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AGGLOMERATION OF ALUMINA PARTICLES IN THE FLOW
OF A METALLITZEC PROPELLANT ROCKET NOZZLE*

Paul Kuentzmann

ABSTRACY. The agglomeration of liquid alumina
particles takes placz in the convergent region and at
the throat of the nozzle; it leads to an increase of
performance losses related to the velocity and
temperature differences between the condensed and
gaseous phases.

The problem is first schematized; then the
fundamental equations of the problem are established
that give the evolution of the distribution law of
the particle population, and of the variables
induced by the collisions.

Assuming that the velocity differences may be
calculated a priori, and choosing a distribution
density in an analytical form, one obtains formulas
for the evoluticn of the mean radlus and of the
relative mean squar< deviaticn as a function of the
abscissa value along the nozzle axis. The nozzle
geometry has no efrect, and the agglomeration
develops mainly around the throat.

%*Reprint No. 744, 1969.
July - August, 1969. ONERA, Chatillon, France. This study was
carried out by the Gunpowder Directorate.

La Recherche Aerospatiale, No. 131,
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“lain Notation

a, t density distribution parameters;

A, AC normal cross section area of the nozzle, at
the throat;

LN q'o force and fictitious thermal power induced by
collisionsy

c¥ characteristic veloclty;

L mass fraction of the condensed phase;

m, mass of one particle;

of

nl

mass flowrate of the gaseous phase;

1ocal particle concentration;

5 chamber pressure;

particle distribution density;

Ty Py Puos Tpy radius, average radius, — for the surface —
for the volumej

TD, T'o . average temperature of particles, true temperature;
u;, u';, (8 average velocity of particles, true velocity,
flow velocity for equilibrium;
b4 ahscissa taken along the nozzle axis;
Y isentropic exponent of the flow equivalent to
equilibrium;
P volume mass of liquid alumina;

gas viscosity.

The subseript 0 corresponds to initial conditions, the subscript
{(7) corresponds to equilibrium flow,and the overlined quantities
cerrespond to flow equivalent to equilibrium.,

3y adding a metal to a solid propellant, the combustion tempera-
ture ic increased as is the performance. Aluminum is a metal which
7idely used and the optimum performance is achieved for a
ion of the metal in the propellant which is relatively
large, even though the flow in a nozzle with metallized propellant
is the flow of a biphase mixture in which the mass fraction of the
sondensed oxlde is on the order of 0.4.
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Capture tests carried out in a Jet have shown that the condensed
phase is a dispersion of very fine particles whose radius is on the
order of 1 u. The theoretical performances predicted by thermodynamic
calculations are never achleved in practice and one can attribute
this loss partly to the irreversible exchanges between the gaseous
phases and the condensed phases. Therefore, in order to predict
the performance of a metallized propellant and to best design a

nozzle, it is necessary to accurately describe the behavior of
condensed particles in the flow.
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N One finds that the particle population is distributed according
to particie radius., Since it is easy to see that the acceleration
of a particle by the gaseous flow 1s proportional to the reciprocal
of the square of its radius, the particles receive different veloci-
ties and are subjected to numerous collisions.

Tagh 2l i
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lumina has a temperature close to 3200° X ir the combustion
chamber and is in the iiquid state. It solidifies around 2300° K,
i.e., in the divergent part of the nozzle. The particles are,
therefore, liguid for quite some time and then they agglomerate
due to their collisions. Their average mass tends to increase.
This phenomenon is, therefore, susceptible to reducing the perfor-
mance and it is important to determine its importance.

liot much work has been done on this subject. Marble [1]
established equations which 3describe the variation of the particle
distribution. A formula is derived which gives the growth of the
average radius along the nozzle abscissa and the influence of the
operational parameters. Crowe and Willoughby [2] numerically
determined the increase of the average radius in the volume and
studied the influence of various parameters.

