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ABSTRACT

A theory of characteristic modes for material bodies is developed

using equivalent surface currents. This is in contrast to the alter-

native approach using induced volume currents. The mode currents

form a weighted orthogonal set over the material body surface, and

the mode fields form an orthogonal set over the sphere at infinity.

The characteristic modes of material bodies have most of the properties

of those for perfectly conducting bodies. Formulas for the use of

these modeo in electromagnetic scattering problems are given. A

procedure for computing the characteristic modes is developed, and

applied to two-dimensional bodies. Illustrative examples of the

computation of characteristic currents and scattering cross sections

are given for cylinders of different material constants.
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CHAPTER 1

INTRODUCTION

1.1 Background

Characteristic modes have long been used in the analysis of radiation

*• and scattering by dielectric and/or magnetic bodies whose surfaces coincide

with coordinate surfaces in coordinate systems for which the Helmholtz equa-

tion is separable. From consideration of the scattering matrix, Garbacz [1]

has shown that similar modes must exist for any material body. An extensive

theory for perfectly conducting bodies was given in reference [1], but the

dielectric and magnetic body case was not developed. An alternative treat-

ment of the characteristic modes for perfectly conducting bodies, starting

from the impedance operator for the conducting surface, has been given by

Harrington and Mautz [2]. The computation of such modes has also been con-

sidered by Harrington and Mautz (3]. A theory of characteristic modes for

dielectric bodies, magnetic bodies, and for bodies both dielectric and

magnetic, has been developed by Harrington, Mautz, and Chang [4]. in this

work, a theory of characteristic modes for material bodies is developed

using equivalent surface currents. This is in contrast to the apprqach used

in (4], which used the induced volume currents.

The modes are defined by a weighted eigenvalue equation in such a way

that both the generalized network matrix [5] and the scattering matrix [1],

[2] for the body are diagonalized. The presentation given in this work leads to

explicit formulas for determining the mode currents and fields of two-dimensional

objects. The formulas remain the same for dielectric bodies, magnetic bodies, and

SW
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for bodies both dielectric and magnetic. In particular, the scattering

problem of a two dimensional material cylinder will be presented. This

formulation of the problem is applicable to any general material body.

Details are worked out only for two-dimensional problems.

1-2 The Fundamental Operator Equation

Let the material body be represented as in Figure 1-1.

Figure 1-1. A general material body.

i i
Hi, ,i - incident fields (Wavy underline denotes vector

•, H a inside fields quantities.)

E , H w outside fieldsAMO AAwO

I' The problem of Figure 1-1 can be viewed as a linear superposition of

two cases,

(1) zero field inside

(II) zero field outside.

These two cases are illustrated in Figure 1-2.



n n2
E'E + E---"

S + Zero
H Field

/ Zero Field , E,

H'C

^A^A

Case (I) Case (II)

Figure 1-2. A decomposition of the original problem.

In case (I), let p ,c0be the material constants in the zero-field

region, and similarly in case (II), let p, e be the material constants in

the zero-field region. Having done so, radiation formulas [63 for unbounded

space can be employed. The J and M are equivalent surface currents [6]. Since

there are no actual surface currents, the following conditiuns should be

satisfied by the equivalent currents

S+ - 0 (1-1)

M' + M"- 0 (1-2)

Equations (1-1) and (1-2) come from the fact that tangential components of

fields are continuous across the interface in the original problem. Note

that

E - - JwA' - V' I V x F' + Ei (1-3)

0 ~
an -- j ' - V'+iV A'+dH (1-4)

and

m . ...
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E - - JwA" - " x P" (1-5)

Hi JwF" - " . A" (1-6)
AM M I'

and

S- JwA ' - -' x F' (1-7)

HS -JwF -Vol. +L 'Vx A'(1)

where E and Ha are scattered fields, and

A - vector potential due to electric current

F a vector potential due to maenetic current

0." scalar potential due to elentric charge

*m scalar potential due to magnetic charge

Primed quantities refer to case (1)

doubly primed quantities refer to case (II)

In terms of general operator notations, the following equations are obtained

L 21 :1J [1 t:-.U

2:1 LZ R (1-10)
L (_-22
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where the definitions of the operators are obvious when comparing equations

(1-9) and (1-10) with (1-5) to (1-8). Note that the tangential fields are

continuous at the boundary surface, i.e.

n X (E' + E1 - E) * 0 (1-11)

n x (is + Hi H) 0 (1-12)

where n w unit normal pointing outward, or

- n x Ea + n x E - n x Ei (1-13)

- n x H + n , H - n x Hi (1-14)

The following equations are obtained by substituting equations (1-9) and

(1-10) into (1-13) and (1-14).

-,n L11 (3')• - n x L• 2 ')__ +n x L"1 (J") + n X L' 2"(#") -#nxE± (1-15)

"(M nxEi

n x L (J') - n x L2(H') + n x L"(J" + n x " nxH (1-16)
210 12 22' 21 __ ^ 22w

By equations (1-1) and (1-2), it follows that

- n x [(L ' + L W)J'] - n x [(( + L -)M'] - n.x E1  (1-17)

-n x [(L' + L")J - n x [(L + L"'" ] n x (1-18)
21 2 l~ 2(L2  2~2 )' Hi

Define all the operators to be tangential operators; the above two

equations can be put into standard matrix form as:

A&i



6[-(Ljl + L"1  -(L' 2 + L 2 1[it [E
+ Ljl + -(L 2 + L' 2 J M J ta H an(-

The [ ]tan means the tangential components of the bracketed quantity on the

boundary surface. Let

Le' - -L1I, Le" w - L'111, L' On - L2 , L" -a L'22

and define

- C'(M') V x F' L L 2 (M')

C"(M') - x P

-11 , V x F' L 21(M')

c'(J') - V x A' - 1, (J0 )

ciJ' V xA" " - 'C"(a')- • -21

Hence equation (1-19) becomes

Le' + Le" C1 + CIOi"

-(C +11..2o)+Lm M

Jt E1:: tn[ 1 tan
It is convenient to rearrange equation (1-20) into the form

a..
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f i(1-21)

where

Le - Le + Le" j - J1

Lma Lm' + Lm" M 0 M,

C - C' + C"

and the subscript "tan" has been dropped for brevity. Equation (1-21) is

simply the familiar operator equation expressed below.

L(f) - g (1-22)

L is a tangential operator on the surface of the material body, and

Le -iC i

-jC LI'm

• 1- 3 Format

1 In this work the impressed magnetic field is assumed to be axially-

directed (perpendicular polarization). The derivation of all the formulas

for an impressed axially-directed electric field (parallel pol~i...ation)

will not be giver, in the main body of this work, in order to conserve space,

however, explicit formulas will be provided in Appendix A. A list if computer

programs will be given in Appendix B.

The content of this work is as follows. In Chapter 2, the operator

equation is reduced to a matrix equation suitable for numerical computation.

S•w .. • j • •M
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The reduction is accomplished by using the method of moments for perpendicular

polarization. The equivalent surface currents can be obtained by matrix inver-

sion. A concise theory of characteristic modes for material bodies, based on

the surface formulation, and explicit formulas for obtaining the modal solutions

are given in Chapter 3. Chapter 4 is a presentation of calculati i made for

cylinders of different material constants using both the matrix inversion method

and the modal method. Chapter 5 is a discussion of the results. The computa-

tions presented in this work were performed on an IBM System 370, Model 155

digital computer. The computer programs are written in FORTRAN IV.
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CHAPTER 2

MATRIX FORMULATION

The determination of equivalent surface currents requires the solution

of the following .nhomogeneous equation

L(f) - g (2-1)

where L is the matrix of operators

Le JC

L 1 (2-2)
-jC Lm

and
Li

f4 9*~± (2-3)

This chapter presents the reduction of equation (2-1) to matrix form by the

method of moments.

2.1 Method of Moments

To apply the method of moments, an appropriate inner product for the

problem is (~,indicates transpose)

<f, g> = f g ds

f (J * E - H . M)ds (2-4)

A solution by the method of moments is obtained as follows. Define electric

expansion and testing functions as

AS-
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fe 000% n (2-5)

and magneti. expansion and testing functions as

fa (2-6)

The expansion for f is then of the form

f (I nf? +v %fi) (2-7)
where the I and are constants to be determined.

The inner product of each {W) with equation (2-1) yields

L (f > <W*, g (2-8)
n in

where

<W, L(f)> ( e) + nf'

t n
I W*, L(f)>

+ I V <W', L(f)>
n 2

JWe > (J )do + V We (.C)(H )do (2-9)n nn__ _ " ,'n 5f

and

<Wgg P, IW .do (2-10)

ff IM
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Similarly, the inner product of each {WO) with equation (2-1) yields

<W, L(f ,)> M p- B (2-11)

and

WL(f )> 1, f f J (-iC)(J,)ds

+ IVJJ V W Im(Hn)do (2-12)
n 

-

M > 0.0.0 VP jdo (2-13)

Equation (2-8) and Equation (2-11) can be placed in matrix form

( z] [B] [I) I viI

II I(2-14)

where

- • Le( )do (2-15)

S .

B - ((w. (-JC)(Mn)ds (2-16)gmn ,m n

-fJ W * (-JC)(J )do (2-17)

K - JJ UP L,(Ht)ds (-8
*?



