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1. Introduction

A thin spherical layer of an incompressible, inviscid fluid
which is held on the surface S of a rotating ball by gravitation
can be taken for some purposes as an approximation to the Earth's
atmosphere. An investigation of the two dimensional vortical
motion in such a layer should be useful for the understanding of
certain observed meteorologicai phenomena. For example, 1t appears
that the analysis of large scale closed isobaric systems can be
based on a knowledge of the paths of concentrated vortices.

This report presents a study of the vortical motion which 1is
due to the existence of concentrated vortices (normal to §) which

are confined to a polar cap and subject to a boundary condition

along a circle of latitude.

We assume that the Jeparture of the free outer surface of the
layer from an equilibrium position 1is small; and that the tangen-
tial acceleration is negligible compared with the Coriolils force.
We also assume that the variation of the Coriolis force with lati-
tude can be neglected In other words, we study geostrophic vor-
tices on a sphere as contrasted wic) geostrophic vortices on a
plane. The latter have been discussed by several authors in
connection with the motion in a rotating planar tangential layer
as an approximation to the motion in a thin layer of fluid covering
a rotating ball. References can be found in the paper by

Morikawa, [1].

The main result is the system of nonlinear equations for the
paths of the vortices. These are used to study the linear stabil-

ity of the motion of n vortices which are symmetrically arranged




along a circle of latitude in a cap with or without a polar vortex.
One of the boundary conditions imposed requires the velocity to

the north to be zero along the circle which bounds the cap; and

the other requires the velocity to the east to be constant along
the boundary. The investigation is restricted to analytical
results which include a formula for linear stability for the case
in which the polar vortex is either held fixed or else has zero
strength. Numerical computations, which are necessary for
decisions about the linear and nonlinear stebility of given con-
figurations of vortices, will be discussed in another report. See

Leiva, [2].




2. Equations of Motion

Let p denote the distance of a point from the center of a \
!

ball E of large radius a which rotates with constant angular

velocity w about a polar axis. Let ¢ and 6 denote respectively
the longitude and the colatitude of a point on the rotating
spherical surface S of E. Let p =a and p = a+h(¢$,6,t) represent
two surfaces which contain an incompressible, inviscid fluid which
is gravitationally attracted by E. Suppose h is small compared
with a.

The velocity of a fluid particle relative to S is defined by

the components

u = (p sin 9)'%$ = tangential component toward the east,
de
v = “p T ™ tangential component toward the north,

radial component.

- &

If the only body force acting is that due to the gravitational
potential G of E, then the basic hydrodynamical equations which 1
define the motion of the fluid relative to S are the continuity

equation

p Bs o] [% B(vsine)] .

end the momentum equations

du 1 opy

uv cot 6 = ;
I - +.7; + 20w sin 6 - 2wv cos 6 = - 5_p sin 0 3¢ °




2
dv VW u- cot 6
$ = —— 6 = ;
IF 5 5 2wu cos 5o -l

In these equations the differential operator with respect to the
time means

d _ 90 ., u d vo,.9

Tt osmAN ¥ "R
The symbol 60 denotes the constant density of the fluid; and p
stands for the pressure in

60p2w2 sin26
by = PHbgL = 2

which can be referred to as a modified pressure.
Since h is supposed to be small compared with the large

radius a of E; and since

w(d.6,a,t) =0

let us neglect the radial velocity and the radial variation of u
and v. Let us assume that G = gp where g is a constant; and that

the centrifugal effects manifested by the partial derivatives of

6Op2w2 sin26

s can be ignored. Let us also assume that the motion

is such that the nonlinear terms in the tangential momentum equa-
tions can be neglected; and that the radial momentum equation can

be replaced with the hydrostatic law

P(‘b,e,p,t) = gﬁo(h"'a"P)

which satisfies the condition that the pressure is zero at the free

surface p = ath.
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Under the above assumption and wi*h the notation

t(‘i”eyt) = u(¢:6:a’:?) ’

V($,6,t) = v($,6,a,t) ;

an approximation to the motion is determined by the equations

ow 1 du _ 3(V sin 6)| _ . .
(2.2) By (B2 L,

U g _ g dh .
(2.2) 3t - 20V cos 6 = - e T
(2.3) %% + 20u cos 6 = % 3% .

An integration of (2.1) gives

w(d,8,a+th,t) = - s?n 7 [é(v Sén e) _ g%] .

The kinematic condition at the free surface is

w(d,6,a+h,t) = %%
and hence
dh _ h d(V sin 6) U
(2.4) dt  a sin 0 [ ob - ERJ y

We suppose now that h(4,6,t) is always close to the constant value

ho. Then if we introduce

h-—ho
T](¢’:6: t) i~
(0]

a linearization of (2.4) yields




1 [§($ sin ) at]

(2.5) Mt “ & sin 0 oo )

while the momentum equations become

(2.6) 3 2wV cos 6 = &% —83 ;

. 3f - wv e T " @asin 0 3}’
3V ~ 8h, 3

(2.7) Ef + 2wu cos 6 = -—a— 3‘8 .

Unless stated otherwise, we assume in what follows that w is not

ZETroe.

