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ABSTRACT 

This report describes some of the accomplishments achieved during the 

second year of our cooperative program concerning the detailed nature of 

seismic radiation from earthquakes.  Our efforts have been divided into 

three areas  to obtain broad-band observations in the Bear Valley region, 

to develop the theoretical framework needed to treat seismic data in general, 

and thirdly, to use this formalism to model earthquakes. 

This years  semi-annual report contains a theoretical treatment of 

modeling local earthquakes as shear dislocations in a layered halfspace. 

Numerous synthetic seismograms were presented along with some pre1iminary 

fits to observations involving strike-slip events.  This report presents a 

generalization of the technique to arbitrary oriented dislocations.  The 

method is used to produce synthetic seismograms at long period P, SV, and 

SH waveforms at teleseismic distances for various source parameters.  Since 

fr^e surface interaction is different for the various types of waves, 

one can use this information to refine fault orientation and determine 

the duration and distribution of the faulting motion.  The procedure is 

presently being used in direct inversion of the observations from the Borrego 

Mountain earthquake and will be used, shortly, on the San Fernando data. 
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I.  Introduction 

To put this years effort in proper perspective it seems worthwhile 

to briefly review previous studies and indicate the direction in which we 

think our research is evolving. During the first year of this contract 

we spent most of our eilorts in theoretical development (see last years 

annual report).  In particular, the near and far field radiation from 

relaxation models were txtended and generalized for a variety of source 

geometries and prestrf.ss conditions.  It was determined that as Rs, the 

prestress radius, increases to infinity one produced results that were 

essentially equivalent to Brune's, namely that the spectra is flat for 

frequencies smaller than the corner frequency.  For finite values of Rs, one 

obtained a peak near the corner frequency that is controlled by the details 

of the rupture properties, or there •.= some interaction between the fault 

dimension and the prestress dimension. These results which are directly 

attributed to Archambeau further suggest that the corner frequency for 

P waves can be somewhat higher than for S waves depending on rupture 

characteristics. Hanks and Wyss (1972) aid others have analyzed sperfra from 

a number of shallow earthquakes and indicate that the spectral corner frequency 

of P waves are significantly higher than that of S waves but this result 

has been disputed by Helmberger (1974). However, more work is required to 

answer the corner frequency question as well as relating the fault time history 

to fault dimension.  Shallow moderate sized earthquakes are particularly 

interesting with regard to these questions since ground breakage can be 

used to estimate fault dimension. Furthermore, obseivations from such events 

provide good measurements of Ms, n^, and produce long period WWSSN waveform 

*EB 



3. 

characteristics as well as local 3^-ng motions, this is especially true 

with respect to the San Fernando eirthquike. 

To compare observations with synthetics continuously from the local 

field to teleseismic distances requires considerable effort.  This report 

will be concerned with this problem, namely the presentation of a general 

technique of modeling shallow dislocation sources imbedded in a layered 

elastic medium. Much of this material will be published in a paper by 

Langston and Helmberger, shortly. 

«■to 
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II. Theory and Assumptions 

In this section, we will cover the model assumptions and the 

full expressions for an arbitrarily oriented point dislocation in a 

layered medium. 

The first and commonly held assumption is that shallow earthquakes, 

epicentral depths less than 100 km, are caused by movements along faults, 

very thin planar zones of weakness.  Using this precept, we can specify 

the entire problem of calculating elastic displpcem^nts from this kind 

of source by use of a finite continuous displacement dislocation in a 

homogeneous elastic medium.  By use of the Green's function solution or 

representation theorem for movements at a closed surface in an infinite 

elastic space, one can avoid the problem, somewhat, of non-linear processes 

at the fault.  By placing this surface around the fault zone and saying 

that each side "knows" what the other is doing (continuity of stress), 

including a particular fault surface geometry, one can construct the 

solution for displacements everywhere in the medium given the displace- 

ments on the hypothetical surface around the fault.  In practice, and 

mathematically, we assume this surface is very close to the fault and 

reflects exactly what the real movements are along the fault.  This, of 

course, must be borne out eventually by observations on source liniteness. 