4,

12I

Vt-' ELdo (2-19)
m jj me

Ti- " rwm'jHido (2-20)
m

Choose J = We. Note that [Z] is obviously symmetric, already shown by
n a

Harrington and Haute. With the choice H -a, [Y] is the dual of (Z],
ft n

magnetic instead of electric, so the symmetric nature of [Y] can be easily
established. It is known that C(M ) gives rise to an electric field and

C(J0) will produce a magnetic field. Observe that by reciprocity

(E .b - Ha Mb) -a -fE *b )ds (2-21)

Now, consider

(i) In situation "a" only electric sources

(ii) In situation "b" only magnetic sources.

It follows that

f (-Ha -Hb)ds - (E (b JAds (2-22)
8 5

Hence

B3n Cnm (2-23)

Consequently, [C] is the transpose of [B], or

[ED) [C] with j W
'0.-- (2-24)

n n
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To this point the matrix formulation is completely general and has

been achieved without reference to specific excitation, expansion functions,

and tasting functions. Note that every one of the operators 1A, C, and Lm

is composed of two parts as indicated by equation (1-21), and consequently

every matrix element in [Z], [B], [C] and [Y] has two parts, one is due to

the primed operator, and the other is due to the doubly primed operator.

2.2 Expansion Functions and the Evaluation of -[Z) Matrix Element

In this section, the incident field is the axially directed magnetic

i
field, H . Before going into any specific excitation for the scattering

z

problem, some general considerations about the evaluation of different types

of matrix elements will be presented as follows.

Note that the original problem, the scattering from material bodies,

has been decomposed into two cases, and theit associated operators are of the

same functional form. For instance, the expression for Le"(J) will be identi-

cal to Le' except for the constitutive constants, u and c. For the sake of

brevity, only Le' will be considered. Once Le'(J) is known, Le"(J) is obtained

by replacing c o and Vo by e and U, respectively.

By equation (2-15)

Z J Wn (J + V*n)dZ (2-25)

where

An - magnetic vector potential due to Jn

On = scalar potential due to on, surface charge

•A
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Applying the one dimensional divergence theorem to the vector nnW , and noting

that

V n,.m n V . M + . VOn (2-26)

the following relationship is obtained
I1

fI 0 ,* Wd9. f On V WldR (2-27)
c

Define a such that

"•w (2-28)

Observe that equation (2-28) has the form of the continuity equation

if W% and a are interpreted as current and charge, respectively. An alterna-

tive form for the [Z] matrix element can be obtained by substituting equations

(2-27) and (2-28) into equation (2-25). The new form is computationally more

attractive.

Z mn j (W.n " An + am~n)d3. (2-29)

Define the two-dimensional Green's function G(rr')./

SG(rr') - .H(2) (kir - r'j) (2-30)

and

A(r) - P J J(r') G(r,r')dX' (2-31)

*(r) - . q(r') G(rr')dL' (2-32)

where q is related to J by the equation of continuity

L%



V , J - - jwq (2-33)

After substituting equations (2-31), (2-32), and (2-33) into equation (2-29),

the expression for Z becomes

I, a

CW Cr + - q (r')) G(r,r')dzl' dL

j f i • 'J+ j-i*W W )(V'. Jn)jG(r,r')dt'dk (2-34)

fc f n d

Note that the primed symbols refer to source location variation, vhile

the unprimed symbols relate to variation in field point location.

The specific formulaticn proceeds by dividing the contour C into N

segments, not necessarily equal in length. There are N segments and N+1 points,

L 
C

~I 
, 

f

u u
z .2

Fig., 2-1. 
A 

cross sectional 
contour.

ARI
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and L is the path length proceeding counterclockwise around contour C.

The sets of expansion and testinS functions are chosen as triangle

functions for both nlectric and magnetic surface currents.

Wk - T(& - kk)uL k-1,2,...,N (2-35)

A01

k-1 Lk- 2  Ak 'k-kl.2

Fig. 2-2. A triangle function.

where u is the unit vector tangent to C path length value A, and T is the

triangle function defined by

.. M
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" k

k+2 Ik k+2

+ ) z .

k k-2 k-2- - lk

0 A > lk+2

0 -k-2 ! z (2-36)

S- I k'
or l k 0 Z D,-k < Zk+2 +

T(•+ - •k -

11 - k'k .(£11k~j2) <L-tk < 01+ i k " Xk-2 "

0 t•-Ak - k+2"

O -(1kJ-1 k-2) >" 1t k (2-37)

Let Atk L .k+1I -k then

: J - t4 1 jAt 1  AL

1' k 
- k + At k+l 

0-tk 
&&k + A rk+l

+( t kk _- W)< -
I 6.k2+ ak.."(#k-2+A6'k-1) -"Jgk <

0L 1 k 1- A~k + at k+l

0 -(At 1k 2 + At•k) X- " (2-38)

and
At,0 N

-- - a
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Now, Z can be written asanl

Z - f [jaW 3  + (VJ W+)(V' Jn)]G dt'dt

tm+2 An+2

"- J r wjc T(X-Im) T('O-n)(Uk • ul)

A m-2 A n-2

+ - TI (L' - I ) T'(1 - ]n)]GdA'dL (2-39)j n n

The subscript a indicates the mth triangle testing function and the subscript

n indicates the nth triangle expansion function. T' is the derivative of the

triangle fimction.

k2k.Ak+2  'k
T' (£t-ak)-

k1

A k L k-2  > k+2

0 >- Ik+2

or 0 1 k- 2 I ' (2-40)

1 0 <__,-Ak < O AZ1
Ark + Atk+l k 1k+

T' (A-.k) -

Ak 2 + A•kW -(Ak.2+At k.l) <! L-1k < 0

0 L-1k -t ALk + atkil

0 -(Ak- 2 + At k.l) A-k (2-41)

AA
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The triangle function is approximated by four pulses with amplitudes

hk-2. hk-1' hk' and as shown below

-7-

- IL k-2 .k2 Lk-l hý,Lk I j k+l'+

Fig. 2-3. A four-pulse approximation

where

1t +1ASA'k.-2  Atk-k2 2 ½ k-.
hk-2 Atk . 2 + At ki h 2 -l Altk- 2 + Atk-1

S" a k + Atk+1 + 2 • k+1 (2-42)
k Atk + At k+l hk+l +At k + A ~

The derivative T' of the Triangle function can be represented graphically as

Ai

IJ
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1

1 'L
-.. Lk k+ , k+2 £

k-2 Lk-l I

1

k k+1

Fig. 2-4. The derivative of a triangle function.

Consider the contour interval spanned by the expansion or testing

triangle function as shown in Fig. 2-5.

t k
It

t L- k-2

•k+2 t1

t5

Fig. 2-5. Straight line representation of the contour.

491
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ro evaluate the integrals in equation (2-39) each such portion of the

contour is replaced by straight line segments drawn between the points or the

actual contour defined by Z10 A2'""' 'N+I' The integration variables in

equation (2-39) are taken along these straight line segments. For the nth

expansion function, the index p-1, 2 ,3,4 is associated with the four pulse

intervals for increasing path length. Similarly, the index qwl,2,3,4 is

defined for the mth testing function. Equation (2-39) can be put in the

following form

4 4 ,q+l p+l

Zmn f f [jwr TpTT(u U)
U Mt t

q p

+-+ 1 T' T'3 Gdt di (2-43)
iWe q p P q

Note that T and T are the amplitudes of the pth and qth pulses,
p q

respectively. The unit vectors u and Uq are parallel to the straight lines

of the pth and qth intervals in the direction of increasing path length.

Observe that each of the sixteen terms on the right hand side of equation
./

(2-43) results from one of two situations. Either the pth and qth intervals

coincide, or they do not. These two situations will be considered separately.

(i) Noncoincident intervals

In this situation each integral in equation (2-44) is

approximated by the product of its integrand evaluated at the

interval midpoint times the interval length. Hence equation

(2-44) becomes

4'A
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4,

4 .1 Hl (kR-)
ZA A t [Jp TpTq(u U + T-•- T( - T' -- (-44)

q pI l p q p q q 4j(

At and At are determined byp q

Atk n tk+I4 tk (k - 1,2,3,4)

and Rpq is the distance betwe.a the midpoints of the pth and qth

pulses.

(ii) Coincident intervals

For coincident pth and qth intervals the integral evaluations

proceed as follows. The q integral is approximated by the product of

the integrand, sampled at the midpoint of the interval, times the

interval length. The p integral is then evaluated as an improper

integral.

The small argument approximation for R( 20 (kR) is

HR(2) (kR) -%1 - j 21 log (XV-4 (2-46)
00

where log y is Euler's constant. Then for coincident pulse intervals

tq+l 1 T) 1I H(2) (kR)

( u T' T'] 0 d0d4
q wJ• Tp~q(Up Uq) +j- p q 4 p q

t
q p

A [twij TpT + 1 T' V] H 2)(kR)do (2-47)3 -. tq[ poqTwe p q-1 P P

t P

- -..- .. .....- -
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Note that the Integrand is singular at the midpoint. The improper Integral

can be treated as:

t P~l At p/2

(2 El =j .1log (k lx
HR20(kR)d - 2 I 2 ( dx

t --At 12Pp

--£

-am 1- og 3 2(- dx
-1-0 -it /2 7r

At /2

+ llm [1 - j log (4-)1dx

2 ykA 

-

-Atp[i- J log 4e 3 (2-48)

Therefore Zmn can be expressed am

4 4
Zm " .At At [wu TpT (u u ) - T' T')Z (2-49)

q-1 pal P q pq q we p q

where

SH°(2) (kRq) noncoincident intervals

ykAt

1-J- log 4a coincident intervals

Equation (2-49) is used to compute the two parts of each matrix element,
with , 1o and k in one part and e,p, and k in the other. It can be

0 0 0

readily observed that the use of equation (2-49) will lead to a symetric

(Z] matrix.

