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AGGLOMERATION OF ALUMINA PARTICLES IN THE FLOW

OF A METALLIZED PROPELLANT ROCKET NOZZLE*

Paul Kuentzmann

ABSTRACT. The agglomeration of liquid alumina
particles takes place in the convergent region and at
the throat of the nozzle; it leads to an increase of
performance losses related to the velocity and
temperature differences between the condensed and
gaseous phases.

The problem is first schematized; then the
fundamental equations of the problem are established
that give the evolution of the distribution law of
the particle population, and of the variables
induced by the collisions.

Assuming that the velocity differences may be
calculated a priori, and choosing a distribution
density in an analytical form, one obtains formulas
for the evolution of the mean radius and of the
relative mean square. deviation as a function of the
abscissa value along the nozzle axis. The nozzle
geometry has no efi'ect, and the agglomeration
develops mainly around the throat.

*Reprint No. 744, 1969. La Recherche Aerospatiale, No. 131,
July - August, 1969. ONERA, Chatillon, France. This study was
carried out by the Gunpowder Directorate.
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Mlain INotat ion

a, b density distribution parameters;
A, A normal cross section area of the nozzle, at

C

the throat;
', c' force and fictitious thermal power Induced by

collisions;

characteristic velocity;
K mass fraction of the condensed phase;

m mass of one particle;
~in mass flowrate of the gaseous phase;

n local particle concentration;

0O chamber pressure;
particle distribution density;

r, r r rmv radius, average radius, - for the surface

for the volume;

7 ' average temperature of particles, true temperature;S(0)
•, u', u ' average velocity of particles, true velocity,

flow velocity for equilibrium;

x abscissa taken along the nozzle axis;
Y isentropic exponent of the flow equivalent to

equilibrium;
pe volume mass of liquid alumina;

P gas viscosity.

The subscript 0 corresponds to initial conditions, the subscript

a) corresponds to equilibrium flow, and the overlined quantities
ccrresp n .. to flow equivalent to equilibrium.

I. nztrTdaction

2y adding a metal to a solid propellant, the combustion tempera-
ture tz increased as is the performance. Aluminum is a metal which
is mozt widely used and the optimum performance is achieved for a
mass fraction of the metal in the propellant which is relatively
largý, even though the flow in a nozzle with metallized propellant
is the flow of a biphase mixture in which the mass fraction of the
condensed oxide is on the order of 0.4.

/.)-*-!C-23-2716-74 2



Capture tests carried out in a jet have shown that the condensed

phase is a dispersion of very fine particles whose radius is on the

order of 1 P. The theoretical performances predicted by thermodynamic

calculations are never achieved in practice and one can attribute

this loss partly to the irreversible exchanges between the gaseous

phases and the condensed phases. Therefore, in order to predict

the performance of a metallized propellant and to best design a

nozzle, it is necessary to accurately describe the behavior of

condensed particles in the flow.

One finds that the particle population is distributed according

to particle radius. Since it is easy to see that the acceleration

of a particle by the gaseous flow is proportional to the reciprocal

of the square of its radius, the particles receive different veloci-

ties and are subjected to numerous collisions.

Alumina has a temperature close to 32000 K in the combustion

chamber and is in the liquid state. It solidifies around 23000 K,

i.e., in the divergent part of the nozzle. The particles are,

therefore, liquid for quite some time and then they agglomerate

due to their collisions. Their average mass tends to increase.

This phenomenon is, therefore, susceptible to reducing the perfor-

mance and it is important to determine its importance.

Not much work has been done on this subject. Marble [I]

established equacions which describe the variation of the particle

distribution. A formula is derived which gives the growth of the

average radius along the nozzle abscissa and the influence of the

operational parameters. Crowe and Willoughby [2) numerically

determined the increase of the average radius in the volume and

studied the influence of various parameters.

The equations in this report will be established using a

different formal base than that used by Marble. The formulas will

be applied later on and we will establish more accurate conclusions

on that occasion.

