B ———

AD/A-000 085
FIVE LECTURLES ON ARTIFICIAL INTELLIGENCL
Terry Winograd

Stanford University

N i bt

Prepared for:

Industrial Scicence and Technology Agency
Advanced Resecarch Projects Agency

September 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

D e A il

- I S s e s SN AN SN GER GED SN IR MUY O EE SN GEy Sey

Unclassified *
SECURITY CLASSIFICATION OF THIS PAGE (When Date Fntered) '
! READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
(1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. CIPIENT'S CATALOG NUMBER
STAN=CS=-T4=-459
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
FIVE LECTURES ON ARTIFICIAL INTELLIGENCE technical, Sept. 1974
; 6. PERFORMING ORG. REPORT NUMBER
STAN=-CS-Th=459 also AIM246
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Terry Winograd DAHC 15-73-C=-04325
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM £_ EMENT, PROJECT, TASK

« o Tl s AREA & WORK UNIT NUMBERS
Stanford University

Computer Science Dept.
Stanford, California 94305

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
ARPA?IPT, Attn: S. D. Crocker Sept. 1974
1400 Wilson Blvd., Arlington, Va. 22209 13. NUMBER OF PAGES qg

4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
ONE Representative: Philip Surra

Durand Aeronautes Bldg., Rm. 165 Unclassified
& 1 Uni sity 1Sa. DECL ASSIFICATION/ DOWNGRADING
Stanford University T e

Stanford, California 94305
16, DISTRIBUTION STATEMENT (of this Report)

Releasable without limitations on dissemination

Approved for publie releasey
Distribution Unkmited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different irom Report)

8. SUPPLEMENTARY NOTES

19. kEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT rContinue on reverse side if necessary and iden.ify by block number)

This publication is a slightly edited transeription of five lectures delivered
at the Electrotechnical Laboratory in Tokyo, Japan from March 18 to March 25,
1974. They were intended as an introduction to current research problems in
Artificial Intelligence, particularly in the area of natural language understanfiing.
They are exploratory in nature, concentrating on open problems and directions fbr
future work. The five lectures include: A survey of past work in natural langhsge
understanding; A description of the SHRDLU system; A comparison of representatipns
used in A, I. programs; A rough sketch of some ideas for a new representation (prnattd)

F ORM
F 1! 65 T s o
DD , . 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified

NATIONAL TECHNICA! SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
-n

INFORMATION SERV!CE

Springfield VA

Unclassitied ”'
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
which combines features of the previous ones; A discussion of' the applicatidns
of' these ideas to programming systems.
]
'
<
»
1
X
1
.‘\
Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

] ol ’
iy

L=

ARTIFICIAL INTELLIGENCE LABORATORY SEPTEMBER 1974
MEMO AIM No. 246

COMPUTER SCIENCE DEPARTMENT REPORT
STAN CS 74-459

FIVE LECTURES

on
ARTIFICIAL INTELLIGENCE

Terry Winograd

Artificial Intelligence Project
Computer Science Department
Stanford University D D C

September, 1974 NOV T 1974

OGS
D

ABSTRACT

This publication is a slightly edited transcription of five lectures delivered
at the Electrotechnical Laboratory in Tokyo, Japan from March 18 to March 23,
, 1974. They were intended as an introduction to current research problems in
; Artificial Intelligence, particularly in the area of natural language understanding.
They are exploratory in nature, concentrating on open problems and directions
for future work. The five lectures include: A survey of past work in natural
language understanding; A description of the SHRDLU system; A comparison of
representations used in Al programs; A rough sketch of some ideas for a new ;
representation which combines features of the previous ones; A discussion of
the applications of these ideas to programming systems.

The research was supported in part by the Electrotechnical Laboratory,
Pattern Information Processing System Project, and this document has been issued by _
them as PIPS-R-No.5. It was supported in part by the Advanced Research Projects]
Agency of the Office of the Secretary of Defense under contract [DAHC15-73-C-]
0435]. The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of ARPA, or the governments of Japan and the United
States.

) PoOOREIOON AR R
’ -.v . . - ~ T et seen ~abgd
StV b pablie mlacowg
!--. . Lrreimiteny 0y Foveted

"
@ e v - -

Table of Contents

l.ecture 1.
Computer systems for natural language

Lecture 2.
SHRDLU: A system for dialog

Lecture 3.
Representation: Formalisms for knowledge

Lecture 4.
Frames: Some ideas for a new formalism

Lecture 5.
Conceptual programming: Applying Al to program writing

20

49

64

83

Il Lecture 1

COMPUTER SYSTEMS
FOR
NATURAL LANGUAGE

In this first lecture, | will set some background for the rest of the course by
describing a number of computer systems which have been built to work with natural
fanguage. These systems have been developed for English, but the ideas being developcd
are general and suited to 2., language. In fact, there are currently projects looking at a
variety of languages to see the ways in which they are the same and the ways in which
they present new problems. | hope you will keep this in mind throughout the lectures,
although most cf the examples | use will be from English.

Machine translation

| will begin by describing some of the history of natural language processing by
computer, which goes back as far as the early 1950’s. One of the first things people
thought of when they built gereral purpose computers was the idea of using them to
translate from one language to another. Far the first fifteen years, translation was the
focus of almost all computer natural language systems. Originally, people believed that
translation involved two basic processes which might be called dictionary and grammar.
A piece of text in one language could be translated by first looking each word up in the
dictionary and finding the equivalent in the other language. The next step referred to the
grammar -- the way the words were ordered, the endings and forme, etc. The ordering
of the output would then be changed to correspond to the rules of the second language.
The English sentence "l bought fish." can be analyzed as a subject followed by a verb
followed by an object. In Japanese, you might say "sakana-o kaerimasita." in which the
object comes first, and the subject does not appear explicitly unless a phrase is added
like “watakusi wa", and the verb comes at the end. People believed that reasonably good
transiations could be done by treating these two operations of dictionary lookup and
rearrangement separately.