The eguations in this report will be established using a
different formal base than that used by Marble. The formulas will

be applied later on and we will establish more acrcurate conclusions
on that occasion.

FTD-HC=23-2716=-T4 3




mnmT e T, TE Ceovn v D e -4 Y
- P B AT e PV TR T A Sy R T T e -

o e Y w3 s e s 3 T TR PP TR T T XTI e WA BT, 1

R T T T Tt e LT L SRR A T 5 =

-

I1. Mathematical Model — Hypotheses

We will assume that the particles are spheres characterized by
their radius. This hypothesis 1s not very realistic because an
accelerated droplet is deformed because of the action of stresses
which are applied to its surface and the resulting internal circu-
lation. Since it is difficult to predict the shape of a droplet
at any time during its history, and therefore, the associated drag,
and since the study of collisions of such particles wculd be parti-
cularly difficult, we are forced to assume this hypothesis.
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From
the same point of view, we will neglect the problem of particle

stability [3] and we wlll assume that all the collisions are binary
ones and only result in the prcduction of a single particle.

A T it N

.

We will assume that the gaseous flow is not perturbed locally

by collisions, which allows one to calculate the drag of a particle
independent from 211 of the others.

cluc st in bty
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This implies that the average
stay tinme of a particle in the vicinity of another particle is very

much smaller than the average time between collisions.
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Ye will assume that the flow is steady, one-dimensional in any
crors section, All tne velocities are, therefore, parallel tc the
nozzle axis of revolution. This hypothesis 1s coherent with the
two particles having velocities parallel to
the axas will produce a new particle having a velocity parallel to
the axis, due to the conservatinn of momentum.

collision mechanism:

We will define two functions of the abscissa value x and the
radius r which are continuous: up(r, x) and Tp(r, x), which are

the average veloclities and temperatures of the particles having the
same radius. These quantities are different from the true velocities

and temperatures, which are subjected to numerous discontinuities,

and in all strictness, depend on the complete history of a particle.
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These two latter hypotheses imply that the Boltzmann equation
; cannot be used here., The integration of this equation would be
difficult.

L A

The population of the particles will be locally described by
3 the distribution density f, (r, x), which is a continuous function
of r and x. We assume that it exists based on the large number of

particles.

rakad

Because of these hypotheses, we are forced to describe the
condensed phase as a continuous medium, Our objective will now be

te find the variation of up, Tp, and principally f.
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Let us conslder the np particles at an instant t contained in

TR Sak e St

a unit volume. We will study the number of collisions between the
particles of radius a and those of radius b during an infinitesimal
increase in time dt.

|
!
{
:

— The number of collisions of one particle of radius a with
all the sther particles of radius b is given by the following
elementary formula:

X .t "t thy 0! dh LR ‘;'l i'h

where n(a + )2 1= the collision cross section, npf(b, x)db is the
number of particles b, up(a) - up(b) is the relative velocity

between particles a and b.

— The number of collisions between the two particle classes

can be written as:

h -'nij oo fol oiddadldl t, (o ,,"[" ot z
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and all the collisions produced particles whose radius is obtained

by writing down the equation for conservation of particle mass:
(a3 + b3f§

The number of particles of radius r which disappear because of
the collision is, therefore,
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The integral in the second term will be called Il(r, x).

All the collisions produced particles of a radius greater than

Pyt FULNSBASE R

G

Let us now find the number of collisions which the particles

L icunty tnittrd

From this, we find

4
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The coefficient 1/2 is introduced in order to take into account
the symmetry property of a and b in the integral.

If we integrate with respect to B and hold a constant, we Tind:

The integral in the second term will be called Iz(r, x).

é having radii between r and r + dr produce from smaller particles a
E and b. The integration range D is found if we take the relationship:
: a3 + b3 = r3 into account.
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Remark

It is easy to verify that the
total number of collisions is twice
the number of particles formed.
Each collision produces the dis-

i
i , appearance of one particle.
ﬂu.(;sréj;gdr Therefore, we have
' ‘,
iR r |' foro e L. oo, -.'J:: Rl
N ~ _\\‘\ . oty U3 (r  dr }2 ;
‘ \KQ\ : by changing the variable in the

second integral.

