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SUMMARY

The objective of the contract described herein was to develop and
demonstrate the technology required to provide a high performance, long lived,
fast response five-pound-thrust bipropellant engine capability for attitude
control functions typical of future Air Force requirements. Specifically, a
step function improvement from the characteristics of monopropellant hydrazine
thrusters in the same thrust class was desired. The goals of the technical
effort were to provide specific impulse values of 240 and 300 sec in pulsing
and steady state modes of operation, respectively, minimum impulse bits of
0.050 1b-sec or less, repeatable within + 10%, and valve response times of
0.005 sec with the pulse mode characteristics attained equally well on the
first and subsequent pulses of a pulse mode duty cycle. In addition, it was
intended that the engine would be capable of virtually unlimited quantities
of cold starts, operate with propellant temperatures ranging from 20 to 120°F,
be suitable for pressure regulated or blowdown pressurization systems and have
unlimited duty cycle capability operating in a fully insulated (adiahbatic wall)
or radiation-cooled configuration.

System studies conducted early in the program verified the need for
broad range capabilities as it was found that various spacecraft designs have
entirely unlike requirements. Initial analytic studies indicated that low
dribble volume multi element injector designs were essential if the pulsing
and steady state performance goals were to be achieved with a single engine.
Larly full scale thruster firings disclosed that the 300 sec s*teady state and
240 sec specific impulse goals were achieveable using a 100:1 expansion noz:le.
Long duration operation of a fully insulated unit, however, would require
increased barrier cooling with an attendant performance reduction to insure
maintenance of the chamber wall at an acceptable temperature.

The result of this initial work was that three variants of a basic
engine design were fabricated for the program's Task III demonstration testing.
These engines all utilized silicide coated columbium thrust chambers with
multi element transverse platelet injectors which were integral with a torque




Summary (cont.)

motor actuated bipropellant valve, and provided a dribble volume of ~ 0.0003
in.3 for each propellant. Specific engine to engine differences in the injec-
tor patterns traded performance with maximum feed pressure blowdown capa-
bility, the ability to operate with an adiabatic chamber wall, and heat flow

to the spacecraft. All engines were successfully tested for extended simu-
lated mission duly cycles accumulating more than 400,000 starts and 17,000 sec
of firing without mishap. The demonstrated values of valve response and mini-
mum impulse surpassed the goals by margins approaching 100%. The repeatability
of the 0.05 1b impulse bits were + 2.4%. In continuous pulsing steady state
performance varied with installation and blowdown capability as follows:

Steady State

Task 111 Blowdown I (e = 100:1)
_Engine Installation Range ‘sp ¢ :
I Radiation Cooled Regulator 300
I ~ Adiabatic Wall 2:1 290
IT1 Adiabatic Wall 2.5:1 283

these engines provided a feasibility demonstration of the performance, chamber
compatibility and operating advantages which accrue from the integration of

the minimum manifold volume multi element platelet injector, bipropellant valve
and columbium thrust chamber. These data allow the development of radiation
cooled and adiabatic wall thrusters with high steady state and pulse mode per-
formance, qood pulse repeatability and virtually unlimited duty cycle capa-
bility to proceed from an experimentally verifiec technical base.

iv
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PREFACE

This report covers the work performed under Contract FO4611-73-C-0061,
“Five-Pound Bipropellant Engine", performed by the Aerojet Liquid Rocket
Company at Sacramento, California, and conducted under Air Force Project 3058;
Task 11. The peiformance period covered from 28 March 1973 to 30 June 1974.

The program manager was Dr. S. D. Rosenberg; the project manager was
R. C. Schindler; the project engineer was L. Schoenman. The analytical ther-
mal and performance work was conducted by F. H. Miller and J. 1. Ito, respec-
tively; J. V. Smith coordinated the valve related activities. The experimental
work was conducted by R. S. Gross assisted by P. M. Loyd, test engineer,
N. R. Rowett, instrumentation and controls engineer, and H. C. Howard, test
data engineer. ‘

The program was administered under the direction of the Air Force
Rocket Propulsion Laboratory, M. V. Rog:rs, project engineer.
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SECTION I
INTRODUCTION

1.0 INTRODUCTION

1.1 BACKGROUND

Prior to 1963, few spacecraft missions required the injection of
a payload into orbit. Furthermore, there was little need or room for an
on-board propulsion system as part of an orbiting package. During the period
1963 to 1968, payload weights increased and a need for station-keeping
developed as mission goals became more ambitious. Reaction control systems
employed catalytic decomposition of hydrogen peroxide and/or cold gas jets.
The instability of the hydrogen peroxide under storage and the need for pres-
sure relief valves made the reliability of this system inherently low. Cold
gas systems, although much more reliable, provided very low performance.