It turned out that that approach did not work very well. When a person listens to
language, he uses not just his knowledge of grammar, but also his knowledge of the world
being discussed. The words and sentences have a meaning in the context of what the
person is doing. Many sentences depend fu: their understanding on this use of
knowledge. One simple example is the use of the English passive. If | have a sentence
like: "The fish was bought by the cook.” it t:anslates into Japanese phrases containing
"cakana-0" indicating that the fish is the object, and a phrase indicating that the cook was
the actor -- the one who did the buying. If instead we have: "The fish was bought by the

i
i

R m — Ty SRR

2 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

river” the structure is totally different. It was not the river who bought the fish, but it is
a location and would be translated using a locational phrase with a Japanese word like
"soba” Even though the two sentences look the same, we cannot decide on the
translation by simply looking at the grammar. A person knows that a river cannot buy
things -- it is not an appropriate action. In order to translate properly, the person knows
facts about cooks and rivers, and fish, and what happens to them.

As a result of this problem it became obvious that a translation system could not
succeed without trying to understand what it was translating. Only a small fraction of the
sentences would be translated correctly. It isn't that the machine would fail to produce a
sentence, but often the output in the new language would not convey the same meaning
as the input in the original language.

In 1964, the National Academy of Sciences put out a report saying that although a
tremendous amount of effort had gone into machine translation, it would not succeed using
the techniques which had been developed. As a resu't, the attempt to build practical
translation machines was delayed in hopes of comirg first to a better understanding of the
basic problems of language, grammar, and meaning. it is interesting to note that in the
nast few years people are again becoming ir‘erested in translation. They believe that
some of the ideas which have been de-eloped in the meantime may succeed in producing
comrrercially useful translation systems. But it is still very much a hope -- it is not clear
that we are yet at a point w! zre a general translation device can be built.

Early Al ¢ stems

Following the end of the large translation projects, people turned instead to the
problem of building computer systems which in some limited way tried to understand the
language they dealt with. The most obvious way to judge understanding is to have a
dialog. If you say something, and the person you say it to gives an appropriate response
-- something which makes sense in the context of what you said -~ then you believe he
understood. If | ask you a question, and you give me an answer (even if you do not know
the correct answer), | can usually tell whether you understood the question. If | request
that you do something, and you do it or try to do it, then | can say you understood that
request. If | give you a fact, and you later do something which depends on knowing it, |
again have a test for your understanding.

STUDENT

People began to develop dialog systems involving an interchange rather than a body
of text as dealt with in translation. One of the earliest systems which did question
answering was a system named STUDENT, by Daniel Bobrow at MIT in 1964. It did
simple word problems in algebra, from a high-school course. The input to the computer is
a problem, like:

If the number of customers Tom gets is twice the square of twenty
percent of the number of advertisemeats he runs, and the
number of advertisements is 45, what is the number of
customers Tom gets?

EARLY Al SYSTEMS 3

A human student would take this question, set up the equations, solve them, and
give an answer like “162". The problem for the computer was to convert the language
sentences into equations -- the test of understanding the sentences was producing the
right equations to solve the problem.

This is very limited. If we use a phrase like "th~ number of customers Tom gets”,
ther later ask “How many people buy things from Tom", the program has no way of
connecting words like "customer” and "buy”. The system used a simple kind of pattern
match which looked for whole phrases corresponding to variables. For example it would
set X = "the number of customers Tom gets” and could only match it to subphrases of
that, like "the number of customers”. Most of its knowledge was about the use of special
mathematical words like “times®, "of", "percent”, etc. and it built the equations from
patterns containing those. For a phrase like "20 percent of the number of customers” it
set up an erpression like ".2 x X" where X is the variable it assigned to “the number of
customers”. It recognized the use of the word "of" to represent this multiplication.

By doing this, the system performed fairly successfully on a set of simple problems.
lts success depended on the fact that the problems did not involve interesting language
deductians. However, it caused quite a Lit of excitement, because it demonstrated that

computers could solve problems involving language, even if in a small domain.

SIR

Another system done at about the same time was SIR, which stood for Semantic
Informaticn Retrieval, done by Bertram Raphael, also at MIT in Marvin Minsky’s laboratory.
This system answered simpie questions about the relations between objects. You could

type in sentences like:

A nose is part of a person.
A nostril is part of a nose.
A professor isa teacher.
A teacher is a person.

Then you could ask a question, iike "Is a nostril part of a professor”” and it could
perform simple logical operations involving transitivity and subset relations to answer
"es" It handled only a limited number of possible relations, like "part of", "own", "has",
and "is a kind of", and did not have a very general way of combining them. When more
than one relation had to be combined to get an answer, special parts of the program had

to take care of the interactions.

This system, like STUDENT, was written in LISP, and they were two of the first
large LISP programs. The basic primitives of LISP are especially suited to the kind of
symbolic non-numeric operations needed for these applications. For example, SIR used
property lists to represent most of its knowledge. On the property list of the symbol
PERSON, there would be a property named PARTS containing a list of parts like NOSE.

4 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

This program did not have a body of knowledge about the world built in. The only
knowledge it had as part of its basic equipment involved these relationships like HAVE
and PART. Specific facts about people and noses were typed in as English sentences like
those above. It was extremely limited in the variety of sentences it could handle. Only a
tew simple patterns were recognized, like "A --- is @ ---", or "A --- has a ---" It
recognized 10 or 12 such patterns specifically, and any other sentences were not
acceptable. The program was mostly concerned with the organization of the logical
connections between the facts, rather than problems of grammar and language.