I




3, Geostrophic Vortices

If we neglect the variation of the Coriolis force with lati-
tude and take

@w cos 6 = w cos 61 =W

then the last equations of Section 2 reduce to

~ i d(V sin 6) dul |
(3.1) My "2 sin @ [ ob B SEJ ’
aﬁ ~ gh0 B .
(3.2) SE - Y =-3Fsnh o S% ’
~ = gh
(3.3) %%*2w1“='70%3'

Hereafter we confine ourselves to a study of these equations. As

will be explained in the sequel, they lead to what are called geo-

strophic vortices.

The elimination of 7 from (3.2) and (3.3) gives

: 1 3(Y sin 6) , 3V
(5.4) & (et [<u sin )+§%]}=2wlnt.

The quantity

£ = a sin © ot

1 {é(ﬁ sin 6) . a%]
b

is the radial component of vorticity; and by integration of (B.M)

we have

1 \va(?i sin 6) + av} = 2(1)17'I+C(¢9690) —2(Dlﬂ(¢,9,0) g

)] Y




This implies that we can use (3.5), (3.2) and (3.3) as a basic set
of equations instead of (3.1); (3.2) and (3.3).
Equations (3.2) and (3.3) imply

2 gh [ -y
3 u 2~ 5o d 1 9 N
(306) —a;-g + Lknlu = 2(1)1 ﬁ “SIn O btb¢>]
and '
2~ gh I 2w 2
v 2~ o) 1 9 d
(3.7) bt§ d 4wlv =& |sin @ b% +'5fg%] e

If these are used tc eliminate U and V from (3.5), we find

2 2 2
) 1 9 a 2 d

(3.8) -_l_y.g% sin 6 33 + | 4oln + E!
§in s1n°6 b¢2 ghy, 1 Jt

a22w

_ 1l ,»
= —EE;_ L' (d,€) .

The theory of Laplace transforms can be used to show that the

steady state solution of (3.8) is such that

(309) L ﬂ(¢,9,t) = ’ﬁ’(‘#,e)

t=>00

where ¥ must satisfy

2 2
52w La wy¥

1 9 9 1 - a‘r*
(3010) -S'-{n—gw sin 6 gg + Sin?9 a¢2 - Zh = a'c (¢’9) <

o

The function y does not depend on t and the associated time inde-

pendent velocity components are




]

(3.11) U =1L, Sb0,t) =23

Ry 1
(3.12) V = Lt_)oov(¢>,9,t) = m% .

Note that (3.10) is a consequence of the equations (3.11), (3.12)

and the vorticity equatlion

1 [3(u sin e)+av] - 2w L, 0+ (b,0)

(3.13) a sin © L B)2) '§$

In other words, (3.10) is implied by (3.5); (3.2) and (3.3) when
we ignore inertial forces.

We are interested in the solution of (3.10) when the
vorticity £*($,6) is constant in a small neighborhood of a puint
(¢*,9*) and zero elsewhere. This solution, as is well known, can
be derived from the solution of the idealized equation which comes
from (3.10) when t*($,6) is assumed to represent a vortex of
strength u concentrated at the arbitrary point (4,6). For this

reason we are going to begin with the mathematical interpretation

defined by

a2u6 (-4, )6 (6-6,)

az[C(¢:6:O) —len($,e,0) = azc*(¢,e) = 2
a~ sin 61

where & symbolizes the Dirac delta function. Hence the basic equa-

tion to be solved is
32 wlw - u6(¢'¢1)6(6'6

1 )
(3.14) sn 0 30 sin 6 %g sin ! O sin 61




The motion in a thin planar layer of fluid tangential to the

surface of the Earth is often used as an approximation to the
actual motion of the Earth's atmosphere in the neighborhood of the

point of tangency. For sucli an approximation the analogues of

(3.11); (2.12) and (3.14) are

(3.15) U=29x .
XK
=lax'
(3.16) V= z S$ ;
and

l? 6($-$,)6(r-r,)
(3.17) l[gﬂ%g] LR

In terms of the polar coordinates (r,$¢), these show that y must

satisfy

2 L, bolx w5 (4-p)8 (r-r))
r

1 9
r - =
dr ° Or ;E'Sgé “gh, 1

(3.18)

=+

The only physically admissible solution of (3.18) is

Eml

veh,

2 2
r® +r] -2rry cos (¢-¢l)

(3.19) X = - %= K

where KO[ ] denotes the zeroth order modified Bessel function of
the second kind. This defines what is called a geostrophic vortex.
The motion of various configurations of such vortices has been
studied by several authors, notably G. K. Morikawa [1), [3] whose

papers contain detailed explanations and references. In keeping

with what seems to be accepted terminology we can say that (3.14)




defines a geostrophic vortex on a sphere.

Our object now is to investigate the nature of the solution

of (3.14) when w is not zero. This equation can be written as .

(3.20) E.H_g w din 6 %g + s—ln-g-g a—(bg» + V(V+l)'l[/ = o 61 .
where
Uwiaz
[®)

The solution of (3.20) can be inferred from the solution of

EI%_F'é% sin 6 %g + v(v+l)y =0 .

This equation defines the Legendre functions of degree v. Its

general solution can be expressed in the form

v o= clPV(-cos 9)-+c2Pv(cos 6)

when v is neither zero nor an integer as in the case when v is

defined by (3.21) from which

vV = - % + iq
where
i=y-1;
1 16<n§a2
e e

and w, # 0. In the neighborhood of the north pole Pv(cos 6) is

continuous and Pv(l) = 1; but in this neighborhood

11




l

,L

...