Monopropellant reaction control systems utilizing hydrazine were
evaluated for station-keeping missions starting in 1967. By 1973, such sys-
tems enjoyrd an undisputed industry acceptance and had performed well in a
wide range of applications. However, the demands being placed on these reac-
tion control systems are becoming more and more stringent and there are indi-
cations that the requirements may soon exceed monopropellant system capabili-
ties. Future military space missions, such as space defense and reconnais-
sance, are likely to have requirerents in excecs of those of the commercial
systems, itemized in Table 1.1-1, which typically illustrates these new
demands .

~ar:
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1.1, Background (cont.)

TABLE 1.1-1
COMMUNICATION SATELLITE THRUSTER REQUIREMENTS

INTELSAT Advanced Advanced

Parameter SYNCOM ATS-4 IV A Spinner 3-axis
Start Quantity 100 50 700 4,000 40,000
Total Impulse, 1b-sec 6,000 10,000 72,000 75,000 75,000
Predictability % + 40 + 30 + 20 +15 +15
(Total Error)
Life in Orbit, Years 1 3 7 10 10
Propellant System H202 N2H4 N2H4 TBD T8D

A large number of engine cold starts and very high total impulse
have been shown to degrade the response, repeatability and performance of
monopropellant thrusters. This is caused by gradual degradation of the
catalyst bed. Figure 1.1-1, taken from Reference (1), summarizes the demon-
strated capabilities of hydrazine monopropellant engines in 1973. The cold
start quantity of less than 700 for 5-1bF class engines is less than adequate
and illustrates a need for technology improvement. Efforts to correct this
limitation by using bed heaters, improved catalysts and bed designs are in
progress and have shown limited success.

A bipropellant system is a logical advance in technology and
eliminates the problems associated with catalyst beds and monopropellant
systems. Storable bipropellants, such as N204/MMH, have long been employed
in larger engines (greater than 25-1bF), performing reaction control functions
with considerable success and a high degree of reliability. In addition to
the 25% improvement in steady state specific impulse performance over mono-
propellant systems, bipropellant systems offer a potential for:

(1) M. €. Ellion, D. P. Frizell and R. A. Meese, "Hydrazine Thrusters -
Present Limitations and Possible Solutions AIAA 73-1265 Las Vegas
November 1973.
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1.1, Background (cont.)

Longer life and nearly unlimited thermal cycling with the
performance loss and attendant catalyst bed degradation

entirely eliminated;

Higher pulse mode performarce with particular performance
advantages obtained on cold starts;

More predictable response and lower power consumption result-
ing from an ability to operate without catalyst bed heaters;

Lower propellant freezing temperatures; and

Improved handling and reliability resulting from the ability
to clean and flush a fully integrated spacacraft control
system without fear of catalyst bed contamnation or damage.

In some applications, the use of bipropellant engines allows the
attitude control system to be integrated with the propellant feed system of
the larger bipropellant engines on board the spacecraft. This results in a
system weight advantage which is additive to the performance advantage.

Those areas which have historically proved troublesome to small
engines were addressed in the new small engine technology work accomplished
on this program. These included the following:

Poor combustion efficiency and performance due to the very
low propellant flow rates and limited number of injection
elements (usually 2 or 3 orifices);

Failure to achieve uniform and axisymmetric propellant com-
bustion which is free from wall damaging hot streaks;

e i e
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1.1, Background (cont.)

Inadequate nozzle cooling and unacceptable heat soaks over
a wide range of duty cycles;

A relatively high volume of residual propellants within the
injector which degrades performance, aggravates ignition
spike problems and increases plume contamination levels; and

Exhaust plume contamination resulting from ejection of pro-
pellant droplets due to incompiete combustion.

1.2 0BJECTIVE

The objective of this program wias to develop and crmonstrate the
technology required to provide a high performance, long lived, fast response
five-pound-thrust bipropellant engine capability for futurs Air Force require-
ments. The propellants employed in the demnnstration were ritr .Jen tetroxide
(N204) and monomethylhydrazine (MMH).

Table 1.2-1 indicates the design goais establisnhed for this pro-
gram. Most noteworthy is the 30C sec steady state and 24C sec specific
impulse at impulse bits of 0.05 ib-sec, the 3:1 tank pressuie ratio for a
blow-down system, the ) to 1?0°F range of cropellant supply tewperatures,
ard the general life and reliability requirement.. A need for buried engine
operating capabilities (adiabatic wall) and a limitation an the engine-space
craft thermal coupling ware ddec > these ~nals “oliowins an rsiluation of

mi.,ion requirements dut ing the Frase |
1 3 TECHNTCAL EFFORT ORGANIZATION

The progian. Suidvtur.a for thi: techns!ogy devele,swent and demon-
s ation consisted of Lhree phates: Mhdse - ilpgquiremeat. Defiaition and
Engine Design Analysi<; Phase TT - Decign and Verifica: .o~ "eating; and Phase
[T] - Deronc*ratinn Teet = The <cope of  1ch phase we o o llows,
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Parameter

