
A D/A-000 102

A COMPUTER-BASED SYSTEM FOR STUDIES
IN LEARNING

Donald K. Centner, el al

C a 1 i f o r n i a U n i v e nit v

Prep a red f c) r :

Office of Naval Research
Advanced Research Projects Agency

Sept em her 1974

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

-■ ———————————

UM;i ,\ssii ii ii
SECURITY CLMHUCATlO«« O» tm% P*6t tWkm '>«'• FnfrrJ,

REPORT DvlCUMENTATION PAGE
I HEAD INSTRUCTIONS

1
1 Rf P;B'r S ^MBE R Tj GOVT ACCESSION NO

4 Ti T ..E ami f.itnlli-

A Computer-Based System for Studies in

1.earning

HEAD INSTRUCTIONS
BEFORE COMPLETING FORM

3 REClPlENT-S CATALOG NUMBEB

5 TYPE OF REPCRT » PERIOD COVERED

Technical Report
6 PERFORMING ORG. REPORT NUMBER

7 AuT«OR't,

Donald R. llentner, Mark R. Wallen, and
Patricia L. Mi 1ler

9 PERFORMING ORGANIZATION NAME AND ADDRESS

Prof. Donald A. Norman
Center for Human Information Processing
University of California. San Diego
lg Inl Ir. 'r-ilifnrnia a2ü3j

(CONTRACT OR GRANT NUMBER^J

N00014-69-Ao0200>6045

11 CONTROLLING OFFICE NAME AND ADDRESS

Personnel and Training Research Programs N00014

Office of Naval Research

10 PROGRAM KLEMENT PROJECT, TASK
AREA ft «CRK UNIT NUMBERS

NR 134-360

12 REPORT DATE

Arlington. Virginia 2221
TT MONiTORiNG^AGENCY NAME ft ADDRESS^;? «flMWII I""* Conlrotllng OHIO

September. 1974
t3 NUMBER OF PAGES

28
15 SECURITY CLASS (ol th/« fporl)

Unclassified

TS. DECLASSIFICATION DOWNGRADING
SCMEt'ULE

16 DISTRIBUTION STATEMENT 'ol Ihla Rmporl)

Approved for public release; distribution unlimited.

17 DIS TRI8UTION STATEMENT fÜ SM SMM «'.'.<* S Bloc» 20. II dlll.„nl from R.pcrl)

D D C

is SUPPLEMENTARY NOTES

■

. ■ ■

NOV 8 1974

UiJEBEinnsi

a

J

■»•
t9 KEY WORDS ^Conr/nu. or, r.v.r.. 55 3 n.c...«y -d /d.n.lfy by block numb,r)

Lducation, learning, computer-aided instruction, computer-based instruction,

computer languages, automated tutor, model of the student, teaching.

20 ABSTRACT rCon..nu. on r.v.r.. .M. II n.„.*y m,d Id.mlly by bloc!, numb,r) cvstem
This report describes a computer-based system, called the FUM system,

used 'n experimental studies of human learning. The student learns a simple
comnuier language from printed instructions and can run his programs inter-
actively on the'riOW syUem. An automated tutor simulates a human tutor who
watche over the student and gives help when the student has difficulties.
The sy tern also records detailed protocols of the interactions among the
Itudent the computer, the automated tutor, and the human tutor for later

analysis. ^ ^^__^_^^_^^___—^^—^——^—■——~—~"^^——"■
QQ ;ORM]jj2 BDITION OF ' HOV«» IS OBSOLETE

S/N 0 10 2-014-6601
UNCLASSIFIED

SECUIIITY ri Äl$IFICATlON OF THIS **OE fWiw OAf« Mntfd)

^^_^^^_^^,^

I
I
I
i

A CQNPUTER-tASEO SYSTEM I Ok STUDIES IN l.i.AKMMi

DONAUI K. Cl.NTMiR

MARK R. MALLEM

PATRICIA I.. NILLEI

Contract Number: N000I4-69-A-0200-604S

\Ri'\ Order Niaber: 2284

Task Authority Identification Nuribcr: NR IS4-S60

Program Code Ninber: 31)20

Effective Hate of Contract: 1 February, 1973

Contract Expiration Hate: 31 January, 1975

Amount of Contract: $221,012

Organization: university of California, San Diego

Principal Investigator: Donald A. Norman

[Phone (714) 152-2947]

Scientific Officer: Dr. Marshall iarr, Director

Personnel and Training Research Progr
office of Naval Research

D D C

'3 1974

uuibisEinns
D

ams

Th e views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies either expressed or implied, of the Advanced Research
Projects Agency, the Office of Naval Research, or the U.S. Covernment

This research was supported by the Advanced Research Projects Agency and the

N L: ■ r::1 Rrrci;.of thc Departmcnt of M^ ^ - ^ITAI WW under Contract No. N(l()()l.l-69-A-()2(){)-6()45. l '
DISTRIBUTION STATEMENTA""

(' Approved for public release}
DistributtoB Onflnrfled

- -

I

^ t'OMI'lJllk BASbU SVS11.M FOR STUUIliS IN LEARNING

h.v Donald R, Uentner, Mart R. Mallen, and Patricia I. Miller

University of California, s.m Diego

La Jol l.i, Cal i fomi .1 92037

INTRÖDUa ION

Our studies of 1 earning have several major ioci. First, how is

intormation stored in the luiman memory system: how is new information in-

tegrated with the existing knowledge? Second, whnt are the mechanisms

used by the learner to select inlormation from the learning envir>nment

and integrate it with his existing knowledge structure? Third, how doer.

the tutor model the Knowledge state of the student and use that model to

guide the tutorial dialog?