ELIZA

A very ditferent kind of program done about the same time was ELIZA, by Joseph
Weizenbaum. Weizenbaum asked the question "How could a system convince a person
that it was carrying out intelligent dialog, without doing any more analysis of the language
than absolutely necessary." He had the clever idea of considering the dialog between a
psychiatrist and a patient. When you talk to a psychiatrist, he will often say things that
don’t seem directly related on the surface to what you said, but in trying to go below the
surface he may have other connections in mind. This program is clever in that it does not
have a deep analysis, but because you view it as a psychiatrist, you make the
connections.

People can be quite convinced that this program is understanding a lot when in fact
it has only a superficial recognition. A tygical dialog might be: (the person’s entries are in
italics)

I am very lonely.
How long have you been very lonely?

This seems like an appropriate response. The system is looking for any pattern of
the form " am ---" and whenever it sees it, it types back "How long have you been ---",
substituting the actual phrase. So if | type "I am therefore | think” it will say "How long
have you been therefore you think” It does not try to make sense of the input -- only
to find the pattern. Our dialog might continue:

Ever since my mother got disconnected.
Tell me more about your family.

Again this is triggered on a simple pattern. Whenever a phrase contains the word
"mother”, the program responds "Tell me more about your family.” !f you say "The
prince’s mother is the queen." it responds “Tell me more about your family." This is in
fact very clever. A psychiatrist knows that a person who mentions mothers, whether his
own or another, ic very likely having subconscious thoughts about his own family. This is a
deep kind of understanding which tris program only mimics on the surface.

An important lesson to learn from this program is that we often read into a
program’s behavior our own ideas of whc' it understands. When it says something back,
it may not have connected it in the way the speaker intended. This is a danger of judging
any language program -- its success of understanding may not correspond direstly to how
good the response looks, since thai response may have been generated by a special
purpose trick.

T T T —

SECOND GENERATION Al SYSTEMS 5

Second Generation Al Systems

The three programs described above were the early group of language programs
which convinced people that computer systems might treat language as something more
than a string of symbols. They saw the meaning of sentences as something to be
understood and manipulated. It was clear that they did not treat language in a
sophisticated way. They all ignored the problems of grammar and complex structures
which had been a main focus of the translation programs. They thought of meaning in a
very limited way. SIR could only handle a small number of relations, STUDENT could only
handle things whose meanings were equations, and ELIZA handled everything at the
expense of not really trying to understand it.

Six or seven years later, a number of "second-generation” systems tackled a much
larger range of the problems of language. They did this by restricting the things they
talked about to a very narrow domain. Not narrow in the sense of being only algebra
equations, but in the sense of choosing an area of the world involving a small number of
objects and concepts.

LUNAR

One such system was Woods’ LUNAR system which was developed over a period
of time from 1967 to 1972 This system was designed to answer questions about the
mineral samples brought from the moon by the astronauts. NASA has a large data base
describing where each sample was found, what research has been done on it, what it is
made of, and so forth. A geologist might sit down with a system like this and ask
questions like "What is the average concentration of aluminum in high-alkali rocks?", and
the system would answer back with a number like "8.45569 percent." In response to
“How many breccias contain olivine” it might respond "5", and in response to "What are
they?" it would list the catalog numbers of those 5 samples.

Woods developed something called transition net grammars to describe for the
computer the grammatical facts about English needed for interpreting complicated
structures. The system uses the grammar to convert English sentences into requests in a
special query language which is designed to interface with an information retrieval
system he built for the large data base. We can think of his system as a translator from
English into the query language (which is built in LISP). The result of typing a question is
sending a request to this system, and getting back an answer. The range of what could
be asked was fairly limited, as it knows only a small number of facts about each rock.
There is a large number of samples, but only a few kinds of information. He also didn’t
worry about entering tire data in English. All the information about the rocks is stored
ahead of time in a special format, and the natural language capabilities are used strictly
for understanciing questions.

SHROLU

At about the same time, | developed the SHRDLY program which converses with a
person about manipulations it is performing in a simple world of toy blocks, like that used

6 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

in the hand-eye robot projects at MIT and Stanford. There is a table with a set of simple
objects like cubes and vedges, and an arm operates on those objects. It can pick them
up and move them to build structures. The dialog is an interaction between the user and
this program like the one to be shown in Lecture 2.

This system attempts to integrate all the aspects of language, in combining linguistic
knowledge with a command of the world being discussed. The system answers questions,
accepts commands, and takes in new facts as part of a dialog with a person, and there is
a good deal of emphasis on the effects of context on understanding. It does not see each
new sentence as an isolated problem, but keeps track of the actions, events, and
sentences of the dialog to fit new facts into a meaningful context. Since this system will
be described in detail in Lecture 2, | will defer discussion of it for later.

MARGIE

Another system developed in the early seventies is MARGIE developed by Schank’s
students (Goldman, Rieger, and Riesbeck) at Stanford. This system uses its knowledge of
the structure of language to make paraphrases. In a natural language, the same thing can
be said in many different ways. Different words and structures can convey the same
meaning. MARGIE gives a series of different paraphrases of an input, demonstrating a
type of understanding. In response to the input “"John killed Mary by choking Mary", it
produces a series of paraphrases like:

John strangled Mary.
Mary died because she was unable to inhale some air and she was
unable to inhale some air because John grabbed her neck.

The program also draws simple inferences, so to an input like "John gave Mary some
aspirin,” it might respond:

John believes Mary wants an aspirin.
Mary is sick.

