AD/A-000 102

A COMPUTER-BASED SYSTEM FOR STUDIES
IN LEARNING

Donald R. Gentner, et al

California University

Prepared for:
Office of Naval Research

Advanced Research Projects Agency

September 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

rp/p-060 /02

SECURITY CLASSIFICATION OF THIS PAGE rWhen ate Entered)
READ INSTRUCTIONS

‘ REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

\
! REPORT NUMBER T2 GOVT ACCESSION NO| 2 RECIPIENT'S CATALOG NUMBER

| |

4 TITLE rand Subtitie

s TYPE OF REPORT & PERIOD COVERED

A Computer-Based System for Studies in Technicial Report
6. PERFCRMING ORG. REPORT NUMBER

Learning

7. AUTHOR/s, 8. CONTRACT OR GRANT NUMBER(e)

‘ l Donald R. Gentner, Mark R. Wallen, and N00014-69-A-0200-6045
Patricia L. Miller

9 PERFDRMING ORGANIZATION NAME AND ADDRESS 10, PROGRAM ELEMENT PROJECT, TASK
B AREA & WORK UNIT NUMBERS
Prof. Donald A. Norman |
Center for Human Information Processing '
NR 154-360

University of California, San Diego
la Jolla, California 2047
11 CONTROLLING OFFICE NAME AND ADDRESS

Personnel and Training Research Programs NOOU14 September, 1974
Office of Naval Research 13. NUMBER OF PAGES

Arlington, Virginia 22217
4 MONITORING AGENCY NAME 8 ADDRESS(i! different from Controfling Office) 15 SECURITY CLASS. (of thie report)

12. REPORT DATE

Unclassified

15a ODECLASSIFICATION DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebstrect ontered fn Block 20, {{ dilferent from Report)

, DDC
(PR AP

18. SUPPLEMENTARY NOTES '
| o Y it N\ 8 1974

(i

| e

LR ’ LR B and
e s L’ Y

PR e R F 5 L3

l
. 19. KEY WORDS rContinue on reveree elde if neceseary and identify by bfock number) j o

Education, learning, computer-aided instruction, computer-based instruction,
computer languages, automated tutor, model of the student, teaching.

20. ABSTRACT (Continue on reveree oide I neceeeary and (dentily by dfock number)
This report describes a computer-based system, called the FLOW system,

used in experimental studies of human learning. The student learns a simple
computer language from printed instructions and can run his programs inter-
actively on the FLOW system. An automated tutor simulates a human tutor who
watches over the student and gives help when the student has difficulties.
The system also records detailed protocols of the interactions among the
student, the computer, the automated tutor, and the human tutor for later

analysis.

DD ,73%%; 1473 EOITION OF 1 NOV 6815 OBSOLETE UNCLASS1FIED
S/N 0102-014- 6601
. SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)

A CONMPUTER-BASED SYSTEM FOR STUDIES IN LEARNING

DONALD R. GENTNER
MARK R. WALLEN

PATRICIA L. MILLER

Contract Number: NOOO14-09-A-0200-06045

ARPA Order Number: 2284

Task Authority bdentification Number: NR 154-3060
Program Code Number: 3D20

Effective Date of Contract: 1 February, 1973
Contract Lxpiration Date: 31 January, 1975

Amount of Contract: $221,012

5 B

\ M TN Y
. . . . RRiNatEsY 'Zi-iﬂ!ﬂ.
Organization: University of California, San Diego {1

b SR 8 1974

Principal Investigator: Donald A. Norman i

RN
[Phone (714) 152-2947) Ludu_,._[;m

Scientific Officer: Dr. Marshall I'arr, Director
Personnel and Training Research Programs
Office of Naval Research

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research

Projects Agency, the Office of Naval Research, or the U.S. Government.

This research was supported by the Advanced Rese
Office of Naval Research of the Department of De
ONR under Contract No. NDOO14-69-A-0200-6045,

arch Projects Agency and the
fense and was monitored by

UTION STATEMENT A

Approved for public release;
Distribution UnHmited

A COMPUTER-BASLD SYSTLM FOR STUDIES IN LEARNING

by Donald R. Gentner, Mark R. Wallen, and Patricia L. Miller
University of California, San Dicgo

La Jolla, California 92037

INTRODUCT FON

Our studies of learning have several major foci. First, how is
information stored in the human memory system: how is new information in-
tegrated with the existing knowledge? Second, what are the mechanisms
used by the learner to select information from the learning envir)nment
and integrate it with his existing knowledge structure? Third, how does
the tutor model the knowledge state of the student and use that model to
guide the tutcrial dialog?