We have recently developed the FLOW system, a multipurpose facility

for studies of the learning process. Some of the work with the FLOW system

has been described previously (Norman. Centner 6 Stevens, 1974; Norman,

Centner & Stevens, in press). This report will be concerned primarily

with the development of an automated tutor which com tructs a simple model

of the student and uses that model to assist the student when needed.

Over view . .f tue systv:;;

H.OW is a simple, interactive computer language whose commands are

designed for string manipulation. Although FL0\" is not intended for prac-

tical computer applications, it shares many important properties with com-

mon computer languages and is particularly suitable for our studies in

learning. The section on the FLOW languag. describes the language in detail

The FLOW system is based around a minicomputer. A cathore ray tube

(CRT) display terminal for the student is attached to the minicomputer. The

experimenter, who is normally in another room, can monitor the student's

terminal on a television display. The minicomputer is connected to ■ large

computer in which the automated tutor program resides. The exper:menter

mm

-2-

tKis • terminal connected to the large computer vrtiich be can use to inter-

act with tlM automated tutor program and, through that program, with the

student. There are also facilities tor recording complete protocols of

the experiaenta] session. Th« equipawnt used In the FLO* system is des-

cribed in de-tail in the st-ction on Hardware.

Over the past tew >'ars, a number of different approaches have

been -.Iv.-n towards the development of computer-based instructional systems.

Tuese -yptems can be generally classed as one of three types. The first

and MSC common type is based on the sequence: present text, t«St. and branch

The student is given a section of text material and then tested on that

material,usually with a multiple choice test. Depending on the result of

the test, the student can either be given the next text in sequence, or be

sent back to I previous section, or be side-tracked to a remedial section.

The second type of system is often called a generative .ystem. The SCHOLAR

system originally developed by Carbonell (1970) is a fine example of a

generative system. Here the information (texts, questions and answers) are

not explicitly stored, but instead there is a database in which information

about the subject matter to be taught is stored as a semantic network. Gen-

erative routines in KWLM can access the database to prepare text or ques-

tions for the student or to answer questions from the student. A third type

of computer-based instructional system is the simulation system. In this

tvpe the computer is programmed to simulate some domain of interest, such

as a regulated power supply (Brown, Burton 6 Bell, 1974) The student has

a number of operations he can perform on the simulation and learns by s«»-

ing the results of these operations.

^^^^mtmmmm^mm

- i-

Actually, Brown's -ystem can also carry on simplf dialogs with the

Btudant. OuV FlOW system takes a similar approach, niving the student an

interactive domain to experiment with (an implementation ot the FLOW

language) aid tutorial assistance. (For examples of related svstems see

Karr, Beard 6 Atkinson, 1974; Kotfman, Blount, Gilkey, Perry 6. Wei, 1473;

Goldbarg, 1973.) Eh« automated tutor in the FLOW system, however, differs

considerably from previous systems. In some preliminary experiment.1, the

student learned FLOW primarily from vritten instructions, entered his pro-

grams into the cdnputer and modified his programs based on the results.

Meanwhile a human tutor was watching over the shoulder of the student

and would answer questions or interrupt if the student appeared to be

having difficulty. The automated tutor is meant to duplicate the func-

tion of that human tutor. The student still learns primarily from written

instructions, but the autotutor tries to follow his progress and keep

track of where he is in the instructions by monitoring what he types into

the computer. Hie student need not follow the written instructions exact-

ly, but may move back or skip ahead. The autotutor rfil] try to follow and

be ready to give appropriate help il the student gets in trouble.

w**i—m—*^*^m

THE FLOW LAMCUAGE

Origins

Thi' fl/M language was original ly developed by Professor Jeffrey

Raskin of the Visual Arts Department at UCSD. He wanted to teach computer

programming to humanities students who often either had little experience

with, or actively disliked mathematics and computers. FhOW was conceived

as an introductory computer language that would be non-threattning and

easy to understand while still possessing the basic functions and construc-

tions of typical computer languages. After first learnin* Fl.fW, the stu-

dent would then go on to a standard language such as BASIC (Raskin, in press)

FLOW

Table 1 shows the commands and statements in the implementation of

FLOW used in these experiments. (After the experiments described in this

report, we renamed most of the Fl OW commands and statements to make them

more mnemonic. See the section on Subsequent Developments.)