Maximum Vacuum Thrust, 1bf
Chamber Pressure, psia
Feed System Pressure, psia

Expansion Ratio
Minimum Isp (at max thrust), sec

Steady State
Pulsing
Minimum Impulse Bit, 1bf-sec

Total Impulse Delivery Capability
1bf-sec

Number of Ambient Starts
Total Number of Restarts
Total Firing Life
Total Mission Life
Valve Response, ms
Signal to full open
Signal to full close
Valve Leakage, scc/hr
GN2 at AP = Feed System Pressure
Propellants
Oxidizer
Fuel
Mixture Ratio
Propellant Inlet Temperature, °F
Storage Life Goal, yr
Flightweight TCA Reliability Goal
Flightweight TCA Maintainability
Goal

TABLE 1.2-1

Short
Duration
Blowdown

5+ 0.25
TBD + 5%
00 - 100

TBD

300
240

0.05 + 0.005
30,000

100
175,000
2 hr

30 days

<5
<5

<2.5

BIPROPELLANT ENGINE DESIGN GOALS

Short
Duration

Regulated
5+0.25
TBD + 5%
500

T80

300

240

0.05 + 0.005
30,000

100
175,000
2 hr

5 days

<5
<5

<2.5

Long
Duration
Blowdown

5+0.25
TBD + 5%

Blowdown
Range TBD

TBD

300
240

0.05 + 0.005
100,000

1,000
300,000
10 hr
7yr

<5
<5

<2.5

Nitrogen Tetroxide (Mon-1) (99% N0, - 0.8% NO)
Monomethylhydrazine (N2H3 CH3)

1.6 + 0.048
20 to 120
10

0.999

Zero Maintenance Over Storage Life

1.6 + 0.048
20 to 120
10

0.999

1.6 + 0.048
20 to 120
10

0.999

Long
Duration

Regqulated
54+ 0.25
TBD + 5%
T8D

TBD

300

240

0.05 + 0.005
100,000

1,000
300,000
10 hr
7yr

<5
<5

<2.5

1.6 + 0.048
20 to 120
10

0.999




1.3, Technical Effort Organization (cont.)

Phase i conducted studies and trade-off analyses of general
mission/system requirements versus engine parametsrs. lypical representative
mission duty cycles were identified by literature search, review of current
specifications and consultation with space craft manufacturers, users and
selected government agencies.

Phase I1 developed point designs against the selectied mission
requirements based upon the relationships established in Phase 1. Design
verification testing using the N204/MMH propellant combination was conducted
to provide supportive data. Five injector designs and several thermal manage-
ment systems were evaluated. The hest of these approaches became the basis
for the design of the demonstration engines.

Phase III consisted of finalizing the selected enuine designs and
thr fabrication and demonstration testing af thren engtaer ave- three selected
simulated mission duty cycles. Thece duty cycies provided firvng durations
and quantities of restarts comparable to th: goals descii.at in Table 1.2-1.
Tosting was accomplished under simclated o Viude conditicns w:th 50:1 area
ratio nozzles. Posttest activit.es included data and ana ytic riodel evalua-
tion, a failure mode and effects analy<is and a reliability anaiyses.

An additional tzsk wis added o Phase iI1 in £pril 1974, This
called for a comparative ev2luation of the oulse prrformanc2 farecasting
cnabilities of the CnﬂTAM(Z) an DMPM(z) cnatyt e models  These predictions
wore then compared with ac-ual prie onde rire 123t data =3 asvess the accu-

riey cf the forecasted . 1lues
© 2 AFPORT ARGANIZATION

Tha subiec. ceporl Codaises uf tarse parts.  fn3 tiest, titled
Trtroda tios provide; a hacgrauad "o the 5 ogzam ~aportes heeain as well as
a Jdascripticn of the prawrm's obiectiyes and ity atrucr: 2. 215 is followed
[N I £ VI E T R L P Time (optan T s on " iTacte Predic-
tion, The CONTAM Comroder Pre~vam Ver-Son Ji, AFRPU %7580, Rugust 1973.
(RSl B TR T ue Mo Pees ey eyt ' onal Report,
AYR L. by R T e -

-3
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1.4, Report Organization (cont.)

by a summation of the programs accomplishments and a description of Flight
Engine Designs which are based on the units tested.

The second portion of the report, Experimental Results and
Discussions, is a chronological exposition of the programs three phases with
the material arranged in a format similar to the programs three phases
described above.