We have recently developed the FI1L.OW system, a multipurpose facility
for studies of the learning process. Some of the work with the FLOW system
has been described previously (Norman, Gentner & Stevens, 1974; Norman,
Gentner & Stevens, in press). This report will be concerned pri&arily
with the development of an automated tutor which constructs a simple model
of the student and uses that model to assist the student when needed.

Overview of the svstem

FLOW is a simple, interactive computer language whose commands are
designed for string manipulation. Although FLOV is not intended for prac-
tical computer applications, it shares many important properties with com-
mon computer languages and is particularly suitable for our studies in
learning. The section on the FLOW language describes the language in detail.

The FLOW system is based around a minicomputer. A cathoce ray tube
(CRT) display terminal for the student is attached to the minicomputer. The
experimenter, who is normally in another room, can monitor the student's
terminal on a television display. The minicomputer is connected to a large

computer in which the automated tutor program resides. The experimenter

80)e
has a terminal connected to the large computer which he can use to inter-
act with the automated tutor program and, through that program, with the
student. There are also facitities for recording complete protocols of
the experimental session. ‘The equipment used in the FLOW system is des-
cribed in detail in the section on Hardware.

Over the past few yrars, a number of different approaches have
been taken towards the development of computer-based instructional systems,
litese cystems can be generally classed as one of three types. The first

and most common type is based on the sequence: present text, test, and branch.

The student is given a section of text material and then tested on that
material,usually with a multiple choice test. Depending on the result of
the test, the student can either be givcn the next text in sequence, or be
sent back to a previous section, or be side-tracked to a remedial section.
The second type of system is often called a generative system., The SCHOLAR
system originally developed by Carbonell (1970) is a fine example of a

generative system. Here the information (texts, questions and answers) are

not explicitly stored, but instead there is a database in which information

about the subject matter to be taught is stored as a semantic network. Gen-

erative routines in SCHOLAR can access the database to prepare text or ques-

tions for the student or to answer questions from the student. A third type

of computer-based instructional system is the simulation system. In this

type the computer is nrogrammed to simulate some domain of interest, such

as a regulated power supply (Brown, Burton & Bell, 1974) The student has

a number of operations he can perform on the simulation and learns by se2-

ing the results of these operations.

” - . _ - — - - - . _— J
VIR L s B T — M— -

=fle
Actually, Brown's system can also earry on simple diatogs with the
student. Our FLOW system takes a similar approach, giving the student an
interactive domain to experiment with (an implementation of the FLOW
tanguage) aud tutcrial assistance. (For examples of related svstems see
Barr, Beard & Atkinson, 1974; Koffman, Blount, Gilkey, Perry & Wei, 1973,

Goldberg, 1973.) The automated tutor in the FLOW system, however, differs

censiderably from previous systems. In some preliminary experimente, the
student learned FLOW primarily from vritten instructions, entered his pro-

grams into the computer and modified his programs based on the results, I

Meanwhile a human tutor was watching over the shoulder of the student

and would answer questions or interrupt if the student appeared to be
having difficutty. The automated tutor is meant to duplicate the func-
tion of that human tutor. The student still learns primarily from written
instructjons, but the autotutor tries to follow his progress and keep
track of where he is in the instructions by monitoring what he types into
the computer. The student need not follow the written instruccions exact-
ly, but may move back or skip ahead. The autotutor will try to follow and

be ready to give appropriate help if the student gets in trouble.

=l
THE FLOW 1LANGUAGE

Origins

The FLOW language was originally developed by Professor Jeffrey
Raskin of the Visual Arts Department at UCSD., He wanted to teach computer
programming to humanities students who often either had little experience
with, or actively disliked mathematics and computers, FLOW was conceived
as an introductory computer language that would be non-threatening and
easy to understand while still possessing the basic functions and construc-
tions of typical computer languages. After first learning FLCW, the stu-

dent would then go on to a standard language such as BASIC (Raskin, in press).

FLOW

Table 1 shows the command: and statements in the implenentation of
FLOW used in these experiments. (After the experiments described in this
report, we renamed mnst of the FILOW commands and statements tc make them
more mnemonic. See the section on Subsequent Developments.)