Following De Hoop's (1958) form of the elastodynamlc representation 

theorem Harkrider (1974) has produced displacement potentials for a rec- 

tangular point shear dislocation in an infinite elastic medium.  In terms 

of the wave number, k, and circular frequency, ^ , for an arbitralily 

oriented dislocation with the coordinate system of figure 1, these are; 

•   M  - 
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Figure 1.  Coordinate system for the dislocation formulation, 
z is positive downwards. 
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P Potential 
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^ =  - Kl     k2FaJ2(kr)dk.  •   A1(e, X, 6) 

o 
OO 

+ Kl      2kcF  v J1(kr)dk  ■   A„(e,A,6) 
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+ Kl      (2k 2  -  3k2)F J   (kr)dk   •   A-(e,A,6) 
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SV Potential 

o 

■/ 
o 

■■/ 

evgFgJ2(kr)dk  •   A^ö.X.d) 

oo 2 
(k/ - 2k) 
—B-^  FBJ1(kr)dk  •   A2(e,A,6) 

3CF.V.J   (kr)dk  •   A_(6,A,6) 
ß  d o J 

(1) 

SH Potential 

+ Kj      kg FßJ2(kr)dk  •   A4(e,X,6) 

f- eFBvßJ1(kr)dk   •   A5(e,X,6) 

where, 

n = compressional wave velocity 

0 ■ shear wave velocity 

k = w/v 
v 
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2 2 
v    =   (k    - k    ) v v 

1/2 

ke 
-v    z - h v 

h    =  depth  to  source 

liLHD(oü) 

4Tipiü ' 

u ■ shear modulus at the source 

p = density at the source 

+1   z > h 

-1   z < h 

L ■ fault length 

H - fault height 

D(u)) - transformed dislocation time function 

A.Ce.X.Ö) = sin 26 cos X sin 6 + ± cos 26 sin X sin 26 

A-(e,X,6) - cos 6 cos X cos 6 - sin ö sin X cos 26 

7. 

A3(6,X,6) - j sin X sin 26 (2) 

1  . 
A,(e,X,6) ■= cos 26 cos X sin I - » »In 26 sin X sin 26 

A,. (6,X,6) --sin 6 cos X cos 5 - cos 6 sin X cos 26 

6 = strike from the end of the fault plane 

X = rake angle 

Ö = dip angle 

The displacements in the medium are given by: 

Mi 
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v<r.2,e,u, .i|i + iÄ-|i (3, 

-   2- 
«  .    M    3 *    1 ä\ Q(t...e.W) . ^ + ^- + 7^ 

The first, second, and third terms of the P-wave and SV-wave poten- 

tials, excluding the angle terms, A^     , correspond to a vertical strike- 

slip dislocation, a vertical dip-slip dislocation, and a dislocation 

dipping at 45° seen at 45° azimuth, respectively.  The SH potential 

contains the vertical 3trike-slip and vertical dip-slip dislocations, 

respectively.  This order will be kept throughout the paper. 

Changing variables into a form more convenient for generalized ray 

theory, that is,  k into p , the ray parameter, and Id into s , the 

Laplace Transform variable, w« obtain: 

P-waves 

K  -   r 3. -sn |z - h| 

*=-4^?Im/    ^e K2(sPr)dp • ^(9^,6) 

K .    r+i00 , -sn lz - h I 
+ T-2-^clm/    p2e  a      K1(sPr)dp • A„(e,X,6) 

o 
+i" 



SV-waves 

+loo 
M /• ,  -snR|z - h| 

\- --^^timl      pe K,(»pr)dp • Me.x.d) 
■/ o 

+1» (2P   "   2)     -snjz - h| 
..   . -^ *LJ. Ve       P K1(spr)dp   •   A, (4) 

tup W        / nß 1 K 2 

M      , /• 
o    2   T    / 

"J I ID I 

0 

/+!"    2  -sn   ]z - h| 
p e K  (spr)dp   ■  A, 

o 

y    . r +1°°   T -•n« I» - h| 
+ -^^ c  ImJ 

47TP   TT 

SH-waves 

+i«>        -sn0 1 - h 
1 ■ I s 

X =    + o   i  1   !,/ JLe      0 K_(spr)dp  •  A 
ATtp  IT B2      y Hg 2 4 

o 

M^   9   c /•+i00    -snR|z  - h| 
Im/ e       ^ K1(spr)dp   •  Ac 

■/ «ipWg2*V 

where  the  following  transformations have been made, 

U = -is 

k = -isp 

Q ■ -spi^ ,  SV potential transformation 

M ■ LHD p ,  fault moment 
o     o 

D 
D(s) m "T t     a steP function weighted by Do 

1 
2 n. 