The final <ection, Conclusions and Recommendations, summarizes the
technology improvements and collorary information resulting from the review of
the programs data. The recommendations describe the manner in which this data
should be utilized to either further develop small thruster technology or to
facilitate the application of the technology to current and/or anticipated
spacecraft needs.
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SECTION II
EXPERIMENTAL RESULTS AND DISCUSSIONS

2.0 PROGRAM ACCOMPL I SHMENTS

2.1 ENGINE DESIGN AND OPERATING CHARACTERISTICS

The basic engine developed under this program has demonstrated the
feasibility of obtaining the goals itemized in Table 1.2-1. The added require-
ment for operation in a buried mode was demonstrated using a propellant injec-
tion pattern which provided a fuel rich protective barrier along the chamber
wall. The barrier cooling, in combination with suitable chamber insulation,
allows exterior wall temperatures of less than 200°F to be maintained during
and following sustained operation. Although the barrier cooling results in a
decrement in the specific impulse delivered with a 100:1 area ratio nozzle
from the 300 sec demonstrated with a radiation-choled engine to 283 sec, this
specific impulse is 40 sec greater than the highest reported monopropellant
hydrazine engine performance.

In contrast to monopropellant thrusters, the demonstrated 5 1bf
thrust bipropellant engines showed no change in pulse shape, response or per-
formance over the duty cycles which comprised more than 300,000 pulses on one
unit, 50,000 pulses plus a 6300 sec continucus burn on a second and 50,000
pulses on the third. The adiabatic wall engine, operates in a fully insulated
installation and appears to have the broade«t applicaticn. Data obtained from
this engine at duty cycles from 0.3% to 100" on-time, ind:iate that it has no
thermally 1imiting operating conditions. Structurai analy.3is involving
fatigue and creep forecast a useful continuous firing life of 3400 hours with
a capability for 50,000 cold starts and morc than a million restarts (pulses)
with a design margin of 10.

The higher performing radiation-cooled enqgine design has an
unlimited capability for duty cycles from (.3% to 50” on-time and Timited



2.1, Engine Design and Operating Characteristics (cont.)

pulse train and burn durations between 50% and 100% duty cycles. Operation
of this engine at a slightly reduced chamber pressure would allow virtually
unlimited steady state durations.

The valve response times obtained from random samplings of the
more than 400,000 firings conducted in Phases II and III showed a response of
0.0023 to 0.0026 sec from signal to start of travel. These data cover a 20 to
120°F propellant temperature and 100 to 400 psia tank pressure operating
envelope. Valve closing times ranged from 0.0025 to 0.0028 sec. Valve travel
time to open or close under these conditions was approximately 0.0005 sec.
The manifold fi11, ignition and thrust rise to 90% of steady state requires an
additional 0.002 to 0.003 sec, depending on tank pressure. Variations in
engine response time under a fixed set of propellant supply temperatures and
pressures were too small to be assessed accurately. Other significant response
data are provided in Table 2.1-1.

Highly repeatable bit impulses of 0.05 + 0.005 1bF-sec were demon-
strated at an electrical pulse width of 0.010 sec and maximum tank pressures.
In long continuous pulse trains, their reproducibility was + 2.4% with a 1
sigma confidence level. The minimum impulse bits demonstrated were 0.02 1b-
sec at the same electrical pulse width with the tanks at the lower limits of
blow-down mode operation. The reproducibility of these were * 3%. Although
not demonstrated with hot firings it appears entirely practical to provide
impulse bits of 0.01 1bF-sec simply by reducing the electrical pulse width to
0.005 sec. :

2.2 IMPROVED CAPABILITIES IN PULSING PERFORMANCE ANALYSES

Analyscs were conducted using the CONTAM computer model devel-
oped by MDAC-West and AFRPL and pulse mode performance model (PMPM) which

10




TABLE 2.1-1
TYPICAL ENGINE RESPONSE CHARACTERISTICS

Propellant Supply Condition
Tank Pressure, psia 300-185 T00-150

Propellant Temp, °F 22 118 22 18

Start Signal to 90% Pc sec 0.0051 0.0050 0.0061 0.0062
Stop Signal to 10% Pc sec 0.0055 0.6052 €.0075 0.0065
Signal to Valve Open sec 0.0026 0.0025 0.0023 0.0025
Signal to Valve Close sec 0.0025 0.0027 0.0028 0.0025
Valve Travel Open sec %0.0005 %0.0005 ¥0.0005 %0.0005
Valve Travel Close sec %0.0005 %0.0005 *0.0005 %0.0005

PC Necay sec 0.0025 0.0025 0.0047 0.0040

N
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2.2, Improved Capabilities in Pulsing Performance Analyses (cont.)