In our implementation of FLOW, the student's terminal is connected

to the minicomputer via a full-di.plex link. This means that when the stu-

dent presses a key on his terminal, the character is first sent to the mini-

computer, examined by the computer and then echoed back for display on the

terminal. This arrangement allows two interesting features. The first

feature is called "typing amplification" by R-iskin. As soon as the mini-

computer can unambiguously recognize a command or statement from the char-

acters input by the student it supplies the remaining letters of that

command. Since most FLOW canmands begin with different letters, it is

1
-5-

iisually ni.Hi'ssary to type in only the first letter of a statemt-nt. With

ehe commands and statements listed in Table I, only the un'^rlined letters

need to lie typed in, the computer vill supply the rest. Second, since ttie

computer can examine each character before displaying it on the; terminal,

syntactically Incorrect characters car be rejected. Together these two fea-

tures virtually eliminate typing and syntactic errors, two major sources of

frustration for begirning nrogrammers. To illustrate how thoy work, suppose

a student is entering his program. After completing a line, the computer

does a carriage return and line feed, provides a new line number and then waits

for a student input. At this point the minicomputer will accent anv letter

which begins a FLOW command or statement or I number (indicating that the Btu«

dent wants to change the line number). If the student presses the "V" key

the word "PRINT" is uisplayed on the terminal and the minicomp-Jter waits ior

I legal completion of a PRINT statement. (The legal character- at this point

are I, ', and R). If the student then presses "J", the minicomputer will

momentarily display a "J" with an audible tone then backspace, erase the "J"

and wait for a legal character. An "I" will be accepted as a legal character,

the minicomputer displays "IT" does a carriage return, linefeed, displays a new

line number and waits for the next statement. It is not a recommended pro-

gramming practice, but as a graphic demonstration of these two features, it

is possible to bang away at the keyboard, and always produce syntactical 1v

correct, executable FLOW programs, although, of course, there is no guarantee

of what they wil1 do.

•6-

Advagta^ca ^l ri.OW i^ir I taniinK Stud Ue.s

FLOW lias | nun-.'.jfr of advantages as a subject matter to'; use in stud-

ies of learning. Along with other computer languages, FLOH i.nvolves both

conceptual and procedural knowledge. It is problem oriented,'. There are a

large variety oi problems that can be posed to exercise the student's

developing knowledge. The language itself and the tasks form 0 small, concise,

and well defined body of knowledge. Hie statement of a problem and wlw. t con-

stitutes an acceptable solution ate normally fairly clear, although there may

be some debate about the quality of a particular solution. The students in

most of our studies were university undergraduates, and it is relatively easy

to tind subjects from that group with little or no experience with computer

languages.

FLOW also has some unique advantages as a subject matter. With typing

amplification and the rejection of syntactically incorrect characters, two

major sources of uninteresting errors are eliminated. The errors we are left

with are concerned with the meaning of individual statements and how groups

of stitements interact. Since FLOW is quite a simple language, a lot of in-

teresting learning takes place within the first hour. The subject matter

is complex enough, however, to require up to 10 hours to master. This forms

a convenient time span for experimental studies. Subjects usually enjoy

learning FLOW with its interactive nature and low level of frustration,

and are highly motivated to learn.

The last advantage ot FLOW derives from the fact that it is primarily

a computer mediated task. This leads naturally to the possibility for

-7-

«.omputer intoraction during the instructional sequence and to .-ase of col lee

tion of experimental data. Also since the task is primarily verbal, it is

easy to collect detailed protocols of the tutorial interaction and attempts

at problem solving for later analysis.

- 8-

HARDWARK

Although this report is concerned mainly with the automated tutor,

the FLOW system is designed lor a number of difterent types o' experimental

studies. Figure 1 is a schematic diagram of our equipment. The equipment

(except for the H6700) is located in two adjoining experimental booths.

The system is based around a Microdata 810 minicomputer with 24K

bytes of memory (the applications described here require only 8K bytes).

The student works at a Scientific Measuring Systems 1440 CRT terminal con-

nected to the minicomputer via a full-duplex 1200 baud (120 characters

per second) link. A video output from the CRT terminal is connected

to a video monitor in the experimenter's booth duplicating the display

on the student's terminal. The signal going from the minicomputer to

the student's terminal which contains all of the information to be dis-

played on the terminal including vertical and horizontal spacing also

goes to a recording unit. This consists of a modem converting t'..: dig-

ital signal produced by the minicomputer into a sequence of tones which

are then recorded on an audio tape recorder. The tape recorder can

record up to four tracks of information such as verbal comments from

the student and tutor in addition to the terminal display. Later when

the tape recording is played back through the modem, the tones are con-

verted back into digital signals which faithfully duplicate the experi-

mental session on the CRT terminal.

The automated tutor part of our system is contained in programs

residing on the UCSD's Burroughs 6700 computer, which is connected to

our minicomputer via two half-duplex 4800 baud lines. (The two half-

"■

*mm

I
I

duplex lini's can b« ropl;u etl with a singlo lull-duplex connection when

the system will support till duplex.) The B6700 computer is also con-

nected to a Tektronix 4010 display terminal in the experimenter's booth

which is used to program the B6700 and to communicate between experimen-

ter and the automated tutor during tutorial sessions. In additicn the

B670Ü prepares a protocol of the tutorial session lor later analysis.

The experimenter's booth also contains a keyboard and Teletype terminal

which are used to communicate with the minicomputer.