V (7 -') 
=  Laplace  transformed 

v 
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The nature of the variable changes and SV potential transformation 

isdiscussed in Helmberger (197A).  The displacements after these trans- 

formations are: 

W = -^ + spfi 
dz 

ä . 1M . -i_ AA.. h. (5) 
r oo  spr 3z96  9r 

p ^ ^  9r  sp 3r8z T r 96 

The potential forms (4) are well suited in calculations involving 

layered structure since one just multiplies the appropriate generalized 

reflection coefficients into the integrals before evaluation.  Our expres- 

sions can be further simplified by using the asymptotic expansion for the 

modified Bessel functions. 

We have: 

M   3 ,   /•+i°°   p  /——i -s(p.- + n |z - h|) 

j-i 

+1°°    m        /—=-~i    -s(pr + nftlz - h|) M   3        „   r+i'»    „ /—--i -s(pr + nR|z - h|) 

^-w^"-^1"/     ^t v/S?e         6        d' (6> 
^ o 

M  2                 /•+i" AJ-i -s(pr + nß|z - h|) 

where 

SV1 = -epng SH = l 1   r 
C2 = 2epnot SV2 = (nß

2 - P2) SH9 =--T^r 2   32 p 

(7) 
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C3 = (p2 " 2na2)    SV3 = 3epnß 

One final form which is useful is the first motion approximations. 

This approximation supposes that the above functions can be takan outside 

the integral and evaluated at the appropriate ray parameter yielding the 

standard vertical radiation patterns, see Helmberger (1974).  Transforming 

into the time domain, these forms become: 

M   3 H(t - J) 

Mo  3 H(t - |) 
ß" ii? ^ V8'x'6) ^rir- (8) 

Mo  2 H(t-|) 
x" ^ ^ Aj+3(e'A'6)SHj—r^ 

where. 

R \ R 
H(t " y ) = step function delayed by travel time * 

R       = distance the ray travels 

The far-field displacements become: 

w = na(|) + P" 

Q = -p* + nßfl (9) 

v = px 

where the dot indicates the derivative with respect to time.  These results 

are useful for wave calculations when the signal duration is short compared 

to the travel time and will be used extensively in the remaining sections / 
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of this paper. 

One other point should be mentioned on the use of these potentials. 

Earthquakes obviously are not point sources so why or with what justi- 

fication can one use this representation?  The answer to this is simple. 

Because the problem as posed is linear, the principle of superposition 

can be applied.  The idea is that a series of spatially and temporally 

separated point dislocations can be summed to approximate a heterogeneous 

slipping fault surface.  Since it is very cumbersome, if not impossible, 

to put in the effects of earth structure directly with a finite sized 

fault, this approach of taking infinitesimal faults, computing the struc- 

tnre effect through propagating potentials, and then summing each indivi- 

dual fault contribution makes for a much swifter, efficient, and tractable 

operation. 

a.  Shallow Source Modeling:  30-90" 

Ben-Menshem, Smith, and Teng (1965) have given a very thorough 

discussion of the procedurej used for body-wave analysis of deep and 

intermediate depth earthquakes.  Essentially, the methods outlined here 

are very similar except for the important and justifying difference of 

including the earth structure effect through the use of potentials and 

reflection-transmission coefficients. 

We introduce our technique of categorizing the various effects by 

means of a representative calculation. 

Consider the problem setup displayed in figure 2 where the goal 

is to produce a P-wave synthetic seismogram at the receiver for the 

rays shown.  The total vertical response at the receiver can be given 

Mta 
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300<A<900 

-D- 
Receiver 

Combined rays 
of  sP,  pP, P 

Dislocation source of some 
orientation  Ö,   X,   S 

Figure 2.  Schematic representation of equation (10). 