Rather than viewing this as a dialog system, we can better call it an understander
system. Given a sentence input like the one to MARGIE there is no simple test of
whether it understood. It is not like a translator where the output is either correct or
wrong, or a question answerer where there is an appropriate response to a question or
command. Instead, the result of an input sentence is a change to the program’s internal
knowledge structure. At some othe: point, ycu mighi test that knowledge structure by
asking questions or presenting tasks, but the program is primarily concerned with the
problem of taking in knowledge, rather than demonstrating it. The test then lies in the
computer scientist looking at the structures it has built and seeing if they reflect a
correct understanding. This can make it confusing to read about such recent programs,
since there are no simple input-output criteria for understanding.

In the long run, such systems need to be able to make use of their information in
interacting with the world. But in locking at current work on such systems we cannot be
too rigid in our definition of "understanding”. We must concentrate on the specific ways
in which the system deals with knowledge.

o 1

|

CURRENT DEVELCPMENTS 7
Current Developments

The previous section describes most of the large well-developed systems which
have been built. Most of the work going on now is much more fragmented. Rather than
trying to put together a large system which carries out an entire dialog, people are
concentrating on the components which must go into new systems. They represent sets
of ideas for working with meanings, with the ultimate hope of combining these Ideas in
future large systems. The current projects on speech understanding (which | will describe
iater) are an exceplion to this, dealing explicitly with the problem of integrating the
components of a total system.

The representation problem

The main problem people are facing might be called the representation of
knowledge. Artificial intelligence in general might be characterized as the part of
computer science concerned with this problem of representation. The early systems all
had special forms of program and data to represent different sorts of meaning. STUDENT
had a very simple idea of representation -- meaning = equations. That works only for
things in a small mathematical domain. We cannot in general represent a ‘ct as a simple
equation. SIR had a simple representation using property lists, which could store other
kinds of facts, but wasnt adequate for more complicated knowledge involving things like
quantitiers. For these more complex interconnections between facts, we need a more
general formalism. This is true both for understanding language and for other problem-
solving and inteiligent systems (like those for vision). People have developed a number
of ideas for representations of knowledge in computer programs, which will be discussed
in detail in Lecture 3. They form a basis for much of the work that is being done. In the
rest of this lecture | will talk more specifically about those issues related to representing
the information needed for natural language understanding and reasoning.

Case structures

One important idea which is being developed is that of case strurtures. The idea of
cases in linguistics has been around for a long time. In learning a language like Latin, you
learn the declension of nouns -- the set of cases which the word can take on. Fillmore.
(1968) developed this idea as a way of talking about grammars which do not have explicit
marked cases like Latin. In an English sentence like "I bought the fish.", we can say that
there is a case named AGENT for the object causing the action to happen, and another
role PATIENT for the thing undergoing the action. There are other cases, as in the
sentence "John gave Mary a bottle." John is the agent -- he did tt= act. The bottle is
the patient, or thing acted tpon, and Mary is the DATIVE or beneficiary -- the action was
for her benefit. Fillmore’s point is that a smal number of such cases is sufficient for
describing much of language structure. Different people have developed a variety of
systems with different cases, but the important thing is that there are a small number of
ways in which an object can be related to an action. Once we have named the 6 or 8 or
10 possibilities, this can be used to describe an action in computer memory. We specify
the type of act, and the set of objects involved with the case they fill in. Simmons at the
University of Texas has developed these ideas in a computer implementation. His
program takes simple sentences and analyzes them into these deep case relations.

T g

8 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

It is important to remember that this is a semantic, not a surface syntactic
representation. In the sentence *| broke the dish.", | am the agent. In "The dish broke.",
the dish is now the syntactic subject of the sentence, and on the surface level is filling
the same place that "I" filled in “| broke the dish." But at the case structure level, the
dish is the pauent in both cases -- the thing acted upon - even though on the surface it
is represented in different ways. It is interesting to compare different languages. In
Japanese, | believe, the surface form is closer to these case structures than in Englich.

Larger scale structures

In going from translation systems to dialog systems, people expanded the set of
issues they were looking at. In translation, they were concentrating on the dictionary and
grammar. In dialog systems, there was a new emphasis on meaning, and the way
knowledge is connected. But these systems still took a limited view of what was needed
-- they dealt with language sentence by sentence, fact by fact. The concern was to take
a particular sentence and relate it to a global data base or task. The problems were
those of representing very specific facts, like "A nose is part of a person” or "l want you
to pick up that block." Today, people are becoming aware of the ways in which this is
too much of a limitation as well. We need to understand how the process of
understanding can relate to larger structures of knowledge. In understanding a sentence,
we are not simply taking in a new piece of cognitive structure, but making changes to
larger structures which alreacy exist. As part of your knowledge, you know a great deal
about the kinds of connections which are possible between things. Programs must deal
with sentences by fitting them into such a structure. We cannot view each new sentence
as a "piece” which will eventually be combined with others to take an action or produce
an answer. Instead when a new piece comes in, it is actively fit into existing structures,
and a great deal of organization goes on long before any use is made of the information in
answering a question or carrying out a command. There is an active process seeking to
fit things together.

Conceptualizations

One example of larger conceptual structures is that of simple stories, like those
studied by Chafe (1972). He talks about conceptualizations. A person who sets out to
tell a story begins with a corcept of the story as a whole. The problem is to convert
that into a sequence of words, and the problem for the hearer is to deduce from those
words what the structure is. So in looking at the process of story understanding, we
need to analyze the structures. Figure 1.1 shows some of the structures used by Chafe.
The first says that a fable is a story which illustrates some moral. Once we decide that
we are hearing a fable, we will interpret what we hear as leading to some sort of moral,
and the active search for that moral will affect the way we interpret the details of the
story. A story in turn is made up of a world which serves as background for a plot. The
plot involves a motivation which yields a sequence of events (the development) and the
outcome of that is some sort of resolution.

