AD/A-000 356

GASES OF ALVEOLAR AIR AND ARTERIAL BLOOD DURING DUST DISEASES OF THE RESPIRATORY ORGANS

A. A. Penknovich, et al

Foreign Technology Division Wright-Patterson Air Force Base, Ohio

23 October 1974

UNCLINGUE LEU	ATIA	00 356		
Document	CONTROL DATA . R & D	00 330		
(Security classification of title, body of abottect and i ORIGINATING ACTIVITY (Corporate suther)	indexing ennotation must be entered when the eve	rall reput is classified) RITY CLASSIFICATION		
Foreign Technology Division	a. HEPORT SECU	UNCLASSIFIED		
Alr Force Systems Command	26. 64000			
U. S. Air Porce				
GASES OF ALVEOLAR AIR AND ARTE OF THE RESPIRATORY ORGANS	RIAL BLOOD DURING DUST D	ISEASES		
DESCRIPTIVE NOTES (Type of report and inclusive dates) Translation AUTHOR(S) (First name, middle initial, last name)				
A. A. Penknovich, L. N. Cherno	va, and Ye. V. Gladkova			
REPORT DATE		NO. OF REFS		
May 1973		6		
. PROJECT NO.	FTD-MT-24-1894-74			
e.				
	60. OTHER REPORT NO(5) (Any other this report)	numbers that may be essigned		
d. D. DISTRIBUTION STATEMENT				
I. SUPPLEMENTARY NOTES	Foreign Technold Wright-Patterson	ogy Division		
1 40578467				
06				
Repri	oduced by IATIONAL TECHNICAL			
IN	IFORMATION SERVICE			
	Springfield VA 22151			
	1.	13		
D 1 NOV 1473	UNCLASSIFI			
Security Classification				
TERPERATURE AND I Provide And I	14M-one - sharp benefit-replace - realizable - and reach	an an fanon 'n we gaar we al de weer de weer de geweer de geweer de geweer de geweer de geweer de geweer de gew		

FTD-MT- 24-1894-74

EDITED MACHINE TRANSLATION

FTD-MT-24-1894-74

23 October 1974

CSP 73203335

GASES OF ALVEOLAR AIR AND ARTERIAL BLOOD DURING DUST DISEASES OF THE RESPIRATORY ORGANS

By: A. A. Penknovich, L. N. Chernova, and Ye. V. Gladkova

English pages: 7

Source: Gigiyena Truda i Professional'nyye Zabolevaniya, Izd vo Meditsina, Moscow, Nr. 5, May 1973, pp. 15-19

Country of Origin: USSR Requester: FTD/PDTR This document is a SYSTRAN machine aided translation, post-edited for technical accuracy by: Catherine M. Barber Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD-MT- 24-1894-74

Date 23 Oct 19 74

All figures, graphs, tables, equations, etc. merged into this translation were extracted from the best quality copy available.

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Blo	ock	Italic	Transliteration	Block	Italic	Transliteration
		A e	A, a	PP	Pp	R, r
Б	6	5 6	B, b	Cc	Cc	S, B
		B •	V, V	Тт	T m	T, t
r	r	Γ.	G, g	УУ	Y y	U, u
Д		ПО	D, d	• •		F, f
Ē	-	Ē e	Ye, ye; E, e*	XX	Xx	Kh, kh
ж		* *	Zh, zh	Цц	4 4	Ts, ts
3		3 1	Z, Z	4 4	4 4	Ch, ch
Й	н	Ии	T. 1	шш	Ш ш	Sh, sh
R		A a	Y, y	Щш	Шч	Shch, shch
ĸ	x	Kĸ	K, k	3 3	2 1	11
л		ЛА	L, 1	ым	M N	Y, y
M	H	Мм	M, m	b •	6 .	1
H	×	Ни	N, n	3 3	9 1	Е, е
Ö		0 0	0, 0	0	10 10	Yu, yu
n	n	Пп	P, p	ЯЯ	Я я	Ya, ya

* ye initially, after vowels, and after b, b; e elsewhere. When written as ë in Russian, transliterate as yë or ë. The use of diacritical marks is preferred, but such marks may be omitted when expediency dictates.