- ™ - 



by  the   following equation; 

14, 

(10) 

w = + ^aSz^ + RPP* * H(t " Ati) + Rsp^ * H(t " ^2)]*s(t)*Ht)i"Ht) 

where, 

Rp  = vertical P-wave receiver function 

Rpp = reflection coefficient for pP 

R p  = reflection coefficient for sP 

S(t) ■ far-field dislocation time function 

I(t) = impulse response of an instrument 

Q(t) = Q operator 

= convolution operator 

At .  = time lag of pP relative to the direct wave 

U 2     = time lag of sP relative to the direct wave 

H(t - At) - lagged Heaviside step function 

Remember that  z  is positive downward.  Note also that the SV potential, 

ft , appears in this P-wave calculation since it must serve as an amplitude 

weighting function for the ray sP.  In practice, for these ranges, one 

ray parameter is used for all near source interactions.  For shallow 

sources the error introduced by this approximation is negligible.  For 

the same ray parameter then, we have the time lags given simply as 

*Mta 
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At. = 2HSna (11) 

At2 ■ HS (n3 + na) 

The far-field time function, s(t) . is the derivative of the 

actual dislocation displacement time function.  This comes about by 

Do 
setting D(s) = — in (4) to get the step-function response of the 

potentials.  The impulse response, whic.i is needed for the convolution 

operations, is simply the time derivative.  For convenience, and by 

superposition, we do this derivative on the displacement time function 

to give the far-field time function.  Also, since we weighted the step- 

function response by D , the final offset, we must set the final off- 

set of each displacement time function used to be 1.  Denoting the 

displacement time function by f(t) , »"his corresponds to: 

S(t)dt E ' (12) 
/   ^-/ 

The fault moment, M , contained in the potentials (4), (7), and 
o 

(8), is taken to be expressed in thp conventional units of ergs (dyne-cm) 

3 
and density, p , in gm/cm . 

The instrument response, I(t), is usually normalized to one of 

its particular frequency components.  For example, using Hagiwara's 

(1958) equations, one can construct the instrument response for the 

15-100 WWSSN long period instrument, such that the amplitude of the 

15 second period spectral component Is equal to unity.  This form is used 

in all the synthetic seismogram calculations of this paper. 

The reflection and transmission coefficients are those used by 

v 
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Helmberger (1968) and, in this case, are simple raultiplicatr e constants. 

If evaluated inside the integrals (7) or (4), an  the general case, a range 

of complex ray parameters defined by the Cagm^rd contour is used. 

The receiver functions R  ,  R  ,  R   and  R   are explicitly 

given in Helmberger (197A) and behave as simple real functions of p over 

the ranges considered.  The letter index of this notation tells the wave 

type and receiver component, respectively. A fifth receiver function 

defined by R.^ = (2p)  describing the tangential displacement at the free 

surface is idled for completeness, see expression (5).  Table 1 shows the 

variations expected in these functions for different receiver crust models 

and ranges.  The table is made with z  positive upwards.  As can be seen, 

these Etmctlona are fairly slow varying over these ranges. 

Futterman's Q operator (1962) using a constant T/Q ratio will be 

the basis for the Q(t) term in all calculations.  It has the property of 

preserving pulse area so no scaling problems arise from using it. 

The expressions for the potentials were derived for a homogeneous 

earth with the spreading term (1/R).  The effective (1/R) for a real earth 

is somewhat smaller, see figure 3, and can be approximated by the method 

used by Helmberger (1973a).  The amplitudes were measured directly from 

the synthetic step function responses generated from an earth-flattened 

.leffreys-Bullen model and plotted .ersus range.  This curve is equivalent 

to a smoothed geometrical optics calculation and contains pome theoretical 

uncertainty as pointed out by Chapman (1974).  There is also the problem 

of earth structure uncertainty which could easily produce significant 

waveshape distortions.  We will neglect these interesting problems here 

and concentrate on waveshapes produced by the source and accompanying 

surface reflections. 

