
.... ... mmm< rw wmw^

IIIIUIH» 11 II IIM

AD/A-000 OH5

FIVE LECTURES ON ARTIFICIAL INTELLIGENC

Terry Winog rad

St a n fo id Universit v

Prepa red for:

1 ndusi rial Science and Technology Agency
Advanced Research Projects Agency

S -'p t e m be r Il) 7 4

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

Unclassiried
1L

KCUWITY CLfSSlKiCATlON OF THIS P *aE(*h»n Dmlm Enlmrad)

which combines features or the previous ones; A discussion of the applicatic
of these ideas to programming systems.

i 'JnclassH'ied
SECURITY CLASSIFICATION OF THIS PAGEfWi.n Dal, F.nltr,d)

I
1

/"

ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM No 246

COMPUTER SCIENCE DEPARTMENT REPORT
STAN CS 74-459

SEPTEMBER 1974

FIVE LECTURES
on

ARTIFICIAL INTELLIGENCE

:

Terry Winograd

Artificial Intelligence Project
Computer Science Department

Stanford University

September, 1974

ABSTRACT

D D C
yjjEraiPiimE
X< KOV 7 1974

IkiSEinrEiyj
D

This publication is a slightly edited transcription of five lectures delivered
at the Electrotechnical Laboratory in Tokyo, Japan from March 18 to Mnrch 23,
1974. They were intended as an introduction to current research problems in
Artificial Intelligence, particularly in the area of natural language understanding.
They are exploratory in nature, concentrating on open problems and directions
for future work. The five lectures include: A survey of past work in natural
language understanding; A description of the SHRDLU system; A comparison of
representations used in Al programs; A rough sketch of some ideas for a new
representation which combines features of the previous ones; A discussion of
the applications of these ideas to programming systems.

The research was supported in part by the Electrotechnical Laboratory,
Pattern Information Processing System Project, and this document has been issued by
them as PIPS-R-No.5. 't was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense under contract [DAHC15-73-C-
0435]. The views and conclusions contained in thh document are those of the
author and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of ARPA, or the governments of Japan and the United
States.

■■■•[■.'• v -i k» i -Mi« ttiumi \

m^m^^^^^f

I
I
i

_, >■•

K

Table of Contents

lecture 1 1
Computer systems (or natural language

Lecture 2. 20
SHRDLU: A system for dialog

Lecture 3 ^9
Representation: Formalisms for knowledge

Lecture 4 64
Frames: Some ideas for a new formalism

Lecture 5. 83
Conceptual programming: Applying Al to program writing

L

Lecture 1

COMPUTER SYSTEMS
FOR
NATURAL LANGUAGE

In this first lecture, I will set some background for the rest of the course by
describing a number of computer systems which have been built to work with natural
language. These systems have been developed for English, but the ideas being developed
are general and suited to a ,) language. In fact, there are currently projects looking a* a
variety of languages to see the ways in which they are the same and the ways in which
they present new problems I hope you will keep this in mind throughout the lectures,
although most of the examples I use will be from English.

Machine translation

I will begin by describing some of the history of natural language processing by
computer, which goes back as far as the early 1950!s, One of the tirst things people
thought of when they built general purpose computers was the idea of using them to
translate from one language to another. Fir the first fifteen years, translation was the
focus of almost all computer natural language systems, üriginally, people believed that
translation involved two basic processes which might be called dirdnnary and grammar
A piece of text in one language could be translated by first looking each word up in the
dictionary and finding the equivalent in the other language The next step referred to the
grammar -- the way the words were ordered, the endings and fo'-ms, etc. The ordering
of the output would then be changed to correspond to the rules of the second language.
The English sentence "I bought fi'h." can be analyzed as a subject followed by a verb
followed by an object. In Japanese, you might say "sakana-o kaerimasita" in which the
object come? first, and the subject does not appear explicitly unless a phrase is added
like 'watakusi wa", and the verb carries at the end. People believed that reasonably good
translations could be done by treating these two operations of dictionary lookup and
rearrangement separately.

It turned out that that approach did not work very well. When a person listens to
language, he uses not just his knowledge of grammar, but also his knowledge of the world
being discussed. The words and sentences have a meaning in the context of what the
person is doing. Many sentences depend fa' their understanding on this use of
knowledge. One simple example is the use of the English passive. If I have a sentence
like: "The fish was bought by the cook." it translates into Japanese phrases containing
"i.akana-o" indicating that the fish is the object, and a phrase indicating that the cook was
the actor -- the one who did the buying. If instead we have: "The fish was bought by the

2 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

river" the structure is totally different. It was not the river who bought the fish, but it is
a location and would be translated usmc a locational phrase with a Japanese word like
"sobaM Even though the two sentences look the same, we cannot decide on the
translation by simply looking at the grammar A person knows that a river cannot buy
things -- it is not an appropriate action In order to translate properly, the person knows
facts about cook-:, and nvers, and fish, and what happens to them

As a result of this problem it became obvious that a translation system could not
succeed without trying to understand what it was translating. Only a small fraction of the
sentences would be translated correctly It itffl that the machine would fail to produce a
sentence, but often the output in the new language would not convey the same meaning

as the input in the original language

In 1964. the National Academy of Sciences put out a report saying that although a
tremendous amount of effort had gone into machine translation, it would not succeed using
the techniques which had been developed. As a resu't, the attempt to build practical
translation machines was delayed m hopes of comr* 'irst to a better understanding of the
bas^c problems of language, grammar, and meaning. !t is interesting to note that in the
past few years people are again berommg ir>erested in translation. They believe that
sone of the ideas which have been ar-eioped in the meantime may succeed in producing
comnercially useful translation systems. But it is still very much a hope -- it is not clear
that we are yet at a point v*: jre a general translation device can be built.

Early M systems

Followr:; the end of the large translation projects, people turned instead to the
problem of building computer systems which in some limited way tried to understand the
language t^ey uealt with The most obvious way to judge understanding is to have a
dialog If you say something, and the person you say it to gives an appropriate response
-- something which makes sense in the context of what you said -- then you believe he
understood If I ask you a question, and you give me an answer (even if you do not know
the correct answer), I can usually tell whether you understood the question. If I request
that you do something, and you do it or try to do it, then I can say you understood that
request. If I give you a fact, and you la'.er do something which depends on knowing it, I
again have a test for your understanding.

STUDENT

People began to develop dialog systems involving an interchange rather than a body
of text as dealt with in translation. One of the earliest systems which did question
answering was a system named STUDENT, by Daniel Bobrow at MIT in 1984. It did
simple word problems in algebra, from a high-school course. The input to the computer is

a problem, like:

// the number of customers Tom gets ii twice the square of twenty
percent of the nuinher of advertisements he runs, and the
number of advertisements is 4S, what is the number of
customers I'om gets?

EARLY Al SYSTEMS

I
I

leniences Wo equal.ons - the test ol understanding the sentences was producmi the

(right equations to solve the problem.

This is very limited. If we use a phrase like "thr number of customers Tom gets"
tK.r IMer ask 7How many people buy things from Tom", the program has no way of

I onnect n words le^u tome' and "buy" The system used a simple kind of pattern
' match Äh looked for whole phrases corresponding to variables. For example .t would

3f X - "the number of customers Tom gets" and could only match it to subphrases o

I ^PUD an expression like "2 x X", where X is the variable it assigned 0 the number of
I customers" 'recognized the use of the word "of to represent this multiplication.

Bv dome this, the system performed fairly successfully on a set of simple problems.
Its success depended on'the fact that the problems did not involve interesting language
deduct"" Ho'wever. it caused quite a bit of excitement because it demonstrated that
computers could solve problems involving language, even if in a small domain.

SIR

Another system done at about the same time was SIR, which stood for Semantic
lnformat?°n Retneval, done by Bertram Raphael, also at MIT In Marvin Minsky s laboratory
T^s sysfem ans^e^d s.mpie questions about the relations between objects. You could

type in sentences like:

A nose in part of a penon.
fl nostril is part of a nose.
A professor is a teacher.
A teacher is a person.

Then you could ask a question, tike "Is a nostril part of a professor''" and it could
perform imple logical operations involving transitivity and subset [J^ «•.«^
"Yes "It handled only a limited number of possible relations, like part of , own , has ,
Id "is a kind of" and did not have a very general way of combining them. When more
fhan one relation had to be combined to get an answer, special parts of the program had

to take care of the interactions.

This system, like STUDENT, was written in LISP, and they were two of the first
large USPpogrms. The basic primitives of LISP are especially suited »o the kind of
symbolic non-numeric operations needed for these applications. For example SIR used
ZTpetyU^ to represent most of its knowledge. On the property list of t he symbol
PERSON there would be a property named PARTS containing a list of parts like NOSE.

4 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

This program did not have a body of knowledge about the world built in. The only
knowledge it had as part of its basic equipment involved these "elationships like HAVE
and PART. Specific facts about people and noses were typed in as English sentences like
those above. It was extremely limited in ths variety of sentences it could handle Only a
few simple patterns were recognized, like "A — is a ---", or "A -— has a -—" It
recognized)0 or 12 such patterns specifically, and any other sentences were not
acceptable The program was mostly concerned with the organization of the logical
connections between the facts, rather than problems of grammar and language.

ELIZA

A very different kind of program done about the same time was ELIZA, by Joseph
Weizenbaum. Weizenbaum asked the question "How could a system convince a person
that it was carrying out intelligent dialog, without doing any more analysis of the language
than absolutely necessary." He had the clever idea of considering the dialog between a
psychiatrist and a patient. When you talk to a psychiatrist, he will often say things that
don't seem directly related on the surface to what you said, but in trying to go below the
surface he may have other connections in mind. This program is clever in that it does not
have a deep analysis, but because you view it as a psychiatrist, you make the
connections.

People can be quite convinced that this program is understanding a lot when in fact
it has only a superficial recognition. A typietl dialog might be: (the person's entries are in
italics)

lam very lonely.
How long have you been very lonely?

This seems like an appropriate response. The system is looking for any pattern of
the form "I am —" and whenever it sees it, it types back "How long have you been —"
substituting the actual phrase. So if I type "I am therefore I think" it will say "How lone
have you been therefore you think" It does not try to make sense of the input -- only
to find the pattern. Our dialog might continue:

Ever since my mother got disconnected.
Tell me more about your family.

.. 4u
Ag.?inJhi8 is tri«ered on a simP|e Pattern' Whenever a phrase contains the word

mother , the program responds "Tell me more about your family." If you say "The
prince's mother is the queen." it responds "Tell me more about your family" This is In
fact very clever. A psychiatrist knows that a person who mentions mothers, whether his
own or another, ic very likely havin? subconscious thoughts about his own family This is a
deep kind of understanding which ItH program only mimics on the surface.

An important lesson to learn from this program is that we often read into a
program's behavior our own ideas of wM it understands. When it says something back
it may not have connected it in the way the speaker intended. This is a danger of judging
any language program - its success of understanding may not correspond dire-tly to how
good the response looks, shoe thai response may have been generated by a soecial
purpose trick. ' K

■"■•"'■"■"'! " '• ■' '"" ■"

SECOND GENERATION Al SYSTEMS 5

Second Generation Al Systems

The three programs described above were the early group of language programs
which convinced people that computer systems might treat language as something more
than a string of symbols They saw the meaning of sentences as something to be
understood and manipulated. It was clear that they did not treat language in a
sophisticated way. They all ignored the problems of grammar and complex structures
which had been a main focus of the translation programs They thought of meaning in a
very limited way SIR could only handle a small number of relations, STUDENT could only
handle things whose meanings were equations, and ELIZA handled everything at the
expense of not really trying to understand it.

Six or seven years later, a number of "second-generation" systems tackled a much
larger range of the problems of language. They did this by restricting the things they
talked about to a very narrow domain. Not narrow in the sense of being only algebra
equations, but in the sense of choosing an area of the world involving a small number of
objects and concepts.

LUNAR

One such system was Woods' LUNAR system which was developed over a period
of time from 1967 to 1972 This system was designed to answer questions about the
mineral samples brought from the moon by the astronauts. NASA has a large data base
describing where each sample was found, what research has been done on it, what it is
made of, and so forth. A geologist might sit down with a system like this and ask
questions like "What is the average concentration of aluminum in high-alkali rocks?", and
the system would answer back with a number like "8.45569 percent." In response to
"How many breccias contain olivine''" it might respond "5", and in response to "What are
they9" it would list the catalog numbers of those 5 samples.

Woods developed something called transition net grammars to describe for the
computer the grammatical facts about English needed for interpreting complicated
structures. The system uses the grammar to convert English sentences into requests in a
special query language which is designed to interface with an information retrieval
system he built for the large data base. We can INi* of his system as a translator from
English into the query language (which is built in LISP/. The result of typing a question is
sending a request to this system, and getting back an answer. The range of what could
be asked was fairly limited, as it knows only a small number of facts about each rock.
There is a large number of samples, but only a few kinds of information. He also didn't
worry about entering the data in English. All the information about the rocks is stored
ahead of time in a special format, and the natural language capabilities are used strictly
for understanding questions.

SHRDLU

At about the same time, I developed the SHRDLU program which converses with a
person about manipulations it is performing in a simple world of toy blocks, like that used

I
]

6 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

in the hand-eye robot projects at MIT and Stanford. There is a table with a set of simple -.
objects like cubes and vedges, and an arm operates on those objects. It can pick them
up and move them to build structures. The dialog is an interaction between the user and
this program like the one to be shown in Lecture 2.

This system attempts to integrate all the aspects of language, in combining linguistic
knowledge with a command of the world being discussed. The system answers questions,
accepts commands, and takes in new facts as part of a dialog with a person, and there is
a good deal of emphasis on the effects of context on understanding. It does not see each
new sentence as an isolated problem, but keeps track of the actions, events, and
sentences of the dialog to fit new facts into a meaningful context. Since this system will
be described in detail in Lecture 2,1 will defer discussion of it for later.

MARGIE
-

Another system developed in the early seventies is MARGIE developed by Schank's
students (Goldman, Rieger, and Riesbeck) at Stanford. This system uses its knowledge of
the structure of language to make paraphrases. In a natural language, the same thing can
be said in many different ways. Different words and structures can convey the same
meaning. MARGIE gives a series of different paraphrases of an input, demonstrating a
type of understanding. In rasponse to the input "John killed Mary by choking Mary", it
produces a series of paraphrases like:

:
John urangled Mary.
Mary died because she mas unable to inhale some air and she wat

unable to inhale some air because John grabbed her neck.

The program also draws simple inferences, so to an input like "John gave Mary some
aspirin," it might respond:

John believes Mary wants an aspirin.
Mary is sick.

Rather than viewing this as a dialog system, we can better call it an understander
system. Given a sentence input like the one to MARGIE there is no simple test of
whether it understood. It is not like a translator where the output is either correct or
wrong, or a question answerer where there is an eppropriate response to a question or
command. Instead, the result of an input sentence is a change to the program's internal
knowledge structure. At some othe. point, yw might test that knowledge structure by
asking questions or presenting tasks, but the program is primarily concerned with the
problem of taking in knowledge, rather than demonstrating it. The test then lies in the
computer scientist looking at the structures it has built and seeing if they reflect a
correct understanding. This can make it confusing to read about such recent programs,
since there are no simple input-output criteria for understanding.

In the long run, such systems need to be able to make use of their information in
interacting with the world. But in looking at current work on such systems we cannot be
too rigid in our definition of "understanding". We must concentrate on the specific ways
in which the system deals with knowledge.

■

w—"^^^

CURRENT DEVELOPMENTS 7

Current Developments

The previous section describes most of the large well-developed systems which
have been built. Most of the work going on now is much more fragmented. Rather than
trying to put together a large system which carries out an entire dialog, people are
concentrating on the components which muft go into new systems. They represent sets
of ideas for working with meanings, with the ultimate hope of combining these idea« in
future large systems The current projects on speech understanding (which I will describe
iater) are an exception to this, dealing explicitly with the problem of integrating the
componpnts of a total system.

The representation problem

The main problem people are facing might be called the reprrsenxation of
knowledge. Artificial intelligence in general might be characterized as the part of
computer science concerned with this problem of representation. The early systems all
had special forms of program and data to represent different sorts of meaning. STUDENT
had a very simple idea of representation -- mranin^ = r7uationj. That works only for
things in a small mathematical domain. We cannot in general represent a '^ct as a simple
equation. SIR had a simple representation using property lists, which could store other
kinds of facts, but wasn't adequate for more complicated knowledge involving things like
quantifiers. For these more complex interconnections between facts, we need a more
general formalism. This is true both for understanding language and for other problem-
solving and intelligent systems (like those for vision). People have developed a number
of ideas for representations of knowledge in computer programs, which will be discussed
in detail in Lecture 3. They form a basis for much of the work that is being done. In the
rest of this lecture I will talk more specifically about those issues related to representing
the information needed for natural language understanding and reasoning.

Case structures

One important idea which is being developed is that of case strurtures. The idea of
cases in linguistics has been around for a long time. In learning a language I'ke Latin, you
learn the declension of nouns -- the set of cases which the word can take on. Fillmore
(1968) developed this idea as a way of talking about grammars which do not have explicit
marked cases like Latin. In an English sentence like "I bought the fish.", we can say that
there is a case named AGENT for the object causing the action to happen, and another
role PATIENT for the thing undergoing the action. There are other cases, as in the
ssntence "John gave Mary a bottle." John is the agent -- he did fru act. The bottle is
the patient, or thing acted upon, and Mary is the DATIVE or beneficiary — the action was
for her benefit. Fillmore's point is that a smail number of such cases is sufficient for
describing much of language structure. Different people have developed a variety of
systems with different cases, but the important thing is that there are a small number of
ways in which an object can be related to an action. Once we have named the 6 or 8 or
10 possibilities, this can be used to describe an action in computer memory. We specify
the type of act, and the set of objects involved with the case t'iey fill in. Simmons at the
University of Texas has developed these ideas in a computer implementation. His
program takes simple oontences and analyzes them into these deep case relations.

 -■-■■ ■

8 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

It is important to remember that this is a semantic, not a surface syntactic
representation. In the sentence "I broke the dish.", I am the agent. In "The dish broke",
the dish is now the syntactic subject of the sentence, and on the surface level is filling
the same place that "I" filled in "I broke the dish." But at the case structure level, the
dish is the parent in both cases -- the thing acted upon - even though on the surface it
is represented in different ways. It is interesting to compare different languages. In
Japanese, I believe, the surface form is closer to these case structures than in Engl'sh.

Larger scale structures

In going from translation systems to dia'og systems, people expanded the set of
issues they were looking at. In translation, they were concentrating on the dictionary and
grammar. In dialog systems, there was a new emphasis on meaning, and the way
knowledge is connected. But these systems still took a limited view of what was needed
— they dealt with language sentence by sentence, fact by fact. The concern was to take
a particular sentence and relate it to a global data base or task. The problems were
those of representing very specific facts, like "A nose is part of a person" or "I want you
to pick up that block." Today, people are becoming aware of the ways in which this is
too much of a limitation as well. We need to understand how the process of
understanding can relate to large' structures of knowledge. In understanding a sentence,
we are not simply taking in a new piece of cognitive structure, bul making changes to
larger structures which alre-^y exist. As part of your knowledge, you know a great deal
about the kinds of conneciions which are possible between things. Programs must deal
with sentences by fitting them into such a structure. We cannot view eech new sentence
as a "piece" which will eventually be combined with others to take an action or produce
an answer. Instead when a new piece comes in, it is actively fit into existing structures,
and a great deal of organization goes on long before any use is made of the information in
answering a question or carrying out a command. There is an active process seeking to
fit things together.

Conceptualizationr

One example of larger conceptual structures is that of simple stories, like those
studied by Chafe (1972). He talkc about conceptualizations. A person who sets out to
tell a story begit s with a concept of the story as a whole. The problem is to convert
that into a sequence of words, and the problem for the hearer is to deduce from those
words what the structure is. So in looking at the process of story understanding, we
need to analyze the structures. Figure 1.1 shows some of the structures used by Chafe.
The first says that a fable is a story which illustrates some moral. Once we decide that
we are hearing a fable, we will interpret what we hear as leading to some sort of moral,
and the active search for that moral will affect the way we interpret the details of the
story. A story in turn is made up of a world which serves as background for a plot. The
plot involves a motivation which yields a sequence of events (the development) and the
outcome of that is some sort of resolution.

This is an abstract description of the story. It is language, but not at the level of
grammar. It deals instead with how we organize our thoughts. Because the understander
has a knowledge of these structures ahead of time, he can fill in a number of extra
connections between the pieces.

CURRENT DEVELOPMENTS

Fable

story

1 ustrates background 1 1 1wor1d plot mora 1

I
P1 ot

mot 1 vat 1 on yields deve1opment1 y1e1ds resolutIonl

mot I vat I on

percept 1 on
1 J

NG wolf | |

exp

VG - see S
past S

comp

[percept

L _ J

stImuIates

d. ss i re

NG - wolf |

exp

VG - want S
past S

comp

[goal|

Figure 1.1. Conceptualizations for a simple fable (Chafe).

This particular analysis has not been explored very far in actual computer programs,
but is an idea for some formalisms for these larger structures.

10 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

Scripts

Another formalism for otory structures is Abelson's (1973) scripts. These also
have not really been used m developed programs, but represent a very similar approach
to looking for the larger cognitive structures for events Abelson deals with those things
which might be called "plot" ,n Chafe's work He looks at the possible connections
between events m a story, fc example that a particular act may have been done to
prevent some other event from happening, Others might include an act being done to
make an event possible, one event causing another, etc. In his paper he presents a
schema for a particular political ideology, which he calls a Master script In this script
(see Figure 1.2) there is a set of events and actions with relations to each other This
script is applied to a particular set of events to interpret the connections between them
When the person with this ideology reads about an event in a newspaper, he does not
simply store away a fact like "There is a strike in Indonesia." He tries to fit it into his
script by seeing it as a communist plot, a response to such a plot, and so on. In political
analysis it is clear that different people can have very different schemata for viewing the
same situations. By the time a fact gets stored m the knowledge structure it has been
changed by the way it fits into the structure. It is no longer "there was a strike" but
"the communists are causing trouble" or "the people are responding to the oppression of
the bosses In fact, a person may later remember these without remembering any of the
details of the specific act which took place

N««t*r set-i pt for .» oold war ideology:

' U't / Communist
liberal thinking schemes

our c;« I I i i

iO BCt ion Y free world power T W victory

fre,. »er Id Communist

paralysis victory

Figure 1.2. An ideological script (Abelson).

It isn"t immediately obv,ous that this applies in areas less subjective than politics
but one important trend in natural language is the attempt to find this kind of
assimilation" happening in all sorts of understanding processes. When I make a statement

of any sort, it isn't just stored, but you try to interpret it as fitting in to a larger "script"
Programs are just now being built to try and do these things at many levels

T
;

CURRENT DEVELOPMENTS 11

Uonceptual depondoncy

Another r-yotcm is Schank's mnrcptual dependency which he has been developing
for a number of years. His point is that a single word in English is often a pointer to a
complex conceptual structure. When you hear a word, you call forth a pattern for a
structure and fill it out. Figure 1.3 shows a structure for "give".