This is an abstract description of the story. It is language, but not at the level of
grammar. It deals instead with how we organize our thoughts. Because the understander
has a knowledge of these structures ahead of time, he can fill in a number of extra
connections between the pieces.

CURRENT DEVELOPMENTS 9

fable
-
story
world background plot illustrates mora |
plot |
i
motivatlion ylelds development ylelds resolution

motivation

perception desire
NG - wolf NG - wolf
exp exp
VG - see S stimulates VG - want S
past S past S
comp comp
percept goal

Figure 1.1. Conceptualizations for a simple fable (Chafe).

This particular analysis has not been explored very far in actual computer programs,
but is an idea for some formalisms for these larger structures.

/
10 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

Scripts

Another formalism for story structures is Abelson’s (1973) scripts. These also
have not really been used in developed programs, but represent a very similar approach
to looking for the larger cognitive structures for events. Abelson deals with those things
which might be called "plot” in Chafe’s work. He looks at the rossible connections
between events in a story, fcr example that a particular act may have been done to
prevent some other event from happening. Others might include an act being done to
make an event possible, one event causing another, etc. In his paper he presents a
schema for a particular political ideology, which he calls a Ma ster seript. In this script
(see Figure 1.2) there is a set of events and actions with relations to each other. This
script is applied to a particular set of events to interpret the connections between them.
When the person with this ideology reads about an event in a newspaper, he does not
simply store away a fact like "There is a strike in Indonesia." He tries to fit it into his
script by seeing it as a communist plot, a response to such a plot, and so on. In political
analysis it is clear that different people can have very different schemata for viewing the
same situations. By the time a fact gets stored in the knowledge structure, it has been
changed by the way it fits into the structure. It is no longer “"there was a strike”, but
“the communists are causing trouble” or "the people are responding to the oppression of
the bosses.” In fact, a person may later remember these without remembering any of the
details of the specific act which took place.

Master script for a cold war ideology:

fuz Communist
liberal thinking schemes
our call l use of —> Tree world
to action free world power victory
free world Communist
paralysis victory

Figure 1.2. An ideological script (Abelson).

It isn’t immediately obvious that this applies in areas less subjective than politics,
but one important trend in natural language is the attempt to find this kind of
“assimilation” happening in all sorts of understanding processes. When | make a statement
of any sort, it isn’t just stored, but you try to interpret it as fitting in to a larger "script”.
Programs are just now being built to try and do these things at many levels.

i T B e

Rt

CURRENT DEVELOPMENTS I

Conceptual dependency 1
Another system is Schank’s ranceptual dependency which he has been developing |
for a number of years. His point is that a single word in English is often a pointer to a

complex conceptual structure. When you hear a word, you call forth a pattern for a
structure and fill it out. Figure 1.3 shows a structure for "give".

John gave Mary a book.

&= PTRANS

JOHN g-:gs/\‘.';xns; & _ BOOK

MARY

JOHN

Figure 1.3. Conceptual dependency network for "give" (Schank).

If you hear that "John gave Mary a book." you will try to fill it out, including looking
for facts about why and how the act was done. If we say "Sam grew corn” this is not the
same as "Sam grew." It was the corn which did the growing, and Sam did some other act
or acts to help it. Conceptual dependency makes this explicit in the structure, as
illustrated in Figure 1.4 .

Sam grew corn. |

| S AM =l «DO*

CORN (=== GROW

Figure 1.4. Conceptual structure for "Sam grew corn."

12 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

The multiple arrow indicates a cause -- Sam’s doing something caused the corn to
grow. In the English surface structure, "growing” seems a simple act, like "Sam hit the
ball." But in the conceptual structure there is an element missing -- an unspecified act.
Part of the design of a system must involve an awareness that things like this need to be
filled in. We can look explicitly for the things Sam must have done.

Demons

Another mechanism for drawing connections between pieces of knowiedge is
Charniak’s (1973) demons. He deals with the problem of recognizing that two facts
should be connected. Once it is recognized that two facts are inter-related, they can
often suggest a larger structure. His work deals with simple children’s stories. We might
have a sequence of sentences like:

Janie went to her piggy bank. She shook it. She took the nickel and
went to the store.

A person hearing this sequence knov's what happened. If we give it to a computer,
then ask "Where did she get the nickel” there is no explicit answer available. There is
no sentence saying that a nickel came out of the piggy bank -- only one saying she shook
it, and another saying she ‘ook a nickel to the store. A person draws the obvious
connection that the money must have come out of the piggy bank. This is a critical
element of natural language. A person almost never provides ali the 4etailed steps that
connect the things he is saying. The listener knows enough to fill in a great deal of
implicit information. If you ask me "What time is it”" and | respond "My watch is broken",
that is fine -- | don’t have to say "I cannot tell you because | do not know what time it is,
because my watch is broken, and when a watch is broken it does not tell the correct
time, etc.”" All that is obvious.

Charniak has taken some limited cases and used demons to make those connections.
When his system notices that Janie is shaking a piggy bank, it sets up a demon which
states "If you see any mention of money in the next few sentences, it probably came from
the piggy bank." We can think of this demon as sitting in the program looking for
mentions of mc ey, waiting to jump out and say "Aha! | know where that came from "
There are lots of complicated problems in making use of demons, since there will often be
a number of them, looking for different things, and their interactions lead to many
difficuities. But there is an important idez ' the explicit setting up of expectations which
may be met by further bits of the input.