FTD-HC-23-2716-74 3



II. Mathematical Model -- Hypotheses

We will assume that the particles are spheres characterized by
their radius. This hypothesis is not very realistic because an
accelerated droplet is deformed because of the action of stresses
which are applied to its surface and the resulting internal circu-
lation. Since it is difficult to predict the shape of a droplet

at any time during its history, and therefore, the associated drag,
and since the study of collisions of such particles would be parti-
cularly difficult, we are forced to assume this hypothesis. From

the same point of view, we will neglect the problem of particle

stability [3] and we will assume that all the collisions are binary
ones and only result in the production of a single particle.

We will assume that the gaseous flow is not perturbed locally

hy collisions, which allows one to calculate the drag of a particle
independent frorn all of the others. This implies that the average
stay time of a particle in the vicinity of another particle is very

.much smaller than the average time between collisions.

We will assume that the flow is steady, one-dimensional in any

cross section. All the velocities are, therefore, parallel to the

nozzle axis of revolution. This hypothesis is coherent with the

collision mechanism: two particles having velocities parallel to
the axis will produce a new particle having a velocity parallel to

the axis, due to the conservation of momentum.

We will define two functions of the abscissa value x and the

radius r which are continuous: u p(r, x) and T p(r, x), which are

the average velocities and temperatures of the particles having the

same radius. These quantities are different from the true velocities

and temperatures, which are subjected to numerous discontinuities,

and in all strictness, depend on the complete history of a particle.



_ g

These two latter hypotheses imply that the Boltzmann equation

cannot be used here. The integration of this equation would be

difficult.

The population of the particles will be locally described by

the distribution density f, (r, x), which is a continuous function

of r and x. We assume that it exists based on the large number of
particles.

Because of these hypotheses, we are forced to describe the

condensed phase as a continuous medium. Our objective will now be

to find the variation of up, Tp, and principally f.

III. Variation of the Distribution Density as a Function of

"^.-s.ssa V alue

Let us consider the n particles at an instant t contained in

p
a unit volume. We will study the number of collisions between the

particles of radius a and those of radius b during an infinitesimal
increase in time dt.

The number of collisions of one particle of radius a with

all the other particles of radius b is given by the following

elementary formula:

where 7t(a + b)2 is the collision cross section, n f(b, x)db is the

number of particles b, u p(a) - u p(b) is the relative velocity

between particles a and b.

- The number of collisions between the two particle classes

can be written as:

5



and all the collisions produced particles whose radius is obtained

by writing down the equation for conservation of particle mass:

(a 3 + b3

The number of particles of radius r which disappear because of

the collision is, therefore,

The integral in the second term will be called Ii(r, x).

All the collisions produced particles of a radius greater than

r.

Let us now find the number of collisions which the particles

having radii between r and r + dr produce from smaller particles a

and b. The integration range D is found if we take the relationship:

a 3 + b 3 = r 3 into account.

From this, we find

II :. "- •: " "" " , / t. , ,,: . ,Jg •, ,I,,,4

The coefficient 1/2 is introduced in order to take into account

the symmetry property of a and b in the integral.

If we integrate with respect to B and hold a constant, we find:

4

The integral in the second term will be called 12(r, x).

6



Remark

a 'It is easy to verify that the

total number of collisions is twice

tho number of particles formed.

Each collision produces the dis-F appearance of one particle.
dl-:. r2 dr Therefore, we have

. F f r. I~ ,,. o'.I. "_ , 2I~ .,. ,

".. ' by changing the variable in the

second integral.

Let us now establish the balance

'.h" r•_ sheet of the particles of the class

\ \ (r, r + dr).

ell At the time t + dt, we have:
fd,,d

Fiigure 1. Integration region
for' calculating particlesformedlby agglomrartions particles of radius r and in thisformed by agglomeration.

expression, we can replace dt by

(dx)/[up r)].

If we take into account the normalization condition for the

distribution density, we fl.d:

t, r

I ,., , -2 ,/ " I . . • t l7l1



Since

r, , - (.• r ,,x ) -. . i ,.

we can, from the preceding equation, derive (af/ax)dx and ti in af/ax
by letting dx go to zero. Finally, we find:

We car. easily verify the following relationship:

This equation describes the evolution of the distribution
density of particles. It is related to the particle velocity in

a complex way and we cannot consider a numerical calculation without
making it discrete.