John gave Mary a book.

• PTRANS

JOHN ^ ^•ATRANS» ^■ BOOK

►MARY

JOHN

Figure 1.3. Conceptual dependency network for "give" (Schänk).

If you hear that "John gave Mary a book." you will try to fill it out, including looking
for facts about why and how the act was done. If we say "Sam grew corn" this is not the
same as "Sam grew." It was the corn which did the growing, and Sam did some other act
or acts to help it. Conceptual dependency makes this explicit in the structure, as
illustrated in Figure 1.4 .

Sam grew corn.

SAM^

CORN

»DO«

GROW

I
Figure 1.4. Conceptual structure for "Sam grew corn'

aHMMft^»*» -J

12 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

The multiple arrow indicates a cause -- Gam's doing something caused the corn to
grow. In the English surface structure, "growing" seems a simple act, like "Sam hit the
ball " But in the conceptual structure there is an element missing -- an unspecified act
Pjrt of the design of a system must involve an awareness that things like this need to be
filled in. We can look explicitly for the things Sam must have done.

Demons

Another mechanism for drawing connections between pieces of knowledge is
Charmak's (1973) demom He deals with the problem of recognizing that two facts
should be connected. Once it is recognized that two facts are inter-related, they can
often suggest a larger structure. His work deals with simple children's stories. We might
have a sequence of sentences like;

Janic went to her piggy bank. She shook it. She took the nickel and
went to the store.

A person hearing this sequence kno^-s what happened If we give it to a computer,
then ask "Where did she get the nickel" there is no explicit answer available. There is
no sentence saying that a nickel came out of the piggy bank -- only one saying she shook
it, and another saying she *ook a nickel to the store A person draws the obvious
connection that the money must have come out of the piggy buik. This is a critical
element of natural language. A person almost never provides all [he detailed steps that
connect the things he is saying. The listener knows enough to fill in a great deal of
implicit information. If you ask me "What time is it,H and I respond "My watch is broken",
that is fine -- I don't have to say "I cannot tell you because I do not know what time it is,'
because rny watch is broken, and when a watch is broken it does not tell the correct
time, etc" All that is obvious.

Charniak has taken some limited cases and used demons to make those connections
When his system notices that Janie is shaking a piggy bank, it sets up a demon which
states "If you see any mention of money in the next few sentences, it probably came from
the piggy bank" We can think of this demon as sitting in the program looking for
mentions of mc ley, waiting to jump out and say "Aha! I know where that came from"
There are lots of complicated problems in making use of demons, since there will often be
a number of them, looking for different things, and their interactions lead to many
difficulties But there is an important idee ,1 the explicit setting up of expectations which
may be met by further bits of the input.

Rings

Another paper by McDermott (1973) proposes ring structures for connecting
sequences of hypotheses and events As facts are described to the system, it looks for
connections betwec ihem. If it is told that "Fred is a bird." and "Fred can't fly" it will
no simply store away those facts, but look for a third fact which makes them plausible
The two original facts set up a tension since they normally don't go together, and the
tension is resolved by constructing a ring with another fact which the system
hypothesizes One solution is to infer that a flightless bird must be a penguin A natural
inference from being a penguin would be that he lives In Antarctica, so if the system now
learns that "Fred lives in Sydney", we must find some new fact to resolve the tension —

1

SPEECH UNDERSTANDING SYSTEMS

perhaps he lives in a zco It is not possible to oe sure what the right thing is to fill in tho
rinfc — if instead of hypothesizing that Fred is a penguin we had hypothesized that he is ^
dodo bird, that would also resolve the tension of a flightless bird, but it would then not
take an extra ring to fit together with living in Australia The program is faced w".
having to hypothesize plausible facts to make things fit together, but has to be willing »-!
go back and change its mind -- to dissolve the ring and reconnect it another way Oi
course before it discovers the problem, it may have used its hypothesized facts to bui'd
still other rings.

McDermotfs system accepted a simple sequence of events concerning a monkey in a
room with some simple objects. His system was not in the traditional Al position of
simulating the monkey's problem solving, but in the position of an observer, trying to
understand its actions If the monkey picks up a banana, the program needs to expla^
why it would do such an act It makes the obvious hypothesis that the monkey is hungry
If the monkey then set? the banana down, this creates a tension with the fact that il
wants to eat it Either a new ring must be constructed with a further fact (maybe the
was a sudden noise), or the old one must be dissolved, and the system must find a^ot1«•
reason for picking up the banana -- perhaps the monkey was just curious. McOtrmott
was concerned primarily with structuring sets of facts and contexts to make this kind r'
process possible

Speech Understanding Systems

Most of the problems described above might be characterized as relating to the
chunking of knowledge. Such ideas are in a beginning stage, and are not yet mtegratrd
into systems Another aspect of current work involves the organization of intfgrated
natural language systems It is particularly active m the context of a number of speech
understanding systems. A concerted research effort was begun 2 years ago by the
Advanced Research Projects Agency (Newell etal 1973) to produce in a 5 year period a
working speech system A person could converse with this system in normal connects i
English. This is quite different from the existing programs to represent isolated spoken
words, as it must combine all different aspects of language There is a great deal H
emphasis on avoiding the "bnttlenoos" of current systems This is the quality, vpr,
common m computer systems, that they can't bend at all without breaking If there is an
input which is almost what the system would expect, but not quite, the system does net
just find the input more difficult to handle, but fails completely If the user types in cr?
word or punctuation mark wrong, or the system is missing one 'act, it is not flexib'r
enough to say "Oh, that really must have been." Much of the emphasis on larger sea!,
organization is to get this kind of flexibility. Since a human understander is interpreting
an input in the context of larger structures, he may be willing to interpret it in a way
quite different from what it IOOKS like if that is what is needed to make it comprehensib^-
-- he is willing to bend it quite a way to make it fit. In speech, this is an immediatf iy
necessary feature, ■fnet actual acoustic signals cannot be processed to provide enoueh
information to provide the kind of certainty a brittle system would need

If the content provides only a few choices of what a word must have been, it i«
often possible to decide which fits the acoustic signal best. But faced with the task of
scanning an utterance for words, there is nc way to do it accurately and completely. So
the system has to be organized to be very flexible and forgiving about what it finds It
has to know what it is looking for on the basis of larger structures and use the input as <i

1 4 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

test. There are a number of different organizational schemes being developed. It is
important to note that these organizational ideas are not needed only for speech systems
-- as language programs of any sort try to handle less constrained inputs, they must
share many of the same features.

Linear organization

The simplest form of organization is that shown in Figure 1.5 . To some large
extent, the different facets of our language knowledge can be separated into components,
and we can organize a system by building them separately and letting the data flow from
one to the other.

WORD EXTRACTION

i. SYNTAX

i
SEMANTICS

i
REASONING

Figure 1.5. Linear organization for a speech understanding system.

The first component needs to determine the words in the input. In the case of
written language this involves only a dictionary lookup to see what characu- strings are
words For speech, this stage is much harder, involving a good deal of acoustic and
phonetic processing

The next stage is syntax It handles the facts about the arrangements of words
which are usually included in a grammar. If it sees the two sentences "The dog bit the
man." and "The man bit the dog." the words are all the same, but the ordering gives more
information. The syntactic component involves an operation of parsing which takes the
word sequence and builds grammatical structures.

The next stage is often called .semamiri and describes the connections between
these syntactic structures and meaning. If we have a structure like "I ran", I am the actor
-- I did the running. If we have "The dish broke", even though the dish is the subject it
\i not the actor, but rather, something happened to it. Things which have the same
syntactic structures on the surface can convey different meaning. The semantics
component then needs to convert the linguistic structures into some sort of ircernal
representation that can be used for reasoning. The final stage is a reasoning component

SPEECH UNDERSTANDING SYSTEMS 15

Most of the complete systems which have been built operate in a simple way. They
assume that you can first find the words m a dictionary, then call a parser which analyzes
the syntactic structures, then ctH a semantic analyser which converts it into the meaning
representation, and finally call on the set of reasonirg programs which use it.

One system (developed at the Stanford Research Institute) tries to reverse this
directionality In speech, it isn't easy to say what word is appearing in the wave form, so
they try to predict by coming from the other end of the chain They ask "What do I think
is being said (based on reasoning)'" followed oy "Now would that be phrased (syntax)9"
and finally "Therefore what words do I expect to see'" In some cases this approach
works well, but it depends on there being a very limited ^et of possible messages. If I
ask a question which is to be answered "yes" or "no," then it is easy to recognize the
answer. On the other hand. If you walk m and begin a lecture, it is not the case that I
have a clear expectation for the words you will begm with. Often we don't have
anywhere near enough information to go look for a particular word which might have been
said.

Heterarchica! organization

Another style of organization ,5 the hrtcrarrhiral system In this kind of system,
there are a number of sub-components working together, and any one of them can pass
information to any other one directly. There is no strict chain of command, progressing
from one stage to the next Any component can be called at any time if its knowledge
seems likely to be useful In the system at Bolt, Beranek, and Newman (Woods, 1972)
the components are as shown m Figure 1.6 .

MATCH

'.EXICAL
RETRIEVAL

BOOKKEEPING PRAGMATICS

•CONTROL- SEMANTICS

FEATURE
EXTRACTION SYNTAX

Figure 1.6. Heterarchical system organization.

•6 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

The feature extractor looks at the incomirb wave forms, and suggests possible
phonetic features. These then can be used by the lexical retrieval component to see what
words are possibly there. The matching componenl takes a possible word and checks it
against a piece oi the wave form to check the likfehhood that it is actually there. The
syntax component knows the syntactic structure o\ language and uses this to evaluate
possible sequences of words The semantic compondpt knows about simple semantic facts
(like our early example that "rivers can't buy things», and finally a pragmatic component
does the reasoning about the specific topic being diskssed. There is also a bookkeeper
to keep track of the possible analyses being consicAred, and a control box to decide
which component will do what when. Of course »Ve interesting structure from an
organizational viewpoint lies in this control box.

The particular method used to understand the ccmplexities of control is called
incremental simulation Given a number of different tyftes of knowledge, the problem is
to understand when to use each one, and what sort of information needs to be passed
from one to the other. At one time, the syntax may be ufed to suggest what words are
present, and the matcher would check to see how plausiblewhey are. In another case the
feature extractor might find a set of words with a great dell of certainty, and the syntax
would have to find a way to analyze their structure Voods' group simulated an
understanding system by having people doing each of the component tasks, and using the
computer to interface between them. This allowed the entire system to be working even
though the details of each component were not worked out\ By studying the kinds of
interactions which were necessary to put together the knovAledge of the 6 individuals
simulating the components, they are figuring out how to orgartze the control component.
Gradually programs wili replace the person doing each compon*t task, within the context
of a clearer idea of how it should be fit in -- what sort of inbrmation it can expect to
get, what it can be expected to produce, and when it should be^sed.

Pandemonium

The heterarchical system assumes that the builders of a system must develop a
complex control structure suited to the task. The result of this (tesearch is expected to
be a detailed understanding of just how the tasks interact and wh# should be done when.
A very different model (which I am calling pandemonium) is beingtried by the group at
Carnegie-Mellon University (Reddy 1973). The idea is to \o\d worrying about
complicated control structure. Rather than having to anticipate whjkh sort of information
should be used when, the subsystems are all allowed to work indlpendently and share
information through a hypothesis scratchpad, as shown in Figure 1.7y.

It is as if we had a group of experts working on a common task! but no one of them
knew anything about the others. Each expert might not even know hoviv many others there
were, or what kind of things they dealt with. Communication is managed by having each
expert know how to propose sequences of words, and assign a degrU of confidence to
them. Any individual component can look at the current set of hypotheses, and either add
new ones to it, or change the level of confidence in one of the old cnes, depending on
whether it makes sense with respect to his particular knowledge. Thus the overlord has
no authority to decide what is to be done, or what knowledge is to be passed, but is just
a bookkeeper. This sort of system has the virtue that it is easy to put in new

e

■

■MM

REFERENCES 17

components, and make major charges to their functions, without disturbing the rest of the
system. It is highly modular. The interesting question is whether such a system can be
successful without the more tailored interactions of a heterarchical system.

OVERLORD

ACOUSTIC
RECOGNIZER

SYNTACTIC
RECOGNIZER

SEMANTIC
RECOGNIZER

HYPOTHESIS SCRATCHPAD

Figure 1.7. The pandemonium organizational model.

Summary

In summary, the main problems being faced in language systems today are "How can
we make use of larger structures of knowledge to help in understanding''" and "How can a
system be organized to make flexible use of a variety of different sorts of knowledge?"
Within the next few years we will see large systems incorporating many of the ideas now
being developed, and we can exoect them to perform significantly better than the ones
which are now available.

References for lecture 1

Machine Translation

Yorick Wilks, An artificial intelligence approach to machine translation, in Schark and
Colby (eds), Computrr models of thought and language, pp. 114-151.

Early Al systems

Daniel Bobrow, Natural language input for a computer problem solving system, In
Minsky (ed.), Scmantir information processing, pp. 134-215.

Marvin Minsky (*d.), Semantic information processing, MIT Press, 1968.

18 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

Bertram Raphael, SIR; A computer program for semantic information retrieval, in
Mmsky (ed.) Semantic information procasing, pp. 33-133

Joseph Weizenbaum, ELIZA, Communiracioni of the ACM 1966, 9, pp. 36-45.

Second-generation systems

MARGIE: Memory, Analysis, Response Generation, and Inference on English, Advance
papers, Vhird International Joint Conference on Artificial Intelligence, pp
255-261

Terry Winograd, Understanding natural language, Academic Press, 1972.

William Woods, R.M. Kaplan and B. Nash-Webber, The lunar sciences natural
language information system: final report, BBN Report 2378, Bolt Beranek and
Newman, Cambridge, Mass, 1972.

Case structures

Charles Fillmore, The case for case, in E. Bach and R. T. Harms, (eds.), Universals in
linguistic theory. New York: Holt, Rine'wt and Winston, 1968, pp. 1-68.

Robert Simmons, Semantic networks: their computation and use for understanding
English sentences, m Schänk and Colby (eds). Computer models of thought and
language, pp. 63-113

Larger scale chunks of knowledge

Robert Abelson, The structure of belief systems, in Schänk and Colby (eds.),
Computer models of thought and language, pp. 287-340

Wallace Chafe, First technical report, contrastive semantics project, Dept. of
Linguistics, University of California, Berkeley, 1972.

Eugene Charmak, Toward a model of children's story comprehension, Al TR-2b6, MIT
Artificial Intelligence Laboratory, Cambridge Mass. 1972.

Drew McDermott, Assimilation of new information by a natural language
understanding system, MIT Al TR-291, February 1974

Roger Schänk, Identification of conceptualizations underlying natural language, in
Schänk and Colby (eds), Computer models of thought and language, pp. 187-
248

Roger Schänk and Kenneth Colby, Computer models of thought and language
Freeman, 1973.

.

REFERENCES 19

Speech Systems

Allen Newell et. al., Speech understanding iyuems: final report of a «turfy
group. North Holland/American Elsevier, 1973.

R.D. Reddy, LD. Erman, R.D. F-t-nell, and R.B. Neely, The Hearsay speech system: an
example of the recognition process, Advance papers. Third International Joint
Conference on Artificial Intelligence, pp. 185-193

Donald Walker, Speech understanding through syntactic and semantic analysis,
Advance papers. Third International Joint Conference on Artificial
Intelligence, pp 208-215

W.A. V-ods and J. Makhoul, Mechanical inference problems in continuous speech
understanding, Advance papers, Third International Joint Conference on
Artificial Intelligence, pp. 200-207

20 SHRDLU: A SYSTEM FOR DIALOG

Lecture 2

SHRDLU:
A SYSTEM FOR
DIALOG

In this lecture I will describe in some detail a program I wrcte at MIT for
understanding natural language There are many things in that program which I would do
very differently today, ?nd many new ideas which have been developed since then.
Therefore, I do not want to convey the impression that this program represents the last
word in how things should be done, but I think it is important tc look at a whole program
-- to see how things fit together Many of the newer ideas are still fragments which
have not been combined in an integrated way. In this lecture I will use my program to
illustrate the range of thing,, which must go into language understanding, and some of the
problems of organization in putting together a complete system.

Overview of the system

There are several important basic features of the SHRDLU system. First, it is a
dialog system There is an exchange between the computer and a person. The person
can give commands, ask questions and make statements concerning a simple world of
discourse, and the system reacts appropriately, carrying out commands, answering
questions, and taking in new information.

It is an integrated system which combines knowledge of syntax (the grammar of the
language), semantics (the way the language conveys meaning), and reasoning (the ability to
make deductions and connect facts m the subject domain).

The system is designed to account for the problems of discourse — to see each
utterance in the context of the more complete discussion. There is a context of things
being discussed, a context of the rest of the discussion -- the sentences which have gone
before -- and there is a memory of the events which have happened.

The program is based on a belief that success at understanding language depends on
a deep knowledge of the subject being discussed. You need more than a dictionary of
word meanings and a knowledge of syntactic structure. The system must know the
connections of meanings and facts within the domain. This implies that to translate
something like a newspaper, we would need to u lild in all the varied knowledge that a
person brings to that task.

In our program, we chose to resolve the dilemma by picking a tiny bit of the world
to talk about. Within this mini-world, we can give the computer a deep kind of

I

i A DIALOG WITH SHRDLU 21

knowledge, which allows it lo do the necessary reasoning The subject chosen was
the world of a toy robot with a simple arm. It can manipulate toy blocks on a table
containing simple objects like a box. In the course of a dialog, it can be asked to move
the objects around, doing such things as building stacks and putting things into the box. It
can be questioned about the current configuration of blocks on the table, about the
events which have gone on during the discussion, and to a limited extent about its
reasoning. It can be told simple facts which it adds to its store of knowledge for use in
later reasoning The conversation goes on within a dynamic situation, in which the
computer is an active participant, doing things which change his toy world, and discussing
them The program displays a simulated robot world on a TV screen, and converses with
a human on a teletype. It was not written for any particular use with a real robot, and
does not have a model of language based on peculiarities of the robot environment.
Rather, it is precisely by limiting the subject matter to such a small area that we can
address the general issuss of how language is used in situations involving phypical
objects, events, and a continuing discourse

The programs can be roughly divio j into the three domains mentioned above:
There is a syntactic parser %vhich works with a large-scale grammar of English; there is a
collection of semantic routines which embody the kind of knowledge needed to interpret
the meanings of words and structures; and there is a cognitive deductive system for
exploring the consequences of facts, making plans to carry out commands and finding the
answers to questions. There is also a comparatively simple set of programs for
generating appropriate English responses.

In designing these pieces, the main emphasis was on their interaction. The form in
which we want to state a syntactic theory or a type of deduction must take into account
the fact that it is only a part of a larger syste.n Cne of the most useful organizing
principles was the representation of much of the knowledge as procedures. Many other
theories of language state ther rules in a form which is modelled on the equations of
mathematics, or the rules of syrnbolic logic These are static rules which do not explicitly
describe the process involved in using them, but which are instead manipulated by some
sort of uniform deduction procedure By writing special languages suited to the various
types of knowledge (semantic, syntactic, deductive), we are able to preserve the
simplicity of these systems, while putting the knowledge in the form of programs. In
these programs we can explicitly express the connection'-- between the different parts of
the system's knowledge, enriching their possibilities for interaction.

A dialog with SHRDLU

At this point in the lecture, a film was shown demonstrating a dialog with the
system. In these notes I nave substituted an account of such a dialog, as published in
Winograd (1972). The boldface lines in lower case were typed in by a person, and the
boldface lines in upper case ve the computer's response. Other lines are comments
describing some of the featur M being exhibited.

22 SHRDLU: A SYSTEM FOR DIALOG

The dialog was carried out in real time with the response of the "robot" displayed
on a CRT screen. Figure 2.1 shows a typcial scene in the robot's world.

Figure 2.1. The robot's environment.

1. pick up a big red block.

OK.

The system answers "OK" when it carries out a command. In
order to pick up the red block, it had to clear it off by finding a
space for the green one and moving the green one away.

2. grasp the pyramid.

I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

I

A DIALOG WITH SHROLU 23

There are three pyramids in the scene, and the program knows
that phrases beginning with "the" are intended to refer to a
specific object the speaker has in mind.

3. find a block which is taller than the one you are holding and put it into the box.

The system has to figure out what is meant by "one" and "it",
as well as using deduction to decide which block it is holding.

BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM
HOLDING.

There were two possible referents for "it": the one selected,
and "the one you are holding". The program has heuristics for
choosing between them.

OK.

The hand has to set down the red block to pick up the taller
blue one. Figure 2.1 shows the result of the system's
manipulations at this point.

4. what does the box contain?

THE BLUE PYRAMID AND THE BLUE ELOCK.

5. what is the pyramid supported by?

Earlier the system responded to "the pyramid" by saying "I
don't understand which pyramid you mean." Now, it assumes
that we mean the one just mentioned.

THE BOX.

6. how many blocks are not in the box?

Negatives such as "not" and 'no" are handled whether they
appear in clauses or noun groups (such as "no boxes").

FOUR OF THEM.

7. is at least one of them narrower than the one which i told you to pick up?

The phrase "at least one of them" must be analyzed to refer
back to the previous question, and "the one which..." must also
refer to blocks. Noun groups can have complicated numbers
such as "at least one", "more than three", "exactly seven", etc.
The memory of past events is used to deduce which block is
"the one which I told you to pick up". Notice the complicated

24 SHRDLU: A SYSTEM FOR DIALOG

syntactic structure in which "the one" is actually the object of
a clause embedded two levels deeper. The parser
incorporates a grammar which handles this kind of complexity in
a general way.

YES, THE RED CUBE.

8. is It supported?

YES, BY THE TABLE.

The system has heuristics about what information is relevant to
a person who asks a question, even if he does not request that
information specifically.

9. can the table pick up blocks?

NO.

The semantic rules include the knowledge that "picking up"
must be done by an animate object, and that the table is not
animate.

10. can a pyramid be supported by a block?

YES.

The deductive system finds an actual example, so it knows this
is possible.

11. can a pyramid support a pyramid?

I DON'T KNOW.

The question makes sense, but there is no example In the
scene. The system has no way of looking into the details of its
programs, even though ihese ultimately define its capabilities.

12. stack up two pyramids.

I CAN'T.

The robot tries and falls.

13. the blue pyramid Is mine.

I UNDERSTAND.

■ -..-^-.

I
A DIALOG WITH SHRDLU 25

All of the information about colors, shapes, sizes and locations
of the objects is known to the program initially. Possession is
left as an unknown property of objects about which it can be
told. It stores this information in its data base.

14. i own all blocks which are not red, but i don't own anything which supports a
pyramid.

I UNDERSTAND.

The result of understanding these sentences is Ihe creation of
new procedures within the robot for deducing whether I own
something.

15. do i own the box?

NO.

The box supports whatever it contains, including a pyramid.

16. do i own anything in the box?

YES, TWO THINGS: THE BLUE BLOCK AND THE BLUE PYRAMID.