Hie minicomputer controls most of the flow of information. It

monitors the s.udent's keyboard, interprets, and runs his programs,

and writes on the student's display screen. Input from the student is

summarized and sent to the autor^ated tutor on the B6700 and all mes-

sages from the autotutor are relayed through the minicomputer. The

major information link outside the minicomputer is that the experimenter

can interact directly with the autotutor.

m •

-10-

TH E AUTOMATED TUTOR

The Printed Instructions

We decided to base the teaching of FLOW on a set of printed ir -

structions primarily because of ease of preparation, flexibility, and

convenience of use for the student. Few new educational technologies

can rival the printed page which is self-paced, portable, easily search-

ed and inexpensive. Figure 2 shows a typical portion of the instructions

The instructions are divided into seven units, each of which in-

volves throe types of tasks: reading, entering practice pro^ramL, and

solving problems. These three types of tasks can be seen in Figure 2.

The first part of the figure is explanatory text. Then there is a short

program using the new statement which the student can enter f.nd run.

Finally the student is given a programming problem to solve. All the

units have this structure; there are one or more sections of text and

practice programs, and then the student is given a problem to solve at

the end of the unit. We ask the student to not go on to the next sec-

tion until he is told to. In fact the autotutor will send him on as

soon as he solves the problem. Hi« student can go back in thr instruc-

tions whenever he likes but we thought he should not move on to the

next unit until he had mastered the current unit. We were also afraid

the autotutor might have difficulty if it thought the student was work-

ing on Problem 4 when he was actually working on Problem 5.

New commands and statements are introduced in each section. With

typing amplification naive students often accidentally enter statements

which they know nothing about, leading to general confusion. To avoid

J

-11-

tliis prolik-m, tin» minittimputt-r initially does not respond to any kvy

ftm the student's keyboard. As tht- student moves throuKli tin in-

striK tions.keys are activated at the time that the corrtspjndin^ state-

ments are introduced. While the student is working on Unit 1, lor

instance, only the H,F,',R,L,N and | keys are activated (corresponding

tc HELP, PRINT 'string', RUN, LIST and NEW). When the student success-

ful ly completes the problem at the end of unit 1, the autotutor gives

him a congratulatory message, tells him to go on to Unit 2, and ac-

tivates the keys needed ior that unit.

Following the Student

During the development ol the autotutor, all its tunctions were

originally carried out by a human tutor. Parts of the tutorial func-

tion were then taken over by the computer until it was completely autc -

mated. The human tutor typically forms a rather simple model of the stu-

dent containing the following information:

1) where the student is in the instructions, and 2) his current program.

The human tutor refers to the instructions and general knowledge to

generate: i) the student's next expected input, and 4) the maximum time

it should take him to enter the input. If the student entered the expect-

ed input, the human tutor would advance the student model to the next

point in the instructions. If the student entered an unexpected input,

the tutor would use the instructions and general world knowledge to try

and deduce why the student had done that, and where he now was in the

instructions. Rather than have the autotutor generate maximum pause

■Oni ii ii—iü mm

4 -12-

lengths and the meaning of unexpected inputs from the instnutions

as a human tutor does, we dec i .d that that would be too difficult a

task and entered the maximum pause length and a list of input;, explic-

itly for each state.

One of the major tasks of the autotutor is to follow the stu-

dent. The student normally proceeds sequentially through the instruc-

tions. But from time to time he may make errors and decide to repeat

things or even go back to an earlier part of the instructions. A con-

fident student may skip over some of the practice programs and start

immediately on the problem. Through all this, the autotutor monitors

what the student is typing into his terminal and tries to keep track

of where he is in the instructions.

The instructional sequence is divided into 136 states. During

the practice parts of the instructions, a state usually corresponds to a

FLOW statement or command, although in the first unit, states may cor-

respond to individual characters and partial commands. During the prob-

lem part of the instructions, each problem corresponds to essentially

a single state. Each state has associated with it a list of information

which the autot tor uses to follow the student. These states and their

associated li is are all that the autotutor knows about the instruc-

tions. Because the autotutor employs two distinct strategies for the

practice states and the problem states, we will discuss each of these

separately.

Practice

The autotutor gives three types of messages during the practice

part of a unit: 1) standard messages in response to a request for help,

or if the student pauses too long, based on the next expected input

■ ■

MMMHMHnMMMMMMMMWMMyMWHMMMJMkUaMMias't*

-13-

(Try typiriK ;>); 2) messages in response to t serious error,

(usually l NKW out ol Mquunc«) winch tell what should have bu«n typed

and send the student hack to a previous section to try •gain (You should

have typed ; please |e had; to Section); j) special message;-

peculiar to a |lVM state or class of states wliith clarify usag« ol cer-

tain keys or commands or explain procedures (e.g.f If during the first

unit the student types the lettei V when he slu j 1 d have t vpc d the num-

her "0", he gets the message, "Zero (0) is located to the right ot 9

Don't use the letter 0 for zero.";

I'o illustrate' how the autotutor works when the student is in the

practice part of the instructions, let's look in detail at one section

of the instructions in Figure 2. In this unit we introduce the PRINT

RETURN statement. In the practice part ve give a hrief explaration of

the statement and then a practice program using the new statement which

the student is expected to enter and run.

When the student success In 1 1v completes the previous pi obi em

(Problem 2) the autotutor's model ol the student enters State 276. (The

states are not all numbered consecutively.) When the student then enters

a NEW command, the minicomputer erases the screen and gives the student

a line number (010) for his new program. Meanwhile the autotutor advances

the student model to State 277. W< will examine State 277 in detail.

