
AWARD NUMBER:   W81XWH-18-1-0400 

TITLE:  Dense Urban Environment Dosimetry for Actionable 
Information and Recording Exposure (DUE DARE)

PRINCIPAL INVESTIGATOR:    Prof. David J. Lary 

CONTRACTING ORGANIZATION:  University of Texas at Dallas, Richardson, TX 

REPORT DATE:  JULY 2022 

TYPE OF REPORT:  FINAL 

PREPARED FOR:  U.S. Army Medical Research and Development Command 
Fort Detrick, Maryland  21702-5012  

DISTRIBUTION STATEMENT:  Approved for Public Release;  
Distribution Unlimited 

The views, opinions and/or findings contained in this report are those of the author(s) and 
should not be construed as an official Department of the Army position, policy or decision 
unless so designated by other documentation. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of 
this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations 
and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, 
no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT 
RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE
JULY 2022

2. REPORT TYPE
FINAL

3. DATES COVERED
30Sep2018 - 29MAR2022

4. TITLE AND SUBTITLE

Dense Urban Environment Dosimetry for Actionable 
Information and Recording Exposure (DUE DARE)

5a. AWARD NUMBER 
W81XWH-18-1-0400

5b. LOG NUMBER 
BA170483

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 

Prof. David J. Lary

5d. PROJECT NUMBER 

5e. TASK NUMBER 

E-Mail: david.lary@utdallas.edu
5f. WORK UNIT NUMBER

8. PERFORMING ORGANIZATION
REPORT
    NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Texas at 
Dallas, 
800 W Campbell Rd, 
Richardson TX 75080, USA 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S
ACRONYM(S)

U.S. Army Medical Research and Development Command 

Fort Detrick, Maryland  21702-5012 11. SPONSOR/MONITOR’S REPORT

NUMBER(S)



12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited 

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In dense urban environments there is currently a lack of accurate actionable
information on atmospheric composition (gaseous and particulate) on fine
spatial and temporal scales. By simultaneously measuring both the
environmental state and the human biometric response we propose a holistic
sensing environment and methodology for providing accurate actionable
information. A state of the art sensor network involving fixed and mobile
sensors using machine learning calibration and uncertainty estimation.
Comprehensive wearable biometric sensors are used to characterize the real-
time human response to the composition of the air, making the human response
an integral part of the sensor network. The holistic sensor network
incorporates embedded real time machine learning to increase functionality in
providing actionable insights for active human participants.

15. SUBJECT TERMS
None listed.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. 
NUMBER 
OF 
PAGES

155

19a. NAME OF RESPONSIBLE 
PERSON
USAMRDC

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified
Unclassified

19b. TELEPHONE NUMBER 
(include area code) 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18



TABLE OF CONTENTS 

 Page 

1. Introduction

2. Keywords

3. Accomplishments 8

4. Impact

5. Changes/Problems 17

6. Products 12

7. Participants & Other Collaborating Organizations 14

8. Special Reporting Requirements 18

9. Appendices

N/A

N/A

N/A

N/A



1. INTRODUCTION:  Narrative that briefly (one paragraph) describes the subject, purpose and
scope of the research.

2. KEYWORDS: Provide a brief list of keywords (limit to 20 words).

Human health and performance are impacted by air pollution and toxic 
environmental exposure.  There is currently a lack of accurate actionable 
information on atmospheric composition (gaseous and particulate) on 
fine spatial and temporal scales in dense urban environments.  Our 
primary goal was to provide accurate actionable information through the 
use of machine learning and multi-scale multi-use sensing.  This project's 
main technical goal was to create a framework for using machine learning 
to characterize the effects of environmental exposures on human 
performance.  To accomplish this, we made extensive observations of 
both the environmental state (airborne chemicals and particulates) and 
the physiological autonomic response as defined by 113 different 
biometric parameters, the majority of which were measured at 500 Hz, 
with pupillometric parameters measured at 100 Hz.

Toxic environmental exposure. 
Human performance.

Biometric measurements.

Machine learning.

Autonomic response.

Airborne particulates.

Dense urban environments.

Actionable insights.

Multi-use multi-scale sensing.



3. ACCOMPLISHMENTS:  The PI is reminded that the recipient organization is required to
obtain prior written approval from the awarding agency grants official whenever there are
significant changes in the project or its direction.

What were the major goals of the project?

List the major goals of the project as stated in the approved SOW.  If the application listed 
milestones/target dates for important activities or phases of the project, identify these dates and 
show actual completion dates or the percentage of completion.  


The primary technical goal of this study was to create a framework for 
characterizing how the environment influences human performance by 
combining holistic multi-use multi-scale sensing with machine learning. To 
accomplish this, we collected extensive data on the environmental state 
(airborne chemicals and particulates) as well as the physiological 
autonomic response, which was characterized by 113 different biometric 
responses. 


The secondary goal was to create, deploy and document a prototype for 
scalable, reproducible, holistic measurement capabilities that could be 
easily deployed for multiple applications providing actionable insights, all 
with a focus on pre-emotive human protection and performance 
optimization.



What was accomplished under these goals?

For this reporting period describe: 1) major activities; 2) specific objectives; 3) significant results 
or key outcomes, including major findings, developments, or conclusions (both positive and 
negative); and/or 4) other achievements.  Include a discussion of stated goals not met. Description 
shall include pertinent data and graphs in sufficient detail to explain any significant results 
achieved.  A succinct description of the methodology used shall be provided.  As the project 
progresses to completion, the emphasis in reporting in this section should shift from reporting 
activities to reporting accomplishments.  





The major activities in this project were: 

1. Building and deploying a comprehensive environmental monitoring 

system comprised of three distinct components: 

a. Continuous in-situ monitoring of airborne particulates ranging in 

size from COVID-19 to much larger pollen and airborne mold 
(0.1 — 40 microns), as well as a suite of gasses. 


b. Mobile in-car reference monitors installed in a zero-emission 
electric vehicle. 


c. Airborne particulate abundance estimation using remote sensing 
(from satellites and weather RADARs).


2. Building and deploying a comprehensive biometric monitoring 
system to holistically measure the human autonomic response.  Eye 
tracking glasses measured pupil size and gaze direction at 100 Hz, and 
a 64 electrode electroencephalography (EEG), electrocardiography 
(ECG), galvanic skin response (GSR), body temperature, blood oxygen 
saturation (SpO2), heart rate (HR), and heart rate variability (HRV) were 
measured at 500 Hz


3. Comprehensive machine learning, both supervised and unsupervised, 
to build empirical models of human responses to environmental 
exposures.




The specific objectives in this project were: 
1. To create a framework for characterizing how the environment

influences human performance by combining holistic multi-use multi-
scale sensing with machine learning.

2. To create, deploy and document a prototype for scalable, reproducible,
holistic measurement capabilities that could be easily deployed for
multiple applications providing actionable insights, all with a focus on
pre-emotive human protection and performance optimization.

3. Comprehensive machine learning, both supervised and unsupervised,
to build empirical models of human responses to environmental
exposures.

Some of the significant results include:


1. Using machine learning to  accurately model the autonomic pupillary
response light intensity of various wavelengths. The human body has
numerous autonomic responses. Changes in light intensity, for
example, cause pupil dilation to change. Traditionally, the pupil size
formulae based on luminance have had very poor accuracy. We used
machine learning to investigate the multivariate non-linear autonomic
response of pupil dilation as a function of a comprehensive set of over
400 environmental parameters in this project, resulting in the provision
of the most accurate model to date. A multivariate non-linear non-
parametric supervised regression algorithm with an ensemble of
regression trees receiving input from both spectral and biometric data
was  used in the objectively optimized empirical machine learning
models. The models for predicting the participants' pupil diameters
from the input data had a fidelity of at least 96.9% for both the training
and independent validation data sets. The most important inputs were
light levels (irradiance) at wavelengths near 562 nm. This corresponds
to the maximum absorbance of the retina's long-wave photosensitive
cones, which have a maximum absorbance of 562.8±4.7 nm.



 

2. Discovering that, just as humans have a rapid autonomic response to 
light intensity, for example, if a human gaze moves to a bright light in a 
few milliseconds, pupil dilation autonomically decreases, there is also a 
rapid discernible autonomic response when airborne particulates are 
inhaled. This autonomic response can be calibrated to determine how 
many particles per cm3 of a specific size are inhaled. The figure below is 
from our publication available at https://doi.org/10.3390/s22114240.




A scatter plot of measured PM1 abundance versus that inferred solely 
from biometric measurements using machine learning is shown in panel 
(a). A perfect fit is indicated by the black 1:1 line. Training data are 
represented by blue circles, while validation data are represented by red 
pluses. Panel (b) depicts the corresponding quantile-quantile plot of 
measured PM1 versus that inferred using machine learning solely from 
biometric measurements. A perfect y = x line would result from identical 
true and predicted distributions. Panel (c) depicts a time-series plot of 
measured PM1 values (solid black line) and those inferred solely from 
biometric measurements using machine learning across seven separate 
data collections (dashed red line). The background color represents the 
trial number for each time period. Trials 1-3 were collected on May 26th, 
2021; trials 4-5 on June 9th, 2021; and trials 6-7 on June 10th, 2021.

https://doi.org/10.3390/s22114240


  3. Developing an algorithm for Unsupervised Blink Detection Using Eye 
Aspect Ratio Values. The eyes provide access to underlying physical 
and cognitive processes. Although pupil size has been extensively 
studied, blinking is a less studied but potentially informative factor. 
Blink detection techniques are far less common than eye-tracking and 
pupil size estimation tools due to their novelty. We built  a new 
unsupervised machine learning blink detection strategy that makes use 
of existing eye-tracking technology. The method is compared to two 
other methods. For blink detection, all three algorithms use eye aspect 
ratio values. Accurate and rapid blink detection adds to existing eye-
tracking research and could provide a new informative index of 
physical and mental health.


4. Developing an algorithm for Data-Driven EEG Band Discovery with 
Decision Trees.  Electroencephalography (EEG) is a brain imaging 
technique that involves placing electrodes on the scalp. EEG signals 
are commonly divided into four frequency bands: delta, theta, alpha, 
and beta. While these bands have been demonstrated to be useful for 
characterizing various brain states, their utility as a one-size-fits-all 
analysis tool is unknown. We developed an algorithm that provides an 
objective strategy for identifying optimal EEG bands based on signal 
power spectra. A two-step data-driven methodology for objectively 
determining the best EEG bands for a given dataset is presented. First, 
for a predetermined number of bands, a decision tree is used to 
estimate the optimal frequency band boundaries for reproducing the 
signal's power spectrum. An Akaike Information Criterion (AIC)-
inspired quality score that balances goodness-of-fit with a small band 
count is then used to determine the optimal number of bands. By 
identifying bands that outperformed the more commonly used band 
boundaries by a factor of two, this data-driven approach resulted in a 
better characterization of the underlying power spectrum. Key spectral 
components were also isolated in dedicated frequency bands. The 
proposed method offers a fully automated and adaptable approach to 
capturing key signal components and potentially discovering new 
brain activity indices.



 
5. Developing a machine learning algorithm for the calibration of low-

cost Airborne Particulate Sensors. Airborne particulates are particularly 
important due to their effects on human health as well as their roles in 
both atmospheric radiative transfer and atmospheric chemistry. 
Environmental agencies typically collect data on airborne particulates 
using expensive instruments. The number of sensors that can be 
deployed is limited due to the high cost of the instruments typically 
used by environmental agencies. We show how machine learning can 
be used to effectively calibrate lower-cost optical particle counters in 
this study. It is critical for this calibration to take measurements of the 
atmospheric pressure, humidity, and temperature.


6. Developing a machine learning algorithm for the calibration of low-
cost light sensors. Sunlight incident on the Earth's atmosphere is 
necessary for life, and it drives a variety of photochemical and 
environmental processes, such as radiative heating of the atmosphere. 
We describe and apply a physical methodology for providing 
wavelength resolved irradiance spectra with a resolution of 1 nm 
between 360-780 nm by calibrating against a reference sensor using 
machine learning using an ensemble of very low-cost sensors (with a 
total cost of $20, less than 0.5% of the cost of the reference sensor). 
These low-cost sensor ensembles are calibrated using machine 
learning and can accurately reproduce the observations made by a 
NIST calibrated reference instrument (Konica Minolta CL-500A, which 
costs around $6,000). R2 > 0.99 has been optimized for the correlation 
coefficient between the reference sensor and the calibrated low-cost 
sensor ensemble. Both the circuits and the code used have been made 
public. We can distribute a large number of low-cost sensors in a 
neighborhood scale area by accurately calibrating the low-cost 
sensors. It provides unprecedented spatial and temporal insights into 
the micro-scale variability of wavelength resolved irradiance, which is 
useful for air quality, environmental, and agricultural applications.



7. Physical Quantification of the Interactions Between Environment,
Physiology, and Human Performance. Characterizing key physical
interactions between the human body and its surroundings has
numerous important applications in public health, preventative
healthcare, city planning, sports medicine, aviation, and other fields.
The complexity of these multifaceted interactions, on the other hand,
makes physical first principles approaches difficult. We authored a
paper in which we describe a data-driven experimental paradigm that
combines holistic physical sensing with a variety of computational tools
to generate empirical machine learning models that quantify the
interactions between environment, human physiology, and
performance. This paradigm's two main outputs are 1) high-fidelity
predictive models and 2) objective evaluation of predictor variable
impacts on target variables. Particulate concentrations, for example,
were accurately inferred from biometric observations alone in one case
study using an empirical machine learning model. Following that,
evaluation model predictors revealed that body temperature was the
best predictor of particulate concentrations. This adaptable paradigm
is applied in a variety of contexts to provide practical insights into the
complex, interconnected dynamics of environment, physiology, and
human performance.



What opportunities for training and professional development has the project provided?   

If the project was not intended to provide training and professional development opportunities or 
there is nothing significant to report during this reporting period, state “Nothing to Report.”


Describe opportunities for training and professional development provided to anyone who worked 
on the project or anyone who was involved in the activities supported by the project.  “Training” 
activities are those in which individuals with advanced professional skills and experience assist 
others in attaining greater proficiency.  Training activities may include, for example, courses or 
one-on-one work with a mentor.  “Professional development” activities result in increased 
knowledge or skill in one’s area of expertise and may include workshops, conferences, seminars, 
study groups, and individual study.  Include participation in conferences, workshops, and seminars 
not listed under major activities.  


A total of 90 students (names listed below) were involved with this project 
with extensive one on one mentorship throughout: 

12 graduate students. 

69 undergraduate students. 

9 high school students. 

6 PhD dissertations, 9 publications with another 1 in progress.


Graduate Students

1. Lakitha Omal Harindha Wijerante (thirteen publications, PhD defended)
2. Gebreab K. Zwedie (fourteen publications, PhD defended)
3. Xun Liu (two publications, PhD defended)
4. Xiaohe Yu (three publications, PhD defended)
5. Yichao Zhang (two publication, publication, PhD defended)
6. Shawhin Talebi (eight publications accepted, won Deans’ poster award,

PhD defended)
7. Adam Aker
8. John Waczak
9. Bharana Fernando
10. Ruwali Shisir
11. Prabuddha Madusanka
12. Mazhar Iqbal




Undergraduate Students

13. Daniel Kiv, awarded Undergraduate Research Scholar Awards for “Low 

cost air quality internet of things.”

14. Aaron Barbosa

15. Berkley Shofner (Clark Research Program)

16. John Charles Sadler 

17. Arjun Sridhar

18. Nikhil Prassan Narvekar

19. Julia Boah Kim

20. Giakhanh Huu Hoang


Undergraduate Senior Design Students Fall 2019 - UTD MINTS 
Biometrics Project

21. Ritika Shrivastava 

22. Shlok Kothari 

23. Amna Ali 

24. Jacqueline Solis


Undergraduate Senior Design Students Fall 2019 - UTD MINTS Air 
Quality Project

30. Kameron Noorbakhsh 

31. Nicholas Steele 

32. Nikhil Nair 

33. Jake Schroder 

34. Benjamin Hogan 


Undergraduate Senior Design Students Spring 2020 - UTD MINTS 
Biometrics Project

35. Nikhil Nannapaneni 

36. Albin Mathew 

37. William Hood 

38. Marco Myers 

39. Akito Ito 

40. Bikram Singh



 
Undergraduate Senior Design Students Spring 2020 – UTD MINTS Air 
Quality Project

41. Jacob Scheller 

42. Jonah Duncan 

43. Getenet Demsie 

44. Nathan Nguyen


Undergraduate Senior Design Students Fall 2020 - UTD MINTS 
Biometrics Project

45. Vihasreddy Gowreddy

46. Madhav Mehta

47. Ryan Rahman

48. Arjun Sridhar

49. Rohit Shenoy


Undergraduate Senior Design Students Fall 2020 - UTD-MINTS Air 
Quality Project

50. Bryanth Fung

51. Keigo Ma

52. Robert Wu

53. Kangzhi Zhao


Undergraduate Senior Design Students Spring 2021 - UTD MINTS 
Biometrics Project

54. Rami Jaber

55. Jesse Ladyman

56. Cristian Xavier Garces

57. Bradley Krakar


Undergraduate Senior Design Students Spring 2021 – UTD MINTS Air 
Quality Project

58. Sidney Evans

59. Kevin Flores

60. Fawaz Khurram

61. Veronica Ramirez

62. Daniel Yustana




 Undergraduate Senior Design Students Fall 2021 - UTD MINTS 
Biometrics Project

63. Rolando Martinez 

64. Omar Luna 

65. Michael Lee 

66. Sopuruchi Chisom 

67. Nikhil John 


Undergraduate Senior Design Students Fall 2021 – UTD MINTS Air 
Quality Project

68. Keshav Dhamanwala 

69. Aditya Agrawal 

70. Tommy Symalla 

71. Dien Tran 

72. Michael Villordon 


Undergraduate Senior Design Students Spring 2022 – UTD MINTS Air 
Quality Project

73. Michael Spencer 

74. Rishi Chandna 

75. Anthony Maranto 

76. Usaid Malik 


Undergraduate Senior Design Students Spring 2022 – UTD MINTS Air 
Quality Project

77. Basil El-Hindi 

78. George Yi 

79. Eric Zhang 

80. Trent Haines 

81. Noah Barber 


High School Students

5 during summer 2019

4 during summer 2021



How were the results disseminated to communities of interest?   

If there is nothing significant to report during this reporting period, state “Nothing to Report.”


Describe how the results were disseminated to communities of interest.  Include any outreach 
activities that were undertaken to reach members of communities who are not usually aware of 
these project activities, for the purpose of enhancing public understanding and increasing interest 
in learning and careers in science, technology, and the humanities.  




What do you plan to do during the next reporting period to accomplish the goals?  

If this is the final report, state “Nothing to Report.”  


Publications:


1. Talebi, S., Lary, D. J., Wijerante, L. O. H., & Lary, T. (2019). Modeling 
Autonomic Pupillary Responses from External Stimuli using Machine 
Learning. Biomedical Journal of Scientific & Technical Research, 
20(3), 14999–15009.


2. Wijeratne, L. O. H., Kiv, D. R., Aker, A. R., Talebi, S., & Lary, D. J. (2020). 
Using Machine Learning for the Calibration of Airborne Particulate 
Sensors. Sensors, 20(1), 99.


3. Lary, D. J., Schaefer, D., Waczak, J., Aker, A., Barbosa, A., Wijeratne, L. 
O. H., Talebi, S., Fernando, B., Sadler, J., Lary, T., & others. (2021). 
Autonomous Learning of New Environments with a Robotic Team 
Employing Hyper-Spectral Remote Sensing, Comprehensive In-Situ 
Sensing and Machine Learning. Sensors, 21(6), 2240. Publication 
from SOFWERX follow on project, also led to NASA Tech Briefs Q&A: 
Team of Robots Maps Composition of an Environment. NASA Tech 
Briefs, 45(6) https://www.techbriefs.com/component/content/article/
tb/pub/techbriefs/electronics-and-computers/39254. The 
government released video is available at https://youtu.be/-
VB3og5qmG0 


4. Zhang Y, Wijeratne LOH, Talebi S, Lary DJ. Machine Learning for Light 
Sensor Calibration. Sensors. 2021; 21(18):6259. https://doi.org/
1 0 . 3 3 9 0 / s 2 1 1 8 6 2 5 9 a n d h t t p s : / / w w w . m d p i . c o m /
1424-8220/21/18/6259/htm  


5. Yu X, Lary DJ, Simmons CS. PM2.5 Modeling and Historical 
Reconstruction over the Continental USA Utilizing GOES-16 AOD. 
Remote Sensing. 2021; 13(23):4788. https://doi.org/10.3390/
rs13234788 and https://www.mdpi.com/2072-4292/13/23/4788/htm

https://www.techbriefs.com/component/content/article/tb/pub/techbriefs/electronics-and-computers/39254
https://www.techbriefs.com/component/content/article/tb/pub/techbriefs/electronics-and-computers/39254
https://www.techbriefs.com/component/content/article/tb/pub/techbriefs/electronics-and-computers/39254
https://youtu.be/-VB3og5qmG0
https://youtu.be/-VB3og5qmG0
https://www.mdpi.com/1424-8220/21/18/6259/htm
https://www.mdpi.com/1424-8220/21/18/6259/htm
https://www.mdpi.com/2072-4292/13/23/4788/htm


 

6. Yu X, Lary DJ, Simmons CS, Wijeratne LOH. High Spatial-Temporal PM2.5 
Modeling Utilizing Next Generation Weather Radar (NEXRAD) as a 
Supplementary Weather Source. Remote Sensing. 2022; 14(3):495. 
https://doi.org/10.3390/rs14030495  and https://www.mdpi.com/
2072-4292/14/3/495/htm


7. Fernando, B.A.; Sridhar, A.; Talebi, S.; Waczak, J.; Lary, D.J. Unsupervised 
Blink Detection Using Eye Aspect Ratio Values. Preprints 2022, 
2022030200 (doi: 10.20944/preprints202203.0200.v1) https://
www.preprints.org/manuscript/202203.0200/v1.


8. Talebi, Shawhin, John Waczak, Bharana A. Fernando, Arjun Sridhar, and 
David J. Lary. 2022. "Data-Driven EEG Band Discovery with Decision Trees" 
Sensors 22, no. 8: 3048. https://doi.org/10.3390/s22083048


9. Shawhin Talebi, David Lary, Lakitha Wijeratne et al. Decoding Physical and 
Cognitive Impacts of PM Concentrations at Ultra-fine Scales, 29 March 
2022, PREPRINT (Version 1) available at Research Square [https://doi.org/
10.21203/rs.3.rs-1499191/v1]


10. PhD Dissertation in Physics, Gebreab Zewdie, Using a Comprehensive 
Characterization of the Physical Environment and Machine Learning to 
Forecast the Abundance of Airborne Pollen, May 2019, The University of 
Texas at Dallas. 


11.PhD Dissertation in Physics, Xun Liu, Physical Studies of Airborne Pollen 
and Particulates Utilizing Machine Learning, December 2019, The 
University of Texas at Dallas. 


12.PhD Dissertation in Physics, Lakitha Omal Harindha Wijeratne, Coupling 
Physical Measurement With Machine Learning for Holistic Environmental 
Sensing, May 2021, The University of Texas at Dallas.


13. PhD Dissertation in GIS, Xiaohe Yu, Cloud Detection and PM2.5 
Estimation Using Machine Learning, October 2021, The University of Texas 
at Dallas.


14.PhD Dissertation in Physics, Yichao Zhang, Providing Wavelength 
Resolved Irradiance Measurements by Using Machine Learning, May 2022, 
The University of Texas at Dallas.


15.PhD Dissertation in Physics, Shawhin Talebi, Physical Quantification of the 
Interactions Between Environment, Physiology, and Human Performance, 
May 2022, The University of Texas at Dallas.

https://doi.org/10.3390/rs14030495
https://www.mdpi.com/2072-4292/14/3/495/htm
https://www.mdpi.com/2072-4292/14/3/495/htm
https://www.preprints.org/manuscript/202203.0200/v1
https://www.preprints.org/manuscript/202203.0200/v1
https://doi.org/10.3390/s22083048
https://doi.org/10.21203/rs.3.rs-1499191/v1
https://doi.org/10.21203/rs.3.rs-1499191/v1


 

Public Presentations so far

1. Lary, D. J., Talebi, S., Wijeratne, L., Aker, A., Yu, X., Zhang, Y., Lary, T., 

Waczak, J., Fernando, B., & Balagopal, G. (2020). Cognitive 
Performance and the Environment. Virtual Frontiers.


2. Lary, D. J. (2020). Fun of Physics: Physics in Service of Society. UT 
Dallas, Fun of Physics Seminar Series.


3. Lary, D. J., Talebi, S., Wijeratne, L., Aker, A., Yu, X., Zhang, Y., Lary, T., 
Waczak, J., Fernando, B., & Balagopal, G. (2020). Physics in Service of 
Society. UT Dallas, Physics Departmental Seminar.


4. Lary, D. J., Talebi, S., Wijeratne, L., Aker, A., Yu, X., Zhang, Y., Lary, T., 
Waczak, J., Fernando, B., & Balagopal, G. (2020). Machine Learning 
and Holistic Sensing for Societal Benefit. UT Dallas, Bioengineering 
Departmental Seminar.


5. Lary, D. J. (2021). Shared Air DFW Community Air Monitoring Network. 
Air North Texas Coalition.


6. Lary, D. J. (2021). Good Health and Well Being: Machine Learning and 
Holistic Sensing for Societal Benefit. Regional Center of Expertise on 
Education for Sustainable Development (RCE North Texas), 2021 
Virtual Annual Summit — United Nations University.


7. Wijeratne, L., Kiv, D., Aker, A., Balagopa, G., & Lary, D. J. (2021). 
Machine Learning Calibrated Low-Cost Sensing. EPA P3 (People 
Prosperity Planet) National Student Design Expo, 2021.


8. Lary, D.J., Sensing in Service of Society, Research 411 Talk Show, March 
30, 2022

https://youtu.be/vLhlEJCxT68


 
Websites

1. Live environmental data. We are committed to open data and open 

source. All our environmental data is available online in real-time as a 
live map at https://www.sharedairdfw.com. The map shows in one 
place our sensor data, the EPA data, weather radar data, wind data, 
pollution sources and satellite data. The legend in the top left allows 
you to turn on and off the various data sources. This approach is now 
being rolled out at scale leading too many follow-on partnerships. The 
map is used by many community groups and Dallas County.


2. All the sensor designs, sensor code, portal code and other biometric 
analysis software has been made open source and is already available 
in 113 packages available at https://github.com/mi3nts.


3. MINTS-AI: Multi-Scale Integrated Intelligent Interactive Sensing for 
Actionable Insights https://mints.utdallas.edu


https://www.sharedairdfw.com
https://github.com/mi3nts
https://mints.utdallas.edu


4. IMPACT: Describe distinctive contributions, major accomplishments, innovations, successes, 
or any change in practice or behavior that has come about as a result of the project relative to:


What was the impact on the development of the principal discipline(s) of the project?   

If there is nothing significant to report during this reporting period, state “Nothing to Report.”


Describe how findings, results, techniques that were developed or extended, or other products from 
the project made an impact or are likely to make an impact on the base of knowledge, theory, and 
research in the principal disciplinary field(s) of the project.  Summarize using language that an 
intelligent lay audience can understand (Scientific American style). 




The comprehensive multi-scale multi-use sensing in this project 
catalyzed three synergistic projects one with USSOCOM and two with 
SOFWERX.


1. The biometric suite developed for this project was used in a 
USSOCOM POTFF project led by the USUHS. It was a Pilot Study of 
Physiological Performance Predictors in High-Stress, Live-Fire 
Scenarios. Autonomic responses, such as the stress response, are 
physiological mechanisms that are designed to keep us safe. They 
offer insight into the underlying cognitive and physiological processes. 
Processing novel life-threatening stimuli depletes cognitive resources, 
which can impair decision-making and performance. A deeper and 
more detailed understanding of autonomic physiological responses in 
the context of high-stress live-fire scenarios opens the door to 
interventions that improve performance while also saving lives. We 
used a comprehensive picture of the participants' physical and 
cognitive status in the context of hyper-realistic live-fire training 
scenarios to predict performance in this pilot study. The high-
dimensional space of biometric markers lends itself to the 
development of objectively optimized empirical models of 
performance using machine learning.



2. The low-cost environmental sensing suite developed for this project
was used in two SOFWERX projects for the Autonomous Learning of
New Environments with a Robotic Team Employing Hyper-Spectral
Remote Sensing, Comprehensive In-Situ Sensing and Machine
Learning. This project demonstrated an autonomous robotic team that
can quickly learn the characteristics of new environments. The
adaptable paradigm is applicable to satellite calibration/validation
and the development of new remote sensing data products, and it is
easily scalable to multi-robot, multi-sensor autonomous teams. A case
study for rapid characterization of the aquatic environment is
described; in just a few minutes, we collected thousands of training
data points. This training data enabled our machine learning
algorithms to rapidly learn by example and provide wide-area maps of
the environment's composition. Along with these larger autonomous
robots, two smaller robots that can be deployed by a single person (a
walking robot and a robotic hover-board) were deployed, revealing
significant small scale spatial variability. The Autonomous Robotic
Team was documented in the following:

a. Two Department of Defense demonstration Government release
Videos:

i. https://youtu.be/-VB3og5qmG0  and
ii. https://youtu.be/_X8cKNC7Hn0

b. A NASA Tech Brief: https://www.techbriefs.com/component/
content/article/tb/pub/features/qa/39254

c. Journal Article: https://www.mdpi.com/1424-8220/21/6/2240
d. Dallas Morning News (11:36 AM on Jul 6, 2022) https://

www.dallasnews.com/news/2022/07/06/environmental-
cleanup-robots-being-trained-at-ut-dallas-to-tackle-hurricanes-
oil-spills/

https://youtu.be/-VB3og5qmG0
https://youtu.be/_X8cKNC7Hn0
https://www.techbriefs.com/component/content/article/tb/pub/features/qa/39254
https://www.techbriefs.com/component/content/article/tb/pub/features/qa/39254
https://www.techbriefs.com/component/content/article/tb/pub/features/qa/39254
https://www.mdpi.com/1424-8220/21/6/2240
https://www.dallasnews.com/news/2022/07/06/environmental-cleanup-robots-being-trained-at-ut-dallas-to-tackle-hurricanes-oil-spills/
https://www.dallasnews.com/news/2022/07/06/environmental-cleanup-robots-being-trained-at-ut-dallas-to-tackle-hurricanes-oil-spills/
https://www.dallasnews.com/news/2022/07/06/environmental-cleanup-robots-being-trained-at-ut-dallas-to-tackle-hurricanes-oil-spills/
https://www.dallasnews.com/news/2022/07/06/environmental-cleanup-robots-being-trained-at-ut-dallas-to-tackle-hurricanes-oil-spills/


What was the impact on society beyond science and technology?

If there is nothing significant to report during this reporting period, state “Nothing to Report.”


Describe how results from the project made an impact, or are likely to make an impact, beyond the 
bounds of science, engineering, and the academic world on areas such as:

• improving public knowledge, attitudes, skills, and abilities;
• changing behavior, practices, decision making, policies (including regulatory policies), or

social actions; or
• improving social, economic, civic, or environmental conditions.

5. CHANGES/PROBLEMS:  The PD/PI is reminded that the recipient organization is required
to obtain prior written approval from the awarding agency grants official whenever there are
significant changes in the project or its direction.  If not previously reported in writing, provide
the following additional information or state, “Nothing to Report,”  if applicable:

This study's sensor network of sensors has been and continues to be 
expanded through collaboration with a variety of community groups 
and cities. One of these led to the closure of an illegal dump called 
“Shingle Mountain" located in the first freedman’s community in Joppa, 
Dallas TX. This then became the subject of a TV documentary which can 
be seen at https://www.bet.com/episodes/8198nh/disrupt-dismantle-
shingle-mountain-season-1-ep-1.

The only changes that occurred were due to COVID-19. This led to 
some delays which were addressed with a no-cost extension.

https://www.bet.com/episodes/8198nh/disrupt-dismantle-shingle-mountain-season-1-ep-1
https://www.bet.com/episodes/8198nh/disrupt-dismantle-shingle-mountain-season-1-ep-1
https://www.bet.com/episodes/8198nh/disrupt-dismantle-shingle-mountain-season-1-ep-1


6. SPECIAL REPORTING REQUIREMENTS


QUAD CHARTS:  If applicable, the Quad Chart (available on https://www.usamraa.army.mil/
Pages/Resources.aspx) should be updated and submitted with attachments.




Activities                                                             CY 2018 2019 2020 2021 2022

Sensor Acquisition & Calibration – Milestones: Low 
cost sensor calibration/Publication/IRB/HRPO

Electric Vehicle Integration 
Milestones:  Test Survey

Measurement Campaigns – Milestones: 
Deployment of low cost sensors & Surveys

Machine Learning Analysis – Milestones: 
Publication/Final Report/Fort Detrick presentation

Estimated Budget $200k $300k balance

Dense Urban Environment Dosimetry for Actionable Information and 
Recording Exposure (DUE DARE) 
BA170483

PI:  Prof. David J. Lary  Org:  University of Texas at Dallas       Award Amount: $558,235

Study Aims
In dense urban environments there is currently a lack of accurate 
actionable information on atmospheric composition (gaseous and 
particulate) on fine spatial and temporal scales. By simultaneously 
measuring both the environmental state and the human biometric 
response we propose a holistic sensing environment and methodology for 
providing accurate actionable information.

Approach
A state of the art sensor network involving fixed and mobile sensors using 

machine learning calibration and uncertainty estimation. 
Comprehensive wearable biometric sensors are used to characterize 
the real-time human response to the composition of the air, making the 
human response an integral part of the sensor network. The holistic 
sensor network incorporates embedded real time machine learning to 
increase functionality in providing actionable insights for active human 
participants.

Goals/Milestones 
CY18 Goals – Sensor Acquisition & Calibration 
‣ Sensor acquisition 
CY19 Goals – Electric Vehicle Integration & Measurement Campaigns 
‣ Low-cost sensor calibration and deployment 
‣ Vehicle sensor suite training 
‣ Vehicle sensor suite testing 
‣ Publication/Conference Presentation 
‣ Integration of vehicle sensors into sensor pod 
‣ Integration of sensor pod into car 
CY20 Goals – Machine Learning Analysis 
‣ Survey with participants  
‣ Machine learning analysis linking biometric responses to environmental triggers 
CY21 Goals – Machine Learning Analysis 
‣ Survey with participants  
‣ Machine learning analysis linking biometric responses to environmental triggers 
CY22 Goals – Completion 
‣ Survey remaining participants  
‣ Analysis linking biometric responses to environmental triggers. Final report & publications.