Mto 



Table 1.  Evaluation of the receivers functions for various ray 

parameters and crustal models. 

17, 

<         1 

Crust 
Model A(0) 

P 
(P-waves) 

P 
(S-waves) ^Z RPR 

Rsz RSR RT 

a = 6.0 90° .040 .069 -0.321 -0.093 -.158 .545 .138 

0 = 3.5 60° .060 .104 -0.306 -0.138 -.231 .511 .208 

30° .080 .139 -0.285 -0.182 -.288 .484 .278 

a = 5.5 90° .040 .069 -0.353 -0.093 -.158 .600 .138 

B = 3.2 60° .060 .104 -0.339 -0.138 -.232 .570 .208 

30° .080 .139 -0.320 -0.182 -.296 .536 .278 

a = 5.0 90° 

- 

.040 .069 -0.390 -0.092 -.158 .667 .138 

0 = 2.9 60° .060 .104 -0.378 -0.138 -.234 .640 .208 

30° .080 .139 -0.360 -0.182 -.301 .605 .278 

tmm 
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50 60 
A, deg. 

70 80 

Figure 3.     Graph of the effective 1/R decay In a Jeffreys-Bullen 
spherical earth. 
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b.  Source Time Function Scaling 

Making certain assumptions about the seismic source one can derive 

scaling laws for the source time function which include parameters such 

such as stress-drop, fault moment, and corner frequencies, see Brune 

(1970).  The basic relationship is that the ratio of fault displacement, 

D0 , ro fault dimension,  r , is proportional to the ratio of stress 

drop,  a , to y , the rigidity.  We can derive Brune's results rather 

easily from shear dislocation theory.  Starting with the SH potential, 

X , of equation (8), assuming a vertical strike-slip fault (6 = 90°, 

A = 0°), and taking the necessary derivative indicated by ^9) we get for 

the far-field tangential displacement 

M 
ü i «(ff) 

Airp ß3 %Q ~       R " (13) 

where we have set R 0 = sin 4» cos 29 , the radiation pattern.  The 

sin (|i  tern comes from the relation p = sin 0/6 , where fy     is  the 

take-off angle from vertical.  Assuming the far-field time history dis- 

cussed above, we have 

M
0  1    fi\   "fr -f) 

For an assumed Brune time history, leads to 

H        2,  -at 
9r=ate (15) 

and assuming a circular fault, Keilis Borok (1960), 

*Mte 
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(16) 

by  further assuming that 

a    2 F© (17) 

The spectrum corresponding to (16) is simply 

«(«.M.») - R^Q & ß (I)(T77) (18) 

which leads to the "corner frequency" phenomenon.  Generally speaking 

then, this model says that the frequency of the time function is inversely 

proportional to the fault dimension; the longer the fault (or lower the 

stress-drop) the longer the time function lasts.  We will incorporate 

this idea in a semiquantitative way in the discussion of the synthetic 

seismograms. 

The far-field source time function assumed here will be a trapezoid 

of unit height described by three time parameters, fit's.  The time length 

of the positive, zero and negative slopes will be represented by  Stj , 

6t  ,  and 6t  , respectively.  These thrae fit's allow relative time 

scaling of such things as ris- time, fault duration, and stopping time. 

This time function will be normalized by the convention assumed, that is, 

of equation (12). 

c.  Synthetic Seismograms 

Synthetic seismograms were computed for P, SV, and SH waves for a 

^ 
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point dislocation source in a halfspace using relations (8) after the 

method described by (10).  The halfspace model uses a compressional 

velocity of 6.0 km/sec. shear velocity of 3.5 km/sec, and density equal 

to 2.7 gm/cm .  The distance from the source was taken as 80° which 

corresponds to a ray parameter of about .05 for P-waves and about .087 

for S-waves. 

For P-waves a constant J ratio of 1.0 was used in Futterman's 

Q operator, Helmberger (1973b).  For S-waves a conservative estimate 

T 
of -- = 3.0 «-as used. 

The impulse response for the 15-100 WWSSN instrument was used in 

all calculations. 