A(

/
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2.3 Evaluation 'of [3 B' And* C] Matrix Elements

Matrix elements for [B] are expressed by equation (2-16)

Bm We (-JC) (M )di (2-50)
l'! . c

Because of the discontinuity of the curl operator at the boundary, care should

be exercised in evaluating equation (2-50). The Green's function is singular,

and a simple interchange of differentiation and integration is not always pos-

sible. Note that the operator C consists of two kinds of operators, namely,

C' and C". C' is for the outside field, and C" for the inside field, with

respect to the material body. In the following development, the symbol C can

be either C' or C" unless stated otherwise. Since the incident field, H in

the present case, is considered to be axially directed, there will be a circum-

ferentially directed electric current and an axially directed maguetic current.

Let

k

and (2-51)

14 T(t Z L)U~

Hence, equation (2-51) takes the form

B - (T(L-Z )U 7 Xu U. T(I '-Z.) H( 2) (kf)dR'dZ

4 4 t q+1 t P.j
-f u( 2 ) (kR)dl'dt (2-52)

q-i p-l
t tq p

"A.
/X"
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Since T and T are constant between t and tp+l, t and t respec-
p q p tp 1  q q+19

tively, hence they can be taken outside the integral signs, so

tq+l t p+I

- -T TpTq . V , H(2 dl'dl (2-53)
qm ' nt q ^Af PO ^ t p

Again, two situations will be treated separately.

(i) Non-coincident p and q intervals

The Hankel function is continuous and differentiable. After

performing the indicated curl operation in equation (2-53), and noting

that uA refers to q coordinates, then

-- ~ ~(2-5)
qn lp-l Dy q axq q p

where

R pq - ((xq -x p)2 + (y - yp)211 2  (2-55)

and

(2)

3o1I(2 (kR)3y -, kHI(2) (kR) x (2-56)

OH (2 )(kR) y- y

1 Rpm

B 4. 4 ~ T T (2 (M) -)A
BMi q1-lp-l At .-- a R% y q )Xq

+ (x - x q)Ayq] (2-58)

p - N q

L ' ~ .. m -



26

Equation (2-58) is obtained through the application of triangle

expansion and testing function employing a four-pulse approximation to

the triangle, and the integrand was evaluated at the midpoint of each I
pulse interval.

(iU) Coincident p and q

Note that in this case, the method used in evaluating the

improper integral for JZ] can not be applied here because the curl

operator is not continuous across the boundary, for instance

- Id
Boundary Surface

Fig. 2-6 Boundary Surface

By visualizing a current sheet that flows into the paper as shown in

Fig. 2-6, it is evident that the tangential field component will de-

cidedly be zero as c -1 0.

A better way is to find the field at a point above the boundary

surface, then find the limit as it approaches the boundary surface from

above. Before performing the limiting process, the integrals in equation

(2-53) becomes
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~q+l tp.'.

u • V x uI H (2) (kR)dL'dtft •U *

q tp

tq+l (.cR) ((2)
At - [tp J CuH 0 q+w qq

tq

Note that in equation (2-58) uI refers to the q-coordinates and the p-

integral is evaluated as the product of the integrand sampled at the

midpoint of the p-interval times the interval length.

A local coordinate system is constructed for the evaluation of the

improper integral as R 0. A local coordinate system is shovn in Fig. 2-7.

Y

Ru [(x-x') 2 + y2]1/2

'R

K,'
-At/2 At/2

Fig. 2-7. A local coordinate system.
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Next, consider the ;erm

t/2 OH (2) (kR) '
0 dx' (2-59)
By

-At/2

and noting that 3H 2 )(kR)

- (H2)(kR) H( (2-60)

By using small argument approximation for R(2)(kR)

R (2 )(k) - J1(k) - ajNI(kR)

kR + ,1 (2-61)

equation (2-59) becomes

A t / 2 A t / 2 [ k + j _ .L ],

f a2 dx' k f 2 w+8ykl y
-At/2 -Mt/2

kc 2 tnI(Tt-x Tan.- (2-62)
TI Ya Jtnl y p

Not* that an x +0, y - 0, the improper integral approaches -J2.

Finally the expression for AM can be stated as follows.

4 4
-- MTT qB (2-63)

where
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kH• 2 (kR2) )
[- I (n- yq)Ax + (X - X)Ay]

Rp p Yq q p q qRpq

(non-coincident)

B - - J2 (coincident)

Equation (2-63) is used to compute the two parts of each [B] matrix element,

R in one part (due to primed operator) and k in the other (due to doubly

primed operator). Since C' is an outside operator and C" is an inside

operator, the values of B for the coincidental case will have opposite signs.

Mence the coincidental-pulse-Lnterval situation contributes nothing to the

values of the matrix elements.

In spite of the fact that JCJ W (B], it is advantageous to evaluate

CM explicitly. The procedures involved will be essentially the same as in

evaluating B n Recall equation (2-17), and it can be expressed in greater

detail as

i,,

SCm - I Wm * (-JC)(Jn)dL
C

A specific fom, suitable for computational purposes is developed in a

manner similar to that used for B m. Considerations governing the choices of

expansion and testing functions are the same as those discussed at the begin-

ning of this section. Note that the electric surface current, in the present

case, is circumferentially directed.

UP- T(I - k
• • •(2-6 •i)

in - T(I - Ik)U I

.. .
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where T is dv:fined by equation (2-38) and u is the unit vector in the direc-z

tion of the axis; U. is the unit vector along the crose-sectional contour. C

can be expressed as

t t
" 4mn --ni. TqUz ' V x u• J TpH( 2 )(kR)da'dt (2-66)

q q t p

The evaluation of the integral@ appearing in equation (2-66) is facilitated

by approximating the triangle function by four pulses. The index p - 1,2,3.4 is

associated with each pulse, respectively, for the nth expansion function, while

the index q - 1,2,3,4 is similarly defined for the mth testing function. Since

T is constant between tp and tp+1 and Tq is constant between tq and t4+1, they

can be taken outside the integral signs. uI is the unit vector along the contour

with respect to p coordinates. Hence

4 4 t P+l

I~ X (2(-67
), ':CMn I I TpTqAtq uz JuV x udx H 2(kR)

,q=1 pm, p q q f O^p 0

.4 t
P

(2-68)become

+ u. dyHS•) (kRt)

4/ 4 P• alp+ •) (kR) 3H (2) (kR)

I I T T....dy dx ] (2-67)-- W PaTp q q j aXq dpP
(Il Ia t axq

Note that the integral

p+1 M (2) (kR) BHp(2) -6R
1[ 0~ dypd 2-8

t axq p Yq

P

can be evaluated just like in the previous BAM case. It follows that equation

(2-68) becomes
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kH (2) (kR N[ A x +3 qIX (2-69)1 pq R A +Rp qpq p

For coincident p-pulse and q-pulse intervals, the evaluation of the improper

integral is identical to that developed for Bn.. To this point, the matrix

elements for [C) can be conveniently specified as

"C - 1 TTC (2-70)
qn p-i q pq

where k~~(R

C .. .lp [- (xp -x q)Ayp + (yp - yq)Ax p

(noncoincident intervals)

C - -J2 (coincident intervals)

Equation (2-70) is used to compute the two parts of each (C] matrix

elements; one part is due to the outside operator C', and the other is due

to the inside operator CV. Again, for the coincidental-pulss-interval situ-

ation, the net contribution, to the value of each matrix element, is mero,

because the two values of C in equation (2-70) have opposite signs.

2.4 Evaluation of (Y) Matrix Elements

The only expression left to be developed is that for the [Y] matrix

elements. By equation (2-18)

Y - an f * L m(M n)dZ

U P (J.F + V.)dt (2-71)
)rn n
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The superscript, m, indicates magnetic quantities. By equations (2-26)

to (2-28), the following in obtained

Y m" Ja (Wn.- F+ 0 Onm)dI (2-72)

In this case all the currents are axially directed. The expansion and

testing functions are chosen as

Wk - Mk = T(L - (k)2 (2-73)

where T is the triangle function dWfined by equation (2-38)$ and u is the
I

unit vector in the axial direction. The continuity equation in this case

is

1 v.M (2-74)n jW n

Note that Mn is u1 directed, so

V.M n o (2-75)

and it follows that

a n 0 nd = 0 (2-76)

Therefore

Tmi
c

we~J (W~ *M)H (2 )(kR)dtldt (2-77)
c c

where the unprimed integration is taken over field points and the primed

iutegration over the source points. A specific form is developed in a

manner similar to that used for Ze. Equation (2-77) can be expressed

/d
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in greater detail as

£m42 Ln+42

we I. J T(I-IL) T(t'-L) H (2)(kRI)dl'dl (2-78)
f f
m-2 n-2

The evaluation of the integrals appearing in equation (2-78) is carried

out by approximating the triangle function by four pulses as shown in Fig. 2-3.