. il

P (-cos 8) = P (-cos 8)
v _ l+iq
2
@
- 2 cosh QTTf cos gx dx
0 J/2({cosh x - cos 6)
behaves like
2 sin vrw .n 6 .

PV(-COS 6) ~

This suggests that if a vortex is concentrated at (¢l,61); if dg
is the geodesic distance from this point to an arbitrary point
($,6) on S; and if o, is the angle g = dl/a, then the fundamental
solution of (%Z.20) is

-cos 6 cos 61

v
I sin mv Pv )
-sin 6 sin 61 cos (¢-¢1)

I sin v Pv('cos 01)

It can now be verified by direct substitution that

(3.22) v = sty Byl-eos o)

does indeed satisfy (3.20). Furthermore, computations with the

velocity components

= W 3 _ .
U= g sinvr 30 PQ( Cos 01) ’

_ W 3 y )
V =0a5n 0 sin vr Y Pv( E0R ol) ’

show that in the neighborhood of (¢l,61), (3.22) defines a vortical

motion; but the vortex point itself remains at rest — it possesses

no autonomous motion. In fact it can be shown that




i
Losoo T 5In w7 Pv(-cos Ol)

2w
3 1 2 2
m =K jr +r]-2rr, cos (¢-¢1)

ngo

i'lence we can say that (3.22) represents a geostrophic vortex on a

rotating sphere in the same way as we say that

X = - EF'Ko ! j;§l+r§-2rrl cos (¢-¢l)
veh,

represents a geostrophic vortex on a rotating plane.
For an arbitrary distribution of n+l vortices on the sphere

the function ¢, a stream function is

1 n
Vo mEm e b RS o)

where oy = dJ/a and dj is the geodesic distance on S from the
point of concentration of the j-th vortex, (¢j,63), to an arbitrary

point (¢,6). That is,
cos 7y = cos € cos 6, +sin 6 sin 64 cos (¢-¢j) ;
The associated velocity field is given by

13 1 d (= .
a ~ Ta sin vm 379{% LLJPV(_COS OJ')} ’

il _ 1
- W EIn's %% ~ Ta sin @ sin vt 3

J=0

The path of the k-th vortex is along a stream line,




(¢(x,y) = const), and its velocity is equal to the velocity at

(¢k,9k) due to all of the other vortices. Therefore since :

U= asin 6 %% ; V= -a %%.; .j

the equations for the motion of (¢k,6k) are

dé n
k 1 d
i w.P (-cos o,)
it 4asin 6 sin v By{jggg J v J } ¢=¢k 1
Ik 6=6
and £
de n
k 1 d
= w.P (-cos o) .
dt 4asin 6 sin vr %{Jg J v J } ¢w¢k
J#k 6=6,

If the motion is confined to a part D of the sphere S,
boundary conditions must be imposed; ard it is not then possible,
in general, to express ¢ as a finite sum of terms of the type

T
u*gg%—;; P (-cos OJ)- When D is a cap bounded by a circle of

v

latitude we have a case which is important for applications to
certain meteorological phenomena. The assumption that the
Coriolis force is independent of latitude decreases in severity as

the latitude of the boundary circle of the cap increases.

14




L4, Geostronhic Vortices in a Cap

Suppose that n+l concentrated geostrophic vortices exist in
the cap which covers the north pole and is bounded by th> circle
of colatitude 6 = A. Suppose that along this boundary circle the
velocity - the north is zero. In order to study the motion of

the vortices we need the stream function which satisfies

- 2

(4.1) ET%'U é% (sin 6) %% ($,6) + 'Ti?g %;% + v(v+l)y
S.ly
_ n u 6(¢)-?J . 3
50 sin @
for
O:eyej<)\i O<¢’¢J
with the boundary conditions
(u"g) V(‘b,)\) = % 7%(‘1),/\\ =0
or
(4.3) v(d,n) = ¢ .
The solution of (4.1) subject to (4.3) can be expressed in

the form

-cos 6 cos GJ.

(“.4) ¢, bP COS 6)+m;up
-shuesinejcos(¢_¢3)

N S c, (m,2)B(cos 6) P! (cos 6,)cos m($-4 )
T %;U uj 2___ m v(cos v(cos ; co -9




-

where PT(X) is the spherical harmonic of degree v and order m.

This function satisfies

2
& (1-%%) £ PT(x)-f[}(v+l) : ;%;g]d?(x) =0
and is such that
1, m=20

o, m#O0.
P?(x) can also be oxpressed in terms of Pv(x). We have

m/2 dev(X)

] 2
(45) P (x) = (-1)"(1-x°) 5

The expansion

Pv{-cos 6 cos ej -sin @ sin ej cos (¢-¢j)]

0 0]
= ;;% emP?(cos ej)pﬁ(_cos 6) cos m(é-b;)

where

o:ej<e<n; ¢,¢J real

and

_ m or(v -m+1)
em—(-l) _I“—%v_’r_m_*f)" m>O0,

shows that the boundary condition (4.3) is satisfied if we take




C

b = Pv!cos )
and
Pm(-cos A)
C , e =~
V(m B “m P?(cos A)

It can be shown that the solution (4.4) is unique; and that it is
analytic in the cap minus the vortex points.

