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1. Introduction

At the US Army Combat Capabilities Development Command (DEVCOM) Army
Research Laboratory (ARL), we are studying behavior, building data sets, and de-
veloping technology for anomaly classification and explanation, in which an au-
tonomous agent generates natural language descriptions and interpretations of en-
vironments that may contain anomalous properties. This technology will support
decision-making in uncertain conditions and resilient autonomous maneuvers where
a Soldier and robot teammate complete exploratory navigation tasks in unknown or
dangerous environments under network-constrained circumstances (e.g., search and
rescue following a natural disaster). Automatically generated natural language ex-
planations will facilitate the information-overload encountered when sifting through
an abundance of low-quality or duplicated visual data by quickly drawing attention
to atypical scenarios.

We situate the task of anomaly detection in scenarios where a Soldier is unable to
traverse an environment due to conditions that may be dangerous for them. Further-
more, it may be infeasible to receive images or a live stream of the environment
due to constraints and limitations on available bandwidth. Therefore it becomes
the role of a robot teammate to navigate through the space instead, and communi-
cate information to the Soldier through succinct and informative natural language
statements or textual reports. Successful deployment of this envisioned anomaly
detection technology must be able to

• identify aspects of the environment that contradict an expectation;

• elaborate on why such an aspect is contradictory, and provide the expected
state;

• infer at least one plausible possibility for what might have caused the devia-
tion; and

• infer at least one plausible possibility for what might happen as a result of the
deviation.

A team of two interns hosted by ARL and recruited through the National Secu-
rity Innovation Network X-Force Fellowship spent 10 weeks exploring this prob-
lem space. We detail our contributions in this report as follows: we designed an
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anomaly taxonomy drawing upon related work in visual anomaly detection (Sec-
tions 2 and 3); we designed two experiments taking place in virtual environments
that were manipulated to exhibit anomalous properties based on the taxonomy (Sec-
tion 4); we collected a small corpus of human speech and human–robot dialogue for
an anomaly detection and explanation task (Section 5); and finally, we designed a
novel annotation schema and applied it to a subset of our corpus (Section 6).

2. Related Work

Anomaly detection is the process of determining what is out of place or unexpected
with respect to otherwise “normal” observations. This determination relies on a
history of patterns or prior behaviors categorized as typical, where violations of
the trend are considered anomalous. Anomaly detection has been studied in nu-
merous contexts with diverse data types including social network and spatiotempo-
ral data for misinformation identification1–4 and surveillance imagery for training
self-driving cars to avoid obstacles on the road.5–7 Obtaining high-quality, labeled
training data is key for providing a clear distinction between normal versus anoma-
lous data observations. To this end, many data sets have been built that consist of
gold standard, ground truth data points.8–12 We follow the same procedure in our
work and create a novel data set of normal and anomalous linguistic observations,
as described in Section 5.

Our pursuit of anomalies lies in visual sensory anomaly detection (i.e., recognizing
anomalies from image or video data). Jiang et al.13 present a three-level classi-
fication schema contingent upon the target anomaly and the data type: detecting
anomalous objects in images, detecting anomalous scenes in images, and detecting
anomalous events in videos. At the object-level, the task is to detect defects in ob-
jects (e.g., a tear in a carpet, or a rusty screw).12 This level assumes that the data type
is an image of a single object in isolation against a solid background. A common
methodology is to reconstruct the defective portion of the image so that the object is
once again normal.14,15 Anomoly detection at the scene-level is commonly situated
in a task, such as obstacle avoidance for self-driving cars. Here, the data type is an
image in situ, similar to a photograph taken in the wild which may contain people
and natural or artificial scenery. One approach for these task-based scenarios is to
determine which portions of the road featured in the image are “free-spaces” and
which contain obstacles.5 The final classification is anomaly detection at the event-
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level, where anomalies may be unexpected movement over the course of the video.
The data type for this level is a video clip, such as spatiotemporal imagery streamed
from satellite data as a time-lapse,16 or videos of people walking or bicycling down
crowded streets.8–11 A successful methodology for event-level anomaly detection
attempts to predict the next video frame and determines if a mismatch is present.17

Unlike the prior work that treats each anomaly level as distinct, non-overlapping
problems requiring different methodological approaches, we argue that our problem
space requires a unification of the three levels to conduct anomaly detection at an
all-encompassing environment-level. The anomalies we expect in our work span
across all three levels (object, scene, event) and are self-contained within the same
data type (real-time video streaming). Our problem also differs in terms of the task.
Whereas some works focus on specific tasks like self-driving cars and obstacle
detection, our task is open-ended. It is a general anomaly detection for anything
out of place that is situated in the observer’s own interpretation of what is or is not
“normal” in the environment.