Equation (2-78) can be written as

4 4 tq+l tp*4l (H(2)
Y ¥mn -"Te q-1l p Ttq tp H f2)dgldt'd (2-79)

The indices p and q have the usual meaning. T and T have already been

defined by equation (2-42). Each of the sixteen terms contributing to Ymn

falls into one of two categories. Either the p-pulse and q-pulse intervals

coincide, or they do not. If the latter is true, each integral is approxi-

mated by the product of its integrand sampled at the interval midpoint times

the Interval length. The expression for Ymn becomes

4 4

TT t At H (2) (2-80)
qM-4 1 p p q p q o pq

As previously stated, At and At are defined by equation (2-45) and
p q

R is the distance between the midpoints of the p-pulse and q-pulse intervals.pq

For coincident p-pulse and q-pulse intervals, the improper integral and its

evaluation are the same as those in Z mn Hence

an'



34

t tq+l p+l(

TpTqH(2) o Rd'dl
f t

q P

k2 ykAt
T Tp AtpAtq [1-i log (2-Si)

where logy - Euler's constant

- 2.718

The final expression for Y is

4 4
Y. I I TpT AtpAtqY (2-82)

4q-1p pwlPq p q

where

Y a H2o R) (non-coincident intervals)
0 pq

2 ykAt_- [l - j A log t (coincident intervals)

2.5 Excitation Matrix, Measurement Matrix, and Scattering Cross Section

The matrix elements of the excitation matrix are represented by two

expressions, equations (2-19) and (2-20). It in important to realize that

the transformation of (2-19) and (2-20) into computable forms depends on

the type and polarization of the impressed field. In the case under con-
sideration, the excitation is assumed to be a z-directed magnetic field

of unit magnitude. The incident field is given by

Hi () - e- 'J- (2-83)

The wave number vector k points in the direction of travel of the incident

wave. A coordinate system for the evaluation of the excitation matrix
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elements is shown in Fig. 2-8.

4y

I 

!l

x

Fig, 2-8. Incident field.

Equation (2-19) will be considered first. The testing function is

We - T(L - I )u, (2-84)

For plans wave excitation the 0-directed electric field, associated with the

z-directed magnetic field defined by equation (2-83), is

E -- arJku -

i k~ ik(x MPCos + y MPin )
n-r(- u sin * + u cos 0)e (2-85)

.j 'A

where u a-directed unit vector

Fo U x-directed unit vector

u w y-directed unit vector
-d t

h- ' 

L
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- incident angle 3

Xmp y mp - midpoint coordinates of each straight line segment

n - intrinsic wave impedance

By using four-pulse approximations for tha triangle testing functions,

equation (2-19) can be expressed as

4 tp+2l

V; . I uI Tp a E (p)dt (2-86)
pultm plt "p

Note that the excitation matrix element Vi is given as the component ofm

E (P) tangent to the contour for the mth triangle. The integral in equa-

tion (2-86) is evaluated as the tangential field component of Ei sampled

at the midpoint of each p-pulse interval. Hence

Vp-
1  p

p=1

ik(xpcos • + ympsin*•) ±i

e -p Ax sin + Ay cos ] (2-87)

where Ax and Ay are the rectangular components of the pulse interval. A

portion of the contour is shown in Fig. 2-9 which illustrates how equation

(2-87) is obtained.

Equation (2-20) can be evaluated in a similar manner. The testing

functions are triangle functions, and each triangle function is represented

by equation (2-39) and choben to be z-directed.

Vk - T(I - Lk)uZ (2-88)

k z.

'.# € .ll .•..... • " ,. ,' , n , l - - Iv 'il I= "I ' I 11 M II I I ' ° I
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p-41

K

mp~

MP

Fig. 2-9. A partial contour.

The evaluation of (2-20) in quite straightforward and rhe procedures are

identical to those used in the evaluation of V i. Hence

4 jk(:: cost i + ypsin 2-)
I=i T At a (2-89)

m P p

The distant scattered field can be evaluated by reciprocity. A z-directed

magnetic current filament at p0 of strength M is adjusted to produce the unit

plane wave incident on the material body

ik(xncoso + Ynssin )
H , U 0 (2-90)

S

Note that X produces a O-directed Ei and a z-directed Hi

LI
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H

PO

ýn

Fig. 2-10. A two-dimensional contour and z-directed

magnetic current filament.

By reciprocity it in evident that

HO~ (E i J H~ H)dt 2-1

or

HI f dl (2-92)

where [.1

Equation (2-7) can be expressed in matrix form as

n] [in)

f a (2-93)

1
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With the help of equation (2-93), a new form for equation (2-92) is

- HO ED] (2-94)

l[v,,3.
Note that (In] and IV n I are column matrices, and the matrix [D] is

ED) -[ * [JI]dt] [I [INI, * dll (2-95)

C • C C

The values of I and V can be obtained from equation (2-14) by matrix

inversion. The constant 1/M P is that needed to produce a plane wave of unit

amplitude at the origin, which is

1 k2  H (2) (kpo)
R- W W" o 0
p (2-96)

we4 H(2) (kpo)

Redefine equation (2-95) as

(D] - (ED,] [DM]} (2-97)

where

-J • [Jn]dt (2-98)

C

Dm", [H []d' (2-99)n n

C

The evaluation of the integrals in equation (2-98) and (2-99) is

straightforward, and the procedures involved are completely analogous to
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those used in the evaluation of Vi and I . Only the results will be given

here

4 Jk(x cons s +y sin #s)
Dn p=- n I T a -Ax xsina + Ay cos ] (2-100)

4 jk(Xnpcoo 08 + ynpsin *0) (2-101)
•- j I T Atpa n

pl

n pm1 P

The scattered field can be exprwroed an

or 1.V nIJ

pZ 4[ B]- 1 i

H H (2 )(kp MED]D 1- (2-103)

p! 4'l o '' 'l

In the scattering problem, the biltatic scattering cross section a is

a parameter of interest. It is defined as the width for which the incident

wave carries sufficient power to produce the field E H by omnidirectional
II /

radiation. It may be expressed as

C OO~) a 2w po1

lim P -• -

or

S2 w po HO(W) 2 (2-104)
lim. p0 -0

bL0
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The large argument approximation for H (2) (WR) is
0

H (2) (x) _;:F2." S-jx (2-107)0Fi

The expression for the scattering cross section can be stated as

k-i 2ip

7 1h2 (2-106)
41n

wheDe EI IB( II
.[o] ,,] [,:I

Ki

,~ AS
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CHAPTER 3 4:

CHARACTERISTIC MODES - A SURFACE FORMULATION

3.1 Theoretical Development

The treatment of characteristic modes for perfectly conducting bodies,

starting from the impedance operator for the conducting surface, has been given
by Harrington and Mauts (2]. In terms of the polarization current and the

magnetization current, a volume formulation of the characteristic mode theory

for dielectric and magnetic bodies has also been treated (43. In this chapter

a theory of characteristic modes for material bodies (dielectric, magnetic, or

both) based on a surface formulation is developed. The appropriate operator

formulation of the problem is

- (3-1)

To emphasize the symnetric nature of the matrix of operators, the off-diagonal

operators are denoted by a single symbol, N. Define the folloving rise vectors

FE

f I , a (3-2)

and the matrix of operators

Le N

T (3.-3)

N 1A

where N -.JG.

A
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Equation (3-1) can then be written as

Tf -

Define the symmetric product

<f, g > f f fdo

a

which, for f a source quantity and g a field quantity, is reaction. The

product

<f* S> 7*gdo

f (J* E + M*. H~ds (3-5)

is a suitable inner product for the Hilbert space of functions f, £ in S.

If f is a source quantity and & a field quantity, the real part of (3-5) is

time average power, but the imaginary part of (3-5) differs from the usual

imaginary power. It is easy to show that T is symmetric, that is,

<fi, Tf2> - <f2, Tfl> by reciprocity. The operator T can be expressed in

terms of its Hermitian parts as T - T1 + JT 2 where

uui ½(T +T*)m - R-6

RN1LT (T+J* (3-6)

T2 "-m (T T*) -[ 3-7)
N2 B



44

Here N1 and N2 are the Hermitian parts of N, R and X are the Hermitian parts

of Z, G and B are the Hermitian parts of Y.

By equation (1-9), the fields due to 3 and M4 can be expressed as

i E Le' -j C

L' "- H L',w J (3-8)

As far as radiation is concerned, the contribution due to the doubly primed

operators is zero. The power radiated by any J and M on S is given by

Rot(P) -Re f(E J* + M H*)ds

-- Re (E * + M* H)ds

- Re (<f*,Tf>} (3-9)

Hence the time average power delivered by a source f is

Re(P ) , Re <f*,Tf> (3-10)

ire imaginary part of <f*,Tf> is not simply related to reactive power.