If instead of (4.3) we impose the boundary condition

(}4"6) ¢9(¢:7\) =C,

which means that the velocity to the east is kept constant along
the boundary circle of the cap, then (4.4) again provides the solu-

tion if we now take

b = <
sin AP;(cos A)
and
]
: ) P? (-cos )
C (m,AN) = ¢ -
K o P? (cos A)

!
where P? (x) denotes the derivative of E?(x).
The series which appear in (4.4) can be summed if the cap is

the northern hemisphere. For this case A = T/2 and

Cv(m ,%) =Ig, °
Then since
oo
(4.7) %;; emP?(cos G)P?(cos GJ) cos m(¢-¢J)

= Pv[cos 6 cos GJ -sin 6 sin Gj cos (@-@i)]

17




. _adi

0 <6,6, <m ; 9+Gj<1r,- d),%real;

we see that

-cos 6 cos 9].

(4.8) ¢), bP COS 6)+7-1_T__ K
sl §:6 J ’ -slnesinejcosw-daj)

cos 80 cos 6

J

1 n
¥oOsinvr : u.jpv
-sinesine cos ¢¢>

where for the boundary condition

the upper sign is to be taken with
while for

the lower sign is to be taken with

Notice that P [-cos 6 cos GJ. - sin 6 sin GJ cos (¢>-¢J)] is singular at
($,0) = (¢>J,GJ) and Pv[cos 6 cos 63- sin 6 sineJ cos (¢-¢>J)] is singu-
lar at ($,6) = ¢>J,1r-93.). It follows from the form of (4.8) that

that solution can be constructed from the fundamental solution

1
- 6. - =
—— P, [-cos 6 cos 6 sin 6 sin 6_ cos (b ¢J)]




by using a process of reflection across A = r/2. A reflection
technique for the construction of the solution for a cap other
than a hemisphere is unknown when v # O.

If v = 0, that is if w = O, then (4.1) reduces to

2 5(¢- 6-6
(4.9) ?lr{_gsagsmegp__lg_a_&g: o (= O (E=5, )

sin“6 9

=5 sin GJ

This equaticn possesses the fundamental solution
| 1 o 26 2 9 6 %
7= In a l?an = + tan 7% - 2 tan x tan 7§ cos (¢-¢J)]

6, iéd
v = é% Re #n a[ﬁan % ei¢- tan 7} e J] .

Let us also remark that if we employ the transformation

z = (a tan g)ei¢ = x +1iy

then the problem of solving (4.9) subject to 0 = 6 < X and a

boundary condition can be transformed into the problem of solving

} 2 2 n
) Y _
} —ajg + -a—};é = J.=O uJﬁ(X-XJ)a(Y-yJ)

subject to 0 < /xé-ky < R and a corresponding boundary condition.

| See Peters, [4}. The latter equation, as is well known, governs
the motion of rectilinear vortices; and for many cases it can be

solved by using reflection techniques.

given by

% The velocity field defined by the stream function (4.4) is




13

4a° sin vresin 6+¢ = U4 sin vrw g-’g = -U4b sin vresin 6-P\:(cos o)

9 -cos 6 cos 6 sin 6 cos 6

n J J

+ %_; L g
=5 J Vv
- -sinesine cos (¢- ¢> -cosesine cos (¢- ¢

- sin 6 ﬁ My t.o Cv(m,)\)Pm'(cos A P (cos ej)cos m(d-4.)
=0 m=0 J

v \Y

and
_ - 1 3
V-'ae-ms’%

-148.2 sin vresin 6.6 = 4 sin vr %%

-cos 6 cos 6
n . J
. sin 6 sin 6, sin (¢-9.)

= P
%—7; M3t J J
-sin 6 sin GJ. cos («b-d)j)

- % uj t.o Cv(m,)\)Pm(cos 2] Pm(cos 6.)m sin m($-4.)
= m=0 J J

v v

The following equations determine the motion of the vortex

(¢k’e




2 0 . .. = = . . J \
(4.10) L4a® sin vresin 6 ¢k = -4b sin vr sin Gka(cos 6 )

' -C0S 6 cOsS GJ S1In 6] COS 6 . l
+ § || P °
- I] 0Ss e
'J S 6 sSin 6 C CcOS 6 SIn 6 CcOS ¢ ¢’ J

- sin 6, 5__'u 7_— C (m, A PT'(cos 6, )P (cos 6, cosm(¢k-¢.) ,

o v J J

2 s
(}4.11) ~4gc s. wvresin ek.ek =

- s 9,
. cosekco i

+ W, P . sin 6, sin 6, sin (b=
%;% i -sin 6, sin 6 ,cos ($, -¢.) y ’
j#k K J k 7

s 5 -, C (m,)\)Prc(cos Gk)P‘\?(cos GJ)m sinm((bk-(bj) .

sEE =

Suppose now that one vortex of strength Ko is at the north
pole and that n (n > 2) others each of strength u, are symmetric-
ally situated on a circle of latitude within the cap. In other

words, suppose that

while




where

O<'Y<}\-

For this configuration the velocity to the north of the polar

vortex is determined by

. n
~4a? sin vr+f = n P'(-cos ) sin ~yesin (¢ -$.)
o) =T ¥ o "J

n o ‘ PT(cos 6, ) o o .
| - LGR»OE% c,, (m,\) 5T T, y(cos 8)m sin (b,-by) -

Using (4.5) we find
2 . n_
: -4a° sin vre6_ = u P (cos v) sin vy sin (¢ _-4.)
o] I= Y 8 ~d

n
=T g;; Cv(l,x)PC(l)Pb(cos v) sin vy sin (¢o-¢j) .