Furthermore, our work requires subsequent explanation of the anomalies detected,
whereas the prior works already knew how the anomaly occurred (e.g., the ob-
ject was put into the road), did not concern themselves with it (e.g., it is a binary
classification task if a carpet is torn or not), or did not subsequently concern them-
selves with the after-action (e.g., what might happen next.) Our work is thus a new
exploration of visual sensory anomalies of a general environment, which may in-
volve entities, relationships between entities, and predicting movement or activities
through a space.

3. Defining a Taxonomy of Anomalies

We defined a taxonomy of anomalies with respect to entities in an environment.
Our taxonomy is divided into two major branches (pictured in Fig. 1). The upper
branch classifies the properties of individual objects (e.g., a large [size], pink [color]
mug on its side [orientation]). The lower branch classifies the relationship between

objects (e.g., a large, pink mug on its side on top of [co-location] an office desk).
Furthermore, the state or activity of an object can be inferred (e.g., a sink with the
faucet open but no water flowing out after a period of time [odd action], or a refrig-
erator door left open for a period of time [odd state]). The taxonomy was formed
in a bottom-up observation-driven approach after looking at various environments
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and the properties and compositions of their objects. The taxonomy is data type ag-
nostic, and therefore overlaps with Jiang et al.’s13 images at the object-level (e.g., a
single mug), images at the scene-level (e.g., situating the mug within its surround-
ings), and videos at the event-level (e.g., water not flowing.)

Fig. 1. Anomaly taxonomy of classes with instance examples. The rectangular boxes contain
the class type (e.g., the “color” of an entity), and the ovals are an instance or example of the
class property (e.g., “pink kitten”).

Our work utilized the taxonomy in two ways. First, we used the classes to method-
ologically design environments for testing anomaly detection that vary in type, com-
plexity, and combination within the taxonomy. Second, we posited that the data
we collected would exhibit properties from the taxonomy, for example, the spo-
ken question “is the lamp plugged in?” seeks to assess the functional state of an
object. Thus, the taxonomy served as a guide in understanding the most salient or
informative elements in anomaly detection in environments.
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4. Experimental Design and Setup

In order for a robot to support a human teammate in anomaly detection, we envision
two operating conditions: 1) the robot observes alone through monologue reporting,
and 2) the robot observes together with the human through dialogue reporting. In
the first condition, the robot will analyze the environment by itself to detect anoma-
lies, and then generate a complete natural language report of the environment for its
human teammate. In the second condition, the robot will be guided through a coop-
erative dialogue by a human to analyze the environment. The human is not present
in the environment with the robot in either condition. Thus in the first condition,
the robot’s report is the only access the human has the the environment and must
be complete, and in the second condition, the robot must understand the human’s
questions and report back succinctly.

Based on these conditions, we designed two experimental protocols that showcased
these varied interaction configurations: a stream of consciousness human mono-
logue data collection experiment (Experiment-Monologue) and a human–robot di-
alogue experiment (Experiment-Dialogue). The data collected from both experi-
ments would serve as training data for a robotic reasoning and explanation system.

Under the Experiment-Monologue condition, human participants mimicked an au-
tonomous robot, focusing on the real-time thought processes as the participant ex-
amined and explained the environment. The participant had full visual and navi-
gation control, yet no prior situation knowledge.* They were tasked with verbally
describing the environment, stating if anything was anomalous, the reason for that
classification, and a possible explanation for the anomaly or group of anomalies.

Under the Experiment-Dialogue condition, human participants fulfilled the role of
teammate instructing a remotely located robot to investigate the environment. The
participant had no prior knowledge about the task, whether situational or visual, and
streaming video and sending images from the robot was not supported. Because an
autonomous robot system does not yet exist (i.e., the robot behavior described is
the desired outcome of this research), robot behavior in this experiment was carried
out using a Wizard-of-Oz methodology (WoZ). WoZ is a well-established experi-
mental protocol used in human–robot research to explore new and desired robotic

*In future experiments, situational knowledge will be a key component of the experimental
protocol and thoroughly tested.
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behaviors that do not yet exist.18 Behavior in this experiment included dialogue
management and navigation. For navigation, a human experimenter, referred to as a
“Wizard,” used a joystick to move the robot through the environment. For dialogue
management, the same Wizard followed a set of predetermined guidelines and ver-
bally spoke responses to the participant. The data collected from this experiment
focused on the conversational aspect of the human–robot interaction, and how a
human would naturally ask questions to investigate an unknown and unseen space.
The participant verbally instructed the robot to move through the space while ask-
ing questions about what the robot saw, and the robot reported its answers until the
participant was satisfied that they had completed a comprehensive assessment of
the environment.