17. will you please stack up both of the red blocks and either a green cube or a
pyramid?

OK.

Logical connectives such as "and" "or" "either" etc. are handled
in both the grammar and semantics. A command is executed
even if it looks like a question. The command Is carried out by
the following series of steps: It puts a green cube on the large
red block (It chooses the green cube with nothing on it.), then
removes the small pyramid from the little red cube, so that it
can use that cube to complete the stack as specified, resulting
in the situation of Figure 2.2

18. which cube is sitting on the table7

THE LARGE GREEN ONE WHICH SUPPORTS THE RED P 'RAMID.

Ordinarily the system would be satisfied with calling this "a big
green cube", but since we asked "which cube" it has to be
more specific in naming it. It has procedures for using
substitute nouns (such as "one") and pronouns in answers to
make the discourse more natural.

I

26 SHRDLU: A SYSTEM FOR DIALOG

^

Utie

i i

i / \ \
X \ >

Figure 2.2. The result of building a stack.

1 9. is there a large block behind a pyramid?

YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN CUBE AND THE BLUE
ONE.

20. put a small one onto the green cube which supports a pyramid.

"A small one" must contrast with the person's earlier phrase "a
large block", so this means "a small block".

A DIALOG WITH SHRDLU 27

OK.

21. put the littlest pyramid on top of it.

Words tike "littlest" are not in the dictionary but are
interpreted from the root forms like "little". The program
compares the sizes of all the pyramids to carry out the action.

OK.

22. how many things are on top of green cubes?

I'M NOT SURE WHAT YOU MEAN BY "ON TOP OF" IN THE PHRASE "ON TOP OF GREEN
CUBES ".

DO YOU MEAN:
1 - DIRECTLY ON THE SURFACE
2 - ANYWHERE ON TOP OF ?

In the previous sentence, the phrase "on top of" was
interpreted without trouble because the context made it clear
what was meant In this case, the heuristics for disambiguation
do not come up with a clearcut decision, so the system has to
ask the user for more information. The paraphrases were
included with the dictionary definition of "on" A request like
this can also occur when the meaning of a pronoun such as "it"
or "they" is unclear.

THREE OF THEM.

23. had you touched any pyramid before you put the green one on the little cube?

YES, THE GREEN ONE.

The svctem deduces from its memory what event ifi being
referred to, and can relate other events to it in tine. The
analysis includes complex tenses of verb groups, and there are
special facilities for keeping track of the various foTns of
Tregular verbs like "have".

24. when ciid you pick it up?

WHILE I WAS STACKING UP THE RED CUBE, A LARGE RED BLOCK AND A LARGE
GREEN CUBE.

A time is described by naming the main goal which was being
worked on.

J

28 SHRDLU: A SYSTEM FOR DIALOG

25. why?

The system remembers immediately previous sentences to
understand questions like this and the following ones.

TO GET RID OF IT.

By keeping track of selected parts of the original subgoal tree,
the system has some understanding of its own motives.

26. why did you do that?

TO CLEAN OFF THE RED CUBE.

"That" refers to the action mentioned in the system's last
answer

27. why did you clear off that cube?

Here, "that" means the one just referred to.

TO PUT IT ON A LARGE GREEN CUBE.

28. why did you do that?

TO STACK UP THE RED CUBE , A LARGE RED BLOCK AND A LARGE GREEN CUBE.

29. why did you do that?

BECAUSE YOU ASKED ME TO.

It remembers what it did, not how the request was worded.

30. how did you do it?

"It" refers to the action mentioned in the last question, rather
than the answer.

BY PUTTING A LARGE RED BLOCK ON THE TABLE ; THEN LETTiNG GO OF IT • THEN
PUTTING A LARGE GREEN CUBE ON IT , THEN LETTING GO OF THAT CUBE
THEN PUTTING THE RED CUBE ON THAT CUBE I THEN LETTING GO OF THAT

This is a description of the top-level subgoals used to achieve
the goal.

31. how many objects did you touch while you were Joing it?

Time references can refer to a time span, using words like
"while".

I

1 A DIALOG WITH SHROLU 29

FOUR OF THEM

32. what did the red cube support before you started to clean it off?

THE GREEN PYRAMID

By remembering what has been moved, it is possible to deduce
things about earlier states of the scene. We can use complex
nestings of clauses like "before you started to clean if off".

33. there were five blocks to the left of the box then.

"Then" must refer to the time mentioned in the last sentence.

NO, ONLY FOUR OF THEM: THE RED CUBE , TWO LARGE GREEN CUBES AND A LARGE
RED BLOCK.

Earlier in the dialog, information about "owning" was accepted
at face value But the system knows that it has complete
information about the basic properties of objects, including
location It checks any statements about these to see whether
it agrees or disagrees.

34. put the blue pyramid on the block in the box.

This is syntactically ambiguous, but is understood without
ambiguity since the parsing corresponding to "put the blue
pyramid which is on the block into the box." does not make
sense in the current scene, while "put the blue pyramid onto
the block which is in the box." does.

OK.

35. is there anything which it bigger than every pyramid but is not as wide as the
thing that supports it?

The system understands quantifiers such as "every", "any",
"some", etc., and structures such as "bigger than", "as wide as",
etc. Here "it" refers to a noun group within the same sentence
but two levels up in the parsing tree.

YES, THE BLUE BLOCK.

36. does a steeple

SORRY, I DON'T KNOW THE WORD "STEEPLE".

The system interrupts immediately when it sees a word it
doesn t know.

30 SHRDLU: A SYSTEM FOR DIALOG

37. a "steeple" is a stack which contains two green cubes and a pyramid.

The quote marks indicate that we are defining a new word
The definition is added to the dictionary in a form compatible
with all the Awds it already knows.

I UNDERSTAND.

38. are there any steeples now?

NO.

The new definition is used as a description to recognize
steeples.

39. build one.

OK.

The description given in the definition is enough to deduce a
plan for building new objects as well as recognizing them. The
word "one" means "a steeple", and the plan is carried out
First, one of the large green cubes is cleared off by removing
the red cube and two pyramids. Then the two green cubes and
the tall red pyramid are stacked up to fit the description.

40. call the biggest block "superblock".

OK.

We can also give object» names.

41. have you picked up superblock since we began?

YES.

42. why did you drop it?

BY "IT", I ASSUME YOU MEAN THE SUPERBLOCK.

I CAN'T EXPLAIN A NON-EXISTENT EVENT.

There is no record in memory of any block being dropped The
answer routines have special checks for this type of "loaded
question" which presupposes things which aren't true.

43. is there anything to the right of the red pyramid?

I
I

;

THE COMPONENTS OF THE SYSTEM 3|

YES, FOUR THINGS: THE BOX , THE RED CUBE, THE BLUE PYRAMID AND THE BLOCK
NAMED SUPERBLOCK

Once an object has a name, the name is used to help identify it
m responses

44. thank you.

YOU'RE WELCOME!

The grammar is written as a procedure, which gives it the
capability to carry out special sorts of parsing for idioms

The components of the system

In this section I will describe in some detail the various parts of the language
understanding program and its operation. This type of analysis is important for
understanding any computer model, since the surface appearance of its output can be
deceptive A program may succeed by carefully chosmg the problem it will attack, so that
some simple special-purpose solution will work. In the previous lecture I described ELIZA
and STUDENT as examples of programs which give impressive performances due to a
severe and careful restriction of the kind of understanding they try to achieve. If a model
is to be of broader significance, it must be designed to cover a large range of the things
we mean when we talk of understanding The principles should derive from an attempt to
deal with the basic cognitive structures In the rest of the lecture, I would like to give
some feeling for the set of ideas used in representing knowledge in this system.

Reasoning

First, let us look at its knowledge of the blocks world. The program makes use of a
detailed world model, describing both the current state of the situation and its knowledge
of procedures for changing that state and making deductions about it. This model is not in
spatial or analog terms, but is a symbolic description, abstracting those aspects of the
world which are relevant to the operations used in working with it and discussing it. First
there is a data base of simple facts liki those shown in Figure 2.3 , describing what is
true at any particular time There we see, for example, that Bl is a block, Bl is red, B2
supports B3, blue is a color, E\/ENT27 caused E\/ENT29, etc. The notation involves
simply indicating relationships between objects by listing the name of the relation (such as
IS or SUPPORT) followed by the things being related. These include both concepts (like
BLOCK or BLUE) and proper names of individual objects and events (indicated by the use
of numbers, like Bl and TABLE2)

The symbols used in these expressions represent the concepts (or conceptual
categories) which form the vocabulary of the language user's cognitive model. A concept
corresponds vaguely to what we might call a single meaning of a word, but the connection
is more complex Underlying the organization is a belief that meanings cannot be reduced
to any set of pure "elements" or components from which everything else is built. Rather,

32 SHRDLU: A SYSTEM FOR DIALOG

a person categorizes his experience along lines which are relevant to the thought
processes he will use, and his categorization is generally neither consistent, parsimonious,
nor complete. A person may categorize a set of objects in his experience into, for
example "chair", "stool", "bench", etc If pushed, he cannot give an exact definition for
any of these, and In naming some objects he will not be certain how to make the choice
between them. This Is even clearer if we consider words like "truth", "virtue", and
"democracy". The meaning of any concept depends on Its interconnection with all of the
other concepts in the model.

.

(IS Bl BLOCK)
(IS 32 PYRAMID)
(ATB1 (LOCATION 100 1000))
(SUPPORT Bl B2)
(CLEARTOP B2)
(MANIPULABLEB1)
(CONTAIN B0X1 B4)
(C0L0R-0F Bl RED)
(SHAPE-OF B2 POINTED)
(IS BLUE COLOR)
(CAUSE EVENT23 EVENT25)

Figure 2.3. Some assertions about the BLOCKS world.

TO CLEARTOP X

NO ASSERT THAT
X IS CLEARTOP

Figure 2.4. Flow chart for the concept CLEARTOP.

THE COMPONENTS OF THE SYSTEM 33

Most formal approaches to language have avoided this characterization of meanine
even though ,t seems close to our mtu^ons about how language is used This .s becausf

mo^r W^h TS 0f 'T0 n^Or** are n0t ea^ Ucable to uc "ho istic"
models W th such a complex notion of "concept", we are unable to prove anything about
meaning m t e usual mathematical not,on of proof One importam aspect of coSiona
approaches to modelling cogmt.ve processes ,s their ab.lity to deal w.th ^so t o
formalism. Rather than trying to prove things about meaning we can design procedures
which can operate with the model, and simulate the processes invoked inhuman use 0
meaning The justification for the formalism is the degree to which it succeeds in
providing a model of understanding succeeas in

What is important then. ,s the part of the system's knowledge which involves the
interconnections among the concepts. In our model, these are in the form 0 procedu es
written m the Micro-planner programmmg language. For example, the concept CLEARTOP
(wh.ch might be expressed in Fngl.sh by a phrase like "clear off") can be deL ibed by the
procedure diagrammed m Figure 2.4 . aescnoea Dy the

This flow-chart indicates that to clear off an object X. we siart by checking to see
whether X supports an object Y If so. we GET-RID-OF Y. and go checlc aga n When X
does not support any object, we can assert that it is CLEARTOP In thrs ooeratinn«!
defimt.on. we call on other concepts hke GET-RID-OF and SUPPOi. Ea h 0 hese in urn
is a procedure, mvolvmg other concepts „ke PICKUP and GRASP. This representation "
oriented to a model of deduction m which we try to satisfy some goat by se ing UD

successive subgoals. which must be achieved m order to eventually satisfy the main goal

Lookng at the flow chart for GRASP m Figure 2.5 . we can see the steos the
program would take if asked to grasp an object Bl while holding a different objetB2 It
would be called by setting up a goal of the form (GRASP Bl), so when the GRASP
proaram ran. X would represent the object Bl. First it checks I« see whether Bi^a
mampulableobjec since if not the effort must fail. Next it sees if it is already grasp ng
Bl. since tn.s would satisfy the ..oal immediately. Then, it checks to see i« it is hoS an

t0o^u T: '^ V^t' r ,r,eS t0 GET-RID-0F >l The W™ for GET-RID-OF tnes

IS Ä^ÄH we ,00k at the set ^ Ä ÄÄ ÄIÄ
Noiice that this subgoal structure provides the oasis for asking "why" questions a*

Ihe'tltT-^25 thr0U6h •-9 t I'6 dial0g {n Secti0r 2 ,f '-sked ^MÄ M on
A" iä H^riT W0Ud l00k t0 the g0al the: called PUJW' Ä say "To get rid of
m- A t t. ^ y dliy0U get ri0 0i itr " W0Ljld 8° ^ one mo^ step to get 'To eraso
sLetT'Jö Tor)6--Hner"te " rnßl,Sh PhraSf deSCr,b,ng the 0b^ct B1 ^erms 0 is shape, size, and color) How questions are answered by looking at the set of ZlILIi!
called d,rectly in achieving a goal, and generating descriptions of V*toilt£y*?*

34 SHRDLU: A SYSTEM FOR DIALOG

TO GRASP X

MOVE TO THE TOP CENTER
OF X

NO

YES

YES

0 FAIL

•M SUCCEED

GET-RID-OF Y

ASSERT (GRASPING X)

Figure 2.5. The procedure for GRASP.

•

L

THE COMPONENTS OF THE SYSTEM 35

(GRASP Bl)
(GET-RID-OF B2)

(PUTON B2 TABLED
(PUT B2 (453 201 0))

(MOVEHANO (553 301 100))

Fißure 2.6. Stack of goals for grasping object Bl.

These examples illustrate the use of procedural descriptions of concepts for
carrying out commands, but they can also be applied to other aspects of languag0 such as
questions and statements. One of the basic viewpoints underlying tht model is that all
language use can be thought of as a way of activating procedures within the he^er. We
can think of any utterance as a program, which indirectly causes a set of operations to be
carried out within his cognitive system This "program writing" is indirect in the sense
that we are dealing with an intelligent interpreter, who may take a set of actions which
are quite different from those the speaker intended. The exact form is determined by his
knowledge of the world, his expectations about the person talking to him, his goals, etc.
In this program we have a simple model of this process of interpretation as it takes place
in the robot. Each input 'entence is convertsd to a .et o* instructions in PLANNER, which
is then executed to achkve the desired effect. In some cases the procedure invoked
involves direct physical ac ;ons like those above. In others, it may be a search for some
sort of information (perhap; to answer a question), while in stii! others it is a procedure
which stores away a new pitc» of knowledge, or modifies the knowledge it already has.

Let us look at what the sy:tem would do with a simple description like "a red cube
which supports a pyramid." The description will use concepts like BLOCK, RED, PYRAMID,
ana EQUIDIMENSIONAL, which are parts of the system's underlying categorization of the
world. The result can be represented in a flow chart like that of Figure 2.7 . Note that
this is a program for finding an object fitting the description. It would then be
incorporated into a command for doing something with the object, a question asking
something about it, or, if it appeared in a statement, it would become part of the program
which was generated to represent the meaning for later use. Note that this bit of
program could also be used as a test to see whether an object fit the description, if the
first FIND instruction were told in advance to look only at that particular object.

At first glance, it seems 'ike there is too much structure in this program. We don't
like to think of the meaning of a simple phrase as explicitly containing loops, conditional
tests, and other programming details. The solution is in providing an internal language
which contains the appropriate looping and checking as its primitives, and in which ihe
representation of the process is as simple as the description. PLANNER rrovides these
primitives in our system. The program described in Figure 2.7 would be written in
PLANNER looking something like Figure 2.8 . The loops of the flow chart a-e implicit in
PLANNER'S backtrack control structure.

.^_^-a——_,,

36 SHRDLU: A SYSTEM FOR DIALOG I

FIND A PYRAMID X2

NO MORE ^^

Figure 2.7. Program to find "a red cube which supports a pyramid."

I THE COMPONENTS OF THE SYSTEM 37

((GOAL (IS ?X1 BLOCK))
(GOAL (COLOR-OF ?X1 RED))
(GOAL (EQUIDIMENSIONAL ?X1))
(GOAL (IS ?X2 PYRAMID))
(GOAL (SUPPORT ?X1 ?X2))

Figure 2.8. Micro-planner code for "a red cube which supports a pyramid."

IThe description is evaluated by proceeding down the list until some goal fails, at
which time the system backs up automatically to the last point where a decision was
made, trying a different possibility. A decision can be made whenever a new object name

I is assigned to a variable. Using other primitives of PLANNER, such as NOT and FIND (which
looks for a given number of objects fitting a description), we can write procedural
representations for a wide range of descriptions.

Semantics

Once we have decided how the system will represent meanings internally, we must
deal with the way in which it creates a program given an English input. There must be
ways to interpret the meanings of individual words and the syntactic structures in which
they occur. First, let us look at how we can define simple words like "cube", and
"contain". The definitions in Figure 2.9 are completely equivalent to those used in the
program.

(CUBE
((NOUN (OBJECT

((MANIPULABLE RECTANGULAR)
((IS ? BLOCK)
(EQUIDIMENSIONAL ?)))))))

(CONTAIN
((VERB ((TRANSITIVE (RELATION

(((CONTAINER)) ((PHYSICAL-OBJECT))
(CONTAIN 1 2))

(((CONSTRUCT)) ((PHYSICAL-OBJECT))
(PART-OF 2 1))))))))

I

Figure 2.9. Hjctionary definitions for "cube" and "contain"

i

I
Their interpretation is straightforward. The first says that a cube is an object which

■ is RECTANGULAR and MANIPULABLE, and can be recognized by the fact that it is a
| BLOCK, and is EQUIDIMENSIONAL. The first part of this definition is based on the use of

semantic markers, and is for efficiency in choosing interpretations. By making a rough
(categorization of the objects in the model, the system can make quick checks to see

whether certain combinations are rulod out by simple tests like "this meaning of the
adjective applies only to words which represent physical objects." Chomsky's famous
sentence "Colorless green ideas sleep furiously." would be eliminated easily by such
markers.

J

38 SHRDLU: A SYSTEM FOR DIALOG

The system uses this information, for example, in answering question 9 in the dialog,
"Can the table pick up block'.'", as "pick up" demands a subject which is ANIMATE, while
"table" has the marker INANIMATE. These markers are a useful but rough approximation
to the actual deductions a person uses in such cases.

The definition for "contain" shows how they might be used to choose between
possible word meanings. If applied to a CONTAINER and a PHYSICAL-OBJECT, as in "The
box contains three pyramids", the word implies the usual relationship we mean by
CONTAIN. If instead, it applies tc a CONSTRUCT (like "stack", "pile", or "row'Oand an
object, the meaning is different. "The stack contains a cube." really means that a cube is
PART of the stack, and the system will choose this meaning by noting that CONSTRUCT is
one of the semantic markers of the word "stack" when it applies the definition.

One important aspect of these definitions is that although they look like static rule
statements, they are actually calls to programs (OBJECT and RELATION) which do the
appropriate checks and build the semantic structures. Once we get away from the
simplest words, these programs need to be more flexible in what they look at. For
example, in the robot world, the phrase "pick up" has different meanings depending on
whether it refers to a single object or several. In sentence 1, the system interprets
"Pick up the big red block." by grasping it and raising the hand. If we said "Pick up all of
your toys." it would interpret "pick up" as meaning "put away", and would pack them all
into the box. The program for checking to see whether the object is singular or plural is
simple, and any semantic system must have the flexibility to incorporate such things in the
word definit'ons We do this by having the definition of every word be a program which
is called at an appropriate point in the analysis, and which can do arbitrary computations
involving the sentence and the present physical situation.

This flexibility is even more important once we get beyond simple words. In
defining words like "the", or "of", or the "one" in "Pick up a green one." we can hardly
make a simple list of properties and descriptors as in Figure 2.9 . The presence of "one"
in a noun group must trigger a program which looks into the previous discourse to see
what objects have been mentioned, and can apply various rules and heuristics to
determine the appropriate reference. For example it must know that in the phrase "a big
red block and a little one," we are referring to "a little red block," not "a little big red
block" or simply "a little block." This sort of knowledge is part of a semantic procedure
attached to the word "one" in the dictionary.

Words like "the" are more complex. When we use a definite article like "the" or
"that" in English, we have in mind a particular object or objects which we expect the
hearer to know about. I can talk about "the moon" since there is only one moon we
usually talk about. In the context of this article, I can talk about "the dialog", and the
reader will understand from the context which dialog I mean. If I am beginning a
conversation, I will say "Yesterday I met a strange man" even though I have a particular
man in mind, since saying "Yesterday I met the strange man." would imply that the hearer
already knows of him. In other cases, "the" is used to convey the information that the
object being referred to is unique. If I write "The reason I wrote this paper was...", it
implies that there was a single reason, while "A reason I wrote this paper was..." Implies
that there were others. In the case of generic statements, "the" may be used to refer to
a whole class, as in "The albatross is a strange bird." This is a quite different use from
the single referent of "The albatross just ate your lunch."

THE COMPONENTS OF THE SYSTEM 39

A model of languaee use must be able to account for the role this type of
knowledge plays in understanding In the procecural model, it is a part of the process of
interpretation for the structure in which the relevant word is embedded. The different
possibilities for the meaning of "the" are procedures which check various facts about tho
context, then prescribe actions such as "Look for a unique object in the data base which
fits this description." or "Assert that the object being described is unique as far as the
speaker is concerned." The program incorporates a variety of heuristics for deciding
what part of the context is relevant. For example, it keeps track of when in the dialos
something has been mentioned. In sentence 2 of the dialog, "Grasp the pyramid" is
rejected since there is no particular pyramid which the system can see as distinguished
However, in sentence 5 it accepts the question "What is the pyramid supported by■,,'
since m the answer to sentence 4 it mentioned a particular pyramid.

This type of knowledge plays a large part in understanding the things that hold a
discourse together, such as pronouns, adverbs like "then" and "there", substitute noun-,
such as "one", phrases beginning with "that", and ellipsis. The system is structured In
such a way that the heuristics for each can be expressed as a procedure in a
straightforward way.

Syntax

In describing the process of semantic interpretation, we stated that part of the
relevant input wa'. the syntactic structure of the sentence. In order to provide this, the
program contains a parser and a fairly comprehensive grammar of English. The approach
to syntax is based on a belief that the form of syntactic analysis must be usable by a
realistic semantic system, and the emp^sis of the resulting grammar differs in several
ways from traditional transformational approaches.

First, it is organized around looking for syntactic units which play a primary role in
determining meaning. A sentence such as "Every musicial likes long romantic sonatas" will
be parsed to generate the structure shown in Figure 2.10 . The noun groups (NG)
correspond to descriptions of objects, while the clause is a description of a relation or
event. The semantic programs are organized into groups of procedures, each of which is
used for interpreting a certain type of unit.

1
NOUN GROUP

DET NOUN

E I I
t.v»">ny mus I c I an

CLAUSE

VERB GROUP

VERB

I
I i kes

 1
NOUN GROUP

i 1—
ADJ ADJ NOUN

,1 I I
long romantic sonatas

Figure 2.10. Parse tree for a simple sentence.