Updated: UT Dallas, March, 2022

Timeline and Cost

https://www.usamraa.army.mil/Pages/Resources.aspx
https://www.usamraa.army.mil/Pages/Resources.aspx


7. APPENDICES: Attach all appendices that contain information that supplements, clarifies or
supports the text.  Examples include original copies of journal articles, reprints of manuscripts
and abstracts, a curriculum vitae, patent applications, study questionnaires, and surveys, etc.
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ARTICLE INFO Abstract

The human body exhibits a variety of autonomic responses. For example, changing 
light intensity provokes a change in the pupil dilation. In the past, formulae for pupil size 
based on luminance have been derived using traditional empirical approaches. In this 
paper, we present a different approach to a similar task by using machine learning to ex-
amine the multivariate non-linear autonomic response of pupil dilation as a function of a 
comprehensive suite of more than four hundred environmental parameters leading to the 
provision of quantitative empirical models. The objectively optimized empirical machine 
learning models use a multivariate non-linear non-parametric supervised regression 
algorithm employing an ensemble of regression trees which receive input data from both 
spectral and biometric data. The models for predicting the participant’s pupil diameters 
from the input data had a fidelity of at least 96.9% for both the training and independent 
validation data sets. The most important inputs were the light levels (irradiance) of the 
wavelengths near 562 nm. This coincides with the peak sensitivity of the long-wave    
photosensitive cones in the retina, which exhibit a maximum absorbance around maxλ  = 
562.8 ± 4.7 nm.

Introduction
This study is part of a broader investigation into the role of 

the environment in influencing human physical and cognitive per-
formance. The main purpose of this paper is to provide a baseline 
which accurately describes how changing illuminace affects pupil 
dilation, so that when emotional or cognitive factors are also in-
volved, we can start to discern the relative roles of illumnance and 
cognitive load in affecting  the pupil dilation [1-3]. The ranking of 
the importance of the predictor variables used in our empirical ma-
chine learning models provides a useful metric of which variables 
are the key drivers, providing us with valuable insights. The Auto-
nomic Nervous System (ANT) is responsible for changes in pupil 
dilation. The changes in pupil dilation may occur due to changing 
light intensity, cognitive load and emotional load [4]. While the light 
intensity allows an immediate response at the retinal level, an emo-
tional and especially cognitive response, require some higher level 
processing. So, when the visual input is sent from the eye to the vi-
sual cortex via the optic nerve, it first goes through the thalamus. If 
at this point an imminent threat is detected, it responds mobilizing 
the body for a  ‘fight or flight’ response, which is then reflected in the  

 
changes in the pupil size. As the visual information is relayed to the 
visual center of the brain in the occipital lobe, it is further sent for 
processing via various routes to different parts of the brain. In a fast 
paced changing environment, executive function in the prefrontal 
lobes make decisions in a fraction of a second. This process also 
effects changes in pupil dilation. Some areas of the brain involved 
in the processing of cognitive and emotional load are deep seated 
structures and can only be observed by expensive equipment such 
as fMRI in an artificial lab setting. So, part of the question we are 
starting to address in this study is how can we tell the difference 
to which stimuli the pupil is responding? This study begins to an-
swer this question using non-invasive methods that can be used in a 
natural setting by providing a methodology to accurately model the 
change in pupil size as a function of key environmental variables, so 
that when other changes are also occurring simultaneously (such 
as emotional and cognitive load) we can start to examine how these 
factors modify the pupil dilation response that occurs.

In addition to changes in pupil dilation, other autonomic 
responses include changes in heart rate variability, galvanic skin 
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response (or sweating), and core temperature [5-7]. Each of these 
responses are influenced by variables such as cognitive load [8-
11], age [12], pain level [13], and emotional state [14]. In several 
previous studies formulae for pupil size utilized a single variable, 
luminance [15-19]. A major shortcoming of these models is their 
lack of generality. This is illustrated in Figure 1, where the true 
pupil diameter is plotted against the estimated pupil diameter 
provided by each of the models enumerated in the legend. There 
is a clear contrast between the diffuse cloud of data points from 
previous model predictions and the high fidelity predictions of 
the machine learning model developed here, shown by the green 
(training points) and the red (independent validation points) in 
the foreground. Of the five previous models, Holladay’s formula 
[15] performed the best, with a fidelity of 25%. The substantial 
error of these previous models is a likely reflection of both missing 

parameters and the challenge of finding the exact functional form 
required for predicting the pupil diameter. Later models added 
variables such as adaptation field, age, and monocular adaptation 
[2,16-21]. All of the earlier models considered ambient light levels 
by way of the total luminance as opposed to the fine wavelength 
resolution of the UV/visible spectrum that was used in this 
study. The fine wavelength resolution allows one to identify the 
wavelengths to which the pupil dilation is most sensitive, it is 
noteworthy that there are some small variations from eye to eye 
in the key wavelengths for determining the pupil diameter. In this 
study we have utilized recent technological developments, the full 
visible spectrum and pupil size can be measured with high accuracy 
and in large volume combined with machine learning, this provides 
new opportunities for the development of much more robust higher 
fidelity empirical models.

Figure 1: Evaluation and comparison of previous pupil diameter models which utilized a single variable, luminance, showing 
poor fidelity contrasted with the multivariate empirical machine learning model for the average pupil diameter developed in 
this study showing good fidelity (foreground green training and red validation points). The true average diameter of the left 
and right pupils is given on the y-axis, and the estimation by each respective model on the x-axis. Luminance was computed 
from measured illuminance where the luminance was assumed to be isotropic and reflectance assumed to be 1. Models were 
evaluated based on description by Watson and Yellott [2].

In this first demonstration case study, with just one participant, 
we examined the effect of both light intensity and the orientation/
motion of the head on the diameter of a participant’s pupils. 
Different illumination environments can be characterized by their 
spectra. This light consisting of various wavelengths can interact 
with different photo-receptors (light sensitive cones) in the retina. 
This interaction produces electrical signals that are sent to the brain 

and interpreted as color [22]. These cones are disproportionately 
sensitive to particular wavelengths with absorbance peaks around 
420 nm (violet), 534 nm (green), and 564 nm (yellow-green) [3]. 
An illustration of these sensitivities can be shown by a plot of the 
mean absorbance of the three classes of photo-receptors (short-
wave, middle-wave, and long-wave cones) vs wavelength (Figure 2).
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Figure 2: Normalized mean absorbance spectra for long-wave, middle-wave, and short-wave cones. Maximum absorbance 
values for each class of cones are  420 nm  ± 4.7 nm, 534 nm  ± 3.7 nm, and 564  ± 4.7 nm, 420 nm  ± 4.7 nm, respectively. Dashed 
vertical lines represent the top 4 important predictors taken from the pupil diameter models created here. The sensitivity 
range of the Konica Minolta CL- 500A Spectrophotometer is 360 – 780 nm indicated by the gray double-sided arrow. Cone 
absorbances were based on a figure in the paper by Bowmaker and Dartnall [3].

New predictive empirical models of the pupil diameter can be 
derived using supervised multivariate non-linear non-parametric 
machine learning regression. The accuracy of the models can be 
evaluated using an independent validation (or testing) dataset 
whose data records were not utilized in the model training. This 
machine learning approach can also provide insights on the relative 
importance of the inputs (i.e. predictors). In this case we had a 
few hundred inputs, including the light intensities for every nm of 
wavelengths from 360-780 nm (ultra-violet to near infrared).

Materials and Methods
Data was collected during 3 outdoor/indoor walks where 

spectral and biometric data were recorded. The walks took place 
in the morning (8:30 AM) and late afternoons (4 PM), each lasting 
approximately fifteen minutes. Spectral data was measured 
approximately every 3 seconds using a NIST calibrated Konica 
Minolta CL-500A Illuminance Spectrophotometer, which measures 

the illuminance and spectral irradiance of wavelengths from 
360-780 nm with 10.3 nm resolution. Pupil diameters, head 
orientation, and the proper acceleration of the head were recorded 
100 times a second using Tobii Pro Glasses 2. The glasses use an 
infrared grid projected onto each eye to estimate the position and 
size of the pupils. The orientation and acceleration of the head 
are estimated using a Microelectromechanical System (MEMS) 
gyroscope and MEMS accelerometer located in the glasses. Data 
was prepared and analyzed using Matlab 2019a.

The data preparation involved six steps:

1. Collection - Recording of the raw data. Data was written 
to 6 separate files corresponding to the 2 devices for each of the 3 
trials.

2. Formatting - Converting raw data files to Matlab timeta-
ble objects. 6 timetables were created from the raw data files.
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3. Synchronizing - The sampling frequencies differed for 
each device. 1 record every 3 seconds for the spectral data, ver-
sus 100 records every second for the biometric data. To account 
for this, the 2 timetables for a particular trial were reconfigured  
to share the same time steps using Matlab’s retime function with 
a linear interpolation. The timetables for each trial could then com-
bined using the synchronize function. Resulting in 3 timetables, one 
for each of the 3 trials.

4. Merging - Concatenating all 3 timetables into a single 
timetable.

5. Cleaning - Removing records with device error flags, NaN 
elements, and zero values for pupil diameter. The latter case is ad-
dressed below.

6. Generating - Creating new variables such as the average 
pupil diameter and inter-eye pupil diameter difference.

A major challenge was introduced in step 5 (cleaning) of the 
data preparation due to a significant portion of the pupil diameter 
records taking values of 0. This was a non-physical consequence 
of the mechanism with which the pupil diameters were measured. 
When there is a high intensity of ambient infrared light from 
bright sunshine the glasses can no longer readily discern the 
pupil diameter, this is reflected in Figure 3 where pupil diameter 
dropouts coincide with time intervals of high spectral irradiance. 
These records were removed from the data, reducing the number 
of records from 380,000 to 80,000 records.

Figure 3: The normalized spectral irradiance at every time step for all walks is plotted. The irradiance is normalized by 
dividing all values by the maximum spectral irradiance within each walk. Relative size of irradiance values are indicated by 
the colorbar. Spectral lines at 528, 563, 567, and 776 nm represent the most important predictors for the pupil diameter models. 
Left (yellow) and right (green) pupil diameters are plotted over time. Note the pupil diameter dropouts in time intervals where 
the spectral irradiance is high. 
a) Walk 1 measurements during late afternoon (≈ 4PM).   
b) Walk 2 measurements during morning (≈ 8:30 AM) with overcast.
c) Walk 3 measurements during late afternoon (≈ 4 PM).
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From the recorded data we sought to estimate 5 different 
parameters, namely the: average of the left and right pupil 
diameters (APD), left pupil diameter (LPD), right pupil diameter(s)    
(RPD), magnitude of the difference between the left and right pupil 
diameters (PDD), and the illuminance. These parameters can be 
estimated by constructing objectively optimized empirical machine 
learning models. The hyperparameters (i.e. the parameters that 
define options associated with the training process) of an ensemble 
of regression trees able to use both boosting and bagging were 
optimized (the Matlab function fitrensemble with the Optimize 
Hyperparameters option set to all). More information on this 
function is available in the Matlab documentation [23]. We have 
done many previous machine learning studies [24-56]. The data was 
split into 2 subsets: one for training and one for the independent 
testing of each empirical machine learning model. With 90% of the 
data used for training the multivariate non-linear non-parametric 
regression models and 10% of the data used for independent 
testing of the models.

Results and Discussion
In the following subsections we discuss the results of the 5 

different empirical machine learning models. The accuracy of 
each model was assessed via a scatter plot of the true vs estimated 
response variable values (see Figures 4a, 5a, 6a, 7a, & 9a). If the 
true and estimated values are identical, the resulting scatter plot 
will be a straight line with a slope of one and an intercept of zero, 
i.e. a perfect one to one plot with a correlation coefficient, r2, equal 
to 1. This ideal is indicated by a black line in each scatter plot. The 
correlation coefficients for the training (plotted as green circles) 

and testing (plotted as red pluses) datasets were computed using 
Matlab’s corrcoef function.

The relative predictor importance ranking of each model was 
derived using the predictorImportance function. The relative 
rankings are visualized as bar plots (see Figures 4b, 5b, 6b, 7b, & 
9b). The importance estimates are plotted on a log scale with the 
most important predictors shown toward the top. In the pupil 
diameter models (i.e. models for the APD, LPD, RPD, and PDD), the 
top 20 out of 427 predictors are shown. For the illuminance model, 
all 7 predictors are given in the ranking. The top 3 predictors are 
indicated by red bars, the next 2 important predictors by yellow 
bars, and the remaining predictors by blue bars.

The Average Pupil Diameter Model

Figure 4 shows the results of the Average Pupil Diameter (APD) 
model. The APD was estimated using the spectral irradiance at every 
nm between 360-780 nm, the gyroscope, and the accelerometer 
data as predictor variables. The scatter plot of the true vs the 
estimated average pupil diameter values is shown in Figure 4a. The 
model had correlation coefficients of > 0.99 for both the training 
and testing data subsets. Thus, the empirical machine learning 
model was successful in predicting the average pupil diameter. 
Figure 4b shows the ranking of the relative importance of the 
inputs in predicting the APD, the top 3 predictors are the irradiance 
values at 561, 563, and 562 nm, which coincides with the maximum 
absorbance of the long-wave cones at around 563 nm [3]. This 
suggests the long-wave photo-receptors play a more significant role 
than the short- or middle-wave receptors in controlling the average 
size of the pupils for the participant.

Figure 4: Plots for the Average Pupil Diameter model. 
a) True vs estimated average pupil diameter in millimeters. 
b) Predictor importance estimates for the average pupil diameter model.
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The Left Pupil Diameter Model

The results for the Left Pupil Diameter (LPD) model are shown 
in Figure 5. The LPD was estimated using the same predictors as 
the APD, the spectral irradiance from 360-780 nm, the gyroscope, 
and the accelerometer data. The model was successful in predicting 
the LPD with a correlation coefficient of > 0.96 for both the training 

and validation data subsets. The top predictor (567 nm) is again 
near the maximum absorbance of the long-wave photo-receptors 
(563 nm). The next top 6 predictors are the irradiance values at 
528, 568, 564, 527, 668 and 570 nm, which seem to coincide with 
both the middle- and long-wave photo-receptors with maximum 
absorbance values near 533.8 ± 3.7 nm and 563 nm, respectively, 
with the exception of the irradiance at 668 nm [3].

Figure 5: Plots for the Left Pupil Diameter model. 
a) True vs estimated left pupil diameter in millimeters. 
b) Predictor importance estimates for the left pupil diameter model.

The Right Pupil Diameter Model

The results for the Right Pupil Diameter (RPD) model are shown 
in Figure 6. The RPD was estimated using the same predictors as 
the APD and LPD. For the RPD model there is a strong correlation 
between the estimated and true values, with coefficients of 
determination > 0.99 for both data subsets, shown in Figure 6a. 
The top 2 predictors are 563 nm and 562 nm, which again coincide 
with the maximum absorbance of the long-wave cones near 563 
nm. The next most important predictor was the irradiance at 776 
nm corresponding to near infrared light. This and the appearance 

of near infrared predictors in all the importance rankings may be a 
consequence of the infrared noise in the environment, resulting in 
the measured pupil diameters to be smaller than the actual values. 
An interesting result from the importance ranking in Figure 6b, 
is the appearance of a non-spectral predictor (Accelerometer Z) 
which denotes the proper acceleration in the direction in front of 
the glasses. This may be correlated to the participant looking down 
to navigate obstacles in the walking path such as stairs, inclines, 
rugged terrain, and other impediments. Focusing on a specific task 
or object may cause an increase in cognitive load, resulting in a 
pupillary response [10,11].

Figure 6: Plots for the Right Pupil Diameter model in millimeters. 
a) True vs. estimated right pupil diameter in millimeters. 
b) Predictor importance estimates for the right pupil diameter model.
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The Pupil Diameter Difference Model and Pupil Asym-
metry

The results for the left and right pupil diameter models are no-
ticeably different (see Figures 5 and 6), which may suggest an asym-
metry in the behavior of each pupil. One measure of this asymmetry 
is the magnitude of the difference between the left and right pupil 

diameters. This is shown by the results of the Pupil Diameter Differ-
ence (PDD) model given in Figure 7. The same predictors were used 
for the PDD model as in the APD, LPD, and RPD models. This empir-
ical model was not successful in predicting the PDD, since the cor-
relation coefficient was 0.43 for the testing data subset, as shown in 
Figure 7a. Clearly the most important predictors for modeling this 
asymmetry were not available in the training dataset.

Figure 7: Plots for the Pupil Diameter Difference .
a) True vs estimated pupil diameter differences in millimeters. 
b) Predictor importance estimates for the pupil diameter difference model.

Another metric of the pupil asymmetry can be the accuracy of 
the LPD model in estimating the RPD and vice versa. The resulting 
scatter plots are given in Figure 8. Despite the differences in the 
importance rankings and failures of the PDD model, the estimates 
are fairly accurate with correlation coefficients of > 0.95 for both 
the testing and training datasets. This accuracy may suggest that 

although there is an asymmetry in the importance rankings for the 
left and right pupil models, the functioning of each pupil is very 
similar. A possible cause of this asymmetry is ocular dominance 
(i.e. the input for one eye is preferred over the other) [57,58]. It has 
been suggested that ocular dominance is not a static phenomenon, 
but will vary with changing horizontal gaze angle [59].

Figure 8: Plots for the pupil diameter prediction using model from opposite eye data. Pupil diameters are in millimeters.
a) True vs estimated left pupil diameter using the right pupil diameter model. 
b) True vs estimated right pupil diameter using the left pupil diameter model.



Copyright@ Shawhin Talebi | Biomed J Sci & Tech Res | BJSTR. MS.ID.003446.

Volume 20- Issue 3 DOI: 10.26717/BJSTR.2019.20.003446

15006

The Illuminance Model

Figure 9 shows the results of the Illuminance model. We just saw 
above that if we know the light intensity we can accurately predict 
the pupil diameter, so now we `invert’ the experiment and ask the 
question, if we know the pupil diameter can we accurately estimate 
the light intensity? The model used the pupil diameters, gyroscope, 
and accelerometer data as the predictors. The estimates were some-

what accurate with correlation coefficients of 0.91 and 0.71 for the 
training and testing datasets, respectively. The top 2 predictors are 
the left and right pupil diameters, which agrees with first order 
considerations of the relationship between pupil diameters and 
external light levels. The next most important predictor was the 
acceleration in the z-direction (forward direction). Which may 
again be correlated with participant focus on obstacle navigation.

Figure 9: Plots for the Illuminance model. 
a) True vs estimated illuminance in lux. 
b) Predictor importance estimates for the illuminance model.

Pupil Diameter and Illuminance

In a first  order consideration, we can expect the pupil diameter 
to be inversely proportional to the illuminance. This is depicted 
in Figure 10, which gives 3 scatter plots of the average, left, and 

right pupil diameters vs illuminance. At low illuminance values, the 
expected inverse relationship is apparent. At higher values (> 4000 
lux) this expectation fails. The lack of a clear relationship between 
the two variables in all situations is likely the main contributor to 
the failure of previous models (Figure 1).

Figure 10: Log scale scatter plots of the pupil diameters vs illuminance. Data from walks 1, 2, and 3 are distinguished by the 
colors red, green, and blue, respectively. Data points with low opacity have illuminance values above 4000 lx. Note below the 
4000 lx mark the variables tend to have an inverse relationship. 
a) Average pupil diameter vs illuminance. 
b) Left pupil diameter vs illuminance. 
c) Right pupil diameter vs illuminance.
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The Environment

The normalized spectral irradiance at every time step for each 
trial is given in Figure 3. Normalized values were computed by di-
viding all irradiance values by the largest irradiance within each 
trial. Spectral lines are plotted for 528, 563, 567, and 776 nm, based 
on the top 3 most important predictors across all pupil diameter 
models (see Figures 4b, 5b, 6b, & 7b). Where predictors of the spec-
tral irradiance at 561, 562, and 568 nm were disregarded in lieu of 

the irradiance at 563 and 567 nm.

Temporal discontinuities in the spectra are due to those time 
intervals in which the participant walked in and out of shaded areas 
and/or away from the sun, which resulted in orders of magnitude 
differences in the spectral irradiance. Figure 11 depicts the nor-
malized spectral irradiance plotted on a log scale. Time intervals 
colored predominately red represent outdoor spectra, while more 
colorful intervals are indoor.

Figure 11: The log of the normalized spectral irradiance at every time step for all walks is plotted. The irradiance is normalized 
prior to taking log by dividing all values by the maximum spectral irradiance within each walk. Relative sizes of irradiance 
values are indicated by the color bar. Spectral lines at 528, 563, 13, 567, and 776 nm represent wavelengths of the most important 
predictors for the pupil diameter models.
a) Walk 1 measurements during late afternoon (≈ 4PM).
b) Walk 2 measurements during morning (≈ 8:30 AM).
c) Walk 3 measurements during late afternoon (≈ 4PM).
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Limitations
The high level of infrared noise caused significant drawbacks 

in the data analysis. Further developments may require light 
intensities and spectra to be within a non-disruptive range. Another 
solution may be to utilize an eye tracking instrument which uses 
visible light to estimate the pupil diameters.

Future Directions
Pupil size along with other autonomic responses such as heart 

rate variability, galvanic skin response, and core temperature 
changes have been associated with cognitive load and performance 
[5-11]. Although cognitive load is a significant contributor to the 
provocation of these responses, in a dynamic outdoor environment 
and while performing a physical activity (such as walking or 
cycling) it is not always clear which responses were due to external 
stimuli or cognitive status. Using a similar approach to the one used 
here, future data collection will expand the number of participants, 
environments, cognitive tasks, and biometric sensors.

Looking forward, multiple participants will allow for the as-
sessment of the inter-person variability of the models, including 
parameters such as age and body composition. Different environ-
ments will vary in light intensity, air quality, elevation, and tem-
perature. Environmental variables can be measured using mobile 
weather stations mounted on a participant or bicycle. Other envi-
ronmental sensors such as a video camera, microphone, and LIDAR 
can indicate dynamic field situations and track events. Tasks such as 
walking and cycling will be performed. Cyclist performance can be 
assessed via bicycle speed and biometric data. Biometrics such as 
Electroencephalography (EEG), Heart Rate (ECG), Galvanic Skin Re-
sponse (GSR), body temperature, Electromyography (EMG), blood 
oxygen level, and respiration will be considered and modeled. The 
ranking of predictor importance for these biometric models can 
help identify important relationships between environmental stim-
uli and different autonomic response.

Conclusion
Past formulae for predicting pupil diameter mainly considered 

total ambient light levels via luminance [2,15-21], these models 
could not capture the fully multi-variate and non-linear dependence 
of pupil diameter on the environmental state, and consequently had 
poor generalization. When considering the spectrum of light from 
360-780 nm (ultra-violet to near infrared) in lieu of the luminance, 
we were able to derive a very accurate empirical machine learning 
model which can predict pupil diameters with a minimum fidelity    
of 96.9%. The machine learning also allowed us to identify that 
the most important wavelengths in predicting the pupil diameters 
were around 562 nm (green), which is near the peak absorbance of 
the long-wave photo-receptive cones (562.8 ± 4.7 nm) [3].
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Abstract: Airborne particulates are of particular significance for their human health impacts and their
roles in both atmospheric radiative transfer and atmospheric chemistry. Observations of airborne
particulates are typically made by environmental agencies using rather expensive instruments. Due to
the expense of the instruments usually used by environment agencies, the number of sensors that
can be deployed is limited. In this study we show that machine learning can be used to effectively
calibrate lower cost optical particle counters. For this calibration it is critical that measurements of
the atmospheric pressure, humidity, and temperature are also made.

Keywords: optical particle counter; airborne particulates; machine learning

1. Introduction

Airborne atmospheric aerosols are an assortment of solid or liquid particles suspended in
air [1]. Aerosols, also referred to as particulate matter (PM), are associated with a suite of issues
relevant to the global environment [2–8], atmospheric photolysis, and a range of adverse health
effects [9–15]. Atmospheric aerosols are usually formed either by direct emission from a specific source
(e.g., combustion) or from gaseous precursors [16]. Although individual aerosols are typically invisible
to the naked eye, due to their small size, their presence in the atmosphere in substantial quantities
means that their presence is usually visible as fog, mist, haze, smoke, dust plumes, etc. [17]. Airborne
aerosols vary in size, composition, origin, and spatial and temporal distributions [14,18]. As a result,
the study of atmospheric aerosols has numerous challenges.

1.1. Motivation for This Study

Low cost sensors that can also be accurately calibrated are of particular value. For the last two
decades we have pioneered the use of machine learning to cross-calibrate sensors of all kinds. This was
initially done for very expensive orbital instruments onboard satellites (awarded an IEEE paper prize,
and specially commended by the NASA MODIS team) [19]. We are now using this approach operationally
for low-cost sensors distributed at scale across dense urban environments as part of our smart city
sentinels. The approach can be used for very diverse sensors, but as a useful illustrative example that
has operational utility, we describe here a case for accurately calibrated, low-cost sensors measuring the
abundance and size distribution of airborne particulates, with the implicit understanding that many
other sensor types could easily be substituted. These sensors can be readily deployed at scale at fixed
locations; be mobile on various robotic platforms (walking, flying, etc) or vehicles; be carried; or deployed
autonomously as a mesh network, either by operatives or by robots (walking, flying, etc.).

Building in calibration will enable consistent data to retrieved from all the low-cost nodes
deployed/thrown. Otherwise the data will always be under some suspicion as the inter-sensor
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variability among low-cost nodes can be substantial. While much effort has been recently placed on
providing the connectivity of large disbursed low-cost networks, little to no effort has been spent
on the automated calibration, bias-detection, and uncertainty estimation necessary to make sure the
information collected is sound. A case study of providing this critical calibration using machine
learning is the focus of this paper.

Any sensor system benefits from calibration, but low-cost sensors are typically in particular need
of calibration. The inter-sensor variability among low-cost nodes can be substantial. In addition, to the
pre-deployment calibration, once the sensors have been deployed, the paradigm we first developed for
satellite validation of constructing probability distribution functions of each sensor’s observation streams,
can be used to both monitor the real-time calibration of each sensor in the network by comparing its
readings to those of its neighbors, but also to answer the question “how representative is an instantaneous
reading of the conditions seen over some temporal and spatial window within which the sensor is placed?”.

1.2. Using Probability Distribution Functions to Monitor Calibration and Representativeness in Real-Time

It is useful to be able to answer the question, “How representative is an instantaneous reading
of the conditions seen over some temporal and spatial window within which the sensor is placed?”.
We can answer this question by considering a probability distribution functions (PDFs) of all the
observations made by a sensor over some temporal and spatial window [20]. The width of this
probability distribution is termed the representativeness uncertainty for that temporal and spatial
window. The PDFs of all observations made by each sensor are automatically compared in real time to
the PDFs from the neighboring sensors within a neighborhood radius. These neighborhood sensors
can include measurements from primary reference sensors that may be available. This comparison
is used to estimate the measurement uncertainty and inter-instrument bias for the last hour, day, etc.
We continuously accumulate the PDFs for each sensor over a variety of time scales and compare
it to its nearest neighbors within a neighborhood radius. Any calibration drift in a sensor will be
quickly identified as part of the fully automated, real-time workflow, wherein we will automatically be
comparing each sensor’s PDFs to its neighbor’s PDFs, and to the reference instrument’s PDFs. As each
sensor is in a slightly different local environment, the sensor bias drift for each sensor will be different.

1.3. Characterizing the Temporal and Spatial Scales of Urban Air Pollution

This study focused on the calibration of low cost sensors is part of a larger endeavor with the goal
of characterizing the temporal and spatial scales of urban pollution. The temporal and spatial scales of
each atmospheric component are intimately connected. The resolution used in atmospheric chemistry
modeling tools is often driven by the computational resources available. The spatial resolution of
observational networks is often determined by the fiscal resources available. It is worth taking a
step back and characterizing what the actual spatial scales are for each chemical component of urban
atmospheric chemistry. Based on our street level surveys providing data at resolution higher than
one meter, it is clear that the spatial scales are dependent on several factors—the synoptic situation,
the distribution of sources, the terrain, etc. In the larger study we characterized the spatial scales of
multi-specie urban pollution by using a hierarchy of measurement capabilities that include: (1) A zero
emission electric survey vehicle with comprehensive gas, particulate, irradiance, and ionizing radiation
sensing. (2) An ensemble of more than one hundred street level sensors making measurements every
few seconds of a variety of gases, and of particulates, light levels, temperature, pressure, and humidity.
Each sensor is accurately calibrated against a reference standard using machine learning. This paper
documents an example of low-cost sensor calibration for airborne particulate observations.

1.4. Societal Relevance

What are the characteristic spatial scales of each chemical species and how does this depend on
issues such as the synoptic situation? These are basic questions that are helpful to quantify when
considering atmospheric chemistry; when looking forward to the next generation of modeling tools and
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observing systems (whether from space or ground-based networks); and when evaluating mitigation
strategies, especially with regard to co-benefits for air pollution and greenhouse gas reduction and
investigating the evolution of urban air composition in a warming climate. To be able to quantify these
spatial and temporal scales we need a comprehensive observing system, so being able to use low cost
sensors is of great assistance to achieving this goal.

The Dallas–Fort Worth (DFW) metroplex (where our study was conducted) is the largest inland
urban area in the United States and the nation’s fourth largest metropolitan area. Nearly a third of Texans,
more than seven million inhabitants, live in the DFW area. A population which is growing by a thousand
people every day. DFW is an area with an interesting variety of specific pollution sources with unique
signatures that can provide a useful testbed for generalizing a measurement strategy for dense urban
environments. For more than two decades the DFW area has been in continuous violation of the Clean Air
Act. DFW will be one of only ten non-California metropolitan areas still in violation of the Clean Air Act in
2025 unless major changes take place. This has already had a detrimental health impact; e.g., even though
the average childhood asthma rate is 7% in Texas, and the national average is 9%, the DFW childhood
asthma rate is 20%–25%. Second only to the Northeast, DFW ranks second in the number of annual
deaths due to smog. Further, a leading factor in poor learning outcomes in high-schools is absenteeism,
a leading cause of absenteeism is asthma, and key trigger for asthma is airborne pollution [21]. Physical
exertion in the presence of high pollution levels is more likely to lead to an asthmatic event. The sensors
calibrated in this study were provided to high schools and high school coaches so that simple, practical
decisions can be made to reduce adverse health outcomes; e.g., given the levels of pollen/pollution today,
should physical education/practice be outside or inside?

2. The Datasets Used

All of the measurements were made at our own field calibration station in an ambient environment.
The calibration of the low cost AphaSense OPC occurred prior to their deployment across the dense
urban environment of DFW. In this study we used machine learning to bring together two distinct types
of data. First, we used accurate in-situ observations made by a research grade particulate spectrometer.
Second, we used observations from inexpensive optical particle counters. The inexpensive sensors are
particularly useful as they can be readily deployed at scale.

2.1. Research Grade Optical Particle Counter

The particulate spectrometer is a laser based Optical Particle Counter (OPC). In this study we
used a GRIMM Laser Aerosol Spectrometer and Dust Monitor Model 1.109 (Germany). The sensor
has the capability of measuring particulates of diameters between 0.25 and 32 µm distributed within
32 size channels. Such a wide range of diameter space is made possible due to intensity modulation of
the laser source. Particulates pumped into the sensor are detected through scattering a laser beam of
655 nm into a light trap. The laser beam is aimed at particulates coming through a sensing chamber
at a flow-rate of 1.21 L/min. The device classifies particulates into specific size classes subject to its
intensity [22]. The optical arrangement of the sensor is staged such that a curved optical mirror placed
at an average scattering angle of 90◦ collects and redirects the scattered light towards a photo sensor.
The wide angle of the optical mirror (120◦) is meant to increase the light intensity redirected towards
the photo sensor within the Rayleigh scattering domain which decreases the minimum detectable
particle size. Furthermore, it compensates for Mie Scattering undulations caused by monochromatic
illumination. The sensing period of the GRIMM sensor was set to 6 s, and for each time window
provided three standardized mass fractions; namely, based on occupational health (repairable, thoracic,
and alveolic) according to EN 481, and PM1, PM2.5, and PM10.

2.2. Low Cost Optical Particle Counters

There are several readily available optical particle counters (OPC) which are useful, but much
less accurate compared to research grade sensors. In this study, we focus on using such sensors,
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together with machine learning, to get as close as possible to the accuracy of research grade PM
sensors. After the application of the machine learning calibration, these lower cost sensors perform
admirably. In order for low cost sensors to provide an improved picture of PM levels, a careful
calibration is required. The current study used an Alpha Sense OPC-N3 (http://www.alphasense.
com/) together with a cheaper environmental sensor (Bosch BME280) as data collectors. The OPC-N3
is compact (75 mm × 60 mm × 65 mm) in size and weighs under 105 g, but uses similar technology
to the conventional OPCs where particle size is determined via a calibration based on Mie scattering.
Unlike most OPCs the OPC-N3 does not include a pump and a replaceable particle filter in order to
pump aerosol samples through a narrow inlet tube; hence, avoiding the need for regular maintenance.
A sufficient airflow through the sensor is made possible with a low powered micro fan producing a
sample flow rate of 280 mL/min. The OPC-N3 is capable of on-board data logging and measuring
particulates with diameters up to 40 µm. This enables the OPC-N3 to measure pollen and other
biological particulates. The on-board data is saved within an SD card which can be accessed through
micro-USB cable connected to the OPC. Furthermore, the OPC-N3’s lower sensing diameter is 0.35 µm,
as opposed to its predecessor’s (OPC-N2) limit of 0.38 µm. The wider range of sensing is made possible
via the OPC switching between high and low gain modes automatically. The OPC-N3 calculates its
PM values using the method defined by the European Standard EN 481 [23].

2.3. Caveat: Particulate Refractive Index

The observations made by optical particle counters are sensitive to the refractive index of
the particulates and their light absorbing properties. The retrieved size distributions and the
mass-concentrations can be biased, depending on the nature of the particulates. The current study
did not explore the accuracy implications of this. A future study is underway which includes direct
measurements of black carbon that will allow us to begin to explore these aspects. The machine learning
paradigm is readily extensible to include these aspects, even though not explicitly addressed in this study.
Machine learning is an ideal approach for the calibration of lower cost optical particle counters.

3. Machine Learning

Machine learning has already proved useful in a wide variety of applications in science, business,
health care, and engineering. Machine learning allows us to learn by example, and to give our data
a voice. It is particularly useful for those applications for which we do not have a complete theory,
yet which are of significance. Machine learning is an automated implementation of the scientific
method [24], following the same process of generating, testing, and discarding or refining hypotheses.
While a scientist or engineer may spend their entire career coming up with and testing a few hundred
hypotheses, a machine-learning system can do the same in a fraction of a second. Machine learning
provides an objective set of tools for automating discovery. It is therefore not surprising that machine
learning is currently revolutionizing many areas of science, technology, business, and medicine [25,26].

Machine learning is now being routinely used to work with large volumes of data in a variety
of formats, such as images, videos, sensors, health records, etc. Machine learning can be used in
understanding this data and create predictive and classification tools. When machine learning is used
for regression, empirical models are built to predict continuous data, facilitating the prediction of future
data points, e.g., algorithmic trading and electricity load forecasting. When machine learning is used for
classification, empirical models are built to classify the data into different categories, aiding in the more
accurate analysis and visualization of the data. Applications of classification include facial recognition,
credit scoring, and cancer detection. When machine learning is used for clustering, or unsupervised
classification, it aids in finding the natural groupings and patterns in data. Applications of clustering
include medical imaging, object recognition, and pattern mining. Object recognition is a process for
identifying a specific object in a digital image or video. Object recognition algorithms rely on matching,
learning, or pattern recognition algorithms using appearance-based or feature-based techniques.
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These technologies are being used for applications such as driver-less cars, automated skin cancer
detection, etc.

Machine learning is an automated approach to building empirical models from the data alone. A key
advantage of this is that we make no a priori assumptions about the data, its functional form, or its
probability distributions. It is an empirical approach. However, it also means that for machine learning to
provide the best performance we do need a comprehensive, representative set of examples, that spans
as much of the parameter space as possible. This comprehensive set of examples is referred to as the
‘training data’.