IV. Equations for One Particle

The equation of motion and the thermal equation of a particle
do not only contain the classical terms corresponding to the drag
and the thermal exchange with the gas, but they also contain an
additional collision term.

In effect, the velocity or the temperature of a particle of
radius r, which is the result of the agglomeration of two particles
which are smaller, is different from thevelocity or temperature of
the same particles which have not experienced collisions. It is
assumed that this difference is instantaneously distributed over
other particles.



This additional term must be zero on the average, because we

are dealing with an interaction.

In order to evaluate this additional term, it is necessary to

know the true velocity or temperature of each particle before the

collision and, from this, to derive the velocity or temperature of

the particle formed after collision. This true quantity depends on

the entire history of the particle. It is not possible to exactly

know it except in the case where every particle reaches its asymp-

totic regime before the collision (this nomenclature is developed in

[3]: hypothesis of "weak slip," frequently used by Marble is
related to this). If this is not the case, it is possible to
establish the existence of a correction or defect factor to be used

for the true velocity or the average velocity.

The momentum of a particle produced by the agglomeration of a

particle a and of a particle b is:

where u' designates the true velocity before collision.p

The momentum of all the particles of radius r formed in this
way per unit of volume and during a time dt is, therefore, given

by:

. .. - ,(.,' , ! .. , 1

The integral in the second term will be called 13 (r, x).

The variation in the momentum of the particles r only produced

by collisions is, therefore:

9



therefore,

d.1 ~=.=;d,(,012-,r',(,(,.,i•).

Since the resulting force applied to the particles r is given

by:

da

it is possible to calculate the elementary force which acts on a

particle. It is given by the following expression:

It is easy to verify that f' is zero on the average:

p

fJ 1;,/,..x dr -- 0

that is,

I'134t I'r r~,q ()Jd,

which can be obtained by changing variables and from symmetry

considerations in the first integral.

The same calculation can be carried out in order to find the

fictitious elementary power q'p related to collisions and relative

to one particle:

with

- .o i' ua. , I10, ..!((.• _a,,.r)

-,• . - u,,((,-3 al)

10:-%:•i



One can verify that q' is zero on the average.P

We will now use a few simplifications to find the variation

of the distribution density as a function of abscissa.

These simplifications are applied to the velocities. The

principle consists of assuming that the particles are sufficiently

small and that the flow has a sufficiently small acceleration so

that we have:

. i (hypothesis of weak slip).

One then shows [3) that the velocity of a particle is expressed

by:

(0)0

u(0) is the fictitious flow vele'city for which kinetic and thermal

equilibrium of the two phases would be realized. This flow corres-

ponds to a perfect gas flow and u0;" does not depend on the cross

section considered.

We will now write the velocity differences:
,(b)i-=- du)

and we will replace u p(r) by u(0) so that only one particle velocity
appears.

Under these conditions, the integrals II and 12 become:

", l 4f!" ( to s) (r' Of dS

I, + •i,11
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As before, we can express the mass flowrate of the condensed

phase by:

K• . . J (r, a (, (r) dr,

the expression for np becomes

Km I
aAd,

Substituting this in Wax, we obtain finally:

•1 .. r I•,,", -I :eJg

S,..'dr

-. (. Adfrz rl

V. Variation of the Characteristic Parameters of the Distribution

One distribution law can be described by a reduced number of

parameters: average value, standard deviation, shape coefficients.

By definition, the average radius and average standard deviation

are given by:

u • .) - . r.. I (,. z) dr.

By taking the derivative under the sum sign, we immediately find:

d'*' c.r

This last relationship can be written as:

12



,,7 t ., M, * ' - -

In particular, let us calculate the integrals in the second terms:

_ f',t I, h.
.' ir 4

*1. (r

The integral in the numerator is transformed into:

Since we know that:

If,dr - ,21.dr

we find:

Iit `1 or. - dr

/I dr -'I dr if Id.

By replacing 1 and 12 by their respective expressions, we obtain

D is the first quadrant in the (y, z) plane and, therefore, this

integral can also be written as:

or also:

ffII,(y i, :! y dy.

ff. u (X) I (,. .) !U, W, - U, 4

ff.. I- (• / -- 43#.X)

U,0' -1 3I

13



Dt is between the r axis and the first bisector In the plane
(a, r).