Using six-vector notation, we formulate a theory of characteristic

modes which parallels that of the volume formulation (4). The eigenvalue

equation defining the modes is

T2 (f) n XnTI(fn) (3-11)

where T1 and T2 are real symmetric operators. Hence, all eigenvalues Xn

are real and all characteristic sources f may be chosen real. In expanded
n

form

Omn
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fn P0 (3-12)L J%
which, for characteristic sources, implies that M is imaginary and J is

real. The characteristic sources can be normalized to radiate unit power,

and the usual orthogonality relationships expressed as

<f*, T f > a <fo', Tf > "m6m in 1 M

<cf*, T f > in <f , T f-> A6
M 2 2 n nmn

<f*, Tf > - <f , Tf > - (1 + JA )8 (3-13)
* n m n nm

where 6 is the Kronecker delta. The field

due to a source f is called a characteristic field. In the radiation zonen

the characteristic field is of the form of an outward traveling wove, and *it

is completely characterized by either E or H

Let fn and f be two characteristic sources. By equation (3-13), the

following expression is true.

n n
<f• Tf n> "< [J n jM n] I

-0 form n (3-15)

Equation (3-13) is essentially

If (JO * En n M m M)do 0 (3-06)

jJV %J

__ I

Lii /
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where En and Hn are produced by fn. Because J is real and M is imaginary,

we have
e (J'.E + n'.M*)dsuO 

(3-17)

It follows that

Ra JJ' (EnoJ* + R¶?yds - 0 (3-18)
WVV AM - AF'%

which means that the real part of the cross power is zero. In the

radiation zone the characteristic waves are of the form of outward

traveling wave, i.e.

En a n m Hn x n (3-19)

where n is the unit radial vector on S.0 The real part of the cross power

can be expressed as

Rxe d - Re *Z do 0 (3-20)

The real part of the cross power between :(.nHn) and (R:,) is also

zero. Hence,

*. .fEm E.E do fJJHm . Hnds -6 (321

3.2 Characteristic Equation and Modal Representation

In the preceding section, the analytical development was based on

the interpretation of operators. The reduction of operator equations to

matrix equations can be effected in the usual manner by the method of

moments.

A
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Let

fn (n If+ + fv ) (3-22)

where
M 0

.f - f -(3-23)

After substituting equation (3-22) into equation (3-11), the following

in obtained.

{ I f IT 2 f + VT 2  }In( Tf- + V (3-24)

Perform inner product with electric testing function

WeIJ T f*>+ V < W*t T2 fa >
i V 2 $il2

A 1 4 %W* T f > + < ~WeT fm > (3-25)
NA OW, h*A

and with magnetic testing function $P.

* s j _ 1 2

II < UP. T f%+ V OP, T fu > (3.26)

Equation (3-25) and equation (3-26) can be put into one matrix equation.

M IL] n [ IN J (3-27)Lr 2 1 L-Vjl n" I (G] L(VIn
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The definitions of [X], [N2], [B], (R], [N1], [G], [I], and (VI are

obvious by comparing equation (3-27) with equations (3-25) and (3-26).

Equation (3-27) is the sigenvalue equation which will be used

in the actual computation of the modes. In abbreviated form, it becomes

T T2 ][fn X "•n I T 1 ][fn (3-28)

Now, with the understanding that Xn and fn can be found, the modal

solution for f can be expressed as

f = nfn (3-29)

Recall that

Tf -8i (3-30)

After substituting equation (3-29) into equation (3-30) and performing

the inner product with fm, the following equation results.

an<fms Tfn > ) f m f 1 > (3-31)

Apply the orthogonality relationships given in equation (3-13). It

follows that

f, g >
a " ....... f (3-32)n -(1+ T Xn) f, -f>

Explicitly,

< m > I < f > + V < fit (3-33)

The matrix equivalents of the orthogonality relationships

for the characteristic currents, equation (3-13), are also of interest.

For example, that for T1 is

II
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fr Tfn > - < ( I fj + Vif )m' T1  ( Ife + V f) )n >

- I • l[ [ fe, T1 f [ I + iVj < f[, Tf >
j %A^~ ^AA AA

+~ V6I >~ ~ + VjVj- f'~, Tlfm >

Im n + m NJ in

+ ( v ]M[ ^N 1 1 In+ I V G IC V I

"f m I [ T1 ] [ fn I W an (3-34)

where denotes transpose. Similar derivations hold for T2 and T.

3.3 Linear Measurement

Any scalar p linearly related to the generalized current, i.e.

a linear functional of the equivalent electric and magnetic currents, will

be called a linear measurement of the current.

Any linear functional of f can be expressed as

P M < gm, f > (3-35)

whore 0m is a vector function which consists of an electric field and a

magnetic field. By equations (3-32) and (3-33), the linear measurement

of f can be stated as

"_ _ _ _ _ _ < g fn > (3-36)

n (1 + JAn fn, Tlf 1f n >n
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where

< e f. > 9 i fe >" v < > (3-37)
OP ±%AI Ui ±J^n o

and define the following

m f - modal measurement coefficient (3-38)

f n > - modal excitation coefficient (3-39)

Equation (3-36) is a symmetric bilinear functioual of gi (the

impressed field) and of gm (the measured field). The 3ywMetry of (3-36)

is a conequence of the symmetry of the original operator T. Equation

(3-36) can be expressed as

K i K m

+ (3-40)
Sgiin n

similarly, in terms of 1, equation (3-32) becomes

K i

cn -i- T" (3-41)
n

and equation (3-29) will take the form

K i
f "n (3-42)

3.4 Characteristic Fields and Scattering Cross Section

The characteristic fields are linearly related to the

characteristic currents, f n and hence can also be expressed in modal form.

K i
n n (3-43)

+ l "n,.n n .
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When K and f are known, the field pattern can be obtained by

employing equation (3-43). A convenient way is to evaluate the modal

measurement coefficient first. In the two-dimensional case, consider a

magnetic current filament, M - u um at ( p,ý )on Sw, See Fig. 3-1 below.

5

Fig. 3-1. A coordinate system for modal measurement

coefficient

By reciprocity, it is readily seen that

H 1 M =. J E a- M1 o Hm ) do 34+

H-( Jn m n m~d (3-44)

wilure Hn is the characteristic field components produced by the mode

current fn# Em and Hm are the fields due to the magnetic current filament,

M. To simplify the analysis, the magnitude of the magnetic current, M, is

adjusted to produce a plane wave on the material body, i.e.

-jk .r
H M 0 u, 03-45)
PV.'A OOA

E H x(3-46)

S...... mX .. .. icmL,
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where n is the wave impedance and ukm is the unit vector in the direction of

propagation. The right hand side of equation (3-44), in matrix form, is the

modal measurement coefficient. Hence,

im - n . Em - m~ . Hm ) dt (3-47)

Explicitly, the electric field and the magnetic field can be

extracted from equation (3-43) as

1 n E (3-48)

KiH n H (3-49)

Since the magnetic field is currently under consideratiou, only equation

(3-49) will be used. The component of the magnetic field on um is

K;,• u.um- Hn um
Sl+j• linon n

im x
KtK 1 K;

4 H H02  (kp) +n i (3-50)0 n1

Note that Kin is of the same functional form as Equation (2-98)

has been used in deriving equation (3-50).

A commonly used parameter in plane wave scattering problems

is the echo area. In two-dimensional problems the quantity " echo width "

corresponds to the " echo area of the three-dimensional problems.

N,' -' ' -• "I
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The echo width is defined in equation (2-106).

(I- P .II U (3-51)

limit P, -
By equations (3-50) and (2-106), the following expression for the scattering

cross section is obtained.

Ki Km

a k-_ _ K; (3-52)

3.5 Computational Considerations

The solution of the matrix eigenvalue problem, equation (3-28),

will be discussed.

T2  f f I - X [T ]T f ] (3-53)

Note that the subscript n has been dropped for brevity. The conventional

method for reducing (3-53) to a synmetric unweighted eigenvalue equation

requires [T21 to be positive definite. In theory ET1 ] is positive semi-

definite, but because of numerical inaccuracies it is actually indefinite,

with some small negative eigenvalues. If the values of the matrix elements

cover a very wide range, scaling will become desirable. The magnitude of

the scale factor can be chosen as such that all scaled matrix elements

will be brought, as close as possible, to the same order of magnitude.

The conventional method will be modified as follows.

Let [D] be a diagonal matrix. After premultiplying by [D],

equation (3-47) becomes

/'
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[D ] T2 ] [f] - 1) ][ T1 3 [ f ] (3-54)

Then observe that

[D I[ T2 ][D I ( fD ]-[ f I)

X E D 3E T1 It D I D ]-I I f 1 (3-55)
1 A-1

The eigenvalue equation as given by (3-55) will have the same eigenvalues

as the original unscaled equation, but the eigenvectors will be different.

In other words the eigenvalues are not affected by the diagonal

transformation. The original eigenvectorm will be modified by [D] inverse.

If the scale factor is s, [D] can be chosen asD 01
[CD] - L1(3-56)

0 1

By equations (3-27), (3-55), and (3-56), the scaled esigenvalue

equation is

T! f1 X 1 [ T1 11 f5 1 (3-57)

where

Ix ]Is N 21/sI, I
[ T 3 - , (3-58)2 2

[N2 ]/s 1B I

[T ]u[ I (3-59)
C•[NI~ ]/u I

and

4.
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Mw V

Note that [II and [V] (J and .M) should first be recovered from the

scaled sigenvectors before computing the surface currents and the scattered

fields.

Rewrite equation (3-57) below

[ T2  ( f ] - X[ T] f] (3-61)

Note that the superscripts have been dropped for brevity* An approximation

will be used in finding the eigenvalues and eigenvectors. The eigenvalue

equation

T I r ml.r (3-62)

is used to find a set of basis functions for the T1 vector space. An

orthonormal set of vectors can be obtained by using the vectors { r i

Let { U be the set of orthonormal vectors, and let (U] be the orthogonal

matrix which diagonalizes IT1 ] according to

00 •0 0 .
0 020 0
0 0 'A130...

IU 3 0 0 0 (3-63)

where the ui are the eigenvalues of IT1 ] ordered u U2 > U2 13 >!-4 ......