In our implementation of FLOW, the student's terminal is connected
tc the minicomputer via a full-duplex link, This means that when the stu-
dent presses a key on his terminal, the character is first sent to the mini-
computer, examined by the computer and then echoed back for display on the
terminal, This arrangement allows two interesting features. The first
feature is called "typing amplification" by Raskin. As soon as the mini-
computer can unambiguously recognize a command or statement from the char-

acters input by the student it supplies the remaining letters of that

command., Since most FLOW c anmands begin with different letters, it is

E

] [[[| gy (= 3] e - S A PN onam —— — yransn ——

-

258

usually necessary to type in only the first letter of a statement. With

che commands and :tatements listed in Table 1, only the underlined letters
need to be typed in, the computer will supply the rest. Second, since the
comptiter can examine each character before displaying it on the terminal,
syntactically incorrect characters can be rejected, Together these two lea-
tures virtually eliminate typing and syntactic errors, two major sources of
frustration for begirning programmers, To illustrate how they work, suppose

a student is entering his program, After completing a line, the computer

does a carriage return and line feed, provides a new line number and then waits
for a student input. At this point the minicomputer will accent anv letter
which begins a FLOW command or statement or a number (indicating that the <tu-
dent wants to change the line number). If the student presses the "P" key

the word "PRINT" is aisplayed on the terminal and the minicomputer waits {or

a legal completion of a PRINT statement. (The legal characters at this point
are 1, ', and R). TIf the student then presses "J", the minicomputer will
momentarily display a "J" with an audible tone then backspace, erase the '"J'"
and wait for a legal character. An "I" will be accepted as a legal character;
the minicomputer displays "IT" does a carriage return, linefeed, displays a new
line number and waits for the next statement. It is not a recommended pro-
gramming practice, but as a graphic demonstration of these two features, it

is possible to bang away at the keyboard, and always produce syntactically

correct, executable FLOW programs, although, of course, there is no guarantee

of what they will do.

4

Advantayes of FLOW for Learning Studies

FLOW has a number of advantages as a subject matter foy use in stud-
ies of learning. Along with other computer languages, FLOW y%vo]ves both
conceptual and procedurat knowledge. It is problem orientedﬁ There are a
large varicty of problems that can be posed to exercise the student's
developing knowledge. The language itself and the tasks form a small, concise,
and well defined body of knowledge. The statement of a problem and whet con-
stitutes an acceptable solution are normally fairly clear, although there may
be some debate about the quality of a particular solution. The students in
most of our studies were university undergraduates, and it is relatively easy
to find subjects from that group with little or no experience with computer

languages.,

FLOW also has some unique advantages as a subject matter, With typing

amplification and the rejection of syntactically incorrect characters, two

ma jor sources of uninteresting errors are eliminated. The errors we are left
with are concerned with the meaning of individual statements and how groups
of statements interact. Since FLOW is quite a simple language, a lot of in-
teresting learning takes place within the first hour. The subject matter

is complex enough, however, to require up to 10 hours to master, This forms
a convenient time span for experimental studies. Subjects usually enjoy
learning FLOW with its interactive nature and low level of frustration,

and are highly motivated to learn.

The last advantage ot FLOW derives from the fact that it is primarily

a computer mediated task. This leads naturally to the possibility for

= |

.

computer interaction during the instructional sequence and to 2ase of collec-
tion of experimental data. Also since the task is primarily verbal, it is
easy to collect detailed protocols of the tutorial interaction and attempts

at problem solving for later analysis,

= Bk
HARDWARE

Although this report is concerned mainly with the automated tutor,

the FLOW system is designed for a number of different types of experimental
studies. Figure 1 is a schematic diagram of our equipment. 7The equipment
(except for the B6700) is located in two adjoining experimental booths.

The system is based around a Microdata 810 minicomputer with 24K
bytes of memory (the applications described here require only 8K bhytes).
The student works at a Scientific Measuring Systems 1440 CRT terminal con-
nected to the minicomputer via a full-duplex 1200 baud (120 characters
per second) link. A video output from the CRT terminal is connected

to a video monitOor in the experimenter's booth duplicating the display

the student's terminal which contains all of the information to be dis-
played on the terminal including vertical and horizontal spacaing also
goes to a recording unit. This consists of a modem converting the dig-
ital signal produced by the minicomputer into a sequence of tones which
are then recorded on an audio tape recorder. The tape recorder can
record up to four tracks of information such as verbal comments from
the student and tutor in addition to the terminal display. Later when
the tape recording is played back through the modem, the tones are con-
verted back into digital signals which faithfully duplicate the experi-
mental session on the CRT terminal.

The automated tutor part of our system is contained in programs

residing on the UCSD's Burroughs 6700 computer, which is connected to

our minicomputer via two half-duplex 4800 baud lines. (The two half-

'n on the student's terminal. The signal going from the minicomputer to

q.-

duplex lines can be replaced with a single full-duplex connection when
the system will support full duplex.) The B6700 computer is also con-
nected to aTektronix 4010 di-play terminal in the experimenter's booth
which is used to program the B6700 and to communicate between experimen-
ter and the automated tutor during tutorial sessions, In additicn the
B6700 prepares a protocol of the tutorial session for later analysis,
The experimenter's booth also contains a keyboard and Teletype terminal
which are used to communicate with the minicomputer.