Let us now establish the balance
sheet of the particles of the class
(r, r + dr).

¢ At the time t + dt, we have:
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figure 1. Integration region
for calculating particles

formed by agglomeration particles of radius r and in this

expression, we can replace dt by
(dx)/Lu (r) 1.

If we take into account the normalization condition for the
distribution density, we fi.d:
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Since

PP R A A o s

froe = der = [, 0} - ;—{ dr,

we can, from the preceding equation, derive (3f/3x)dx and t! an 3f/3x
by letting dx go to zero. Finally, we find:

S StArd

! '

J ‘ a = - ds
Z'*WET”W”"W"ﬁh“”“"”“E]

PO SR NG P

We car. easily verify the following relationship:

., PR
! [4 . .

' A L wdr W,
Ju i €0 Jue

This equation describes the evolution of the distribution

R GAATE I LT A

g ' density of particles. It is related to the particle velocity in
E a complex way and we cannot consider a numerical calculation without

v making it discrete.

IV, Equations for One Particle

The equation of motion and the thermal equation of a particle
do not only contain the classical terms corresponding to the drag

and the thermal exchange with the gas, but they aiso contain an
additional collision term.

In effect, the velocity or the temperature of a particle of
radius r, which is the result of the aggloneration cf two particles
which are smaller, is different from thevelocity or temperature of
the same particles which have not experienced collisions. It is

assumed that this difference is instantaneously distributed over
other particles.
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This additional term must be zero on the average, because we
are dealing with an interaction.

A AP b RS

In order to evaluate this additional term, it 1is necessary to
know the true velocity or temperature of each particle before the
collision and, from this, to derive the velocity or temperature of
the particle formed after collision. This true quantity depends on
the entire history of the particle. It is not possible to exactly
know it except in the case where every particle reaches its asymp-
totic regime before the collision (this nomenclature is developed in
[3]: hypothesis of "weak slip," frequently used by Marble is
related to this)., If this is not the case, it 1s possible to
establish the existence of a correction or defect factor to be used
for the true velocity or the average velocity.

R B ing o 2a7iet om0
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bar a4

The momentum of a particle produced by the agglomeration of a
particle a and of a particle b is:

LR 3 (XA Bk b e SRALLI

s,

.
L ' . ’ =
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where u'p designates the true velocity before collision.
The momentum of all the particles of radius r formed in this
way per unit of volume and during a time dt is, therefore, given

by:

. x 4 " 3 41
wnietdndr | oiis ' Jha AR
v o "

The integral in the second term will be called I3(r, x).

The variation in the momentum of the particles r only produced
by collisions 1is, therefore:
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therefore,
1
dy = 3 wpernpdrdt (r’l,:— suyirif(r, :)l,).

Since the resulting force applied to the particles r is given
by:

. dd
=

it is possible to calculate the elementary force which acts on a
particle. It is given by the following expression:

i - m (rfl,--[(r, ) r’u,(r) l,) .

It is easy to verify that f'_1s zero on the average:

P

f " e 2)dr - 0
that 1s,

J.: Aldr = .'. : fir, 27 Pug (r) Ldr
which can be obtained by changing variables and from symmetry

considerations in the first integral.

The same calculation can be carried out in order to find the

fictitious elementary power q'p related to collisions and relative
to one particle:

2
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One can verify that q'p is zero on the average.

We will now use a few simplifications to find the variation
3 of the distribution density as a function of absclssa.