From this we see that

because

} n n . EI] o
n

s oin (o) = S sin (- (1)

The velocity to the north of any one of the vortices on the

circle of colatitude y is given by
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_4a° sin vr.sin yoék

n
= 4 g P‘:[-cosgy -singy cos (k-j) %T-]sinzy sin (k-j) —21%

Jfk

= u;g Cv(m,)\)[P:l(cos y)]zmsinm(k-j) .

en
n

In this expression each of the sums with respect to J has the form

n

e 27 s 2or

%= F [cos (k-J) =1]sin (k-j)m—n- .

Jfk
» This sum is equal to zero and so we find that

Gk = 0 .
The velocity to the east of any one of the vortices on the
circle 6 = v 1s given by
. 4a® sin vw-&k = -4b sin V‘ITP‘:(COS v)
1 1

r + u [P} (-cos v) - € (0,A)B)(cos v)]

e \ . 2T e 2, T
U P‘;[-COS v -siny cos J —r—l-]d cos y sin™j =

n-1

0 24 ! v ogfl . 2T
-u 23: nz.=o Cv(m,)\)l'*'::1 (cos «;;P‘v(cos v) cos jm ==

= 4a®

sin vre() &




We have now shown that if at time t = O one vortex of
strength ko is at the north pole and the others of strength u

occupy the positions

(b5:6,) = ((3-1) Frov) s = L2eeom,

then the polar vortex stays at the north pole while the others
remain on the circle of colatitude 6 = vy and each moves along it
with constant angular velocity Q0. The strengths Ko and ¢ can be
chosen so that O = 0. On the other hand, if Ko and 4 are pre-
scribed it may be possible (dependiing on the boundary condition)

to choose b and y so that the vortices are stationary.




5. Linear Stability Equations

The motion of the voiiices described in the last section is

given by

(4.,6,) = (b,,0)
(5.1)
(‘t’j:eJ) = ((j'l) %T['*'Ot:')’) ’ J=1,2,e00,nn &

In order to investigate the stability of this motion consider a

second setv of vortices with one member of strength Ko situated at
(5.2) (b,,8,) = (ag +Ct,B.)
and with the others of strength p situated at

(5:3)  (4y,85) = (ay+(3-1) SL+0t,y489) ,  § = L,2,.cum .

Suppose that at t O the quantities aj, J=1,2,e0e,n; and Bj’
jJ=01,2,e00,n, are small. If these quantities remain small as
time goes on then the second set of vortices will always be close
to the first set (5.1). A condition for linear stability can be
found if we can linearize the equations which result when the
coordinates of the second set of vortices are substituted in the
motion equations (4.10) and (4.11). The linearization cannot be
performed directly because @ need not be small in order to have

the second set of vortices near the first set. However, it follows

from our supposition that




i

ol
]
o
0
)
"
Q

!
>
[4)]

[
o}

Q

yO o} o}

j = 1,2,olo,n

are small at t = 0; and linearization with respect to these

quantities is sufficient for the purpose of developing a linear

stability criterion.

After somewhat lengthy computations the linear stability

equations turn out to be:

n-1
(5.4) ql(xO -Oyo) = (A -B %:% sin2j

n

+ Co(y) %;; ay cos (Tj= 1)

%:; B

(5.5) aq,(y +0x_) = -(A -B %% cos®y EL)x,

n

+ () %?_I ay sin (3-1) - c!(y)

. By
(5.6) -ay sin y-fy = =2 C

)x,

n n
P APy i Bgle

sin (k-1) %-yo

-a;),

J
J#k J#k
Y = - =2 el (k-1)
(5=7) q; sin yeo, = - T &8 y)[xO cos (k-

= ;Akjaj +;CRJBJ + CBk

J#k J#K

where
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= Y

sin (j- 1)
] cos (j-1) %%
cos (k-1) %¥]

sin (k-1)

er




_ 48.2 sin v
m

s

A, = f‘iﬁ%f.l_"_" P\'}(l) +5LT° P\'}(l)[CV(O,?\) -Cv(l,x)P;(l)]

+ n[CV(O,)\)P\',(l)PV(cos v)

+ ZCV(Q,)\)P'\;(l)P'\l(cos v) -P\'}(-cos v) cos y] ,
B = siney[P'\:(-cos v) +LLCV(2,)\)P'\',(1)P'\;(COS v)1

] ] ]
C (y) = PV(-cos v) siny-Cv(l,)\)Pv(l)Pv(cos v) sin vy ,

By = P\')(-cos ykj) sin y cos vy sin (k-J) %

m

3 ;02 _) &er
+ P'\;(-cos ykJ)E sin’y cos y sin“(k-J) 5 sin (k-3) —

+ sin vy é Cv(m,)\)Pg’(cos y)Pg"(cos v)m sin [m(k-J) ?r%] ’