A change in variables:

y-a,

tran:sforms this integral into

Therefore, we finally have

((

Because of symmetry with respect to the first bisector, this
integral is transformed into:

It is advantageous to introduce the following reduced variables:

Y7.-
which finally leads to these expressions for the Integral

""' 
1 I . Z ),

*r. r~ / , f r'* , ... 
-

I% i X Y,,dY

The calculation is carried out in the same way for



F utOI
2

(IY Z4; (Y - -Z12) dY:Ij'

(I Y. x) Y3dY

Let us now use the hypothesis of small slip for calculating the
velocity differences. We obtain the following differential equations

111,t ; .\..I flu"', r3

1Y( . (i VJ( - Z3 -- " -• (Y Z i I J ,dZ

J(Y. ) Vdy
d,(Y , ,Ire, I,, IV -0 1n tZX

,YS Z3 Y', Z31 I •"

The calculation of the integrals, therefore, means it is

necessary to choose an analytic form for the distribution density.

VI. First Approximation. Utilization of a Similitude Law

Let us study laws of the form

Ifr,.)- r '(,) k I.

The normalization condition leads to:

and it is convenient to select g(X) such that fS, fx1.\

15



The definition of the average radius resultt in the condition

f Xg(tx)dX ".

It is easy to see that a is proportional to y-

and g(X) must satisfy -`21jdNj

Fein [4] showed that the particles are distributed according
to an exponential law In the combustion chamber. in addition, theresults of captured tests of particles in Jets carried out at the
ONERA hate shown the law to be of the form:

Here, we will assume the law

defined for , -.. 6,-.

From this law, we can derive the following average radius and
standard deviation:

ii--

such that

We will assume that b Is constant In this first approximation
and we will calculate the evolution of the average radius.

From this law, we are able to calculate the integral:
in,,. V I = Ott !k .. ' Y

16



such that the differential equation with respect to rm becomes:

r, " . d- '( ,- (b - -

( Y ,2(Yt... Z2jYb7b'.lU&1SV+Z)
S((V 3 - Z 3,1 - (V + Z) - ,) yrl..

We will set
(IZ 1. tyd

in the preceding differential equation. JI(b) is a constant.

Therefore, the integration becomes possible. Let us set:

t v,':... f.! , o •,.•

we find

Fr i

Except for the coefficient, the formula is identical to that

found by Marble.

Interpretation

The function z is the product of a constant and an abscissa

function.

This constant can also be written as:

and characterizes the propellant and the operational conditions.

The influence of the mass fraction of the condensed phase, the

characteristic velocity for the gas viscosity (which accelerates

the particles) and the operational pressure are Clearly demonstrated.

17



The abscissa function in reality is a universal function of the
cross section (i fixed) and of the same u(0) by definition: the
nozzle geometry does not occur explicitly. In effect, we have [3]:

-..7 di:

with

(. )

It Is easy to show that the preceding integral is limited when
i.e., when the equivalent flow Mach number tends to infinity.

The preceding function is shown as a function of x In Figure 2
for a given nozzle profile. It can be seen that the function
increases rapidly In the vicinity of the throat and then strives
towards a constant value.

Calczuation of J 1

By using polar coordinates, it becomes easier to calculate the
Integral

( 3t•f, " :. -.- - Z, .. u-..d7.
•cf o N11' 1 : . lei: -',0" 2. -- I)1 , • Z

18 .*,I . -

18



C Nozzle profile

0 ' a 6 8 12
CM

Figure 2. Universal abscissa function.

The integration with respect to R can be c.*'rried out and, after

simplification, we find:

' ' /2I 6)t

f, i( .i sin 0) ros& 0 sin*

/ 3 il ,0)j
x I '. b; fl -r t- b +5) A.

Tranforming to the sine of the double arc, we find:

b7- -I) I'( ---01Tb + U
( 2+, 6 K,(b)- (b +5) 1)

or

M dx

19



A new change in variable finally results in

b (. 1 -. 6)
(b I-tI " b I ) I(b + ':2 *'

b-,~
b + 11

where

(-- I'o - -3t)' A.