Rings

Another paper by McDermott (1973) proposes ring structures for connecting
sequences of hypotheses and events. As facts are described to the system, it looks for
connections between them. If it is told that "Fred is a bird." and "Fred can't fly." it will
no: simply store away those facts. but look for a third fact which makes them plausible.
The two original facts set up a tension since they normally don't go together, and the
tension is resolved by constructing a ring with another fact which the system
hypothesizes. One solution is to infer that a flightless bird must be a penguin. A natural
inference from being a perguin would be that he lives in Antarctica, so if the system now
learns that "Fred lives in Sydney", we must find some new fact to resolve the tension --

- — . I —— ,,__J:

SPEECH UNDERSTANDING SYSTEMS 5

perhaps he lives in a zco. It is not possibie to be sure what the right thing is to fill in tho
ring -- if instead of hypothesizing that Fred is a penguin we had hypothesized that he is 3
dodo bird, that would also resolve the tension of a flightless bird, but it would then not
take an extra ring to fit together with living in Australia. The program is faced wi''.
having to hypothesize plausible facts to make things fit together, but has to be willing t=
go back and change its mind -- to dissolve the ring and reconnect it another way 't
course before it discovers the problem, it may have used its hypothesized facts to huild
still other rings.

McDermott’s system accepted a simple sequence of events concerning a monkey in a
room with some simple objects. His system was not in the traditional Al position of
simulating the monkey’s problem solving, but in the position of an observer, trying to
understand its actions If the monkey picks up a banana, the program needs to explain
why it would do such an act. It makes the obvious hypothesis that the monkey is hungry.
If the monkey then sets the banana down, this creates a tension with the fact thit if
wants to eat it Either a new ring must be constructed with a further fact (maybe tre -
was a sudden noise), or the old one must be dissolved, and the system must find anot! -«
reason for picking up the banana -- perhaps the monkey was just curious. McDermo!t
was concerned primarily with structuring sets of facts and contexts to make this kind ~¢
process possible

Speech Understanding Systems

Most of the problems described above might be characterized as relating to the
chunking of knowledge. Such ideas are in a beginning stage, and are not yet integrated
into systems. Another aspect of current work involves the organization of integrated
natural language systems. It is particularly active in the context of a number of speech
understanding systems. A concerted research effort was begun 2 years ago by the
Advanced Research Projects Agency (Newell et.al. 1973) to produce in a § year period a
working speech system A person could converse with this system in normal connecte i
English. This is quite different from the existing programs to represent isolated spoken
words, as it must combine all different aspects of language. There is a great deal ~¢
emphasis on avoiding the "brittleness" of current systems. This is the quality, ver,
common in computer systems, that they can't bend at all without breaking. If there 15 an
input which is almost what the system would expect, but not quite, the system does nci
just find the input more difficult to handle, but fails completely. If the user types in one
word or punctuation mark wrong, or the system is missing one fact, 1t is not flexib'e
enough to say "Oh, that really must have been.." Much of the emphasis on larger scal.
orgarization is to get this kind of flexibility. Since a human understander is interpreting
an input in the context of larger structures, he may be willing to interpret it in a way
quite different from what it looks like if that 1s what is needed to make it comprehensib'e
== he ic willing to bend it quite a way to make it fit. In speech, this is an immediate !y
necessary feature, since actual acoustic signals cannot be processed to provide encugh
information to provide the kind of certainty a brittle system would need.

If the context provides only a few choices of what a word must have been, it 1
often possible to decide which fits the acouctic signal best. But faced with the task of
scanning an utterance for words, there is nc way to do it accurately and completely. So
the system has to be organized to be very flexible and forgiving about what it finds. 4
has to know what it is looking for on the basis of larger structures and use the input as 4

L R R R ey

14 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

test. There are a number of different organizational schemes being developed. It is
important to note that these organizational ideas are not needed only for speech systems
-- as language programs of any sort try to handle less constrained inputs, they must
share many of the same ‘eatures.

Linear organization

The simplest form of organization is that shown in Figure 1.5 . To some large
extent, the different facets of our language knowledge can be separated into components,
and we can organize a system by building them separately and letting the data flow from
one to the other.

WORD EXTRACTION

SYN#AX
v

SEMANTICS

b

REASONING

Figure 1.5. Linear organization for a speech understanding system.

The first component needs to determine the words in the input. In the case of
written language this involves only a dictionary lookup to see what charact.~ strings are
words. For speech, this stage is much harder, involving a good deal of acoustic and
phonetic processing.

The next stage is syntax. It handles the facts about the arrangements of words
which are usually included in a grammar. If it sees the two sentences "The dog bit the
man." and “The man bit the dog." the words are all the same, but the ordering gives more
information. The syntactic component involves an operation of parsing which takes the
word sequence and builds grammatical structures.

The next stage is often called semantics and describes the connections between
these syntactic structures and meaning. If we have a structure like *| ran”, | am the actor
-- | did the running. It we have "The dish broke", even though the dish is the subject it
i5 not the actor, but rather, something happened to it. Things which have the same
syntactic structures on the surface can convey different meaning. The semantics
component then needs to convert the linguistic structures into some sort of internal
representation that can be used for reasaning. The final stage is a reasoning component.

SPEECH UNDERSTANDING SYSTEMS 15

Most of the complete systems which have been built operate in a simple way. They
assume that you can tirst find the words in a dictionary, then call a parser which analyzes
the syntactic structures, then call a semantic analyzer which converts it into the meaning
representation, and finally call on the set of reasonir.g programs which use it.