is based on Rocketdyne's distributed energy release (DER) performance model
and injector chamber compatibility (ICC) computer programs. Output from these
two programs were compared with each other and with experimental data gener-
ated by pulse mode firings of two engines. These engines were operated over

a specially prepared duty cycle involving 40 pulses of varying fire periods
and coast periods to obtain data with different chamber wall temperatures.
Comparisons of predicted and measured performance showed that the PMPM model
neglects to account for chamber wall film vaporization and therefore is unable
to properly account for pulse mode performance variation which occurs as the
chamber wall temperature changes. The CONTAM model treats the wall film losses
satisfactorily when the wall is hot but underestimates these when the wall is
cold. CONTAM also overestimates the persistance of combustion following shut-
down. This is especially so for cold chamber walls and results in an over-
estimation of shutdown impulse. It was found that for a true "a priori" pre- ,
diction of performance for new design, the CONTAM model was superior. The
PMPM model however when "tuned" using empirical data from a particular engine
will more economically predict engine pulse mode performance for anticipated
duty cycles. Recommendations for model modifications and model usage are
provided.

2.3 ANALYTICAL AND EXPERIMENTAL EXPERIENCE WITH EXMAUST
PLUME CONTAMINATION

A feature of the CONTAM program is an output of the weight per-
centages of contaminant generated as a result of incomplete combustion of the
propellant. These consist of a wall film component and unreacted droplets
entrained in the high velocity exhaust stream with the analyses indicating
that improved combustion efficiency and performance result in lower contami-
nant generation. Thus, it can be inferred that the 300-sec specific impulse
engine tested in this program is the cleanest as well as the highest perform-

ing engine of its class.

12



2.3, Analytical and Experimental Experience with Exhaust Plume
Contamination (cont.)

The vacuum test facility in which the Phase III 1ife durability
testing was conducted contained a window positioned proximate to the engine
exhaust plume to allow continuous TV coverage. During the course of testing
the first of the adiabatic wall engines for 50,000 pulses, a slight but grac-
ual reduction in window transparency was noted. A major portion of this was
due to the flaking of the unprotected Dyna Quartz chamber insulation and its
subsequent deposition on the window. Testing of the higher performing
radiation-cooled engine (uninsulated) showed no visible change in transparency
over a 300,000 pulse duty cycle. An optical sensing device was installed for
the final 50,000 pulse engine test series to provide finer resolution and a
means of documentation of changes in transparency. This engine was insulated
with Dyna Quartz which was encased in metal foil. These measurements showed
no change in light intensity and hence window transparency over the entire
duty cycle demonstration. These measurements indicate a virtually total
absence of radially directed plume contaminants. The high engine performance
provides supportive evidence for the minimization of noncombusted exhaust
products which are the source of plume contaminants.

13
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3.0 FLIGHT ENGINE DESIGNS

Two of the four engines described in Table 1.2-1 titled "Enqgine Design
Goals", are eliminated if engine 1ife is not a consideration. Since the data
obtained on this program shows that there are no design differences between
short and long lived engines, the design goals are met with two different
engine types. One is a "universal" configuration which can operate in a
buried configuration (adiabatic wall), be used with either a blow-down or
requlated feed system and provide any desired duty cycle rarging from very
short repeatable impulse bits to several hours of continuous firing. The
other, which operates only with a regulated feed systéﬁ and is allowed to
radiate, has the same requirement for an unlimited duty cycle capability.

Both engines would provide: high performance for single pulse, con-
tinuous pulsing and steady state operation; minimal exhaust plume contamina-
tion; no degradation with accumulated operating time in either steady state
or pulsing modes; very rapid response; and good pulse repeatability along with
high reliability.

' The subject program tested a variety of injectcr configurations and
chamber designs and concluded with the successful testing of three different
engines for simulated mission duty cycles. These data have been reviewed in
Tight of the Engine Design Goals and two versions of a single engine design
formulated to meet these requirements. This basic engine utilizes a silicide
coated columbium thrust chamber and a multielement platelet injector which is
integrated with a torque motor actuated bipropellant valve to achieve a mini-
mum residual propellant volume. The differences between the two engine ver-
sions are that the injector orifice patterns are unlike and one utilizes
lightweight insulation to maintain a skin temperature of less than 200°F.

The following chart which summarizes the design characteristics of
each identifies the detail design differences.

14



3.0, Flight Engine Designs (cont.)

Thrust class, 1b
Propellant
Mixture Ratio
Installation

Injector Type

Valve

Residual Propellant Volume
Chamber

Nozzle Area Ratio
Isp’ Steady State, sec
Skin Temperature
Propellant Feed System

Weight, 1b

MODEL DESIGNATIUN

AJ 10-181-1
5.0

N20 4/ MMH
1.60

Buried, cold back wall
required, envelope
volume Timited

4-element with Tow MR
at periphery

Torque motor actuated
bipropellant valve
with integrated
injector

0.0006 in.>

Vac Hyd 101 coated
FS-85 columbium

100

283
200°F
Blowdown

1.3

AJ 10-181-2
5.0

N0, /MMH
1.60

Free to radiate, not
volume limited

6-element uniform MR

Torque motor actuated
bipropellant valve
with integrated
injector

0.0006 in.