These simplifications are applied to the velocities. The
principle consists of assuming that the particles are sufficlently

small and that the flow has a sufficiently small acceleration so
that we have:

yla
ez du

L1 (hypothesis of weak slip).

anser it LES RN

One then shows [3] that the velocity of a particle is expressed
by:

\ 'Jt e

 ZLTMARICE o l SEA H VY

,.: ol 10y
- gptfth .- 2
.X’ u ( l

u(o) is the fietitious flow velcecity for which kinetic and thermal
equilibrium of the two phases would be realized.
ponds to a perfect gas flow and u(o)
section considered.

This flow corres-
does not depend on the cross

et S St (AN ML

We will now write the velocity differences:

2. )
uy lay - 1, (bl‘—: “;:: u'e? ‘-:‘-;. (68— at)

and we will replace up(r) by u(o) so that only one particle velocity
appears. :

Under these conditions, the integrals I1 and I2 become:

| " '«' el d“ ’J‘ {r - a)fla,z) la? -l da
D Y
'.. 0,00
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; As before, we can erpress the mass flowrate of the condensed
i phase by:

k’ Ko o= A f: nJ(r,x)m,(r) u,{7) dr,

B

g the expression for n, becomes

3 K t

- U - M = -

E ;:tp,.\u“’ 0 f {r, x) Pdr

Substituting this in 3f/3x, we obtain finally:

-~ ']
. o
v

C g Apin2

<0 - Aly— e ‘.: (—[{r.:) 1, -:-r’l,)dr
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V. Variation of the Characteristic Parameters of the Distribution
One distribution law can be described by a reduced number of
parameters:

average value, standard deviation, shape coefficients.

o B ton Raties eolaniod

By definition, the average radius and average standard deviation
are given by:

-

.
T ’" rftr, x)dr

3 ot {1} ~ f: {r—r,211r, z)dr.

3
|

By taking the derivative under the sum sign, we immediately find:

dr,. "t ér .

— r - dr

ds Jo ¢r

da® [' ¢
-

-
O?r Jo r— Tw! EJ‘ dr.

This last relationship can be written as:

dot  dr, [0
g reyr < e R
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In particular, let us calculate the integrals in the second terms:

. .0
-— " r{-{dr = ;‘_h'."._.
3 VL

3 - ] L3 .
': [-— ’il' = 4121’_. f (,-":, .‘-“‘.— {— 1y + FPlgj dr]ndr

.{" !I"( 1
The integral in the numerator 1is transformed into:
Lﬁnm4ﬁmo_“wn
Since we know that:

'.‘: fhydr -2 ’.‘: 12} e

we find:

“' R rzl:! ro-p,dr

.vﬂmw-ﬁmw~%ﬁma

By replacing Il and 12 by their respective expressions, we obtain

-

“: erlple
“" g o mean iz ot (e — uy (20} wdyds.

D, is the first quadrant in the (¥, z) plane and, therefore, this
integral can also be written as:

.o
‘ ‘ Iy i fiyn g ay) e mg 4211 il
o P

or also:

:' " '.‘. {y = 58 fly, 1) f (2, 2) tup () — w0, (=W (y + 3)dydz,
|'“' fiytr
. ‘”‘n {g 5 22 fly,2) f (s, 7} u, lyt — l,(:)}dyd:)
[' I
Jo o
‘ ‘:.. .1.r‘ (a’ 2l o g’,Q)!’ {a.5} f ((;3._. )4, ,)

tuy (@) — u, (P — a¥j31
— -(—r-’-‘_——“,’—’———-- dndr,
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] D' 1s between the r axis and the first bisector in the plane

: (a, r).

b

£ A change in variables:

E

% y= (P—al)d

: : = e

: transforms this integral into

i .[f,.: W SRl [ g (g — uy (23 i - 3 dys,

? Therefore, we finally have

S “: Y 1 A ""123 Y

: .E r‘.x- v o rif iz, ) ey by — uy ()]

- . (ly’ S | IR (R r,,,) dyd:.

).