So, for a successful application of machine learning we have two key ingredients, both of which
are essential, a machine learning algorithm, and a comprehensive training data set. Then, once the
training has been performed, we should test its efficacy using an independent validation data set to
see how well it performs when presented with data that the algorithm has not previously seen; i.e.,
test its ‘generalization’. This can be, for example, a randomly selected subset of the training data that
was held back and then utilized for independent validation.

It should be noted, that with a given machine learning algorithm, the performance can go from
poor to outstanding with the provision of a progressively more complete training data set. Machine
learning really is learning by example, so it is critical to provide as complete a training data set as
possible. At times, this can be a labor intensive endeavor.

We have used machine learning in many previous studies [19,21,25–56]. In this study
we used machine learning for multivariate non-linear non-parametric regression. Some of
the commonly used regression algorithms include neural networks [57–62], support vector
machines [63–67], decision trees [68], and ensembles of trees such as random forests [69–71].
Previously we used a similar approach to cross-calibrate satellite instruments [19,25–28]. Recently
other studies also used machine learning to calibrate low cost sensors [72,73].

Ensemble Machine Learning

Multiple approaches for non-linear non-parametric machine learning were tried, including neural
networks, support vector regression, and ensembles of decision trees. The best performance was
found using an ensemble of decision trees with hyper-parameter optimization [68–71]. The specific
implementation used was that provided by the Mathworks in the fitrensemble function which is part
of the Matlab Statistics and Machine Learning Toolbox. Hyperparameter optimization was used so
that the optimal choice was made for the following attributes: learning method (bagging or boosting),
maximum number of learning cycles, learning rate, minimum leaf size, maximum number of splits,
and the number of variables to sample.

There were 72 inputs to our multivariate non-linear non-parametric machine learning regression;
these included the particle counts for each of the 24 size bins measured by the OPC-N3; the OPC-N3
estimates of PM1, PM2.5, and PM10; a suite of OPC performance variables, including the reject
ratio; and particularly importantly, the ambient atmospheric pressure, temperature, and humidity.
The OPC-N3 sensor includes two photo diodes that record voltages which are eventually translated
into particle count data. However, particles which are not entirely in the OPC-N3 laser beam, or are
passing down the edge, are rejected and this is recorded in the “reject ratio” parameter. This leads to
better sizing of particles, and hence plays an important role within the machine learning calibration.

Each of the six outputs we wished to estimate had its own empirical model. The performances of
each of these six models in their independent validations are shown in Figures 1 and 2. The outputs
we estimated were the six variables measured by the reference instrument, the research grade optical
particle counts, namely, of PM1, PM2.5, and PM10; and the standardized occupational health repairable,
thoracic, and alveolic mass fractions. The alveolic fraction is the mass fraction of inhaled particles
penetrating to the alveolar region (maximum deposition of particles with a size ≈2 µm). The Thoracic
fraction is the mass fraction of inhaled particles penetrating beyond the larynx (<10 µm). The respirable
fraction is the mass fraction of inhaled particles penetrating to the unciliated airways (<4 µm).
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The inhalable fraction is the mass fraction of total airborne particles which is inhaled through the nose
and mouth (<20 µm). For each of these six parameters we created an empirical multivariate non-linear
non-parametric machine learning regression model with hyper-parameter optimization.

PM1

(a) (b) (c)

PM2.5

(d) (e) (f)

PM10

(g) (h) (i)

Figure 1. This figure shows the results of the multivariate non-linear non-parametric machine learning
regression for particulate matter PM1 (panels (a)–(c)), PM2.5 (panels (d)–(f)), and PM10 (panels (g)–(i)).
The left hand column of plots shows the log–log axis scatter diagrams with the x-axis showing the
PM abundance from the expensive reference instrument and the y-axis showing the PM abundance
provided by calibrating the low-cost instrument using machine learning. The green circles are the
training data; the red pluses are the independent validation dataset. The blue line shows the ideal
response. The middle column of plots shows the quantile–quantile plots for the machine learning
validation data, with the x-axis showing the percentiles from the probability distribution function of
the PM abundance from the expensive reference instrument and the y-axis showing the percentiles
from the probability distribution function of the estimated PM abundance provided by calibrating the
low-cost instrument using machine learning. The dotted red line shows the ideal response. The right
hand column of plots shows the relative importance of the input variables for calibrating the low-cost
optical particle counters using machine learning.
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Alveolic

(a) (b) (c)

Thoracic

(d) (e) (f)

Inhalable

(g) (h) (i)

Figure 2. This figure shows the results of the multivariate non-linear non-parametric machine learning
regression for the alveolic (panels (a)–(c)), thoracic (panels (d)–(f)), and inhalable size fractions
(panels (g–i)). The left hand column of plots shows the log–log axis scatter diagrams with the x-axis
showing the PM abundance from the expensive reference instrument and the y-axis showing the PM
abundance provided by calibrating the low-cost instrument using machine learning. The green circles
are the training data; the red pluses are the independent validation dataset. The blue line shows the
ideal response. The middle column of plots shows the quantile–quantile plots for the machine learning
validation data, with the x-axis showing the percentiles from the probability distribution function of
the PM abundance from the expensive reference instrument and the y-axis showing the percentiles
from the probability distribution function of the estimated PM abundance provided by calibrating the
low-cost instrument using machine learning. The dotted red line shows the ideal response. The right
hand column of plots shows the relative importance of the input variables for calibrating the low-cost
optical particle counters using machine learning.

4. Results

Calibrating the Low Cost Optical Particle Counters Using Machine Learning

Figure 1 shows the the results of the multivariate non-linear non-parametric machine learning
regression for PM1 (panels a to c), PM2.5 (panels d to f), and PM10 (panels g to i). The left hand column
of plots shows the log–log axis scatter diagrams with the x-axis showing the PM abundance from the
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expensive reference instrument and the y-axis showing the PM abundance provided by calibrating the
low-cost instrument using machine learning.

For the left hand column of plots in Figure 1 (the scatter diagrams), for a perfect calibration, the
scatter plot would be a straight line with a slope of one and a y-axis intercept of zero; the blue line
shows the ideal response. We can see that multivariate non-linear non-parametric machine learning
regression that we used in this study employing an ensemble of decision trees with hyper-parameter
optimization performed very well (panels a, d, and g). In each scatter diagram the green circles are the
data used to train the ensemble of decision trees; the red pluses are the independent validation data
used to test the generalization of the machine learning model.

We can see that the performance is best for the smaller particles that stay lofted in the air for a long
period and do not rapidly sediment, so when comparing the scatter diagram correlation coefficients, r,
for the independent validation test data (red-points) we see that rPM1 > rPM2.5 > rPM10 .

For the middle column of plots in Figure 1 (the quantile–quantile plots), we are comparing the
shape of the probability distribution (PDF) of all the PM abundance data collected by the expensive
reference instrument to that of the the PM abundance provided by calibrating the low-cost instrument
using machine learning. A log10 scale is used with a tick mark every decade. The dotted red line in
each quantile–quantile plot shows the ideal response. The red numbers indicate the percentiles (0,
25, 50, 75, 100). If the quantile–quantile plot is a straight line, that means both PDFs have exactly the
same shape, as we are plotting the percentiles of one PDF against the percentiles of the other PDF.
Usually, we would like to see a straight line at least between the 25th and 75th percentiles; in this case,
we have a straight line over the entire PDF, which demonstrates that the machine learning calibration
performed well.

The right hand column of plots shows the relative importance of the input variables for calibrating
the low-cost optical particle counters using machine learning. The relative importance metric is a
measure of the error that results if that input variable is omitted. In the right hand column of bar
plots we have sorted the importance metrics into descending order, so the variable represented by
the uppermost bar in each each case was the most important variable for performing the calibration;
the second bar was the second most important; etc. We note that along with the number of particles
counted in each size bin, it is important to measure the temperature, pressure, and humidity to be
able to accurately calibrate the low cost OPC against the reference instrument. The data also suggests
that the parameter “reject ratio” carries a greater deal of importance with respect to the calibration.
OPC-N3 comprises two photo diodes which records voltages which are eventually translated into
particle count data. However, particles which are not entirely in the beam or are passing down the
edge are rejected and that is reflected on the parameter “reject ratio”. This leads to better sizing of
particles, and hence plays a vital role within the ML calibration.

Another division of occupational health based size-selective sampling is defined by assessing the
subset of particles that can reach a selective region of the respiratory system. On this basis three main
fractions were defined: inhalable, thoracic, and respirable [74–76]. Studies have shown that exposure
of excess particulate matter has alarming negative health effects [77]. The smallest sizes of particulate
matter are capable of penetrating through to the lungs or even to one’s blood stream.

Figure 2 is similar to Figure 1 and shows the results of the multivariate non-linear non-parametric
machine learning regression for the alveolic, thoracic, and inhalable size fractions. As would be
expected, we see that the performance is best for the smaller particles that stay lofted in the air for a long
period and do not rapidly sediment, so when comparing the scatter diagram correlation coefficients, r,
for the independent validation test data (red-points) we see that rAlveolic > rThoracic > rInhalable.

5. Operational Use of the Calibration and Periodic Validation Updates

The calibration just described occurred pre-deployment of the sensors into the dense urban
environment. Once these initial field calibration measurements were made over a period of several
months, in the manner described above, the multi-variate non-linear non-parametric empirical machine
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learning model was applied in real time to the live stream of observations coming from each of our
air quality sensors deployed across the dense urban environment of the Dallas Fort Worth metroplex.
These corrected measurements were then made publicly available as open data and depicted on a live
map and dashboard.

Building in continual calibration to a network of sensors will enable long-term, consistent,
and reliable data. While much effort has been recently placed on the connectivity of large disbursed IoT
networks, little to no effort has been spent on the automated calibration, bias-detection, and uncertainty
estimation necessary to make sure the information collected is sound. This is one of our primary goals.
This is based on extensive previous work funded by NASA for satellite validation.

After deployment, a zero emission electric car carrying our reference was used, to routinely
drive past all the deployed sensors to provide ongoing routine calibration and validation. An electric
vehicle does not contribute any ambient emissions, and so, is an ideal mobile platform for our
reference instruments.

For optimal performance, the implementation combines edge and cloud computing. Each sensor
node takes a measurement at least every 10 s. The observations are continually time-stamped at the
nodes and streamed to our cloud server, the central server aggregating all the data from the nodes,
and managing them. To prevent data loss, the sensor nodes store any values that have not been
transmitted to the cloud server for reasons, including communication interruptions, in a persistent
buffer. The local buffer is emptied to the cloud server at the next available opportunity.

Data from all sensors are archived and serve as an open dataset that can be publicly accessed.
The observed probability distribution functions (PDFs) from each sensor are automatically compared in
real time to the PDFs from the neighboring sensors within a neighborhood radius. These neighborhood
sensors include measurements from the electric car/mobile validation sensors. This comparison was
used to estimate the size resolved measurement uncertainty and size resolved inter-instrument bias for
the last hour, day, week, month, and year. We continuously accumulated the PDF for each sensor over
a variety of time scales (h, day, week, month, and year) and compare it to its nearest neighbors within
a neighborhood radius.

Any calibration drift in a sensor will be quickly identified as part of a fully automated real-time
workflow, where we will automatically be comparing each sensor’s PDFs to its neighbor’s PDFs, and to
the reference instruments’ PDFs. As each sensor is in a slightly different local environment, the sensor
bias drift for each sensor will be different. We have previously shown that machine learning can be
used to effectively correct these inter-sensor biases [19]. As a result, the overall distributed sensing
system will not just be better characterized in terms of its uncertainty and bias, but provide improved
measurement stability over time.

6. Conclusions

We have shown that machine learning can be used to effectively calibrate lower cost optical
particle counters. For this calibration it is critical that measurements of the atmospheric pressure,
humidity, and temperature are included. Once the machine learning calibration was applied to the
low cost sensors, independent validation using scatter diagrams and quantile–quantile plots showed
that, not only was the calibration effective, but the shape of the resulting probability distribution of
observations was very well preserved.

These low cost sensors are being deployed at scale across the dense urban environment of the
Dallas Fort Worth metroplex for characterizing both the temporal and spatial scales of urban air
pollution and for providing high schools and high school coaches a tool to assist in making better
decisions to reduce adverse health outcomes; e.g., given the levels of pollen/pollution today should
physical education/practice be outside or inside?
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Abstract: Sunlight incident on the Earth’s atmosphere is essential for life, and it is the driving
force of a host of photo-chemical and environmental processes, such as the radiative heating of the
atmosphere. We report the description and application of a physical methodology relative to how
an ensemble of very low-cost sensors (with a total cost of <$20, less than 0.5% of the cost of the
reference sensor) can be used to provide wavelength resolved irradiance spectra with a resolution of
1 nm between 360–780 nm by calibrating against a reference sensor using machine learning. These
low-cost sensor ensembles are calibrated using machine learning and can effectively reproduce the
observations made by an NIST calibrated reference instrument (Konica Minolta CL-500A with a cost
of around USD 6000). The correlation coefficient between the reference sensor and the calibrated
low-cost sensor ensemble has been optimized to have R2 > 0.99. Both the circuits used and the code
have been made publicly available. By accurately calibrating the low-cost sensors, we are able to
distribute a large number of low-cost sensors in a neighborhood scale area. It provides unprecedented
spatial and temporal insights into the micro-scale variability of the wavelength resolved irradiance,
which is relevant for air quality, environmental and agronomy applications.

Keywords: spectrophotometer; light sensor; machine learning; neural networks

1. Introduction
Sunlight incident on the Earth’s atmosphere is essential for life, and it is the driving

force of a host of photo-chemical and environmental processes (e.g., photosynthesis, pho-
tolysis and atmospheric radiative heating). Consequently, models of atmospheric radiative
transfer play a key role in modeling atmospheric chemistry and the weather/climate sys-
tem (e.g., [1–8]). In order to accurately model the surface irradiance, a complete description
of both light absorption, light multiple scattering and surface reflection is required in an
atmospheric radiative transfer model. For solar zenith angles > 75◦, this would also need
to account for the spherical geometry of the atmosphere [3,4]. The intensity of atmospheric
electromagnetic radiation which reaches the Earth’s surface is a strong function of wave-
length and the vertical profiles of atmospheric composition and temperature. The vertical
profiles of temperature, light scatterers and light absorbers determine the extinction due to
absorption and scattering as well as thermal emission.

Atmospheric absorption and multiple-scattering of light both have a significant impact
on the surface irradiance (Figure 1). Atmospheric radiative transfer considers the energy
transfer of electromagnetic radiation through the atmosphere. The intensity of sunlight, as
a function of wavelength, is affected by both the gaseous absorption in the UV and visible
portion of the spectrum (including O3, NO2, NO3, HONO and HNO3 [9,10]), by light
scattering from air molecules (Rayleigh scattering), from airborne aerosols (Mie scattering)
and by thermal emission in the infrared [1,2,11] (Figure 1).
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Figure 1. Solar irradiance on the Earth’s Surface.

Rayleigh Scattering occurs from gas molecules as the sizes of the molecules are much
smaller than the wavelength [12]. The strength of the Rayleigh scattering is proportional
to λ−4, where λ is the wavelength of the radiation. Shorter wavelengths scatter more
strongly than longer wavelengths, and this is the reason that the sky is blue. Mie scattering
occurs when the size of the scatterers is similar to or greater than the wavelength of the
light [13]. In the UV and visible portion of the electromagnetic spectrum that we observed
in this study (360–780 nm) the main gaseous absorption of light is due to the ozone in a
set of different absorption bands (Hartley 200–300 nm, Huggins 310–360 nm, Chappuis
400–650 nm and Wulf in the near infrared).

1.1. Motivation
The goal of this study is to provide an accurately calibrated low-cost wavelength

resolved irradiance sensor, which is helpful for biometric pupillometry [14] applications,
and is suitable to address the current lack of neighborhood scale real-time solar irradiance
data by the provision of very low-cost calibrated measurements. These sensors can be
readily deployed at a scale across dense urban environments in order to measure the
wavelength resolved irradiance. Sunlight incident on the Earth’s atmosphere is essential for
life, and it drives atmospheric photo-chemistry, which is central to understanding urban air
quality and the host of associated human health impacts. The World Health Organization
(WHO) estimates that, every year, around seven million deaths occur due to exposure to
air pollution. Even though the solar irradiance is critical in driving atmospheric photo-
chemistry via photolysis, it is marked by a severe paucity of data at the neighborhood scale.

In order to achieve the goal, the first key step is the use of multi-variate non-parametric
non-linear machine learning, to accurately calibrate a set of low-cost sensors costing around
USD 20 against a NIST calibrated reference instrument. The second step is physically
understanding the relative importance of the various factors involved in the calibration.
These factors are objectively determined by using explainable machine learning approaches.
The plans and circuit diagrams for building these sensors, as well as the calibration code,
are publicly available.
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1.2. Solar Irradiance
The sun is a hot plasma sphere (73% hydrogen, 25% helium and 2% of heavier

elements) heated to incandescence by nuclear fusion reactions in the core. The photosphere
of the sun has an effective temperature of 5772 K, with an emission spectra close to that of
a black body. The electromagnetic energy reaching the top of the Earth’s atmosphere from
the sun ranges from 100 nm to 1 mm with a peak at around 500 nm [11].

As the sunlight passes through the Earth’s atmosphere, it is absorbed and scattered
by various atmospheric components related to the path length through the atmosphere
(Figure 1), which is a function of the solar zenith angle (Figure 2). The solar irradiance
incident on the Earth’s surface during the daytime is a function of the Earth’s distance
from the sun [15] (varies with season due to the ellipse orbit [16]), the solar zenith angle
(can be calculated from latitude, longitude and the local solar time), the vertical profile of
atmospheric light scatterers and absorbers and the surface reflectivity.

Figure 2. Schematic depicting the solar zenith angle, solar altitude angle and solar azimuth angle.

Typically, a vertical profile through the atmosphere is split up into regions based
on the temperature gradient with increasing height, e.g., the troposphere, stratosphere,
mesosphere and thermosphere [17]. Significant absorption by ozone of the incoming
sunlight occurs in the stratosphere (10–50 km). For typical levels of stratospheric ozone,
this light absorption warms the stratosphere and prevents short wave UV at λ < 310 nm
(which is harmful to life) from reaching the surface of the Earth.

In a clear sky and without nearby structures such as trees or buildings, solar irradiance
is primarily dependent upon some simple factors, such as the temperature of the sun,
Earth’s distance and solar zenith angle. However, in a real-world environment, clouds, par-
ticulate matter (PM), trees and buildings influence the intensity of solar irradiance on the
ground and make it difficult to estimate the irradiance spectrum. Therefore, it is necessary
to use high-resolution spectrophotometers to measure the solar spectral irradiance. How-
ever, these devices are quite expensive and cannot be widely distributed in large numbers.
Thus, we proposed a machine learning method, which works with some low-cost light
sensors, in order to achieve competitive performance as well as high-resolution spectropho-
tometers. The comparisons between the observations of the reference sensor and our ma-
chine learning calibrated low-cost sensor ensemble have been shown in Sections 4.3 and 5.
With our machine learning model, we recreated the wavelength-resolved spectrum from
360 nm to 780 nm and obtained an accurate spectrum of atmospheric absorption.
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2. Measurements and Data Sets
We used two types of light sensors, a NIST calibrated reference sensor (Konica Minolta

CL-500A with a cost of ≈USD 6000) and an ensemble of low-cost sensors (Adafruit TSL2591,
VEML6075 and AS7262, each costing just a few dollars) to collect the solar irradiance in a
same environment. We further calibrated the low-cost sensors against the reference sensor
by using machine learning.

The reference Minolta CL-500A provides the irradiance every nm from 360–780 nm,
as well as the total illuminance (Figure 3). The codes for collecting the irradiance data from
the reference sensor can be found in the following GitHub repository: https://github.com
/yichigo/Minolta-Sensor, accessed 18 March 2021.

Figure 3. Konica Minolta CL-500A Illuminance Spectrophotometer measures the wavelength range of 360–780 nm.

The various low-cost sensors (Figure 4) sold by open-source hardware company
Adafruit Industries are as follows.

AS7262 provides a measurement of the intensity over the broad spectral regions
corresponding to “Violet” (450 nm), “Blue” (500 nm), “Green” (550 nm), “Yellow” (570 nm),
“Orange” (600 nm) and “Red” (650 nm) light. The circuit design of Adafruit’s AS7262 can
be found in https://learn.adafruit.com/adafruit-as7262-6-channel-visible-light-sensor,
accessed 22 July 2021.

TSL2591 has a sensitivity to the wavelength range 300–1000 nm, from UV to NIR. It
gives the raw counts of “Visible”, “IR (Infrared)” photons and the value of “Lux”. The circuit
design of Adafruit’s TSL2591 can be found in https://learn.adafruit.com/adafruit-tsl2591,
accessed 22 July 2021.

VEML6075 has a sensitivity relative to the wavelength range of 200–400 nm (UV),
where the UVA (UVB) channel has a peak sensitivity at 365 nm (330 nm). It also provides
“Visible Compensation” and “IR (Infrared) Compensation” for calculating the UVA (UVB)
from the raw counts. In this study, we used the raw counts of UVA, UVB and the compen-
sation values. In addition, VEML6075 provides a calculated “UV index” value, which is
negatively correlated with the UV intensity. The circuit design of Adafruit’s VEML6075
can be found in https://learn.adafruit.com/adafruit-veml6075-uva-uvb-uv-index-sensor,
accessed 22 July 2021.

The codes for receiving the data from the low-cost sensors are in the following Github
repository: https://github.com/mi3nts/UTDNodes/tree/master/firmware/nanoLigh
tUTD, accessed 22 July 2021.

The reference and low-cost sensors were co-located in the same outdoor environment,
at the University of Texas at Dallas Waterview Science and Technology Center, 7919 Water-
view Parkway, Richardson, TX 75080, from December 2019 to April 2020. They made the
observations every 3 s. The data were collected and saved in an NAS hard drive connected
in the same network.
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(a) AS7262 (b) TSL2591 (c) VEML6075

Figure 4. Low-cost light sensors: TSL2591, VEML6075 and AS7262 sold by the open-source hardware company,
Adafruit Industries.

3. Machine Learning and Workflow
Machine learning was used to calibrate the inputs provided by the suite of low-cost

sensors against the reference sensor. Machine learning is a subset of artificial intelligence
where we “learn by example”. It optimizes an empirical mathematical model by using
examples rather than explicitly programming a deterministic model [18]. This technique
is widely used in many areas, such as data mining [19], game strategies [20], healthcare
and medical research [21–23], computer vision [24,25] and environmental science [26,27].
Machine learning can be divided into three categories: supervised learning, unsupervised
learning and reinforcement learning. In this study, we used supervised learning, which
trains the model by using a set of examples in a training data set that includes both input
features and output targets.

3.1. Data Preprocessing
We have collected the data from different sensors. In order to merge these data

into a same data set, we resampled the data at every 10 s and merged the different data
sources by matching the time. After that, we dropped the NaN values and duplicated
data samples. We also calculated the solar zenith angle and solar azimuth angle from the
latitude, longitude and UTC time.

The preprocessed data, “MINTS Light Sensor Calibration Dataset”, are publicly avail-
able on Zenodo [28].

3.2. Input Features and Output Targets
The input features are the preprocessed data given by the low-cost sensors: TSL2591,

VEML6075 and AS7262. The output targets are the irradiance bins on 421 wavelengths
(360–780 nm) given by the Minolta CL-500A reference sensor. The 14 input features are
listed below.

Features Unit Min Max Mean StDev

Violet (450 nm) counts 0 2717 370.67 412.56

Blue (500 nm) counts 0 4165 528.13 611.57

Green (550 nm) counts 0 4619 546.68 664.90

Yellow (570 nm) counts 0 4963 573.22 710.80

Orange (600 nm) counts 0 3646 411.31 519.83

Red (650 nm) counts 0 3826 425.41 545.63

IR (Infrared) counts 0 65,535 28,500.35 27,263.43

Visible counts 0 51,573 12,722.19 17,871.05

Lux lux −1 2207.41 127.99 381.92
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Features Unit Min Max Mean StDev

UVA (Raw) counts 0 40,296 2492.98 3400.20

UVB (Raw) counts 0 44,768 2682.46 3686.13

Visible
Compensation counts 0 12,045 782.75 1026.57

IR (Infrared)
Compensation counts 0 8596 456.58 699.96

UV Index N/A −1.17 1.07 −0.05 0.08

The measurement range of the low-cost sensor TSL2591 is not large enough; thus,
some of the features may produce unreasonable values. For example, “IR (Infrared)” or “IR
(Infrared)” + “Visible” cannot be greater than 65,535 (the maximum of 16-bit integer 216 − 1).
Thus, if “IR (Infrared)” is very large, then “Visible” decreases to zero. Another feature,
“Lux”, should possess a zero-value minimum; however, in a very bright environment,
it produces −1 rather than a large value. Therefore,“Visible” and “Lux” values may be
negatively correlated with irradiance, although they should be positively correlated in
physics. VEML6075 sensor produces the “UV Index”, which is also negatively correlated
with the irradiance, and most of the values are between −0.5 and 0.05.

The output targets given by the Minolta sensor have 421 columns, as listed below.

Targets Unit Min Max Mean StDev

Irradiance at 360 nm W/m2/nm 0 0.069338 0.010471 0.011335

. . . . . . . . . . . . . . . . . .

Irradiance at 780 nm W/m2/nm 0 0.337675 0.032955 0.046052

We merged the above features and targets into a single data set. It was randomly
shuffled and split up into two portions, 80% of the data were used for training a suite
of machine learning algorithms, the remaining 20% was used to independently test the
generalization of the machine learning models.

We noticed that there is multi-collinearity between some of the features. For example,
the AS7262 sensor’s data “Violet”, “Blue”, “Green” and so on are highly correlated with
each other; thus, the machine learning model may focus more on one of them by chance,
and their feature importance may also be ranked by chance. Thus, we used principal
component analysis (PCA) to remove the multi-collinearity.

3.3. Principal Component Analysis (PCA)
The process of PCA can be described as the following: In the N-dimension scaled

feature space, we can find a direction that maximizes the variance of the data. We then
use that direction as our first principal direction, and we project the data set into an N-1
dimension space by removing the first principal direction. We repeat this process for M
times, where M ≤ N, and obtain a transformed data set in the principal dimensions [29,30].

Typically, people use the PCA technique to reduce the dimensions of the data. However,
in this study, we did not reduce the dimension. The input data is still 14-dimension after the
PCA process. We only used PCA to remove the multicollinearity between the input features.
After training the model, we ranked the feature importances in principle dimensions.

3.4. Artificial Neural Network
Artificial Neural Network (ANNs) are one of the many types of machine learning

algorithms. The idea central to ANNs is to mimic the neural network found in the human
brain in order to solve complex non-linear problems [31].
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The left panel of Figure 5 shows an example node (neuron) in a neural network that has
four inputs xi, four weights wi and one bias. The linear function produces bias + ∑4

i=1 xiwi
and followed by an activation function. A neuron such as this can be used as a linear
classifier by optimizing the weights and bias.

Figure 5. The left panel shows an example node in a neural network, where wi is the weights for each input xi, and the linear
function produces bias + ∑i xiwi that is passed to an activation function. The right panel shows an example of artificial
neural network (ANN) with single output, where the blue nodes in hidden layers and the white node in the output layer
are neurons.

Artificial neural networks (ANN) are composed of an input layer, one or more hidden
layers and an output layer [32]. As shown in the right panel of Figure 5, each layer has one
or more neurons. The input layer receives input features, then feed into the first hidden-
layer. The outputs of the first hidden-layer become the inputs to the second hidden-layer
and so on. The data passes through all the hidden layers and finally arrives at the output
layer. Each node in the hidden layers or output layer has an associated set of weights and
bias, and it is followed by an activation function. By using back-propagation [33,34], the
gradient of the loss function can be computed with respect to the weights of the network,
and the weights can be optimized to fit the model on the training data.

Here, we used a multilayer neuron to calibrate the input features provided by the
low-cost light sensors against the data provided by the Minolta reference sensor [35–37].
A multilayer neuron (MLP) is a class of feedforward artificial neural network (ANN). We
built a three-hidden-layer MLP model, where the sizes of the hidden layers are (64-128-256),
and the size of the input (output) layer is 14 (421). We used the ReLu activation function
after each hidden layer. The loss function is the mean squared error, and it is optimized
by the Adam optimizer. The L2 regularization penalty parameter is 10−5, and we did not
introduce any batch normalization [38] or dropout layer [39–41] here.

There are 345,677 date samples. We randomly shuffled the data, then used 80% of
the data for training and 20% of the data for testing. In the training data set, the model is
actually trained on 90% of the data, and it is valid on the other 10%. We used the standard
scaler x′ = (x − x̄)/σ to scale the input features (before PCA and before ANN model) and
output targets based on the training data set, where x can be any column of feature or
target, x̄ is the mean value of x and σ is the standard deviation. The size of mini-batches is
200 for stochastic optimizer.

We set the initial learning rate as 10−3 and trained the model for 40 epochs until the
R2 validation score was not improved by at least 10−4 for 10 consecutive epochs. Then, we
divided the learning rate by 10 and repeated the process for an additional 12 epochs.
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3.5. Workflow
In general, the picture of the workflow is shown in Figure 6.

Figure 6. Workflow of the light sensor calibration.

We collected the data form the low-cost sensors and the reference Minolta sensor and
performed preprocessing in order to combine and clean the data. Then, we used standard
scaler and PCA techniques to generate the scaled PCA input features and scaled output
targets for the ANN model. We trained the ANN model on the training data set and
explained the model with SHAP values and feature importance. Finally, we tested the
performance on the testing data set.

4. Machine Learning for Low-Cost Light Sensor Calibration of Wavelength
Resolved Irradiance
4.1. Whole Spectrum Calibration Model (360–780 nm)

The ANN regression model was trained to calibrate and provide the entire spectrum
only from the data provided by the low-cost sensor suite (i.e., to observe if we could
reproduce the observations made by a USD 6000 by using sensors costing only a few
dollars). For this entire spectrum calibration model, we used 421 neurons as the output
layer, and one neuron for each wavelength measured by the Minolta reference sensor.

The upper left panel of Figure 7 shows the scatter diagram showing the performance
of this model by comparing the estimated value (y-axis) and the actual value (x-axis) of
the irradiance, from 360 nm to 780 nm, observed by the reference sensor. The coefficient of
determination (R2) is 0.9987 on the training data and is 0.9983 on the testing data.
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Figure 7. Whole spectrum model performance and the R2 scores on different wavelengths.

The upper right panel shows the quantile–quantile plot, which compares the shape of
the probability distribution of our estimates against the shape of the probability distribution
of the actual observations. We can observe the distributions of the actual observations, and
our estimated values are almost the same above 10−3 and slightly different below that.

The lower panel shows the R2 values for each wavelength between 360 and 780 nm;
we observe that that all the coefficient of determination on the testing data are above 0.99.
The machine learning model has performed well at all wavelengths.

4.2. The Relative Importance of the Machine Learning Inputs
It is very helpful to understand the relative importance of the machine learning inputs.

Let us take a look at a couple of approaches that estimate the relative importance of the
machine learning inputs in performing the calibration of the low-cost sensors.

4.2.1. Shapley Value: An Explainer of Machine Learning Models
The Shapley (SHAP) value was introduced by Lloyd Shapley in 1951 [42]. It is a game-

theoretic approach for calculating the marginal contribution of each player in a cooperative
game. In machine learning, we calculated the SHAP value for each data sample on each
feature. The SHAP value indicates how much the feature value of a sample raises or
decreases the target value.

The processes for calculating the SHAP value are described as follows.
Assume the value function of a teamwork is v(S), where v is an arbitrary value function

which can be a math function or a machine learning model and S is a subset of the players
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(features) who attended the game, which may contain x0, x1, x2, . . . . For a given data
sample, in order to calculate the value function v(S), only the attended features in S use the
sample values, while other features use their mean values. The contribution of the player
(feature) xi is as follows:

φi = ∑
S∈{x1,x2,...,xN}\{xi}

|S|!(N − |S|− 1)!
N!

(
v(S ∪ {xi})− v(S)

)
(1)

where |S| is the number of the players (features) in S and N is the total number of the
players (features). The term v(S ∪ {xi})− v(S)) provides the marginal contribution of xi

when it joins the game in addition to S. The weight |S|!(N−|S|−1)!
N! can be calculated from the

permutation of players (features) in which |S|! is the permutation of the players (features)
who attended the game before xi, (N − |S|− 1)! is the permutation of the players who do
not attend the game and N! is the permutation of all the players (features). We needed to
calculate all the cases of S that did not include xi and summed up the weighted marginal
contribution of xi. Then, we obtained the contribution of xi, and that is its SHAP value.

In this study, the inputs and outputs of the ANN machine learning model are scaled
by x′ = (x − x̄)/σ, where x can be any column in the features or targets, x̄ is the mean
value of x and σ is the corresponding standard deviation. The SHAP values we calculated
here are the contributions to the 421 scaled targets (360–780 nm), and we take the averaged
SHAP values over these targets.

In order to explain the ANN model, we used the SHAP value to show how each feature
contributes to the model’s output, and how each ranks the corresponding feature importance.

We plotted the SHAP values of a random subset of the data points in the following
process: normalize the feature values in a color scheme, list different features in the vertical
direction and list the SHAP values of each feature in the horizontal direction.

The SHAP values in the left panel of Figure 8 shows how the PCA input features
impact the ANN model’s output. For example, the red points on the right side means that
if a larger value was the input for this feature, then the output of the model would also
increase. We ranked the PCA SHAP values (left panel of Figure 8) by calculating the mean
absolute value of the SHAP value. The 0th principle component contributes the most to
the models outputs, and other components also contribute a little.

Figure 8. SHAP value of our MLP model, which calibrates the whole spectrum, shows how the PCA features impact the
models’ output. The red (blue) color denotes the high(low) value of each feature and the position of point on the x direction
shows the impact on the target. The left panel shows the principle components’ SHAP values, and the right panel shows the
original features’ SHAP values from the 0th principle component by using linear approximation.
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We are able to linearly transform the 0th principle component’s SHAP values to
the original features with the first order contribution ratio ai(xi−x̄i)

∑i ai(xi−x̄i)
, where xi is the i-th

original feature, x̄i is the mean value of xi and ai is the coefficient of PCA transformation, as
shown in the right panel of Figure 8. The original features, namely the red, orange, green,
yellow, blue, UVA, UVB and IR (infrared) positively impact the model’s output, while some
other features such as the UV index, Visible and Lux features negatively impact the model’s
output. Please notice that we only simply use this linear approximation to visualize the
main part (from 0th principle component) of the contributions of the original features.
However, we should not sum up these original features’ SHAP values by combining all the
principle components because the original features have strong multi-collinearity.

4.2.2. Feature Importance
For machine learning models such as ANN, we can calculate feature importance from

the mean absolute value of the Shapley (SHAP) values for each feature.
In our MLP model for calibrating the whole spectrum, we calculate the feature impor-

tance from the SHAP values, as shown in Figure 9. We used the red (blue) color to indicate
a feature that positively (negatively) impacts the model. The positive/negative impact
means that if a feature’s value increases with the other features remaining unchanged, then
the output value of the model is more likely to increase/decrease. For example, in the
Figure 8 of SHAP values, the 0th principle component has a positive impact on the model’s
output since the red (blue) points, with high (low) feature values, are on the right (left) side,
which raises (decreases) the model’s output. In most of the models, the sign of positive and
negative can also be easily calculated from the sign of the correlation coefficient between
the feature and the target. The feature importances are ranked in descending order, and
we are able to figure out which features are important for predicting our output targets.
We note that most of the variables provided by the low-cost light sensor suite provide
useful information.