The minicomputer controls most of the flow of information. It
monitors the siudent's keyboard, interprets, and runs his programs,
and writes on the student's display screen. Input from the student is
summarized and sent to the automated tutor on the B6700 and all mes-
sages from the autotutor are relayed through the minicomputer. The

ma jor information link outside the minicomputer is that the experimenter

can interact directly with the autotutor,

$ie-
THE AUTOMATED TUTOR

The Printed Instructions

We decided to base the teaching of FLOW on a set of printed ir-
structions primarily because of ease of preparation, flexibility, and
convenience of use for the student. Few new educational technologies
can rival the printed page which is self-paced, portable, easily search-

ed and inexpensive. Figure 2 shows a typical portion of the instructions.

The instructions are divided into seven units, each of which in-
volves three types of tasks: reading, entering practice programs, and
solving problems. These three types of tasks can be seen in Figure 2.
The first part of the figure is explanatory text. Then there is a short
program using the new statement wirich the student can enter and run.
Finally the student is given a programming problem to solve. All the
units have this structure; there are one or more sections of text and
practice programs, and then the student is given a problem to solve at
the end of the unit. We ask the ctudent to not go on to the next sec-
tion until he is told to. In fact the autotutor will send him on as
soon as he solves the problem. The student can go back in the instruc-
tions whenever he likes but we thought he should not move on to the
next unit until he had mastered the current unit. We were also «fraid
the autotutor might have difficulty if it thought the student was work-
ing on Problem 4 when he was actually working on Problem 5.

New commands and statements are introduced in each section. With
typing amplification naive students often accidentally enter statements

which they know nothing about, leading to general confusion. To avoid

-11-
this problem, the minicomputer initially does not respond to any key
fram the student's keyboard. As the student moves through the in-
structions, keys are activated at the time that the corresponding state-
ments are introduced. While the student is working on Unit 1, for
instance, only the H,P,' R,L,N and E keys are activated (corresponding
to HELP, PRINT 'string', RUN, LIST and §EW). When the student success-
fully completes the problem at the end of unit 1, the autotutor gives
him a congratulatory message, tells him to go on to Unit 2, and ac-

tivates the keys needed ror that unit.

Following the Student

During the development of the autotutor, all its functions were
originally carried out by a human tutor. Parts of the tutorial func-

tion were then taken over by the computer until it was completely auto-

mated, The human tutor typically forms a rather simple model of the stu-
dent containing the following information:

1) where the student is in the instructions, and 2) his current program,

The human tutor refers to the instructions and general knowledge to
generate: 3) the student's next expected input, and 4) the maximum time

it should take him to enter the input. If the student entered the expect-
ed input, the human tutor would advance the student model to the next
point in the instructions. If the student entered an unexpected input,
the tutor would use the instructions and general world knowledge to try
and deduce why the student had done that, and where he now was in the

instructions. Rather than have the autotutor generate maximum pause

Ghay ek o o g o e i e . W Ty G e e v @ e

-

—_— —— [=™ [s [- -_— —— _—_——) e [) o

— Fmanby 7 -

B e

i -12-
lengths and the meaning of unexpected inputs from the instructions
as a human tutor does, we deciled that that would be too difficult a
task and entered the maximum pause length and a list of inputs explic-
itly for each state.

One of the major tasks of the autotutor is to follow the stu-
dent. The student normally proceeds sequentially through the instruc-
tions. But from time to time he may make errors and decide to repeat
things or even go back to an earlier part of the instructions. A con-
fident student may skip over some of the practice programs and start
immediately on the problem. Through all this, the autotutor monitors
what the student is typing into his terminal and tries to keep track
of where he is in the instructions.

The instructional sequence is divided into 136 states. During
the practice parts of the instructions, a state usually corresponds to a
FLOW statement or command, although in the first unit, states may cor-
respond to individual characters and partial commands. During the prob-
lem part of the instructions, each problem corresponds to essentially
a single state. Each state has associated with it a list of information
which the autot:tor uses to follow the student. These states and their
associated 1i its are all that the autotutor knows about the instruc-
tions. Because the autotutor employs two distinct strategies for the

practice states and the problem states, we will discuss each of these

separately.