1 Because of symmetry with respect to the first bisector, this

2 integral is transformed into:

- “.' IUSENFICY RVANTY NERFR (u,, (51-~u, iy}

). e

(fy’ s L [V S r,) dydz,

g It 1is advantageous to introduce the following reduced variables:
.oy .3

4 ) ;:a Z ’;

3 which finally leads to these expressions for the integral

z "‘1 rfli .l’,. . ‘i’,"_ -’h

:t K] Fekntnt

3 (('fv ZELOY, o (2, ) fup 2 0y — % (Y, 1))

s T TV B ) avar

e ————— —— e

[ 1Y, 23 voay
'", ) 7}

The calculation is carried out in the same way for

14
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2 Let us now use the hypothesis of small slip for calculating the E
5 velocity differences. We obtain the following differential equations g
1.5' g
; A W W L
4 de 6 Aau 4, ;
- fﬂ-\-lﬁﬂ*—lﬂjﬁ.nfM”) 3
g A ' o (‘\-: S AT R L S AR l}:l\'ol?. A
3 ﬁf;(v..;yalv :
i o :
5 ds . llf' Wi 1 dutor ' 5
4 AR F U KT g E
5 [f=\ 22N~ 2\ o0 “ b
. Sl LI~ ST B NP ,)«l\'d?. §
) =
T T ;
'";(nxyymr 3

:
?’11

The calculation of the integrals, therefore, means it is %
necessary to choose an analytic form for the distribution density. i
VI. First Approximation. Utilization of a Similitude Law :
Let us study laws of the form é
P - k- 5 (Z).

The normalization condition leads to: f

kix) = ;‘: q

and it 1s convenient to select g(X) such that j:xLMJX--L
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The definition of thne average radius results in the condition

f: Xg(X)dX = 1.

It 1s easy to see that ¢ 1is prorortional to ot

a - r, (.‘.0' Xtg(\1dX\ - l)‘

ard g(X) must satisfy ): N3 N3 dN > 1.

Fein [4] showed that the particles are distributed according
to an exponertial law 1in the combustion chamber. In addition, the

results of captured tests of particles in Jets carried out at the
ONERA have shown the law to be of the form:

fir) = ]‘,,t'--r.

Here, we will assume the law

L 231
fir ) S b,.-ar

‘.—ib ot ro»

defined for « - o b g,

From this 1law,

we can derive the following average radius and
standard deviation:

L
1o

| o

such that

We will assume that b is constant in this first approximation
and we will calculate the evolution of the average radius.

From this law, we are atle to calculate the integral:

-

LA Rl RV PR
TN ,'o V ble iy ay
LA LR

rath - 1Y Y

[7 00, eovan -
RAT) r

-
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such that the differential equation with respect to Tn becones:

dry B 1 dute 2 (b= q)3s

& Tinawndy T TRINTR Y
" L' (Y & Z2(YE — 2 Y540 -1y +2)
(V-2 — (Y + 7) = 1) dvan.

We will set

b = 18048
L. -1 ey
J ’u_ IV 22V 72 YOZ8-theduXeT)

J‘ by s

(O3 = 23— (¥~ 2 = 1) dVdr,
in the preceding differential equation. Jl(b) is a constant.

Therefore, the integration becomes possible., Let us set:

Kot o (£ Ny 1 dut?

1
TR T e JoNuwdz

we find

Except for the coefficient, the formula is identical to that
found by Marble.

Interpretation

The function z is the product of a constant and an abscissa
function.

This constant can also be written as:

R

W Fuo .

ek

>

o™ -
>
| -
"

and characterizes the propellant and the operational conditions.

The influence of the mass fraction of the condensed phase, the
characteristic'velocity for the gas viscosity (which accelerates

the particles) and the operational pressure are clearly demonstrated.
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The abscissa function in reality is a universal function of the
cross section (Y fixed) and of the same u(o) by definition: the
nozzle geometry does not occur explicitly. In effect, we have [3]:

‘~u ! \, .,nlo.) . -Z
Jygm N at g -

o ,"“lu’

with

(yfmt™, FaR |

It 1s easy to show that the preceding integral is limited when

v+ 4, 1.e., when the equivalent flow Mach number tends to infinity.