Figure 9. (Left) PCA feature importance of our MLP model for whole spectrum calibration; we used a log10 scale in the
x direction. (Right) The original feature importances from the linearly splitting of the 0th principle component’s SHAP
values. A feature with red (blue) color has positive (negative) impact on the model’s output.

Now, we have observed that machine learning can provide an effective calibration of
the low-cost sensors, and we are familiar with the relative importance of the input parame-
ters; let us use this calibration to examine the temporal variability that was measured.

4.3. Applying the Calibration to Provide an Irradiance Spectrum
We picked at random some time periods from the testing data set and used our neural

network model to provide the full spectral irradiance from 360 nm to 780 nm by only using
the data provided by the low-cost USD 20 sensor ensemble (Figure 10). We estimated the
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full spectral irradiance (middle panel) from the low-cost sensor ensemble and compared
this with the observed value from the reference NIST calibrated sensor (upper panel). Our
ANN model successfully reproduced the high resolution spectrum by only using the data
from the low-cost sensors.

Spectra Observed by Reference Sensor

Spectra Estimated using low-cost Sensors

Overlay of all Spectra

Figure 10. The full spectrum intensity (middle panel) predicted using the data from the low-cost sensors, and the full
spectrum ANN compared with the spectra observed by the reference sensor (upper panel). The daily spectra over the entire
day have been shown in Section 5. We can clearly observe the role of the variable weather conditions, such as changing
cloudiness. It was sunny on 5 March 2020, and this can be observed by noting the higher spectral irradiance at the shorter
wavelengths, indicating a blue sky day. In comparison, it was cloudy on 29 March 2020. Note how the spectral irradiances
from the blue to red portion of the spectrum are much more similar than on March 5; the sky was closer to white than blue.
Our ANN performed well for both clear sky and cloudy conditions, and the data from the low-cost sensors could be used to
effectively reproduce the full spectra, including the atmospheric absorption bands.
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We can clearly observe the role of the variable weather conditions, such as changing
cloudiness. When the direct normal irradiation (DNI) is stopped by the surrounding
buildings, the photons reflected by the clouds increase the total intensity of irradiance.
Furthermore, as the light scattering is wavelength dependent, the shape of the spectrum
changes on a cloudy day. It was sunny on 5 March 2020. Note the higher spectral irradiance
at the shorter wavelengths, indicating a blue sky day. By comparison, it was cloudy
on 29 March 2020. Note how the spectral irradiances from the blue to red portion of the
spectrum are much more similar than on March 5; the sky was closer to white than blue.
Our ANN performed well for both clear sky and cloudy conditions, and the data from the
low-cost sensors could be used to effectively reproduce the full spectra.

In the bottom panel of Figure 10, we overlay the actual solar spectrum and estimated
solar spectrum for both sunny (5 March 2020) and cloudy (29 March 2020) cases. Further-
more, the figure displays the atmospheric absorption spectrum, including nitric oxide (NO)
at 429 nm, oxygen (O2) at 688 nm and 762 nm and water vapor (H2O) from 720 nm to
730 nm [43]. Using data from the low-cost sensors, our machine learning model correctly
obtained all of these absorption bands and showed the potential for detecting changes of
atmospheric components.

Our ANN model was trained on the MINTS light sensor calibration data set [28], the
codes for training the model and generating all the figures can be found in the following
Github repository [44]: https://github.com/yichigo/Light-Sensors-Calibration, accessed
25 August 2021.

5. The Observed Diurnal Variation in Wavelength Resolved Irradiance
Figure 11 shows the observations used in the testing data set for the entire three

month period. As expected, the solar zenith is a key factor in determining solar irradiance.
Secondly, we note that, on cloudy days, the multiple scattering of light from airborne
aerosols and clouds coupled with the surface reflection of the scattered light increases
the surface irradiance substantially (Figure 11). In Figure 11, we observe that the surface
irradiance observed by the reference sensor and that is estimated by the low-cost ensemble
of sensors calibrated using machine learning agree very well; the blue and red points
overlay one another so precisely that they produce the appearance of magenta points. In
each panel, the solid curves close to the bottom shows the averaged irradiance for the sunny
days, and the cloudy days produce a higher value of irradiance due to the trapping of
photons by multiple scattering from the clouds and surface reflection of the scattered light.

Figure 12 compares the wavelength (y-axis) and UTC time (x-axis) resolved daily
spectra for a sunny day on the left, and for a cloudy day on the right. In both cases,
we can observe the key role that both the solar zenith angle and the cloudiness plays in
determining the intensity of sunlight at the surface of the Earth.

We can observe that the surface irradiance wavelength distribution is a strong function
of the conditions and that atmospheric multiple scattering of sun light plays a substantial
role. For a sunny day, the solar irradiance spectrum peaks in the violet and blue part
of the spectrum and is close to that of a black body at around 5772 K. On a cloudy day
the multiple light scattering and surface reflection traps photons, thereby enhancing the
intensity at the longer wavelengths. The cloud water drops result in Mie scattering of the
sunlight. Thus, the diffuse horizontal irradiance (DHI) is actually greater on a cloudy day
than it is on a sunny day. This is very evident when we take a snapshot at an instant in
time and examine the shape of the spectrum as a function of wavelength and compare a
sunny and cloudy day (Figure 13).
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Figure 11. The mean irradiance from 360–780 nm as a function of solar zenith angle (left panel) and solar azimuth angle
(right panel) from the testing data set for the entire three month period. The blue circles show the actual irradiance; the
overlaid red points show the machine learning estimates. We observe that the surface irradiance observed by the reference
sensor and that is estimated by the low-cost ensemble of sensors calibrated using machine learning agree very well; the blue
and red points overlay one another so precisely that they produce the appearance of magenta points. In each panel, the solid
curves close to the bottom shows the averaged irradiance for the sunny days, and the cloudy days produce higher values of
irradiance due to the trapping of photons by multiple scattering from the clouds and surface reflection of the scattered light.

Sunny Day Partly Cloudy Day

Figure 12. A comparison of the wavelength (y-axis) and UTC time (x-axis) resolved daily spectra for a sunny day on the
left and for a cloudy day on the right. The color denotes the solar irradiance in unit W/m2/nm. Both spectra were collected
using the Minolta CL-500A Illuminance Spectrophotometer.

Sunny Day Partly Cloudy Day

Figure 13. Spectra of solar irradiance measured by Minolta CL-500A Illuminance Spectrophotometer on a certain time,
where x value is the wavelength, y value is the intensity of irradiance in unit W/m2/nm and the color denotes the visible
color of the corresponding wavelength.
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The sunny day irradiance spectrum is close to that of a black body at around 5772 K.
The partly cloudy spectrum has enhanced intensity, particularly at longer wavelengths due
to Mie scattering in the clouds. The Mie scattering on the clouds generates greater diffuse
horizontal irradiance (DHI) and makes the sky brighter.

6. Conclusions
A neural network algorithm was able to effectively calibrate an ensemble of low-

cost light sensors and generate a high resolution wavelength resolved solar irradiance
spectrum. The roles of the solar illumination geometry (such as the solar zenith angle)
and the weather conditions (such as the cloudiness) were clearly evident. These low-cost
light sensor packages are currently being deployed across cities in the Dallas Fort Worth
(DFW) area for characterizing both the temporal and spatial scales of solar irradiance. All
the sensor circuit designs and calibration codes have been made open source.
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Abstract: Electroencephalography (EEG) is a brain imaging technique in which electrodes are placed
on the scalp. EEG signals are commonly decomposed into frequency bands called delta, theta, alpha,
and beta. While these bands have been shown to be useful for characterizing various brain states,
their utility as a one-size-fits-all analysis tool remains unclear. The goal of this work is to outline an
objective strategy for discovering optimal EEG bands based on signal power spectra. A two-step data-
driven methodology is presented for objectively determining the best EEG bands for a given dataset.
First, a decision tree is used to estimate the optimal frequency band boundaries for reproducing the
signal’s power spectrum for a predetermined number of bands. The optimal number of bands is
then determined using an Akaike Information Criterion (AIC)-inspired quality score that balances
goodness-of-fit with a small band count. This data-driven approach led to better characterization
of the underlying power spectrum by identifying bands that outperformed the more commonly
used band boundaries by a factor of two. Additionally, key spectral components were isolated in
dedicated frequency bands. The proposed method provides a fully automated and flexible approach
to capturing key signal components and possibly discovering new indices of brain activity.

Keywords: electroencephalography (EEG); EEG bands; decision tree; machine learning

1. Introduction
The electrical activity produced by the brain was discovered by Richard Caton. Hans

Berger later demonstrated that this activity could be recorded directly from the scalp [1].
This technique for measuring brain activity is called electroencephalography (EEG). It con-
sists of an array of electrodes placed on the scalp that record fluctuations in electric potential
arising from the activity of synchronized neural populations [2,3].

A popular method of analyzing EEG is spectral analysis. This consists of decomposing
signals onto a frequency basis (Figure 1) and grouping frequencies into spectral bands
(i.e., frequency ranges). A popular method for EEG signal decomposition is Welch’s
method which estimates a signal’s spectral power density across a range of frequencies [4].
Commonly used spectral bands are: delta, theta, alpha, and beta [5].

EEG bands correspond to brain phenomena in specific brain areas and contexts. For
example, alpha activity from occipital regions (i.e., visual cortex) in relaxed, awake animals
track with eye closures [6]. During sleep, alpha-band activity is observed at sleep onset, also
called sleep spindles (7–14 Hz), and delta waves (1–4 Hz) appear in deep sleep stages [6].
Additionally, EEG bands have been used in a variety of contexts such as: measuring
cognitive load [7–9], disease diagnosis [10–12], and predicting emotions [13–15].

Despite the widespread use of established spectral bands (e.g., delta, theta, alpha, and
beta), there are two potential concerns with the current standard. First, there is significant
variability in band boundaries across studies, as shown in Figure 2. This disagreement may
be a result of a variety of factors such as hardware, filtering, and experimental task [12].
Second, ideal band definitions may depend on individual characteristics such as age,
genetics, personality, and task performance [16].
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Figure 1. (Top) Example EEG time series signal sampled at 500 Hz. (Bottom) EEG signal’s corre-
sponding power spectrum, where the natural logarithm of the signal’s power spectral density (PSD)
is plotted against frequency.

Figure 2. Box plot illustrating variability between delta, theta, alpha, and beta band boundaries
across studies. Boxes indicate the typical frequency range of each band. Whiskers represent the
smallest and largest band edges observed across studies. Plot adapted from figure in [12].

These concerns motivate the use of data-driven approaches for the discovery of optimal
EEG band boundaries. Such an approach tailors EEG bands to a specific experimental context
in an automated way. Many methodologies have been proposed to achieve this goal [16–20].
These approaches typically make use of a target variable to ground the optimization of band
boundaries [17–20]. For example, learning the best choice of boundaries for classifying Alzheimer’s
disease [17]. A more recent approach proposed by Cohen makes use of a generalized eigende-
composition of the covariance matrix for multi-channel EEG data [16].

Here, we present a new method of EEG band discovery, that makes use of decision
trees, a popular machine learning framework. Optimal bands are inferred for an input EEG
power spectrum in a self-supervised way. Two key points distinguish this method from
past approaches.

• Band discovery is completely self-supervised in the sense that only EEG data is used
• As the method only uses a power spectrum, it is agnostic as to how the data is

generated, so it can handle both single- and multi-channel data in a variety of contexts.
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2. Methods
2.1. Method Overview

An overview of the data-driven method for EEG band discovery is illustrated in
Figure 3. The first step is to obtain single- or multi-channel EEG recordings. Second,
a power spectrum is computed using, for example, Welch’s method [4]. It is noted that
information from multiple EEG channels can be aggregated into a single power spectrum in
this step. Third, a set of band boundaries is derived for every possible choice of band count.
Possible values range from 2 bands up to the total number of unique frequency values in
the power spectrum. Fourth, an AIC-inspired quality score is computed for each choice of
band count. Finally, the band boundaries with the smallest quality score are selected as the
best choices.

Figure 3. Conceptual overview of the data-driven methodology used in this paper.

There are two key components of this data-driven method. The first component is the use
of a decision tree to obtain optimal EEG band boundaries for a specified band count. There are
two main benefits to using a decision tree in this context. First, due to the structure of decision
tree regression, frequency values are grouped into true bins. In other words, frequency values
in a discovered band are adjacent, which may not be guaranteed by other regression techniques.
The second is the ease of use. There are many efficient and ready-to-use implementations of
decision tree optimization across many computational frameworks [21–24].

The second key component is an Akaike Information Criterion (AIC)-inspired quality
score which serves as an objective from which the choice of band count can be optimized.
As a result, this objective eliminates the need for manual entry of a band count.

2.2. Decision Trees
Decision trees are a widely-used and intuitive machine learning approach. Typically,

they are used to solve prediction problems. That is, identifying a discrete target class
(classification) or estimating a continuous target value (regression) from a set of predictor
variables [25].

Data can be used to grow decision trees in an optimization process called training.
Training requires a training dataset, which consists of predictor variables labeled with
target values. A standard strategy for training a decision tree is recursively partitioning
data via a greedy search method. The search determines the gain from each splitting option
and then chooses the one that provides the greatest gain [25,26]. Splitting options are the
observed predictor variable values in the training dataset. Gain is determined by the split
criterion e.g., Gini impurity or mean squared error (MSE).

For example, in a regression task, data records are recursively split into two groups
such that the weighted average MSE of the target value is minimized from the resulting
groups. MSE is defined as follows.

MSE =
1
N

N

∑
i=1

(Yi − Ŷi)
2

where, N is the total number of observations in a given partition. Yi is the true target
value for the ith frequency value. Ŷi is the tree estimated target value for the ith frequency
value.This splitting procedure can continue until all data partitions are pure, meaning every
data record in a given partition corresponds to a single target value. Although this implies
decision trees can be perfect estimators, such an approach would result in overfitting.
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Therefore, the trained decision tree would not perform well on data sufficiently different
than the training dataset.

One way to combat the overfitting problem is hyperparameter tuning. Hyperpa-
rameters are values that constrain the growth of a decision tree. Common decision tree
hyperparameters are the maximum number of splits, minimum leaf size, and the number
of splitting variables. The key result of setting decision tree hyperparameters is to limit
the tree’s size, which can help avoid predictions only suitable to the training dataset. In
this work, we use decision tree hyperparameters to control the number of discovered
frequency bands.

2.3. Band Discovery with Decision Trees
Optimal EEG frequency bands can be estimated using the decision tree framework.

Here, optimal means the frequency groupings that best reproduce an input signal’s log
spectral density for a set number of bands. To achieve this goal, a decision tree is used to
solve a regression problem in the usual way. A visual overview of the decision tree training
in this context is shown in Figure 4.

Figure 4. (Left) Visual summary of a decision tree partitioning frequency values based on the natural
logarithm of the power spectral density. (Right) Visualization of decision tree splits of frequency
values with power spectra.

We use a single predictor variable (frequency) to estimate a single target variable
(natural logarithm of the power spectral density). Any calculation of the power spectral
density can be used and plugged into our technique. One such method is described
by Welch [4]. Using this technique, for example, the target variable is defined by the
following expression.

Yi = ln P̂( fi)

where, Yi is the ith element of the target variable array, P̂ represents the spectral estimate
according to [4], and fi is the ith element of the predictor variable array i.e., ith frequency
value from the EEG signal decomposition.

The decision tree splits frequency values into subgroups and assigns each subgroup a
single target value estimation. A greedy search of the decision tree parameter space yields
frequency splits that best reproduce target values [25,26]. Thus, through this optimization
process, we automatically obtain the optimal member-adjacent frequency bands for a
predefined band count.
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The band count corresponds to the maximum number of splits used in decision
tree training. However, through the use of an AIC-inspired quality score, the proposed
method removes the need for manual entry of this quantity. This is discussed further in the
next section.

2.4. Quality Score for Band Boundaries
Although decision tree optimization can be leveraged to identify optimal EEG fre-

quency bands, this method requires the number of bands to be predetermined. Instead of
choosing a band count manually, here we describe an objective data-driven strategy. The
choice of band count is framed as an optimization problem, where we define an objective
that can be optimized with respect to the band count.

One choice of objective is the r2 regression score. In this context, the r2 value cor-
responds to how well a set of decision tree-derived EEG band boundaries reproduce an
underlying power spectrum. While the decision tree optimization strategy described pre-
viously will ensure band boundaries are optimal for a given number of bands, different
choices of band count will correspond to different r2 values. An example of this is shown
in Figure 5, where the r2 regression scores of several different choices of band count are
plotted for the same dataset.

However, the r2 score is a problematic objective choice, since it strictly increases with
the number of bands. Therefore, the maximum regression score would correspond to the
largest possible number of bands i.e., a frequency “band” for every observed frequency
value. One simple solution is to introduce an objective that incorporates both the r2 regres-
sion score and a penalty for the number of bands. This is the goal of popular measures such
as the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) [27].
Taking inspiration from AIC, we construct an empirically derived quality score (QS) to help
choose a model that balances the best regression score while limiting the number of bands.

Figure 5. r2 regression scores plotted against the number of frequency bands included in the decision
tree model. The data used to derive these bands and r2 values is the artificial data described in Case
Study 1 in Section 3.1. Colored dashed vertical lines highlight large jumps in r2 and are labeled by
the corresponding number of bands.

AIC is a measure of model quality, where smaller values imply better models [27,28].
It is defined in terms of the maximum value of the likelihood function for the model, L, and
the number of parameters in the model, k.

AIC = − log L2 + 2k
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The quality score (QS) we employed closely resembles AIC with two modifications.
First, in lieu of the squared maximum likelihood value, we used the r2 regression score.
Since r2 values are between [0, 1], the first term in the QS equation below will be between
[0, ∞), however, this range is not very large in practice e.g., for r2 ≥ 0.135, the first term
is approximately between [0, 2]. Second, we divided the second term by N, where N is
the maximum number of bands, or equivalently, the total number of observed frequency
values. This ensures the second term in the equation below takes values in the range [0, 2].

QS = − log r2 + 2k/N

QS provides a way to compare EEG band boundaries in a way that accounts for both
goodness-of-fit and band count. It will typically take values between 0 and 2, where smaller
values correspond to better models. By computing the QS for every possible band count,
we can choose the best EEG band boundaries as the choice with the smallest QS.

Although QS takes inspiration from AIC, a theoretically grounded quantity, its deriva-
tion is empirical, therefore it may not be most suitable for all applications. Furthermore,
there are countless other objective choices to optimize band count. The decision tree method
described in Section 2.3 is independent of this band count optimization step, and thus can
be enhanced by a variety of choices.

2.5. Software Implementation
This two-part technique is implemented using the Sci-Kit learn Python library, a

popular and free machine learning software [21]. The decision tree implementation used is
the sklearn.tree.DecisionTreeRegressor class. The chosen parameters for the decision tree
training are specified in Table 1. A detailed description of each parameter can be found
at the Sci-Kit learn documentation: https://scikit-learn.org/stable/modules/generated/
sklearn.tree.DecisionTreeRegressor.html (accessed on 6 March 2022).

Table 1. Table specifying the sklearn.tree.DecisionTreeRegressor parameters used in decision tree-
based band discovery method. Parameter details can be found at the Sci-Kit learn documentation [21].

Name Value

criterion “squared_error”

splitter “best”

max_depth None

min_samples_split 2

min_samples_leaf 1

min_weight_fraction 0.0

max_features None

random_state None

max_leaf_nodes Optimized with QS

min_impurity_decrease 0.0

ccp_alpha 0.0

Our code is open-source and publicly available at the GitHub repository: https://
github.com/mi3nts/decisiontreeBinning (accessed on 6 March 2022). Although Python
is used for our implementation, other statistical software packages can be readily used to
implement this method [22–24].

3. Results
In the following subsections, we explore two case studies that apply the proposed

data-driven method for EEG frequency band discovery to an artificial and experimental
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dataset, respectively. A Python script to reproduce both case studies is freely available at the
following GitHub repository: https://github.com/mi3nts/decisiontreeBinning (accessed
on 6 March 2022).

3.1. Case Study 1: Artificial Data
As a first demonstration of the method, we produce an artificial EEG power spectrum

as shown in Figure 6. The spectrum consists of the characteristic 1/ f shape for EEG signals
with added white noise. A mathematical expression for the artificial power values is
given below.

P = 1/ f + r

where, P is the artificially generated power value. f is the frequency value. r is a uniformly
distributed random value between 0 and 0.4.

Figure 6. Artificial power spectrum for initial demonstration of data-driven method. The spectrum
consists of the characteristic 1/ f curve for EEG signals with added white noise.

The results of applying decision tree-based band discovery to the artificial power
spectrum are shown in Figure 7 for 5 different choices of band count. In the top 5 plots, the
true power spectrum is shown as a solid blue line, the decision tree estimated spectrum
is plotted as a dashed orange line, and the discovered band boundaries are indicated
by dashed vertical red lines. The plots are titled according to the number of bands and
r2 (coefficient of determination) regression score. The r2 score indicates how well the
discovered bands reproduce the true power spectrum. As a comparison, the typical
boundaries of the delta, theta, alpha, and beta bands according to the review by [12] are
shown at the bottom of Figure 7. Each band is labeled with text. The r2 score of the standard
bands is computed by comparing the average power value within each band with the true
values. This value is provided in the plot title.

The greedy search algorithm used in decision tree regression preserves band bound-
aries when new bands are added. In Figure 7, for example, 7.3 Hz is a band edge in every
case (i.e., from 2 bands to 6 bands). It is interesting to note that the discovered 4 bands case
is nearly identical to the typical delta, theta, alpha, and beta band boundaries according
to [12]. Thus, it may be that the typical band boundaries are a good representation of this
characteristic power spectrum.

In Figure 7, as more bands are added, the r2 regression score increases. A diagrammatic
representation of this observation is shown in Figure 5, where model regression scores are
plotted against the number of bands. Since there are 150 unique frequency values in this
first artificial dataset, the maximum number of bands is 150. Colored dashed vertical lines
indicate band choices that exhibit a large jump in the r2 score.

Since the r2 score strictly increases with the number of bands, using it as an objective
from which to choose the band count would always result in a “band" for every observed
frequency value. However, the AIC-inspired quality score (QS) defined in Section 2.4 does
not suffer from this issue. This is illustrated in Figure 8, which plots QS against the number
of bands. Additionally, the r2-based fitness term in QS is shown as a dashed blue line, the
band count penalty term is plotted as a dashed orange line, and the minimum QS value is
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indicated by a yellow star. A minimum QS value is observed at 6 bands, implying the best
choice of band count for this spectrum is 6.

Figure 7. Band comparisons for artificial power spectrum. The true power spectra are plotted
with solid blue lines, predicted spectra are plotted with dashed orange lines, and discovered band
boundaries are indicated by dashed vertical red lines. The plots are titled according to their number
of bands and r2 regression score. For comparison, typical values of the standard 4 bands (delta, theta,
alpha, and beta) according to [12] are shown in the bottom plot along with the true power spectrum
plotted again as a solid blue line.
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Figure 8. Empirically derived quality score (QS) plotted against the number of bands for a case study
of an artificially generated power spectrum. The r2-based fitness term in QS is shown as a dashed
blue line, the band count penalty term is plotted as a dashed orange line, QS is plotted as a green
line, and the minimum QS value is indicated by a yellow star.

The top plot in Figure 9 outlines the optimal bands based on a quality score (QS)
minimization strategy. The plot title indicates the number of bands (6), r2 regression score
(0.94), and the quality score of the band definitions (0.14). The bottom plot in Figure 9
similarly outlines the standard bands, titled with the same metrics. The QS of the standard
bands is computed using the QS equation in Section 2.4 with k = 4. Although the discovered
bands include more parameters, the QS is about half of that of the standard bands, thus it
is a better characterization of the underlying spectrum based on this objective. Based on the
data-driven approach, new band boundaries are discovered that complement the standard
delta, theta, alpha, and beta bands by dividing the standard delta and beta bands into two.

Figure 9. Comparison of discovered and standard bands for the case study of an artificially generated
power spectrum. Plots are titled by the number of bands, r2 regression score, and the quality score
of the respective band boundaries. The true power spectrum is plotted as a solid blue line. (Top)
Discovered bands using the proposed decision tree method employing a minimum quality score (QS)
technique. Discovered band boundaries are indicated by dashed vertical red lines. (Bottom) Typical
standard band boundaries are taken from review by Newsom [12]. Standard band boundaries are
indicated by dashed vertical dark blue lines.

3.2. Case Study 2: Experimental Data
We evaluate the band discovery method on experimental data from the PhysioNet

dataset: EEG During Mental Arithmetic Tasks [29,30]. EEG data were collected monopolarly
using the Neurocom EEG 23-channel system (Ukraine, XAI-MEDICA). The electrodes were
placed on the scalp according to the International 10/20 montage. Interconnected ear
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electrodes were used as the reference. A 30 Hz cut-off frequency high-pass filter and a
50 Hz power line notch filter were used. The data are artifact-free segments of 60 s. In
preprocessing, Independent Component Analysis (ICA) was used to eliminate artifacts
(eyes, muscles, and cardiac). For this case study, the baseline EEG recording from Subject 00
is used. Occipital electrodes (O1 and O2) are averaged to produce an aggregated occipital
EEG signal.

The aggregated occipital time-series signal and its corresponding power spectrum are
shown in Figure 10. Welch’s method using a Hanning window and a segment length of
1028 estimated the power spectral density of the aggregated signal [4]. Due to the signal
preprocessing scheme used here, the power spectrum does not follow the typical 1/ f
shape. Nevertheless, an alpha rhythm peak is observed. Although this experimental power
spectrum is characteristically different than the previous artificial spectrum, the EEG bands
discovered by our data-driven approach will automatically adapt to it.

Figure 10. (Top) Time series of aggregated occipital EEG signal. (Bottom) Power spectral density
plotted against frequency for aggregated occipital EEG signal plotted from approximately 1–30 Hz.

We repeat the two-part strategy from Case Study 1. First, we derive band boundaries
using the decision tree strategy for every possible choice of band count (i.e., 2 to 60 bands).
Second, we use the quality score (QS) to identify the best number of bands. The QS is
plotted against the number of bands in Figure 11. The minimum QS value occurs for the
6 bands case.

Figure 12 compares the bands discovered by applying the proposed band discovery
strategy to the experimental data (top plot), the optimal bands discovered in Case Study 1
(middle plot), and the standard EEG band boundaries from [12] (bottom plot). The discov-
ered bands from the experimental data (top plot) outperforms the other band choices, with
both a significantly higher r2 score and lower (better) QS. For the present case study, the
quality score for the discovered bands was 0.35, compared to scores of 0.86 and 0.8 for the
bands discovered in Case Study 1 and standard EEG bands, respectively. Despite the fact
that the discovered band boundaries outperformed the standard bands in Case Study 1,
when the same boundaries are applied to new experimental data, the standard bands
perform better. The poor performance of the bands from Case Study 1 in characterizing this
experimental power spectrum highlights the need to tailor EEG bands to specific datasets.

The bands identified from the experimental data isolate spectral features. Specifically,
the peak in power spectral density between 10 and 12 Hz is partitioned into a dedicated
band. This gives an idea of how the proposed method works. It will tend to learn frequency
bands that correspond to peaks in the underlying power spectrum.
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Figure 11. Empirically derived quality score (QS) plotted against the number of bands for the case
study of experimental EEG data. The r2-based fitness term in QS is shown as a dashed blue line, the
band count penalty term is plotted as a dashed orange line, QS is plotted as a green line, and the
minimum QS value is indicated by a yellow star.

Figure 12. Comparison of discovered and standard bands for the case study of experimental EEG
data. Plots are titled by the r2 regression score and the quality score of the respective band boundaries.
The true power spectrum is plotted as a solid blue line. (Top) Discovered bands using the proposed
decision tree method employing a minimum quality score (QS) technique. Discovered band bound-
aries are indicated by dashed vertical red lines. (Middle) Discovered bands derived from artificial
power spectrum in Case Study 1. Discovered band boundaries from Case Study 1 are indicated by
dashed vertical green lines. (Bottom) Typical boundaries of standard bands are taken from a review
by Newsom [12]. Standard band boundaries are indicated by dashed vertical dark blue lines.

4. Discussion
This paper outlines a self-supervised method for discovering optimal EEG frequency

bands. It differs from previous methods in two important ways. First, band discovery
is entirely self-supervised, so an external target variable is not necessary. Second, since
the method solely uses a power spectrum, it is capable of handling both single- and
multi-channel data across contexts.
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The methodology was evaluated by using two case studies. In the first case study, the
method was applied to a power spectrum consisting of a 1/ f shape with white noise added.
The discovered bands overlapped with the typical delta, theta, alpha, and beta boundaries.
Two additional bands were found within the typical delta and beta frequencies. Despite
the larger number of parameters, the discovered bands had a quality score that was nearly
half that of the typical ones, thus indicating significantly better performance. In the second
case study, the method was applied to a baseline EEG recording from the open-access
PhysioNet dataset: EEG During Mental Arithmetic Tasks [29,30]. As in the previous case,
the discovered EEG bands significantly outperformed the more conventional boundaries.
Additionally, the discovered bands isolated a peak in the power spectral density curve into
a dedicated frequency band.

The proposed method has two key strengths. First, the method provides a way to deter-
mine frequency bands that are representative of an underlying power spectrum while keep-
ing the number of bands to a minimum. This results in a parameter-free and reproducible
approach to the discovery of optimal EEG bands. Second, the method is readily accessible
since it is based on decision tree optimization, which has many efficient and ready-to-use
implementations [21–24]. Additionally, we made our implementation of the technique
open-source and publicly available (https://github.com/mi3nts/decisiontreeBinning (ac-
cessed on 6 March 2022)).

Unlike other methods that optimize band boundaries to estimate a particular variable
(e.g., disease diagnosis), our approach relies only on power spectral density values for
estimation. Although this can be considered a strength, it also has a downside. Since EEG
bands are purely based on spectral density curves, their interpretation may not be clear.
Consequently, interpretation of bands discovered using this method may require additional
effort compared to other approaches.

In Table 2, we present a comparison of different approaches to EEG band discovery.
Five previous methods are compared with the one proposed in this article [16–20]. The
comparisons are based on four characteristics: supervised, self-supervised, single-channel,
and multi-channel. A supervised method is one that uses a target variable to ground the
band optimization, such as disease diagnosis, stimulus details, and task type. Conversely, a
self-supervised method uses the inherent characteristics of EEG signals to partition bands.
Single-channel means the technique can operate on single-channel EEG data, while multi-
channel indicates the technique operates on multi-channel EEG data. The uniqueness of
our approach resides in the fact that it is a self-supervised approach that works on both
single-channel and multi-channel data. Furthermore, it is the first EEG band discovery
method that uses the decision tree machine learning framework.

A key feature of the presented approach is that it is agnostic to how the input power
spectrum is generated, thus it can readily be applied to other types of power spectra
(e.g., audio signals, hyperspectral imaging). Hyperspectral imaging, for instance, captures
images with layers beyond the standard red, green, and blue. This provides a power
spectrum for each pixel of a hyperspectral image. Using the proposed band discovery
method, interesting spectral features in hyperspectral images can be detected in a self-
supervised way.

Additionally, this method can be applied to other types of input variables. For example,
a times series (e.g., heart rate over time) could be used in lieu of a power spectrum. This
would result in the discovery of temporal epochs, as opposed to frequency bands.
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Table 2. Tabular comparison of different data-driven approaches to EEG band discovery [16–20].
Methods are compared via four characteristics: supervised, self-supervised, single-channel, and
multi-channel, shown as columns. Rows indicate the article reference outlining the approaches. The
method proposed in this article is shown on the bottom row with the reference name “Proposed
Method”. An “X” indicates the corresponding method has the listed characteristic.

References Supervised Self-
Supervised

Single-
Channel

Multi-
Channel

Elgendi et al. (2011) [17] X X X

Lee et al. (2012) [18] X X X

Magri et al. (2012) [19] X X X

Raza et al. (2015) [20] X X

Cohen (2021) [16] X X

Proposed Method X X X

5. Conclusions
EEG serves as a window to underlying neural processes. Spectral analysis of EEG ex-

amines the oscillations in electric potentials arising from the brain. Despite the widespread
use of established delta, theta, alpha, and beta bands for EEG, their boundaries vary widely
across studies, which may be a result of variations in experimental details and partici-
pant differences. This motivates the use of objective and data-driven approaches to EEG
band discovery.