FTD-MT-24-1894-74

FOLLOWING ARE THE CORRESPONDING RUSSIAN AND ENGLISH DESIGNATIONS OF THE TRIGONOMETRIC FUNCTIONS

Russian	English			
sin	sin			
COS	COB			
te	tan			
ctg	cot			
800	sec			
COSOC	CEC			
sh	sinh			
ch	cosh			
th	tanh			
eth	coth			
sch	sech			
csch	cech			
arc sin	sin ⁻¹ cos ⁻¹ tan ⁻¹			
arc cos	cos-1			
arc tg	tan-1			
arc ctg	cot-1			
arc sec	sec-1			
ATC CODOC	sec-1 csc-1			
arc sh	sinh ⁻¹			
arc ch	sinh ⁻¹ cosh ⁻¹			
arc th	tanh-1			
arc cth	coth-1			
arc sch	sech-1			
arc csch	csch-l			
rot	curl			
1g	log			
-				

FTD-HT-24-1894-74

GREEK ALPHABET

Alpha	Α	α		Nu	N	ν	
Beta	В	ß		Xi	Ξ	ξ	
Gamma	Г	γ		Omicron	0	0	
Delta	Δ	δ		P1	Π	π	
Epsilon	Ε	ε		Rho	P	ρ	
Zeta	Z	ζ		Sigma	Σ	σ	\$
Eta	Н	η		Tau	т	τ	
Theta	Θ	θ	\$	Upsilon	Т	υ	
Iota	I	ι		Phi	ф	φ	\$
Kappa	K	x	ĸ	Chi	X	x	
Lambda	٨	λ		Psi	Ψ	ψ	
Mu	М	μ		Omega	Ω	ω	

FTD-MT-24-1894-74

iii

GASES OF ALVEOLAR AIR AND ARTERIAL BLOOD DURING DUST DISEASES OF THE RESPIRATORY ORGANS

A. A. Penknovich, L. N. Chernova, Ye. V. Gladkova (Gorki) Institute of Labor Hygiene and Occupational Diseases (Received 21 Feb 1972)

Among the many criteria which are set as the basis of the clinical evaluation of the functional state of the external respiration system during dust-induced bronxo-pulmonary diseases, the diagnostic significance of the partial pressure of gases in alveolar air and their tension in arterial blood remains the least studied. First of all, this is explained by the procedural difficulties connected with the complexity of determining the tension of CO_2 , and especially O_2 , and also obtaining the "ideal" alveolar air. However, if the Holden procedure (with different variations and supplements) is all that remains up to now to obtain the latter, the concept of the tension of gases in arterial blood can be obtained using indirect methods to determine them.

In those investigations conducted by us to calculate the tension of CO_2 in arterial blood (PaCO₂) we used the Collier principle, according to which, after a certain time after circular respiration in a closed system with 7-8% CO_2 , its

concentration becomes equal to the CO_2 content in the mixed venous blood. Using a low-inertia gas analyzer CO_2 (GUM-2) made it possible for us to judge the equalization of the carbon dioxide concentrations in the mixed venous blood and the closed system most accurately - by means of the appearance of a characteristic plateau (Fig. 1). Having calculated the CO_2 tension at the

Figure 1. Capnogram of circular respiration for determining the PCO₂ of mixed venous blood and the calculation of PaCO₂. moment of the plateau formation and considering the venous-arterial difference of CO_2 which is distinguished by exceptional constancy and is equal to 6 mm Hg (Campbell and Howell; Stein and Colp; N. N. Kanayev), the tensions of this gas in the arterial blood were obtained. The tension of oxygen in the arterial blood (PaO₂) is calculated from the Rahn and Fenn nomograph proceeding

ning PaCO₂ and the oxygen saturation of the arterial blood. The latter was determined oxyhemometrically (in a vessel manner), the blood was taken from a finger of a hand preheated at 45° for 15 min.