One system (developed at the Stanford Research Institute) tries to reverse this
directionality. In speech, it isn't easy to say what word is appearing in the wave form, so
they try to predict by coming from the other end of the chain. They ask "What do | think
is being said (based on reasoning)”” followed oy "How would that be phrased (syntsx)?"
and finally "Therefore what words do | expect to see” In some cases this approach
works well, but it depends on there being a very limited set of possible messages. |f |
ask a question which is to be answered "yes" or "no," then it is easy to recognize the
answer. On the other hand, If you walk in and begin a lecture, it is not the case that |
have a clear expectation for the words you will begin with. Often we dont have
anywhere near enough information to go look for & particular word which might have been
said.

Heterarchica! organization

Another style of orzanization is the heterarchical system. In this kind of system,
there are a number of sub-components working together, and any one of them can pass
information to any other one directly. There is no strict chain of command, progressing
from one stage to the next. Any component can be called at any time if its knowledge
seems likely to be useful. In the system at Bolt, Beranek, and Newman (Woods, 1972)
the components are as shown in Figure 1.6 .

MATCHING BOOKKEEP ING PRAGMATICS

e

'".EXICAL CONTROL SEMANTICS

RETRIEVi://///////
FEATURE

EXTRACTION SYNTAX

Figure 1.6. Heterarchical system organization.

16 COMPUTER SYSTEMS FOR NATURAL LANGUAGE

The feature extractor looks at the incomiry wave forms, and suggests possible
phonetic features. These then can be used by the Ixical retrieval component to see what
words are possibly there. The matching componen) takes a possible word and checks it
against a piece of the wave form to check the likklihood that it is actually there. The
syntax component knows the syntaciic structure oY language and uses this to evaluate
possible sequences of words. The semantic componeht knows about simple semantic facts
(like our early example that "rivers can't buy thingsy, and finally a pragmatic component
does the reasoning about the specific topic being dis{ussed. There is also a bookkeeper
to keep track of the possible analyses being considred, and a control box to decide
which component will do what when. Of course e interesting structure from an
organizational viewpoint lies in this control box.

The particular method used to understand the chmplexities of control is called
incremental simulation. Given a number of different types of knowledge, the problem is
to understand when to use each one, and what sort of ihformation needs to be passed
from one to the other. At one time, the syntax may be ufed to suggest what words are
present, and the matcher would check to see how plausiblejthey are. In another case the
feature extractor might find a set of words with a great de}l of certainty, and the syntax
would have to find a way to analyze their structure. ¥Woods’ group simulated an
understanding system by having people doing each of the ¢ ponent tasks, and using the
computer to interface between them. This allowed the entire: system to be working even
though the details of each component were not worked out By studying the kinds of
interactions which were necessary to put together the kno ledge of the 6 individuals
simuiating the components, they are figuring out how to orgar§ze the control component.
Gradually programs wili replace the person doing each componépt task, within the context
of a clearer idea of how it should be fit in -- what sort of information it can expect to
get, what it can be expected to produce, and when it should be Ysed.

Pandemonium

The heterarchical system assumes that the builders of a system must develop a
complex control structure suited to the task. The result of this ?search is expected to
be a detailed understanding of just how the tasks interact and wh® should be done when.
A very different model (which | am calling pandemonium) is being tried by the group at
Carnegie-Mellon University (Reddy 1973). The idea is to Avoid worrying about
complicated control structure. Rather than having to anticipate whh sort of information
should be used when, the subsystems are all allowed to work ind¥pendently and share
information through a hypothesis scratch pad, as shown in Figure 1.7

It is as if we had a group of experts working on a common taskl but no one of them
knew anything about the others. Each expert might not even know how many others there
were, or what kind of things they dealt with. Communication is manzged by having each
expert know how to propose sequences of words, and assign a degrize of confidence to
them. Any individual component can look at the current set of hypotheY.‘;es, and either add
new ones to it, or change the level of confidence in one of the old cnes, depending on
whether it makes sense with respect to his particular knowledge. Thus the overlord has
no authority to decide what is to be done, or what knowledge is to be passed, but is just
a bookkeeper. This sort of system has the virtue that it is easy to put in new

REFERENCES 17

components, and make major charges to their functions, without disturbing the rest of the
system. It is highly modular. The interesting question is whether such a system can be
successful without the more tailored interactions of a heterarchical system.

OVERLORD
ACOUSTIC SYNTACTIC SEMANTIC
RECOGN I ZER RECOGN I ZER RECOGN | ZER

HYPOTHES IS SCRATCHPAD

Figure 1.7. The pandemonium organizational mode!.

Summary

In summary, the main problems being faced in language systems today are "How can
we make use of larger structures of knowiedge to help in understanding?" and "How can a
system be organized to make flexible use of a variety of different sorts of knowledge”"
Within the next few years we will see large systems incorporating many of the ideas now
being developed, and we can expect them to perform significantly better than the ones
which are now available.

References for lecture 1

Machine Translation

Yorick Wilks, An artificial intelligence approach to machine transiation, in Schank and
Colby (eds.), Computer models of thought and language, pp. 114-151.

Early Al systems

Daniel Bobrow, Natural language input for a computer problem solving system, in
Minsky (ed), Semantic information processing, pp. 134-215.

Marvin Minsky (ad), Semantic information processing, MIT Press, 1968.

COMPUTER SYSTEMS FOR NATURAL LANGUAGE

Bertram Raphael, SIR: A computer program for semantic information retrieval, in
Minsky (ed.) Semantic information processing, pp. 33-133

Joseph Weizenbaum, ELIZA, Communications of the ACM 1966, 9, pp. 36-45.

Second-generation systems

MARGIE: Memory, Analysis, Response Generation, and Inference on English, Advance

papers, Third International Joint Conference on Artificial Intelligence, pp.
255-261.