Vac Hyd 101 coated
FS-95 coiumbium

150

298
2150°F
Requlated
12

3

The AJ 10-181-1 engine is portrayed in Figure 3.0-1 which includes a

tabulation of its full thrust and minimum thrust noerating craracteristics.

Its blowdown feed system operation is summarized it Figure- 5.0-/ and 3.0-3

which present performance (Isp) and Lhrust ¢, a functior of tank pressure for

steady-state and pulse winde operaiion, respe-tively.

Figure 3.0-4 illustrates the AJ 10-181-2 engine ard provides a tabula-

tion of its operating characteristics.
with a blowdown feed system, thic tnit can

Altroaugh no! infcoo - {20 operation
afely urerate ot cediced thrust.

Figures 3.0-5 and 3.0-o present steady stat: and pulse mcie purfurmance and

15
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PRESSURE PORT

Operating Characteristics

Full Thrust
Thrust, 1bf 4.5
Chamber Pressure, psia 150
Feed Pressure, psia 300
Is Steady State, sec 283*
lsp for 0.050 1b-sec Impulse Bit 228
Min. Impulse Bit, lb-sec 0.025
Min. EPW, sec 0.005
Valve Response Time to Full Open, sec 0.003
Valve Response Time to Full Shut, sec 0.003
Sec to 90% of P, 0.005
Propellant N204/m1
Mixture Ratio 1.6
Engine Weight, 1b 1.3

"Ae/At = 100; Add 2.5 sec for Ae/At = 150

Figure 3.0-1. AJ10-181-1 Engine
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Dyna Quartz
Insulation for
Engine Buried

Min. Thrust

2.2
75
125
255¢
200
0.012
0.005
0.003
0.003
0.006
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IR T

8.25 in.

2.6 —-L,, Plane of Thrust Mount

6.95

Operating Characteristics AJ10-181-2

Thrust

Chamber Pressure
Feed pressure
Isp Steady State

Isp for 3.050 1b sec Impulse Bit

Min. Impulse Bit at Pc = 120

Minimum E£DW

Valve Response Time tc Full Gpen, sec
Valve Response Time to Shut, Sec

Time to 90% of Pc' sec

Propellant

Mixcure Ratio

Engine weight

4.2

345
298

245

{15011)

0.02
0.00%
0.003
0.103
0.005
NZOC/ L]
1.6

i.7

Firure 3.0-4, ANN-1£1-2 Engine
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3.0, Flight Engine Designs (cont.)

thrust as a function of tank pressure. The rapid performance decrement which
occurs as tank pressure is reduced results from the design being optimized
for full thrust operation.

The AJ 10-181-2 engine can be operated at a chamber pressure (Pc = 132,
feed pressure = 400) in excess of its design value. This results in a steady
state ISp of over 300 sec (reference Figure 3.0-5) although the percentage
duty cycle is limited to less than 50% with single burns not exceeding
30 seconds in duration. This performance improvement-duty cycle curtail-
ment requires that the ¢ .:ine be used for pulse mode operation only.

Although the AJ 10-181-1 and -2 engines have been proven in the duty
cycle demonstration testing conducted during Phase III of this program, analy-
ses and test data indicate their performance and operating flexibility could
be improved if the injector designs were iterated. These improvements could
provide the capability of operation using N2H4 in place of the MM fuel as
well as performance increases.

22
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4.0 PHASE I ANALYSIS

The purpose of the program's initial phase .« : tc insure that the engine
configuration selected for development was in consonance with the requirements
of potential users. The earliest program tasks were thernfore to (a) define
applications and mission requirements, (b) identify the capabilities of anti-
cipated engine designs, and (c) conduct a system-missior-engine interaction
analysis to define those technology areas which required further development.

4.1 MISSION REQUIREMENTS DEFINITION

Mission requirements data was compiled u<ing available litera-

(4 through 10) and through consultation with industry, NASA and Air Force

personnel. These data were compiled into the summaries shown 1n Figure 4.1-1.

tare

The first two categories, Communication and Navigation, and Surveillance and
Reconnaissance, represent the major quantity of spacecraft and launchings.