Every column of EU] is in ( Ui). Only the larger u. can be considered

accurate. All Pi > V I are put in [ 1 ] where M is some small positive

number set by the estimated accuracy of IT 1 ]. Usually H is anywlhro

between 10- and 10"6. The diagonal matrix Jul is then partitioned as

. m m ~g m j~~ _.__
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[ i J ](3-64)

where
mli 0

M2

P[ I - (3-65)

IJU.,l 01

Pu2  Im (3-66)

Now consider

n
f - X, U~ (3-67)

where UL is a column vector of [U]. This is a valid expansion because

the ( } vectors form a basis for T vector space. In matrix form equation

(3-67) becomes

f- [u U[ x ] (3-68)

If [ u2 ] is set to zero, it follows that all column vectors of [U]

corresponding to all Wk E [ P2 ] are in the null space of T1 . This is

illustrated in Fig. 3-2.

The expression for f as given in equation (3-67) can be written

as
m n

f xiui+ [ xUk (3-69)

x ii + "-"

a 1 .!
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Null space of T1 (dim. * N-rn)

Fig. 3-2. T1 vector space

The column vector [x] in equation (3-68) can be partitioned as

MA

•x1- [U 1 f (3-70)

where [x1 ] and Ex2 ] are column vectors, and they are obtained by

partitioning [x] according to equation (3-69). Premultiply equation (3-61)

by CU] and use equations (3-63) and (3-68). The result is
K

U T T2 ][ U H x I - XC 0 31 x 1 (3-71)

Set [ P2 ] equal to zero and partition all other matrices

conformably. The following two matrix equations are obtained.

A 11 H xi I + I A1 2 1[ x2 I " X[ Ul 1[ x1 ] (3-72)

[ A1 2 ]t x1 ]+ I A2 2 ][ x2 I - 0 (3-73)

Note that C A 3 - [ U ] T2 1[ U ]. Equation (3-73) can be solved for

C x2 ] and the result substituted into equation (3-72) to get

-l -•

A11 - A. 2A22A1 , IC x1 ] P u 1 x1 ) (3-74)

The brackets of submatrices have been dropped to conserve space.

Il
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Nov [u1] has only positive diagonal elements as defined by equation (3-65).

Observe that

[ • ] [ 1/2 1 /2] - 5

[ •.12- ..(3-75)

where

1/2
12U 1/2

U2 1/2
U3

I1/2

h ul/-a (3-76)

0 1/2

By equations (3-74) and (3-75) a nov and unveightod elgenvalue

equation is obtained.

[B - y X- [- y ] (3-77)

where

y U1/2 Hx(3-78)

C B - -1/2 ][ A. -1 A~ 1 /2 , (-79)

The eigenvalues of equation (3-77) are the smaller eigenvalues of

the original equation (3-61), and the eigenvectors of (3-77) give the

corresponding eigenvectors of equation (3-61) according to

f CU]C1 [U [:; 1  ] U-1/2 CY (3-80)

where ( 6 is the identity mnatrix.
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Once the elgenvalues and the eigencurrents are known, the

equivalent surface currents and scattered fields can be obtained by

employing appropriate formulas for those quantities.

p.

't

./
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CHAPTER 4

RESULTS

The results of far field scattering calculations for some material

cylinders are presented in this chapter. Equations used are those developed

in Chapter 2 and Chapter 3.

The far field scattering patterns of circular material cylinders have

been computed and the results are shown in Figures 4-1 through 4-16, for

perpendicular polarization (TE)i Figures 4-17 through 4-22 give the results

for parallel polarization (TM). All results are compared with exact harmonic

series solutions [7]. Figures 4-1 to 4-5 are obtained by using 15 triangle

expansion functions. Twenty expansion functions have been used in obtaining

Figures 4-6 to 4-22. In all figures the computed scattering cross section

are normalized by wa, where "a" is the radius of the cylinder.

The normalized scattering cross sections of square cylinders are shown

in Figures 4-23 through 4-27. All computed results are normalized by 7rb,

where "b" is one-half the width of the square cylinder under consideration.

Twenty expansions have been used in all computations for square cylinders of

different material constants.

Figures 4-28 through 4-30 show the characteristic currents (or mode

currents) for circular cylinders of different material constants. Fifteen

expanston functions have been used for the computation of mode currer."s.

For representative computations, consider a circular cylinder with

ka - 0.7 (where "a" is the radius of the cylinder, er a 9.5, 1jr " 1.0. The

contour is approximated by 32 straight lines segments of equal length (the
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line segments can be of different length), and 15 expansion functions are used

for both electric and magnetic surface currents. Figure 4-28 shows the char-

acteristic currents plotted vs. the contour length variable in terms of a

sequence of triangle functions. All the mode currents are composite currents.

The first 15 points represent the electric mode current, and the second the

magnetic r.-urrent.

Figure 4-29 shows the characteristic currents for a circular cylinder

with cr a 50.0, 1Ir 0 1.0, and ka - 0.7. Figure 4-30 show* the characteristic

currents for a circular cylinder of Cr m 2.56. Note that every mode current

is normalized by its maximum magnitude.

For perpendicular polarization (TE), the modal solution for the scattered

field agrees extremely well with the scattered field computed directly from

matrix inversion. The scattering cross sections using characteristic modes are

almost identical to the matrix inversion solutions (the differences are less

than 0.001 db).

To be specific, Fig. 4-1 shows the normalized scattering cross section of

/ a circular cylinder with C - 9.5, Iir a 1.0, and ka - 0.7 for perpendicular
r

polarization (TE). The computed scattering cross section is in good agreement

with harmonic solution (7]. The maximum deviation is 0.65 db. Figure 4-2

givoo the normalized scattering cross section of a circular cylinder with

C * 20.0, Ur a 1.0, and ka - 0.7, for perpendicular polarization (TE). Ther

maximum deviation from exact harmonic series solution is 0.076 db. Figure

4-3 shows the normalized scattering cross section of a circular cylinder with

Cr - 50.0, 0r - 1.0, and ka - 0.7, for perpendicular polarization (TE). Maximum
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deviation from exact harmonic solution is 0.485 db. The scattering cross

section shown in Fig. 4-4 is for a circular cylinder with cr - 100.0,

Pr = 0.01, and ka - 0.7 for perpendicular polarization. The computed solu-

tion is in excellent agreement with the exact solution. Maximum deviation

is 0,01 db. Figure 4-5 gives the normalized scattering cross section of a

circular cylinder with cr " 1000.0, pr - 0.001, and ka - 0.7, for perpen-

dicular polarization. Note that the computed result is in excellent agree-

ment with the calculations of a conducting cylinder. Maximum deviation is

0.01 db. The conducting cylinder problem can be viewed as a specialization

of the more general material cylinder problem. This is expected to be true

even for three-dimensional objects. Figure 4-6 shows the normalized scatter-

ing cross section of a circular cylinder with cr a 9.0, U r a 1.0, and ka w 2.0,

for perpendicular polarization (TE). Maximum deviation from exact harmonic

solution is 1.79 db. Better agreement can be reached, if more expansion func-

tions are used. The scattering cross section given in Fig. 4-7 is for a

circular cylinder with Cr 0 9.0, 1r = 1.0, and ka - 1.0, for perpendicular

polarization. The agreement with exact solution is excellent. Maximum devi-

ation is 0.013 db. Figure 4-8 shows the normalized scattering cross section

of a circular cylinder with er - 9.0. r - 100.0, and ka - 0.7, for perpen-

dicular polarization. Agreement with exact solution is very good. Maximum

deviation is 0.01 db. Figure 4-9 shows the normalized scattering cross sec-

tion of a circular cylinder with cr • 9.0, Pr = 5.0, and ka - 0.7, for per-

pendicular polarization. The computed result is in good agreement with exact
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solution. Maximum deviation is 0.3 db. The computed scattering cross section

of a circular cylinder with Cr - 0.001, vr " 1000.0, and ka - 0.7, for per-

pendicular polarization is shown in Fig. 4-10. Note that the cylinder is highly

magnetic. Maximum deviation from exact harmonic solution is 0.001 db. The

agreement is excellent. Figure 4-11 shows the normalized scattering cross section

of a circular cylinder with er a 1.0, V r = 1000,0, and ka - 0.7, for perpendicular

polarization. Maximum deviation from exact solution is 0.04 db. Figure 4-12

represents the computed scattering cross section of a circular cylinder with

Cr a 1.0, 1r a 10.0, and ka - 0.7, for perpendicular polarization. Maximum

deviation from exact solution is 0.04 db. Figure 4-13 shows the computed scat-

taring cross section of a circular cylinder with e a 1.0, P " 300, and
r ka - 0,7, for perpendicular polarization. Maximum deviation from exact hurmonic

solution is 0.2 db. Figure 4-14 gives the normalized scattering cross section

of a circular cylinder with Cr " 2.56, lr M 1.0, and ka - 0.7, for perpendicular

polarization. Maximum deviation is 0.6 db. Figure 4-15 shows the computed

scattering cross section of a circular cylinder with - 1000.0, or - 0.001,

and ka - 0.7, for perpendicular polarization. The computed solution is in

excellent agreement with exact solution. Maximum deviation is 0.01 db. The

computed scattering cross sections of a circular cylinder with ka - 0.7, arc

given in Fig. 4-16 for three different sets of material constants; i) cr = 1000.0,

-6
Pr = 1.0 i) cr a 10000.0, Ur - 1.0 ii) Cr - 5.0, Pr - 10" . All are for

perpendicular polarization. Figure 4-17 shows the normalized scattering cross

section of a circular cylinder with -r M 1000.0, Ur N 0.001, and ka - 0.7,

for parallel polarization (TM). The solution agrees excellently with conduct-

ing cylinder solution. Maximum deviation is 0.023 db. The normalized scattering

/-
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cross section of a circular cylinder with E s 2.56, Pr . 1.0, and ka - 0.7,
r

for parallel rolarization is shown in Fig. 4-18. Maximum deviation from exact

solution is 0,5 db. Figure 4-19 represents the computed scattering cross sec-

tion of a circular cylinder with E r " 20.0, vr = 1.0, and ka - 0.7, for parallel

polarizatiun. Maximum deviation from exact solution is 0.2 db. Figure 4-20

shows the computed bcattering cross section of a circular cylinder with e r 50.0,

Ar W 1..0, and ka - 0.7, for parallel polarization. The computed solution is in

excellent agreement with exact harmonic solution. Maximum deviation is 0.05 db.