Each of the respective sets of synthetic seismograms,  P ,  SV , 

and SH of figures 4, 5 and 6 are arrayed with the purpose of showing 

the contribution and effect of each of the Jth terms of equation (8). 

Each one of these terms (j = 1,2,3) can be given a separate physical 

interpretation.  Not considering the radiation pattern,  A. ,  j = 1 

represents a vertical strike-slip fault, J = 2 a vertical dip-slip 

! fault, and j = 3 a 45° dipping dip-slip fault as seen at 45° azimuth. 

To produce any other oriented point dislocation, one just multiplies the 

appropriate A^  for each orthogonal term and sum.  This particular 

orthogonality relationship came originally from the way the Green's 

function solution grouped together as double-couple representations. 

The P waveforms all contain the surface interactions pP and sP 

as described by equation (10), along with the direct wave.  Likewise, by 

analogous calculations, the SV waveforms contain S ,  sS and pS and 

the SH wa%eforms S and sS .  The left-hand side of each diagram con- 

tains a representation of the medium impulse response for the source depth 

1 

riMta 







24, 

SH-Wave   Vertical Strike-slip 

MODEL 

RESPONSE 

HI GH"~|" "MEDIUM]- LOW 
S TRESS- DR OP 

101      \    9.5 

(xlO"3) 
79      A      '   I 

7.9     A      60     A      46 

7 9     A A  6 0 

7.9     A  A 60 

8.5 

60 

h. 
km 

10 

15 

39 

i   i   i   i   i   I   i   i   i   i      I   i   i   '   i      Mill 

SH-Wave   Vertical   Dip-slip 

MODEL 
RESPONSE 

JHIGH   J MEDIUM]     LOW 

STRESS-DROP 

i 
30 7 248 12 4 

431 356 198 

20 

25 

30 

401        133 6 

329      /1269       /\2I6 

274     ^214 \I62 

193      r\l54 

1  i i i  i i  I  i i i i     I  i i I i—I  I i i ' 
0        40   0        40 0        40  0        40 0        40   0        40 0        40 0        40 

Time,  sec 

v 

Figure 6.     SH-wave synthetic  selsmograms.     Same scheme as Figure 4, 
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considered.  The relative ^pike height corresponds to the weights of the 

delta functions.  In each column to the right of it are the synthetic 

seismograms obtained by convolving in the instrument,  Q , and the 

particular source time function considered.  The "stress-drop" conota- 

tion used here is a very simple one based on the length of the time func- 

tion as discussed before.  Table 2 displays the time function parameters 

used for the various designated stress-drop calculations. 

Even a cursory examination of figures 4 and 5 show that the phases 

pP ,  sP and sS are often as large, if not larger, an effect as the 

direct wave.  Compare, for contrast, with figure 7, which displays what 

the waveform would look like without the surface interactions. 

The amplitudes indicated by each synthetic of figures 4, 5 and 6 

do not contain the factors of M /ATip , — , the appropriate receiver 
o       K 

function, or an instrument magnification.  To get the amplitude, one 

just multiplies in the appropriate constants as discussed and also a 

unit conversion constant, 10  , for units of centimeters, or lü  , for 

microns. 

Note that polarity of sP in the dip-slip case of figure 5 is dif- 

ferent from that of Helmberger (1974) due to a sign error in the SV 

potential as mentioned earlier. 

Figure 8 shows a sample calculation for summing the three orthogonal 

faults.  These synthetics are appropriate for a station at 80° distance 

and 30° azimuth from a northward striking fault plane of figure 1.  The 

amplitudes are scaled, taking all the factors discussed above into account 

25 
with a fault moment of M =10  ergs. 

o        ■ 

Two important observations can be made from this figure.  The first, 

and obvious one, is that the waveforms are complicated due to the surface 



Table 2 

Source Time Function Parameters 

26, 

6t, 

6t, 

6t. 

Ugh medium low 
stress-drop stress-drop stress-drop 

0.5 1.0 2.0 

1.5 3.0 6.0 

0.5 1.0 2.0 

Mi 
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HIGH MEDIUM LOW 

P-Waves 
T/Q = I.O 

S-Waves 
T/0 = 3.0 

0 

STRESS-DROP 

0.37 

0.24 

40 0 40 
Time, sec 

Figure 7.  Synthetics of the time function indicated convolved with 
the 15-100 instrument with no crustal interactions. 
Amplitudes scaled to the high stress-drop P-wave. 