Tt was found that reguiremcrts for necific ~dciicie witnin @ach category,
and in some instances, the approach of diffe-ant «nr->craft nrimes to the
came mission were unlike, Thus it was not pocs:vic to dofine a singular set
of requirements for ¢ fiv pound theast erour . TRy resuited t; Lhe genera-
tion of the following requivaments “ov , art ar- ° oangira,

VR0, sl vl fppn, kS, e oW ot Syt T
Satellrce Provdaron Susrem Saatya s Te ot nicon] Cengrt SERREL
TR-71-1G3, fatac > ptovber 167,

G . Nanz o D B e A kB oL e i 0 e

synchremous Satellites, ferasna n foavoa wolepurt TP TR
{5310} «, dates 15wy, €70
T} L. R, Heleomb Keeetdes Ay T s . 8 Te-ontaues,
NASA-JP Tochnjcal qvmne = 320 46 o +on Mo rmbor
JoLaunch vehacie tstitating rac. o s, N0 "B 11u) o JaPe sy 1y /)
Lditior

J K
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4.1, Mission Requirements Definition (cont.)

Life - up to 10 years

Operating Altitude - Vacuum

Tank Pressure - 400 to 80 psia

Pressurization - blowdown or regulated

Propellant Temperature - 20 to 120°F

Propellant tank Temperature differential - un to 100°F
Pulse Quantity - up to 500,000

Allowable Heat Flow to the Spacecraft - 20 to 60 watts
Plume Contamination - minimum

Engine Installation - Buried or exposed
Performance Steady State - maximum (e.n., 1
Performance Pulsing - Maximum

Minimum Impulse Bit - 0 050 1b-sec or less
Start up Response Time - <0.010 sec
Shutdown Response - <0 310 sec

Pulsing Duty Cycle - unlimited

Single burn duration - up to 2 hours

= 3
5 00 sec)

o
>

The achievement of a 0.010 IbF-cec imnul-a bhit way™4 allow « £ *h” engine to
a1<0 assume the function of 1/2 1t thw * Cl s engines o some applications.
The engine narimetor study descrite? an the <llsiiag sectice diszlosed that
*ae engine cocling, spacocraft heat flow ing arecs rizaticon re~yi ements in
conjunction with the 300 ser Isp sevformaace  3al sre ton trasd o be met with
. single encire confiquration, Therefare, d.--ail “1fferenc in 2 single
hasic desigr ware expected ir allow periormar-e, 4.ty cy.ie, »a11 temperature
ard heat in-ut te the <naze =raft tc be t-ad |

4.2 ENGINE PARAMETER STUDY

The ..ope nf ghe ongin - darameta ‘tud, .5 saama-i.~d {n Figure
4 1-2. The mission recurrements ctudv 'efin ' va-amates- 2o tseis range are

shown in the twe colume s "o te Tlgure’ Tef7 0 Tuve arges | gecatest
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4.2, Engine Parameter Study (cont.)

significance with regard to each component are highlighted and the interac-
tion of performance and plume contamination generation is shown to relate
to most of the system parameters.

4.2.1 Injector Design

The results of an injector performance study which treated
steady state and pulse mode performance are summarized in Figures 4.2-1 and -2.
The forecasted injector performance values were in generally good agreement
with the subsequent experimental data.

The conclusions drawn from Figure 4.2-) the steady state
portion of the parametric anmalyses are as follows:

(1) The minimum energy release efficiency required to
attain the 300 sec specific impulse goal was % 96%. An injector allowing 4%
loss resulting from incomplete vaporization and uncontrolled mixture ratio
maldistribution would lead to a 3000°F radiation cooled nozzle wall tempera-
ture. Improvement to a 98% ERE; 2% loss dur to combined vaporization and
uncontrolled MRD in conjunction with a 2% ccntrolied MRD loss in the form of
a fuel rich barrier could lead to 2230°F radiation cooled chamber wall tem-
peratures and 2800°F adiabatic wall temperatures at the same 300 sec specific
impulse level.

(2) The minimum number of doublet type injertion elements
required to attain the 300 sec steady state specific impulse was 2. A two
olement injector would however require a 4 inch chamber Terqth which is
unreasonably long for a 5 1b thrust engine. The two element injector would
not be expected tc provide the uniform axis mmetric gas tlow T1eld for good
chamber compatibility and long life, Four clements were set as a minimum
design value based on attaining uniform chamber wall temperature.
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4.2.1, Injector Design (cont.)

(3) The maximum number of injection elements based on a
0.008 inch minimum orifice diameter was 6. Six elements could provide the
300 sec Isp in a 2 in. chamber.

(4) A slight performance advantage for small contraction
ratios was shown in the vaporization analyses. The CONTAM program showed no
influence of contraction ratio on the pulse mode performance. Subsequent
test data showed the contraction ratio to have no influence at full thrust
and a small contraction ratio to be beneficial for deep blowdown capabilities.