Terry Winograd, Understanding natural language, Academic Press, 1972,
William Woods, RM. Kaplan and B. Nash-Webber, The lunar sciences natural

language information system: final report, BBN Report 2378, Bolt Beranek and
Newman, Cambridge, Mass, 1972.

Case structures

Charles Fillmore, The case for case, in E. Bach and R. T. Harms, (eds.), Universals in
linguistic theory, New York: Holt, Rinehart and Winston, 1968, pp. 1-68.

Robert Simmons, Semantic networks: their computation and use for understanding
English sentences, in Schank and Colby (eds.), Computer models of thought and
language, pp. 63-113

Larger scale chunks of knowledge

Robert Abelson, The structure of belief systems, in Schank and Colby (eds.),
Computer models of thought and language, pp. 287-340

Wallace Chate, First technical report, contrastive semantics project, Dept. of
Linguistics, University of California, Berkeley, 1972,

Eugene Charniak, Toward a model of children’s story comprehension, Al TR-266, MIT
Artificial Intelligence Laboratory, Cambridge Mass. 1972.

Orew McDermott, Assimilation of new information by a natural language
understanding system, MIT Al TR-291, February 1974,

Roger Schank, Identification of conceptualizations underlying natural language, in
Schank and Colby (eds.), Computer models of thought and language, pp. 187-
248

Roger Schank and Kenneth Colby, Computer models of thought and language
Freeman, 1973.

REFERENCES 19

Speech Systems

Allen Newell et. al, Speech understanding systems: final report of a study
group, North Holland/American Elsevier, 1973.

R.D. Reddy, L.D. Erman, RD. Fennell, and RB. Neely, The Hearsay speech system: an
example of the recognition process, Advance papers, Third International Joint
Conference on Artificial Intelligence, pp. 185-193

Donald Walker, Speech understanding through syntactic and semantic analysis,
Advance papers, Third International Joint Conference on Artificial

Intelligence, pp. 208-215

W.A. \Wyods and J. Makhoul, Mechanical inference problems in continuous speech
understanding, Advance papers, Third International Joint Conference on
Artificial Intelligence, pp. 200-207

20 SHRDLU: A SYSTEM FOR DIALOG

Il Lecture 2

SHRDLU:
A SYSTEM FOR
DIALOG

In this lecture | will describe in some detail a program | wrote at MIT for
understanding natural language. There are many things in that program which | would do
very differently today, and many new ideas which have been developed since then.
Therefore, | do not want to convey the impression that this program represents the last
word in how things should be done, but | think it is important tc look at a whole program
-- to see how things fit together. Many of the newer ideas are still fragments which
have not been combined in an integrated way. In this lecture | will use my program to
illustrate the range of things which must go into language understanding, and some of the
problems of organization in putting together a complete system.

Overview of the system

There are several important basic features of the SHRDLU system. First, it is a
dialog system. There is an exchange between the computer and a person. The person
can give commands, ask questions and make statements concerning a simple world of
discourse, and the system reacts appropriately, carrying out commands, answering
questions, and taking in new information.

It is an integrated system which combines knowledge of syntax (the grammar of the
language), semantics (the way the language conveys meaning), and reasoning (the ability to
make deductions and connect facts in the subject domain).

The system is designed to account for the problems of discourse -- to see each
utterance in the context of the more complete discussion. There is a context of things
being discussed, a context of the rest of the discussion -- the sentences which have gone
before -- and there is a memory of the events which have happened.

The program is based on a belief that success at understanding language depends on
a deep knowledge of the subject being discussed. You need more than a dictionary of
word meanings and a knowledge of syntactic structure. The system must know the
connections of meanirgs and facts within the domain. This implies that to translate
something like a newspaper, we would need to build in all the varied knowledge that a
person brings to that task.

in our program, we chose to resolve the dilemma by picking a tiny bit of the world
to talk about. Within this mini-world, we can give the computer a deep kind of

e

- —

A DIALOG WITH SHRDLU 21

knowledge, which allows it t~ do the necessary reasoning The subject chosen was
the world of a toy robot with a simple erm. It can manipulate toy blocks on a table
containing simple objects like a box. In the course of a dialog, it zan be asked to move
the objects around, doing such things as building stacks and putting things into the box. It
can be questioned about the current configuration of blocks on the table, about the
events which have gone on during the discussion, and to a limited extent about its
reasoning. It can be told simple facts which it adds to its store of knowledge for use in
later reasoning. The conversation goes on within a dynamic situatinn, in which the
computer is an active participant, doing things which change his toy world, and discussing
them The program dispiays a simulated robot world on a TV screen, and converses with
a human on a tele'ype. It was not written for any particular use with a real robot, and
does not have a rnodel of language based on peculiarities of the robot environment.
Rather, it is precisely cv limiting the subject matter to such a small area that we can
address the general issu2s of how language is used in situations involving physical
objects, events, and a continuing discourse.

The programs can be roughly divio. J into the three domains mentioncd above:
There is a syntactic parser v.hich works with a large-scale grammar of English; there is a
collection of semantic routines which embody the kind of knowledge needed to interpret
the meanings of words and structures; and there is a cognitive deductive system for
exploring the consequences of facts, making plans to carry out commands and finding the
answers to questions. There is also a comparatively simple set of programs for
generating appropriate English responses.

In designing these pieces, the main emphasis vas on their interaction. The form in
which we want to state a syntactic theory or a type of deduction must take into account
the fact that it is only a part of a larger systen. Cne of the most useful organizing
principles was the representation of much of the knowledge as procedures. Many other
theories of lan<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>