The preceding function is shown as a function of x in Figure 2
for a given nozzle profile. It can be seen that the function
increases rapidly in the vicinity of the throat and then strives
towards a constant value.

Caleulation of I,

By using polar coordinates, it hecomes easier to calculate the
integral

| ' L A Ty A L LR LIRS
o B N R A T4 Y

[ . 2
| ‘ 122 2 eas 0 -3 02 s s dny,
[ ]

LA
cimm® Oein® 0
LG BT nm"u foom Y0 - aag M
< R sin ez 1) R
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I Figure 2. Universal abscissa function.
! The integration with respect to R can be c¢corried out and, after
: simplification, we find:
P | 20 = 6)
- LI (b': HT(d+4)
2 4 (s 04 3in 0) cos? Osin® @
- Jo T (o 0 - s OF 093 T
ap s gy (€08 30 - sin 30)d
ﬁ; x [ s @ B R — 4 5] a6,
! Tranforming to the sine of the double arc, we find:
s PR LN
3 LR TY N T ETE T
: (26 + 6) K, () — (b + 5) Ky u.;)
¥
or

. 1 [

Ky )+ 3 [“ ‘lT?.f‘!"‘
) $ 2o ad
Ke (b = 50 |'" "l‘_ o
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A new change in variable finally results in

by = Yo -6 _
WIS BT (6 T T %) v

J

[i2e+ 00— 333

where

I = f; ¢ (l—%c)’ de.

rirst of all, we should note that I'l can be calculated for
b=20

We obtaln the fpllowing recursion formula:

A5 1)1 (B) — o

l~forb>-4.

avy

l; (b 1 l) = _“—1‘—7".;—7*

It is therefore sufficient to calculate I'1 in the intervals

0 and 1. The numerical calculation is carried out by expanding the
quantity:
-

according to integral powers of t, which is possible for t between
0 and 1.

Therefore, we find

AR ZJ—'V

W
R IO { I Y oS |T IOV
T 2t ’ b w4t

In this last sum, all the terms are negative. We can verify
that this serlies is convergent using the D'Alembert criterion.
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Figure 3. The functions Jl(b) and Jz(b).

The function Jl(b) is given in Figure 3, It z2an be seen that

Jl is negative for b < -0.36, which corresponds to a decrease in the

average radius with abscissa value.

We will define an average surface radius and an average volume
radius using the formulas
LI ]
Py = Uo r-[dr)

- U : r’;.lr)'
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and it 1s easy to show that:

{
b‘o.’)
Tig = T (Z"I.j
3 (b
b -

T |

Therefore, it 1s necessary to assume that the average volume
of the particles can decrease for certain shapes of the distribution

law, which 1s a contradiction to the agglomeration phenomenon:
therefore, this analysis is insufficient.

B By ac £ (A0 T T ot ut i S Vi TN d
SV T B N R o
4
T
3
b

AT

At A NGRS SO K Gl e b TR

VII. Second Approximation

Let us assume the same distribution law, but this time we will
assume that b varies with the abscissa value along the nozzle. This

law depends now on two variable parameters a and b, or on rn and 02,
which are related to these two parameters.

T TR TR I T

The two equations which define the evolution of the particle
population are:

2y ot R RER L SIECIMB

r Km 1 oduter , gp s
: d» N L YT R
2 ‘ “. 1Y - 28X 73 YA7be the11 (52
3 LS )
((Y2 = 233 — (Y + 2) - 1)drarz
] st dry Kot due {b = 1.2
3 [ T e i S A
3 H' (Y -~ ZR(Y2 - 22)Y0700- 01117 -2)
3 JIov
3 - OWmZM—4W4Zﬂ+1+£%HM.
%
1 Since
£ L
3 E A Y
- the grouping of the coefficient of b and of the second integral

can be called Jg(b).