Associated with State 277 are tour possible student inputs and a

maximum pause length. The autotutor thinks that the student is about

to type in the practice program and waits for a student input. The five

inputs which it is looking for in particular are:

PRIN; •HKLLO-

PRINT 'BASKET'

PRINT 'anything eist-'

NEU"

HELP

14-

This is what the autotutor expected am' it sipply
advances the student model to the next state
(State 278).

This is the first statement lor the so.ution of
Problem 2, so the antotiitor assumes that the stu-
dent has skipped the practice section and advances
the student model to the beginning ol Troblem 2
(State 282).

Ihe autotutor assumes that it just has a creative
student who didn't like the word HEI.LO and advanc-
es him to State 278.

The autotutor assumes that the student had made-
some errors and decided to begin again. The stu-
dent model is kept in State 277, and to keep some
control over the chaos, the student is asked to
start at Section 13.

The autotutor sends the message: TRY TYPING A
PRINT 'HEI.LO'. The student model remains in
State 277.

Any other input is assumed to be an error which the student will notice and

correct. The student model is left in State 277.

The maximum pause length for State 277 is 30 seconds. Failure to press any

key for 30 seconds is equivalent to typing HELP. The student gets the mes-

sage "TRY TYPING A PRINT 'HELLO'" and tne student model remains in State 277

(The maximum pause lengths, which vary from 30 seconds to 5 minutes are en-

tered explicitly by the experimenter.)

Problems

When the sMident finshes the practice part of the instructions, the

student model is advanced to the state corresponding to the next problem.

A problem essentially corresponds to a single state; running a correct solu-

tion to the problem advances the student to the next state. Associated

with each problem state, the autotutor has a program which is a correct

lolutioa oi Kh« prohii-m. ii tiif prograa rcquirci input (!■ n.i>w, iii.it

would be in the for« oi • TEXT ■rataamt), tfca au^otutof will also bava

MVaral taat input-. As tlu- studt-nt typai in his ptOgraa, tha mi.iicornput-

at sends tha stati'munt s ti) tht- NitoCutor.

11 tha student run- his program, asks tor lulp or pauses t >o 10IIS,

the autOtUtor run-, tha tmltnt's program aloni; with tlu- cor.ect program,

substituting in its ttst inputs il netessarv. It the ; wo program- gen-

erate essentially the same output, the tCudaat'l program is judged corrtet,

and the -tudi-nt is given a i ongratu 1 atnrv message and sent on to the next

unit. The autOtUtor ll somewhat leniint ah.nit eertain ui s.. repanc ies in

the student's output MU h a- axtra -.paces. Within the lather small scope

of FLOW and tlu- programming problems we use, our procedure of comparing

tha output- of a correct pro^ran. and tlu -tudent's program works quite well.

If the output- are not essentiallv the same, the autotutor does a lino

by line comparison ol the programs anc informs the student o(the first

dis-repancy it finds between the student's program and the correct program.

The program Is viewed topclogically as groups ot non-control state-

ments bounded by control statements. (Control statements alter the linear

flow of comman-i oi execution; tlu v ara STOP, ILMP TO nnn, and IF IT IS 'c'

H'MP TO nnn.) Hie Bon-CMlCro] narts are examined statement by statement

as previously described. When a control statement is encountered,

the pranch is taken to the new porti ,n o| the program and this is examin-

ed. This is a recursive pn.'.ess, and it this new portion pa-ses inspec-

tion, th.n the statement tollowing the initial control stat , nt is examined.

Thus the whole executable program will be canvassed fo errors.

16-

KxampU- of a Tutorial Interaction

To illustrate the atti(ton o: the aucotutor, we will »rcsMlC I pot«

lion ot a tutorial interaction Blimg with the autotutor's interpretation

ot the situation in terms of its modi I icat i on of the student n.odel . Al-

though this dialog i;. taken from actual tutorials, we have blinded to-

gether several tutorials with dilfirent students to he able to show I

variety of student errors and how ihv autotutor handles them. A- we

tart this ex.erpt, the student has just correctly solved Problem 2.

■17-

<1> >. c r
r v. Jm •"' 4-< a
O •" rj ti O

P £ J, 4-1 i W •J.

c; r^ IM c? 4-1 c •rH

.i a< •■-« «t-« re - K ^- -a 4-1 r-- a
j^ u 4 >. i a. re
4J || 0 c — F > c % 4J • k- B £ E •r- c

1 M > n M. CU ' -t-t a» g •rH

V JC E w a cr 4-1
la r— •^ 0 •»-« c c: US H 'J
31 ^ •— «_* 4.1 >, B "- ^— c. i •r
J ^ u 3 H > | i. ■ <Si • " CQ c ■ ■* s: u •r- 4-1

c
i» C ■ i 1 If h ^ JL • fl<

73 u ~ r" re '■ 0 c A, E ^" u •p- Q 4-* M *-J ■rH — H r — I c i "3 4-1 ■i-i ■ c pa K 4-1 - £ M j M •^ x: re ^ X 4-1 ~ c y ■-J. -a: u /- y
M^ •<-4 C I u c ■ re ■■/. 1i Q k. •/.
9