Bkj = P\',(-COS 'ykj) siney cos (k-j3) %r-

+ P'\:(-cos ykj) sinuy sine(k-J) —2%

00

= g Cv(m,)\)[P:](cos y)]2 m® cos [m(k-j) _2%] ’

o 2 2 .o
ij = -PV(-cos 7k,j)'[sm v +cos“y cos (k-J) =

+ P'\',(-COS ykj)-sinEQy . sinu(k-j)

=15

n

+ siney %f'o Cv(m,)\)[Prs'(cos y)]2 cos [m(k=J) —gl] ’




4b sin vr P' (cos v) sinzy
[V v |

@

i
[®) , 2 1 1"
+ — sin y[Pv(-cos y)-+CV(O,k)Pb(cos v )]

n-1
. - 2 4 7
+ § -cos yJ) cos J 7T-FPV(—cos yj) sin“2y « sin J-—}

n

(o0
2 . 2m
+ Z ) Cv m, )\)Pm (cos v) Pm(cos v) sin“y cos mj -
@

m=0

+ E C (COS 'y)]2 Sin2'y 4
? m= V

COS Yy = cos®y + sinzy « cos (k-j) %?

s

b cos vy = COSQy + sinzy cos J %% .

The linear system (5.4)-(5.7) has constant coefficients.
Therefore the investigation of the stability of the solution of
the solution of the system can be started by substituting
X, = aoeSt, Q= akeSt, Yo = boeSt, Bh = bkeSt for the variables.
This substitution leads to the characteristic determinant which
theoretically could be studied in the usual way; but it is clear
} that the required analysis for the general case would be too
} complicated to allow the deduction of a practicable formula for
linear stability. If a free polar vortex is involved with two or
more other vortices it is best to subject the characteristic
matrix to numerical analysis. C. Leiva, [2], is doing this and he

' is analyzing the results for the case in which the cap coincides

| with the northern hemisphere.

When the polar vortex is either absent or kept fixed, the

system (5.4)-(5.7) simplifies so much that the development of a




linear stability formula becomes feasible. If the polar vortex is
absent, then Hy = 0. If the polar vortex is present but con-
strained to remain at the pole, then e & U, © O. Hence for either

0
of these cases our system reduces to

. n n
(5.8) -q.B, = B, + B, .(u, -a.),
2Py ;Akj 3 ??—I kiU T %
J#K J#k
. n n
(5.9) Qo = - %; AkjonJ + E C;-,J'chak
J#k Ak
where
. 4g° -
a, = q, sin y = a~ sin zw sin y |

For reasons stated above, let us devote the remaining analysis in
this paper to the system (5.8), (5.9) and its implications.

Summations show that (5.8), (5.9) possess two invariants

given by
n L]
and
n R n

(5.11) a5 a, = (C+D) E By
where

il

o %:I °kg
K#J

§E¥

.2 2 X
n-1 {'-P;(-cos yj)-(81n v +cos"y cos J

+ Pc(-cos yj) sin22y sinuj

SIE]

L2 8 2 ' 2 o
+ sin“y é;;:%;; Cv(m,k)[P? (cos v)]© cos mj = .
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From (5.10) and (5.11) we obtain

n
B, = nag,§
gk 251
n

E;; a = (C+D)nﬁlt-+n52

and

where gl and 52 are small quantities. If we set
By = Pk * 908,

a, = oy +(C+D)E L +E,

we see that

N~

o1 B

(5.12) By
n ~

(5.13) TG =0

I
(@)

and we find that Ek and ak must again satisfy the same equations

as Bk and ak

form, we have

a

&

(5.14)

Now if we take

then (5.14) reduces to

satisfy, namely the system (5.8), (5.9). In matrix



K i
| + a8

¢ a i\'gk}

(5.15)

~

a (%) “
[ B (bk
{\_ak

Here the submatrices (I, /3 and é are right circulant nxn

matrices. It can be shown that the characteristic roots are given
by

qesl(z) = -A(g) + /~B(L)E(Z)

(5.16) 2 = 1,2, 000,00 ;

qesg(z) = -A(2) - /-B(2)E(Z)

where
n 1?,(.j-k)-2-rE
A(g) = };I Ay 5 n
J#k

! A . om
P (- b B
v( cosYJ.)snlycosYsian

in-l + P" b @ W i L 2T
- §= v(-cosYJ)-z‘sinYcostn jzsiny =

oo
+g Cv(m,?\)Pr\;l(cos y)Pl:l' (cosy) siny «m sin jm —2::—

« 8in ji# %

which is a pure imaginary; while

n L z(a-k)e—’;i]
B(z)=§;_l_13kjl-e

1 2 2r
Pv(-cos yj)sin ycos =

o 4 2., om
= %.—. (1 -cos Jz—ﬁ-) +P3(-cos yj)sin ysin®j =

o
+§;_'1_ Cv(m,K)[f;c(COSy)]emg cos jm —211{-




L 4

er
n_ z(J-k)-;l-
E(g) = C + %;;_ije
J#k
= fl-b_S_ln_\/_Tl; P" (cos 'Y) sine—y
m v
+ EQ sin® [P"(-cos y)+C_ (0, NP'(cosyj]
m RASRY v v’ v v
1 or . 2 2 . e’ ., 2
n-1 ?v(—cos yj)[cos;j?- (sin“y + cos“y cos JT)COS Ja—r-l-]
+
J=; (o B b o7, 2o
+-Pv( COSyJ) sin“2ysin’j 3 (1+ cos j¢ n)
n (0 0] 1"
+ C (m,)\)Pm(cos 'y)Pm (cosvy) singy cos J.m2_1r
T 5 Vv v v n
) (g ) '
+ singy C (m,2)[P" (cos y)]gcos JmH cos j# il
= m= v v n n
are real.
Since ak, Bk are supposed to be small at t = O, the quanti-
ties Zk, B, must be small at t = 0. We define the motion given by

