m/321 
40 + 21#rn/32l + GGnX(2] 

Attribute bit oo 

Sorted  variable 
length array 

17 489 + GX(21 581 + isxrn + 
(8+15n)X[2] 

«OMtMIMMMaMM .MMkM^Mi 
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SET .INTERSECTION - intersection of two sets 
n - proportion of set 1 not in set 2 
X[\] * size of set 1 
>[2i - size of set 2 
M - maximum size of set 

Linked Ii st 

AVL tree 

Bit - Array 

Hash table 

Bi t-str ing 
ui th unser ted 
I inked list 

Attribute bi t 

setl empty 

Sorted van iable 
length array 

11 

13 

11 

15 

11 

set2 empty 

43 

24+32*Mll 

normal 

3G+(14+2An)*X[l] 
+ 12*M:] 

51 + 38.5X[2)  + 
30X11]  + 2897TXI1] 
+20TOailLOG()l[in 

_L 

result  empty 

51  + 38*X[1] 
+ 12*X[2] 

51+38.5X121 + 
239X11]   + 

28X11] L0G2(X[1]) 

23 + ii*rn/32i 

843 - 
334*7T* 

(31/32)tX(l] 

123 

211 

G2G - 
320(31/32)tx(11 

+ 17X12]  + 
(G+31TI)X[1] 

52+ii*rn/32i 
+(48+28n)X[l] 

833 - 
296 (31/32) ntl] 

+17X[2)+37X[1] 

i3S+ii*rn/32i 
+ eaxtn 

CO 

42 +(14+n)Xtl]   + 
8X12] 

239 + 15X11] 
+ 8X12] 

.-^-1 ^ammtmrn^ 
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SET SUBTRACTION - difference of two sets 
' n - proportion of set 2 in set 1 

x[l] - size of set 1 
X(2] ■ sue of set 2 
M - maximum sue of set 

83 

setl empty set2 empty normal result empty 

Linked   1 ist 11 14 20+(12+14n)*X[2] 
+ 1B*X[1] 

41  + 30#M11 
+ 12*X[23 

AVL  tree 11 14 
13 + S2.5X[2]  + 

88nX[2]  + 
20nX[2]LOG(xm) 

13 + 82.5X[2] 
+ 88X121   + 

20X[21LOG(X[1]) 

Bit  - Array 23 + ll*rf1/32l 

Hash  table 
11 14 

4GG + 16X111  - 
1G0 (31/32) tXQ] 
+(15+7n))X[2] 

GG5 + 23X[n   - 
130(31/32)t^tll 

+ 15X[2] 

Bi t-strlng 
ui th unsorted 

1 inked   1 ist 
15 18 

52+ll*rn/32l 
+ 40XI1]  + 
+ 20nX[2] 

I3e+i urn/321 
+60Xtl] 

Attribute bi t O) 

Sorted variable 
length array 

11 14 33 + 19XI1]  + 
(7-3n)X[2] 

230 + 10XQ]  + 
7X[2] 
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SET_EQUALITY • boolean true if sets equal 
n ■ proportion of time boolean true 
X[l] - size of set 1 
X[2] - size of set 2 
M - maximum size of set 

lengths * both empty otherwi se 

Linked   1 ist 19 18 32 - 3n + 3*(1  + n)*X 

AVL   tree    ' 25 24 41 + 27.25*11 + 7T)*X + ISn 

Bit   -  Array 2G - 2n +   (5 + 5n)*rn/32l 

Hash  table 18 19 32 + 327K + 18nX 

Bi t-string 
wi th  unsorted 

1 inked   list 
45 39 G2 - 2n +  (5 + 5n)*rt1/32l 

Attribute bi t 00 

Sorted variable 
length array 

22 19 28 +  (5 + 5K)X + 3K 
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8.9 APPENDIX 

SET_lNCLUSION - boolean true if setl contained in set2 
n    ■ proportion time boolean true 
X[l] - size of set 1 
Ä2] ■ size of set 2 
M - maximum size of set 

85 

I 

i 

1 

1 

lengths bad set  1  emptj standard case 

Linked   list 17 21 32 + 8*(l+n)*Ml] + 
6*(l+n)*X[2] 

AVL  tree 25 24 49 - 3n + 16.25X11] (1+TT) 
+ 15.25X12] (1+TT) 