I
1 T3 IM

>. 1 ■/. re ■ y
c

4-1 G

/. Q — U t -— 2 0 *J o If »1 • c W 0 oc X. 4-1 E d C 5 7. ~3 ■ 4 •J. 4^ It 3 -)
J. 4 M -O ■ ■ •rH

F. v ^* T3 i Q % ■rH J 4-1 g jC o
1 A £ C w N ■ is W Uri re ■ £

a:

•

p 1 E C- P p ■ re c- re 4-i

i- ft UJ <
Q ^-« W3 UH *->
= u 3 H O s.

cr
*J ■ fi J r-i H UJ j z '- - u a- *—■ ai x: z Q
4J CL, a- 1-1 »—1 s
3
< z p 2

rJ H

!
— J ^^ UJ _s ac g
E H H <

»4

W5

u i 1 ÜJ £ M O
■— < M T. H UJ I c 5 H z /. w a tu ^ a UJ ac
tl z e " p ^ UJ
M B UJ 1 QC

3 - 5 i— M LO F s >. ■^ H UJ
V3 — 4 ■ 3 * 5 •■ 8 ii < 3 ^- P • CQ .

h

•
g i

|

•
>- | c

re
M Q - 3 j| — U * . 5 TO B

w
Id B &.

01 •
H

3Cl

H E
4-1

3
i

i- •
0 -i
E 0

3 2M i'. 't\ Z S£ Zu •3 ■
w 3, i—l | M ►—* I-H z g H o 3 u
■Si ra H DC a: oe. ac D. 9 4-« c c

asi rrl «^ H Cu 3-1 E a:l ^ •*•' O tn WH sß

~ - * >■ -^
Q

c § 2 1 3C
H E

1
'J 3 H 9 ■—■ ^—' O 0 tl fcj ^J H H H i ij
c B u H ■ M 3 c £.
x £ - Z H - o: a C

UJ - c •H l-i
i—* H B H r— H H •H 4-1 — ;

w Z Z ■ SS z 3
X 1 H-» »-< HI M M f—< 1 3 >> 0 ^ Q£ DC ■j DC ■ oc c a 4-1
K z E Cu E a, a« cu ■ z re W5

c i
T3
3

^O r^ r^ 00
r-~ r^ r^ r^
fN rj n rj

ao (^ O f—* CM r^ n
r^ r^ 00 00 -o 00 or
fN CN CM CSJ (N esi ' j

-1«-

u

II

u i

£ c

■ I

I
e ^
O -H
0 U

1 E

0 i-
M

u 0
C u

W 4- E
3 C ^
(^ 0 »-

■O 5C

H ■ c

H
i-i
ac

,■

A

q is

Is

at
c

3

H
x. □ ■

u:

—
< 3
H 0-
H

o
V X.

g
V. a£
3 5 ^
H oj
JJ pe ■ :—
I-. z
Z —
a: V-J

K O

P H

1
s

V3

tu 4^ • Q ~,
X ^ y. c x u i
4J « 4-1 4/ u ft. ^^

4-1 c E >. 'J

£ a» | lM 4-1 ■ «-*
U, Q E W Q f~J tc
3 ^J 1 c O 4-t E
r^ 4-1 *J /, 1-1

•C U n; '/, 4-1 w (U
w <0 4-(^ Q E
i—" f-* 7. ■■/. i-l J •M

TC •r4 *J u W ^J

E ft. c Ü ■ J
w .r4 g a» h 0 JJ 7.

C3 ■ E M 4-1 ■H
^ ■-) <u Zs /. f Q /. 4-1 ■J 0 "O

CO 0/ c M c
-D 3 ^: 4-1 (/, i (^
C 4-» CA o a.

E M E E 5 r3 •> 4-* 5j Q n:
'*-• w. E B *-' o w QC

at « v ■^H ■J.

u c V- h M « Q >.
r- l- K */ j. Q ^. U

4-> c 0 IM X fcj C v
kl 3 >

4-f ■ fc. • ■-• V w M o
c • "^ 0 •
i-f *J w •~< *J 4-« c

r* f-
I— ->

(Ü o 0 w || w ty
"0 u T3 -^ E

1/ 3 1M ■o 9 „ 3 c
r*t w Q i/ Q

c ^J I-

P ■/. •^ CA. /, M

M UJ
>.fi

W5 «i CO
• £3 a:

o . p —
N fc ^
-i s »

-• X

P ft-
ft. u <
E • w

5 < H H
X. X C
Q u: H

f- 5 -9 8
M — u. ^ C

sS •i M/

H X Q
H kd 9

0

r

■p
i
w

U

Ü 4-t

ft —
R ft

UJ c
y—4

u

X

II
?:

p4

II
T3
0
z ■

4J

4-> ■
c M
II W)

•o
3

4-1

W)

Ik
-'-
5,
-1

ft.
Q £? 3
CM u
O

^
OCI

f: - .
'J •—.

c X
0 B

•rH u
4-» ft-
3 | 1

Vi

Ml

a. 3 u il

H
UJ ■
i^ H c
(/] ^. CM

^s UM c
- HI ß
»-• H
r' Z ft.
K MM

<£.
BB M — El n
o c 0
w* rj n

ft.
z 3

c c c Kl
UJ
=1

a,
g
-I
c

Si

m m m m n n m rt rl p-i M ■■ oo oo 00 00 ® X oo 00 oo ao X' X X
tM CM n CN tN IN tN t^j CSI rj n (Nl CM