Practice

The autotutor gives three types of messages during the practice
part of a unit: 1) standard messages in response to a request for help,

or if the student pauses too long, based on the next expected input

P — . AN

ERERNY R Pt Ty vap—

———) o— - - -y -_—- - [— - [-— ow e -— (] _— [

=3

(Try typing a IS 2) messages in response to a serious error,

(usually a NEW out of sequence) which tell what should have been typed
and send the student back to a previous section to try again (You should
have typed i please go back to Section VE 3) special messages
peculiar to a given state or class of states which clarify usage of cer-
tain kevs or commands or explain procedures (e.g., If during the first

unit the student types the letter "C'" when he shculd have typed the num-

ber "0", he gets the message, "Zero (0) is located to the right of 9
Don't use the letter O for zero.")

To illustrate how the autotutor works when the student is in the
practice part cof the instructions, let's look in detail at one section
of the instructions in Figure 2. In this unit we introduce the PRINT
RETURN statement. In the practice part we give a brief explaration of
the statement and then a practice program uzing the new statement which
the student is expected to enter and run.

When the student successfully completes the previous problem
(Problem 2) the autotutor's model of the student enters State 276. (The
states are not all numbered consecutively,) When the student then enters
a NEW command, the minicomputer crases the screen and gives the student
a line number (010) for his new program. Meanwhile the autotutor advances
the student model to State 277. We will examine State 277 in detail.

Associated with State 277 are four possible student inputs and a
maximum pause length. The autotutor thinks that the student is about
to type in the practice program and waits for a student input. The five

inputs which it is fooking for in particular are:

<=

'"HELLO' This is what the autotutor expected and it simply
advances the student model to the next state
(State 278).

PRINT 'BASKET' This is the first statement for the solution of
Problem 2, so the autotutor assumes that the stu-
dent has skipped the practice section and advances
the student model to the beginning of Froblem 2
(State 282).

PRINT 'anything else' The autotutor assumes that it just has a creative
student who didn't like the word HELLO and advanc-
es him to State 278,

The autotutor assumes that the student had made
some errors and decided to begin again. The stu-
dent model is kept in State 277, and to keep some
control over the chaos, the student is asked to
start at Section 13.

HELP The autotutor sends the message: TRY TYPING A
PRINT 'HELLO'. The student model remains in
State 277.

Any other input is assumed to be an error which the student will notice and

correct. The student model is left in State 277.

The maximum pause length for State 277 is 30 seconds. Failure to press any

key for 30 seconds is equivalent to typing HELP. The student gets the mes-
sage "TRY TYPING A PRINT 'HELLO'" and the student model remains in State 277.
(The maximum pause lengths, which vary from 30 seconds to S5 minutes are en-

tered explicitly by the experimenter.)

Problems

When the student fin'shes the practice part of the instructions, the
student model is advanced to the state corresponding to the next problem.
A problem essentially corresponds to a single state; running a correct solu-
tion to the problem advances the student to the next state. Associated

with each problem state, the autotutor has a program which is a correct

-15-

solution ot the probtem., If the program requires input (in FLOW, that
would be in the form of a TEXT statement), the gutotutor will also have
several test inputs, As the student types in his program, the mianicomput-

er sends the statements to the autotutor.

the autotutor runs the student's program along with the coriect program,

)4

i If the student runs his program, asks for help or pauses t,0 long,
|

t substituting in its test inputs if necessary. 1f the rwo programs gen-

erate essentially the same output, the student's program is judged correct,
L
l and the student is given a congratulatory message and sent on to the next
!
' unit. The autotutor is somewhat lenient about certain discrepancies in
the student's output such as extra spaces. Within the rather smal! scope
of FLOW and the programming problems we use, our procedure of comparing

the outputs of a correct program and the student's program works quite well,

by line comparison ot the programs and informs the student of the first

|
i
|
I
If the outputs are not essentially the same, the autotutor does a 1|ine
dis~repancy it finds between the student's program and the correct program.

The program is viewed topclogically as groups of non-control state-

ments bounded by control statements, (Control statements alter the linear

flow of command of execution; they are STOP, JUMP TO nnn, and IF IT IS '¢°

JUMP TO nnn.,) The non-control parts are cxamined statement by statement

as previously described, When a control statement is encountered,

the branch is taken to the new portion of the program and this is examin-

ed. This is a recursive process, and if this new portion passes inspec-

tion, then the statement following the initial control stat ment is examined.