Bit- Array 25 +  (G+Gn)*rn/321 

Hash  table 18 21 38 + 327n + 18nXll]  + 12nXt2] 

Bi t-string 
wi th  unsorted 

1 inked   list 
4G 22 51 +  (B+Bn)*rn/321 

Attribute bit 00 

Sorted variable 
length array 

2B 13 44-3n +  (9+9n)X[l]/2 
+  {7+7n)X[2]/2 

I 

i^M 
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SET^PROPER INCLUSION ■ boolean true if setl contained In set2 but not equal 
n ■» proportion of time boolean true 
X[l] - size of set 1 
XL2i " size of set 2 
M - maximum size of set 

lengths bad set  1  empty standard case 

Linked   list IG 31 42 + 8(l+n)xm   + B(l+n)X[2] 

AVL   tree IE 34 59 - 3n + 
(15.25X11]  + 15.25X[2]) (1+n) 

Bit-  Array 27 +  (3+9*7d*rn/32l 

Hash  table IB 31 48 + 327n + 10nXQ]   + l2nXt2] 

Bi t-string 
with  un^orted 

1 inked   1 ist 
46 39 51 +  (G+Gn)*rn/321 

Attribute  bit 00 

Sorted  variable 
length array 

22 29 G3 - 3n +  (9+9n)X[l]/2 + 
(7+7n)A[2]/2 
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8.9 

COPY_SET - form a copy of a set 
X - size of set 
M - maximum size of set 

APPENDIX I 87 

set empty set non-empty 

Linked 1 ist (sorted) 11 49 + 4B*X 

AVL tree 15 48 + 59»X 

Bit- Array 19 118 + 6*01/321 

Hash table (32 slots) 15 633-128(31/32)fX + 33X 

Bi t-string 
uii th unsorted 
1 inked 1i st 

19 227 + 46X+ 6*rn/32l 

Attribute bi t 00 

Sorted variable 
length array 

15 384 + 6X 

mmmm mtm-^m 
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RELEASE SET - release the storage occupied by a set 
X - size of set 
M " maximum size of set 

set empty set non-empty 

Linked 1i st (sorted) 11 22 

AVL tree 11 1+ 32X 

Bit- Array 12 58 

Hash table (32 slots) 11 818 - 384*(31/32)t* 

Bi t-str ing 
wi th unsorted 
1 inked list 

15 92 

Attribute bi t 00 

Sorted variable 
length array 

3 191 
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89 APPENDIX I 

FOR EACH LOOP (including 
X - sue of set 
M • maximuiD sue of se 

initialization) through a set 

t 

set empty set non-empty 

Linked  list   (sorted) 
in; 135 ♦ 34«X 

AVL  tree 87 181 * B6.5X 

Bit - Array 141 + 65«X ♦ 13#rn/32n 

Hash table  (32 slots) 117 1227+34X-448(31/32)tX 

Bi t-string 
uii th unsorted 

1 inked   1 ist 

175 214+40X 

attribute bi t 00 

Sorted variable 
length array 

95 384 + 38X 

89 
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1 i st empty 1 ist non-empty 

One-way 
1 inked ' iet 93 71 + 7X/2 

Two-way 
1 inked 1 ist 198 92 + 5X/4 

Variable length 
array 151 95 + 3.3X 

PUT AFTER - insert nto list after specific item 
\ m size of list 

One-way 
I inked I i st 

Two-i.ay 
I inked list 

Variable length 
array 

ist non-empty 

71 * 6X 

81 + M 

97 + 5.8X 

I 

PUT INDEXED - insert into list 
> - sue of list 
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PUT BEFORE - insert Into list befor? specific item 
X - size of list 

91 

11st non-empty 

-- One-way 
1 Inked i ist 83 ♦ BX 

.* 

— 

.. Two-way 
1 inked 1 ist 81 ♦ 4X 

- - 

.. 
Variable length 

array 109 + 5.8X 

.. 