In this work, we leveraged the readily available optimization of a decision tree for
regression to discover EEG bands most appropriate for a given dataset and a predetermined
number of bands. The best choice of band count was then determined using an AIC-
inspired quality score. We applied the presented method to both artificial and open-access
experimental data. Discovered bands isolated spectral features into dedicated bands and
outperformed the standard band definitions. Data-driven EEG band discovery may provide
new indices of neural activity which can adapt to a variety of experimental and subject
characteristics.
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Abstract: Autonomic responses, such as the stress response, are automatic physiological mechanisms 1

meant to keep us safe. They provide a window into underlying cognitive and physiological processes. 2

The processing of novel life-threatening stimuli consumes cognitive resources which can impede 3

decision making and performance. A deeper and more detailed understanding of autonomic physio- 4

logical responses in the context of high-stress live-fire scenarios offers the possibility of performance 5

improving interventions and preserving human life. In this pilot study we captured a comprehensive 6

picture of the participant’s physical and cognitive status in the context of hyper-realistic live-fire 7

training scenarios and used it to predict performance. The high-dimensional space of biometric 8

markers lends itself to the use of machine learning to develop objectively optimized empirical models 9

of performance. 10

Keywords: Machine Learning; Holistic Sensing; Human Performance; Electroencephalography (EEG) 11

1. Introduction 12

Warfighters, federal agents, law enforcement personnel, and first responders routinely 13

go into harm’s way to protect and serve. Deadly threat encounters frequently lead to phys- 14

iological effects such as elevated heart rate and respiration rate, pupil dilation, auditory 15

exclusion, loss of dexterity, trembling, and an adrenaline increase. In more extreme circum- 16

stances, freezing can also occur, as well as the loss of bladder control and vocal control. 17

These responses typically occur very rapidly over a few seconds. For this reason, training is 18

essential to develop appropriate skills, tools, and behaviors when faced with such extreme 19

physiological and psychological stressors. It is essential that a framework is provided to 20

encounter these natural, yet unconscious, extreme responses in a safe environment, and 21

then to provide detailed insights to help learn how to manage them. Training can enable 22

both the ability to appropriately modulate responses in the face of lethal threats while also 23

preserving innocent lives and minimizing unintended collateral damage. 24

The purpose of this pilot study is to evaluate physiological interactions with human 25

performance in hyper-realistic, live-fire training scenarios. Participants performed complex 26

scenarios based on real-life events while equipped with a suite of physiological sensors. 27

Performance was assessed by two expert evaluators on a scale of 0 to 4 for the following 28

8 dimensions: Decision making, Timeliness, Cognitive shifting, Use of empathy, Tactical 29

performance, Body language, Self-assessment, and Rationality. 30

The relationship between physiological quantities and performance are assessed via 31

objectively optimized, empirical machine learning models which predict expert evaluator 32

performance scores from physiological data alone. Models are evaluated based on their 33

accuracy and provide rankings of the most important physiological predictors in estimating 34

performance scores. High fidelity empirical models may provide clues to key physiological 35
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indicators of performance. Such insights enable the development of objective performance 36

scoring systems and can further inform interventions to enhance rapid decision making in 37

high-stress, life-threatening situations. 38

2. Materials and Methods 39

This prototype study brings together three key elements for the provision of empirical 40

machine learning models of human performance in high-stress, live-fire scenarios based 41

solely on physiological recordings. These elements include: the Troysgate Training Sys- 42

tem, Expert Evaluation of Performance, and Holistic Biometric Sensing Suite. These are 43

described in the following subsections followed by an overview of the model development 44

procedure. 45

2.1. Troysgate Training System 46

High-stress, live-fire scenarios were simulated with the Troysgate training system. 47

Troysgate creates a highly effective and realistic training environment that places the par- 48

ticipant in a “face-to-face,” close quarters, deadly conflict situation with a combatant or 49

adversary (US Patent US9453711B2). The participant and role player are safely positioned 50

adjacent to one another and separated by a ballistic containment barrier which provides 51

protection from accidental weapon discharge. A large mirrored reflective screen is posi- 52

tioned several feet in front of participants, so that the participant and role player can easily 53

track each other’s actions. 54

2.2. Expert Evaluation of Performance 55

Performance was assessed by two independent expert evaluators. Both evaluators are 56

retired army special forces and followed a shared grading scale guidelines. One evaluator 57

was present in the room during each scenario, the second evaluator watched scenarios in 58

real-time via a security camera system. Performance is evaluated at two predetermined 59

points within each scenario. These points are referred to as impact points and consist of 60

critical events in the interaction for which the participant must make a decision (e.g. shoot 61

or don’t shoot). 62

Performance scores were graded on an integer scale of 0 to 4 for the following eight 63

performance dimensions: Decision making, Timeliness, Cognitive shifting, Use of empathy, 64

Tactical performance, Body language, Self-assessment, and Rationality. These performance 65

dimension were developed specifically for this pilot study. More details on how these 66

measures are assessed is provided in Appendix A. 67

2.3. Holistic Biometric Sensing Suite 68

During scenario simulations, participants were equipped with a holistic biometric 69

sensing suite. This sensor package aims to comprehensively and continuously capture 70

the physiological and cognitive responses of the participant, without limiting actions, 71

movements, or decision making. The goal is to gather the maximum amount of information 72

with the least disruption of normal behaviors. 73

The biometric sensors measure the autonomic physiological responses of the partic- 74

ipants by passively collecting data on 115 biometric parameters (at 500 Hz: 64 electrode 75

EEG, ECG, GSR, blood oxygen, skin temperature, 6-axis IMU (gyro and accelerometer), 76

100 Hz: Eye-tracking glasses). After processing this information, we are left with about 77

16,500 variables for analysis. Additionally, the eye tracking glasses record a point-of-view 78

video and capture video of each pupil. These videos are also processed for additional 79

variables. Sensor recording units and other devices are organized in a backpack worn by 80

the participant that all together weighs less than 10 lbs. 81

This holistic biometric sensing suite integrates two independent sensing systems 82

(Figure 1). Eye tracking is recorded 100 times a second using the Tobii Pro Glasses 2. All 83

other biometric data are measured 500 times a second using the Cognionics Mobile-64 and 84

AIM2 systems. The most important detail in bringing these two systems together is ensuring 85
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Figure 1. Biometric sensing systems. (Left) Tobii Pro Glasses 2 eye tracking system. This instrument
performs eye tracking data, pupillometry, and provides two videos streams of the participant’s POV
and eyes, respectively. (Right) Cognionics Mobile-64 and AIM2 systems. Sensing suite includes 64-
electrode EEG, PPG which measures SpO2 and HR, respiration/ECG sensors, GSR, and temperature
probe.

data are stored to a common time index. Both hardware and software technologies are 86

leveraged to achieve this goal. The Cognionics wireless trigger receives timing signals from 87

the Tobii Pro Glasses 2, which are used to align data from the two systems. Furthermore, 88

eye tracking and pupillometric variables are up-sampled to match the 500 Hz sampling 89

rate via a linear interpolation after taking care of error values. 90

2.4. Supervised Machine Learning 91

Supervised machine learning makes it possible for computers to learn by example. 92

Thus, more examples lead to better models. The present pilot analysis contained only 28 93

instances from which the supervised machine learning framework could learn. Although 94

the data is limited, we map an analysis protocol that can be leveraged for future studies 95

and provide preliminary results. 96

During model training, predictor variables are mapped to target variables. This results 97

in an empirical machine learning model that can estimate target variables given new input 98

data. A subset of records is excluded from the training process to serve as a validation 99

dataset that tests the model’s performance with new data. In this case, 20% of all available 100

data records are held back for validation. With the limited dataset size, only 6 records are 101

included in the validation dataset. The small size of the validation set may not represent 102

the underlying data distribution, and so may not yield statistically significant results. 103

The supervised machine learning approach used 329 predictor variables to estimate 27 104

different target variables, one model for every target, from 28 data records. Each model has 105

a single target variable. These target variables were the experienced instructors assessments 106

of a impact point for a specific performance dimension. 107

Twenty-seven models result from one model for each of the eight grades plus their 108

sum, as assigned by evaluator 1, evaluator 2, and their average. Of the 27 models, 11 are 109

developed using an ensemble of decision trees for regression and the remaining 16 are 110

derived using an ensemble of decision trees for classification. The key difference between 111

these types of models lies in their target variables. Namely, regression models have targets 112

with continuous values. That is, values that span a number line. Conversely, classification 113
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models have discrete targets. Meaning they aim to predict values that are distinct and do 114

not sit on a common continuous axis e.g. cat, dog, pig, etc. 115

A target which is the average of the two evaluators’ performance grades or the total 116

of the eight performance grades is treated as a continuous target for regression. All other 117

grades are evaluated as discrete targets for classification. Even though evaluator scores 118

are presented on a scale, they are treated as discrete labels in the development of the 16 119

classification models. This means that a score of 0 and 1 differs just as much as a score of 0 120

and 4. 121

2.4.1. Data Preparation 122

During key scenario impact points, participant performance is assessed by expert 123

evaluators. For each impact point, biometric variables are averaged over a time frame of 124

10 seconds. Further, these biometrics averages are scaled to the individual participant’s 125

baseline averages to account for individual differences. This scaling is calculated as follows. 126

x̄scaled =
x̄ − x̄baseline

x̄baseline

Where, x̄scaled represents the average value of a biometric variable over a 10 second 127

epoch spanning a impact point scaled to the average baseline of the same biometric variable. 128

x̄ represents the unscaled average value of a biometric variable over a 10 second epoch 129

spanning a impact point. And, x̄baseline is the average value of a biometric variable over the 130

course of a baseline recording. 131

3. Results 132

The objective of this analysis was to determine the key biometric effects on cognitive 133

performance during high-stress live-fire scenarios. This analysis consists of two main steps. 134

In the first step, 27 different models of performance are trained using supervised machine 135

learning. Next, the fidelities of these models are evaluated and predictor importance 136

rankings are obtained. 137

3.1. Model Evaluation 138

Each of the 27 models are evaluated via two key data products. First is model fidelity. 139

For regression models this is quantified by the correlation coefficient between the true 140

evaluator scores and the model predicted scores. For classification models this is assessed 141

by the percentage of correct evaluator score classifications. The second data product is 142

a predictor importance ranking. In these models, predictor importance is based on the 143

information gained about a target performance variable when conditioning on a given 144

predictor variable. 145

The participant performance dimensions that could best be reproduced using the 146

predictor variables and the supervised machine learning framework were the mean scores 147

for Cognitive Shifting, Rationality, and Self-assessment. The left plot in Figure 2 shows the 148

ranking of model accuracy for the regression models. This indicates the biometric predictor 149

variables are most relevant in identifying performance along these dimensions. These 150

dimensions were graded based on the following criteria. 151

Cognitive Shifting – Cognitive shifting is the ability to shift from one tactic of en- 152

gagement to another. Tactic in this sense would be referring to the use of an empathetic, 153

compassionate tone to strong verbal commands. The ability to shift as the scenario evolves 154

or as use of a particular tactic does not achieve desired effect is what is being assessed in 155

this metric. 156

Rationality – Rationality is scored after the scenario during the debrief when the 157

participant discusses what occurred. This criterion refers to the validity of the participant’s 158

rationale for their decision making during the scenario in terms of supporting their assess- 159

ment of how they were able to intervene. For example, not just the decision to shoot a role 160

player that presented a threat but why and when they made that decision. 161
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Figure 2. Assessment of 27 performances models. (Left) Accuracy of 11 performance models based
on ensemble of decision trees for regression. Bar heights indicate squared correlation coefficients
for each model. Training dataset performance is shown in blue and validation data performance
in orange. (Right) Accuracy of 16 performance models based on ensemble of decision trees for
classification. Bar heights indicate ratio of number of correct classifications to the total number of
records. Training dataset performance is shown in blue and validation data performance in orange.

Figure 3. Ranking of top biometric predictor variables in reproducing expert evaluator scores. (Left)
Top biometric predictors based on the number of performance models in which the respective
biometric variable had a non-zero importance. (Right) Top biometric predictors based on the
aggregated importance weight of each biometric variable across all 27 performance models.

Self-assessment – Self-assessment is scored after the scenario during the debrief 162

when the participant discusses what occurred and their assessment of how they feel about 163

their performance. Additionally, the Self-assessment also includes the level of detail the 164

participant is able to articulate regarding what occurred as an indication of the connection 165

between their executive function and recall of sensory input. 166

3.2. Top Biometric Predictors 167

The top three biometric predictors of performance were the baseline scaled beta band 168

(13 – 25 Hz) power spectral density of the AF4 electrode recording (AF4-beta), the baseline 169

scaled gamma band (25 – 75 Hz) power spectral density of the P4 electrode recording 170

(P4-gamma), and heart rate values scaled to baseline. The biometric variables AF4-beta and 171

P4-gamma appear in the top predictor importance rankings based on both count and weight 172

(Figure 3). The ranking based on count indicates the number of performance models in 173

which each biometric predictor had a non-zero importance, while the weight-based ranking 174

shows the sum of each biometric variable’s importance across all 27 models. The scaled 175

heart rate value appeared in the top 3 of the count-based ranking but not the weight-based 176

one. This may suggest that heart is a universally relevant predictor variable, however other 177

biometrics play a larger role when it comes to individual models. 178

EEG signals arise from neurons with synchronized activity. Additionally, local neural 179

orientations and relative location to head surface impact captured signals [1]. These signals 180

can be decomposed into frequency bands e.g. beta (13 – 25 Hz) and gamma (25 – 75 Hz). 181
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That is, frequency bins that reflect characteristic signal oscillations. Generally speaking, 182

high frequency components correspond to higher neural firing rates and thus greater neural 183

activity. 184

The total beta (13 – 25 Hz) band power for the AF4 electrode. The AF4 electrode is 185

located near the front right part of the participant’s head over the frontal lobe. It records 186

activity from Brodmann area 9 (ba09). This large area of the frontal cortex is associated with 187

overriding automatic reactions [2], evaluating intention [3], theory of mind [4], working 188

memory [5–7], auditory attention [8], planning [9], and recognizing the emotions of others 189

[10]. 190

The total gamma (25 – 75 Hz) band power for the P4 electrode. The P4 is near the 191

back right part of the head over the parietal lobe. This electrode corresponds to activity 192

arising from Brodmann area 39 (ba39). Although there is less research on the function of 193

ba39 compared to ba09, it has been associated with functions such as overriding automatic 194

reactions [2], attention and spatial cognition, reasoning, and social cognition [11]. 195

4. Discussion 196

Authors should discuss the results and how they can be interpreted from the perspec- 197

tive of previous studies and of the working hypotheses. The findings and their implications 198

should be discussed in the broadest context possible. Future research directions may also 199

be highlighted. 200

5. Limitations & Future Works 201

The power of machine learning is its ability to parse high-dimensional and high 202

volume datasets. A comprehensive dataset is a key ingredient to successful machine 203

learning models and analyses. Although we procured a comprehensive snapshot of a 204

participant’s biometric status and performance evaluation, the data volume, i.e. the number 205

of data records, was limited in this pilot project. The lack of EEG data collection resulting 206

from participant hair length and other equipment malfunctions led to fewer comprehensive 207

recordings, down from 48 to 28 impact points. 208

A high volume dataset helps ensure the information from which the machine learning 209

models learn is a diverse and representative sample of the population of interest. Therefore, 210

it should be noted that the findings of this study should not be taken as fact, but rather as 211

hints for future research. A deeper investigation with a larger sample size will enable us 212

to establish statistical significance and develop high fidelity models of performance. This 213

would facilitate the evaluation of key predictors for specific performance dimensions and 214

thus provide an opportunity for targeted interventions e.g. using key predictors of decision 215

making to inform training and tactical protocols. 216

6. Conclusions 217

This study outlines an experimental paradigm for assessing the interactions between 218

participants’ performance in high-stress, live-fire training scenarios and a holistic suite of 219

biometric sensors. Despite limited data in this pilot study, preliminary results were obtained 220

using both unsupervised and supervised machine learning frameworks. With unsupervised 221

machine learning, two composite indices were derived that vary with a participant’s 222

cognitive load and focus, respectively. A supervised machine learning approach was then 223

used to estimate the performance scores of expert evaluators using only biometric data. 224

Performance dimensions best captured by the pilot dataset were: Cognitive shift, rationality, 225

and self-assessment. Key biometric predictors in estimating performance scores were the 226

total beta (13 – 25 Hz) band power for the AF4 electrode measuring activity in Brodmann 227

area 9, the total gamma (25 – 75 Hz) band power for the P4 electrode measuring activity in 228

Brodmann area 39, and heart rate. 229
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The following abbreviations are used in this manuscript: 281

282

Appendix A Grading Scale Guidelines 283

1. Decision making – across this scale the determination is clear decisions on how 284

to address the scenario such as how to orient to the environment appropriately and/or 285

which role players to address, what tone to use, at what point a threat is great enough to 286

warrant presenting the pistol. This is an overall assessment of what is evidenced of their 287

decision making. A 0 on this scale would be no evidence of clear decision making that 288

results in any form of action, essentially just waiting for the role players to reach a point at 289

which there is an obvious need for the use of lethal force. A “4” on this scale would be clear 290

decisions made at impact points that demonstrate use of executive function appropriate to 291

the evolving situation. 292

• 0 – no demonstrable decision making, aloof 293

• 1 – little decision making or only cursory attempts to address the evolving situation 294

• 2 – some decision making but not appropriately addressing the evolving situation 295

• 3 – good decision making with continued adjustments to the situation 296

• 4 – clear, strong decision making appropriately oriented throughout the entire scenario 297

2. Timeliness – the participant is challenged with a rapidly changing scenario and, as 298

such, must address all nuances in a rapid fashion or they will not have the opportunity to 299

impact the situation. This has some potential overlap with Tactical Performance but only in 300

the aspect of the timing of decisions related to tactical orientation. For example, at what 301

point to draw the pistol and have in a ready position or at what point to engage a target. 302

This can also address when to interject verbal commands or conversation. 303

• 0 – very slow to orient to the situation or no real measurable responses to occurrences 304

• 1 – slow to orient to the situation and actions are reactive rather than proactive 305

• 2 – moderate speed in actions that begin to provide opportunities to impact scenario 306

• 3 – rapid responses that demonstrate potential to impact the scenario 307

• 4 – very responses that demonstrate proactive potential 308

3. Cognitive Shifting – Cognitive shifting is the ability to shift from one tactic of 309

engagement to another. Tactic in this sense would be referring to the use of an empathetic, 310

compassionate tone to strong verbal commands. The ability to shift as the scenario evolves 311

or as use of a particular tactic does not achieve desired effect is what is being assessed in 312

this metric. 313

• 0 – No change in approach throughout scenario, i.e. only strong verbal commands 314

• 1 – Little change in approach with minor attempts at shifting 315

• 2 – Some change in tactics but not appropriately enough to impact behavior 316

• 3 – Changes in tactics that have some potential for impacting behavior 317

• 4 – Dynamic change in tactics with clear potential for impacting behavior 318

4. Use of Empathy – Use of empathy refers to the participant’s demonstrated ability to 319

engage the role players from an orientation that relates to their context of experience within 320

the scenario. For example, an angry, scared role player who is expressing outrage would be 321

successfully engaged by the participant expressing validation for their anger and fear. 322

• 0 – No demonstrated use of empathy 323

• 1 – Minor use of empathy but attempts are not authentic or believable 324

• 2 – Use of empathy but attempts are not truly authentic 325

• 3 – Use of empathy is appropriate and authentic 326

• 4 – Use of empathy is effective, authentic and potentially impactful throughout sce- 327

nario 328

5. Tactical Performance – this refers to the participants’ tactical approach to the scenario 329

in terms of position, proper use of the pistol, ability to recognize and address threats, and 330
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• 0 – Participant makes gross tactical errors such as unsafe operation of a pistol or 331

shooting a role player that doesn’t present a threat 332

• 1 – Participant makes multiple tactical errors and/or improperly engages targets 333

(wrong target, before target is a true threat etc) 334

• 2 – Participant makes an obvious tactical error and/or doesn’t orient to the scenario 335

appropriately (too aggressive or too aloof/lackadaisical) 336

• 3 – Participant appropriately tactically orients to the scenario and makes no obvious 337

errors 338

• 4 – Participant demonstrates a strong, appropriate tactical orientation to the scenario 339

and decisively, properly engages threats presented 340

6. Body Language – The posture, orientation, hand gestures, and movement through- 341

out the scenario conveys a great deal of communication visible to the role players. It is 342

important to recognize what is being communicated and if it has potential for positive 343

or negative impact. Is the participant fidgety, nervous, or in a defensive posture? Is the 344

participant in an open posture that conveys calm, confidence or is the participant bladed 345

off, shoulders hunched up in an aggressive stance? How are this positions and movements 346

relating to the scenario? Are they appropriate, inappropriate or conveying communication 347

that will have beneficial or disruptive impact? 348

• 0 – Participant is continuously excessively nervous, aggressive or aloof relative to the 349

situation (continuous fidgeting or crossed legs with hands on the “stop” wall) 350

• 1 – Participant is continuously excessively nervous, aggressive or aloof relative to the 351

situation 352

• 2 – Participant gestures excessively or stiffly in attempting to communicate such that 353

he/she appears oddly affected 354

• 3 – Participant’s body language is appropriate for the scenario and conveys an appro- 355

priate orientation to the scenario 356

• 4 – Participant is clearly aware of body language and posture adjusting clearly to the 357

situation (i.e. open, no guarded posture during an empathetic exchange followed by 358

subtle, no-obvious movement to a more tactical posture as a threat emerges) 359

7. Self-Assessment – Self-Assessment is scored after the scenario during the debrief 360

when the participant discusses what occurred and their assessment of how they feel about 361

their performance. Additionally, the self-assessment also includes the level of detail the 362

participant is able to articulate regarding what occurred as an indication of the connection 363

between their executive function and recall of sensory input. 364

• 0 – Participant’s self-assessment is clearly out of sync with what happened in the 365

scenario (i.e. if participant shoots an inappropriate target but still asserts that it was a 366

good outcome or the participant does little to impact the scenario other than shooting 367

the immediate threat and assesses they performed very well) 368

• 1 – Participant’s self-assessment is not well-aligned with actual performance or partic- 369

ipant is not able to provide any magnifying details of what occurred 370

• 2 – Participant’s self-assessment is somewhat aligned with actual performance and 371

provides some illuminating details to what occurred 372

• 3 – Participant’s self-assessment is aligned with observed performance and provides 373

good details of the event 374

• 4 – Participant’s self-assessment is aligned with performance as well as provides 375

thoughtful insight into their experience coupled with great, accurate detail of the 376

events as they occurred 377

8. Rationality – Rationality is scored after the scenario during the debrief when the 378

participant discusses what occurred. This criterion refers to the validity of the participant’s 379

rationale for their decision making during the scenario in terms of supporting their assess- 380

ment of how they were able to intervene. For example, not just the decision to shoot a role 381

player that presented a threat but why and when they made that decision. 382
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• 0 – Participant provides no real rationale for their actions or their rationale is illogical 383

or based in inaccurate assessment of the environment 384

• 1 – Participant only provides rudimentary supporting rationale for their actions (i.e. 385

Simply says, “I shot them because I saw a gun.” With no other supporting statements) 386

• 2 – Participant provides some logical rationale for their decisions but little additional 387

or compelling support 388

• 3 – Participant provides logical rationale with valid support 389

• 4 – Participant provides uniquely valid rationale with strong supporting statements 390

for their decision making (i.e. I saw the threat presented but knew that there was still 391

an opportunity to intervene without using lethal force, so I waited to take the shot in 392

order to continue to my strategy for de-escalation, knowing that I still had a tactical 393

advantage if I needed to use lethal force) 394
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Abstract: This paper describes and demonstrates an autonomous robotic team that can rapidly
learn the characteristics of environments that it has never seen before. The flexible paradigm
is easily scalable to multi-robot, multi-sensor autonomous teams, and it is relevant to satellite
calibration/validation and the creation of new remote sensing data products. A case study is
described for the rapid characterisation of the aquatic environment, over a period of just a few
minutes we acquired thousands of training data points. This training data allowed for our machine
learning algorithms to rapidly learn by example and provide wide area maps of the composition of
the environment. Along side these larger autonomous robots two smaller robots that can be deployed
by a single individual were also deployed (a walking robot and a robotic hover-board), observing
significant small scale spatial variability.

Keywords: machine learning; hyper-spectral imaging; robot team; autonomous; UAV; robotic boat

1. Introduction
This paper describes a robotic team that can rapidly learn new environments. The sys-

tem that is described here demonstrates a flexible paradigm that is easily scalable to
multi-robot, multi-sensor autonomous teams.

The inspiration for this autonomous robotic is the automation of what is currently
done manually in the production of remote sensing satellite data products. The typical
timescale from starting work on a new remote sensing data product to its operational
readiness is at least a couple of years, but, more typically, a decade or more. A key part of
this substantial time delay is due to the time that is taken for the collection of the relevant
training data. Hence, our goal was to reduce this timescale to be near real time by utilising
an autonomous robotic team that can both collect the training data, and then in real time
process and stream the remote sensing data products.

A case study is described in detail for the rapid characterisation of the aquatic envi-
ronment. Other authors have described, in detail, various configurations of autonomous
robots, for example [1–6]. Here, we leverage our past experience over the last two decades
in pioneering the use of machine learning for providing and calibrating remote sensing
data products [7–24] and use it to inform the design and operation of the robotic team.

The aquatic environment was chosen, as it includes extra challenges with regards the
ease of access, further demonstrating the value of the approach. When considering the
usefulness of being able to conduct such rapid surveys, it is worth noting that, for just the oil
spill response use case alone, the National Academy of Sciences estimates that the annual
oil spill quantities range from 1.7 million tons to 8.8 million tons. Over 70% of this release
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Sensors 2021, 21, 2240 2 of 16

is due to human activities. The result of these spills include dead wildlife, contaminated
water, and oil-covered marshlands [25–28]. Accordingly, being able to rapidly survey such
areas to guide clean-up operations is of considerable use. It is also of use in a wide variety
of contexts, from general environmental surveys, to studying harmful algal blooms, to the
clean-up operations after natural disasters, such as hurricanes, etc.

In the example that is described in this paper, the fully autonomous team includes
a robotic boat that carries a suite of sensors to measure water composition in real time
as well as a sonar, and an autonomous UAV equipped with a down-welling irradiance
spectrometer, hyper-spectral, and thermal imagers, together with an onboard Machine
Learning (ML) capability. Figure 1 shows photographs of the robot team during a December
2020 deployment in North Texas.

Figure 1. Photographs of the robot team during a Fall 2020 deployment in North Texas.

Besides this capability being useful by itself, there is a wider significance for earth
observing satellite missions. A key component to each and every space agency earth
observation mission is the delivery of a suite of data products and the calibration/validation
of these products. The demonstrated paradigm can reduce the time and cost of producing
new remote sensing data products, while increasing the functionality and data quality and
providing new real-time automated calibration/validation capabilities.

The approach also provides enhanced capabilities for real-time onboard data product
creation, reducing product delivery latency. The end-to-end demonstration uses all off-
the-shelf components, representing a reduction in costs and risk when prototyping new
mission concepts.The use of embedded machine learning is a key element, so we will refer
to the approach as Rapid Embedded Prototyping for Advanced Applications (REPAA).

Hyper-Spectral Imaging
The human eye perceives the color of visible light in three bands using the cones,

the photoreceptor cells in the retina (Figure 2). These three broad bands are red (centered
on 564 nm), green (centered on 534 nm), and blue (centered on 420 nm). By contrast, instead
of using just three broad bands, hyper-spectral cameras divide the spectrum into a very
large number of narrow bands, in our case 463 bands from 391–1011 nm. A hyper-cube is a
three-dimensional dataset that consists of a stack of two-dimensional image layers each for
a different wavelength. Hence, for each pixel in the image, we have a multi-wavelength
spectra (spectral signature). This is schematically shown in the lower left of Figure 2. On the
right, we see a conventional RGB color image with only three bands, images for red, green,
and blue wavelengths.
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Figure 2. Panel (a) Trichromatic cone cells in the eye respond to one of three wavelength ranges
(RGB). Panel (b) shows a comparison between a hyper-spectral data-cube and RGB images.

Chemicals absorb light in a characteristic way. Their absorption spectra is a function
of their chemical structure. Figure 3a shows the structure of chlorophyll and the associated
absorption spectra. So that we can accurately calculate the reflectivity at each wavelength
our autonomous UAV measures both the incident downwelling irradiance of incident solar
radiation and a hyper-spectral imager pointed directly down at the earth’s surface below
the UAV. For every pixel we measure an entire spectrum with a hyper-spectral camera so
we can identify chemicals within the scene.

Figure 3b shows an example reflectivity hyper-spectral data cube collected during a
robot team deployment in North Texas during November 2020. This data cube includes the
area where an inert dye was released to test the system. The dye used was Rhodamine WT,
a fluorescent, xanthene dye, which has long been used as a hydrologic tracer in surface
water systems. The spectral signature of the dye is clearly visible in the hyper-spectral
data cube. The top layer of the hyper-spectral data cube shows the regular RGB image,
the 463 stacked layers below show the reflectivity (on a log-scale) for each wavelength
band between 391 and 1011 nm.
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(a)

(b)

Figure 3. Panel (a) Chemicals absorb light in a characteristic way. Their absorption spectra is
a function of their chemical structure. For every pixel we measure an entire spectrum with a
hyper-spectral camera so we can identify chemicals within the scene. Panel (b) shows an example
hyper-spectral data cube collected in North Texas on 23 November 2020. This particular data cube
includes a simulant release, Rhodamine WT. The top layer of the hyper-spectral data cube shows
the regular RGB image, the 462 stacked layers below show the reflectivity (on a log-scale) for each
wavelength band between 391 and 1011 nm.

2. Materials and Methods
All of the data for the machine learning data product creation were collected in a

coordinated automated manner using the autonomous robotic team.
The most time consuming process in building this robotic team was finding the

appropriate off the shelf components to implement the prototype. So here we have provided
the full detailed recipe on the autonomous robotic team in the hope that it will facilitate the
research of others.

An overview of the robotic team members and their sensor payloads is as follows.

2.1. Robotic Vehicles
A Maritime Robotics Otter (https://www.maritimerobotics.com/otter, accessed 5

January 2021) autonomous boat was used. With a footprint of only 200 × 108 × 81.5 cm,
a weight of 55 kg, and dual electrical fixed thrusters, it is an easily deployable asset that
can be transported in a van or even within normal airliners to a survey site. With a cruise
speed of two knots, it has a duration of 20 h from one charge of the batteries. It can use
WiFi, cellular, and an optional AIS receiver for communication to the control station.

A Freefly Alta-X (https://freeflysystems.com/alta-x, accessed 5 January 2021) au-
tonomous professional quad-copter was used. It was specifically designed to carry cameras,
with a payload capacity of up to 35 lb, a long range data link, and autonomy provided by the
Open PX4 flight stack. The open source QGroundControl software was used to control the
autonomous operations (https://freeflysystems.com/support/alta-pro-support, accessed
5 January 2021). QGroundControl is available for Mac, Windows, iOS, and Android.
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All of the robotic team members carry a high-accuracy GPS and INS, so that every
data point can be geo-located and time stamped. Each of the robots can also join the
same network which connects the robots and their ground-control stations. Our robots
use long-range Ubiquiti 5 GHz LiteBeam airMAX WiFi (https://www.ui.com, accessed
5 January 2021). The airMAX Time Division Multiple Access (TDMA) protocol allows
for each client to send and receive data using pre-designated time slots that are managed
by an intelligent AP controller. This time slot method eliminates hidden node collisions
and maximizes airtime efficiency. This WiFi network is connected to the internet using a
Cradlepoint cellular modem (https://cradlepoint.com, accessed 5 January 2021).

This network also includes a local Synology network-attached storage (NAS) (https:
//www.synology.com, accessed 5 January 2021) device in the robot team control trailer,
which, in real-time, syncs the data that were collected to the NAS in our home laboratory
in the university.

2.2. Boat Sensors
The robotic boat payload included a BioSonics MX Aquatic Habitat Echosounder

sonar for rapid assessment and mapping of aquatic vegetation, substrate and bathymetry
(https://www.biosonicsinc.com/products/mx-aquatic-habitat-echosounder/, accessed 5
January 2021). Three Eureka Manta-40 multi-probes (https://www.waterprobes.com/mult
iprobes-and-sondes-for-monitori, accessed 5 January 2021), a Sequoia Scientific LISST-ABS
acoustic backscatter sediment sensor (https://www.sequoiasci.com/product/lisst-abs/,
accessed 5 January 2021), and an Airmar Technology Corporation 220 WX ultra-sonic
weather monitoring sensor (https://www.airmar.com/weather-description.html?id=153,
accessed 5 January 2021).

The first Manta-40 multi-probe included sensors for temperature and turbidity and
Turner Designs Cyclops-7 submersible Titanium body fluorometers (https://www.turn
erdesigns.com/cyclops-7f-submersible-fluorometer, accessed 5 January 2021) for Chloro-
phyll A, Chlorophyll A with Red Excitation, Blue-Green Algae for fresh water (Phyco-
cyanin), Blue-Green Algae for salt water (Phycoerythrin), and CDOM/FDOM. The second
Manta-40 multi-probe included sensors for temperature, conductivity (with specific con-
ductance, salinity, and total dissolved solids, TDS), pH (with separate reference electrode),
optical dissolved-oxygen, turbidity, and Ion Selective Electrodes by Analytical Sensors
and Instruments (http://www.asi-sensors.com/, accessed 5 January 2021) for ammonium
(NH+

4 ), bromide (Br−), calcium (Ca++), chloride (Cl−), nitrate (NO−
3 ), and sodium (Na+).

The third Manta-40 multi-probe included sensors for temperature, turbidity, a total dis-
solved gas sensor, and Turner Designs Cyclops-7 submersible Titanium body fluorometers
for optical brighteners, crude oil, refined fuels, and tryptophan.

In addition, a portable Membrane Inlet Mass Spectrometer (MIMS) designed and
built by Prof. Verbeck of the University of North Texas is available (but not used in
these deployments) to switch every 3 s between sampling the water composition and the
air composition.

2.3. Aerial Sensors
The aerial vehicle used a Gremsy H16 gimbal (https://gremsy.com/gremsy-h16,

accessed 5 January 2021) that was made with aircraft grade aluminum and carbon fiber to
carry a Resonon Visible+Near-Infrared (VNIR) Pika XC2 (https://resonon.com/Pika-XC2,
accessed 5 January 2021) hyper-spectral camera (391–1011 nm) with a Schneider Xenoplan
1.4/17 mm lens, and a FLIR Duo Pro R, (640 × 512, 25 mm, 30 Hz) combining a high
resolution, radiometric thermal imager, 4K color camera, and a full suite of onboard sensors
(https://www.flir.com/products/duo-pro-r/, accessed 5 January 2021). On the top of the
quad copter there is a sky facing Ocean Optics UV-Vis-NIR spectrometers measuring the
incident down-welling irradiance, allowing us to calculate reflectance.
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2.4. Geo-Rectification
The hyper-spectral data cubes collected are very large and written in real time to the

solid-state disk (SSD) that was attached to the Resonon Pika XC2. The Camera SSD is
exported as a Network File System (NFS) mount, so that a second onboard computer can
geo-rectify the hyper-spectral data cubes as they are created, in order to facilitate the real-
time processing of these files. These hyper-spectral data cubes provide a visible and near
infrared spectrum (391–1011 nm) for each pixel. Once these data cubes are geo-rectified in
real-time, they are available for onboard machine learning using edge computing onboard
the aerial vehicle.

2.5. Machine Learning
The accurate geo-tagging and time stamping of all data from all members of the robot

team allows for the automation of the machine learning data product creation. For every
location at which the robotic boat sampled the in-situ water composition, we associate a
VNIR remotely sensed spectrum (391–1011 nm) that is provided by the hyper-spectral data
cubes collected by the aerial-vehicle. This data are then be used for multi-variate non-linear
non-parametric machine learning, where the inputs are the spectrum, in this case 462 values
from the 391–1011 nm spectra, and the outputs are each of the values measured in-situ by
the robotic boat. A variety of machine learning approaches were used. These approaches
included shallow neural networks with hyper-parameter optimization, ensembles of hyper-
parameter optimized decision trees, gaussian process regression with hyper-parameter
optimization, and a super-learner, including all of the previously mentioned approaches.
Each empirical non-linear non-parametric fit is evaluated by constructing both a scatter
diagram and a quantile-quantile plot of the values estimated by the machine learning
model plotted against the actual values in the independent validation dataset.

The use of machine learning in this study builds on our heritage of using machine
learning for sensing applications over the last two decades [7–24].

3. Learning Modes
We designed each component of our system to be flexible for different scenarios and

deployment configurations. The entire system is called a Cyber Physical Observatory
(Figure 4). A few basic definitions/descriptions are helpful in appreciating the benefits
of this. The Cyber Physical Observatory is a collection of sentinels and/or robot teams
that provide real-time data and actionable insights, and whose capabilities can be updated
via an app store. The Robot Team is a collection of co-operative autonomous sentinels.
A Sentinel is a Software Defined Sensor that is mounted on a Platform. A Platform supplies
the Software Defined Sensor with power, timestamps for all observations, communication,
and mobility where applicable. In some of our other applications, these even include
wearable sensors. A Software Defined Sensor is a smart sensor package that combines a
physical sensing system with software/machine learning, providing a variety of calibrated
data products that can be updated via an app store.
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Sentinel = Software Defined Sensor + Platform 

Disease 
Incidence

Software Defined  
Sensors

Platform

Sentinel

App Store

Example Software Defined Sensor

Live Machine Learning  System

Application Workflow

Hyper-spectral Camera

In-situ Reference Sensor

Remote sensing cameras calibrated against high end 
In-situ reference sensors can provide wide area maps

On-board App Store

Cyber Physical Observatory: A network of 
co-operating Autonomous Sentinels

Disease 
Incidence

Software Defined  
Sensors

Platform

Sentinel

App Store

Software Defined  
Sensors

Platform

Sentinel Cyber Physical Observatory

(CPO) Cyber Physical Observatory

Cyber Physical Observatory App Store

Figure 4. The Cyber Physical Observatory is a collection of sentinels that provide real-time data.
A Sentinel is a Software Defined Sensor that is mounted on a Platform. A Platform supplies the
Software Defined Sensor with power, timestamps for all observations, communication, and mobility
where applicable. A Software Defined Sensor is a smart sensor package that combines a physical
sensing system with machine learning providing a variety of calibrated data products that can be
updated via an app store.
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Two distinct machine learning modalities are useful when trying to rapidly learn new
environments (Figure 5). Mode 1: Coordinated robots using onboard Machine Learning for
specific data products. Mode 2: Unsupervised classification.
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Mode 2: Unsupervised classification
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Figure 5. The autonomous robotic team operates in two modes. Mode 1: Coordinated robots using
onboard Machine Learning for specific data products. Mode 2: Unsupervised classification.