-19-

Summarv ^i the Automated Tutor

As tlu' ittt^Mt works irom writttn ins t nu t ions. the autotntor Mon-

itors tin' stucivnt's ki-yhoard inputs and trim» to folloM t)u- stu-

dent's progress tl.ronKh a series of states corresponding to the written

instructions. The states corresponding to the practice parts ol tie in-

structions hav. an expected pause length and a list al possible i.puts

associated with them. r,ir rc.sp,)ntlinK t(1 ^,, possibu. input l§ , .i(..Un;i.

tion state and possibly a message. In I given state, it the student

types in one ol the inputs oa the list, the autotutor prints out the

message if anv and advance- the model of the. student to the destination

•tat«. If the student typo in an input not on the li^t, the student

model remains in the -ame state. Except lor til«M messages, which are

rare, the tmly time that the -tudent is aware of the presence of the

autotutor is when he asks for help or pauses for a long time and exceeds

the expected pause length. Then the autotutor prompts the ^tucKnt with

the next expected input.

Somewhat surprisingly it has been out experience that the autot.tor

usually makes fewer errors in following the student through the practice

parts than a human tutor. Analysis of protocols from early sessions with

human tutors showed that the human tutors often were quite mistaken in

their judgments of where the student was in the instructions. The main

problem seemed to be that crucial key presses were missed due. to lack

of attention. Of course, eternal vigilance is one of the supreme virtues

of a computer, and this seems to give it the edge in this task.

-20-

Tlu- operation ol ttif •utotator Mhil« tho ttudoat li wotAint on a

probloa la auch difforciit. More thf Mitotufcor only haa M oxaaplc ol a

correct aolution to th. progr«aaiing probloa. With th« oxcoption oi two

mfssay;os which art- aoaotiaoa |lvm »-arly in thf problca, all ,.i tin- mes-

aagaa from the MCotttCor an- |MMrat«d algoritlMlcally basad oi a coa^ar«

ison ol tiu Btudaac'a prograai and tha corraci profiraa, la addition to

assisting the student with an iturmt progra*, the autotutoi al ,. run-

the student's program wi.eiiever tl,e studfnt runs it, and it th • program

■••■■ Catract, th« ■atOtutor congratulates the student and asks him to

start on the next unit.

-21-

BUBSBQUENT ÜKVKLOHMKNTS

Coagtnd Namcs

StuJfiUs learning FLOW ofttm t oimd some of the names of FLOW

statements and «.ommands obscure oi confusing. In an •fforl to clarify

their functions, IM hnvs rnnaasd many ol the tastructions. Table 2

lists the old instructions and the td iresponding new instruction.

Wi- Iwive als.« iilten-d ths display generated by the WALK command

to make it clnsrof what is iMppnning: eight lines ol the student's pro-

gram are displayed on the upper portion ol the -creen along with a

pointer indicating the statement (iirrentlv being executed.

Conceptual FLOW

One ol our original intere;ts was to teach students the FLOW

command^ and itStSMntl and -tudy the spontaneous development of progran-

nr.ng concepts. Thus tbs written instructions and automated tutor des-

cribed in this report are oriented around ehe statements in the FLOW

language. Concepts such as control transfer and loops are not explicitly

treated. Some tutorials we have conducted indicate that instruction bas-

ed on programming concepts rather than tne specific statements would be

more fruitful, especially for students with no previous experience with

->mputers or programming. To produce a FLOW instructional system similar

to the one discussed here but with a conceptual emphasis would involve

rewriting the instructions and modifying the autotutor to analyze student

programs in terms of the relevant concepts. An interest of ours, in

-22-

another part nt tht- FLOW ^tudy, is tho manner in which students form their

developing knowledge into schemata. These schemata usually seem to be con-

cerned with concepts such as loops. A version of instruction in FLOW

oriented towards the programming concepts would thus also connect in more

directly with our studies oi schemata and how they an used in learning.

MtaMMM^Mte

-23-

REFERENCES

Barr, A., Beard, M. , and Atkinson, R.C. A rationale and dt-sc r ipt ion

of the BASIC instructional program. (Technical Report No. 228)

Stanford, California: Institute for Mathematical Studies in the

Social Sciences, Stanford University, 1974.

Brown, S. , Burton, R.R., and Bell, A.C. Sophie: A sophisticated in-

structional environment for teaching -lectronic tr.uibleshoutinn.

(BBN Report No. 2790) Boston: Bolt Beranek and Newman, Inc.,

1974.

Carbonell, J.R. Al in CA1: An aiti1icial-intelligence approach LO

computer-a- sisted instruction. IEEE Transactions on Man-Machine

Systems, 197U. MKS-11. 190-202.

Goldberg, A. Computer-assisted instruction: Tin- applicalion ot theorem-

proving to adaptive response analy-is. (Technical Report No, 203)

Stanford, California: Institute lor Mathematical Studies in the

Social Sciences, Stanford University, 1973.