Thus the whole executable program will be canvassed fo-

errors,

—— a—— - A L - - oy - - o)

oy

She: eniy: emer MED W e e o= G e

— A—— iy —— - Gham -

=)=

Example of a Tutorial Interaction

To illustrate the action o: the autotutor, we will present a por-
tion of a tutorial irteraction along with the autotutor's interpretation
of the situation in terms of its modification of the student model. Al-
though this dialog i< taken from actual tutorials, we have blcnded to-
sether several tutorials with different students to be able to show a
variety of student errors and how the autotutor handles them. As we

start this excerpt, the student has just correctly solved Problem 2

Il

-17-

‘Juowalels JWIC 43l
> s1T § uwor3oag ‘diay 101 Suiyse
03 jJuajearnba st Juo| ooy Juisnegy

"a3e3s wapgciad v Jurtaajus a133je
L1o3erpowut diay 10} syse juapnis
Ayl 31 SJuUC uoAald F1 aBessaw sTYL

Z wa[qoad U0 s3i1eIs JuapniIs Ayl

‘dursouue 31q B S[qegqoad
sem 103n3oine oyl woil adessauw

SITUL ~19a0 Jieds 0] paploap pur
w00, 243 931 3,uplIp Juspnls ayJg
"apqeadasoe s1 00, UL
weaaad ppo ayl saacway

Ty UaWwo)

(G $EE EEM A WA .Mk W 2 EER et =g

6 NOII1DJdS aviydy 3svdld

*23s5 (9
ueyl 310w 10j

sasned juopnig

,LANSYY, INI¥d 010

“ANIT ¥3d ANO “S13ANSVY
JO ANIT TVIII¥IA SSATANIT
NV INTHd ¥3LAdW0OD JHL 3NV

£l NOLLD3S 01 NOvHd 09
ASVATd "> NHALIY INIHd-«
J4d Al dAVH T'LIOHS J0A

LOTTAH, INTEd ¥V ONIHAL (4L

d13H
Max
NN¥
, 4190009, INI¥d
N¥A1AY INI¥d

,ol1dH, ININd

M3IN

+QOTT3H, ININd
Jd13H

M3AN

“ " £ol
¢ wajqoad o3

uoryniog £82

indul fLue 282

MAN 182

NNy 08¢

3140000, INT¥d 6LC

N¥A13¥ INIYd BLC

JOTT3IH, LINTYd LLe

NH13Y INIdd BLC

+OTTdH, INTY¥d LLe

+OTTdH, LINIY¥d Lee

MAN 9.¢
ndup 33e3g

103INJOINY WOl SIFRSSAN

jnduy Juapnig

po3oodxy IXON [9pOW 3uapnig

103njoiny

= | B=

‘paydlew

AOYY BWIY SIYL N1y A19a0 uo wead
-0ad 3201105 ayl pue weasoad s, Juopnis
ayy 3o sandine saxedwos aoinjoine osyy

TiUBUWaIERIS 103410) 533011 3Isqns JuaIpnig

‘SJudWAILIS JUIIIITIPp 03 pI]
sjuswaledls JiLll 9yl ‘weadoad 1591100
24yl 01 aeliuls sem weadoad s,juapnys

24l y3noyije eyl punvjl 10INJoIne aYJ

sdon

“pood os ‘ae] og

*ase(d Fuoum ayl utr s, 3]

‘weadoad
31991100 2yl yItm weadoad s, Juapnils

9yl saledwod mou 103InjoIne ayl

cdoop a3jtutjul uy

53 UOURIO)

.

T6 RIT40dd
MON AVIN 10X

» LANSYH, INIdd<-
>>020 01 diaf-

(I'T.IOHS

"3DOVId ONOYM FHI NI ST 0€0 1V
INANILVIS »>:>NY11AY INIHd-

- NUALEAY INTHd-

8 A0vd O1L NO 09
i IOM INTTTIDXH

CINIIALVLS
vV Ol Jdr
31048

CININHIVLS
VYV d3iaN 20X

M08

NOE -
010 OL dWaT 0€0 ., -
d13H . &
NDE -
020 OL dWAT 0£0 ., 5
N¥13d ININd 020 o, .
JIANSVE, ii:¥d OlO0 o, »
MaN .
d1aH . -
NI &
NYNII¥ ININd 0€0 ., -
d1aH ., -
N "
= F ¢ wajqoad 03
10 OL dWif 020 uorinjog
Induy

€8¢

£8¢

£8¢

£8¢

£8¢C

£8¢

£8¢

£8¢

£8¢

£8¢

£8¢

t8¢

£8¢

33elg

103Nn3J03ny woay

SIdBRS SO

N G WE O MER W IR W mm mes aEe

indu] juapnig
avo3anjoany

iy S amggewr L]

P9129dxg IXSN [3IpOW Juapnig

W N ad

PR p——

Bbe e o o o bon e e i

~19=

Summary of the Automated Tutor

As the student works from written instructions, the autotutor mon-
itors the student's keyboard inputs and tries to follow the stu-
dent's progress through a series of states corresponding to the writren |
instructions. The states corresponding to the practice parts of the in-
structions have an expected pause length and a list of possible irputs
associated with them, Corresponding to each possible input is a destina- |
tion state and possibly a message. In a given state, if the student
types in one of the inputs on the list, the autotutor prints cut the
message if any and advances the model of the student to the destination

state. 1f the student types in an input not on the list, the student

model rcmains in the same state. Except for these messages, which are

rare, the only time that the student is aware of the presence of the
autotutor is when he asks for help or pauses for a long time and exceeds
the expected pause length. Then the autotutor prompts the student with
the next expected input,