/ 
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0      40 0 
Time, spr 

Figure 8.  Synthetics of P, SV, and SH waves from a 15 km deep medium 
stress-drop dislocation with a moment of 1025 ergs seen 
at 30° azimuth, 80° distance, for various fault plane 
dips. The rake angle for all dips is 90° representing 
a thrust fault. Amplitudes are in cm. Positive P starts 
as a compression, positive SV is motion away from the 
source, and positive SH is clockwise motion looking from 

above. 
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interactions.  They do not look like figure 7.  The second is that, due 

to the increased relative travel time between S and sS as opposed 

T 
to P and pP and also the increased — for S-waves, the S-waves 

appear to be longer period than the P-waves.  A number of recent investi- 

gators have suggested the S-waves corner frequency to be at longer periods 

than that of the P-waves. Here is a simple mechanism of producing such 

an effect with a simple shear dislocation without recourse to more 

complicated source mechanisms. 

III. Discussion 

The use of the potentials and methods presented here provides a 

useful tool for the study and modeling of shallow earthquakes.  By separat- 

ing the reflected phases from the direct arrivals, one can gain a clearer 

picture of the source mechanism and, hopefully, a better appreciation 

of the processes that produce earthquakes. 

An interesting feature of this method of waveform analysis is that 

for earthquakes with relatively simple time functions the information 

contained in a seismogram increases dramatically for use in focal mechanisms. 

Each of the phases pP , sP , sS ,  and pS contain just as much infor- 

mation about the source as do the direct waves.  By recognizing these 

phases, the seismogram can be put to much better use than has been pre- 

viously possible.  For trample, it is theoretically possible, in many 
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cases of fault-plane orientations, to find a well-constrained fault plane 

solution using very few stations by modeling the P and S waveforms 

and relative amplitudes. 

This approach of seismic modeling using point sources will also 

be very useful in the near-field.  Using generalized ray theory layered 

earth structure can be incorporated into fault models composed of catenated 

arrays of point sources.  This will allow realistic earthquake strong- 

motion calculations. 

These subjects will be the basis for future work in earthquake source 

modeling.  Abstracts of two such studies are given below. 

The Relationship Between Teleseismic P-Wave and Near-Field Strong Motion 
Observations for the"F^uruary 9. 1971. San Fernando Earthquake, by 

Charles A. I.angston 

Long-period P-waves from 17 azimuthally varying WWSSN stations reveal 
dinstinctive source complications during the San Fernando earthquake. 
Preliminary results show that the teleseimic record is dominated by 
crustal phase interactions from two different source areas on the 
San Fernando fault plane. Represented by two point dislocation sources 
of nearly equal moment, one at about 14 km depth with the fault plane 
parameters of Whltcomb et al. (1973), and the other at about A km 
depth with about 10° less dip, synthetic selsmograms are calculated 
through the use of potential ray theory and compare very well with the 
teleseismic observations. Using the Cagniard-de Hoop method near-field 
SH displacement synthetic selsmograms are constructed for this model 
and are favorably compared with Hanks' (1974) profile 1 of twice 

integrated accelerograms. 
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Determination of Source Parameters from Body Wave Selsmograms. by 
G. R. Mellman, L. J. Burdlck, and D. V. Helmberger 

A method of obtaining fault parameters from long period body wave 
selsmograms has been developed.  Using Inversion techniques to 
simultaneously fit waveforms of selsmograms recorded at a number 
of stations at teleselsmlc distances, fault orientation parameters 
and duration of the source time function may be determined.  For 
multiple events, multiple fault orientations and multiple time 
functions may be obtained.  Studies of synthetic problems Indicate 
that this method may be used to refine fault plane solutions where 
Inadequate first motion data are present, to obtain far field time 
functions for shallow events, and to do resolution studies on 
fault parameters.  These techniques are applied to determine a far 
field time function for the Borrego Mountain earthquake. 
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