The predicted effect of manifold volume on pulsing per-
formance is shown in Figure 4.2-2. Performance predictions were obtained
using the TCC portion of the CONTAM analysis. This data indicated that the
total manifold-volume allowed for the achievement of the pulsing performance
goal of 240 sec was 0.0013 cubic inches. Actual pulse mode performance data
obtained from Phase Il testing (reference Section 5.3) is displayed. These
data obtained with injectors having manifold volumes of apprc. imately 0.0007
cubic inches, showed the forecasted performances to be slightly optimistic.
Manifold volumes of the subsequent Phase III units were consequently reduced

in size.

4.2.2 Thrust Chamber Design

The thrust chamber parameter study was initiated by an
examination of the effect of chamber pressure on pulsing and steady state
performance, contaminate generation and ignition. These studies, summarized
in Figures 4.2-3 through 4.2-5, indicated that higher chamber pressures result
in increased performance, reduced contaminates and more assured ignition.

Figure 4.2-3 showed significant theoretical performance
improvements up to 200 psia chamber pressure and nozzle expansion ratios to
the 100 to 150 range. The use of a Rao nozzle contour which is 25% longer

30
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4.2.2, Thrust Chamber Design (cont.)

than the minimum length design provides a 2 sec improvement in specific
impulse while the Rao contour adds 6 sec over a 20° hali angle conical nozzle
design.

Figure 4.2-4, prepared from the CONTAM model output assum-
ing a cold chamber wall, shows the advantage of higher chamber pressures for
a 0.05 1bF sec impulse. These trends were later verified in Phase II testing
although the data showed the model to overstate the performance.

Figure 4.2-5 provided a prediction of the conditions which
could result in a failure of the hypergolic propellants to ignite although no
such condition was encountered in testing (even down to 20°F). The analyses
suggested that the condition could be avoided by employing higher steady state
combustion chamber pressures.

Subsequent analysis examined the steady state wall tempera-
ture of a radiation cooled chamber as the chamber pressure was varied. These
showed (Figure 4.2-6) that gas side wall temperature was only slightly influ-
enced when Pc was increased by reducing the throat diameter and maintaining
a fixed chamber OD of 0.62 in. Figure 4.2-7 illustrates the enhancement to
radiation cooling as wall thickness at the throat is increased. ~Figure 4.2-6
includes data from actual fire tests during Phase II (reference Section 5.3).
This indicated that the forecasted chamber wall temperatures were slightly
low. The analytically forecasted transient and steady state axial temperature
gradient at a chamber pressure of 175 psia are shown in Figure 4.2-8. Compari-
son is made with Phase III test data. Low front end temperatures were fore-
casted to result from a portion of the unvaporized fuel depositing on the wall.
The conceptual design envisioned a free standing internal liner as a means of
cooling the front end if the film could not be sustained due to the high rate
of axial conduction. The Phase Il test data identified a need for such a liner.
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4.2.2, Thrust Chamber Design (cont.)

Examination of candidate chamber materials resulted in the
jdentification of columbium as the most suitable material with FS-85
because of its high temperature creep properties. Candidate alloys and their
properties are shown in Figures 4.2-9 through 4.2-11. Oxidation resistant
coatings were examined and the silicide coatings judged to be adequate for
the engine duty cycle provided that the wall temperature was held below about
2800°F. Figure 4.2-12 presents temperature versus estimated time to failure
for silicide coatings as well as the Phase 3 test results. A1l engines tested
utilized either VacHyd lol or Hitemco R-512E coatings.

The thrust chamber data indicated that barrier cooling was
necessary to insure that the chamber temperature did not exceed 2800°F. The
performance margin of the multi-element injector (Reference Figure 4.2-1) in
combination with its ability to provide barrier cooling was expected to ailow
the necessary chamber temperature to be achieved. This is shown in Figure
4.2-13 which illustrates the predicted effect of 25% barrier cooling on the
wall temperatures of radiation cooled and adiabatic wall thrust chambers.

This figure shows that a buried chamber which meets the 300 sec steady state
performance goal will have a gas side wall temperature of 2800°F. The same
injector operated in a radiation cooled chamber would provide a 2200°F gas
side temperature. It was concluded that if optimum performance was desired,
different injectors were needed in radiation cooled and adiabatic wall engines.
The predictions shown in Figure 4.2-13 were proven qualitatively correct by
subsequent testing. The attainment of the requisite barrier cooling proved to
be more difficult than the analytic studies indicated. This was due to the
fact that the very low propellant flow rates did not allow a separate barrier

coolant manifold and distinct orifices. Barrier cooling was achieved by tailor-

ing each element of the multi-element injector to have a defined and repeatable
mixture ratio distribution to produce a low MR zone at the chamber wall.

4.2.3 Valves and Flow Control

Eight different valve manufacturers were consulted to
determine the development status and availability of valves which could be
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