We can iniroduce the same var'able z as before, and write:

dr, 3,
b r;.’ 4y (0,

de*  dr, 1,
PENCI RPN [/ v
a: T g ,r,,,,"“"
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By expressing T and 02

da g

P i
dh . .
R |

as functions of a and b, we find

(20 En 8y — (b4 13y

;__h: (o 94— .l,).

By combining, we can express a as a function of b:

du .. a

db b F¥F1

Therefore,

(26 NIy —(b+1) 1y

S Iy ey e 1Y

b(20 A — (b4 1)y db
"'%“"Uuﬁfvwh~w+lﬂgxb+i

and, consequently, we wlill set:
o2 My — (b Ay db

I tb “”Uoéﬂ«zﬁ;-wiau;“b;a'

from which it fcllows that:

1. (h)
a = Gy .l‘.(—b;i.

By substituting this expression for a in the differentizl

equation for b, we find

b L(bg) b IR . .
2 AT (‘“’ b o) dy--(b- 1) J’)

Wie will set

M () - f‘ -

.o('.'

from which we find

L (b) db

FTid— T, K i

L
&

b b Y by — M hy) |-

L. (b

This relationship defines b as a function of z and makes it
possible Yo calculate the variations in the average radius and the
mean square deviation as a function of abscissa value:

b1 L (b

REROYERE R T
bo -t 1 :
b1
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Calculation of I

The calculation of J2 is done just like the calculation of Jl.
After transforming to polar coordinates, ye'rind first of all

. 1'(26 + 6)
Frgrp=2Tp+e
“:" {cos 6 — sin 8} cos® sin® 6
Ja {eus 0 < sin 0,243
(20— 60 2h = 7) {en3 0 e sind03 — ¢

A A o AL A A WA g S s 9
TR {cos & + sin ) +b+ P”

o=

then

o L
2 (71 ”‘ru,",:_ ‘»',"]“1, 1 g)ame
('b-m.-bf p (l' L ) ] Io--'.
['“' 3ETH T E) T

&

and then

2 - J" ”» (l --?t)’dl
* ] '

I'2 can be calculated for b = 0:

d 1
130 - 5(L~—;~)
oJiE

We can establish the following recursion formula:

' 1
b+ blg(d) — 35—

b+ 1) = b T F L

al

and one calculates I'2 between 0 and 1 using the expansion

22—3)...{(2—3(n—1
l;(b)-ﬂ .:. z( —1)* { ’2”(. - (n )]

1
oy y
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7 Figure 4, The functions L(b) and M{(b).

The function J2(b) 1s showi. in Figure 3. The functions L(b)
and M(b) were calculated numerically and are shown in Figure 4.

Numeriecal Calculation

The variations in the average radius and the average mean

relative standard deviation were calculated for the following
conditions:
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— biconical nozzle of Figure 1;

— b, = 0 (exponential law);
Npgrm,

— !

In Figure 5, we can see that the average radiuﬁ increases
slightly up to the geometric throat and then decreases. The rela-
tive size of the distribution increases in a regular way because
of the fact that b decreases.

Interpretation

The decrease in the average radius can contradict the ideas
usually held regarding the increase in particles; but this phenomenon
can be Justified.

a) One can verify, first of al) that the average surface
radii and average volume radii do increase and that this increase 1is
a maximum in the region of the throat.

P) Let us start with the expression

er;;;;;"' “”]]['“”"‘"
We will show that the integrals I1 and I2 can be calculated

when b = 0, 1l.e., for

| I o r
I(r.r)=-;—;¢" or R..}-.