Koffman, E.B., Blount, S.E., Golkey Gilkey, T., Perry, J., Wei, M. An

intelligent CAI monitor and generatavc tutor. (Interim Report)

Storrs, Connecticut: Computer Science Program, 1973.

Norman, D.A., Centner, D.R., and Stevens, A.L. Learning and Teaching.

(Technical Report) l.a Jolla, California: Center for Human Informa-

tion Processing, University of California, 1974.

Norman, D.A. Gentner, U.R., Stevens, A. Teaching and learning as a com-

munication process. In ü. Klahr (Ed.), Cognition and Instruction:

Proceedings of the Fifth Annual Carnegie Symposium. In press,

Raskin, J. Flow, a language for newcomers to computers. Computers and the

Humanities. In press.

HELP

NEW

RUN

WALK

LIST

TABLE 1

FLOW INSTRUCTIONS

Requests help from tutor or autotutor.

Erases current program.

Runs current program.

Steps through the current program. One line oi the pro-
gram is executed each time the space har is pressed.
The program statements arc displayed as they are execut-
ed on the upper part of the screen, variables are di;—
played in the middle of the screen, and any resulting
output is displayed in the lower part of tl.e screen.
This command is a very useful debugging aiu.

Displays the current program.

Program Statements

PRINT 'character string'

PRINT RETURN

PRINT IT

JUMP TO nnn

TEXT IS 'string'

GET IT

IF IT IS 'x' JUMP TO nnn

Displays the character string.

Does a carriage return and line feed.

Displays the variable IT.

Statement number nnn is executed next. (If there is no
statement with line number nnn, the statement with the
next highest line number is executed. If all the line
numbers are lower than nnn, the program stops.)

Defines a character string to be used as data.

Sets the variable IT to successive characters in the TEXT
statement.

If the variable IT is the same as the character in quotes,
the JUMP is performed.

COMMENT character string No effect.

MAKE COUNTER ZERO

ADD ONE TO COUNTER

DECREASE COUNTER BY ONE

PRINT COUNTER

IF COUNTER IS j-ddud JUMP TO nnn

Displays the variable COUNTER,

? Xt

}
TABLE 1 (cont'd.)

Notes; System Commands are executed immediately on entry. Program statements are
used to write stored programs.

The COMMENT statement and the ones below it were not used in the studies des-
cribed in this report.

The programmer types in only the underlined characters, the computer supplies
the rest, (See the section on Typing Amplification.)

The programmer must type in the first two letters of the NEW command. This
is designed to help prevent accidental erasure of programs.

UM lower CBM letters in the st ;itiineMt s correspond to slots to be filled m
by the programmer. In particular, the phrases "character String*1 or "string"
can be replaced by any string of characters and the phrases "dddd" and "nun"
are meant to be replaced by numbers of" up to I and S digits respectively.

•u-

NEW

VMM 2

PLOU INSTRUCTIONS

Old Instruction

HELP

NEW

RUN

WALK

LIST

COMMENT string

PRINT 'string'

PRINT IT

PRINT COUNTER

PRINT RETURN

JUMP TO nnn

TEXT IS 'strins'

GET IT

j^F IT IS 'x' JUMP TO nnn

STOP

MAKE COUNTER ZERO

ADD ONE TO COUNTER

DECREASE COUNTER BY ONE

IF COUNTER IS tdddd JUMP TO nnn

New Instruction

HELP

ERASE

MM

WALK

LIST

COMMENT string

DISPLAY "string"

DISPLAY VARIABLE

DISPLAY COUNTER

BEGIN ON NEXT LINE

JUMP TO nnn

TEXT IS "strinK"

GET VARIABLE

IF VARIABLE IS "x" JUMP TO nnn

^UIT

MAKE COUNTER ZERO

ADD ONE TO COUNTER

SUBTRACT ONE FROM COUNTER

IF COUNTER IS -ddd JUMP TO nnn

a?

Student*! Booth

Microphone

B6700

l^omputcr

Hxpcrimentor's Booth

'

Figure l

The FLOW I.xpe-imental Facility

./

PROBLEM \i

Station 12

You arc now |oint to l^11"11 hot* to makf th« c omputi r Ivpt' I vertical
String ol BASKETS, with each word on a st'paratf liM. llial is, tin
ii'sult should look like this:

liASKET
BASKET
BASKET

BASKET

Soc t ion 1 3

You should find this an oasy program to writ*. Bttl you mi tl on«
nor* instruction: you weed to know how to Mkc tiic COMputer print on
a new lino. Wo do that by printing •' earring« roturn:

PR INI' RETl'RN

(Note that no quoto marks aro usnd for this Lommand.)

Horo's | prograa usin^ PRINT KETURN:

010 PRINT 'liEI.I.O'
013 PRINT RETURN
020 PRINT 'OOODgYB'

Type NE. I'hon typo in thil progran and run it.

Tho oomputor will print:

RUN
HEI.U;
GOODBYE
HALT
030

Section 14

Now try Problem J: Modify your proyrnm trom Problem 2 (see Sec. 9) to
make the computer print .:n end loss vertical string of liASKETs, one on
each line, using the proceHuros given on Page 3 for modifying your pro-

gram.

After you've made your modifications, list your new program to see what
it looks like. Then run the program to be sure it works.

Figure 2

A Portion of the Printed Instructions

■