In Mode 1, the robot team members rapidly collect the machine learning training
data in a carefully coordinated manner. For our example deployment in North Texas
during the Fall of 2020, over a period of about fifteen minutes, thousands of precisely
collocated measurements were made by the robotic team. The robotic boat autonomously
measures in-situ ground truth of a large array of parameters using the sensors described
above, while the robotic aerial vehicle gathered remotely sensed observations of exactly
the same locations using hyper-spectral and thermal imaging. These remotely sensed
observations could be readily extended to cover a wider wavelength range and include
Synthetic Aperture Radar (SAR). Once the training data are acquired, the machine learning
algorithms can rapidly learn the mapping from the remotely sensed observations to the
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in-situ ground truth. Figure 6 shows three different examples of the validation of these
autonomously acquired machine learning data products being independently verified
while using scatter diagrams and quantile-quantile plots.

Figure 6. Machine learning performance quantified by both scatter diagrams and quantile-quantile
plots utilising data collected autonomously by the robot team during three exercises during November
and December 2020 in North Texas. The three examples shown here are for CDOM, Na+, and Cl−.
The scatter diagrams show the actual observations (mg/L) on the x-axis and the machine learning
estimate on the y-axis. The green curves are for the training data, the red for the independent
validation. The legend shows the number of points in the training and validation datasets and their
associated correlation coefficients. The quantile-quantile plots show the observation quantiles on the
x-axis and the machine learning estimate quantiles on the y-axis.

Once the machine learning algorithm(s) have been trained, they can then be used
to rapidly provide wide-area maps with just the remotely sensed observations. Two
examples of this are shown in Figure 7. These can be processed onboard the aerial vehicle
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and the results streamed in real-time to the ground control station. The robotic boat can
then be autonomously tasked to verify the wide area maps by collecting independent
validation data.

Figure 7. Example crude oil and colored dissolved organic mater (CDOM) data collected au-
tonomously by the robot team on November 23, 2020 in North Texas. The maps show the CDOM
and crude oil estimated from the hyper-spectral imager using machine learning as the background
colors and the actual in-situ boat observations as the overlaid color filled squares. Note that the
isolated part of the pond, which has now fresh water in-flux, has higher levels of CDOM and crude
oil with a sharp gradient across the inlet in both the estimates using the hyper-spectral image and the
boat observations.

In Mode 2, we would like to perform a fine-grained multi-class surface classification
of the entire domain. This is done by providing the remotely sensed data (in this case, the
hyper-spectral and thermal imagery) to an unsupervised classification. The unsupervised
machine learning characterises the distinct regions and zones in the area of interest. This
can be particularly useful when trying to identify the location of particular contaminants,
suggesting the optimum sampling patterns that are required beyond the usual clover leaf,
star, or box patterns used for contaminant searches.

4. Results
Over a period of just a few minutes, we acquire thousands of training data points.

This training data allows for our machine learning algorithms to rapidly learn by example.
The machine learning fit used here is an optimized ensemble of regression trees [29–31]
with hyper-parameter optimization [32] implemented in Matlab version 2021a (https:
//www.mathworks.com, accessed 5 January 2021) using the function fitrensemble with
all hyper-paramter optimization selcted and parallel processing enabled. A loop is executed
over all the variables that were measured by the robotic that we would like to estimate
using the hyper-spectral imagery.

A balanced training dataset is constructed for each of these variables. This is done by
considering each input and output variable in the training dataset in turn and calculating
n percentiles, from each of these n percentile ranges covering the entire PDF, from each
percentile range we select m random values (where m < n) for the training and a different
set of random values for independent validation.

Figure 6 shows an example of the colored dissolved organic mater (CDOM) data
collected autonomously by the robot team on 23 November 2020 in North Texas, along with
some of the aqueous ion data. The panel shows a scatter diagram of the actual observations
on the x-axis and the machine learning estimate on the y-axis. The green curves are for
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the training data, the red for the independent validation. On each axis, we also show the
associated PDFs. The ideal result is shown in blue (a slope of 1 and an intercept of zero for
the scatter diagram).

Figure 7 shows maps of the CDOM and crude oil concentration estimated while using
the machine learning as the background colors and the actual in-situ boat observations as
the overlaid color filled squares. Note that the isolated part of the pond that now has fresh
water in-flux has higher levels of CDOM and crude oil with a sharp gradient across the
inlet in both of the estimates using the hyper-spectral image and the boat observations. We
note that there is good agreement between the machine learning estimate and the actual
in-situ boat observations.

5. Discussion
5.1. Limitations

The fidelity of the data products that are provided by the autonomous robotic team
is limited by the training data that it is able to acquire. For example, our remote sensing
hyper-spectral camera in the demonstration use case presented here observes the spectral
region 391–1011 nm. It would be useful to extend this spectral region, so that we can see
more chromophores, and to extend the type of remote sensing imaging, e.g., to include
Synthetic Aperture RADAR (SAR).

It would also be useful for the boat to have larger pontoons, so that it can carry our
mass-spectrometer that can sample both the air and water, switching between the two
inlets every three seconds.

We would also like to extend the machine learning approaches to include Physics
Based machine learning, such that the machine learning is constrained by known physi-
cal principles.

5.2. Automating Data Product Creation
A key factor in providing remotely sensed water composition products is providing a

comprehensive database of water composition (e.g., SeaBASS, the publicly shared archive
of in-situ oceanographic and atmospheric data maintained by the NASA Ocean Biology
Processing Group https://seabass.gsfc.nasa.gov, accessed 5 January 2021). The cost of
making the measurements of ocean composition can be substantial, because it involves
a significant ship time as well as a large support team. Secondly, because the satellites
are in a fixed orbit with a fixed viewing geometry, the number of coincidences between
the shipboard water observations and the orbiting satellite observations are, by definition,
limited. Typically several thousand coincident observations are used in the tuning and
creation of a NASA ocean data product. In the REPAA approach, the entire system
can be automated and objectively optimized. Thus, with a data rate of one observation
every second, in a matter of hours we can gather tens of thousands of observations in a
totally automated, fully coordinated manner, as was demonstrated in North Texas during
November and December 2020 (Figure 1). There is explicit coordination between the water
observations that were taken from the robotic boat and the continuous aerial observations
made by the robotic aerial vehicle carrying a hyper-spectral imager. The system can be
deployed to very diverse environments across a matter of just weeks to months, so, over
a matter of just weeks to months, millions of coordinated, precisely coincident records
can be made. Furthermore, we have previously demonstrated, the data can be randomly
partitioned into training and independent validation sets, and using the onboard machine
learning, transformed into optimal water composition data products, using many orders
of magnitude more observations than before at a fraction of the cost and in a fraction of
the time.

Aurin et al. [33] provides one of the most comprehensive training datasets to date for
Chromophoric Dissolved Organic Matter (CDOM). Their Global Ocean Carbon Algorithm
Database (GOCAD) for Chromophoric Dissolved Organic Matter (CDOM) encompasses
20,000–100,000+ records (depending on the variable considered) and it is based on oceano-
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graphic campaigns that were conducted across the world over the past 30 years at great
expense. In contrast, the autonomous robotic team can collect around 20,000+ precisely
coordinated training records per hour. By design, the robotic team makes precisely co-
ordinated overpasses of exactly the same locations; this leads to providing a training
dataset with a high data rate. By deploying the team on multiple occasions at a diversity of
locations, one can rapidly build a comprehensive training dataset.

The traditional approach for creating remote sensing data products, as shown on the
left of Figure 8, is compared with the approach that was used in this study, as shown on
the right. Using the REPAA approach, data collection and the creation of derivative data
products can be carried out on the same day, for example, in the December 2020 exercises
in North Texas (Figure 1).

Figure 8. Schematics illustrating the traditional approach to creating remote sensing data products
(left) and that used in this study (right).

5.3. Improving Product Quality & Automating Cal/Val
Critical in improving product quality is the comprehensive training data set, which

spans as much parameter space and variability that is actually found in the real world.
This necessitates making observations in a large number of diverse contexts. Being able
to make these observations with such a highly automated platform is a tremendous step
forward and it costs less. In summary, our robotic platform can address the issue of small
scale variability encountered across a satellite pixel. These capabilities assist in continuing
validation/quality control and it can help to optimize the waveband selection for future
satellite instruments and missions.

5.4. Reducing Latency for Product Delivery as Well as Mission Risk, Cost, Weight and Size
Utilizing new embedded onboard processing (1 TeraFlop weighing just 88 g with a

size of only 87 mm × 50 mm) for real-time onboard processing leads to reducing the latency
in product delivery from hours/days to just the downlink time. The product delivery
latency can be critical for decision support applications, such as oil spills, or other disaster
response applications, and for routine forecasting and data assimilation applications. A risk
reduction is also realized, by the ability to first deploy an end-to-end demonstrator, while
using entirely commercial off the shelf components and low cost aerial vehicles, with all
software being made Open Source.

5.5. Onboard App Store
There is currently a rapid enhancement in both observing capabilities and the embed-

ded computing power from miniaturized low power devices. As these enhanced observing
capabilities become routinely available on small cubesats (like hyperspectral imaging),
the number of possible uses and applications for societal benefit grows. However, so does
the bandwidth that is required for the downlink of the hyperspectral datacubes. Hence,
the possibility of onboard processing, for example, using embedded machine learning,
means that product creation can occur directly onboard the cubesats and then streamed
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live via the downlink. This reduces the latency of product creation and the bandwidth
that is needed for the downlink. The next logical step, then, of a rapid prototyping and
agile workflow, is an onboard app store, where new data products can be deployed to the
remote sensing platform for seamless use onboard. A formalized development, testing,
and deployment workflow with an app store facilitates an Earth-observing system that
responds to the rapidly changing societal needs while maintaining a rigorous approach to
validation. This onboard app store can leverage the smart automated code generation that
already exists off the shelf and is now routinely used for automobiles and aircraft across the
world. The time has also come for this to be the standard paradigm for earth observation.

5.6. Smaller Robots
There is also value in smaller robots that are easy to transport by a single individual.

Figure 9 shows photographs of the smaller walking robot (from Ghost Robotics) and a
robotic hover-board (conceived and built by Aaron Barbosa) that we deployed along size
the larger autonomous robotic team for illustrative purposes. The walking robot and
robotic hover-board both carried exactly the same payload of sensors that could be rapidly
switched between the robots. The sensing payload measured, every few seconds, the full
size spectrum of airborne particulates in the size range 0.3–43 microns and the abundance
of a selection of gases. The laser scanner onboad the walking robot acquired a map of the
vicinity, while also measuring in-situ the atmospheric composition, finding very localized
changes in the abundance of the airborne particulates of various sizes.

Figure 9. Photographs of the smaller walking robot (from Ghost Robotics) and a robotic hover-board
(conceived and built by Aaron Barbosa). For illustrative purposes both of these small robots carried
exactly the same payload of sensors measuring the size spectrum of airborne particulates in the size
range 0.3–43 microns and the abundance of a selection of gases. The laser scanner onboad the walking
robot acquired a map of the vicinity, while also measuring in-situ the atmospheric composition,
finding very localized changes in the abundance of the airborne particulates of various sizes.
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6. Conclusions
This paper described and demonstrated an autonomous robotic team that can rapidly

learn the characteristics of environments that it has never seen before. The flexible paradigm
is easily scalable to multi-robot, multi-sensor autonomous teams, and it is relevant to
satellite calibration/validation and the creation of new remote sensing data products.
A case study was described for the rapid characterisation of the aquatic environment;
over a period of just a few minutes, we acquired thousands of training data points. This
training data allowed our machine learning algorithms to rapidly learn by example and
provide wide area maps of the composition of the environment. Alongside these larger
autonomous robots, two smaller robots that can be deployed by a single individual were
also deployed, a walking robot and a robotic hover-board, each measuring the full size
spectrum of airborne particulates in the size range of 0.3–43 microns and a selection of gases.
Significant small scale spatial variability was evident in these hyper-localized observations.
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Advancement in Airborne Particulate
Estimation UsingMachine Learning

Lakitha Omal Harindha Wijerante, Gebreab K. Zewdie, Daniel Kiv,
Adam Aker, David J. Lary, Shawhin Talebi, Xiaohe Yu, and Estelle Levetin

Introduction

The air we breathe is vital and largely invisible (except when
the pollution levels are very high). Every single minute,
an average human being breathes around 10 liters of air.
However, we often do not think about the composition of
the air that we breathe and the impact it may be having
on our health. Often, the air we breathe contains pollutant
particles. Although it is apparent that air pollution results
in increased hospital visits, missed school days, as well
as missed work days (due to respiratory diseases), it is
harder to localize exactly where unhealthy air resides. The
World Health Organization (WHO) reports that nine out
of ten people worldwide breathe polluted air which results
in an estimated 7 million deaths per year (Nada Osseiran
2018).

Air Pollution Episodes in History

Historically, we have seen that air pollution episodes can
result in significant loss of life. A few of example episodes
include:

• Great smog of London (1952): In December of 1952,
a severe smog covered many parts of the British Isles
(Wilkins 1954). The episode lasted 5 days (December 5–
December 9, 1952), and more than 4000 deaths occurred
before the end of the year. Within the next 10 weeks,
a further 8000 people lost their lives (Black 2003). The
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primary cause of the episode was extensive burning of
high-sulfur coal (Polivka 2018). Following the incident,
the British Parliament passed the Clean Air Act of 1956
which restricted burning of coal in urban areas.

• New York City smog (1966): On the Thanksgiving week-
end of 1966, smog containing damaging levels of toxic
pollution (comprised of carbon monoxide and sulfur diox-
ide) covered New York City. Carlson (2009) reports that
Thanksgiving weekend of 1966 was the smoggiest day in
the city’s history. Although regional leaders announced a
first-stage alert, it is believed that more than 200 people
lost their lives due to the air pollution episode. In fact,
Glasser et al. (1967) estimate that 24 excess deaths per day
occurred inNewYork City during the air pollution episode
(November 23–November 29, 1966). In the wake of such
environmental pollution events, as a means of limiting and
eradicating environmental pollution, the US EPA (United
States Environmental Protection Agency) was established
on December of 1970.

• Eastern China smog (2013): On December 7, 2013, a
hazardous smog stretched a distance of about 2 km within
China (Levy 2014). The episode lasted for 8 days between
the 2nd and 9th of December 2013. Huang et al. (2016)
state that within the duration of the smog episode, the
average PM2.5 was 212 µg/m3, which was three times
higher than the usual PM2.5 concentration (76 µg/m3)
within the same area. In China, coal still remains to be the
main energy source, and it’s regarded to be the primary
cause of fine PM pollution in China. The Chinese cities of
Baoding, Shijiazhuang, and Handan reported more than
30,000 deaths in 2013 per city, which can be linked to
pollution (Solomon 2016).

• Great smog of New Delhi (2016): WHO announced New
Delhi as the most polluted city in the world in 2014
(Saravanan et al. 2017). On November of 2017, air pol-
lution levels in New Delhi went up to 999 on the AQI
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(Air Quality Index) scale. This is an air pollution level
equivalent to smoking 50 cigarettes per day (Basu 2019).
The cities’ visibility level reduced to more than 50m
during the episode (Terry et al. 2018). It is assumed that
the major causes of air pollution in New Delhi are burning
coal, petrol, diesel, gas, biomass, and waste, along with
industries, power plants, and firecrackers (Saravanan et al.
2017).

Such episodes remain a constant reminder of the devastation
that air pollution can cause. The first step in fighting air
pollution is to quantify the problem.

Making the Invisible, Visible

Conventional air quality management systems generally rely
on a small number of regulatory-grade sensors across an
urban area, for example, across the Dallas-Fort Worth Metro-
plex with a population of over seven million, there are just
three airborne particulate sensors. Due to the substantial
cost of these regulatory-grade sensing systems, they fail to
provide adequate spatial and temporal resolution for charac-
terizing air quality on a neighborhood scale. As such, these
sensor systems do not adequately inform us about the situa-
tion within our neighborhoods, where people live, work, and
play. Recent studies have demonstrated that air quality varies
on very fine spatial and temporal scales (Harrison 2015;
Harrison et al. 2015). As such, it is apparent that the world
needs air quality sensing systems at the neighborhood scale
(i.e., with a spatial resolution of less than a km). For example,
a study that made near daily fine scale measurements at least
every meter over a 100 km2 in north Texas (Harrison 2015;
Harrison et al. 2015) used variograms to characterize the
spatial scale of airborne particulates. These studies revealed
that the spatial scales over the study period depended on the
synoptic situation and varied between 0.5 and 7.5 km.

The initiation of air quality sensing system requires an
understanding of what parameters to measure, where the
sensors are to be located, and the budgetary constraints that
the system is to be bounded by. Such an understanding can be
gained via the knowledge of the mix of pollutants that may
be residing within the study and the general mindset of the
people at stake. Another key aspect in getting started in a
project is to look into available technologies that can abide
by the requirements defined.

Airborne Particulates

Airborne atmospheric aerosols are an assortment of solid or
liquid particles suspended in air (Boucher 2015). Aerosols,
also referred to as particulate matter (PM), are associated

with a suite of issues relevant to the global environment
(Charlson et al. 1992; Ramanathan et al. 2001; Dubovik et al.
2002; Guenther et al. 2006; Hallquist et al. 2009; Kanakidou
et al. 2005; Allen et al. 2014), atmospheric photolysis, and
a range of adverse health effects (Dockery et al. 1993a;
Oberdörster et al. 2005; Pope III et al. 2002; Pope et al. 2006;
Cheng and Liu 2009; Chin 2009; Lim et al. 2012). Atmo-
spheric aerosols are usually formed either by direct emission
from a specific source (e.g., combustion) or from gaseous
precursors (Stocker 2014). Although individual aerosols are
typically invisible to the naked eye, due to their small size,
their presence in the atmosphere in substantial quantities
means that their presence is usually visible, e.g., as fog, mist,
haze, smoke, dust plumes, etc. (Seinfeld 1986). Airborne
aerosols vary in size, composition, and origin as well as
in spatial and temporal distributions (Chin 2009; Pöschl
2005). As a result, the study of atmospheric aerosols has
numerous challenges. The following aerosol classifications
provide some useful insights.

Aerosol Classi!cation

Characterization of atmospheric aerosols can be based on
their origin, concentration, size, chemical composition,
phase, and morphology (Seinfeld 1986). However, one of
the main forms of aerosol classification is via their sources.

Source-Based Classi!cation
The formation of atmospheric aerosols can be complex.
As a result, the determination of global aerosol sources is
approximate (Kondratyev et al. 2006). Three main terrestrial
sources are typically quoted (Kokhanovsky 2008).

• Cosmic aerosols: Particles migrating through space are
usually considered cosmic particles (Carslaw et al. 2002;
Kirkby et al. 2011).

• Primary aerosols: Particles directly emanating from the
earth’s surface are usually termed primary aerosols (Hol-
ben et al. 2001; Streets et al. 2003; Bond et al. 2004;
Kanakidou et al. 2005), for example, aerosols formed due
to the agitation of oceanic or terrestrial surfaces by wind.

• Secondary aerosols: Secondary particles occur from con-
densation of gaseous species (aerosol precursors) (Atkin-
son 2000; Kanakidou et al. 2005; Hallquist et al. 2009;
Jimenez et al. 2009). These may endure one or many
chemical transformations prior their formation.

Primary and secondary aerosols are further subdivided
depending on their origin into natural and anthropogenic
(man-made) aerosols (Schauer et al. 1996; Andreae and
Crutzen 1997; Yunker et al. 2002; Pöschl 2005; Kondratyev
et al. 2006; Boucher 2015; Colbeck and Lazaridis 2010).
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Most emissions from the oceans, vegetation, forest fires, and
volcanoes are considered natural in origin. Anthropogenic
sources are dominated by the emissions from the combustion
of fossil and biofuels.

Shape-Based Classi!cation
Colbeck (2014) describes the three main distinctions based
on the shapes of atmospheric aerosols.

• Isometric particulates: The three dimensions of isometric
particles are defined to be similar. Spherical particulates
belong to this category (Wachs 2009). This study is done
under the assumption of sphericity (isometric particu-
lates).

• Platelets: Platelets have two longer dimensions compared
to the third one. Disk-like particles fall under this classifi-
cation.

• Fibers: Fibers are particulates with two smaller dimen-
sions and one longer dimension. Asbestos is one well-
known fiber.

Classi!cation Based on Chemical Composition
Ambient PM is usually comprised of amixture of one ormore
of the following chemical compounds: geological material
(oxides of aluminum, silicon, calcium, titanium, iron, and
other metal oxides), sulfates, nitrates, ammonium, sodium
chloride, organic carbon, elementary carbon, and liquidwater
(Chow et al. 1998). A more generalized classification is
derived from considering the chemical purity of PM by
distinguishing between internal and external mixtures.

• External mixture: In an external mixture, individual parti-
cles within are chemically pure.

• Internal mixture: In an internal mixture, individual partic-
ulates are a mix of chemical species. A perfect internal
mixture is said to have the same mix of chemical species
for all particulates.

Typical atmospheric particulates would be in the middle
ground between perfect internal and external mixtures
(Boucher 2015). The optical properties of atmospheric
aerosols, and in turn the radiative forcing due to atmospheric
aerosols, are partly determined by the state of mixing
(externally or internally) of the chemical species involved
(Lesins et al. 2002).

Spatial Classi!cation
Aerosols are also categorized with respect to their localized
regions. The classification gives rise to these categories: ur-
ban aerosols, marine aerosols, rural continental aerosols, free
troposphere aerosols, stratospheric aerosols, polar aerosols,
and desert aerosols. In some cases, a geospatial classification
might be inexact due to the possibility of long-range aerosol

transportation. However, the regional aerosol classification is
useful when local effects eclipse the more generic effects of
aerosols (Boucher 2015).

Size-Based Classi!cation
Aerosol size distribution and chemical composition play
a role in their atmospheric transportation (Colbeck and
Lazaridis 2010). Most atmospheric particles are not
spherical. However, in atmospheric sciences, particles
with equivalent settling velocities are considered to be of
equal size irrespective of their actual size or composition.
The microscopic properties of aerosols differ significantly
depending on the type of aerosol. Nevertheless, generic
models are defined to describe the main microscopic
properties of a given aerosol with its appropriately assumed
diameter (Kokhanovsky 2008). The two most generic
definitions of such assumed diameters are as follows:

• Aerodynamic diameter: The diameter of a unit density
sphere which has similar aerodynamic properties as the
particle considered.

• Stokes diameter: The diameter of a sphere which has
similar density as the particle considered.

These definitions are introduced to avoid ambiguities of
size measurements that may occur due to using different
types of instrumentation (Colbeck 2014). This study uses the
aerodynamic diameter for size-based distinctions. There are
two distinct means of aerosol classification with respect to
size:

• Modal distributions: The size-based classification of
aerosols is mainly devised on five modes (Boucher 2015;
Alfarra 2004; Stier et al. 2005; Sỳkorová et al. 2016):

1. The nucleation mode or ultrafine mode with a diameter
of less than 0.01 µm.

2. The Aitken mode with a diameter in the range
0.01 µm − 0.1 µm.

3. The accumulation mode with a diameter in the range
0.1 µm − 1 µm.

4. The coarse mode with a diameter in the range 1 µm −
10 µm.

5. The super-coarse mode with a diameter of greater than
10 µm.

Each of these modes corresponds to the relative maxi-
mums of number, surface, and volume distributions of
atmospheric aerosols.

• Variables related to human exposure: The term “fine” (or
ultrafine) particulates usually refers to particulates less
than 1 µm in aerodynamic diameter (PM1) and particu-
lates less than 2.5 µm in aerodynamic diameter (PM2.5).
For air pollution control, particulates up to 10 µm in
diameter (PM10) are also considered (Pöschl 2005). Cur-
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rently, the US EPA (United States Environmental Protec-
tion Agency) regulates PM2.5 and PM10 due to the human
health effects associated with PM2.5 and PM10 (US EPA
2004). Some air quality monitors also measure the total
suspended particle (TSP) size fraction which includes
particulates up to 40 µm (Chow et al. 1998). Another divi-
sion of occupational health-based size-selective sampling
is defined by assessing the subset of particles that can
reach a selective region of the respiratory system. On this
basis, three main fractions are defined: inhalable, thoracic,
and respirable (Hinds 2012). The current study focuses
on measurements of the six variables PM1, PM2.5, PM10,
respirable (alveolic), thoracic, and inhalable size fractions.

Health Context

The effects on human health due to air pollution may be
the most controversial (Seinfeld 1986). Nevertheless, it is by
far the most important. Studies have shown that exposure
of excess particulate matter has alarming negative health
effects (Mannucci 2017). The smallest size ranges of (less
than 2.5 µm) PM is capable of penetrating through to the
lungs or even to one’s bloodstream. As such, the highest
mortality is associated with PM2.5 (Chen et al. 2011). HEI
(2017) reports that more than 90% of the world’s population
lived with unhealthy air in 2015. The American Thoracic
Society (ATS) has a slightly higher guideline of 11 µg/m3

annual mean concentrations as compared with the WHO’s
10 µg/m3 for PM2.5. However, it is reported that 14% of
countries with valid design values for atmospheric pollution
exceed the said recommendation by the ATS (Cromar et al.
2016). The results of the Aphekom project conducted in 25
European cities reveal that complying with the WHOs PM
guidelines for PM2.5 would increase life expectancy by 22
months while also giving financial savings of e31 billion
annually (Pascal et al. 2013). The health hazard created by
excess airborne PM also creates critical expenditures within
developing countries. The estimated economic cost due to
PM2.5 pollution for the city of Delhi was estimated to be
$6394.74 million in 2015, up from $2714.10 million in
2005 (Maji et al. 2017). Due to these reasons, considerable
amounts on research are done on the health hazards caused
by PM. Table 1 provides an overview of research done on
specific health concerns with respect to PM10, PM2.5, and
UFPs (ultrafine particles).

Aerosol concentration, size, structure, and chemical
composition are key factors in driving the health outcomes
caused. However, these parameters are highly irregular
in temporal and spatial schemes (Pöschl 2005). As such,
even though the effect of PM exposure can be substantial,
predicting a link between PM and human health can be
challenging. Most studies rely on obtaining the level of

morbidity and mortality for a given disease which can be
attributed to the exposure to PM. Some studies also employ
questionnaires in collecting health-related data.

Long-term exposure to PM2.5 increases the risk of total
and cardiovascular disease (CVD) mortality. The study by
Thurston et al. (2016) concludes that PM2.5 exposure has a
substantial association with both total mortality and CVD
mortality, with CVD having the highest hazard ratio of 1.10
for the study set of participants between 50 and 71 years.
Pope et al. (2004) state that a 10 µg/m3 increase in fine PM
results in an 8%–18% increase in the mortality risk. A study
conducted in six cities across the United States with a total of
8111 participating adults found that fine particulate air pollu-
tion was linked with excess mortality (Dockery et al. 1993b).

The ATS report (Cromar et al. 2016) for 2011–2013 found
that 26% out of 21,400 excess morbidities and 26% out of
9320 excess deaths were associated with elevated PM2.5 in
the United States per year. A European study (Boldo et al.
2006) estimated that a reduction of the PM2.5 abundance by
15 µg/m3 of PM2.5 would prevent 16,926 deaths annually
within a subset of 23 European cities and that such a re-
duction would likely increase the life expectancy between
1 month to more than 2 years. The study included major
cities, London, Paris, Athens, Barcelona, Madrid, and Valen-
cia. In the study, excess exposure to PM2.5 was viewed as
a modifiable factor which causes cardiovascular morbidity
and mortality. Maji et al. (2017) found that the mortality in
Mumbai and Delhi during 2015 was associated with PM10

and lead to 32,014 and 48,651 deaths, respectively.
Cerebrovascular accidents are a prominent cause of mor-

bidity throughout the world. It was estimated that an increase
of 10 µg/m3 of PM2.5 accounts for 1.29% (95% CI 0.552%–
2.03%) increase in the risk of emergency hospital admissions
(Santibañez et al. 2013). Sulfate aerosols are known to cause
respiratory throat and fever symptoms (Onishi et al. 2018).

In some cases, the maternal exposure to excess particulate
matter has resulted in lower birth weights (LBW). A multi-
country evaluation of LBW reveals that a 10 µg/m3 increase
in PM10 (odds ratio (OR) = 1.03; 95% confidence interval
(CI), 1.01–1.05) and PM2.5 (OR = 1.10; 95% CI 1.03–1.18)
exposure during the entire pregnancy is positively correlated
with LBWs (Dadvand et al. 2013).

Excess PM exposure can also be behind excess stress
among individuals. Evidence has been found that mitochon-
drially encoded TRNA phenylalanine (MT-TF) and mito-
chondrially encoded 12S RNA (MT-RNR1) is linked with
metal-rich PM1 (Byun et al. 2013). Both mitochondrial MT-
TF and MT-RNR1 DNA methylation are sources of oxida-
tive stress which responds to foreign environments. Short-
term exposure to PM2.5 also prompts a mechanism involving
pulmonary oxidative stress which in turn induces vascular
insulin resistance and inflammation (Haberzettl et al. 2016).
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Table 1 Health Concerns due to PM 10, PM 2.5, and ultrafine particles (UFPs). Table adapted from Ruckerl et al. (2006)

Health outcomes Short-term studies Long-term studies
PM10 PM2.5 UFP PM10 PM2.5 UFP

Mortality

All causes xxx xxx x xx xx x
Cardiovascular xxx xxx x xx xx x
Pulmonary xxx xxx x xx xx x
Pulmonary effects

Lung function, e.g., PEF xxx xxx xx xxx xxx
Lung function growth xxx xxx x
Asthma and COPD exacerbation

Acute respiratory symptoms xx x xxx xxx
Medication use x
Hospital admission xx xxx x x
Lung cancer

Cohort xx xx x
Hospital admission xx xx x
Cardiovascular effects

Autonomic nervous system xxx xxx x x
ECG-related endpoints

Autonomic nervous system xxx xxx xx
Myocardial substrate and vulnerability xx x
Vascular function

Blood pressure xx xxx x
Endothelial function x xx x
Blood markers

Pro-inflammatory mediators xx xx xx
Coagulation blood markers xx xx xx
Diabetes x xx x
Endothelial function x x xx
Reproduction

Premature birth x x
Birth weight xx x
IUR/SGA x x
Fetal growth

Premature birth x
Infant mortality xx x
Sperm quality x x
Neurotoxic effects

Central nervous system x xx

Notes: X, few studies (6 or less); XX, many studies (7–10); XXX, large number of studies (>10).
Abbreviations: UFP, ultrafine particle; PEF, peak expiratory flow; COPD, chronic obstructive pulmonary disease; IUG, intrauterine growth
restriction; SGA, small for gestational age

Environmental pollution is a potential cause of lung can-
cer. Tandem repeats are DNA sequences which lie adjacent to
each other in the same orientation (direct tandem repeats) or
in the opposite direction to each other. These DNA sequences
are generally hypomethylated in cancer patients. A case study
done on two contrasting groups on air pollution exposure of
truck drivers and officeworkers reveals that PM is linkedwith

hypomethylation of some tandem repeats (SATα, NBL2)
(Guo et al. 2014).

The most likely candidates to be affected by unhealthy
air are the elderly and infants. Pun et al. (2017) concluded
that PM2.5 is linked to both depressive and anxiety symp-
toms within older adults with the strongest association to
individuals with lower socioeconomic measures. Shy et al.
(1973) confirm that school children between the age of 9 and
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13 exposed to elevated air pollution experience ventilatory
problems. A study conducted with a collection of 40 fifth
grade school children revealed that the “soot” fraction of
PM2.5 is strongly linkedwith pollution-related asthma attacks
affecting children residing beside roadways (Spira-Cohen
et al. 2011).

Using a business-as-usual emission scenario model,
(Lelieveld et al. 2015) estimate that premature mortality
due to outdoor air pollution could double by 2050. As such,
it is of utmost importance to conduct in-depth research on
PM and other air pollutant sources in order to enforce proper
air pollution policies (Kelly and Fussell 2016).

Di"culty in Estimating Airborne Particulates

Conventional regulatory-grade instrumentation is accurate,
but expensive. This makes it challenging to provide
neighborhood-scale measurements due to the substantial
costs involved. So in this study, we present two different case
studies where we use machine learning to utilize different
sensor types. First, we use low-cost optical particle counters
that can be deployed at scale across neighborhoods. Second,
we use remotely sensed observations made using weather
RADARs.

What Is Machine Learning?

Machine learning has already proved useful in a wide variety
of applications in science, business, healthcare, and engineer-
ing. Machine learning allows us to learn by example and
to give our data a voice. It is particularly useful for those
applications for which we do not have a complete theory,
yet which are of significance. Machine learning is an auto-
mated implementation of the scientific method (Domingos
2015), following the same process of generating, testing,
and discarding or refining hypotheses. While a scientist or
engineer may spend his entire career coming up with and
testing a few hundred hypotheses, a machine learning system
can do the same in a fraction of a second. Machine learning
provides an objective set of tools for automating discovery. It
is therefore not surprising that machine learning is currently
revolutionizing many areas of science, technology, business,
and medicine (Lary et al. 2016, 2018).

Machine learning is now being routinely used to work
with large volumes of data in a variety of formats such as
image, video, sensor, health records, etc. Machine learning
can be used in understanding this data and creating predictive
and classification tools. When machine learning is used for
regression, empirical models are built to predict continuous
data, facilitating the prediction of future data points, e.g.,
algorithmic trading and electricity load forecasting. When

machine learning is used for classification, empirical models
are built to classify the data into different categories, aid-
ing in the more accurate analysis and visualization of the
data. Applications of classification include facial recognition,
credit scoring, and cancer detection. When machine learning
is used for clustering, or unsupervised classification, it aids
in finding the natural groupings and patterns in data. Appli-
cations of clustering include medical imaging, object recog-
nition, and pattern mining. Object recognition is a process
for identifying a specific object in a digital image or video.
Object recognition algorithms rely on matching, learning,
or pattern recognition algorithms using appearance-based
or feature-based techniques. These technologies are being
used for applications such as driver-less cars, automated skin
cancer detection, etc.

Machine learning is an automated approach to building
empirical models from the data alone. A key advantage of
this is that wemake no a priori assumptions about the data, its
functional form, or probability distributions. It is an empirical
approach. However, it also means that for machine learning
to provide the best performance, we do need a comprehensive
representative set of examples, which spans as much of
the parameter space as possible. This comprehensive set of
examples is referred to as the training data.