J

40 SHRDLU: A SYSTEM FOR DIALOG

For each unit, there is a syntactic program (written in a language calkd
PROGRAMMAR, especially designed for the purpose) which operates on the input string to
see whether it could represent a unit of that type. In doing this, it will call on other such
syntactic programs (and possibly on itself recursively). It embodies a description of the
possible ordenngs of words and other units, for example, the scheme for a noun group,
as shown in Fipjre 2.11 .

r
DETERMINER

ORD

T
NUMBER

T
CLASSIFIER»

NAL ADJECTIVE»

QUALIFIER»

HEAD

Figure 2.11. Structure of a noun group

The presence of an asterisk after a symbol means that that function can be filled
more than once. The figure shows that we may have a determner (such as "the")
followed byjan ordinal jsuch as "first"), then a number ("three") followed by one or more
adjectives ("big," "red") followed by one or more nouns being used as classifiers ("fire
hydrant") followed by a noun ("covers") followed by qualifying phrases which are
preposition groups or clauses ("without handles" "which you can find"). Of course many of
the elementr. are optional, and there are restriction relations between the various
possibilities If we choose an indefinite determiner such as "a", we cannot have an
ordinal and number, as in the illegal string "a first three big red fire hydrant covets
without handles you can find" The grammar must be able to express these rules in a way
which is not »imply an ad hoc set of statements. Our grammar takes advantage of some of
the ideas of Systemic Grammar (Halliday, 1971).

Systemic theory views a syntactic structure as being made up of units, each of
which can be characterized in terms of the fraturrs describing its form and the functions
it fills m a larger structure or discourse. In the sentence in Figure 2.10 the noun group
"every musician" can be described as exhibiting features such as QUANTIFIED, UNIVERAl
SINGULAR, etc It serves the function SUBJECT in the clause of which it is a part, as weil
as various discourse functions, such as THEME. It in turn is made up of other units — the
mdr.'idual words -- which fill functions in the noun group, such as DETERMINER and HEAD
A grammar must include a specification of the possible features a unit can have, and the
relation of these to both the functiorj it can play, and the functions and constituents it
controls These features are not haphazard bits of information we might choose to notice
about units, but form a highly structured system (hence the name Systemic Grammar). As
an example, we can look al a few of the features for the CLAUSE in Figure 2.12

THE COMPONENTS OF THE SYSTEM

DECLARATIVE

41

CLAUSE

MAJOR

SECONDARY

MPERAT1VE

NTERROGATIVE
YES-NO

WH-

Figure 2.12. Simple system network for the clause.

The vertical lines represent sets from which a single feature must be selected,
while horizontal lines indicate logical dependency Thus, we must first choose whether
the clause is MAJOR -- which corresponds to the function of serving as an independent
sentence -- or SECONDARY, which corresponds to the various functions a clause ^can
serve as a constituent of another unit (for example as a QUALIFIER in the noun group the
ball which is on the tablr")

If a clause is MAJOR, It if either DECLARATIVE ("She went.") if^ATIVEJ-QO or
INTERROGATIVE (■"Did she gon If it is INTERROGATIVE, there is a further choice
between YES-NO ("Did she go''") and WH- ("Where aid she go'").

It is important to note that these features are syntactic, not semantic. They do not
represent the use of a sentence as a question, statement, or command, but are rather a
characterization of its internal structure -- which words follow in what order. A
DECLARATIVE can be used as a question by giving it a rising intonation, or even as a
command, as m "You're going to give that to me." spoken in an appropriate tone. A
question may be used as a polite form of a command, as in Can you give me a match .
and so on Any language understander must know the conventions of the language for
interpreting such utterances in addiMon to its simpler forms of syntactic knowledge. To
do this it must have a way to state things like "If something is syntactically a question
but involves an event which the hearer could cause in the immediate future, it may be
intended as a request" Syntactic features are therefore basic to the description of the
semantic rules The actual features in a comprehensive grammar are interrelated in a
more complex way than the simple example of Figure 2.12 , but the basic ideas of logical
dependency are the same.

Above we stated that there is a choice between certain features, and that
depending on the selection made from one set, we must then choose between certain
others In dom^ this we are not postulating a psychological model for the order of makinE

choices The networks are an abstract characterization of the possibilities, and form only
a part of a grammar. In addition we need realization and interpretation rules. Realization
ru'es describe how a given set of choices would be expressed in the form of surface
syntactic structures, while interpretation rules describe how a string of words is analyzed
to find its constituents and their features.

42 SHRDLU: A SYSTEM FOR DIALOG

Our grammar is an interpretation grammar (or accepting grammatical sentences. It
differs from more usual grammars by being written explicitly in the form M a program.
Ordinarily, grammars are stated in the form of rules, which are applied in the framework
of a special interpretation process. This may be very complex in some cases (such as
transformational grammars) with separate phases, special "traffic rules" for applying the
other rules m the right order, cycles of application, and dher sorts of constraints. In our
system, the sequence of the actions is represented explicitly in the set of rules. The
process of understanding an utterance is basic to the organization of the grammar.

In saying that grammars are programs, it is important to separate the procedural
aspect from the details usually jssociated with programming If we say to a linguist "Here
is a grammar of English," he cai rightfully object if it begins "Take the contents of location
177 and put them into regis.er 2, adding the index." The formalisation of the syntax
should involve only those operations and concepts which are relevant to linguistic
analysis, and should not be burdened with paraphernalia needed for programming details.
Our model is based on the relief that the basic ideas of programming such as procedure
and subprocedure, iteration, recursion, etc are central to all cognitive processes, and in
particular to the theory of language What is needed is a formalism for describing
syntactic processes Our grammar is written m a language which was designed specifically
for the purpose It is a system built in LISP, called PROGRAMMAR, and its primitive
operations are those involving the building of syntactic structures, and the generation of
systemic descriptions of their parts. The set of typical grammar rules shown in Figure
2 13 would be expressed m PROGRAMMAR by the program diagrammed in Figjre 2.14 .
For such a simplified bit of gramma--, there isn't much difference between tnc two
formulations, except that the PROGRAMMAR representation is more explicit in describing
the flow of control.

S ^ NP VP
NP - DETERMINER NOUN
VP i VERB/TRANSITIVE NP
VP - VERB/INTRANSITIVE

Figure 2.13. Simple grammar rules.

When we try to deal with more complex parts of syntax, the ability to specify
procedures becomes more mpcrtant For example the word "and" can be associated with
a program which can be diagrammed as shown in Figure 2.15 .

Of course the use of conjunctions is more complex than this, and the actual program
must take into account such things as lists and branched structures, and the problems of
backing up if a wrong possibility has been tried. But the basic operation of "look for
another one like the one you just found" seems both practical and intuitively plausible as
a description of how conjunction works. The ability to write the rules as procedures
leaves us the flexibility to extend and refine it.

Ihu COMPONEr.'S OF THE SYSTEM 43

DEFINE program SENTENCE

PARSt^NO-. .^RETuRfg fQllur)

3 NP

DEFINE program NP

DEFINE program VP

PARSE a\
VERB S*

No
 * RETURN failure

yS^ I k
Tfes

\

■ TRANSITIVE^ —•<
PARSED. Yes

a NP J

No
11

_]No

is it^Nw
No

?/^

Yes

RETURN success

I

Figure 2.14. Simple procedural gramnar.

-___-ia>>,_1.^^_a_Ba_ - - _-_^^__—-^—

44 SHRDLU: A SYSTEM FOR DIALOG

Replace the node with a
new node combining the
old one and the one you
have just found

Return success

Figure 2.15. Program for the syntax of "and"

Operation of the system

So far we have described how three different types of knowledge are represented
ana used There 10 the data base of assertions and PLANNER procedures which represent
the knowiedg» of the phys,cal world; there are semantic analysis programs which know
about such problems as reference; and there is a grammar which determines the syntactic
structure The most important element, however, is the interaction between these
components Language cannot be reduced into separate areas such as "syntax, semantics
and pragmatics in hopes that by understanding each of them separately, we have
understood the whole. The key to the function of language as a means of communication
is in the way these areas interact.

L. ^

•

AREAS OF INADEQUACY 45

.r*y^tl^^^ ***£ ^ ^ng senantic

throughout lh. understandmg of, We e Ts ?00 as a oil 7^ g0 T t
COnC

l
Urrent|y

begms to take s .pe. a semant.c programTs cal ed to see wh "eM ^l^^
and the resultant answer can d.rect the parsing In dec dm^S ^
semant. routme may call deducts V^**£^Jljfö,2^
As an example, m sentence 36 of the dialog ("Put the blue pyramid on teboc T he
box) the parser first comes up with "the blue pyramid on the block" M ■ cLSSJ ^ .
noun group. At this point, semant.c analys.s ,s begun, and nee "the" is d.fin f Z i
is made in the data base for the object being referred to WhL n« c '^'"'»fv3 f^ck

system of semantic markers may reject a poss.ble interore ItL on it. 1 ' 1
conflpctmg category inlormat.oo Thus there is a conlmu,oL ,n !!, L! baS's 0'
different sorts of analysis, with the results T^Jt^SffiJ*** Mwee" ,he

rhr6e^rLbct^:fsmTÄK
exactly what sort of problem arose ^thTmHSna^ ^!l l! £ £ the basis of

back,jp is ever used, since the combination T^kJZ^J^^? "W*
guides the parser down prof.table paths * ,,C informatlon usually

Areas of inadequacy

Looking into the specific capabilities of the svsfem w^ ran finH m« i
the details seem .nadequate. or whole areas rt X^7 ^ Ä'^S^^ Ä!
hypothetical or counterfactual statements it onlv acron». . iimitL anemPt to handle
mformat.on. it cannot talk about verbal at the\rSnt 0 ^ ."S 0f deC,ara!i^
the description above, and so on However thLriiTl s "0t as general as
of what has been tackled so far. Xr ^Zt^Z^ ^* ^
Looking deeper, we can find two basic wavs in whirh ii -^-- underlying model.

I human language use The first Ä Ä Ä iS^L^ÄL."!^^

, ^SÄTTÄ',n,erac,ion be'w"n ,he "n,«' 5^Ä!iS ^ ,t
The understanding process

The bl^srn^fÄ!; :tni«t;scai;ycahccree
0

etah,ecoor8 u?Kwi,.h pos8ibiii,ies-
.nterpretat^n on „ to decde wh^r'to'' ol "^n ''tf,T mV'rptiS/'Z'10

programs such as those of Schänk and Ouillian use the «Lnif, 1, t" Pa'sing Other
the defimfons of the words to ^J^^^VZ^:^^^^

46 SHRDLU: A SYS'EM FOR DIALOG

information in a secondary way to check whether the hypothesized underlying semantic
structure is in accord with the arrangement of the words.

In looking at human language use, it seems clear that no single approach is really
correct. On the one hand, people are able to interpret utterances which are not
syntactically well formed, and can even assign meanings to collections of words without
use of syntax The list "skid, crash, hospital" presents a certain image, even though two
of the words are both nouns and verbs and there are no explicit syntactic connections. It
is therefore wrong to insist that some sort of complete parsing is a prerequisite for
semantic analysis.

On the other hand, people are able to interpret sentences syntactically even when
they do not know the meanings of the individual words. Most of our vocabulary (beyond a
certain age) is learned by hearing sentences in which unfamiliar words appear in
syntactically well-de'ined positions. We process the sentence without knowing any
category information for the words, and m fact use the results of that processing to
discover the semantic meaning. In addition, much of our normal conversation is made up of
sentences like "Then the other one did the same thing to it." in which the words taken
individually do not provide the clues which would enable us to determine the conceptual
structure without a complete syntactic analysis.

What really seems to be going on is a coordinated process in which a variety of
syntactic and semantic information can be relevant, and in which the hearer takes
advantage of whatever is more useful in understanding a given part of a sentence. Our
system models this coordination in its order of doing things, by carrying on all of the
different levels of analysis concurrently. However it does not model it in the control
structure

Much remains to be done in understanding how to write computer programs In which
a number of concurrent processes are working in a coordinated fashion without being
under the primary hierarchical control of one of them. A language model which is able to
really implement the sort of "heterarchy" found in biological systems (like the coordination
between different systems of an organism) will be much closer to a valid psychological
theory

We might imagine a system which operated like a person putting together a jigsaw
puzzle. The shape of the pieces might correspond to syntax — there are rules for how
the different shapes fit together, and some pieces can be assembled without regard to
what appears on them. Most of the time, though it is much easier to use information like
"This piece is red, so if I could find a piece with a red tab on it, it might fit". The search
for the next piece is based on color rather than shape. We might view things like color
and texture as a kind of simple picture semantics which indicates what sorts of elements
can fit with what others. This often serves as the basic way of deciding what pieces to
try, while the exact grammar of the shape is used to check each popsibility and see If it
really fits. Finally, there is a more sophisticated pragmatics or reasoning based on
knowledge of pictures. If a picture of an elephant is emerging, it might be useful to look
for something with the color and texture of an elephant tail, and then use its further color
and shape information to guide the process

I
I

I

I

i

AREAS OF INADEQUACY 47

This jigsaw style of organization makes flexible use of whatever information is most
helpful at a given moment, using other sources of information as a check on that. Systems
like the Hearsay speech system are beginning to explore this style of organization, but
most current language systems are driven by a single primary aspect. SHRDLU can be
viewed as attempting to fit pieces on the basis of shape, then checking both the colors
and patterns to see whether they fit or something else should be tried. Schank's system
uses the general color features to make proposals, checking the exact shape afterwards.

Natural communication

The second basic area of shortcoming is in not dealing with all the implications of
viewing language as a process of communication between two intelligent people. A human
language user is always engaged in a process of trying to understand the world around
him, including the person he is talking to. He is actively constructing models and
hypotheses, and he makes use of them in the process of language understanding. As an
example, let us consider again the use of pronouns. In Section 1, we described some of
the knowledge involved in choosing referents. It included syntax, semantic categories, and
heuristics about the structure of discourse

But all of these heuristics are really only a rough approximation to what is really
going on. The reason that the focus of the previous sentence is more likely to be the
referent of "it" is because a person generally has a continuity in his conversation, which
comes from talking about a particular object or event. The focus (or subject) is more
likely just because that is the thing he is talking about, and he is likely to go on talking
about it. Certain combinations of conceptual category markers are more plausible than
others because the speaker is probably talking about the real wcrld, and certain types of
events are more sensible in the real wüna If we prefix almost any sentence with "I just
had the craziest dream." the whole system of plausible conceptual relations is turned
topsy-turvy.

If someone says "I dropped a bottle of Coke on the table and it broke.", there are
two obvious interpretations. The semantic categories and the syntactic heuristics make it
slightly more plausible that it was the bottle which broke. But consider what would
happen if we heard "Where is the fool box'' I dropped a bottle of Coke on the table and
it broke." or "Where is the furniture polish9 I dropped a bottle of Coke on the table and it
broke." The referent is now perfectly clear -- only because we have a model of what is
reasonable m the world, and what a person is likely to say. We know that there is
nothing in the tool box to help fix a broken Coke bottle and that nobod> would be likely
to try fixing ont. it would be silly to polish a table that just got broken, while it would
be logical to polish one that just had a strong corrosive spilled on it. Of course, this must
be combined with deductions based on other common sense knowledge, such as the fact
that when a bottle breaks, the liquid in it spills.

Even more important, we try to understand what the speaker is "getting at." We
assume that there is a meaningful connection between his sentences, and that his
description of what happened is probably intended as an explanation for why he wants
the polish or toolbox. More subtle deductions are involved here as well. It is possible
that he broke the table and fixed it, and now wants the polish to cover the repair marks.

■ If this were the case, he would almost surely have mentioned the repair to allow us to
follow that chain of logic.

48 SHROLU: A SYSTEM FOR DIALOG

Our system makes only the most primitive use of this sort of deduction. Since it
keeps track of when things have been mentioned, it can check a possible interpretstion of
a question to see whether the asker could answer it himself from his previous sentences.
If so, it assumes that he probably means something else. We could characterize this as
containing two sorts of knowledge. First, it assumes that a person asks questions for the
purpose of getting information he doesn't already have, and second, it has a very
primitive model of what informalion he has on the basis of whjt he has said. A realistic
v,ew of language must have a complex model of this type, and the heuristics in our
system touch only the tiniest bit of the relevant knowledge.

It is important to recognize that this sort of interaction does not occur only with
pronouns and explicit discourse features, but in every part of the understanding process.
In choosing between alternative syntactic structures for a sentence, or picking between
multiple meanings of words, we continually use this sort of higher level deduction. We
are always basing our understanding on the answer to questions like "Which
interpretation would make sense given what I already know?" and "What is he trying to
communicate9"

References for lecture 2

M.A.K. Halliday, Language structure and language function, in John Lyons (ed.), New
Horizons in I inguisars, Pelican, 1971.

Carl Hewitt, Procedural embedding of knowledge in PLANNER, Proceedings of the
Second International Joint Conference on Artificial Intelligence, London, 1971.

M. Ross Quillian, Semantic Memory, in Minsky (ed.) Semantic inform ninn
processing..

Roger Schänk, Identification of conceptualizations unde^'ying natural language, in
Schänk and Colby (eds), Comrutpr models of thought and language.

Gerald Sussman, T. Winograd, and E. Charniak, Micro-planner reference manual, MIT
Al-Memo 203, 1970

Terry Winograd, Understanding natural language, Academic Press, 1972

Terry Winograd, A procedural model of language understanding, in Schänk and Colby
(eds). Computer models of thought and language.

^*m

I
I

49

Lecture 3

REPRESENTATION:

FORMALISMS FOR
KNOWLEDGE

This lecture will mce away from talking about natural language systems directly. It
will raview a number of the methods which have been explored for representing
knowledge in a computer, as a background for understanding current problems in natural
language. The word "knowledge" is intentionally vague, since the issues are very general
and apply to many different sorts of knowledge. I will try to clarify it through showing
specific examples.

Basic issues of representation

In designing a system for representing knowledg«. ;n a computer program, there are
a number of issues we must face.

First, we must be concerned with how the system will make use of the
representation in operation, and in particular \ e want i| to be efficient. We must be
concerned with the wa^ the efficiency change.- with the amount of knowledge in the
system. Some reor^sentations are good for small amoü ts, but explode in an exponential
way as " ^formation is added. Other representation;; ,re less sensitive to size, and
large s;, -un as efficiently as small ones.

(The next issue is learning -- the addition of new knowledge. It is important that
the knowledge be modular We should be able to add new farts without worrying in
detail about how they connect with others. The easiest form of learning would take place

I in a completely independent system where each fact served as its own module. Learning
would then be a simple process of accumulation. In any realistic system this is not the
case, since we have to be concprned with the interactions between the new piece and
I the ones that were functioning oefce. We also want the representation to be natural,
so that it is easy for a person to add new knowledge. If the format is difficult for people
to work with, it makes it harder to put knowledge into the system.

Finally we must be worried about building the system. We must choose between
complex structure of many parts, or a structure operating in a simple uniform way. There
is a tradeoff between the complexity of structure and the generality of the system. We
would like it to be able to handle as many different kinds of knowledge activities as we
can.

50 REPRESENTATION: FORMALISMS FOR KNOWLEDGE

As in much of compuier science, there is nn wav to rraxim.7*. all nt »K«^

lei? müS,, '%Y 'IS ,rade0"S '" h*"* ,0 -3ÄSlÄ ice Te ™k
een?t'

0 u/.T TH ^ , eS m0re na,ural l0 express "« "US a more COM« Tystem

I am primarily concerned with artificial intellioence oroblems M tho l^d u

Using a representation

A number of Al repre.-.ntations have been develocöd Sr ,,«0 ;« .
problem task. Th,s lecture will present a number onul^t*^^™**
hey give useful ways ol ep«rttlM on knowledie structures Fi<.Mr. »T IT .

the d,.lerent operat.on. a representahon must SÄub^Ä.^r "" "

CONTROL
What should I do next?

RETRIEVAL
What knowledge might I try using?

MATCHING
Does it apply? How?

APPLICATION
What can I conclude frorti it?

Figure 3.1. Operations of a knowledge-using system,

also may involve doing a lot of searching and looking around * ^ But th,S

I
I
I
I
I
I

I
I
I
I

PREDICATE CALCULUS 51

The retrieval process involves sorting out large quantities of knowledge to decide
which ones are relevant to what is being done. In ordinary programs, this is not an issue.
A subroutine is called explicitly, so there is no need to look around at others, or decide
whether it is the one to use. In heuristic search, on the other hand, it becomes important
to be able to choose a particular set of methods to be tried on a problem. When we try
to decide which methods will possibly work, we must use some fort of retrieval
mechanism.

The matching problem involves looking at a particular method and seeing how it
actually fits with the problem. It is more specific than retrieval, which generates plausible
choices, in that it is concerned with understanding just how the one chosen interacts with
what is being done -- how does this program fit with the job at hand, or how does this
particular fac* answer the question which is being posed.

Finally, we must use the resulting match to draw a conclusion or have an effect.
This, like the terms above, will become more clearly defined as we go through some
examples.

Predicate Calculus

Let us begin with a representation from mathematics and formal logic -- the
predicate calculus. In this system, a small number of possible structure types are used in
a very general way to describe knowledge without regard to the particular domain. I will
not describe here the details of this formalism, which are available in many places.

Simple facts, like "Fido is a dog", or "Kazuo owns Fido", are expressed in atomic
statements like Dog(Fido) and Own(Kazuo,Fido). Quantifiers make it possible to express
more complex facts like "A dog is an animal," or "Every dog has an owner." as:

Vx Dog(x) = Animal(x)
Vx Dog(x) ^3y Owner(x,y)

Through use of a small set of logical manipulations, these facts can combined to
answer questions and solve problems. If we know that Fido is a dog, then the question
"Does anyone own Fido''" might be answered directly if information about his ownership
were in the system, but if not it could still be answered "Yes." by deducing from the
general fact above that he must have some owner. We could derive this in the form of a
logical proof of the owner's existence.

There is a straightforward connection between asking questions and finding solutions
to problems. It is so simple as to be a trick. Faced with a problem, such as building a
certain structure out of blocks, I can phrase a question like "Is there a series of possible
actions whose end result is the desired arrangement'" In order to answer this, the system
will usually operate by actually figuring out what the sequence of steps must be. This is
not a logical necessity, as it could know that there is a possible one on more abstract
grounds, but due to the way the axioms are put into such systems, they can -enerally
only find the proof by constructively working out the sequence of operations. will use
the phrases "solve problems" and "answer questions" interchangeably to represent a kind
of reasoning operation which begins with a set of facts and procedures, and ends with a
desired result.

——__

52 REPRESENTATION: FORMALISMS FOR KNOWLEDGE

In using predicate calculus, we must have some way to generate a proof. The
system must have some way to decide which fact it should apply, and to see ho v that
fact applies to the question. Faced with "Does anyone own Fido" it must decide the.t the
general fact Vx Dog(x) =3y Owner(x,y) is relevant. It must m*tch the "X" in that fact to
Fido, and must use rules cf logic to combine this with the fact Dog(Fido) and draw the
necessary conclusion.