First of all, we should note that It can be calculated for

b= 0

I;(0) 1 4

We obtain the following recursion formula:

IS(b 1) 1, (•b) - •

16 ( 1) Tb T7 for b > -I.

It is therefore sufficient to calculate I' in the intervals
1

0 and 1. The numerical calculation is carried out by expanding the

quantity:

3

according to integral powers of t, which is possible for t between

0 and 1.

Therefore, we find

Itbj : X.( f
I .. |

I.{U -- 3) ... 0 -:(n 1t)) 1

In this last sum, all the terms are negative. We can verify

that this series is convergent using the D'Alembert criterion.

20



L ,~
-0.55--5

I I

i_ _.t _ -1 -10i

Figure 3. The functions Jl(b) and J 2(b).

The function J 1 (b) is given in Figure 3. It can be seen that

J is negative for b < -0.36, which corresponds to a decrease in the

average radius with abscissa value.

We will define an average surface radius and an average volume

radius using the formulas

21



and it is easy to show that:

"(b. 1") (b + 2"1*

,r -r,,-. ) •

Therefore, it is necessary to assume that the average volume

of the particles can decrease for certain shapes of the distribution

law, which is a contradiction to the agglomeration phenomenon:

therefore, this anaZysis is insufficient.

VII. Second Approximation

Let us assume the same distribution law, but this time we will

assume that b varies with the abscissa value along the nozzle. This
2law depends now on two variable parameters a and b, or on rm and a

which are related to these two parameters.

The two equations which define the evolution of the particle

population are:

rI, ] I dlt'lu lb .L I :b+4

d, A* • 4-1.- . " r if rIi -7

.".,,- ( .- 7 '&'-- yzI Yh . e• h Iy,,- Z"

((y3 73) j -( .Z 1)d,'Id.
d, sir,, X Isv I dWO" (b 112b-

dr~ ~ ~~ -dv Ai ' -v Fr i --j iT b -

(I- ZI2(NV2 --. .*Iyb7*.(2)YZ

(yv3 -- Z1J* -(y2 -4 ZIJ I + d;d?..

Since

02

the grouping of the coefficient of b and of the .econd integral

can be called J 2 (b).

We can introduce the same var'able z as before, and write:

dr, rs , II

d02' Pr dr.~ aS
2 2 , j

22



By expressing rm and c2 as functions of a and b, we find

do -0 I )( b..4J,-( + 1.~
d:, - :- .. 0 (b -- ) ((2 : (b+ 1) Q

d:, 1 (IL " 4 ( )

By combining, we can express a as a function of b:

d,& a (2b- 31IJ,-(b+t) J2

Therefore,
a. ,o~p f',(2 ';31 J, -- (b + 11 JS h

and, consequently, we will set:

I.(b - (b 4-_J 1 ;L (• ~ ex, (2 1, J-. =•--(b-i; 1 32 .;- 1

from which it follows that:

a- a*Ib)

By substituting this expression for a in the differential

equation for b, we find

(1,01 I ( .(b j I: (j'' h + 4) J, -- (b

We will set

. (,--. (b.I-ib) Jd-b !J brl,

from which we find

This relationship defines b as a function of z and makes it

possible to calculate the variations in the average radius and the

mean square deviation as a function of abscissa value:

23



CaZlulation of J.,2

The calculation of J is done just like the calculation of J1 0

After transforming to polar coordinates, we find first of all

I' :(. b + 6)
(b I b- 2) F' (b + 4)

j (ros 0- sin 01 cosb 0 sinb 0
61o' h 7 ( v4' s 0 - sinMO 014+
[ - '• .-- 1 b + ,]dOb .... g .I .. . .. 0;-g • -+ si +)

then

r(121 b q)

and then

1;,2- (s ') t

112 can be calculated for b - 0:

We can establish the following recursion formula:

4(b + ) I's (b) -- 1-

1;(b + 1) = 3b . --

and one calculates 112 between 0 and 1 using the expansion

1 2 _ U( 2 - 3k.(2 -3 (n- 1))IoI
I:'2 (b) 4 - 1

241



L (b) M Fb)'

.,0,5

-- -- ---- -- 05

h M

0 3

Figure 4. The functions L(b) and Mcb).

The function J 2 (b) is showi, in Figure 3. The functions LCb)
and M(b) were calculated numerically and are shown in Figure 4.