(5.1) to be linearly stable if Ek, Bk remain small as time
increases. Then, in order to have linear stability it is necessary
that the real parts of the roots (5.16) be less than or equal to

zero. Since A(f) is a pure imaginary, it follows that

(5.17) B(£)E(£) > O

is a necessary condition for linear stability. In other words,
each root of the set (5.16) must be a pure imaginary number. With
this condition satisfied we still need to consider the possible
appearance of multiple roots in the set (5.16). For example if

¢ = n then A(n) = 0; B(n) = 0; and consequently there is at least
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a double root present. Presumably this means instability since

the multiple zero root indicates solutions of (5.14) which have
the form tm'l. However, if the zero root is just a double root it
can be shown that solutions '&k, Bk which in part depend linearly
on t are precluded by the invariants (5.12) and (5.13).

We notice of course that

T

a = ak~+(c+D)glt-+52

has a part which depends linearly on t. This i1s a reflection of
the fact that if the vortices (5.1) are slightly displaced, then
the angular velocity (Q(y) will change by a small amount. The

quantity (C+D) is equal to

C+D = ba® sin vr * sin 7-%3 3

Double roots other than a double zero root may imply
instability.

If by = 0 the expectation is that at least one domain of

T gy r— e = = T e

oy

linear stability is the cap:

e ol

| O:'Y<)\S<)\o

In fact, if Ko has the same sign as u, and the polar vortex is

kept fixed, then an investigation of the signs of
B(ﬂ)) E(ﬂ)) £=l,ooan—l;

shows that the product B(Z)E(£) is positive (no matter what n is)

provided v is sufficiently small. It is interesting to note that
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for the case of a ring of Bessel vortices the linear stability
condition is not satisfied for the neighborhood of the origin if

n > 8., The boundary angle 6 = xs can be approximately determined
by computing B(f¢) and Z(g) for various values of v+ For any given
case this would require considerable numerical analysis. As an
example of what is involved we turn to the case of three vortices

on a circle of latitude.




6. Three Vortices on a Circle of Latitude in a Cap. Polar Vortex

Fixed or Absent

Our intention is to devote the rest of this paper to a
discussion of the case of three vortices of equal strength u
symmetrically situated on a circle of colatitude O < 6 < A. When
it is admitted, a polar vortex of strength Lo is assumed to be
held fixed at the north pole. We are interested in the linear
stability of motion of the vortices whose positions at any time t

are given by
(¢O’60) = (¢O’O) b4

(¢O’6J) = ((J"l) %rr'+otJ'Y) ’ J =1,2,3 .

Cur primary object here is not to present an extended numerical
analysis; but rather to record the quar ities which need to be
evaluated for such an analysis.

The angular velocity of the vortices in the equilibrium

position is given by

haesin T -U4o sin vr '
(6.1) Fe—— () = m -Pv(cos v)
Ho ' '
+ I [Pv(-cos v) -CV(O,A)PV(cos v)]

' 2 1 4
+ 3P (-cos®y +x siny).cos y

= mzj Cv(m,x)PT'(cos y)P?(oos v)*(lL+2 cos m %;) o

For the present case of three vortices we find
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where

(6.2) B = - % P (-c032

g y-+% siney) siney

2 il 2 4
+ Pc(-cos vy +5 sin®y) sin’y

Ho

- 3 %ii Cv(m,%)[P?(COS v)]e m° cos m %g

(6.%) E = 4b sin vr

2
1
; m . PL(cos v) siny

n

0 ' 2
+ = [P;(-cos v) +CV(O,A)P3(cos v)] sinSy
- % P:(-c0827-+% siney) cosey

9 (a2 .l 2y .2
t 13 PL(-cos vy +% sin"y) sin"2y

+ siney o%i% Cv(m,A)P?(cos y)F?n(cos v)+(1l+2 cosm %;)

+ singy -%i; Cv(m,x)[P?'(cos y)]g(l -cos m %?) .

For 4 = 3, B(3) = E(3) = 0. This means a double zero root in the
set (5.16) for three vortices. There are no other multiple roots

and hence the linear stability criterion is
(6.4) B(Z)E(L) >0, ¢ =1,2

or
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(6.5) BE > O .

If (6.5) holds then the component periods of the motion about

the equilibrium positi.n are given by ;

s(4) _ A(g) ti /BE jla 22 ]
2ori 2ria, ’ d ,

where

(6.6) 1iA(1l) = % P;(-cos27-+% sin27) sin vy cos vy

3

2 1 2
+ PS(-cos y +» sin v) sin”y cos vy

STV

0 y . 2T
+/3 sinvy %;; Cv(m,x)?j(cos y)P? (cos y)lnS1n1nf?