In most systems using predicate calculus, this is all done by a uniform proof
prorcdurc. There is a method built into the system for taking a group of axioms and
looking for a proof The methods used can be shown to be complete. If there is enough
knowledge in the system to prove something, most theorem provers will eventually get to
it. But this is a significant "eventually". The demands of generality make these systems
inefficient m a combinatorial way. If the number of facts is doubled, the running time is
squared.

Retrieval -- the decision of what facts to look at next — is not dealt with as a
separate problem. Those things which are tried include any facts which might fit in
accordance with the rules of logic There may be heuristics which involve choosing
shorter facts first, or the like, but there is nothing in the basic principles of predicate
calculus or in the implementation of current systems, corresponding to the human decision
of "What kinds of things seem likely to be most relevant9"

Matching is handled by a process called uni/iration which matches objects to
variables, m a purely syntactic way.

Finally, the application of any particular fact is to deduce a new fact or establish a
truth or falsity. Each "step" involves combining some old facts according to rules of logic
to either establish new one or find a contradiction. '

The advantages of predicate calculus systems are along the dimensions of modularity
and generality. Each fact is valid, independent of whatever else is in the system. The
notation is explicitly general, not tailored to any particular sort of knowledge. The main
problem with this approach is efficiency. All of the systems which have adopted it have
been limited to very tiny sets of facts, usually on the order of less than a hundred, and
often less than ten. The complexity of such a system depends on how much concern
there is for efficiency. In principle, theorem proving could be done with a very simple
system, but the ones which have been designed are quite complex due to needs of
reducing some of the gross inefficiency.

Along the dimension of naturalness, it is a matter of taste. Some people (usually
trained in mathematics) find predicate calculus a very natural way of expressing thines
while others find it quite difficult «. » •

Simple programs

A very different sort of representation is the simple form of what we think of as
programx. In programming there is a separation between program and data, as
opposed to the more uniform representation of predicate calculus. The knowledge of a
specific domain will be a combination of special procedures, and specific data. A program
which calculates astronomical orbits will contain much of its knowledge about astronomy in

T

I SIMPLE PROGRAMS 53

. the program which performs the calculation, while other will be in the form of data in
| various constants, arrays, etc.

i
This form of representation implies very different tradeoffs. The control is

completely explicit, Which piece of knowledge will be called at any particular time s
determined .n advance by the programmer. If a procedure has some question to be
answered, it contains a specific call to the subroutine which can generate that answer
This is very different from the general sort of etrieval in predicate calculu where any

SjTSi mftChe? ?• 0ne beinß l00ked f0r may be used ^ the system and may be added without explicit programming to call it. / , «. u may oe

The binding of arguments can be viewed as a kind of matching procedure, where the
particular case 1. put in correspondence with a general formula. A routine says Tor any

^3 UlU-T h0W/0 T^ '♦ T0 T?Wer ,he Specific ^es,ion "Wh^ is'the square of 3.14158? the system binds the value 3.14158 to the variable X, then runs the
procedure. As a result of apply.ng a procedure, a specific sequene of further
procedures might be called as subprocedures. M c «-e or runner

One of the main goals in this lectures is to show the ways in which activities Vkm
predicate calculus theorem proving and numerical calculation are really doing very much
the same thing. Al hough knowledge that "All dogs are animals.", and "To square a number
multiply it by itself, are represented very differently, they have much in common, and in
Al, we are looking for the right specific tradeoffs to handle as many kinds of knowljge äs

The efficiency of programs is the greatest we could expect. There is no time
wasted m deciding what to do next, or trying different possibilities. As programs get
larger, as long as they are well structured, they do not lose efficiency, and cfnTnclude
great a. ^unts of specific knowledge. On the other hand, thr.ir modularity is often bad
Struc ured programming is an attempt to get away from »his, but in general a change to
one subroutine can have far reaching effects on the others that use it If I have a
rlufn'T^ " S Vubroi;tif\e'and change that program, then when the subroutine is
SfS th* e;v,ron™t ™y b« afferent from what was anticipated, and this may cause
Ithers. WheneVer ' make Changes t0 one ,hin8' ' must worry about how it interacts with

i N^f'nf5 's *• ** a property of programs for most domains. It is much easier
to say All dogs are an.mals." than to write a program which uses th s knowledee
effec ively^ The comp exity of the system (the general system for maZ atmg
knowledge) would be that of the compiler or interpreter. In both complexfty and
generality, there is a wide range. We can build a very complex system o a simple
mterpreter. We can have a general programming language or a specialized one So
choosing a procedural representation leaves many of these questions open while giving
advantages in efficiency, and suffering in generality. It can only do those things which
were planned explicitly in organizing the knowledge. 8

We can look at prog-ams and formal logic as being at two opposite poles Programs
are efficient at the cost of low generality, while representations like predicate cafculus
are very general at the cost of low efficiency. ^eaicaie caicuius

54 REPRESENTATION: FORMALISMS FOR KNOWLEDGE

Planner-like languages

One of the mam developments in Al has been the invention of programming
languages which give us some of the benefits of a more flexible representation. They
want to keep the efficiency and runnability of programs, avoiding (hfl problems of general
search, while breaking loose from some of the rigidities of program control. One such
language is Planner There is a whole set of Planner-like languages, such as: Micro-
planner, an implementation of a subset of its ideas; Conniver a close descendant of
Micro-planner, and QA4-QLISP, a very similar approach developed at the Stanford
Research Institute.

The basic idea of these languages includes having a data base of primitive
assertions much like the simple assertions in a predicate logic system. A simple fact like
"A is on B" is represented m a data structure like: (ON A B). There is then a set of
consequent theorems and antecedent theorems *» -»bedding more complex knowledge, like
those in Figure 3.2

(CONSEQUENT(X YZ) (ON ?X ?Y)
(GOAL (ON ?X ?Z))
(GOAL (ON ?Z ?Y)))

(CONSEQUENT (X Y) (ON ?X ?Y)

(GOAL (CLEARTOP ?Y))
(GOAL (GRASP 'X))
(GOAL (MOVE-TO ?Y))
(GOAL (LET-GO-OF ?X)))

(ANTECEDENT (X Y) (ON ?X ?Y)
(ERASE (CLEARTOP ?Y)))

Figure 3.2. Some theorems in a Planner-like language.

The first says that in order to establish that an object X is on an object Y, this can
be done by establishing that X is on some object Z and Z is on Y. This same fact might
be represented in a simple logic formalism as:

Vx.y.z (On(x,z) A On(z,y)) r. On(x,y)

Rather than simply stating that fact, the Planner theorem states a partiuclar
sequence of actions to be taken if there is a goal of establishing the fact (ON X Y). In a
natural way, this can be use to describe complicated sequences of actions, as in the
second theorem of Figure 3.2 It says that to put X on Y, we need to clear off Y, then
grasp X, move to a location on top of Y and let go. I have included this simplified example
to illustrate how Planner tries to bridge the gap between the program world and the
logic world. The first theorem is much like a logical statement -- "If A is true and B is
true then C is true." The second is much more like a program with calls to subroutines.

PRODUCTION SYSTEMS 55

Planner-like languages use /«ttcrn directed invocation to make both o* these
work Rather than calling a subroutine by name, a Planner theorem specifies a pattern of
the result to be achieved, like (ON A B). The theorems are stored with a special index
which can decide which ones match the goal pattern. When a pa'-iicular goal is set up,
the system automatically tries the various theorems which are indexed as being useful for
this goal. The theorems of Figure 3.2 would be called for any goal of the form (ON ? ?)
where the question marks indicate arbitrary elements. Planner gives the ability to be
explicit in controlling what will be called by adding a recommendation list to the goal.
This can specify a particular routine, or provide heuristics for choosing among several. If
you give specific recommendations, Planner operates like any other programming
language. If you don't, it provides a very general search procedure, using a backtrack
control structure to do a depth first search of all the possibilities.

Planner also contains antecedent theorems which act like interrupts on the
assertion of new data structures. The theorem at the oottom of Figure 3.2 says "If you
ever add a fact saying that some object X is on an object Y, then also erase the fact that
Y is clear on top" An antecedent theorem can specify an entire sequence of actions, and
call any other sort of theorems in doing it.

The consequent/antecedent distinction is much like the notion of top-down versus
bottom-up control. In the consequent case we say "Mere is what I want, go try to do it."
while m the antecedent case, the message is "Here's what I've just found, what can you
do with if"

The retrieval system for these languages is straightforward. In deciding what
theorems are relevant to a goal or new assertion, the system calls on a syntactic pattern-
matcher, comparing the form of the new item with the patterns stored in the index. That
matching process also does the variable bindings (unification). The application of any fact
is the running of the sequence of Planner statements in its body -- the result of calling a
piece of knowledge is to explicitly direct the flow of the computation..

Production systems

Another pattern-based representation is the production system developed by
Newell and Simon at Carnegie-Mellon University. A body of knowledge is represented by
a linearly ordered set of rules called productions which operate on a short term
memory of patterns These correspond m a loose way to the theorems and assertions of
Planner. A production rule is very much like a Planner antecedent theorem. The action
jf a production is essentially "If the patterns in the short term memory match the indexing
pattern of the production, then do the actions specified in the production." Figure 3 3
shows a possible short term memory for a simple blocks world, and a set of productions
to work with it. The patterns on the left of the arrow are those that trigger the
production, those on the right represent its action.

56 REPRESENTATION: FORMALISMS FOR KNOWLEDGE

Short term memory

(ON A B) (ON B C) (»GOAL (ON A C)) (LOCATION C (100 200 100))...

Productions

(ON X Y) (ON Y Z) - ADO-TO-STM (ON X Z)
(♦GOAL(ON X Y)) (ON X Y) - ADD-TO-STM (GOAL-COMPLETE (ON X Y))

Figure 3.3. A hypothetical production system for the blocks world.

There some basic important differences between the operation of a production
system and a planner-like language. First, the production patterns match against the
entire short term memory, not just a single assertion Therefore a production can be
triggered by a combination of facts in a way which is very awkward for Planner. Another
important difference is in the way of deciding which production to apply. In Planner there
are mechanisms for explicitly naming the theorems, for putting in arbitrary programs as
recommendations for selecting them, and a default mechanism for doing a complete search.
In a production system, there is an ordering built in among the productions, and the
system uses this permanent ordering to decide which pr^ijciion should be applied in the
case that more than one is possible. Most of the work the', has been done has used a
simple linear ordering of all the productions Newell and Plmon have tried to show how
this sort of ordering can explain many aspects of human pioblem solving. It remains to be
seen how this will work for complex problems involving large amounts of knowledge. If it
does, it p. ovides a specific compromise between efficient but inflexible call, and general
search

There is no separate mechanism for retrieval in a production system. The decision
of what to try is based on a syntactic match between the patterns in the short term
memory and the patterns of the productions. Matching is done in a very simple way
(intentionally avoiding the complexities of other matchers in order to remain more
plausible as a psychological model for a primitive Operation). The action of a production is
an explicit sequence of operations on the short term memory. This is different from a
planner-like language, in that a production does not directly call another productions in
the same way that a theorem can call another theorem. All it can do is leave the short
term memory modified m such a way that it will cause other productions to be called
when the next round of pattern matching is done.

Merlin

Another system being developed by Newell is Merlin. It is in a very early stage of
development, and only one very sketchy paper has been published on it. I won't go into
much

ACTORS 57

detail, but want to mention it because it has many ideas in common with the kind of
system I will describe tomorrow, which could be worked out much more fully.

The primary data object in Merlin is a beta ttrurture like those in Figure 3.4 . The
first says that a man is an animal, further specified as having a house and a nose. We
view each object as an instance of some more general class with some further
specification. A pig is also an animal, but with different further specification. The basic
operation is something called mapping It can be thought of as "Try to view this object
as an instance of that object" If we ask "Try to view a man as an animal." Merlin will
answer "It is one, with a house and a nose." If we ask "View a pig as a man", it says "I
can only do that if I view a sty as a house and a snout as a nose." It the-! recursively asks
"Hew can I view a sty as a house" Presumably sty will have been defined as a "house for
a pig", so this mapping succeeds, and so on.

MAN [ANIMAL : HOUSE NOSE]

PIG [ANIMAL : STY SNOUT]

Figure 3.4. Beta-structures (Newell).

The details of this operation leave much to be worked out in terms of the selection
of elements in the beta-structure for mapping, the control of which will be tried when
and what level will be taken as satisfactory, etc. But what is important is the basic idea
that we should think of controlling a problem solving procedure in terms of mapping We
should look at a particular set of farts as an instance of some more general object and
the basic reasoning process involves trying to establish the correspondence in' this
mapping.

In a natural language understander, we might have a beta-structure to represent a
particular kind of story where a person searches for a treasure and finds it. We might
take the sequence of lines of some particular story we are reading and view it as a
further specification of our general treasure-story. In doing this, there will be a top-
dcwn search to map the elements of IN general story onto the specific events I will
talk about this kind of approach much rrwre in the next lecture.

Actors

Another approach which is not very far developed, but represents a way of
thinking about knowledge is actors. Merlin says that the fundamental operation is a kind
of analogy. One pattern is viewed as representing another pattern, and the analogy must
be established between the internal elements of them. The thought process is driven by
a kind of inference based on trying to apply a stock of general descriptions to the specific
data on hand, and as a result coming out with further specific facts.

Hewitt's actor formalism is a very different way of looking at things, in which
everything is viewed as a procedure. So in addition to obviously procedural things like a
function definition, he also sees the number "3" as a procedure, or the list (A B) as a
procedure. This seems counter-intuitive at first, but provides a kind of uniformity to all

^^^^^~ •^^^^^^^^^^^^^^^^^^~™1 ' ■ n,. -. -L.i uii mm !■ il-^—^—^^1^^-— i

58 REPRESENTATION: FORMALISMS FOR KNOWLEDGE

the knowledge in the system. In ordinary programm ng, we view data as a set of objects
to be operated on. So the number 3 can be operated on to produce its lign, or
magnitude, or to add it to something If the data is a list of two elements, then we can
find the first element of it, etc. In the actor way of thinking, each entity is an
independent procedure which can receive messages from other procedures and send
messages back So the list (A B) is a procedure which accepts the following messages:

1, I want to know your first element (CAR)
2. I want to know the list which is all but your first element. (CDR)
3 Are you exactly the some element as this one. (EQ)

Instead of thinking of primitive operations on data types, we think of a primitive set
of messages which will be accepted by any actor which represents an object of that type.
If you send a message to an actor which does not know how to handle It, it will cause an
error.

This viewpoint gives an interesting perspective on ordinary programming operations
like PRINT and PLUS. In the usual way of thinking about programs, there is an operator
named PLUS or "+" which knows enough about different data types to be able to add
them, doing the necessary conversions, calling the appropriate hardware instructions, etc.
If we add a new data type, PLUS must be changed to handle it. In the actor way of
thinking, "+" is a message wh.cn can be passed to any actor. The actor associated with 3
knows how to handle such a message In the case of a binary operator like "+" this
involves negotiating with tne other operand about which knows how to handle the other.
In a simple unary operator like PRINT we can view the message as being "Print yourself,"
and the knowledge of what form should be used for printing each sort of data is
distributed through the system in the programs of these actors. Our list actor above
would have a procedure of the form;

1 Send the message "print yourself" to the actor "("
2 Send the message "print yourself" to the actor you have as your first

element.
etc.

This view is uniform, and raises many interesting questions about the way
knowledge is distributed in the system. On the other hand, it is often a less natural way
to look at what is happening than a more traditional view of program and data.

Looking back to the predicate calculus formalism above, it Is very non-actor like.
We do not think of a formula in terms of what it does, but in terms of Its structure which
can be operated on. On the other h,änd, the simple programming view is much more actor-
like, and the actor formalisation is a generalization of the programming viewpoint.

Actors are not a developed system with specific choices about how such operations
as retrieval and binding should be done, but much more a way of looking at knowledge,
and thinking about how control should be organized. In the frame representation
described in the next lecture, I will show where some actor-like Ideas are being applied.

r^
SEMANTIC NETS 59

Semantic nets

Another type of representation used m natural language programs is .srmomir nrt i
These have been formulated and used in a variety of ways, and I w.ll just try to point out
he basic emphasis Nets are used to express much of what we might call "common-sen' e

knowledge" They are not designed like symbolic logic to express complex formulas and
connections, but rather are a natural way of expressing simple relationships Figure 3 5
shows a(simple net. There is a node for "dog", and one for "animal" connected by a link I
call isa , indicating that a dog is a kind of animal. In the predicate calculus formalism this
fact would be stated m a quantified formula:Vx Dog(x) a Animal(x). For certain kinds of
information, such as the class-subclass hierarchy for types, the net notation is a natural
and simple way to describe thirds.

■

PERSON

i • .)

KAZUO,

ANIMAL

.FIDO
owns

Figure 3.5. A semantic net.

Once the information is in this form, there are two basic operations that can be done
on it. One is a simple kind o(deduction. If we ask "Does Fido eat meaf" A system could
have a set of procedures for looking at the net, and seeing the two connections "Fido isa
dog Dog eats meat and answering "Yes." The system would have built into it the
deduction rules appropriate to the different kinds of links. This sort of mechanism has
been proposed as being close to a psychological for human deductive mechanisms.

The other operation is a kind of search, using intersection in the net It is used for
deciding which links are relevant to what is being asked. If I say something about "Fido"
and meat in the same sentence without explicitly mentioning any connection, this
network could be used to find one We can imagine sending out signals from those two
nodes, spreading through the net one link at a time When two signals intersect the oath
between them will be the shortest set of links connecting the two objects - in this clr
we would find the two link connection "Fido isa dog" "Dog eats meat."

One problem with this search is that it explodes very quickly as the number of links
goes up. If the search must extend farther than one or two links, there will be a host of
connections, some relevant and others irrelevant. For a node like "dog" or "meat" the

nr

60 REPRESENTATION: FORMALISMS FOR KNOWLEDGE

number of connections may be very large The ones which will be found depend strongly
on the kinds of links allowed, and it is not clear how far a simple network algorithm can
be extended into complicated domains.

The other problem is that of expressing more complex facts, like those involving
quantifiers. The fact that "Every dog is owned by some person." cannot be simply
expressed by linking the nodes for "dog" and "person", since that would not distinguish it
from "Every person owns a dog" or "some people own dogs." In order to use nets well,
we will need to combine their natt-alness and simplicity for simple cases with the more
extended power of other representations, including the equivalent of variables and
quantifiers.

Semantic networks are the only representation I have described which concentrate
on the problem of retrieval -- how to find the set of facts relevant to a given problem.
The others have concentrated much more on how to apply the facts when they are found'
The two ideas might well be combined, since the strength of network systems is more in
finding connections than in making use of them.

Frames

I hope it is clear by this point that there are many issues to be dealt with in
choosing a representation for knowledge We would like to combine the benefits of all of
the current approaches. The uniformity or generality of some approaches needs to be
combined with the efficiency and simplicity of others. I am in the process of working out
such a formalism for use in programs for understanding natural language. I would like it to
be general enough to represent the facts about the world being discussed, the meaning of
sentences and phrases, and also the facts about the language. It must be able to handle
both those things whose general nature is best thought of as a procedure and those which
are better thought of as a set of independent facts which must be worked on and put
together There are currently many people looking into formalisms which they call
frames. It is important to point out that this does not involve an actual working system
eleven a coherently worked out set of ideas. Minksy and others at MIT are working out
a "frame" way of thinking for visual information processing -- for programs which look at
a scene and recognize what is in it. I have been working with Dan Bobrow at Xerox
PARC, developing a frame-like notation for use in natural language processing.

At this point, all we have is a collection of ideas to be developed in the coming
years. In the next lecture I will go into some detail on some of the things which should go
into frames. In an area somewhat abstracted from natural language. Here I will just point
out some ways in which the frame viewpoint contrasts to the representations described
above.

One belief is that no simple system with only a few kinds of objects and operations
will be able to find the right tradeoff between all of the issues of representation The
price of a system which is really general is a fair amount of complexity in the kinds of
objects and operations it includes. This allows it to operate in a natural way — simply
for simple things, but with enough mechanism to handle whatever degree of complexity is
needed.

 __.

FRAMES 61

The basic object in the system is a frame, which can be thought of as a collection
of facts and procedures associated with a concept. It is a bit like one of the nodes in the
semantic nets, or like an independent actor. It does not correspond to a "single fact" like
in a formal logic representation, but is a chunking of information around a single concept.
Figure 3.6 gives an example parts of the frames for the concepts "give and "pay", in a
simplified form The system contains a hierarchical network classifying the concepts as
"further specifications" of others. So "give" is a kind of "act". If we know that every act
must have a time and place, then we know automatically know that every "give" has a
time and place. Similarly, "pay" is a kind of "give".

GIVE isa ACT

ACTOR: person
BENEFICIARY: person
OBJECT: physcial object

PAY isa GIVE

OBJECT: money
REASON: debt

Figure 3.6. Some simplified frames.

Associated with each frame is a set of important dementi or Imps. These are
labelled as being of central importance to the properties of the frame. Among the many
possible facts about a concept, only certain ones will be relevant for a given purpose. A
central set will be most likely to be relevant. In the case of giving, the ACTOR doing the
giving, the BENEFICIARY receiving it and the OBJECT being given are of primary
importance. In paying, the OBJECT is further specified as being money, and the reason
(which in general is an Imp for any act) is further specified as being some kind of debt.
The frame for "donate" would have a different further specification for its reason.

In addition to the hierarchical structure of "isa" links and the presence of Imps,
frames have an explicit indexing mechanism for finding the facts relevant to a frame in a
particular context. If we are looking for a connection between "pay" and "Friday", we
might want the fact that payday is Friday. In a semantic net, there would be some sort of
path through this connection. In a frame system, the indexing mecnanism should allow us
to ask "Do you have anything stored under the association between these two concepts?",
which would retrieve the desired fact, possibly along with others.

In addition, each frame has procedures associated with it. For example, if we are
trying to decide whether a particular act is a payment or not, a general procedure might
cycle through the Imps seeing if they could by filled in appropriately for the given
example. Or instead, the system could have a special procedure for efficiently deciding
whether some act was a payment. The procedure would be attached to the "pay" frame,
and would take precedence over the more general mapping procedure.

62 REPRESENTATION: FORMALISMS FOR KNOWLEDGE

The flow of control in a frame system can be directed by specific procedures
attached to frames, or handled more generally by a mapping mechanism which tries to
view something as an instance of a frame, and control the process by looking through the
important elements. Retrieval is based on a separate index, or association mechanism,
and matching is done more generally than with a syntactic pattern matcher. To match two
elements, a kind of general mapping or analogy like that of Merlin is used. The resjlt of
applying a particular frame may be to trigger specific procedures in a top down way, or
may be simply adding this new description and seeing whether it is an element in some
still larger concept which applies,

I want to rpiferate that this system has not been worked out in detail. The attempt
is to provide a system with enough facilities to do the things which other representations
allow, but to do it within a coherent framework for putting things together. Simple facts
are represented in a straightforward declarative way. If specific procedures are called
for, there is 3 way to attach them in a way which allows the control structure to move
back and forth between more general and more specific processes without having to pre-
decide just how each piece of information will be stored or used.