Figure 4-21 shows the computed scattering cross section of a clrculaz cylinder

with Cr = 4.0, p r a 1.0, and ka - 0.7, for parallel polarization. Maximum devi-

ation from bxact solution is 0.2 db. Figure 4-22 shows the computed scattering

cross section of a circular cylinder with cr * 9.5, -r a 1.0, and ka - 0.7, for

parallel polarization. The computed solution is in excellent agreement with

exact harmonic solution maximum deviatwon is 0.01 db. Figure 4-23 shows the

computed scattering cross sections of a square cylinder with kb - 1,4, for

two sets of material constants: i) Cr 1000.0, Ja 0 0.001 1i) e r a 1000.0,

Ur = 1.0, all for perpendicular polarization. For square cylindere, there

are no exact s'lutions. Figure 4-24 shows the computed scattering cross

section of a square cylinder with cr - 10000.0, vr a 0.0001, and kb - 1.4,

for perpendicular polarization. The computed solution has been compared with

the solution of a conducting square cylinder by using E-field formulation [13].

Maximum deviation is 0.1 db. Figure 4-25 shows the computed scattering cross

section of a square cylinder with er - 9.0, Ur = 1.0, and kb w 1.4, for per-

pendicular polarization. Figure 4-26 shows the computed scattering crossK section of a square cylinder with cr - 100.0, v r 1.0, and kb - 1.4, for

L -,'• ,•. -• . . . I



65

pazallel polarization. Figure 4-27 shows the scattering cross section of a

square cylinder with cr - 10000.0, U r - 0.0001, and kb - 1.4, for parallel

polarization. The computed result is in excellent agreement with conducting

square cylinder solution. Figure 4-28 shows the lowest order characteristic

currents, plotted as a function of the contour variable. The currents are

normalized by choosing their maximum amplitude to be unity. The characteristic

currents are for a circular cylinder with C -i95, vr - 1.0, and ka - 0.7, for

perpendicular polarization. The electric part of each characteristic current is

circumferentially directed and the magnetic part is axially directed. The

scattering cross section computed from modal solution is almost identical to

that from matrix inversion. Figure 4-29 shows the normalized characteristic

currents for a circular cylinder with Cr a 50.0, V r " 1.0, and ka - 0.7, for

perpendicular polarization. Figure 4-30 gives the normalized characteristic

currents for a circular cylinder with Er = 2.56, V r m 1.0, and ka - 0.7, for

perpendicular polarization.

The purpose of this work is to show the feasibility that a surface

formulation for the theory characteristic modes can be applied to the solu-

tion of scattering from material objects. For large cylinders, more expan-

sion functions are needed. No attempt has been made to treat large objects.

It is expected that this 4s one of the important areas for future research.

Many questions are still left unanswered in the interpretation and applica-

tion of chavacteristic modes to material objects. It is hoped that this work

will be of some value to future researchers in their effort to gain a complete

ur'erstanding of the theory of characteristic modes.

L
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Tho eigenvalue equation (3-61) is

[T 2 lf] - X (T1](f] (4-1)

and the expression for the Rayleigh quotient associated with equation

(4-1) is

[, W i'f][Tl][fi] (4-2)

The computed eigenvalues and their corresponding eigenvectors should satisfy

equation (4-2). The Rayleigh quotient check is important because it gives

some.verification to the approximations used in numerical computation.

The quadratic term ifi][T13(fiI deserves some elaboration since it

qppears frequently in equations. Note that

If][) [1](f] - [x][U][TI][U] [x]

- [x) [h)I(xJ

- [xl][• 1 ][x1 ] + [x2'lzip 2]x1 (4-3)

It has already been pointed out in Chapter 3 that (x 2 ] is the component of

an eigencurrent f that lies within the null space of T1 , in other words,

[12] does not radirte. Since approximations are made in the computational

procedures, the eigencurrents will not be absolutely exact. Consequently,

the second quadratic term on the right hand side of equation (4-3) will

differ from zero, but it should be much smaller than the first quadratic

term. To a certain degree, this will give some indicat~on of the accuracy

of the computed eigencurrents. The first quadratic term at the right hand

side of equation (4-3) can be further expremsed as

K
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=Xl (IJ- (l/] ¶y ul('12 y

- -1/2 -1/2

M -1/2 H-1/2

- ([[y]

-1 (if {y 1 } are orthonormal) (4-4)

In numerical computation, approximations are Inevitable. Some special

analytical manipulations such as those discussed above can often provide

added insight to the correctness of the numerical results.

Ip

p. ,

L

- a
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Exact

-..... This method, 15 expansion
functions.

Max. dev. 0.65 db.

I cat tering
10 direction

10

i's (d)•.Jincident

field

-10

I . . II . I I I I
20 40 60 80 100 120 140 160 180

0(degrees)

Fig. 4-1. Normalized scattering cross section of a circular cylinder with
Cr 9.5, V. 1.0, ka = 0.7, perpendicular polarization (TE).
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S. .. .•Exact

_.... This method, 15 expansion functions

Max. dev. 0.076 db.

C'• (db)

ira 
110

-10

I ..II I.. .I I I I I

20 40 60 80 100 120 140 160 180

O(degrees)

Fig. 4-2. Normalized scattering cross section of a circular cylinder with
cr 0 20.0, ur - 1.0, ka- 0.7, perpendicular polarization (TE).
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- Exact

- -- This method, 15 expansion functions.

Max. dev. 0.485 db.

0

-10

-20

K

~I .

I . I I I . . I I ,.I. .I I

20 40 60 80 100 120 140 160 180

*(degrees)

Fig. 4-3. Normalized scattering cross section of a circular cylinder with
C - 50.0, vr - 1.0, ka - 0.7, perpendicular polarization (TE).
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Exact

"". . _ This method, 15 expansion functions.

,ax. dev. 0.01 db.

0

pa'

• -20

Si I ,, I , i ,, I I , I I -* * t*

20 40 60 80 100 120 140 160 180

* (degrees)

Fig. 4-4. Normalized scattering cross section of a circular cylinder with
Cr =100.0, Ur 0.01, ka - 0.7, perpendicular polarization (TO).
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Conducting cylinder, 20 expansion functions.

This method, 15 expansion functions.

"40) Max. dev. 0.01 db.

0 M

-10

-20

SI I I , I I I .... . I, I-

20 40 60 80 100 120 140 160 180

O(degrees)

Fig. 4-5. Normalized scattering cross section of a circular cylinder with

Cr " 1000.0, vr - 0.001, ka - 0.7,. perpendicular polarization (TE).
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Exact

. This method, 20 expansion functions.

Max. dev. 1.79 db.

S (db) ///
Iral

-10

~ . -20

20 40 60 80 100 120 140 160 180

4(degrees)

Fig. 4-6. Normalized scattering cross section of a circular cylinder with
Cr 9.0, Ur 0 1.0, ka - 2.0, perpendicular polarization (TE).

L
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Exact

- - - This method, 20 expansion fimnctions

Max. dev. 0.013 db.

~-(db)

-10

20 40 60 80 100 120 140 160 180

$ (degrees)

Fig. 4-7. Normalized scattering cross section of a circular cylinder with
x.Cr -9.0, Ur *1.0, ka *1.0, perpendicular polarization (TE).
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Exact

- - This method, 20 expansion functions.

Max. dev. 0.01 db

a(db)

10

0

20 40 60 80 100 120 140 160 180
* (egrees)

Fig. 4-8. Normalized scattering cross section of a circular cylinder with
r 9.. vr -100.0, ka 0.7, perpendicular polarization (TE).
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-Exact

-.- -- This method, 20 expansion functions.

Max. dev. 0.3 db.

a (db)

0

/

-10

-20

I . I I I I 1 I II

20 40 60 80 100 120 140 160 180

0(degrees)

Vig. 4-9. Normalized scattering cross section of a circular cylinder with
E a 9.0, A4 - 5.0, ka - 0.7, perpendicular polarization (TE).
r r
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This method, 20 expansion function

Max. dev. from exact solution, 0.001 db.

(db)

10

10

~I

• . . .. !I . _ . I I . . . . . . I . . .I I1 . .

20 40 60 80 100 120 140 160 180

O(degrees)

Fig. 4-10. Normalized scattering cross section of a circular cylinder
with c- 0.001, ý r 1000.0, ka - 0.7, perpendicular

polarization (TE).
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Exact

---- -- This method, 20 expansion functions.