Somewhat surprisingly it has been our experience that the autotutor

usually makes fewer errors in following the student through the practice

human tutors showed that the human tutors often were quite mistaken in

L) @ S iip 4

|
]
parts than a human tutor, Analysis of protocols from early sessions with]

their judgments of where the student was in the instructions, The main
(problem seemed to be that crucial key presses were missed due to lack
of attention. Of course, eternal vigilance is one of the supreme virtues

of a computer, and this seems to give it tle edge in this task,

“t—

— -y, aBN e o, Sme b an el I &b M a2 a2 e o .

-20-

The operation of the autotutor while the student is wor<ing on da
problem is much ditferent. Here the autotutor only has an example of a
correct solution to the programming prob,em. With the exception of two
messages which are sometimes given early in the problem, atl of the mes-
sages from the autotutor are generated algorithmically based o1 a compar-
ison of the student's program and the correct program, In addition to
assisting the student with an inc 'rrect program, the autotutor also runs
the student's program whenever the student runs it, and if th: program

seems correct, the autotutor congratulates the student and asks him to

start on the next urit.

T —

SUBSEQUENT DEVELOPMENTS

Command Names

Students tearning FLOW often found some of the names of FLOW
statements and commands obscure or confusing. In an effort to clarify
their functions, we have renamed many of the fnstructions, Table 2
lists the old instructions and the corresponding new instruction,

We have also altered the display generated by the WALK c¢ommand
to make it clearer what is happening: cight lines of the student's pro-
gram are displayed on the upper portion of the screen along with a

pointer indicating the statement currently being executed.

———

Conceptual FLOW

One ot our original interests was to teach students the FLOW

commands and statements and study the spontanecous development of progran-

m-ng concepts. Thus the written instructions and automated tutor des-
cribed in this report are oriented around cthe statements in the FLOW
language. Concepts such as control transfer and loops are not explicitly
treated. Some tutorials we have conducted indicate that instruction bas-
ed on programming concepts rather than the specific statements would be
more fruitful, especially for students with no previous experience with
omputers or programming. To produce a FLOW instructional system similar
to the one discussed here but with a conceptual emphasis would involve
rewriting the instructions and modifying the autotutor to analyze student

programs in terms of the relevant concepts. An interest of ours, in

—) 3 —— ald- - [=2 anil. - - N - g | -l

B L __ B

|
{
[
{
{
i
i
f
|

=99s

another part of the FLOW study, is the manner in which students form their
developing knowledge into schemata. These schemata usually seem to be con-
cerned with concepts such as loops. A version of instruction in FLOW

oriented towards the programming concepts would thus also connect in more

directly with our studies of schemata and bow they arc used in learning.

a@Pn

REFERENCES

Barr, A., Beard, M., and Atkinson, R.C. A rationale and description

of the BASIC instructional program. (Technical Report No. 228)

Stanford, California: Institute for Mathematical Studies in the
Social Sciences, Stanford University, 1974.

Brown, S. , Burton, R.R., and Bell, A.G. Sophie: A sophisticated in-

structional environment for teaching e¢lectronic troubleshooting,

| (BBN Report No. 2790) Boston: Bolt Beranek and Newman, Inc.,
1974, i
Carbonell, J.R. AI in CAI: An artificial-intelligence approach vro

computer-a:sisted instruction. IEEE Transactions on Man-Machine

e —

gystems, 1970, MMS-11, 190-202.

(Goldberg, A. Computer-assisted jnstructjon: The application of theorem- i
" proving to adaptive response analy<is. (Technical Report No. 203)

Stanford, California: Institute for Mathematical Studies in the

q Social Sciences, Stanford University, 1973,
]
Kof fman, E.B., Blount, S.E., Golkey Gilkey, T., Perry, J., Wei, M, An

\ intelligent CAI monitor and generatave tutor. (Interim Report)

Storrs, Connecticut: Computer Science Program, 1973.

Norman, D.A,, Centner, D,R., and Stevens, A.L. Learning and Teaching,

! (Technical Report) La Jolla, California: Center for Human Informa-
tion Processing, University of California, 1974.
% Norman, D.A. Gentner, D.R., Stevens, A. Teaching and learning as a com-

munication process. In D. Klahr (Ed.), Cognition and Instruction:

Proceedings of the Fifth Annual Carnegie Symposium. In press.