An important design criterion of this system is an attempt to avoid "brittleness".
We want to have a lot of redundancy in the sense that there is more than one way to get
the same thing done, so if one thing doesn't work, there is another way of trying. This is
not just at the level of having multiple theorems for a particular goal but in having
different levels of generality at which a problem can be attacked. There can be specific
methods for it, or only a loosely structured set of facts to which a more general method
applies, and the system can move freely between these levels.

The frame mechanism described in the next lecture is based not on a philosophical
bias about the the form which a representation should have, but on trying to look at the
issues which must be faced, to combine the advantages of a variety of representations in
a coherent system.

References for lecture 3

Predicate Calculus

John McCarthy and Pat Hayes, Some Philosophical problems from the Standpoint of
Artificial Intelligence, in Meltzer and Michie (cds.), Machine Intelligence 4,
Edinburgh, 1969, pp. 463-502.

Erik Sandewall, Conversion of Predicate-calculus Axioms, Viewed as Non-
deterministic Programs, to Corresponding Deterministic Programs, 3IJCAI, Third
International Joint Conference on Artificial Intelligence, Stanford, 1973. DD
230-234

- - - -

REFERENCES 63

Planner-like languages

Janiel G. Bobrow and Bertram Raphael, New programming languages for artificial
intelligence research, ACM Computing Surveys 6:3, Sept. 1974.

Carl Hewitt, Description and theoretical analysis of PLANNER, MIT-AI-258 1972.

Drew McDermott and Gerald Sussman, Conniicr reference manual, MIT-AI-259,
1972.

J.F, Riiifson, R.J. Waldinger and J.A. Dirksen, QA4 - A language for writing problem-
solving programs, Ik IP Prnreedings 1968.

G. Sussman, T. Winograd, and E. Charniak, MICRO PLANNER Reference Manual,
MIT-AI-203A

Production systems

Allen Newell and H.A. Simci, Human Problem Solving, Prentice Hall, 1972

Merlin

J. Moore and Allen Newell, How can MERLIN understand?, in Gregg (ed.) Knowledge
and Cognition, Lawrence Erlbaum Associates, 1973.

Actors

Carl Hewitt, A Universal modular ACTOR formalism for artificial intelligence, Third
International Joint Conference on Artificial Intelligence, Stanford, 1973, pp
235-245.

Semantic nets

M. Ross Quillian, Semantic Memory, in Minsky (ed.) 5rmanti. information
processing.

David Rumelhart and Donald Norman, Active semantic networks as a model of human
memory. Third International Joint Conference on Artificial Intelligence,
Stanford, 1973, pp. 450-457.

Robert Simmons, Semantic networks: their computation and use for understanding
English sentences, in Schänk and Colby (eds). Computer models of thought and
language,

Frames

Marvin Minsky, A Framework for Representing Knowledge, MIT Al Memo 306, June
1974.

^^M^^M^^^^B

'* "AMES: SOME IDEAS FOR A NEW ORMAUSM

Lecture 4

FRAMES:
SOME IDEAS FOR
A NEW FORMALISM

manppulate. In lookme a a dfl^ull ^h^ ,1 ? ' Way ",e »^M« can use and

IS a bit easier (or me lo understand, I am seeinii what knn^Td« !.„ a e! wh":h

,0 d-el^ "^ «- could ummatelyteUetero'Sl^^^r ,ri"ne

show in detail S one Ln PtClTZ ^ J ÄÄr,,,Äl ' Wi" ^ ^

The office assistant

Let us imagine a program to help with our daily office work - «na «.ifk . L
could communicate in a natural way We mieht thinkL it L I A6 Wlth whlch we

it clear that th.s is not a program w^ch7 ve writ ^ h.T aSS, ant' ' ^ t0 make

about what the problems would be * ' but an ^P^'^nt in thinking

I might have a dialog with my assistant, begmnme bv askirp- "Prinf a ^ i .

\o= ^rorÄ^T^HSi?? S -"
particular order-, end I say "In the order they will happen'^ ^ ^'^ '*' ln "*

That is all the information I give in describing what i ,.,««♦ TU^

prepare some k.nd of schedule L ZTf&tf [^ JeionlTZ^ "T
The question want to pose in this lecture ,s: What doer that ass stt and.eve"ts-
order to do th.s' What different kinds of knowledge go n?o convert,
specfication into a detailed program which could prinUuftha Schedule'

pr^r, some Kina of schedule like that in Figure 4.1 with a set of timlVU7 f

specification into a ÄÄ^Ä^J^Ä^ ' ^ ^

.hat l^Jt£Zt^^±~** **** in -he same way
always want headmgs centered, and printed i red"' I ^ t^Ä^T'*' like "'

ha. two ,hin8s sch'eduleS'at L IL ^Ä^^ÄT^MX^

I

I

•

L

GENERATING THE SCHEDULE PROGRAM 65

written just to produce a schedule like this one, it might be very difficult to make a
change like one of these, because they are global changes. They do not necessarily
represent a change to one small piece of the program.

Wednesday, February 6. 1974

7:30 a.m. Breakfast at Tiffany's
9:00 a.m. Audience with Queen Elizabeth

Buckingham Palace
11:30 a.m. Lunch with Pancho Villa

Student Union

1:00 p.m. W-ite program to solve halting problem
1:15 p.m. Flight to Kyoto

TWA-407
4:00 p.m. Time to sit back and contemplate ideas about

automatic programming

Figure 4.1. An output of a "typical" schedule-writing program.

In addition to being able to make changes like these, a human assistant would also
be able to correct the program if it did not work correctly. For example it might be given
the wrong input format We might have mistakenly told the assistant that dates would be
input in a form like 032274 for March 22, 1974, while the actual input was in the order
"year - month - day" Or we might have forgotten to tell about leap year, or we might
want to ask in addition to be able to print a schedule for a regular set of events, for
example "Every thursday" If we think in terms of a detailed program for printing a
schedule, it is not at all easy to make it do something like that. The data types may be
wrong, the information may not be in the right form, etc.

Generating the schedule program

In imagining a system to do all of this, we would like it to represent the facts about
what It is doing in a much more explicit and flexible way than a simple programming
languag?. We would like it to be more like the set of facts a person would have about
the topic. The representation of this knowledge ti the basic goal of this project, and I
will present it here, emphasizing several aspects of that representation. These will be
explained in detail, but initially we can label them as the "generalization hierarchy", the
notion of "description and further specification," "procedural attachment," and the
"integration of different levels of knowledge."

We will proceed by looking at the kinds of operations that our assistant might do in
preparing a program to write schedules. These include: Planning, detailed ^ogramming,
compiling into direct computer code, running, debugging, perhaps proving that the program
works, and finally explaining how it works.

66 FRAMES: SOME IDEAS FOR A NEW FORMALISM

If we think about current programming systems, the information for all of these
processes is in very different forms. In planning we might have flow charts or block
diagrams, in programming we have a programming language, a quite different
representation for the concepts Along with the program code we might have comments
written in natural language, telling facts about the programs. We include declarations
which are very different from program steps. In proving facts about the program, we
might use assertions (there is much such work being done today). In explaining it we
might have further natural language text. I am interested in finding ways of representing
what we know about programming, and about a particular program in a much more uniform
way. Tomorrow I will talk about a type of system which might use this more uniform
representation in helping a programmar write complex programs.

ENTER

HEAD I PRINT HEADING

I
FIND AND ORDER

EVENTS

EXIT

YES

I
PRINT DESCRIPTION

OF NEXT EVENT

Figure 4.2. Flow chart for the schedule program.

J

GENERATING THE SCHEDULE PROGRAM 67

Returning to the schedule example, the first thing the assistant might du is make a
flow chart like that in Figure 4.2 . In order to do that he must know about a number of
different things. For example the plan depends on knowledge about documents and the
fact that »hey have parts like a heading and body, printed in a certain way. He has to
know about lists, about finding particular objects, ordering them, and using iterative
operations such as loops to do an operation to all the members of a list.

Given that plan, it would then need to be converted into a program in some
programming language. If we look at what seems to be a very simple task, there are a
great many different areas in which the assistant needs knowledge. In order to further
simplify our example, we will look only at one small part of that — the problem of
producing the heading line which describes the date. It is given the date in some internal
format and prints out a line like "Friday, March 27, 1974".

Figure 4.3 shows a program (in an imaginary ALGOL-like language) which would do
the printing of the heading. There is a variety of information in the program.
Declarations, for example, that the week-day and the month will be strings, while the day
and year will be integers, and so on. A person writing this program might also put in
comments, describing, for example, how the array of weekdays is pre-initialized, or how
he has used arithmetic operations to convert a full-date string into individual components.
In doing all that, he needs knowledge about the structure of dates (how weeks, days, and
months are connected), about arithmetic, about printing formats, about programming
conventions (how to convert things into legal statements in the programming language),
about conventions for printing headings (for example the fact they should be centered)
and many other such facts.

procedure PRINTJODING (integer DAY)

string WEEKDAY, MONTH;
integer DATE,YEAR,)(,M;
string array WEEKDAYS.MGNTHS;
comment Arrays pre initialized to names o/ days and months.;

begin
M «- DAY/10000;
MONTH <- MONTHS(M);
X*- DAY - M* 10000;
DATE^- X/100;
YEAR*- X - DATE* 100;
comment Number harking is to decode 6 digit day format.;

WEEKDAY *- CALENDAR (MONTH, YEAR, DATE);
comment Warning: calendar function invalid after 2001;

prirtstring (WEEKDAY A ", " & MONTH & DATE Ä ", " & YEAR)
end;

Figure 4.3. Part of the schedule-printing program.

68 FRAMES: SOME IDEAS FOR A NEW FORMALISM

The genet ülization hierarchy

One of the mam things I will be emphasizing is the use of descriptions at every
level of the cystem The objects which are manipulated, whether they be numbers, dates,
pieces of program or whatever, can be thought of best as possessing rich absttact
descriptions of what they are When we want to do some kind of operation on them, we
can use the information in that description to guide what we do. In general, we might •..dy
that the basic problem of Al is the problem of finding good descriptions for objects and
context:.. That is another way of wording the "rtpre&entation problem"

A basic element of descriptions is the use of hierarrhirt nf £fnrralizatinii. Givi n
a particular object, we can have a very detailed description, or we can have a moi.'
general description which applies to both it and other related objects. For example, in
this system we might have a representation for the general concept of a time period, and
describe something like an appointment as a kind of time period. Other instances of lime
periods might include the coffee break this morning, or the entire Meiji Restoration Mori
specifically we might have the idea of a day Describing today as a day gives us moi»
information (tells us better how to deal with it) than just describing it as a time period.
Similarly, we might describe a particular kind of day, like a first-day-of-the-month. We
know facts about the first day of a month which apply to any day fitting that doscnption
We might know facts about Thursdays, or ab^-ut a particular day like March 22, 1974
The basic reason for putting these concepts in a hierarchy like that of Figure 4.4 is the
inheritance of properties Basically, anything which is true of all things fitting a larger-
description will be true of all things fitting more specific descriptions included in it. This
is a first approximation. It is very useful to be able to explicitly cancel out properties.
We might know that every Thursday we go to work at a certain time, but that on this
particular Thursday because it is a holiday we don't go to work.

time-period

isa^ Vsa x. isa

year' day 'second

I payday...

isa 1 Vsa

any-thursday-in-marchj

isa I isa/ ■ i\

March 21, 1974' 974

\
fourth-of-july

/

Figure 4.4. A generalization hierarchy for time periods.

I
I
I

■

DESCRIPTIONS AND DATA TYPES 69

In our representation, an object (description) inherits all prooerties of the general
descriptions above it in the hierarchy, except for those explicitly marked as different for
this specific instance. One other important aspect of these descriptions is that this
structure is not a single tree. A particular class or instance might be generalized in more
than one way For example, March 21 is a more specific example of a Thursday, and also
a more specific example of a holiday, where both Thursday and holiday are specific kinds
of day. There are facts true of every holiday just as there are about every Thursday
Given any particular object, there may be a number of different descriptions, or different
paths up this hierarchy which describe it. One difficult problem when we want to use an
object for something is to know which description is the appropriate one. If we are
interested in what we are doing on a particular day, then the fact it is a holiday is much
more useful - it tells us more than the fact it is a Thursday. If we want to know where
to find it on a calendar, then the fact that it is Thursday may be more important. So
putting the concepts in a hierarchy leads us into a number of problems. But primarily it
means that given an object, we know a lot of things about it as soon as we can classify it
As soon as we know something is a day, we have a good deal of information we can use
even though it isn't explicitly mentioned.

This kind of generalization is closely related to the problem of getting very specific
information (like the schedule-writing program) out of general descriptions (like "A day
plan is a list of events..."). As soon as we have classified a schedule as a list, many pieces
of detailed information which we know about lists can be applied. Looking at natural
language, it is clear that this kind of classification is a basic part of the way we think
Given an object in the world, we almost always refer to it with a general noun -- "That is
a chair." We take a general concept like "chair", and indicate the the particular object of
interest is a specific example of it. As soon as we do that, our hearer knows a good deal
about the object without our detailing it explicitly. The frame representation was grtatly
influenced by considerations of natural Ic.iguage and communication.

Descriptions and data types

Each of the different ways of looking at a number (like 7 in Figure 4 5) will
emphasize different properties. There is a clear connection between this sort of
description and the idea of data types in a programming language. There is generally a
small classification scheme in a language for the different objects it can handle and
special rules for what to do to an object based on which class it belongs to If we try to
add two numbers, we know we can add them, but it we have a number and a list we can
not add them. If we have two integers, we can add them with a particular kind of
instruction while a floating point number and an integer take a special conversion

JUflBER

IMPORTANT
CONSTANT

\
3.14159

FLOATING POINT
NUMBER

SINGLE-DIGIT

Figure 4.5. Part of a generalization hierarchy for numbers

^_.^^

70 FRAMES: SOME IDEAS FOR A NEW FORMALISM

I believe that the idea of data types in programming is too restricted. First of aü,
there is a simple shallow tree-like classification. We cannot classify something as both an
odd number and an integer in a certain range, even though for many programs that might
be useful. If we had a routine to take in the number of a month and give out its name,
we would like to say that it accepts "an integer between 1 and 12." It really doesn't
accept all integers, which is the typical sort of declaration available in a programming
language. We have only a small vocabulary of desc iptions, and no v?y of making better
ones We then want to extend the idea of da'a type to a mo.e general notion of
description.

The other problem with data types as usually done is that they are very static. You
declare ahead of time just what sort of objects will be passed in e<..ch place, rather than
attaching descriptions to objects dynamically and passing them around as the program
runs. LISP is slightly different than this fo» a few examples (like the numbers In most
LISP systems). In developing our example of the knowledge about a date we will show
how more elaborate descriptions can be built and manipulated.

The concept of a date

Returning to the probier of what we know about a day, we will look at the
structure of the facts which a person knows about its date. This is a very particular
subset of what we know -- wr also know that the sun will rise, people will go to work,
and so on In this case we lock at a day as a structure in a mathematical calendar system.
Figure 4.6 shows some of the things we have associated with dates. The frame for
"day" includes a set of conceptual objects associated with the date, such as the particular
year and month which contain it, and the string wnich describes it to the computer.

DAY

year-

month

day-number

day-of-weeU

sequence-number

ASC!I-form

Figure 4.6. Important elements associated with "day".

I

FACTS RELATING CONCEPTS 71

t r0ng™^he.m0re S,anaard concePts' we mi8ht well have something like the ASCII
form |.kt 740322 for use n entering data, and for some operations we would prefe
simple sequence numbers which are increased by one each day. We can describe part of
wha we know about days in general by specifying what objects are assigned to these
positions as in Figure 4.7 .

DAY

yea»" integer

""or^th month-name

day-number (integer range (interval min 1 max 31))

day-of-week weekday-name

sequence-number integer

ASCI I-form (integer

length 6
structure (concatenated-repetition

element (integer le-igth 2)
number 3))

Figure 4.7. Descriptions of the IMPS for "day"

These Wot. are not filled by simple data types, but by descriptions which form part

plr?icda7?o "Irstn'g'' ^ S0 m0nth-name" i9 a ^'^ *** "**™" *** is a

We can describe any particular day as a further deification of this general
concep of a day Each related object would be instantiated by a more detaMed

I ?KeSCr,^,0n c
l
or

L
re!Pondine ,0 the general one Any object is a furtL specmcatlon of

| those things linked above it .n the general.zation hierarchy. This pXSr iSSÄSiN
be given a detailed desenpt-on like that of Figure 4.8 . 'ursaay migm

Facts relating concepts

We might have a different further specification like the one shown in Figure 4 9
j for every Tuesday next April" We have further specified the year as 1975 th* mJfh
I as April and the weekday as Tuesday, but we ha've not diredly spe i ied he o hi

associated numbers^ Conceptually, though we can further specify the day number It sn'
| just an integer in the range 1 - 31. The day number for "every Tuesday nexTApril" mu"
I be precsely an integer in th. set {2. 9, 16. 23. 30}. The set is the appropriate urZ

spedcation of the day number. Similarly, the ASCII form and sequence numba? are more
j specify. Our representation must be able to make these connections between those

il

72 FRAMES: SOME IDEAS FOR A NEW FORMALISM

parts of the description which are a natural result of a phrase like "every Tuesday next
April", and those which are true as a result of applying other knowledge, like our
knowledge of the calendar.

DAY

year- 1974

month March

day-number 21

day-of-week Thursday

sequence-nurr ber

ASC 1 1 -form 740321

Figure 4.r Further specification of IMPS for "March 21, 1974"

DAY

year 1975

month April

day-number

day-of-weeU Tuesd

sequence-number

ASC1 1~ Form

Figure 4.9. Further specification for "every Tuesday next April".

J

I

FACTS RELATING CONCEPTS 73

In order to fit this sort of knowledge into the system, we first might put in a set of
facts about dates, as shown in Figure 4.10 .

DAY

year (integer
structure (concatenation

first "19M

second
(! ASCII structure first)))

month (month-name
(position-in-list

list "January February ..December"
element (! month)
number (! ASCII structure second)))

day-number (integer
range (interval

min 1
max (! month length)))

day-of-week (weekday-name
(position-in-list

list "Sunday, Monday,...Saturday"
element (! day-of-week)
number (integer

range (interval min 1 max 7)))
(1-1-correspondence

setl
(I day-of-week position-in-list number)

set2 (quotient-mod-/
dividend (! sequence-number)))

r equence-number integer

ASCI I-form (integer
length 6
structure (concatenated-repetition

element (integer length 2)
number 3))

Figure 4.10. Facts relating the Imps.

^^MMMMM^MÜ^M

74 FRAMES: SOME IDEAS FOR A NEW FORMALISM

Attached to the element ASCII-form is the description that it is made up of 3
integers of length 2. This is always a possible description for an integer of length six, but
it isn't always a good description If the integer is a distance, or amount of money, the
division is not useful. In this case, describing the integer as made up of three parts
makes it possible to relate it to the other aspects of a date If we think in terms of
traditional programming, this kind of description never appears explicitly in the program. It
may appear in the comments at ihe point where the program needs to take apart the
integer into its components. It will appear implicitly in the existence of these operations.
But the fact that the ASCII format is best thought of as 3 length 2 integers It not stated.
A major goal of the frame representation is to make it easy to include this sort of
description along with the data types, procedures, etc.

The year is a structure concatenating the digits "19" with the number which is the
3rd element of the ASCII form. The notation for expressing this sort of interconnection
has not been worked out m detail, but as a first pass, a list is used to represent a
description, with the first word givmg the class (the link upward in the hierarchy), and the
rest of the list giving the further specifications of the description. Lists beginning with "!"
are internal path specifications which act like variables -- pointing to a particular element
within the frame, to a oub-element within that one, etc. Thus tht list (! ASCII
STRUCTURE 3RD) represents the third element of the structure of the ASCII form of *he
date

Continuing to the month, we state that there is a one to one correspondence
between the position of the month in the list of the months and the 2nd component of the
ASCII form This knowledge then relates this internal format to a month name. The day
number similarly is a particular component of the ASCII format, and we also know
something about the range of the day numb:- when connected to a particular month.
January ras numbers between 1 and 31, February between 1 and 28, and so on. This
involves more complex connections. All of this is the kind of knowledge a person has
about the calendar which goes into building up a program.

Finally there is a one-to-one correspondence between the position of the weekday
name in the weekday list and the quotient modulo seven of the sequence number.

Procedural attachment

The facts shown in Figure 4.10 do not specify any particular way of using them.
They form a static description, saying "These facts are true — these connections hold
between these abstract objects." In order to actually do something with this knowledge,
like print a calendar or a schedule, we must have some way to attach procedures. To any
frame or element within it, we can attach specific procedures for doing things to it. If we
want to fill in the item called day-of-week, there are specific procedures to do it. One
procedure is called "look up in calendar" That's what a person normally does. He knows
all these facts we mentioned earlier, but if we ask "What day is June 14 this year9", he
finds a calendar, turns to the page marked "June", looks for the number 14 and looks to
the top of the column. This is a simple algorithm for getting the information, which does
not make direct use of the declarative knowledge. The procedure associated with a set
of facts may not use them directly, but may use information derived from them, or leading
to the same final result.

PROCEDURAL ATTACHMENT 75

i

The flexibility of the system comes from being able to make use both of the
declarative facts and the procedures associated with them. If we have a procedure for
looking up dates in a calendar, we can do that. It is much more efficient than calculating
from the basic facts. But if that doesn't work (for example, you don't have an
appropriate calendar), there are other more general procedures to try. In this case, most
people have a special second procedure for finding week days which I call the use of an
"anchor day" You remember the date and weekday of some special day in that month, for
example, that the holiday March 21 was a Thursday. If you ask me "What day was April
1 7?", I calculate:

The 2In was a Thursday, so the 28th is a Thursday, so the 35th
is..., but there are only 31 days in March, so the ith of April is
Thursday, so the Uth is a Thursday, ..Friday, .Sat, ..Sun, ..Won.
..Tues, Wed, (rountinf; on my fingers), so the 17th is a
l(rdnrsday.

Again we have a very specific algorithm, but one which makes more direct use of
the facts, such as the fact that March has 31 days. This is an example of a more general
procedure which works in the absence of a calendar — a procedure which goes back and
uses the facts.

If you said "Imagine a calendar in which February had 31 days and March had 29,
what day is...", I certainly couldn't use my calendar, but I could use this same procedure
by changing the appropriate facts. The loss of efficiency caused by not using a more
tailored procedure is made up for by increased generality.

The attachment of a procedure to a fact need not restrict the circumstances in
whic'i it would be used. One kind of procodure might be applied when a certain bit of
information is needed -- we need to know the day of the week. Another kind may be
triggered as the result of learning new information. In planner-like systems, these are
often distinguished as consequent and antecedent theorems, or if-added and if-needed
methods, etc It is important to cause a new fact to be deduced sometimes because we
need it (top-down) and other times because we have discovered something related to it
and are looking for possible connections (bottom-up).