Sampling an analysis of the alveolar air were conducted according to Holden's classical procedure. Investigations were conducted with 10 persons without signs of pulmonary and cardiovascular pathology and with 43 patients with dust bronxopulmonary diseases, caused by continuous work in contact with silicon-bearing dust (core molding, cast fettling, grinding, electric welding, etc.). The age of both the healthy persons and the examined patients was approximately the same - from 32 to 60 years.

FTD-MT-24-1894-74

On the basis of the results of the clinical-roentgenological examination of 33 patients, pneumoconiosis is established (stages I in 16 people and II in 17 people). In 24 of them pneumoconiosis accompanied the clinically pronounced phenomena of bronchitis, frequently with an asthmatic component. In 10 patients without roentgenological signs of pneumofibrosis, but with a distinct picture of bronxo-pulmonary disease, chronic dust bronchitis is diagnosed. In accordance with the clinical data and the results of the investigation of the external respiration function, based on the criteria developed by us (A. A. Penknovich et al.), pulmonary deficiency of the I degree was diagnosed in 13 patients, in 12 - II, and in 12 - III degree. In 6 people the disease lasted without a breakdown of the external respiration function.

Figure 2 gives individual data which reflect the PaO_2 , the partial pressure of oxygen in alveolar air (PAO_2) , and the size of the alveolar-arterial gradient of the oxygen in healthy and sick people with a different flow pattern of the dust bronxo-pulmonary pathology. The mathematical-

statistical processing of these data showed that PAO,, equal to 107.4 ± 2.64 mm Hg in healthy people, descends even in patients with pneumoconioses, which occurs without the clinically pronounced phenomena of bronchitis (99.9±1.70 mm Hg; P/0.01). An even larger reduction in PAO, is revealed in patients whose dust bronxo-pulmonary pathology is accompanied by a distinct bronchial component. In this case, the PAO, in patients with pneumoconiosis in conjunction

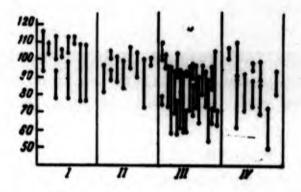
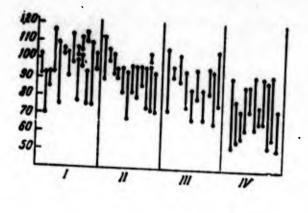
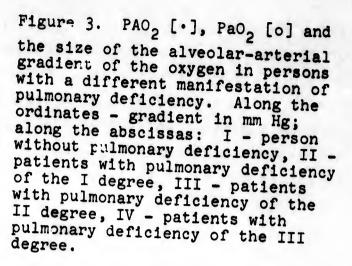


Figure 2. PAO₂ [•], PaO₂ [o] and the size of the alveolar-arterial gradient of the oxygen in healthy persons in patients with a different flow pattern of dust bronxo-pulmonary pathology. Along the ordinates - gradient in mm Hg; along the abscissas: I - healthy, II - patients with pneumoconiosis without bronchitis, III - patients with pneumoconiosis with bronchitis, IV - patients with chronic dust bronchitis.

FTD-MT-24-1894-74


with chronic bronchitis $(91.6\pm1.94 \text{ mm Hg})$ proved to be less, not only compared with the healthy, but also with the sick people with a "pure" form of fibrosis (P<0.05).


The differences in the amount of PaO_2 were somewhat less pronounced. So, with "pure" forms of pneumoconiosis the PaO_2 was virtually the same as in healthy people (respectively, 88.8 ± 3.28 and 91.9 ± 3.17 mm Hg). Only in patients with chronic dust bronchitis and especially with pneumoconiosis with a bronchial component the amount of PaO_2 was statistically reliably lower (respectively, 77.6 ± 5.19 and 72.1 ± 2.46 mm Hg), than in the persons of the control group (P<0.02), while in patients with pneumoconiosis with bronchitis it is less than in those with "pure" pneumoconiosis (P<0.01).

The unidirectional nature of PAO₂ and PaO₂ changes during the development of dust bronxo-pulmonary pathology is the reason for the fact that even during serious diseases a considerable increase in the alveolar-arterial gradient of the oxygen is by no means always noted. In any case, we did not succeed in revealing a statistically reliable increase in this gradient in patients with pneumoconiosis in conjunction with chronic bronchitis compared with its size in healthy persons.