In effect, for Il’ we obtain the following:

| "‘: {r: aldfia, ritu, (r— u, (a)} da

2 dut® "
T,.ff““" et ' R = ytet [R2— ) dr

Fe i 19 = (R %) et
9"'«“' U (= 12 RT— %) e dr
- j R mm-.t).-'.u]
»
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a
: and after calculating the integrals, we find:
E K duto
, h - -..Z'"‘“".'};:"-
; (R - SRV-- 12R—2% 5 Be (2RI < GR2= 9R ~ 6)).
3 Also, the calculation of I, can be done in the following way:
n o=y (110 5 (=@ () { (0 — a2, 2)
1 - tu, (a) — u, (\a a’)‘l)}d

{P— n’p
: "’ '«P‘ ""d"" “ (t ~ =S jtexp
- (B~ — g
] [" (1= e—p)] = (T
. -—J (r+ (19— t’)l oxp [—~ (I + (R3.~ 1’;*)]
3 . i (R’ l’)i-—l’
j i ‘ fL=T e ‘]
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g It can be seen that, by changing the variable:
I
S RI—8,
and we find that the two preceding integrals are equal.

T T

FIA

Since

LT TR

Y (U W L L el

B

we find

..
o glewm 2, ﬁ’k“&

R -Fr md“”,
Yu dsr '™

{.m Y iR -:)].

AT LAY Otaeit

By substituting I1 and 12 in the expression for 3f/3x, we
finally arrive atc the relationship:

if ke 1 du
er W \pu dr

[‘. AR} 12R 4 5Y) - V“‘(“ ):p" .l TR+ »Rt)

d
F
[

-8 [2RS : AR O (’)]

Lacasverid LI

9f/3x is proportional to a certain function F(R) which is shown in

; Figure 6. We can see that, for R = 0, 3f/3x is positive. Therefore,
for the selected analytic form, f(0) cannot have any other values

: than 0(b > 0), 1(b = 0), and =(b < 0):£(0) increases starting at 1

g and of necessity we find that f£(0) is infinite, i.e., for negative b.
.

% 3f/3x 1s positive for the extreme radius values and is negative
E for average values, This 1s to say that the proportion of small and
4

large particles tends to increase, whereas the proportion of average
particles tends to decrease: this corresponds very well to an

‘ enlargement of the distribution and allows the average radius to
’ increase or decrease.
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Figure 6., Function 3f/3x for b = 0.

This aspect of the phenomenon 1s due to the collision r2chanism
which depends not only on the distribution density and the velocity
differences, but also on the collision cross section.

c) It remains to interpret the results ol capture tests in

the jet which result in a density distribution corresponding to
b > 0.

First of all, 1t is necessary to know whether the smallest
particles could be detected under a micr.scope and whether or not
they have been ignored in the statistilcs.

One can also wonder whether the samples collected are repre-
sentative with respect to the real particle population in the jet.
In effect, the very small particles follow the streamlines of the
gaseous flow around the plate much more than the large ones. The
plate 1s located perpendicular to the nozzle axis and collects the
particles. The small particles are subjected to a greater deflec-
tion than the large particles and it would be appropriate to correct
any experimental law in order to take into account this phenomenon.




The simplified calculations, therefore, result in an adequate
A representation of the agglomeration phenomenon. This calculation
% attempts to demonstrate the small role played by the nozzle geometry
and to show the simple way in which the operational parameters
influence the process. The conclusions which can be derived from
the presented formulas qualitatively agree with the results of Crowe
and Willoughby [2]. Quantitatively, since the small slip hypothesis
was assumed for all particles, the velocity differences and collision
frequencies are overestimated by the analysis.

{ VIII. Conclusion

The agglomeration of alumina particles is therefore primarily
translated by an expansion of the distribution law of the particle
radius and by an increase in the average particle surface and volume.
The collisions bring'about a force and a thermal flux for each
particle which tends to reduce the velocity differences and tempera-
ture differences for particles of different dlameters. The agglomer-
ation is primarily important 1. the uthroat region. Since the throat
has a great influence on the performance of the nozzle, the agglom=-
eration can be an important factor for performance loss. Efforts
must be made to utilize the proposed general formulas in numerical
calculations,and the particle populations along the nozzle must be
studied in experiments.
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