II 
I 

II 
I 

I l 
I I 
I ■ 
i i 

REMOVE INDEXED - remove the n th element of a list 
X - size of list 

One-way 
I inked   i ist 

Two-way 
i inked   I Ist 

Variable   length 
array 

result   I ist  non-empty 
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REMOVE ITEM - remove first occurence of specified item fiom list 
X - size of list 
n - proportion of time item in list 

1 ist empty not only i tem in 1 ist only i tem in list 

One-way 
1 Inked i ist 12 13 + 12X-GnX +34« 88 

Tu -way 
1 inked list 12 12 + 8X -4n> + 2Sn 79 

Variable length 
array 12 26 ♦ A.5n+(5-n)X 231 

REMOVE ALL ITEM • remove ail occurences of specified item from list 
X - sue of list 
n - proportion of list that is item 

1 ist empty not only i tem in list only item in list 

One-way 
1 inked 1 ist 12 20 + 12X+48nX 49 + 52X 

Two-way 
1i nked 1i s 12 18 + 8X + 41nX 34 + 49X 

Variable length 
array 18 28 + 1GX - 4nX - Gn 222 + 1JX 
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COPY LIST - rra^e a copy of a list 
X - si:e of list 

One-way 
I inked   list 

Two-way 
I inked   I ist 

Variable   length 
array 

I ist  empty 

17 

Ii st non-empty 

51 + 4B*X 

58 + 54X 

38G + 6X 

RELEASE LIST - release space occupied by a list 
X - size of list 

1 ist empty 1 ist non-empty 

One-way 
1 inked 1 ist 13 24 

Two-way 
1 inked 1 ist 11 23 

Variable length 
array 9 191 

dM MMMMH «MMMi 
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89 APPENDIX I 9-} 
. 

COP LIST • return first element ot list 
X - size of list 

One-way 
1 inked 1 i st 17 

Two-way 
1 inked list 15 

Variable length 
array 12 

LOP LIST - return and remove fust element of list 
* - size of list 

result list non empty result list empty 

One-way 
1 inked list 58 G7 

Two-way 
1 inkea 1i st 46 7B 

Variable length 
array 22 * 3X 219 

—  
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CONCATENATION - concatenate two lists together 
X - size of list 

■ 

, 

list 1 empty 1 ist 2 empty nei ther empty 

One-way 
l inked 1 ist IG 14 52 

Two-way 
1 inked 1 ist IG U 59 

Variable length 
array 14 11 731+ 6M11+6XL2] 

LIST EQUALITY - boolean true if lists equal 
n » proportion of time boolean true 
>.[!] - size of list I 
X[2] - size of list 2 

lengths * both empty otherwise 

One-uay 
1 inked 1 ist 21 28 34 - 3n +(3+9n)X 

Two-way 
1 inked 1 ist 29 18 24 *   (4+4n)X - 3* 

Variable length 
array 24 21 22 ♦ (5+5n)X + 3n 

.———^M——^—^  
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. 

LIST MEMBERSHIP - boolean true if item an el-ment of the list 
n - proportion of time item in non-empty Us' 
x - sue of list 

ist non-empty 

One-nay 
I Inked list 

Tuo-way 
I inked I 1st 

Variable length 
array 

23 + 3n/2 +   (5-5,1/2) X 

FOR EACH LIST - foreach item in list, initialization and iteration 
X - size of list 

■ 

One-way 
I inked list 

Tuo-way 
I inked Ii st 

Variable length 
array 

I ist non-empty 

139 + 38X 

123 + 49> 

388 ♦ 48X 

_^^-,^___ _-jj 
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FETCH INDEXED • fetch the n ih element of the list 
X - sire of list 

1 ist non-empty 

One -way 
1 i nked 1 i st 17 + 5X/Z 

Two-way 
1 i nked list 35 * 5>/4 

Variable length 
array 20 

REPLACE INDEXED ■ replace the n th element of the list 
X - size of list 

list ei^pty extend list replace replace last 

One-way 
1 inked 1 ist 97 79 23 * 5X/2 34 

Two-way 
1 i nked list 113 33 42 +5X/4 45 

Variable length 
array 153 97 ♦ .GX 25 25 
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89 APPENDIX 1 

LENGTH.LIST - returns number of elements in list 
X - sue of list 

98 

: 

One-way 
I inked list 

Tuo-way 
I inked list 

Variable   length 
array 

ist  empty 

11 

Ii st  non-empty 

12 

U 

EXPLICIT LIST - make an explicit list 
X - size of list 

One-way 
I inkeci I i st 

Tuo-way 
I inked list 

Variable length 
array 

ist non-empty 

B3 ♦ 43X 

73 ♦ 51X 

373 + 3X 
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