So, for a successful application of machine learning, we
have two key ingredients, both of which are essential, a
machine learning algorithm and a comprehensive training
dataset. Then, once the training has been performed, we
should test its efficacy using an independent validation
dataset to see how well it performs when presented with
data that the algorithm has not previously seen, i.e., test
its generalization. This can be, for example, a randomly
selected subset of the training data that was held back and
then utilized for independent validation.

It should be noted that with a given machine learning
algorithm, the performance can go from poor to outstanding
with the provision of a progressively more complete training
dataset. Machine learning really is learning by example, so
it is critical to provide as complete a training dataset as
possible. At times, this can be a labor-intensive endeavor.

A key part of machine learning studies is an independent
validation to objectively test the “generalization” of the em-
pirical models. This is often done by randomly splitting the
available data into two portions. One portion, the training
dataset, is used to train the empirical machine learningmodel.
The other portion, the independent validation dataset, is used
to objectively test the empirical model by using data not seen
in the training process.

We have used machine learning in many previous studies
(Brown et al. 2008; Lary et al. 2009a; Lary and Aulov 2008;
Lary et al. 2004; Malakar et al. 2013; Lary 2010; Malakar
et al. 2012a; Lary 2013, 2007; Albayrak et al. 2011; Lary
et al. 2003; Malakar et al. 2012b; Lary 2014; Lary et al.
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2015b; Kneen et al. 2016; Lary et al. 2010; Medvedev et al.
2016; Lary et al. 2016; O et al. 2017; Wu et al. 2017; Nathan
and Lary 2019; Lary et al. 2019, 2018; Wu et al. 2019;
Alavi et al. 2016; Ahmad et al. 2016; Zewdie and Lary
2018; Malakar et al. 2018; Zewdie et al. 2019a,b; Chang
et al. 2019; Choi et al. 2019). In this study, we have used
machine learning for multivariate nonlinear non-parametric
regression. Some of the commonly used regression algo-
rithms include neural networks (McCulloch and Pitts 1943;
Haykin 2001, 2007, 1994, 1999; Demuth et al. 2014; Bishop
1995), support vector machines (Vapnik 1982, 1995; Cortes
and Vapnik 1995; Vapnik 2000, 2006), decision trees (Safa-
vian and Landgrebe 1991), and ensembles of trees such as
random forests (Ho 1998; Breiman 1984, 2001). Previously,
we have used a similar approach to cross-calibrate satellite
instruments (Lary and Aulov 2008; Brown et al. 2008; Lary
et al. 2009a, 2016, 2018). Recently, other studies have also
used machine learning to calibrate low-cost sensors (Li et al.
2014; Dong et al. 2015).

Case study: UsingMachine Learning for the
Calibration of Airborne Particulate Sensors

Low-cost sensors that can also be accurately calibrated are of
particular value. For the last two decades, we have pioneered
the use of machine learning to cross-calibrate sensors of
all kinds. This was initially done for very expensive orbital
instruments onboard satellites (awarded an IEEE paper prize
and specially commended by the NASAMODIS team) (Lary
et al. 2009a). We are now using this approach operationally
for low-cost sensors distributed at scale across dense urban
environments as part of our smart city sentinels. The ap-
proach can be used for very diverse sensors, but as a useful
illustrative example that has operational utility, we describe
here a use case for accurately calibrated low-cost sensors
measuring the abundance and size distribution of airborne
particulates, with the implicit understanding that many other
sensor types could easily be substituted. These sensors can
be readily deployed at scale at fixed locations, mobile on
various robotic platforms (walking, flying, etc.) or vehicles,
carried, or deployed autonomously as a mesh network, either
by operatives or by robots (walking, flying, etc.).

Building-in calibration will enable consistent data to be
retrieved from all the low-cost sensors. Otherwise, the data
will always be under some suspicion as the inter-sensor
variability among low-cost nodes can be substantial. While
much effort has been recently placed on providing the con-
nectivity of large disbursed low-cost networks, little to no
effort has been spent on the automated calibration, bias-
detection, and uncertainty estimation necessary to make sure
the information collected is sound. A case study of providing

this critical calibration using machine learning is the focus of
this paper.

Any sensor system benefits from calibration, but low-
cost sensors are typically in particular need of calibration.
The inter-sensor variability among low-cost nodes can be
substantial. In addition to the pre-deployment calibration,
once the sensors have been deployed, the paradigm we first
developed for satellite validation of constructing probability
distribution functions of each sensor’s observation streams
can be used to both monitor the real-time calibration of each
sensor in the network by comparing its readings to those of its
neighbors and also answer the question “how representative
is an instantaneous reading of the conditions seen over some
temporal and spatial window within which the sensor is
placed?”

Using Probability Distribution Functions to
Monitor Calibration and Representativeness in
Real Time

It is useful to be able to answer the question “how represen-
tative is an instantaneous reading of the conditions seen over
some temporal and spatial window within which the sensor
is placed?” We can answer this question by considering a
probability distribution function (PDF) of all the observations
made by a sensor over some temporal and spatial win-
dow. The width of this probability distribution is termed the
representativeness uncertainty for that temporal and spatial
window. The PDFs of all observations made by each sensor
are automatically compared in real time to the PDFs from
the neighboring sensors within a neighborhood radius. These
neighborhood sensors can include measurements from pri-
mary reference sensors that may be available. This approach
is used to estimate the measurement uncertainty and inter-
instrument bias for the last hour, day, etc. We continuously
accumulate the PDF for each sensor over a variety of time
scales and compare it to its nearest neighbors within a neigh-
borhood radius. Any calibration drift in a sensor will be
quickly identified as part of the fully automated real-time
workflow where we will automatically be comparing each
sensor’s PDFs to its neighbor’s PDFs and to the reference
instruments PDFs. As each sensor is in a slightly different
local environment, the sensor bias drift for each sensor will
be different.

Characterizing the Temporal and Spatial Scales
of Urban Air Pollution

This study focused on the calibration of low-cost sensors as
part of a larger endeavor with the goal of characterizing the
temporal and spatial scales of urban pollution. The temporal
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and spatial scales of each atmospheric component are inti-
mately connected. The resolution used in atmospheric chem-
istry modeling tools is often driven by the computational
resources available. The spatial resolution of observational
networks is often determined by the fiscal resources avail-
able. It is worth taking a step back and characterizing what
the actual spatial scales are for each chemical component
of urban atmospheric chemistry. Based on our street-level
surveys providing data at less than a meter resolution, it is
clear that the spatial scales are dependent on several factors
such as the synoptic situation, the distribution of sources, the
terrain, etc. In the larger study, we characterize the spatial
scales of multi-species urban pollution by using a hierarchy
of measurement capabilities that include (1) a zero emission
electric survey vehicle with comprehensive gas, particulate,
irradiance, and ionizing radiation sensing and (2) an ensem-
ble of more than 100 street-level sensors making measure-
ments every few seconds of a variety of gases, particulates,
light levels, temperature, pressure, and humidity. Each sensor
is accurately calibrated against a reference standard using
machine learning. This paper documents an example of low-
cost sensor calibration for airborne particulate observations.

Societal Relevance

What are the characteristic spatial scales of each chemical
species, and how does this depend on issues such as the
synoptic situation? These are basic questions that are helpful
to quantify when considering atmospheric chemistry, when
looking forward to the next generation of modeling tools and
observing system (whether from space or ground-based net-
works), and when evaluating mitigation strategies, especially
with regard to co-benefits for air pollution and greenhouse
gas reduction and investigating the evolution of urban air
composition in a warming climate. To be able to quantify
these spatial and temporal scales, we need a comprehensive
observing system; being able to use low-cost sensors is of
great assistance in achieving this goal.

The Dallas Fort Worth (DFW) Metroplex (where our
study was conducted) is the largest inland urban area in the
United States and the nation’s fourth largest metropolitan
area. Nearly a third of Texans, more than sevenmillion inhab-
itants, live in the DFW area. A population which is growing
by a thousand people every day. DFW is an area with an
interesting variety of specific pollution sources with unique
signatures that can provide a useful testbed for generalizing
a measurement strategy for dense urban environments. For
more than two decades, the DFW area has been in continuous
violation of the Clean Air Act. DFW will be one of only
ten non-California metropolitan areas still in violation of
the Clean Air Act in 2025 unless major changes take place.
This has already had a detrimental health impact, e.g., even

though the Texas average childhood asthma rate is 7%, and
the national average is 9%, the DFW childhood asthma rate
is 20–25%. Second only to the Northeast, DFW ranks second
in the number of annual deaths due to smog. Further, a
leading factor in poor learning outcomes in high schools is
absenteeism, a leading cause of absenteeism is asthma, and
key trigger for asthma is airborne pollution (Lary et al. 2019).
Physical exertion in the presence of high pollution levels is
more likely to lead to an asthma event. The sensors calibrated
in this study are being provided to high schools and high
school coaches so that simple practical decisions can bemade
to reduce adverse health outcomes, e.g., given the levels of
pollen/pollution today, should physical education/practice be
outside or inside?

The Datasets Used

All of the measurements were made at our own field calibra-
tion station in the ambient environment. The calibration of
the low-cost AlphaSense OPC occurs prior to their deploy-
ment across the dense urban environment of DFW. In this
study, we use machine learning to bring together two distinct
types of data. First, we use accurate in situ observations made
by a research-grade particulate spectrometer. Second, we use
observations from inexpensive optical particle counters. The
inexpensive sensors are particularly useful as they can be
readily deployed at scale.

Research-Grade Optical Particle Counter

The particulate spectrometer is a laser-based optical particle
counter (OPC). In this study we used a GRIMM Laser
Aerosol Spectrometer and Dust Monitor Model 1.109. The
sensor has the capability of measuring particulates of di-
ameters between 0.25 µm and 32 µm distributed within 32
size channels. Such a wide range of diameter space is made
possible due to intensity modulation of the laser source.
Particulates pumped into the sensor are detected through
scattering a laser beam of 655 nm into a light trap. The
laser beam is aimed at particulates coming through a sensing
chamber at a flow rate of 1.21 l/min. The device classifies
particulates into specific size classes subject to its intensity
(Broich et al. 2012). The optical arrangement of the sensor is
staged such that a curved optical mirror placed at an average
scattering angle of 90◦ collects and redirects the scattered
light toward a photo sensor. Thewide angle of the optical mir-
ror (120◦) is meant to increase the light intensity redirected
toward the photo sensor within the Rayleigh scattering do-
main which decreases the minimum detectable particle size.
Furthermore, it compensates for Mie scattering undulations
caused by monochromatic illumination. The sensing period
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of theGRIMMsensor was set to 6 s and for each timewindow
provides three standardized mass fractions, namely, based
on occupational health (repairable, thoracic, and alveolic)
according to EN 481 as well as PM1, PM2.5, and PM10.

Low-Cost Optical Particle Counters

There are several readily available optical particle counters
(OPC) which are useful, but much less accurate compared to
research grade sensors. In this study, we focus on using such
sensors, together with machine learning, to get as close as
possible to the accuracy of research-grade PM sensors. After
the application of the machine learning calibration, these
lower-cost sensors perform admirably. In order for low-cost
sensors to provide an improved picture of PM levels, a careful
calibration is required. The current study uses an Alpha
Sense OPCN3 (http://www.alphasense.com/) together with a
cheaper environmental sensor (Bosch BME280) as data col-
lectors. The OPC-N3 is compact, 75mm×60mm×65mm in
size, and weighs under 105 g which uses similar technology
to the conventional OPCs where particle size is determined
via a calibration based on Mie scattering. Unlike most OPCs,
the OPC-N3 doesn’t include a pump and a replaceable parti-
cle filter in order to pump aerosol samples through a narrow
inlet tube, hence avoiding the need for regular maintenance.
Sufficient airflow through the sensor is made possible with
a low-powered micro-fan producing a sample flow rate of
280mL/min. The OPC-N3 is capable of onboard data log-
ging as well as measuring particulates of diameters up to
40 µm. This enables the OPC-N3 tomeasure pollen and other
biological particulates. The onboard data is saved within an
SD card which can be accessed through a micro-USB cable
connected to the OPC. Furthermore, the OPC-N3’s lower
sensing diameter is reduced to 0.35 µm as opposed to its
predecessor’s (OPC-N2) lower limit of 0.38 µm. The wider
range of sensing is made possible via the OPC switching
between high and low gain modes automatically. The OPC-
N3 calculates its PM values using the method defined by the
European Standard EN 481 (Alphasense 2018).

Caveat: Particulate Refractive Index

The observations made by optical particle counters are sen-
sitive to the refractive index of the particulates and their light
absorbing properties. The retrieved size distributions and the
mass concentrations can be biased, depending on the nature
of the particulates. The current study does not explore the ac-
curacy implications of this. A future study is underwaywhich
includes direct measurements of black carbon that will allow
us to begin to explore these aspects. The machine learning

paradigm is readily extensible to include these aspects, even
though not explicitly addressed in this study.

Machine learning is an ideal approach for the calibration
of lower-cost optical particle counters.

Ensemble Machine Learning

Multiple approaches for nonlinear non-parametric machine
learning were tried including neural networks, support vector
regression, and ensembles of decision trees. The best per-
formance was found using an ensemble of decision trees
with hyperparameter optimization (Safavian and Landgrebe
1991; Ho 1998; Breiman 1984, 2001). Ensemble methods
use multiple learners to obtain better predictive performance
that could be obtained from any of the individual learners
alone. A good example of an ensemble of learners is a
random forest, which uses an ensemble of decision trees.
In this study, the specific implementation used was that
provided by the MathWorks in the fitrensemble function
which is part of the MATLAB Statistics and Machine Learn-
ing Toolbox. Hyperparameter optimization was used so that
the optimal choice was made for the following attributes:
learning method (bagging or boosting), maximum number of
learning cycles, learning rate, minimum leaf size, maximum
number of splits, and the number of variables to sample.
During hyperparameter optimization, we use an optimiza-
tion approach (e.g., Bayesian optimization) to choose a set
of optimal hyperparameters for our learning algorithm. A
hyperparameter is a parameter whose value is used to control
the learning process.

In this study, there were 72 inputs to our multivariate
nonlinear non-parametric machine learning regression; these
include the particle counts for each of the 24 size bins
measured by the OPC-N3; the OPC-N3 estimates of PM1,
PM2.5, and PM10; a suite of OPC performance variables
including the reject ratio; and particularly important, the
ambient atmospheric pressure, temperature, and humidity.
The OPC-N3 sensor includes two photodiodes that record
voltages which are eventually translated into particle count
data. However, particles which are not entirely in the OPC-
N3 laser beam, or are passing down the edge, are rejected, and
this is recorded in the “reject ratio” parameter. This leads to
better sizing of particles and hence plays an important role
within the machine learning calibration.

Each of the six outputs we wished to estimate had its own
empirical model. The performance of these six models in
their independent validation is shown in Figs. 1 and 2. The
outputs we estimated were the six variables measured by
the reference instrument, the research-grade optical particle
counter, namely, PM1, PM2.5, and PM10, and the standardized
occupational health respirable, thoracic, and alveolic mass
fractions. The alveolic fraction is the mass fraction of in-
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Fig. 1 This figure shows the results of the multivariate nonlinear non-
parametric machine learning regression for PM1 (panels a–c), PM2.5
(panels d–f), and PM10 (panels g–i). The left-hand column of plots
shows log-log axis scatter diagrams with the x-axis showing the PM
abundance from the expensive reference instrument and the y-axis
showing the PM abundance provided by calibrating the low-cost in-
strument using machine learning. The green circles are the training
data, and the red pluses are the independent validation data. The blue
line shows the ideal response. The middle column of plots shows the

quantile-quantile plots for the machine learning validation data, with
the x-axis showing the percentiles from the probability distribution
function of the PM abundance from the expensive reference instrument
and the y-axis showing the percentiles from the probability distribution
function of the estimated PM abundance provided by calibrating the
low-cost instrument using machine learning. The dotted red line shows
the ideal response. The right-hand column of plots shows the relative
importance of the input variables for calibrating the low-cost optical
particle counters using machine learning.
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Fig. 2 This figure shows the results of the multivariate nonlinear non-
parametric machine learning regression for the alveolic (panels a–c),
thoracic (panels d–f), and inhalable size fractions (panels g–i). The left-
hand column of plots shows log-log axis scatter diagramswith the x-axis
showing the PMabundance from the expensive reference instrument and
the y-axis showing the PM abundance provided by calibrating the low-
cost instrument using machine learning. The green circles are the train-
ing data, and the red pluses are the independent validation dataset. The
blue line shows the ideal response. The middle column of plots shows

the quantile-quantile plots for the machine learning validation data,
with the x-axis showing the percentiles from the probability distribution
function of the PM abundance from the expensive reference instrument
and the y-axis showing the percentiles from the probability distribution
function of the estimated PM abundance provided by calibrating the
low-cost instrument using machine learning. The dotted red line shows
the ideal response. The right-hand column of plots shows the relative
importance of the input variables for calibrating the low-cost optical
particle counters using machine learning.
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haled particles penetrating to the alveolar region (maximum
deposition of particles with a size ≈ 2 µm). The thoracic
fraction is the mass fraction of inhaled particles penetrating
beyond the larynx (<10 µm). The respirable fraction is the
mass fraction of inhaled particles penetrating to the unciliated
airways (<4 µm). The inhalable fraction is the mass fraction
of total airborne particles which is inhaled through the nose
and mouth (<20 µm). For each of these six parameters, we
created an empirical multivariate nonlinear non-parametric
machine learning regression model with hyperparameter op-
timization.

Calibrating the Low-Cost Optical Particle
Counters UsingMachine Learning

Figure 1 shows the results of the multivariate nonlinear non-
parametric machine learning regression for PM1 (panels a to
c), PM2.5 (panels d to f), and PM10 (panels g to i). The left-
hand column of plots shows log-log axis scatter diagrams
with the x-axis showing the PM abundance from the expen-
sive reference instrument and the y-axis showing the PM
abundance provided by calibrating the low-cost instrument
using machine learning.

For the left-hand column of plots in Fig. 1 (the scatter
diagrams), for a perfect calibration, the scatter plot would
be a straight line with a slope of 1 and a y-axis intercept
of 0; the blue line shows the ideal response. We can see
that multivariate nonlinear non-parametric machine learning
regression that we have used in this study employing an
ensemble of decision trees with hyperparameter optimization
has performed very well (panels a, d, and g). In each scatter
diagram, the green circles are the data used to train the ensem-
ble of decision trees, and the red pluses are the independent
validation data used to test the generalization of the machine
learning model.

We can see that the performance is best for the smaller
particles that stay lofted in the air for a long period and do
not rapidly sediment, so when comparing the scatter diagram
correlation coefficients, r , for the independent validation test
data (red points), we see that rPM1 > rPM2.5 > rPM10 .

For the middle column of plots in Fig. 1 (the quantile-
quantile plots), we are comparing the shape of the probability
distribution (PDF) of all the PM abundance data collected
by the expensive reference instrument to that of the the PM
abundance provided by calibrating the low-cost instrument
usingmachine learning. A log10 scale is used with a tickmark
every decade. The dotted red line in each quantile-quantile
plot shows the ideal response. The red numbers indicate the
percentiles (0, 25, 50, 75, 100). If the quantile-quantile plot
is a straight line, that means both PDFs have exactly the same
shape as we are plotting the percentiles of one PDF against
the percentiles of the other PDF. Usually we would like to see

a straight line at least between the 25th and 75th percentiles;
in this case, we have a straight line over the entire PDF,
which demonstrates that the machine learning calibration has
performed well.

The right-hand column of plots shows the relative im-
portance of the input variables for calibrating the low-cost
optical particle counters using machine learning. The relative
importance metric is a measure of the error that results if
that input variable is omitted. In the right-hand column of bar
plots, we have sorted the importance metric into descending
order, so the variable represented by the uppermost bar in
each case was the most important variable for performing
the calibration, the second bar is the second most important,
etc. We note that along with the number of particles counted
in each size bin, it is important to measure the temperature,
pressure, and humidity to be able to accurately calibrate the
low-cost OPC against the reference instrument. The data also
suggests that the parameter “reject ratio” carries a higher
deal of importance with respect to the calibration. OPC-N3
comprises two photodiodes which record voltages eventually
translated into particle count data. However, particles which
are not entirely in the beam or are passing down the edge are
rejected and reflected on the parameter “reject ratio.” This
leads to better sizing of particles and hence plays a vital role
within the ML calibration.

Another division of occupational health based size-
selective sampling is defined by assessing the subset of
particles that can reach a selective region of the respiratory
system. On this basis three main fractions are defined:
inhalable, thoracic, and respirable (Bickis 1998; Hinds 2012;
Brown et al. 2013). Studies have shown that exposure of
excess particulate matter has alarming negative health effects
(Mannucci 2017). The smallest size ranges of particulate
matter are capable of penetrating through to the lungs or
even to one’s bloodstream.

Figure 2 is similar to Fig. 1 and shows the results of
the multivariate nonlinear non-parametric machine learning
regression for the alveolic, thoracic, and inhalable size frac-
tions. As would be expected, we see that the performance
is best for the smaller particles that stay lofted in the air
for a long period and do not rapidly sediment, so when
comparing the scatter diagram correlation coefficients, r ,
for the independent validation test data (red points), we see
that rAlveolic > rT horacic > rInhalable.

Operational Use of the Calibration and
Periodic Validation Updates

The calibration just described occurs pre-deployment of the
sensors into the dense urban environment. Once these initial
field calibration measurements are made over a period of
several months, in the manner described above, the multi-
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variate nonlinear non-parametric empirical machine learning
model is applied in real time to the live stream of observations
coming from each of our air quality sensors deployed across
the dense urban environment of the Dallas Fort WorthMetro-
plex. These corrected measurements are then made publicly
available as Open Data as well as depicted on a live map and
dashboard.

Building-in continual calibration to a network of sensors
will enable long-term, consistent, and reliable data. While
much effort has been recently placed on the connectivity of
large disbursed IoT networks, little to no effort has been spent
on the automated calibration, bias detection, and uncertainty
estimation necessary to make sure the information collected
is sound. This is one of our primary goals. This is based
on extensive previous work funded by NASA for satellite
validation.

After deployment, a zero emission electric car carrying
our reference is used, to routinely drive past all the deployed
sensors to provide ongoing routine calibration and validation.
An electric vehicle does not contribute any ambient emis-
sions and so is an ideal mobile platform for our reference
instruments.

For optimal performance, the implementation combines
edge and cloud computing. Each sensor node takes a mea-
surement at least every 10 s. The observations are continually
time-stamped at the nodes and streamed to our cloud server,
the central server aggregating all the data from the nodes
and managing them. To prevent data loss, the sensor nodes
store any values that have not been transmitted to the cloud
server for reasons, including communication interruptions, in
a persistent buffer. The local buffer is emptied to the cloud
server at the next available opportunity.

Data from all sensors are archived and serve as an open
dataset that can be publicly accessed. The observed prob-
ability distribution functions (PDFs) from each sensor are
automatically compared in real time to the PDFs from the
neighboring sensors within a neighborhood radius. These
neighborhood sensors include measurements from the elec-
tric car/mobile validation sensors. This comparison is used to
estimate the size-resolvedmeasurement uncertainty and size-
resolved inter-instrument bias for the last hour, day, week,
month, and year. We continuously accumulate the PDF for
each sensor over a variety of time scales (an hour, day, week,
month, and year) and compare it to its nearest neighbors
within a neighborhood radius.

Any calibration drift in a sensor will be quickly identified
as part of a fully automated real-time workflow, where we
will automatically be comparing each sensor’s PDFs to its
neighbor’s PDFs and to the reference instruments PDFs.
As each sensor is in a slightly different local environment,
the sensor bias drift for each sensor will be different. We
have previously shown that machine learning can be used
to effectively correct these inter-sensor biases (Lary et al.

2009b). As a result, the overall distributed sensing system
will not just be better characterized in terms of its uncertainty
and bias but also provide improved measurement stability
over time.

Case Study: UsingWeather Radars and
Machine Learning to Estimate Airborne
Particulates

The application of radar for atmospheric meteorology started
soon after the end of the Second World War. It was during
the Second World War in the 1930s that radar technology
was first used to locate and track war planes. The interference
from scatterers such as rainfall prompted the notion that radar
can also be applied to measure atmospheric precipitation.
Subsequently, the construction of radar networks for mete-
orologic purposes commenced. The first radar network for
meteorologic purposes was the Weather Surveillance Radar-
1957 (WSR-57) in the United States. Currently, the WSR
radar network has been upgraded to WSR-88D (Weather
Surveillance Radar, 1988). WSR-88D has about 160 Doppler
radars all over the United States. TechnicallyWSR-88D radar
is known as the Next-Generation Radar (NEXRAD). The fol-
lowing sections present the measurements of the NEXRAD
radar and its application to identify aerosols.

Weather radars are mainly designed for determining and
forecasting atmospheric phenomena such as precipitation,
cloud coverage, wind direction and magnitude, and other
associated meteorological events. In addition to these daily
atmospheric conditions, radar can detect other objects and
particles of small size such as dust, sand, insects, bird migra-
tions, ground clutter, etc. The weather radar can also detect
variations in the refractive index of the atmosphere caused by
variations in the ambient temperature.

Atmospheric radars employed for meteorologic purposes
transmit electromagnetic pulses of various frequencies. The
frequency range used in the design of the radar determines
the purpose and observation capability of the radar. For
example, radars designed for observing the amount, type, and
motion of precipitation have frequencies from 3–10GHz (in
terms of wavelength, 10–3 cm, respectively). Radars having
this frequency range are very convenient for meteorological
purposes. Radars having higher frequencies are useful to
observe small-size droplets and particles. Small-size cloud
particles, light snow, fog, and light rainfall are observed
by high-frequency meteorological radars. At relatively low
frequencies (in the range of less than 100–1000MHz), the
radar can detect fluctuations in the refractive index of the
clear atmosphere. Low-frequency radars are best suited for
profiling wind speed and direction.

TheNEXRAD radar is in general operated in two different
modes based on atmospheric weather conditions. These two
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modes are the precipitation mode and the clear air mode.
In the precipitation mode, the NEXRAD radar is operated
at fast rotations at various elevations up to about 19.5◦. In
precipitation mode, a high emphasis is given for measure-
ments at several elevations in order to see vertical storm
profiles. In clear air mode, the radar is operated slowly,
and it is sensitive to observe scattering from small objects
such as pollen, other particulate matter, dust, smoke, insects,
and birds (Gali 2010). The approximate time for a volume
scan is 6 and 10 min. for precipitation and clear air modes,
respectively.

Direct measurements of pollen and other particulates
are rarely done using the NEXRAD radar. However, a few
exceptional research projects have been reported showing
observation of large aerosols using the NEXRAD weather
radar (Madonna et al. 2010). Consequently radar scattering
from large aerosols such as pollen is hard to identify. But
NEXRAD measurements of Doppler velocity, direction,
and speed of wind which are meteorological variables
controlling the distribution and dispersal of pollen and
large particulate matter. Other meteorological variables
such as cloud coverage, precipitation, and rainfall are
also pollen-controlling variables associated with the radar
base reflectivity. For example, Eq. (1) shows the rainfall
estimation techniques based on NEXRAD reflectivity.

Z = aRb (1)

where Z and R, respectively, represent reflectivity and rain-
fall and a and b are experimentally determined constants. a
and b are determined experimentally comparing radar reflec-
tivity and rain gauge measurements. The National Weather
Service default value of a and b are 300 and 1.4, respectively.

The lack of a complete functional relationship between
NEXRADmeasurements and airborne particulates motivates
us to seek other options. The machine learning approach
of “learning” by example from large datasets is the perfect
candidate for this problem. In machine learning, we estimate
a variable based on a large number of input variables (data),
and the method is becoming popular in a wide variety of
fields.

In this study, the inputs to our multivariate nonlinear non-
parametric machine learning regression were the remotely
sensed parameters provided by theweather radar. The outputs
we wished to estimate were the variables measured by the in
situ optical particle counter.

Estimating Aerosol Size Distribution

Figure 3 shows the results of the multivariate nonlinear
non-parametric machine learning regression as a function
of particle size. The x-axis shows the particle size on a
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Fig. 3 This figure shows the results of the multivariate nonlinear non-
parametric machine learning regression as a function of particle size.
The x-axis shows the particle size on a log scale. The y-axis shows
the quality of fit using the correlation coefficient of the scatter diagram
for each particle size fraction; a perfect fit would have a correlation
coefficient of 1. The blue line shows the results for the training data.
The red line shows the results for the independent validation data. We
can see that the machine learning can effectively use the NEXRAD data
for the particles with a size of less than 7 µm

log scale. The y-axis shows the quality of fit using the
correlation coefficient of the scatter diagram for each particle
size fraction; a perfect fit would have a correlation coefficient
of 1. The blue line shows the results for the training data. The
red line shows the results for the independent validation data.
We can see that the machine learning can effectively use the
NEXRAD data for the particles with a size of less than 7 µm.

We can see a little more detail in Fig. 4 which shows
the results of using an ensemble of regression trees for
multivariate nonlinear non-parametric machine learning for
three size fractions, 0.25 µm (panels a–c), 2.5 µm (panels d–
f), and 25 µm (g–i).

The left-hand column of plots in Fig. 4 shows the scatter
diagrams with the x-axis showing the actual number of
particles observed by the in situ optical particle counter and
the y-axis showing the number of particles estimated from the
NEXRAD data using machine learning. The green circles are
the training data, the red pluses are the independent validation
dataset, and the blue line shows the ideal response. We can
see that for the smaller particles that stay lofted in the air
for a long period and do not rapidly sediment, e.g., those
with a size of 0.25 µm (Fig. 4a), we have a very good scatter
diagram and that the training and independent validation data
have almost the same correlation coefficient. The same is true
for particles with a diameter of 2.5 µm (Fig. 4d). However,
for the larger particles that sediment rapidly, e.g., those with a
diameter of 25 µm (Fig. 4g), the independent validation does
not do well.
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Fig. 4 This figure shows the results of the multivariate nonlinear non-
parametric machine learning regression for three size fractions, 0.25 µm
(panels a–c), 2.5 µm (panels d–f), and 25 µm (g–i). The left-hand
column of plots shows the scatter diagrams with the x-axis showing
the actual number of particles observed by the in situ optical particle
counter and the y-axis showing the number of particles estimated from
the NEXRAD data using machine learning. The green circles are the
training data, the red pluses are the independent validation dataset, and
the blue line shows the ideal response. The middle column of plots

shows the quantile-quantile plots for the machine learning validation
data, with the x-axis showing the percentiles from the probability
distribution function of the observed number of particles measured by
the in situ optical particle counter and the y-axis showing the percentiles
from the probability distribution function of the estimated number of
particles. The dotted red line shows the ideal response. The right-hand
column of plots shows the relative importance of the input variables for
estimating the number of particles using machine learning
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Fig. 5 Showing examples of the distribution of PM2.5 over a large spatial area centered at the location of the NEXRAD radar. In this case, the
NEXRAD radar measurements over a 0.5 km × 0.5 km are used to estimate the PM2.5 concentrations

The middle column of plots in Fig. 4 shows the quantile-
quantile plots for the machine learning validation data, with
the x-axis showing the percentiles from the probability distri-
bution function of the observed number of particles measured
by the in situ optical particle counter and the y-axis showing
the percentiles from the probability distribution function
(PDF) of the estimated number of particles. The dotted red
line shows the ideal response. We can see that for the smaller
particles that stay lofted in the air for a long period and do not
rapidly sediment, e.g., those with a size of 0.25 µm (Fig. 4b),
the shape of the observed and estimated PDFs are almost the
same; note that we have a straight line between the 25th and
75th percentiles. The same is true for particles withPlease
provide explanation for part labels (a) to (e) in the caption of
Fig. 5. a diameter of 2.5 µm (Fig. 4e). However, for the larger
particles that sediment rapidly, e.g., those with a diameter of
25 µm (Fig. 4h), the independent validation does not do well.

The right-hand column of plots in Fig. 4 shows the relative
importance of the input variables for estimating the number
of particles usingmachine learning.We note that in each case,
the temperature and pressure and sometimes the humidity
are key factors. For the small particles with a diameter of
0.25 µm, the NEXRAD variables providing the most infor-
mation are the correlation coefficient and Doppler speed at
elevation 1. For the particles with a diameter of 2.5 µm, the
NEXRAD variables providing the most information are the
Doppler speed at elevation 2 and the differential reflectivity
at elevation 1.

Figure 5 shows the spatial distribution of PM2.5 particu-
lates estimated over a large spatial area at 0.5 km × 0.5 km
resolution. In this case, the machine learning model was
developed at 10 km×10 km pixel, and the model was applied
to each pixel using the NEXRAD and atmospheric weather
measurements as input.
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Summary

Airborne particulates are of particular significance for their
human health impacts and their roles in both atmospheric
radiative transfer and atmospheric chemistry. Observations
of airborne particulates are typically made by environment
agencies using rather expensive instruments. Due to the
expense of the instruments usually used by environment
agencies, the number of sensors that can be deployed is
limited. In this study, we have shown two different case
studies illustrating the utility of using machine learning for
studying airborne particulates.

We have shown that machine learning can be used to effec-
tively calibrate lower-cost optical particle counters. For this
calibration, it is critical that measurements of the atmospheric
pressure, humidity, and temperature are included. Once the
machine learning calibration has been applied to the low-cost
sensors, independent validation using scatter diagrams and
quantile-quantile plots shows that not only is the calibration
effective, but the shape of the resulting probability distribu-
tion of observations is very well preserved.

These low-cost sensors are being deployed at scale across
the dense urban environment of the Dallas Fort WorthMetro-
plex for both characterizing the temporal and spatial scales
of urban air pollution and providing high schools and high
school coaches a tool to assist in making better decisions
to reduce adverse health outcomes, e.g., given the levels of
pollen/pollution today, should physical education/practice be
outside or inside?

In this study, we have also shown that observations made
by NEXRAD weather radars can be used with machine
learning to effectively estimate the abundance of airborne
particulates with a diameter in the size range 0.1–7µm.
For this estimation, it is critical that measurements of the
atmospheric pressure, humidity, and temperature are also
made. Once machine learning has been applied, scatter di-
agrams and quantile-quantile plots show that not only is the
approach effective, but the shape of the resulting probability
distribution of observations is preserved.
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Abstract: The eyes serve as a window into underlying physical and cognitive processes. Although
factors such as pupil size have been studied extensively, a less explored yet potentially informative
aspect is blinking. Given its novelty, blink detection techniques are far less available compared to
eye-tracking and pupil size estimation tools. In this work, we present a new unsupervised machine
learning blink detection strategy using existing eye-tracking technology. The method is compared to
two existing techniques. All three algorithms make use of eye aspect ratio values for blink detection.
Accurate and rapid blink detection complements existing eye-tracking research and may provide a
new informative index of physical and mental status.

Keywords: Machine Learning; Eye Tracking; Blink Detection

1. Introduction
It has been said that the eyes are a “window to the soul". Despite its colloquial nature,

such a statement has an anatomical basis. The eyes play a key role in the central nervous
system. For example, pupils dilate in response to elevated levels of autonomic arousal
and mental effort, gaze converges and diverges based on attention [1–4]. Although these
phenomena have been studied extensively, there is another aspect of the eyes that perhaps
deserves more attention: blinking.

Human adults typically blink 15-20 times a minute. This action is physiologically
necessary to keep the eye lubricated, but that is only required about two to four times a
minute. On average, the duration of a blink can range from 100-400 ms, but it also depends
on individual characteristics, fatigue level, and the time of day [5].