We might have a system in which whenever we learn the number of a day, we
check to make sure that it is a(propnate for the month. If someone mentions the Slst of
February, we would check this and be puzzled. More generally, whenever we get the
ASCII form of a date, we might go ahead and fill in the year, month, and day number. W«
don't have to necessarily calculate other facts like the day of the week unless they are
called for. The procedures provide the control - deciding what will happen when. In
operating, they refer to the factual knowledge but they add new information to it.

The important benefit of this sort of procedural attachment is the ability to integrate
levels of knowledge. Faced with a question, if you have a specific procedure to get the
answer, you will use it as a direct way to get the information. If there is no procedure
attached, you can look up the generalization hierarchy, and see if there is a procedure for
a more general concept above it. If I don't know how to find something for a day in
particular, I may know something for lists in general which is applicable to one of the
facts, and so on. The strategy is to IOUR for a specific procedure, and if there is none (or

!

76 FRAMES; SOME IDEAS FOR A NEW FORMALISM

it fails), you look at sucressively more general descriptions of what you are trying to do
and see if there is a procedure attached to one of those descriptions. At the very top'
we might have a very general uniform procedure like that of a theorem prover. It has no
special knowledge about how to best go about any particular task, but only weak logical
knowledge about how facts can be combined. At the bottom of the hierarchy, for the
most specific concepts, there will be efficient programs for special things We must find
the best level for the problem at hand, and use all of the specific facts which come to
bear

Procedural and declarative knowledge

Looking at the ideas described above at an oversimplified level, we might think of
frames as combining a uniform way of expressing facts (like predicate calculus) with a
detailed programming language for expressing programs, and providing a scheme to tie
them together.

I would rather think in tenis of making the two notations more like each other For
example m the declarative notation, rather than having only a very few connectives and
quantifiers, I would say that in stating facts we need a number of different conceptual
quantifiers If we say "There exists an X with the following property..." we might have
one concept for a kind of existence in which we know the precise object, and a very
different kind for the non-constructive abstract existence of mathematical objects and a
further difference between knowing that there exists a single object, and that there is
'one or more".

In the declarative notation used above, there are connectives like "one-to-one-
correspondence". This is a common concept, but to express it in a formalism like
predicate calculus can involve a quite complex statement, I would rather have a richer
declarative notation, with more concepts basic to it. The cost for this is that the
procedures which use this representation must have many more rules of inference In
some sense, the procedures attached at the most general level are the rules of inference
and if we have a richer set of declarative notations, we will have a fairly complicated
system with special rules for example to combine the fact that some property holds for
every member of a set with some one-to-one-correspondence involving it There is an
interaction which is explicitly given rather than having it implicit in the expdnsion of the
cont-ot of one-to-one-correspondence into the basic connectives and quantifiers We
want a more suitable framework for representing facts - one which is still declarative
but more directly useable.

On the other end, we could think of the procedural part as being algorithms
expressed in an arbitrary programming language. But if we think of Al programming
languages like Planner, we see that a language can have built into its control structures
many processes which are not straightforward algorithms. So at the same time we want
something richer than predicate calculus as our declarative language, MB would like
something with more general power than, say, LISP for expressing procedures One task
in cevelopmg a representation is the creation of an appropriate procedural language

I
SOME CONNECTIONS TO LEARNING 77

Some connections to learning

Recently, Gerry Sussman at MIT has developed a program, called HACKER, which
learns to do things in the blocks world. It faces problems like stackirg one block on
another, and writes its own programs to handle complex situations. It begins with very
general procedures (for example a procedure for achieving two goals simultaneously) and
a few very specific procedures (for example, how to put one block in a particular place).
As a result of trying to do things it builds up more specific procedures based on facts it
knows about the BLOCKS world.

i

;

Figure 4.11. A block-stacking problem for HACKER.

Faced with the problem of putting block C on olock B in Figure 4.11 , the procedure
for putting blocks in places will fail, since there is something in the way. The factual
knowledge about what it means for things to be in the way enables it to build a better
procedure for putting things on other things, which includes code for getting rid of
obstacles.

This is a kind of learning program. As a result of experience it learns to do things
better in the blocks world. But it is a particular kind of learning, since all of the
necessary facts were there in some form to start with, and the problem of learning is to
convert them into a more useable form --■ taking them in their general format and seeing
how they interact with the procedures that use them, i think this is a very important
view of learning which is quite different from the usual ideas of induction.

Sussman was not thinking directly in terms of the representation ideas we have
been talking about, but there are some interesting parallels. If we think in terms of the
generalization hierarchy, we can say that HACKER begins with the procedural knowledge
attached to very general concepts, and factual knowledge at a variety of places, along
with detailed procedures at a few places. As a result of learning, the^e are efficient
procedures spread throughout the hierarchy, applying to a whole range of specific
situations HACKER might encounter. In addition, we can think of induction as the process
of adding new nodes intermediate in the hierarchy -- grouping a set of specific nodes by
creating a more general desciption which applies to all of them, so information can be
associated directly with that description. I do not want to imply that the problems of
learning are solved by talking about them in this way, but it seems to point to some
interesting avenues of exploration.

- - ■-- ■-*

78 FRAMES: SOME IDEAS FOR A NEW FORMALISM

Frames for language under dnding

As I said at the beginning of this lecture, my interest in developing better
representations has led to looking at some specific areas which are not immediately
related to language understandinc like the date problem described above. For the rest
of this lecture I would like to oibcuss how some of these ideas might be applied in a
language understanding iyster,. Much of the detail has been worked out in the context of
a project I am part of at the Xerox Palo Alto Research Center. The language
understanding group (directed by Daniel Bobrow) is beginning with a very simple
children's story to see what problems are involved in geltng a computer to understand it.
The story (in its entirety) is:

Margie wan holding tightly to the string of her balloon. A wind
caught the balloon and drove it again:.! a tree, h hit a tmig and

pop". Margie cried and cried.

It's not a very exciting story, but once we begin looking at it we see that there are
many things a person must know 10 understand it. For example, why did Margie cry9 It is
not sufficient to say the balloon popped. If we said "Margie had a firecracker. She lit
it and "pop". She cried and cried." It wouldn't make as much sense V'e might say
^ne was frightened by the noise, but it wouldn't be the same thing. A person knows that
a firecracker is supposed to pop and a balloon isn't. If a balloon pop:, it is ruined. In
reading a simple story a person must bring in thousands of simple facts like this to
recognize the connection between the different things in the story. There is no explicit
statement in the story saying ihat Margie lost the baHoon, but we deduce it by putting
together other knowledge. There is nothing saying what caused her to cry, but again we
know it, and so on. Even simple things like "The wind caught the balloon and drove it
against a tree" demand a knowledge of physics -- where things move and how they
move, what happens when they collide, and so on. Complicated reasoning is needed in
o^der to put together the right image which will be able to answer questions about this
story

We believe that this kind of deep understanding is necessary for any successful
computer use of natural language, tven in simpler domains, and with limited tasks, like
answering questions, you must deal with this problem of connecting knowledge which is
not explicit.

Representing world knowledge

We are trying to apply the kind of representation ideas I have been talking about
here to the facts used in unde*standing this story at various levels. At the deepest level,
we might ask things like "What do we know about balloons''" Figure ^.12 shows some of
the elements in a frame for "balloon." In one scheme of classification in our generalization
hierarchy, we might have a class of "toy", and balloon is a further specification of it. From
that we know a number of facts, for example that it is likely to be owned and played with
by a child, that a child will like it, and so on. These follow from the general description oi
balloon as a toy. In addition, the frame specifies something about its shape. It is a
sphere. Of course, we might have a particular balloon (say a Mickey Mouse balloon) with
a specific shape which is not a sphere at all, but this does not prevent us from having

:

SOME CONNECTIONS TO LEARNING 77

Some connections to learning

Recently, Gf rry Sussman at MIT has developed a proeram callpH HAricro
learns to d. thmgs ,n the blocks mM It faces prob^m'k^.at"*^^"
another, «d wntes , s own programs to handle complex situates I begin" wih very

Figure 4.11. A block-stacking problem for HACKER.

Faced with the problem of putting block C on block B in RMM nil »^ ~
for putting blocks m ptaces w,ll tail, .nee there Ä^^li L T£Ä2

knowledge about what it means lor things to be in the wav MlihliVll hi in I .
procedure ,or putt.ng thmgs on other'things, Ä* ÄÄ^X ^5

This is a kind of learning program. As a result of experience it \mamm tm w« iki
better in the blocks world But it is a particular kind^ ^arni g s e alf of tT
necessary facts were there in some form to start w.th and the nrnhlpm nfil 4
convert them mto a more useable form - ^ S MWr ^7^-1^! ,St0

how they interact with the procedures that S K IÄW. ^ll^
view of learning wh.ch ,s quite different from the usual ideas of induction * P tant

Sussman was not thinking directly in terms of tho * •■ ■ .
been talking about, but there r« ^ wÄ Är^Ää in?/ We ^
gene,,, zatlon hierarchyi can say ^ **£$&T^\Z2^Z*£

attached to very general concepts, and factual knowledge at a variety of places S!
wi»h detailed procedures at a few places As a r^ul» nf iJ^.U ^ P ' a 0ng

procedures spread throughout the hiera chv aoolv n to ÄS ^ are. e,,icient

stations HACKER might encounter I ad t 0^ Sf äflÄk itÜlIT!! »2 ^^
of adding new nodes intermediate ,n the hC^-^iXl set 0 specif cno^fh5

creating a more general description which apDlies to all o TKL 1 f des by

associated directly with that descnpt.on I do "n t wa 0 impl harrtohi"" **<
learnmg are solved by talking about them in this way but T^t^JFtfZ *
interesting avenues of exploration. pomt to some

J

7« FRAMES: SOME IDEAS FOR A NEW FORMALISM

Frames for language understanding

As I said at the becnning of this lecture, my interest in developing better
representations has led to looking at some specific areas which are not immediately
related to language understanding, like the date problem described above. For the rest
of this lecture I would like to discuss how some of these ideas might be applied in a
language understanding system Much of the detail has been worked out in the context of
a project I am part of at the Xerox Palo Alto Research Center. The language
understanding group (directed by Daniel Bobrow) is beginning with a very simple
children's story to see what problems are involved in getting a computer to understand It.
The story (in its entirety) is:

Margie was holding Ugktly to the string of her balloon. A wind
caught the balloon and drove it against a tree. It hit a twig and

pop". Margie cried and cried.

It's not a very exciting story, but once we begin looking at it we see that there are
many things a person must know to understand it. For example, why did Margie cry9 It is
not sufficient to say the balloon popped. If we said ".Var^ir had a firecracker. She lit
it and "pop". She cried and cried." It wouldn't make as much sense. We might say
she was frightened by the noise, but it wouldn't be the same thing, A person knows that
a firecracker is supposed to pop and a balloon isn't. If a balloon pops, it is ruined. In
reading a simple story a person must bring in thousands of simple facts like this to
recognize the connection between the different thir.gs in the story. There is no explicit
statement m the story saying that Margie lost the balloon, but we deduce it by putting
together other knowledge. There is nothing saying what caused her to cry, but again we
know it, and so on. Even simple things like "The wind caught the balloon and drove it
against a tree" demand a knowledge of physics -- where things move and how they
move, what happens when they collide, and so on. Complicated reasoning is needed in
order to put together the right image which will be able to answer questions about this
story

We believe that this kind of deep understanding is necessary for any successful
computer use of natural language. Even in simpler domains, and with limited tasks, like
answering questions, you must deal with this problem of connecting knowledge which is
not explicit.

Representing world knowledge

We are trying to apply the kind of representation ideas I have been talking about
here to the facts used in understanding this story at various levels. At the deepest level
we might ask things like "What do we know about balloons1" Figure 4.12 shows some of
the elements in a frame for "balloon." In one scheme of classification in our generalization
hierarchy, we might have a class of "toy", and balloon is a further specification of it. From
that wn know a number of facts, for example that it is likely to be owned and played with
by a chi.i, that a child will like it, and so on. These follow from the general description of
balloon as a toy. In addition, the frame specifies something about its shape. It is a
sphere. Of course, we might have a particular balloon (say a Mickey Mouse balloon) with
a specific shape which is not a sphere at all, but this does not prevent us from having

REPRESENTING WORLD KNOWLEDGE 79

(spherical shape as a further specification of our general notion of h.iin«« u u
systen, we mus, make » pÄ to „ow 23^ 1."^^^«^

I
BALLOON isa TOY

SHAPE; sphere
CONSTRUCTION: inflated
MATERIAL- rubber

Figure 4.12. A frame for "balloon"

•WlJÄ a,so k,;ow »W a balloon's construction is "inflated" Terms like "sphere" and
inflated are m urn other concepts, each w,th .ts own important elements For examnU

there are important things about being inflated -- noccihi« *w! i , L hor
1
examPle

gradual deflation. They afe true of all S^Ä^X^^lJ^ K?^ 2
just^Noons. Therefore they are attached to Ä^^t^^^^

We might have another frame (as in Figure 4 13) for atmt4*mm A ^

mmwmmi
Pdf CTURE isa ACTION

INSTRUMENT: minted object
OBJECT: inflated obje^
MANNER: (collision of (! INSTRUMENT) (! OBJECT))
RESULT: (destruction of (! OBJECT))
EVIDENCE: explosion

Figure 4.13. Frame for "puncture"

80 FRAMES: SOME IDEAS FOR A NEW FORMALISM

The "evidence" for a puncture would be an explosion, which we know produces a
noise In our story, there is nothing saying the Uloon is punctured. It just says "It hit a
twig and pop' Somehow if we trigger (or activate) puncture as a potential description
for the series of events w are dealing with in the story, we can then take the
generalization and apply it to the event sequence. We can use the additional information
dssociated with puncture to help understand what is happening -- in this case, using the
tact that punctures cause noise to recognize what event was being described by the
word pop '

The problem of choosing the frames to try is another very open area There is a
select.on problem, since we cannot take all of our possible frames for different kinds of
events and match them against what is going on We need to use clues to decide which
0 try In the case of balloon, we might imagine that whenever we see one we are

looking for possible things which might happen to it. One of the mam facts about balloons
is that they are in danger of puncture. That might tell us to be looking for event
sequences fitting our puncture frame. There may be a number of mechanisms for
suggesting or triggering frames.

Once a frame is triggered, it tries to fill in its important elements. In trying to find
the event corresponding to the "evdence", the description "explosion" can be mapped
into the no.se pop ^ The event of "It hit a twig." matches the description of "collision"
bmce the object of the collision is specified as a pointed object, twig fits perfectly The
other participant in the collision actually described is a balloon, which is an inflated object
so that par applies as well Thus we accumulate evidence from all of these fits to
decide that the notion of puncture indeed applies

Once we have deeded that, we know that the result is the destruction of the object
(the balloon) even though that destruction isn't mentioned in the story We can believe
that it must have happ^ed, since we have sufficient evidence that the frame applies and
we can use it to explain other events like Margie crying. There is a very important
process here •-- using partial evidence to decide that some general description fits, then
using further information we know is true of things fitting that description to fill in missine
knowledge T,.is is an approach to one of the major problems in language understanding.

Another frame we might have would describe a "loss" as an event in which there is
an initial state which is some kind of possession, an object which is something of value a
person who is the owner, and a result which is the state of not having the object 'A

corollary of this result is the person's being unhappy. Of course this is too simplified If
you had a bad disease and lost it you would not be unhappy. In a more complete version
we would want to associate the happiness or unhappmess with the value of the obiect to
the actor along with filling in all the other connections in detail.

Given this frame, the line "Margie cried and cried." can be connected to the loss of
he balloon. This demands knowing that if something is destroyed we automatically no
onger have it. The loss explains the unhappmess (which we deduce from crying) In fact
he loss rame may have been triggered by noticing the unhappmess rather than deducing

the puncture. Once it has been suggested, a frame tries to find matches for its important
elements in the current situation. ^^a<n

REPRESENTING LINGUISTIC KNOWLEDGE i> 1

Representing linguistic knowledge

I would like to use the same sorts of ideas for describing the linguistic structures
of which language is built As an example, we might have syntactic frames associated
with words. A frame for the word "drive" might indicate how the subject and object of a
sentence using it relate to the various semantic roles (cases) the objects play. It would
indicate the semantic connrctions which are signalled by possible additional phrases like
those beginning with "to" "against", and so on. If we see "I drove him to..." we know that
a destination is given If we see "I drove it against a tree.", the combination of "drive"
and "against" tells us more than just the direction of motion, but also that there was a
collision The frame for ihe verb "drive" would be part of a hierarchy for a whole set of
verbs which share properties Since "drive" is a further specification of "move", then we
want to attach the information about "to" phrases to "move" rather than "drive", since it
applies to any motion verb A "to" phrase will indicate destination for any of them. On
the other hand, "against" is more limited, we don't cay "He walked against the wall." to
indicate a collision -- we would use "into" instead. So in the same way we have levels of
generalization and description for the concept frames -- the idea of walking or moving --
we also have them for the linguistic structures -- for the way the word "drive" would be
used compared to the word "walk."

We can also apply this at a kind of meta-lmguistic level as in Figure 4.14 which
shews a frame for the speech act of "referring".

REFER isa SPEECH-ACT

REFERENT: identified conceptual object
REFERRING PHRASE: natura1 language phrase
UNIQUENESS-CONDITION: r'.asoning chain
CONTEXT: linguistic and m ,'ta-linguistic context

Fi'ure 4.14. Frame for the act of referring.

In language we often use a phrase to refer to some object. This can be viewed as
an act in communicating to another person. The important elements are the referent (the
thing you intend to refer to), the referring phrase (the words you use, which might be a
pronoun like "it" or a noun phrase like "the table"), and some reason why you believe
your phrase will be a unique specification to the hearer. In any current natural language
system (including SHRDLU), this kind of information is implicit in the programs. There is a
particular routine which handles reference, which takes in a referring phrase and tries to
deduce the referent. In doing this it needs to figure out what the uniqueness conditions
must be Putting this into the terms we used earlier today, we might say that those
routines have built into them the procedures which would be attached to the concepts
like "referring". The specific procedures tell how io get a referent when given the
referring phrase. They do not state the general facts about the process of reference.
They often have totally separate sets of knowledge for finding the referent given a
phrase, and producing a phrase to refer to a particular object. In the program there is no
contact between these. We would prefer to integrate those places where the same facts
about reference are used

82 FRAMES: SOME IDEAS FOR A NEW FORMALISM

I therefore want to use frame-like representations to describe in a more explicit
way the things that happen in a language interaction. Another example would be the
asking and answering of a question A program implicitly knows what to do when it gets a
certain type of question. It has specific processes for doing the right thing. It would be
better if we had multiple procedures attached to the notion of answering a certain kind of
question, or facts which could be used by a more general procedure concerned with
language interaction.

I have been describing a general framework and a few specific examples. In the
course of the next few years i would like to build these ideas into a functioning system
for language understanding

References for lecture 4

John Searle, Speech Acts, Cambridge Univ. Press, 1970.

Gerald Sussman, A computational model of skill acquisition, MIT-AI-297, 1973.

83

]|[Lecture 5

CONCEPTUAL
PROGRAMMING:

APPLYING AI
TO PROGRAM WRITING

This lecture presents some ideas for programming systems which are closely
connected to the problems of representation we have been discussing. In the future we
will be able to talk naturally about programs to the computer. We will describe them in
terms which are much closer to our ways of thinking, instead of having to convert our
wishes to the form most easily usable by computers. UltimaHy we might just use natural
language We could speak to a computer, describing what we want done, and expect the
system to understand and carry out our wishes. That is far in the future, but much sooner
we will be able to program in a style I will call conceptual programming. By
"conceptual", I mean that the act of building and using programs will be oriented much
more to natural ways of thinking. We will have systems to help us with the entire range
of programming activities, including: those of Figure 5.1 .

OPERATIONS

Planning
Writing the program
Compiling it
Running it
Debugging it
Proving things about it
Changing it
Describing and explaining it

INFORMATION STRUCTURES

Graphic Aids
Flow Charts
Block diagrams

Program
Declarations
Program Statements

Formal Assertions
Natural language comments
Cross-reference listings

and ather machine aids

Figure 5.1. Programming knowledge.

We should think of a program as a growing thing -- not some static object defined
once and for all. We do not begin with a totally defined problem and write a program
which might be proved "correct". Instead we often face a loosely defined problem, like

^

84 CONCEPTUAL PROGRAMMING: APPLYING Al TO PROGRAM WRITING

the problem of proving good service to a set of time-sharing users, or the problem of
understanding anguage, or andlmg all the finances for a company These are not dosed
problems |,kt that of calculating a square root. Even ,f there are no mistakes made m
wntmg a program, we still need to go through a process of evolution, adapting iUo new
uses and unant.cipated demands My emphasis here ,s very different from ma™
advocates of *r***r*i rwmmitg There are many .deas in structured programmmg
which are good, but the emphasis on structuring and prov.ng a program assumes that thf
des.red behav.or can be described m s,mPle terms. I am much more concerned with he
w.der and more interesting class of programs which need to adapt and change The
dev,ces I am proposing are aimed at making that process more effective.

The role of a computer system

If we look at current systems, all of the different steps mentioned above are done
m very different modes with different representations The planning will be done on
paper, perhops using some flow charts and block diagrams A programmer win thenVe?

ütp^VZ r^ '^ and ^6,n Wri,mg ,he COde ln some ^ (such a advanced LISP sy.tem), the processes of code writing, running, and debugging are integrated under
he cocrdmahon of a single interpreter, making it easy to shift back and oh between

these phases. However the rmjority of systems in use do not have this uniformity Each
stage m the process demands communicating with a separate part of thT omputer
system, perhaps using a separate notation, and involving a high overhead n eoinT from
one operation to the other (for example h.vmg to recompile £ entire progr/mw^n a
bug • found Some parts of the operation are not really integrated into the sysTem at

ir'I I0 ^'^ Pr0famSl a Per30n USes natural language'comments. or sp
yeCa,Ld

facilities such as cross-reference listings. These provide information in a form o aHv
separated from the rest of the program. »«ma rorm loiaiiy

In the future, programming systems will center around a single interactive monitor
wmch maintains the information for all of these phases, and lets the user mote frel^
among them In addition to the program it will build up a large, rich sTructue ^
dttrnfHMi This concept is of prime .mportance The presln e of a oart cu^
seauence of code instructions is only one way of specifying a program Other ways are
necessary for other u.es We want a higher level description of tL global structure !
which major p,eces exist, and which others they communicate with Another kinH nf
useful description might be on input-output description, giving he ZnnnnoUoece o
code For operations like planning, explaining, and debußeine this kind If riLrZf
often much more .mportant than the code itsflf. If we trf o^e^u^ome h ng we don'?
mit.aNy worry about the internal structure of an errant b-t of code, but w^t wa
mtenaed to do. and ow it was wrong This then leads into e^a^ ing he code
selectively. The obied we now call a program is only one way of looking at what a
program i* || happens to be the one the interpreter or compiler uses but th« huln
uses are at least * important We don't want to think of a Ze bei g i "rlr oroZm
wih tangential information attached, but of a large information struts, part tf whiS^
used by the machine in execution. wmcn is

hMmJ
n

a
0rdr i0 TderStfnd ^ advantaße ** ^ v'ew, imagine that a programmer has a

human assistant who works with him or her in writing oroerams Thic L^zJ \
crea„va, bu. .no« basic th,„8s about prot,m^ZT%y XTT^T Zl

I

i

i
1

SEMANTIC DESCRIPTIONS 85

an assistant would make use of all of the different information structures of Figure 5.1
looking back and forth between flow-charts, comments, and code in order to help,
imagine a computer system which would operate much like such an assistant. It need not
be able to analyze natural language, if we devise a special description language to convey
information like that in comments. At a later date it would be good to add real natural
language capabilities, but I believe that the advantages of such a system need not wait
for that In fact, having such a system could be a great help in building natural language
programs.