From the data given in Fig. 3, it is seen that the most significant increase in the alveolar-arterial gradient of the oxygen occurs in patients with pulmonary deficiency of the III degree. Its average size in patients of this group (22.8 \pm ± 3.37 mm Hg) was statistically reliably more compared with persons without breathing deficiency, in whom this gradient was equal to 13.5 ± 3.11 mm Hg, and also compared with patients with pulmonary deficiency of the I degree (14.4 ± 1.70 mm Hg).

In light of current concepts about the reasons for the increase in the alveolar-arterial gradient of the oxygen

(L. L. Shik) the data obtained by us make it possible to assume that only with pronounced pulmonary deficiency in patients with dust bronxo-pulmonary diseases do prerequisites appear for a change in the relationship between the partial pressure of oxygen in the alveolar air and its tension in the arterial blood. In other words, if the relative PaO₂ reduction in patients with the II, and especially the I, degree of pulmonary deficiency, is the main consequence which develops in them as a result of ventilation disorders of the alveolar hypoxia, then during the III degree of the breathing deficiency with factors which facilitate the onset of hypoxemia, they obviously stop the breakdown of the relationship between ventilation and blood flow, and also the circulatory and diffusion breakdowns in a small circle of blood

Examining the questions of the relationship between the partial pressure of the gases in alveolar air and their tension in arterial blood, it should be noted that recently attempts were made to theoretically substantiate and experimentally demonstrate the presence of an arterial-alveolar CO₂ gradient (K. A. Mayanskaya et al.; Koziorowski and Radwan), which they consider increases in proportion to the development of the breathing deficiency. However, as shown in our determinations PaCC₂, adopted from the Collier method, and PACO₂, from Holden, the

FTD-MT-24-1894-74

existing difference in the size of these indicators in the majority of persons without pulmonary deficiency does not differ from this difference in patients with pulmonary deficiency of the III degree. If, the arterial-alveolar CO_2 gradient in the persons without breathing deficiency comprised on the average of 5.4 ± 0.65 mm Hg, then in patients with pulmonary deficiency of the I degree it was equal to 5.8 ± 0.95 mm, II degree - 5.4 ± 0.74 mm and III degree - 1.7 ± 1.87 mm Hg.

Thus, without denying the presence of the pressure of the CO_2 gradient in arterial blood and alveolar air, based on the data we obtained, we cannot agree with the fact that the gradient increases in patients with pulmonary pathology.

Conclusions. 1. The most pronounced reduction in the partial pressure of the oxygen in alveolar air and its tension in the arterial blood in patients with dust diseases of the respiratory organs is observed when the clinically pronounced phenomena of chronic bronchitis are present. A close connection of the reduction in these indicators with the degree of pulmonary deficiency in the patients is established.

2. A significant increase in the alveolar-arterial gradient of the oxygen is noted, as a rule, during pulmonary deficiency of the III degrees this indicates that the arterial hypoxemia in these patients is developed not only because of ventilation breakdowns, but also because of a charge in the relationship between ventilation and blood flow in the lungs, "bypassing," and the reduction in the diffusion ability of the lungs.

3. The presence of the arterial-alveolar CO₂ gradient was revealed, whose size, however, does not undergo substantial changes depending on the manifestation of the breathing deficiency.

BIBLIOGRAPHY

:

Канаев Н. Н. Физиол. ж. СССР. 1966, № 4, с. 431. — Шик Л. Л. Вки.: Современяме проблемы биохимин дыхания и кличника. Иваново, 1970, т. 2, с. 3. — Сатрbell E. J. M., Howell J. B. L., Brit. Med. J., 1960, v. 1, р. 458, — Коziorowski A., Radwan L, Pol. Arch. Med. vewnet., 1905, t. 35, с. 483. — Rahn H., Fenn W. O., A Graphical Analysis of Respiratory gas Exchange. Washington, 1955. — Stein M., Colp Ch. R., J. A. M. A., 1960, v. 173, p. 133.