Effective classification of blinks has a wide variety of applications. For instance, it has
been used to assess an individual’s mental status. This includes the evaluation of fatigue,
concentration levels, attention span, and cognitive load [6,7]. Another application of blink
detection is to facilitate the removal of blinking artifacts from Electroencephalography
(EEG) signals [8].

Although blinking can be controlled directly, it is often involuntary. Thus, autonomi-
cally regulated blink rates may be indicative of different cognitive states. When a person
relaxes or concentrates on a visual object, their blinking rate decreases, whereas negative
emotions and conversations with other people cause it to increase [5].

There are three observed types of blinks: spontaneous, reflex, and voluntary. The first
two types of blinks are autonomic responses. Spontaneous blinks occur without external
stimuli, while reflexive blinks depend on bright lights, loud noises, etc. Furthermore, the
closing phase of the spontaneous blink is longer than the reflex blink, while the opposite is
true for the opening phase, indicating that the eye seeks to autonomously protect itself at a
moment’s notice [9]. It has been found that the spontaneous eye blink rate correlates with
dopaminergic activity and striatal dopamine receptor availability [10,11]. Many studies
have shown that dopamine plays a role in attention [12], learning [13], goal-directed
behavior [14], and time perception [15]. A quantification of dopamine can provide insight
into these critical cognitive functions. Considering that spontaneous blinks are correlated
with dopaminergic activity, they may serve as a convenient proxy.

In this paper, we compare two existing blink classifiers to a novel blink detection
technique that employs an unsupervised machine learning method. We find that our
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unsupervised method outperforms an existing supervised machine learning method, thus
eliminating the need the need for a labeled training dataset.

2. Materials and Methods
Eye data were collected using the Tobii Pro Glasses 2 eye tracking system. In addition

to gaze and pupil tracking, the glasses record infrared images of the left and right eyes
from two angles, at a rate of 50 Hz. These images are stacked into a single frame and saved
as a video. We will refer to this video as an eye-stream video. Example frames from an
eye-stream video can be seen in Figure 1.

1.png

Figure 1. Example video frames from eye-stream video showing eyes-closed and eyes-open frames.

Although the Tobii Pro Glasses 2 collect over 30 biometric variables at 100Hz, it lacks
a built-in blink detection feature. This is a major setback for a wide range of biometrics
research toward attention, cognitive load, and dopamine, in which blinking may play a
central role. Given the information rich eye-stream video, however, we demonstrate that
reliable blink detection can be achieved.

2.1. Eye Aspect Ratio (EAR)
The eye aspect ratio (EAR) is the key concept on which all presented algorithms are

built. An EAR value is a numerical representation of how open or closed the eye is [16].
The defining equation is a ratio between the height and width of the eye as calculated by:

EAR =
||p2 − p6||+ ||p3 − p5||

||p1 − p4|| , (1)

Where, p1 through p6 are points contouring the eye, as seen on Figure 2. As the eye
closes, the numerator (or height) will approach zero. Thus, a low EAR value may represent
a blink occurring. The six points in the equation are facial landmarks automatically detected
using the method from [17] as shown in the top panel of Figure 2.

Using the eye landmarks and equation 1, we can calculate the EAR value for each eye,
and subsequently an average EAR value is considered, as eye blinking is synchronous [16].
However, the facial landmark detection method described above requires the entire face to
be captured, but the Tobii Pro Glasses 2 only captures eye images as shown in Figure 1. To
overcome this, the eyes were cropped from the eye-stream video and then superimposed
onto a face image. Right panel of Figure 2 shows the result. Using the structure in Figure 2
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combined.png

Figure 2. The top panel shows labeled eye landmarks that equation refeq1 utilizes. The bottom
panel shows a cropped image of the eyes from the Tobii Pro glasses superimposed on a face image so
that the eye landmarks can be detected.

and the EAR value equation, the algorithms discussed in the following sections attempt to
detect blinks.

2.2. Baseline Method
The baseline method is adapted from [16], using the EAR values obtained from the

previous section. This algorithm detects blinks by altering two parameters: a threshold
EAR value and a number of consecutive frames below said threshold. If the average EAR
value falls below the threshold for some number of consecutive frames, we classify this as
a blink [16].

When the eyes are open, the average EAR value will remain relatively constant, but
as they begin to close there is a sharp drop. Figure 3 shows the plot of the EAR values for
each frame from the eye-stream video with a threshold of 0.2.

Figure 3. The plot of EAR Values for each frame using the structure in Figure 2 with a threshold of
0.2. A blink is detected if the EAR value is below 0.2 for 3 consecutive frames.

From Figure 3, an EAR value of 0.2 appears to be a reasonable threshold, and 3
consecutive frames were chosen to detect a blink. Although thresholding is a natural
attempt to classify blinks, it is not robust to noise. As can be seen from Figure 3, EAR
values are very noisy. Additionally, superimposing the eyes from the eye-stream video
further amplifies noise when it comes to detecting the landmarks.
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This leads to several false positives in blink detection. EAR values may fall below
the threshold for a consecutive number of frames even when the person is not blinking.
Conversely, lowering the threshold produces true negatives, or missing out on blinks.
Therefore, this method requires sophistication in terms of choosing a robust threshold and
consecutive number of frames. The remaining two methods attempt to overcome this issue
by using machine learning.

2.3. Supervised Learning Method (Support Vector Machines)
In this section, we present method offered in [16] which uses a supervised machine

learning method, the support vector machine (SVM). It is a way of improving blink
classification as it helps combat against the noise that is generated from the baseline
method as described in the previous section.

The idea behind SVM is as follows: given a set of data points that are in different
classes and represented in an n-dimensional space, the model will find the best line that
separates the points into their respective classes. Thus, SVM is a good choice for dealing
with noisy and high dimensional data, as it is not affected by local minima (e.g. if a person
is squinting, the baseline method may categorize this as a blink) [16]. For more details on
SVM we refer the reader to [18].

To implement this method, it is proposed that the SVM model use a 13 dimension
feature vector, where each vector consists of the average EAR value for the current frame,
the previous 6 frames, and the next 6 frames (as shown in Figure 4) [16].

5.png

Figure 4. The 13 dimension average EAR value window shown for frame N.

This 13 frame feature window allows for a larger temporal period, where noise can be
accounted for, which results in significantly improved blink classification.

For our model, we used a dataset consisting of 9,042 static eye-stream images. The
average EAR value was computed for each image, and then labeled as open or closed
using a 0.1 threshold. Since these are static images, the number of consecutive frames is
not needed. The structure of the right panel of Figure 2 was followed when obtaining the
average EAR values, and Figure 4 was used to obtain the 13 dimension feature vector for
each average EAR value. Then, the model was trained on these feature vectors, where it
learned to classify the images as open or closed. To get the optimal hyperparameters for
the model, we used the GridSearch Method with a 5-fold cross validation [19].

To evaluate the model, each frame from the eye-stream video contains the average
EAR value feature vector with 13 values (using Figure 2 and Figure 4), and the model
predicts whether the frame is open or closed using the feature vector as input. Thus, a
blink will have occurred if there are successive frames with closed classifications.

2.4. Unsupervised Learning Method (Isolation Forest)
The noisy nature of the EAR values makes it difficult to establish a threshold value to

differentiate what is and is not a blink. Indeed, the EAR values in turn may be sensitive to
the individual, motivating a departure from a static threshold. An unsupervised method is
also presented as a means to establish a threshold for when a blink occurs.

This approach is based on interpreting blinks as an anomalous occurrence, since eyes
are typically open while awake. This interpretation encourages the application of outlier
detection algorithms to annotate blinks.

The particular technique chosen is the Isolation Forest algorithm, which is based
on an ensemble of decision trees, where anomalies are said to have a shorter path length
than normal points. The path length is determined by selecting a random data record
and isolating into a partition. If the data point is “close" to other data points, then more
partitioning, or a longer path length may be required. Conversely, isolated data points
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6.png

Figure 5. Isolation forest applied onto EAR values to determine ’outliers’ (i.e. blinks) . Contamination
is a pre-determined proportion of outliers. A blink is classified as such if at least three consecutive
frames (time resolution of data is 20 ms) were determined to be outliers.

require fewer partitions, thus a shorter path length [20]. Furthermore, this method is well
suited for multi-modal datasets and has low computational overhead.

Although the method does not require a labelled training dataset, it contains a pa-
rameter which the algorithm is quite sensitive to: contamination, i.e. the proportion of
outliers in the dataset. To overcome a similar issue as with a static threshold for EAR
values, contamination has the following automatic estimation. A simple moving average
(SMA) of window size of a 100 frames is established. A first order contamination ratio is
calculated as follows: the number of data points three standard deviations (3σ) away from
the SMA mean to the total number of frames. This approach will enable the contamination
value to adapt to the data as opposed to a static threshold. Results can be seen in Figure 6.

To avoid misclassifying sudden troughs in data as blinks, we require also that at
least three consecutive frames are classified as outliers. The average duration of a blink is
100-400 ms, and given that the frame rate of the eye-stream is 50 fps, this methodology will
be sensitive to eye movement longer than 60 ms.

3. Results
In this section, we evaluate the performance of the given three methods to blink

detection. Codes for implementing the techniques were written in Python and are available
at the GitHub repository [21].

To assess classifier performances, we applied the three methods to the same eye-stream
video. The video contains a grayscale recording of a participant’s eyes at two different
angles for each eye, while naturally scrolling through their personal Twitter feed.

Blink ground truths are obtained manually from direct observation of each from on
the eye-stream video. A blink was defined as a singular frame, i.e. the frame at which the
eyes are completely closed. This frame was typically preceded by three to four frames in
which the eyes were rapidly closing, and proceeded by a longer duration of opening the
eyes. There were also a few instances where the eyes were closing but did not completely
close, which were not labeled as blinks.

The classification methods are evaluated via True Negative (TN), False Negative (FN),
False Positive (FP), and True Positive (TP) counts based on pairwise comparisons with the
ground truth. Furthermore, the occurrence of a blink within a ± 6 frame is accepted. For
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Figure 6. Confusion matrices of the results: a) Baseline method with a static EAR value threshold, b)
Supervised prediction with SVM, c) Unsupervised outlier detection with IF. Prediction was accepted
as a blink if within ± 6 frames from a ground truth frame. 26 blinks were observed manually.

example, if a ground truth blink is labeled at frame 700, any true blink flag between 693 -
707 will be recorded as a TP.

An F1 score, the harmonic mean of precision and sensitivity, is also calculated for each
method. Defined as:

F1 =
TP

TP + 1
2 (FP + FN)

, (2)

It is a measure of relative performance, and is not skewed by the large number of TNs.
As evidenced from the baseline method, a static threshold on EAR values is insufficient

to predict blinks accurately. The SVM method performs markedly better, with an F1 score
is 0.82. It should also be noted that due to the rolling nature of the SVM method, it makes
12 less predictions (± 6) than other methods. IF method has performed best, with only one
misclassification.

4. Discussion
EAR values provide an excellent pathway to detect blinks. However, they can be

noisy and require more processing to accurately identify when a blink occurs. This also
requires a consistent definition of what a blink is. For the purposes of this study, a blink
was defined to be a singular instance of time, when the eyes were completely closed. Initially,
this required a tedious manual labeling of the frames but through this study, we hope to
automate the process of blink detection to a high degree of accuracy.

A static threshold on noisy EAR values (as demonstrated on the Baseline method)
misclassified numerous non-blink frames as blinks. SVM method fared much better, but IF
performed at the highest degree of accuracy and precision. Furthermore, the IF method
does not require a labeled, ground-truth dataset.

This study encourages further analysis into types and phases of blinks and whether
they can be reliably classified based on an observed blink duration. As striatal dopamine
levels are related spontaneous blink rate, one may allocate a cognitive activation level
based on blink frequency. Additionally, accurate blink detection will facilitate removal of
blinking artifacts present in EEG data.

As a final note, although these algorithms may apply to other eye-tracking systems,
only data from the Tobii Pro Glasses 2 is evaluated here (i.e. the eye-stream video). There-
fore, the efficacy of these algorithms with other data requires further investigation. It is our
hope that this work can be used to further our understanding of blinking and its association
with cognition.
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5. Conclusions
Blinks are a powerful, easily accessible, non-invasive way to identify information

such as dopaminergic activity and stress indicators, thus it is important to establish an
automated detection paradigm. In this paper, we proposed an unsupervised learning
method built on top of an already existing technology to make detection more robust. The
Isolation Forest method is an intuitive, lightweight approach that a) has shown to be more
precise and accurate than other methods and b) is unsupervised, thus eliminating the need
for a labeled dataset.
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Abstract

The human body is an incredible and complex sensing system. Envi-
ronmental factors trigger a wide range of automatic neurophysiological
responses. Biometric sensors can capture these responses in real time,
providing clues to the underlying biophysical mechanisms. Here we show
biometric variables can be used to accurately estimate ultra-local particu-
late matter concentrations in the ambient environment with high fidelity
(r2 = 0.91) and that smaller particles are better estimated than larger
ones. Inferring environmental conditions solely from biometric measure-
ments allows us to disentangle key interactions between the environment
and the body. A deeper understanding of these interactions can have
countless important applications in public health, preventative health-
care, city planning, human performance, and much more. By tapping into
our body’s ‘built-in’ sensing abilities, we can gain insights to how our
environment influences our physical health and cognitive performance.

Keywords: Biometrics, Particulate Matter, Machine Learning
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2 Decoding Physical and Cognitive Impacts of PM Concentrations at Ultra-fine Scales

1 Introduction

Over 4 million premature deaths worldwide were attributed to outdoor air
pollution in 2016 [1]. In 2019, 99% of the global population resided in areas
that fell short of the World Health Organization (WHO) air quality guidelines
[1]. There has been mounting evidence that poor air quality negatively impacts
respiratory, cardiovascular, and cerebrovascular health [2–7]. Further, there is
emerging evidence on the impact of poor air quality on neurological outcomes
including chronic diseases (e.g. Alzheimer’s disease and dementia) [2, 8, 9] and
acute cognitive impairment [10–14].

Although several large-scale epidemiological studies show the negative
effects of air pollution on physical and cognitive health [2–7], these studies
largely focused on coarse spatial (∼10 miles) and temporal (∼1 day) scales.
Much less research focuses on ultra-local spatial (∼1 m) and temporal (∼10
seconds) scales that make simultaneous environmental and holistic biometric
observations of the human physiological responses.

Before an extreme result such as a disease occurs, poor air quality
already negatively impacts human physical and cognitive performance [10–14].
Through this work, we investigate how air pollution impacts human per-
formance by examining the relationship between environmental air quality
measurements and automatic physiological responses at ultra-fine scales.

This study extends past works that examined interactions of cardiovas-
cular variables such as heart rate (HR), heart rate variability (HRV), and
blood pressure (BP) with air quality on fine scales [15–17]. The main contri-
bution of this study is that we augment cardiovascular markers with other
biometrics, including electroencephalography (EEG), pupillometry, galvanic
skin response (GSR), body temperature, blood oxidation, and respiration rate.
This extended set of variables provides insight into both the cardiovascular
and cognitive status of the participant. A study of air quality and human phys-
iology at the ultra-local level may shed light on the biophysical mechanisms
that underlie their interactions.

2 Results

In this work we used a data-driven experimental paradigm to develop and
explore several empirical machine learning models which describe the con-
nection between ambient air particulate matter (PM) concentrations and the
biometric variables of an individual breathing that air. Due to logistical con-
straints imposed by the COVID-19 pandemic, we were only able to collect
data from one participant. Additional participants will be included in future
research. Two factors, however, mitigate the limited population size in this
study. First, the data collection took place over three days, which allowed
for contextual variability. Furthermore, the participant repeatedly circled the
same trail, allowing for multiple observations of identical spatial positions and
360-degree changes in wind direction angles.
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The estimated PM values included: PM1, PM2.5, PM4, PM10, PMTotal,
and 45 different PM size bins ranging of 0.18 – 10 µm measured in µg/m3, as
well as particle count density (dCn) measured in particles per m3. For model
development, 329 biometric predictor variables were available. Two subsets of
9 biometric predictor variables were used in training a set of empirical machine
learning models. The first subset includes EEG variables, and the second subset
does not. The cognitive effects of air quality can be identified by evaluating
predictive models with and without EEG values.

Each machine learning model used was a trained ensemble of decision trees
for multi-variate non-linear non-parametric regression with full hyperparam-
eter optimization [18–23]. The empirical models are evaluated using two key
metrics. First, the model accuracy assessed using the squared correlation coef-
ficient (r2) between the model prediction and the true PM values. Second,
a ranking of predictor variable importance obtained as the weighted average
importance of each predictor across the ensemble.

We first evaluated the six machine learning models for particulate mat-
ter (PM) values which estimated: the particle count density (dCn), PM1,
PM2.5, PM4, PM10, and PMTotal. 329 biometric predictor variables were used
as model inputs including: delta (1 – 3 Hz), theta (4 – 7 Hz), alpha (8 – 12
Hz), beta (13 – 25 Hz), and gamma (25 – 70 Hz) band power densities for each
of the 64 EEG electrodes, body temperature, galvanic skin response (GSR),
heart rate (HR), heart rate variability (HRV), respiration rate (RR), periph-
eral capillary blood oxygen saturation (SpO2), average pupil diameter, the
difference between the left and right pupil diameters (anisocoria), and the 3D
spatial distance between the left and right pupil centers (vergence eye move-
ment). Then, using an Occam’s razor principle, the top 9 important biometric
predictor variables were used to train an additional six models for the same
PM variables.

The best performing model using the top 9 EEG and non-EEG biometric
predictors was for PM1. This model had the highest accuracy with a validation
dataset r2 = 0.91. Comparison plots between estimated and ground truth PM1

values are given in Figure 1. In the top-left plot, the estimated and true PM1

concentrations in both the training (blue circles) and validation (red pluses)
datasets closely follow to the perfect fit (black) line. In the top-right plot, the
quantile-quantile comparison shows the distribution of measured PM1 values
closely resembles the distribution of estimated PM1 values. Finally, in the
bottom plot, the time series of the estimated PM1 values (dashed red line)
tracks very closely to the true values (solid black line) over seven different
trials spanning three separate days.

The performance of the PM1 and five other PM models in this cohort are
ranked in the left panel of Figure 2. The training and independent valida-
tion dataset performances are plotted in blue and orange, respectively, and
sorted in descending order of independent validation performance. As pre-
viously discussed, PM1 measured in µg/m3 was best reproduced by the 9
biometric predictors (validation r2 = 0.91). The empirical models based on
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Fig. 1 Top performing model (PM1) plots comparing predict and ground truth values.
(Top− Left) scatter plot of true versus predicted PM1 values. A perfect fit is indicated
by the 1:1 line shown in black. Training data are shown as blue circles and validation
data are plotted as red pluses. (Top−Right) quantile-quantile plot of true versus predict
PM1 values. Identical true and predicted distributions would results in a perfect y=x line.
(Bottom) Time series plot of true PM1 values (solid black line) and predicted PM1 values
(dashed red line).

the same biometric predictors were less able to accurately estimate the larger
PM10 (validation r2 = 0.67) values and PMTotal (validation r2 = 0.72) which is
dominated by PM10 due to the larger masses. The poor performance of these
models could be explained the fact that there are significantly fewer large par-
ticles than small particles, and thus the larger particles are not as well mixed
as the far more numerous and well mixed smaller particles. Because of their
greater bulk, larger particles settle more quickly. As a result, the concentra-
tions of large particles collected by the survey vehicle and those inhaled by
the subject a few meters away are likely to differ more than for the smaller
particles. Second, it’s possible that the larger particles have less of an impact
on the participant’s physical and cognitive state because they are less likely to
penetrate deeply into the respiratory and circulatory systems [26].

Each of the six empirical machine learning models has an associated predic-
tor importance ranking, which quantifies the role of individual input predictor
variables in estimating the respective PM target variable. The aggregated rank-
ing of top predictors, shown in the right plot in Figure 2, elucidates which
biometric variables are most helpful to the empirical models in discerning PM
values. The most important predictor variable in estimating PM values was
the body temperature measured at the participant’s right temple. Surprisingly,
the respiratory variable HRV played less of a role. Other important biometrics
included GSR and the distance between the pupil centers of the eyes. GSR is
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Fig. 2 Summary of empirical PM concentration models estimated from 9 EEG and non-
EEG biometric predictor variables. (Left) Ranking of model performance defined as squared
correlation coefficient between predicted and true PM values. Training and validation dataset
performances for each model are shown in blue and orange, respectively. Sorting is based on
validation dataset performance. Overlaid graphics indicate the deposition of the respective
PM size bins in the airways [26]. (Right) Predictor importance ranking aggregated across
all 6 models.

Fig. 3 Correlation plot of top 9 EEG and non-EEG biometric predictor variables, along
with 6 target PM variables. Positively correlated variable pairs are indicated by a red box,
negatively correlated pairs are shown by blue boxes, and non-correlated pairs have green
boxes.

a strong correlate of body temperature. While the distance between the pupil
centers is a proxy for vergence eye movements, which have been associated
with attentional load and to be a strong predictor of cognitive status [24, 25].
EEG variables found to play an important role in estimating PM values were
the delta band (1 – 3 Hz) power densities for the FC6, T8, and Oz electrodes.
FC6 is above the frontal cortex on the right side of the head, T8 corresponds
to the right temporal lobe, and Oz sits on top of the primary visual cortex.

Correlations between predictor and target variables are visualized as a color
filled correlation plot in Figure 3. As seen by the red-orange streaks in the
bottom-left and top-right of the correlation plot, HRV, GSR, temperature,
and the delta power density of the Oz and PO7 electrode signals have strong
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Fig. 4 (Left) Histograms of 9 EEG and non-EEG predictor variables. Plots are titled by
variable name and its physical units. (Right) Histograms of 6 different PM target variables
variables. Plots are titled by variable name and its physical units.

Fig. 5 Summary of empirical PM concentration models estimated from 9 non-EEG biomet-
ric predictor variables including eye tracking, respiratory, and other physiological variables.
(Left) Ranking of model performance defined as squared correlation coefficient between pre-
dicted and true PM values. Training and validation dataset performances for each model are
shown in blue and orange, respectively. Sorting is based on validation dataset performance.
Overlaid graphics indicate the deposition of the respective PM size bins in the airways [26].
(Right) Predictor importance ranking aggregated across all 6 models.

positive correlations with all target variables except PMTotal. In other words, as
these predictor variables increase, so do the corresponding PM target variables.
PM target variables show the greatest negative correlation with the 3D spatial
distance between left and right pupil centers. Suggesting that the pupils tend
to converge with an increase in PM concentrations. Lastly, of all the target
variables, PMTotal is most strongly correlated with PM10 values, which reflects
the strong contribution of PM10 particles to PMTotal.

Histograms for both predictor and target variables are displayed in
Figure 4. Plots are titled by the variable name and its respective physical
units. From the target PM variable histograms in the right plot of Figure 4,
the mass scales of different particle sizes are evident. Namely, the larger sized
PM10 particles vary over a much larger range (0 – 40 µg/m3) than the smaller
PM4 (0 – 20 µg/m3), PM2.5 (0 – 15 µg/m3), and PM1 particles (0 – 8 µg/m3).
This further explains the strong influence of PM10 values on PMTotal.

Next, an additional set of six empirical machine learning models for the
same set of PM targets (dCn, PM1, PM2.5, PM4, PM10, and PMTotal) were
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Fig. 6 Model accuracies plotted against bin size. 45 separate PM models were trained for
size bins ranging from 0.18 to 10 micrometers. PM values were estimated solely from 9
non-EEG biometric variables. Training dataset performance is plotted as a blue line and
validation dataset performance is plotted in orange. A clear drop in model performance
is observed between 2 – 3 micrometers. Overlaid graphics indicate the deposition of the
respective PM size bins in the airways [26, 27].

evaluated, except this time the PM targets were estimated from 9 non-EEG
biometric predictor variables (body temperature, GSR, HR, HRV, RR, SpO2,
average pupil diameter, difference between left and right pupil diameters, and
the 3D spatial distance between left and right pupil centers).

The model performance ranking for the six empirical PM models estimated
from the 9 non-EEG biometric predictor variables is shown in the left panel
of Figure 5. We see that the smaller particles are better estimated by the non-
EEG biometrics. Again, this result may be due to better mixing of smaller
particles or to deeper penetration of those particles into the respiratory system
or both.

Comparing the performance rankings in Figure 2 and Figure 5, there are
clear changes in model accuracies. All models with the exception of PM4

exhibit a drop in performance. The largest drop occurs for the already poor
performing PMTotal (drop in validation r2 = 0.47) and PM10 (drop in validation
r2 = 0.28) models.

There is overlap between the importance rankings of Figure 2 and Figure 5.
In both cases, body temperature is the most significant predictor of the PM
values. Additionally, GSR maintains its order in the ranking as the 2nd most
important non-EEG predictors. Although respiratory variables such as HRV
and HR appear in the top six of the importance ranking, these variables trail
behind temperature, GSR, and the distance between the eye pupil centers.
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Fig. 7 Data collection images. (Left) Custom made backpack to house biometric devices
and recording computer. (Middle) Participant and environmental survey vehicle riding in
tandem during data collection. (Right) Environmental sensors organized in trunk of electric
survey vehicle.

The observation that smaller particles are better estimated than larger
sized particles, is explored further by evaluating model performances for finer
scaled size bins. Here, 45 models were trained to estimate different PM size
bins ranging from 0.18 to 10 micrometers using the 9 non-EEG biometrics
listed above. Model accuracy is plotted against bin size in Figure 6. Training
and validation accuracies are plotted as blue and orange lines, respectively.
The regional depositions of each particle size bin is indicated by a label and
background shading [26, 27]. The smallest particles (PM1) are classified as
respirable and can penetrate to the alveoli. The next smallest size bin is tho-
racic (PM2.5) which consists of particle penetrating into the bronchioles. The
largest size bin are the inhalable particles (PM10) which can enter into the
nose, mouth, and trachea.

There is a clear drop in both training and validation dataset accuracies for
size bins between 2 to 3 micrometers, corresponding to thoracic and inhalable
particles. For particle size bins above this drop, there is large degree of variation
in model performances, however most have poor performance with a validation
r2 below 0.4. While the results may imply that smaller particles have a greater
impact on physiological systems due to their deeper deposition, that conclusion
cannot be reached based upon the present data. The drop in performance for
larger particles may be explained in part or completely by the fact that smaller
particles are more plentiful and better mixed. An evaluation of the relative
contributions of each of these factors requires further investigation.

3 Materials & Methods

3.1 Holistic Sensing

The data in this study are a subset of a holistic biometric and environmental
sensing paradigm. The aim of holistic sensing is to capture all relevant infor-
mation about a system of interest. The full sensor array includes biometric
monitors such as: electroencephalography (EEG), eye tracking glasses, electro-
cardiography (ECG), galvanic skin response (GSR), body temperature, blood
oxygen saturation, and heart rate (Figure 8), in addition to environmental
factors such as: particulate matter, chemical composition of air, temperature,
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Fig. 8 Biometric sensing systems. (Left) Tobii Pro Glasses 2 eye tracking system. This
instrument performs eye tracking data, pupillometry, and provides two videos streams of
the participant’s POV and eyes, respectively. (Right) Cognionics Mobile-64 and AIM2
systems. Sensing suite includes 64-electrode EEG, PPG which measures SpO2 and HR,
respiration/ECG sensors, GSR, and temperature probe.

pressure, humidity, visible light spectrum, and more (Figure 9). After process-
ing raw sensor recordings, the full sensor array has a feature space approaching
20,000 variables (∼16,500 biometric and∼2,000 environmental). In the present
study we focus on a relatively small subset, consisting of 329 biometric and 51
environmental variables.

The biometric sensing suite used in this research aims to comprehensively
capture the physiological and cognitive status of the participant, without
restricting the participant’s actions, movements, or decision making. The goal
is to gather the maximum amount of information with minimal interruption
of normal behaviors. Biometric sensors are placed on the participant in such
a way to allow for unrestricted mobility (Figure 10). Sensor recording units
and other devices are organized in a backpack worn by the participant that all
together weighs less than 10 lbs (Left panel in Figure 7).

Over 100 biometric markers are measured at sampling rates of 500 Hz and
100 Hz. These quantities are processed to derive over 329 variables for the
present analysis. This holistic biometric sensing suite integrates two indepen-
dent sensing systems (Figure 8). Eye tracking is recorded 100 times a second
using the Tobii Pro Glasses 2. Data from the glasses produced average pupil
diameter, the difference in pupil diameter between left and right eyes, and the
3D spatial distance between pupil centers. All other biometric data are mea-
sured 500 times a second using the Cognionics Mobile-64 and AIM2 systems.
These systems include a 64-electrode EEG, temperature sensor, respiration
sensor, Photoplethysmogram (PPG), and galvanic skin response (GSR) mea-
surement. Heart rate and SpO2 values are automatically computed by the



Springer Nature 2021 LATEX template

10 Decoding Physical and Cognitive Impacts of PM Concentrations at Ultra-fine Scales

Fig. 9 Images of environmental sensing systems. Fidas® Frog Fine Dust Monitoring Sys-
tem measures particulate matter concentrations at 100 different size bins. The AIRMAR
220WX WeatherStation® Instrument samples barometric pressure, wind speed and direc-
tion, ambient temperature, and more. The 2B Technologies Black Carbon Photometer
measures atmospheric black carbon particulates using long-path photometry. The 2B Tech-
nologies Model 205 Dual Beam Ozone sensor is a UV-based ozone monitor. The Konica
Minolta CL-500A Illuminance Spectrometer measures the spectral irradiance from 360 to
780 nm at every nanometer. The portable mass spectrometer was constructed by the UNT
Laboratory of Imaging Mass Spectrometry and measures charge mass ratios ranging 1 - 300
amu. The 2B Technologies Model 405 nm NO2/NO/NOx Monitor™ directly measures atmo-
spheric Nitrogen Dioxide (NO2) and Nitric Oxide (NO). The LI-COR LI-850 Gas Analyzer
measured CO2 and water vapor in the air.

Fig. 10 Schematic of biometric sensor placement on participant. (Left) Cartoon of front
participant view. The 64-electrode EEG sits on the participant’s head. A temperature probe
is placed under the EEG cap on the right temple. Eye tracking glasses are carefully placed
on participant, avoiding EEG electrodes. PPG sensor is secured to left ear lobe. Respiration
sensors are place near the top of the chest. (Right) Cartoon of back participant view. GSR
sensors are placed below the back of the neck.

AIM2 system using the PPG. Heart Rate Variability (HRV) and Respira-
tion Rate (RR) values are derived from respiration sensor data with a custom
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MATLAB script. All biometric data were down-sampled to 1/30 Hz (every 30
seconds) to match particulate matter recordings.

A holistic evaluation of an environmental setting is the ultimate goal of the
environmental sensing suite used in these studies. This suite brings together
several sensing packages (Figure 9). However, due to its significant societal
relevance, for this study we focus on particulate matter (PM) concentrations
recorded using the Fidas® Frog fine dust monitoring system. This instrument
simultaneously measures PM mass fractions of PM1, PM2.5, PM4, PM10, and
a size distribution within a size range of 0.18 - 100 micrometers as well as the
total particle count density (dCn). PM data was recorded at sampling rate of
1 Hz and down-sampled to 1/30 Hz (every 30 seconds).

3.2 Data Collection

Biometric data collection was restricted to a single participant due to logisti-
cal constraints arising from the COVID-19 pandemic. However, future works
will include data from multiple participants. The small population size in the
present study is mitigated by two factors. First, data was collected over three
separate days, providing a range of contexts. Additionally, the participant cir-
cled the same trail multiple times, offering multiple observations of identical
positions and 360-degree changes in wind direction angles.

Data were collected while the participant rode a bicycle in a dynamic out-
door setting. An electric survey vehicle equipped with a suite of environmental
sensors followed safely behind the participant during all rides (Middle image
in Figure 7. Although several dimensions of the environmental context were
sampled (e.g. ambient light, temperature, pressure, mass spectra, etc.), here
we focus on the relationship between particulate matter values and biometric
variables. Additional relationship will be explored in future works.

Data collection took place in May and June of 2021 at Breckenridge Park
located in Richardson, TX over three separate days which included four to
five trials per day. The first two trials consisted of two minutes of eyes closed
and eye open baseline biometric measurements, respectively. The third trial
consisted of a “warm-up” ride, where the participant cycled to a public bike
trail in tandem with the electric survey vehicle. Additional trials consisted of
the participant repeatedly cycling a one-mile loop on a public bike trail. The
participant was free to stop cycling at their discretion. Data collection was
halted whenever cycling stopped. If the participant chose to continue, a new
data collection trial was initiated.

The complete dataset consists of 188 data records collected every 30 seconds
(total time of about 1.5 hours) with 329 biometric predictor variables and 51
PM target variables. Biometric predictor variables include: delta (1 – 3 Hz),
theta (4 – 7 Hz), alpha (8 – 12 Hz), beta (13 – 25 Hz), and gamma (25 – 70 Hz)
band power densities for each of the 64 EEG electrodes, body temperature,
GSR, HR, HRV, RR, SpO2, average pupil diameter, difference between left and
right pupil diameters, and the 3D spatial distance between left and right pupil
centers. Environmental PM target variables include: PM1, PM2.5, PM4, PM10,
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PMTotal, and 45 different PM size bins ranging of 0.18 – 100 µm measured in
µg/m3, as well as particle count density (dCn) measured in P/cm3. The data is
made publicly available at the Zenodo datastore: https://zenodo.org/record/
6326357#.Yieu4RPMJb8.

Ethical approval declarationsAll experimental protocols were approved
by The University of Texas at Dallas Institutional Review Board and informed
consent was obtained from the study participant.

3.3 Model Development

All models of PM concentration are obtained by an ensemble of decision trees
for regression with a hyperparameter optimization process [18–23]. 90% of
the data is used for training, while 10% is help back as an independent vali-
dation dataset. Scripts for model training are freely available at the GitHub
repository: https://github.com/mi3nts/DUEDARE.

4 Conclusion

The human body and environment form a complex ecosystem. A key aspect
of this system is air quality and the effects it has on our bodies. Environ-
mental factors trigger physiological responses that can be detected by holistic
biometric sensing. Here we used an ultra-fine holistic sensing paradigm to
show particulate matter concentrations in the ambient environment can be
accurately estimated using only nine biometric variables. In addition, smaller
particles were found to be more accurately estimated. Two potential causes
may explain this result. First, smaller particles are much more abundant and
well mixed in the ambient environment than larger ones, thus resulting in a
greater similarity between particles inhaled by the participant and collected
by the survey vehicle. Secondly, smaller particles can deposit into the respira-
tory system more deeply, and may have a greater impact on the body. Further
investigation is needed to assess the relative contributions, if any, of these two
factors, since they are not mutually exclusive.

Although the present work shows preliminary findings from a single par-
ticipant over multiple days, future research will include data from multiple
participants. Additionally, several other variables collected (e.g. ambient light,
temperature, pressure, mass spectra, etc.) will be evaluated for their phys-
iological interactions. By understanding the key interactions between the
environment and the human body, health and performance can be improved
across many different domains.

Supplementary information. The data and code has been made pub-
licly available. The full data set is available at the Zenodo data store: https:
//zenodo.org/record/6326357#.Yieu4RPMJb8 and code is available at the
GitHub: https://github.com/mi3nts/DUEDARE.
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