NumericaZ Catcutation

The variations In the average radius and the average mean
relative standard deviation were calculated for the following
conditions:

25



- biconical nozzle of Figure 1;

- b 0 a 0 (exponential law);

In Figure 5, we can see that the average radius increases

slightly up to the geometric throat and then decreases. The rela-

tive size of the distribution increases in a regular way because

of the fact that b decreases.

Interpretation

The decrease in the average radius can contradict the ideas

usually held regarding the increase in particles; but this phenomenon

can be Justified.

a) One can verify, first of all, that the average surface

radii and average volume radii do Increase and that this increase Is

a maximum in the region of the throat.

b) Let us start with the expression

'-;- - -- -it, - 41,-- - -

We will show that the integrals I1 and 12 can be calculated

when b = 0, i.e., for

(,) - o-�or It

In effect, for I1, we obtain the following:

1 (P a#2 1 jr) - us (,, ,i (s,_ t)")jda

:~~ ~I -u'~ 11 C- 1 u2 -' I I'- I dt

r .9(It +t2(I-0 - 1

f- (n a)(nl2- it) e4*
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Figure 5. Variation of the particles as a function of the abscissa
value.

and arter calculating the integrals, we find:

Also, the calculation of 12 can be done in the following way:

• •."---r (€- il-.------14x

- 1";I,-••,,, ,,,),,•, I- (' - ' --",')
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It can be seen that, by changing the variable:

and we find that the two preceding integrals are equal.

Since

dt 4- (113 1.3j) 1

we find

vs-p. duz9 F , J-

By substituting 1 and 12 in the expression for af/ax, we
finally arrive at the relationship:

-. 2 i

3f/ax Is proportional to a certain function F(R) which is shown in
Figure 6. We can see that, for R 0 o, af/ax is positive. Therefore,

"for the selected analytic form, f(O) cannot have any other values

than 0(b > 0), l(b = 0), and -(b < 0):f(O) increases starting at 1
and of necessity we find that f(O) is infinite, i.e., for negative b.

Wa/3x is positive for the extreme radius values and is negative

for average values. This is to say that the proportion of small and
large particles tends to increase, whereas the proportion of average
particles tends to decrease: this corresponds very well to an
enlargement of the distribution and allows the average radius to

increase or decrease.
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Figure 6. Function rf/ax for b - 0.

This aspect of the phenomenon is due to the collision zchanism

which depends not only on the distribution density and the velocity

differences, but also on the collision cross section.

c) It remains to interpret the results of capture tests in

the jet which result in a density distribution corresponding to

b > 0.

First of all, it is necessary to know whether the smallest
particles could be detected under a micr scope and whether or not
they have been ignored in the statistics.

One can also wonder whether the samples collected are repre-
sentative with respect to the real particle population in the Jet.

In effect, the very small particles follow the streamlines of the

gaseous flow around the plate much more than the large ones. The

plate is located perpendicular to the nozzle axis and collects the

particles. The small particles are subjected to a greater deflec-

tion than the large particles and it would be appropriate to correct

any experimental law in order to take into account this phenomenon.
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The simplified calculations3 therefore, result in an adequate
representation of the agglomeration phenomenon. This calculation

attempts to demonstrate the small role played by the nozzle geometry

and to show the simple way In which the operational parameters

influence the process. The conclusions which can be derived from

the presented formulas qualitatively agree with the results of Crowe

and Willoughby 12). Quantitatively, since the small slip hypothesis

was assumed for all particles, the velocity differences and collision

frequencies are overestimated by the analysis.

VIII. Conclusion

The agglomeration of alumina particles is therefore primarily
translated by an expansion of the distribution law of the particle

radius and by an increase In the average particle surface and volume.

The collisions bring about a force and a thermal flux for each

particle which tends to reduce the velocity differences and tempera-

ture differences for particles of different diameters. The agglomer-

ation is primarily important Li the Orwoat region. Since the throat
has a great influence on the performance of the nozzle, the agglom-

erati3n can be an important factor for performance loss. Efforts

must be made to utilize the proposed general formulas in numerical

calculations,and the particle populations along the nozzle must be

studied in experiments.
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