Semantic descriptions

There is a similarity between the ideas here, and the discussion in previous
lectures about developing a representation which can handle many different sorts of
knowledge in a natural language system. Here I am proposing to use such a representation
for the many kinds of knowledge in a programming system.

Taking this approach, we can compare specific aspects of the two areas. For
example we might look at data types as semantic descriptions, rather than as purely
syntactic devices. We might want to say "In this program there will be a kind of object
called a SYNTACTIC NODE" (This example is from my natural language programs).
Figure 5.2 shows some of the important elements associated with such a node. Each node
will include a list called FEATURES, each element of which is a syntactic feature. We
will have another element which is a PHRASE, which is a segment of a sentence. There
will be another element called a SEMANTIC STRUCTURE, etc. In planning a program, a
human programmer plans the contents to be associated with an object like this before
worrying about whether it should be implemented as an array, a vector, a string, or
whatever. These terms are «•mantira/Zy oriented, describing what the conceptual role
of the structure is, rather than specifying its exact form.

SYNTACTIC NODE isa NODE

FEATURES: list of syntactic features
PHRASE: segment of input sentence
SEMANTIC STRUCTURE: semantic node

Figure 5.2. Frame for a data object in a natural language system.

I believe that a programming system should be able to accept and make use of this
sort of information. These kinds of descriptions should be given to the system during the
planning phase. From the very beginning, the programmer should be dealing with the
system, not working separately on paper. If we look at this description of what makes
up a node. It looks very much like the frames we had yesterday for things like "balloon"
or "puncture". The important elements associated with a frame are in turn each given a
semantic description. So to fill out the frame in Figure 5.2 as we did for "day" in the
previous lecture, we would need a similar description for SEMANTIC STRUCTURE, and
each of the other concepts which go into it. The frame for SEMANTIC STRUCTURE would

86 CONCF.PTUAL PROGRAMMING: APPLYING Al TO PROGRAM WRITING

name its important elements, such as DETERMINER, RELATIONS, and so on. The system
would already have a great deal of information about the basic data structures such as
arrays, lists, and strings. In planning a program, the programmer might specify how his
conceptual structures are to be implemented in terms of them, but these detailed
decisions can be delayed for a much later point in the programming, and can pven be
based on statistics gathered by the program, or its internal knowledge of the advantages
of different data types for different operations.

To carry the analogy a bit further, we might think of generalization hierarchies of
these descriptions. A SEMANTIC STRUCTURE in general might have certain properties,
while a further specified type like OBJECT SEMANTIC STRUCTURE will inherent those
properties true of all semantic structures, while adding those peculiar to it. Similarly, a
particular instance of an OSS will be a further specification of the general one, and can
inherit any properties and default values not otherwise specified. Such a hierarchy will
be built into the system for those concepts used in programming in general. For example,
property list and alphabetized list will both be types of list, but with additional special
facto of their own Thus we can say that a particular conceptual structure in our program
is to be implemented by an alphabetized list, and the system will know many of its
properties (for example how to insert elements into it, or how to efficiently search it)
from its general knowledge

Declarations and high-level operations

Along with the use of descriptions as an organizing structure, we can also make use
of them for declaring what is happening in the program. For example, instead of a simple
declaration like "X is a list", we might say "The variable X contains a list of function
names." We might have an even more detailed description like: "X is list of names of
already-defined functions." in a conceptual system, this declaration is just as acceptable
as "X is a litt" In fact it is much better, since it provides more information for every
aspect of working on a program. A declaration viewed in a broad sense is the fullest
possible description of what a particular object is. We might use a similar sort of
description for the input a program expects, or the output it produces. We might say of
a particular function "The input must be an integer in the range -20 to +233, but not Q,
and its output is a positive even integer less than 100."

The system can use these declarations in a number of ways. An ordinary compiler
uses declarations to decide which operations are appropriate for which objects. If we
have a "+", the actual machine operation will depend on the types of the quantities being
added. Compilers also do a simple kind of checking, making sure that a procedure is not
being passed the wrong type of argument or passing back the wrong type of result.
These same operations can be greatly expanded in a conceptual system. We might have
conceptually oriented operations, as in a statement like (ADD X to L). We are stating
that an element X is to be "added" to an object L. If L is a list, the actual code for this
might depend on just what sort of list it is. If L is alphabetical, then we need an insertion
operation. If L is being used to represent a set, then we should check first to avoid
duplicates. If L is a list of names, and X is a name of the appropriate kind, then it should
be inserted. However, if X is a list of such names, they should be merged, rather than
adding X as a single element,

-

ASSERTIONS AND CHECKING 87

This sort of subtlety would be simple and obvious to a human assistant. We would
normally say things like "Add the new functions to the function list." or "Add COSINE to
the function list." without worrying about the details of how the list is structured (in this
case it would likely by a non-redundant set, probably ordered). These details cannot be
filled n by a program unless it has the kind of additional description information we are
proposing. If it knew that L was always supposed to contain a list of function names, then
it wouldn't make sense to add another list as a single element, but would know (from
general knowledge it has about lists) that it would be appropriate to merge them By
giving it this sort of information about intentions, plans, and concepts, it will be able to let
us write in this higher-level form, one step further removed from the details of machine
operation. The programmer is still in charge of describing what is to be used (we are not
here worrying about things like optimization of data structures), but once we have
provided basic information about what we want, we no longer have the burden of
matching all of the details to it. The system can take over that task, using the information
over and over.

Another high-level operation might be building structures, as in the comfnand:
(BUILD an OSS using N0DE23). Again, for an assistant this would be a clear instruction.
In terms of programming, this is a very loose specification The meaning of terms like
"build" and "use" are highly dependent on just what the objects are. The connections
between them depend on knowing just what information is conceptually associated with an
OSS, and how it corresponds to those things associated with a node In the same way
that a compiler uses data types to choose detailed operations, an intelligent system could
use its semantic information to compile high-level statements into working code. This
verges on what might be called aufomatir prngramming. If this capability were
extended to more and more abstract ani general commands, it would approach a situation
in which the programmer describes in natural language what is to be done, and the system
writes the program The oystem I envision for the near future is a kind of middle ground.
The programmer still states a sequence of steps, but these are much more conceptually
oriented than the statements of current programming languages. The additional structure
of descriptions makes it possible for the system to fill in the details.

Assertions anci checking

In addition to describing what kind of things are associated with various data
ODJects, we want to put additional information into assernons Associated with a
procedure there might be statements such as "At this point, the result list should be the
same length as the input list.", or "After executing this statement, X should be non-zero."
It would be inefficient to actually code a test for these conditions whenever they occur,
since if the program is running correctly, they should always be true. An assistant would
put them into some sort of information store, and refer to them if problems come up in
running the program or changing it

One of the most important uses of much of the information in the system is this sort
of dynamic checking. We can imagine building our system to go into a mode where it
actually makes these checks, to track down what is happening. The system would have
different modes of running 3 program. In the most efficient mode, these assr-'tions would
not be used at all, but would be assumed true. In a more careful mode, which I call

88 CONCEPTUAL PROGRAMMING: APPLYING Al TO r vOGRAM WRITING

"^aVrsl^anrcoXt6!0^ ^ ^ ^ "^ encounte^d. Thi. is something
a eal assistant couldnt do i< there were many of them, but which can be extremHv
valuable m debugging and changmg , program. Assertions can also be used in generaTn*
code If there .s an assertion that a certain variable will have special properties af
certain pomt (or example it is non-nil. or negative), then the operation chosen to add
something to it may be different from the one which would be chosen based In IK.
general data type of that variable a ed on the

Assertions can be of a variety types, and I ha^e not worked out in detail what thev
are but some simple category would include <rs(, „ronouncrmrnts, anT.t^onl I
test would say I expect the following to be true here." We c^n classify tes' as
nrrmndiuons (things which must be true for a particular operation to be applied) and

tZ^Z01^ a I"65 :h,cVu
nc-ld be true ^ 1** oP^ation). A pronouncement might

look like After this step, his semantic structure I, complete and will not be changed
agam This is not the sort of thing whch could be tested at that point -- there is no wav
to see whether it will be changed again But the assertion could be added o a data ble
of information so if some operation tned to change that structure at a later po nt. t cou d
tell that something had gone wrong. One precondition on operations which change da a
structures is that these structures be open to modification Of course swihofhlr

ÜZ Tl' '7 7'' 0nly be CheCked hen the system was in ■ caref'ul mode look ng
for the source of actual or poss Die difnculties. We want to be able to taKe these ex rf
steps when necessary, but UM some other part of the description (for examp e the ba e
code steps) when we want to run efficiently M

Another sort ot information would be .mrm.on.v or purposes I,, many current
systems there are m ent.ons in a form hke predicate calculus For a Hst-sorTing^ og am

I X nd ^oTf I9'" :S VOU!. 0f rUnn,ng th S pro^^. W *<" ^ the as^that C a X and fm ,n L. X is less Ihm Y impl.«. that the position of X in L is before the pos tion
of v in L. SLCh asserdono can be mar:oulated by standard logical operations In the
system I am proposing, intentions would be stated conceptually, and might be ke "The

p/on0:* ° , T6 0f C
t
0de ,? t0 f,na the referent for lh's ^^al lar,guage phrase "

Peo^e famHiar with current worK m automatic programming will find this a strange sort of

Pf. Int < t 'S n0 0rmal Way 0f deSCr,b,ng whal " means »0 "nd the^orred"
referent of a phrase, except in terms of the program which does it. But this does not
mean that such an mfention i, not useful to have for a variety of operations.in desert
the program changing and debugging it. These assertions form a vital part of th« set of
conceptual structures built up in thinking about the program.

Some other uses of a smart system

r^h Al1 0f tlVr068 described above i^y the presence of a very complex
mechanism ava.lable for operation all the time. An Al-like program forms the basisTfh^
system It does not need to be as complex as. say, a naturaMangua es fern Tut must
[HMarly sophisticated in comb.mng p.eces of knowledge and drawing c'oÄions Tom

These same powers could be used in a variety of other operations For examnl*
any system will have an internal representation for the objects Xto^Z^St*
the programs and data structures. Often, if we want to look at one of these sTmctures!

I

I

I

SOME OTHER UScS OF A SMART SYSTEM 89

we do not want to see it in the form actually stored or used internally The form which is
clearest to i ead may not be the most efficient The system should be given information
about how structures should be viewed, and how they will be presented A simple
example is the GRINDEF or PRETTYPRINT program in LISP, which uses indentation to
show the parenthesis nesting structure. In general we would like to indicate special
formats like "All of the conditionals should be in an IF...THEN form." Whenever the
system prints things out for the user, the more perspicuous format is used, and on typein
it can parse special structures and interpret them. This does not represent a severe
efficiency loss since we are thinking in mcremsntal terms The system does not use a
user-readable format to dump things out and read them back in These operations would
have their own formats, and the kinds of conversions needed for conceptual input-output
would only take plüce at the rate a person would type or read, or in preparing
documents You can think of the system as simply containing all the information, and each
time you sit down to use it, it is in whatever state it was left. There is no need for a
concept of "filing things away" or "reading them in".

Of course internally there should be a file structure We need to be able to group
a set of programs into a conceptual file, such as a "utility file" or a "natural language file".
This could involve recursive block-like structures, as well as the ability to cross-classify
the sane functions along different dimensions. One of the problems of structured
programming is dividing up the functions in the system For example we might separate
them into data base functions, user-interaction functions, and arithmetic calculation
functions A totally different division might be into the payroll, inventory, and tax
calculation parts The same data-base function may ce used in a variety of operations,
and a complex operation like tax calculation may call on all of the different blocks of
underlying functions In dividing things into a simple block structure, we must choose one
organization or the other If we think of files as ways of organizing things, rather than a
choice of wher^ \-, store them, then the-'e is nothing wrong with using both classifications,
and allowing a single function to fit in more than one We might say "Print out all the data
base functions" or "Print out all the functions used in inventory." and no problems would
result

In debugging, one thiog which should be available is the ability to pass a description
along as a datum Very often we look at a particular data object and wonder "Where did
that come from''" Ail of a sudden a certain variable contains a strange value, and it is not
clear how it got there We might try and trap every time the variable was set to see
when it got this value, and that is one kind of thing the system should be able to do in its
cogitating mode But in some cases this would not be effective If the current value
could carry along with il a description of where it came from and why it was put there,
then at any point in the computation this description could be checked and the information
used. Clearly this information should not be passed around all the time. But conceptually
we can think of the actual value as only one particular description of the object being
passed, and additional information can be added whenever it is needed. I would like to
think of all data objects as complex descriptions, where for most cases, omy one small
part of that description is being maintained and used, but for purposes such as debugging
and reasoning, other things could be added, and the actual "data" might even be left out.
We should be able io do a kind of ii'cta pvaluatinn of a piece of program, passing it an
abstract description of its argument, and letting it use the information associated with that
description to build up a better description of what the program does without running it
for a specific input Through clever use of thmgs like hash coding, this view need not

90 CONCEPTUAL PROGRAMMING: APPLYING Al TO PROGRAM WRITING

cost a tremendous price in overhead -- we don't actually pass around an elaborate data
structure which is a description, when most operations don't need it. But the information
equivalent to such a description can be available at any point.

Finally, in addition to debugging, compiling, and running programs, we might use some
of this information for answering questions posed by a person trying to understand the
program. One strong motivation for paying the price of a complex system like this would
be the help it gave to a group of people working on the same program and needing to
share information. If one person declared that a particular function produced a list of
names of functions already defined, another person could ask for that information in
deciding how to use it or modify it. Much of the information that is now in comments for
other people would be built into the conceptual structure for use both by those people
and the system (and the original programmer, for times when details have faded away
from mind, as they must in any large system). In addition to the specific facts entered,
the system could deduce information of its own. A person might ask "What functions call
data-base functions9" Thorough the use of its internal descriptions, the system could
provide the answer. More complex things like "Does any function access the variable X
while it is bound to this resulf" are undecidable in theory, but very often can be easily
answered from the stored information and information about its structure. Such facilities
are gradually being built into systems such as INTERLISP, but need to be integrated and
expanded in the context of the uniform information structure being proposed here.

Building the programming system

There are some basic problems which must be faced in trying to program a system
like the one described here. One is clearly the need for a well-developed reasoning
program. This sort of fully integrated system depends on having the ability to do the
same sorts of simple reasoning about programs that a person might do. This power is
necessary to make the system realistic. People will not spend time putting things like
comments in programs unless they can see a direct benefit to be gained by doing so. If
the system can take away the burden of much of the work by allowing such things as
very high-level conceptual commands and providing answers to questions, then the
programmer will be willing at every stage to give it the information which will make that
possible.

We cannot then build this system until we have a high degree of artificial
intelligence, but we need the nrogrammmg system as tool for building A! programs. There
will have to be a kind of gradual bootstrapping. The Al representations available now,
like Micro-planner, Conniver, QLISP, and the various theorem provers, are not really
adequate. We must build a new basis for a more flexible reasoning program. At the
same time, we can be building many of the individual features I have been describing.
Many already exist in systems available. There will be a cycle of putting in more and
more useful parts, using those to write better reasoning programs, and gradually evolving
upward to integrating the reasoning with the programming, and eventually incorporating
natural language programs as a way of communicating with the system.

Another obvious problem is size. Even with all the necessary ideas worked out, we
would have an implementation problem since the kind of power demanded would mean a
very large computer system compared to tnose commonly available now. 1 believe this is
not really a long-run problem. The costs of memory and processing are going down very

WHERE IS Al RESEARCH HEADED' 91

rapidly Syctenr-. «.upportmg major research projects 15 or 20 yeais ago were far less
powerful than mini-processors now available tor a few thousand dollars Compilers were
not practical with the earliest machines, but now everyone uses them In a similar way,
complex systems like we cire discussing will soon be within the reach of everyone's
computational power While other costs are going down, the cost of human programmers
is going up So people will be willing to do things which demand large amounts of storage
and computation in order to make it easier for the people doing programming The
economics are in favor of much more advanced systems being practical Also, a number of
ideas are being developed to avoid really neeamg the size implied by the amount of
knowledge in the program Ideas such as segmentation and cache storage can be applied
in both hardware and software, and we may get by with amazingly mall actual machines
to handle extremely large virtual size and capability In the five to ten year future,
systems should be big enough, and reasoning programs advanced enough to make many of
these features possible I should reiterate that good programming systems do not demand
a super-intelligent program We can get by with a moderately stupid assistant as long as
he doesn't make mistakes The degree of Al needed is much less than that needed for a
full-fledged natural language or vision system

I have not even begun to design a full system of the type 1 have discussed, and am
not actively engaged in wo-kmg on one I find that whenever I begin to write a program, I
say "Wait -- it seems that the system could be domg some of this work for me" and I go
and work on tha' for a while, then return to the task at hand. Gradually, pieces of this
sort of system are being accumulated, but I am not committed to building them into a form
which is complete or generally useful Hopefully, by talking about these ideas I can
persuade others to implement them, so I can use the system they develop

Where is Al research headed?

Looking at the past 'ew years ot research m Al, one sees a kind of branching path,
which I believe is now coming back together In the early stages, people were skeptical
that computers could ever do anything which might be labelled "intelligent". Computers
were seen as elaborate adding machines, limited to tedious calculations The first efforts
in A! were an attempt to say "Look, we can make a machine play chess! We can make a
machine answer some algebra problems! We can make a machine move around in a simple
environment!" There was an initial surge of effort to just get a computer to do these
things Following that, there were two different paths taken The "Western" approach
(exemplified by much of the work at Carnegie-Mellon, Stanford University and the
Stanford Research Institute) was to go for more generality. Rather Man working on more
complicated specific propiems, such as the structure of English or robot vision, people
worked on general issues of representation and problem solving Much of the work of
McCarthy, Newell and Simon, etc was in this direction. It led to much interesting work in
psychological modelling, and m computational logic, which is really a branch of mathematics
dealing with logic and proof procedures However, its spirit often moved quite far away
from the original idea of making programs do more and more intelligent things. The other
approach (exemplified by MIT) has been to take successively more complex tasks (such as
language understanding and algebraic manipulation) and look for the kinds of
representations and organizational systems needed to accomplish them.

■Hi

r

92 CONCEPTUAL PROGRAMMING: APPLYING Al TO PROGRAM WRITING

Today I see a movement towards a middle ground The theorem-proving craze is
s.owmg down. People are aware that very general systems are not going to be the basis
of practical programs, and people who have been doing specialized programs are asking
what these programs have to offer which can be brought to bear on more general
problems.

Problems of "representation" are seen as central to farther progress. In the next
few years we will see an attempt to synthesize a more sophisticated view of generality.
People are groping for an approach in which intelligence need neither be boiled down to a
few simple crystals or lett scattered and idiosyncratic for each problem. They are
concentrating on tne specific problems of representation: dealing with partial information,
the flow of information and control within complex systems, ways of combining detailed
knowledge of a domain with very general principles for reasoning, and ways of working in
environments of uncertainty, like speech processing, in which the inputs are not reliable.
They will be experimenting with system organizations which make it possible to include
many sorts of knowledge, and take advantage of whichever is best suited for what is
being done at the moment. This problem applies to any Al task, whether natural language,
vision, game playmg, automatic programming, or whatever. Each has its own specific
problems, but shares many aspects with the others. In working in any specific area we
look for the different sorts of rtoresentation and organization which are appropriate, and
the ways in which they can combine with those from other areas.

One other trend, at least in the United States, it an increasing emphasis on aplying
A! to real problems This will involve moving away from fundamental psychologically-
oriented problems like seeing and understanding, towards things with more immediate
practical use*.- One such area is automatic programming. This would involve methods
worn Al, but would be of use to anyone writing practical programs. Much work is being
done in this area at the moment, partly because of a large increase in funding for it.
Another area in which many applications will be developed in the next few years is
medicine A number of aspects of medical information processing are at the level where
current Al techniques can just about be applied Computers are already doing things like
the analysis of electro-cardiograms This is particularly suited to computers, since people
do not begin with the advantage of a common-sense intuition about then, Doctors have
to learn to read them, and the knowledge involved is very explicit and can b? converted
to a program directly Other activities, like diagnosis, are more tied up with natural
common-sense reasoning, but nevertheless are specific enough that in the near future a
computer will be able to compete with an expert in particular disease areas, and do as
well as most doctors in a variety of tasks. It is a question of economics at this point,
since it is just beginning to be in Iht range of feasibility to use computers in this way.
Also there has been a good deal of new fundm? available in this area.

Another area is industrial automation You are aware that this is being pursued
very actively here in Japan, and will also be studied more in the U.S. Labor costs
continue to rise, and it seems that only a slight improvement in the state of the art will
produce usable automation systems There isn't a general robot worker on the horizon,
but there wiJI soon be systems which are economically competitive to take over many
specific jobs

■aMMHMM

I
r
i

REFERENCES 93

I don't think that the general Al projects like those at MIT, Stanford, and Carnegie
will end, but there will be an increasing emphasis on applications areas instead of more
abstract toy problems. Work in these areas may put pressure on scientists to move
away from basic i^ues to get results If someone is trying to build the best robot which
can be completed by next year, he will try to avoid any really hard problems that come
up, rather than accepting them as a challenge to look at a new area. There will be
pressure from the organization of the projects and funding agencies to get results at the
expense of avoiding hard problems. Counteracting this, there is increasing attention from
other scientists, such as linguists and psychologists, who art beginning to see A1 as a tool
for attacking the hard problems they have been facing for many years. One interesting
thing to watch for will be the interplay between the«;e goals

In any event, it seems almost certain that the amount of research related to artificial
intelligence will continue to grow at the rapid rate it has in the past few years, and that
we are still just at the beginning of a major new field of human knowledge.

References for lecture 5

O.J. Dahl, E Dijkstra, and CAR. Hoare, Strurturrrf Programming, Academic Press,
1972.

Peter Deutsch, An Interactive Program Verifier, Xerox CSL-73-1, 1973.

Ira Goldstein, Pretty printing — converting list structure to linear structure, MIT-AI-
279, 1973

David McDonald, The LISP indexer, MIT-AI-MEMO, 1974.

David Moon, IMC/.W Hcfcrcnrc Manual, Project MAC, MIT 1974.

Warren Teitelman, INTKHUSP Hcfcrenrc Manual, Xerox PARC, 1974.

Terry Winograd, Breaking the complexity barrier (again). Proceedings of the ACM
SIGiR-SlGPLAN interface meeting, Nov. 1973.

-Mb^M^MMMai