' Raskin, J. Flow, a language for newcomers to computers, Computers and the

Humanities. In press,

el ‘———gnl)

Commands

HELP
NEW
RUN

WALK

LIST

Program Statements

PRINT 'character string'

PRINT RETURN
PRINT IT

JUMP TO nnn

TEXT IS 'string'

GET IT

IF IT IS 'x' JUMP TO nnn

COMMENT character string

MAKE COUNTER ZERO

ADD ONE TO COUNTER
DECREASE COUNTER BY ONE

PRINT COUNTER

24
TABLE 1

FLOW INSTRUCTIONS

Requests help from tutor or autotutor.

Erases current program.

Runs current program.

Steps through the current program, One line of the pro-
gram is executed each time the space bar is pressed,

The program statements arc displayed as they are execut-
ed on the upper part of the screen, variables are di:-
played in the middle of the screen, and any resulting
output i¢ displayed in the lower part of the screen.

This command is a very useful debugging aia,.

Displays the current program.

Displays the character string.

Does a carriage return and line feed.

Displays the variable IT.

Statement number nnn is executed next. (If there is no
statement with line number nnn, the statement with the
next highest line number is executed, If all the line
numbers are lower than nnn, the program stops.)

Defines a character string to be used as data.

Sets the variable IT to successive characters in the TEXT
statement,

If the variable IT is the same as the character in quotes,
the JUMP is performed,

No effect.

Displays the variable COUNTER.

IF COUNTER IS #ddgd JUMP TO nnn

———

" il

beg -] T b

—vaR

Notes:

TABLE 1 (cont'd.)

System Commands are executed immediately on entry. Program statements are
used to write stored programs,

The COMMENT scatement and the ones below it were not used in the studies des-
cribed in this report,

The programmer types in only the underlined characters, the computer supplies
the rest. (See the section on Typing Amplification.)

The programmer must type in the first two letters of the NEW command. This
is designed to help prevent accidental erasure of programs.

The lower case letters in the statements correspond to slots to be filled in

by the programmer. In particular, the phrases "character string” or "string"
can be replaced by any string of characters and the phrases "dddd" and "nnn"

are meant to be replaced by numbers of up to 4 and 3 digits respectively.

01d Instruction

HELP
NEW
RUN
WALK

LIST

COMMENT string

PRINT ‘'string'
PRINT IT
PRINT COUNTER
PRINT RETURN

JUMP TO nnn

TEXT IS 'string'

TABLE 2
NEW FLOW INSTRUCTIONS

New Instruction

HELP

ERASE

RUN

WALK

LIST

COMMENT string
DISPLAY "string"
DISPLAY VARIABLE
DISPLAY COUNTER
BEGIN ON NEXT LINE
JUMP TO nnn

TEXT 1S "string"

GET IT GET VARIABLE
IF IT 1S 'x' JUMP TO nnn IF VARIABLE IS "x" JUMP TO nan
STOP QUIT

MAKE COUNTER ZERO

ADD ONE TO COUNTER

MAKE COUNTER ZERO

ADD ONE TO COUNTER

DECREASE COUNTER BY ONE SUBTRACT ONE FROM COUNTER

IF COUNTER 1S tdddd JUMP TO pnn IF COUNTER 1S t4dd JUMP TO nnn

Student's Booth

Audio
Recorder

Microphone

CRT B

Terminal Modem

e
v "
Speake
Monitor

Micro B10

CRT Minicomputer

Display

CRT
Terminal

B6700

Computer

Experimenter's Booth

Figure 1

The FLOW Expe-imental Facility

PROBLEM 3:
Section 12
You are now going to learn how to make the computer type a vertical
string of BASKETs, with ecach word on a separate line. That is, the
result should look like this:

BASKET

BASKET

BASKET

BASKET
Section 13

more instruction: you need to know how to make the computer print on
a new line., We do that by printing o carriage return:

You should find this an casy program to write. But you need one Fl
PRINT RETURN

(Note that no quote marks are used for this command.)

llere's a program using PRINT RETURN: !
010 PRINT 'HELLO'

013 PRINT RETURN
020 PRINT 'GOODBYE'

1 Type NE. Then type in this program and run it.
The computer will print:

RUN
HELIC
GOODBYE
HALT
030

Section 14

Now try Problem 3: Modify your program from Problem 2 (see Sec. 9) to
make the computer print an endless vertical string of BASKETs, one on
each line, using the procedures given on Page 3 for modifying your pro-

gram,

After you've made your modifications, list your new program to see what
it looks like. Then run the program to be sure it works.

Figure 2

A Portion of the Printed Instructions