Max. dev. 0.04 db.

_ (db)
Tra

10

pO_

_ I. I Ii I I • I I
20 40 60 80 100 120 140 360 180

*(degrees)

Fig. 4-11. No Lmmlized scattering cross section cf e circular cylinder with
cr * 1, % - 1000, ka - 0.7, perpendicular polarization (TE).
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Exar- t"

'I!lis method, 20 expansion functions.

Max. dev. 0.04 db.
Ii

S(db)

-a

10

I0

-10

I ... .. . I I I I t
20 40 60 80 100 120 140 160 180

€(degrees)

Fig. 4-12. Normalized scattering cross section of a circular cylinder with
E 1.0, 10.0, ka - 0.7, perpendicular polarization (TE).
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Exact

This method, 20 expansion functions.

Max. dev. 0.2 db.

..s- (db)71a

10

0

20 40 60 80 100 120 140 160 180

0(degrees)

Fig. 4-13. Normalized scattering cross section of a circular cylinder with

Er 0, 300, ka - 0.7, perpendicular polarization (TE).
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Exact

- ---- This method, 20 expansion functions

0

S(db)
Ira

-10

-20

-30

Stt I I I I I I
20 40 60 80 100 120 140 160 180

O(degrees)

Fig. 4-14. Normalized scattering cross section of a circular cylinder withK r - 2.56, v r = 1.0, ka - 0.7, perpendicular polarization (TE).
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This method, 20 expansion functions

Max. dev. from exact solution, 0.01 db.

10

S) ( d b )
ita

0

-10

I t I I AI I r I
20 40 60 80 100 120 140 160 180

*(degree.)

Fig. 4-15. Norualized scattering cross section of a circular cylinder with
r =O00.O, Pr 0.001, ka - 0.7, perpendicular polarization (TE).
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C r = 1000.0, 0. - 1.0

C. . r 10000.0, 'r - 1.0

.r w 50.0, ur I0-6

CL) (db)Ira

-10

-20

I I I .. . . I I ,I, I
20 40 60 80 100 120 140 160 180

S(degrees)

Fig. 4-16. Normalized scattering cross section of a circular cylinder with
ka - 0.7, perpendicular polarization (TE).
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Conducting cylinder, 20 expansion functions.

. _. This method, 20 expansion functions.

Max. dev. 0.023 db.

£_ (db)

10

10

ftO

20 40 60 80 100 120 140 160 180

S(degrees)

Fig. 4-17. Normalized scattering cross section of a circular cylinder with
C r - 1000.0, Pr 0.001, ka 0.7, parallel polArization (TM).
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"Exact

- This method, 20 expansion functions.

Max. dev. 0.5 db.

( db)

-10

I,, I I. I I I . . . II . . .

20 40 60 80 100 120 140 160 180

J(degrees)

Fig. 4-18. Normalized scattering cross section of it circular cylinder
with c - 2.56, vr r 1.0, ka * 0.7, parallel polarization (TM).
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Exact

This method, 20 expansion functions.

Max. dev. 0.2 db.

•-(db)ira

10

0 -I|1

I I iI . .I .... I I I I
20 40 60 80 100 120 140 160 180

0(dearees)

Fig. 4-19. Normalized scattering cross section of a circular cylinder
with rr - 20.0, vr a 1.0, ka - 0.7, parallel polarization (TM).



r
87

Exact

-- -_ This method, 20 expansion functions

Max. dev. 0.05 db.

-- (db)
i1a

0

"-10
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20 40 60 80 100 120 140 160 180

W(degrees)

Fig. 4-20. Normalized scattering cross section of a circular cylinder
with e r a 50.0, r U 1.0, ka - 0.7, parallel polarization (TM).
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Exact

This method, 20 expansion functions.

Max. dev. 0.2 db.

SCrb)ita

10

20 40 60 so 100 120 140 160 180

0(degrees)

Fig. 4-21. Normalized scattering crone section of a circular material
cylinder, with cr " 4.0, ir - 1.0, ka - 0.7 parallel

polarization (TM).
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Exact

This method, 20 expansion functions.

Max. dev. 0.01 db.

10

SL~(db)
ira

0
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S(degree)
Fig. 22. Normalized scattering cross section of a circular cylinder with

r 9.5, )Ir 1.0,

rI A
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. * =1000.0r
0. 001

----- - • =1000.0

p.= -1.0
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a (db)
7ra
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scattering
direction

10 incident
field
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0(degrees)

Fig. 4-23. Normalized scattering cross section of a square cylinder with
kb - 1.6, perpendicular polarization (TE).
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10 E-field formulation [13].

Conducting square 64 expansion fur',ations.

(db) -- - This method, 20 expansion functions.
Tra

Max. dev. 0.1 db.

0

;-40

20 40 60 80 100 120 140 160 180

O(degrees)
Fig. 4-24. Normalized scattering cross secti',v of a square cylinder with

-r = 10000.0, P r 0.0001, kb - 1.4, perpendicular polarization
(TiZ).
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This method, 20 expansion functions.

10

(db

* 0

-10

20 40 60 80 100 120 140 160 180

€ (degrees)

Fig. 4-23. Normalized scattering cross section of a square cylinder with
r 9.0, r m 1.0, kb - 1.4, perpendicular polarizetion (TE).
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This method, 20 expansion functions.

(db)ira

1.0

i0

-10

i ... i .. II.. . I,,
20 40 60 80 100 120 140 160 180

,(degrees)

Fig. 4-26. Normalized scattering cross section of a square cylinder with
-r M 100.0, vr " 1.0, kb a 1.4, parallel polarization (TM).

A-- .- A
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- Conducting cylinder, 64 exp. funcs.

This method, 20 exp. funcs.

max. dev. 0.02 db.

(db)
Ira

10

0

-10

t , III _ I I ,. I
10 00 60 80 100 120 140 160 180

S(degrees)
Fig. 4-27. Normalized scattering cross section of a square cylinder with

Er -10000.0, Pr = 0.0001, kb - 1.4, parallel polarization (TM).
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CHAPTER 5

DISCUSSION

A surface formulation is developed for solving two-dimensional

electromagnetic scattering problems. A basic theory for characteristic

modes of dielectric and magnetic bodies based on the surface formulation

is derived. The iuathod of computing characteristic modes can be used for

homogeneous material bodies of arbitrary shape provided the body is not

electrically large. The characteristic modes of material bodies have most

of the properties of those for perfectly conducting bodies, and should find

similar uses. The theory presented here is in contrast to that for the

volume formulation 14]. The basic difference is that the current in the

material body has been treated as equivalent surface currents instead of a

volume distribution. The characteristic currents are real and their cor-

responding eigenvalues are also real. The eigenvectors given by equation

(3-73) are those corresponding to the lowest eigenvalues, and they are

usually very efficient radiators. Characteristic currents associated with

large eigenvalues generally indicate higher order modes which do not radiate

very much.

Two ways for computing the scattered fields are given here. The simple

material cylinders. The matrix inversion method is easier to use and gives

very good results. The characteristic mode method may require slightly

longer computing time, but it does provide more insight into the problem.

As in the conducting body case, the characteristic mode method should prove

to be of value, both theoretically and computationally for scattering and

radiation problems. The versatility of characteristic modes has been

/
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adequately demonstrated in analysis and synthesis problems dealing with

conducting bodies. The two approaches are based on a surface formulation,

and they require the material body to be homogeneous since the unknowns

are surface currents. For inhomogeneous bodies the surface formulation is

not appropriate, and a volume current distribution must be used which re-
quires sample points inside the scattering body.

.4.

to
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APPENDIX A

MATRIX ELEMENTS FOR PARALLEL POLARIZATION

For the incident field

E-u e'•' (A-lj
-.

the following formulas are obtained ( u& is the axially directed unit vector).

The procedures involved are identical to that given in Chapter 2, except that

the directions of the surface currents are different.

A.1 Fo1mulas for [ZI Matriy Elem 1 nt,

4 4
Zm 1 7~S T T Z (A-2)

mn q-1 prl P q

where

Z - Atp t H(2)(kR ) (non-coincident intervals)
p q o pq

W t [l -j 2- log o- e ] (coincident intervals)

A.2 Formulas for [B] Matrix Element.

4 4
B I- I t T T B (A-3)

q.1 p.l q p q

ki~(icR
B.- p 1 R- (xp-xq)Ayp + (yp- yq)•X

(non-coincident intervals)

m -J2 (coincident Intervals)

_ML_



110

A.3 Formulas for [C] Matrix Elements

4 4
". At T T (A-4)

q-1 p-1 i p q

S1 - - pq [-(yp- yq)Axq + (xp- xq)Ay

%q

(non-coincident intervals)

-J2 (coincident intervals)

A.4 Formula. for [Y] Matrix Elements

1 4 4 1 '
Y - I I At At [weT T " -u•) Tp TT ]yq-1 p-1 P q p (up.Uq)q

(A-5)

where
SH (2) k R (non-coincident intervals)

Y -pq

2 ykAt (coincident intervals)

A.5 Excitation Matrix Elements

ii

1 4 6jk( x mp cgs* i + y mp ein•£ (A6
V; 1 TP At •CA6

I --- 4 1 o#i ajk(X MPcoeo* + umpsin# )

Iim n p-l1 Tp -Ax sin#i + Ay co* ] i

(A-7)

A4
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