3 and
A(2) = -A(1) .
Recall that if the boundary condition is
W(¢:)\) = C
then
b = ?_rii___y,
o cos A
Pv(-cos )
Cv(O,A) - - P Tcos ~)
P"(-cos A)

mp(v-mtl) "v

Cv(m,x) = -2(-1) o) T , m#O0 .
v

If the boundary condition is

WQ(‘by)\) = C
then
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b = - -
sin)\P\:(co.c A)

P! (-cos 2) «
C, O = B, )
v Pv(cos A) |
Pm'(-cos A) :
a mr(v-mtl) ‘v
Cv(m,?\) = 2(-1) T(v +m¥1) Pm'(cos ) ’ m#O.
v

If the cap coincides with the sphere then l

b=0; Cv(m,Tr)=Oo

Some ideas about the effects of imposing a boundary condition for
an arbitrary cap can be drawn from a comparison of the motion con-
fined to the northern hemisphere with the free motion on the whole
sphere. If the cap is the northern hemisphere then

Tr -
Cv(m’g) "+€m ,

mr(v -m-1) _ ‘

ey = 20-1) FFEAIy ;. MO

and the series which appear in the above expressions can be summed

by using (4.7). We find that for A = % ;

{
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2
4a® sin vr -4b sin vr
. - 0= =P o
(6.7) m 0 T , (cos )
+ -u—o- [P'(-cos vy) ¢ P'(cos v)]
TR v
+ BP\:(-cosey +% siney) cos vy
+ [2P (cos 2y) +P'(0082'y +% siney)] cos vy ,
\ v v
| (6.8) 1A(1) = % P\')(-cosey +% siney) sin y cos v
|
' 2 1 2 .
+ 291- P;(-cos Yt= sin®y) s1n37 cos vy
) 2 L oo
‘ rd [P\')(cos y +% siny)
’ 1 2 .1 2 2. 13
- P;;\cos vy +% sin v) sin“y] zsinycosy ,
A(2) = -A(1) ,
| 3 (6.9) B = - % P\'}(-cosey +%_- siney) siney
/
} 9w, 2 ,1 .2 Y
: +H-Pv(-c.os v +3 sin v) sin’y
& [P\'}(cosey +% siney)
3 2 1 2 2 D azne
| -,EP;(cos y+3 sin v) sin®vy] 5 sin"y ,
39
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(6.10) E = EE—E&E—XE Pc(cos v) siney

+ 29 [P'(-cos v) 1 P'(cos v)] sin®
m v Y F v W Y

2 |
P;(-cos vy +5 siny) COSBy

]
nof N

9 2 2 . 2
t <7 P"( cos y-+§ sin®y) sin“2y

2 )

v + P! (cos 2y)2 sin2y

(cos 2y)2 sin
( COSey'+% siney)(Q-% cosz) * g

+ P"(cosey-+% siney) -f% sin22y

If the boundary condition is

<
P
OV
]
(e}

b = ?:T67 .
If the boundary condition is
veld, %) = c
the lower sign is to be taken with
b = - c

A numerical analysis for the caps

4o




will be presented in a separate report by Cc. Leiva [2].

For the arbitrary cap

(6.2) and (6.6)

each series which appears in the expressions (6.1),

can be approximated by the sum of its first n terms. vVarious

methods can be used to estimate the error involved. One method is

to use the formula
]
_m/2 i,

' 2
(6.11)  (-1" LR STE . H() = ) [ ey, (ther
X

_ Pv(%) . l-x)m/2
T T(m+l) ‘l+x ’

»
x <tT<1; m>1

and the formula

 / (t)
-m+l 1 1 1-x.n/2 1
(6.12) (-l)m %—IIE—:T%’ ['PIS (x)) = —:y. I (T*_—i') '-::';:g ’

in conjunction with

:
| 6.1 @ L{v-m+l) __ coshar
(6.13) (-1)" Ty ST

consider the series which appears in the expression

For example,




for O, namely

o)
) = - C. (m,\)P" (cos v) Pm (cos y)(1+2 cos m &
bes v v v ,

Let the boundary condition be

w(‘b,)\) = C
so that
P, (-cos 1)
" P Tcos 1)
Cv(m,x) =
—2(-1)" r(v -m+l) P?(-cos A)
r{v +m+i) Pm(COS )\) )
v
Ir 8

we have

m#O0.
09 the sum of the first two terms, is used to approximate E

M(_cos ) sz'(cos y)Pim(COS v)

5

Same 6 cosh qm ;:: Iv
v

m= (cos A) me'(o

Then from the formulas (6.11) and (6.12) we find

1 ol l 2 le
P (cos A)[P (0) 2 ;;; 5 tan 2)
v Y
”(Sg -2 )

@
2
& cosh qn P, (-cos A)[PV(COS v)] (cot

Since
£ = cot A tan £ < 1
2

we obtain

42
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12 1 m (8, -5 ) ) Pv(-cos }\)[Pv(coc v)1°¢

g : <
Pv(cos >\)[PV(O)]2 l-? b cosh qm 1_gb ‘

This shows that ) — ®» as { — 1, which means that O is large

when the vortices on the latitude circle are close to the boundary

circle. It also shows that
82 -E - 0 i

as y— 0. A similar analysis can be applied to the infinite sums

in (6.2), (6.3) and (6615
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