Anomalous scenes were designed and implemented in Unity using the Robot Inter-
action in Virtual Reality (RIVR) framework.19,20 RIVR supports human–robot in-
teraction with a robot in high fidelity environments allowing for a simulated robot to
navigate through the virtual environment using the Robot Operating System (ROS).
Both Experiment-Monologue and Experiment-Dialogue took place in RIVR in or-
der to have full control over the environments and allow for remote data collection.
Environments were modified in RIVR to create anomalous situations according to
properties in the anomaly taxonomy. Pre-created scenes from AI2-Thor21 were se-
lected and then manually and automatically manipulated in RIVR. Additionally,
point and click transportation was implemented so that navigation through the vir-
tual environment could take place while the participant in Experiment-Monologue
and the WoZ robot in Experiment-Dialogue were seated at their workstations.

Figure 2 shows two manipulated environments. Figure 2a was designed with three
target anomalies fulfilling different classes in the taxonomy (noted as follows in
parenthesis): an upside-down clock (orientation), mining tools inside the room (co-
location), and a painting on the floor (co-location). Figure 2b was designed with
five target anomalies: a large bat on door (size, orientation, odd state), a chair on
the bed (co-location, odd state), an alarm clock in the plant (co-location, odd state),
a bulky phone (size), and a bat on top of a laptop (co-location, odd state). The full
list of scenes and anomalies is detailed in the Appendix.

We note a tension that formed between the affordances that a virtual modeling en-
vironment like Unity entailed, and the plausibility of the chosen anomalies. For
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(a) Scene 1 from Experiment-Monologue

(b) Scene 1 from Experiment-Dialogue

Fig. 2. Screenshots of Unity scenes in RIVR

example, the bulky phone in Fig. 2b was created by distorting the shape of a regular
phone through Unity. Therefore, while it fulfilled the size property in the taxonomy,
the realism was skewed with respect to real-world environments. We additionally
note that while the environments were designed to be anomalous following the tax-
onomy, with certain assumed or given prior knowledge, anomalies may be “ex-
plained away.” For example, the large quantity of basketballs on the floor in Fig. 2b
may not be anomalous if the room’s inhabitant is known to play or coach basket-
ball. As no such prior knowledge was given in the experiments, such impromptu
interpretations are of great interest in the collected results.
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5. Data Collection

A total of three participants took part in the prepilot experiments: one partici-
pant completed five trials (where one trial was one unique scene) for Experiment-
Monologue, one participant completed five trials for Experiment-Dialogue, and
one participant completed five trials for Experiment-Monologue and five trials for
Experiment-Dialogue. Each unique scene was experienced twice by different par-
ticipants. Table 1 provides a summary of the number of trials and statistics about
the environments.

Table 1. Experimental statistics showing environment (“Env.”), participant (“Parts.”), anoma-
lies, and experimental counts

Parameter Experiment-Monologue Experiment-Dialogue

# Unique Env. 5 5
# Unique Parts. 2 2

# Trials 10 10
Avg. # Anomalies / Env. 4 5

Avg. Length of Experiment 5 min 10 min

The data collection resulted in a small corpus of 10 human monologues for Experiment-
Monologue and 10 human–robot WoZ dialogues for Experiment-Dialogue. All tri-
als have screen recordings from the perspective of the person wearing the virtual re-
ality headset in Unity (i.e., the participant in Experiment-Monologue and the WoZ
robot in Experiment-Dialogue).

6. Data Analysis

From the screen recordings of both Experiment-Monologue and Experiment-Dialogue,
we created a pipeline to extract the participant and WoZ robot utterances into a time-
aligned Excel spreadsheet. Following that, we conducted two preliminary analyses.

6.1 Preprocessing

We used the “ffmpeg” Ubuntu package to extract the audio stream from the screen
recording, and then an off-the-shelf Hugging Face model for Automated Speech
Recognition (ASR). The ASR tool did not segment the audio stream into distinct
speakers or utterance segments, therefore it required manual segmentation and cor-
rection of misrecognized words. Once verified, the corrected transcripts were con-
verted into an Excel file with one utterance per speaker per row.
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As of the publication of this report, 2 of 10 transcripts from each Experiment-
Monologue and Experiment-Dialogue have been preprocessed and subsequently
analyzed.

6.2 Translation to First-Order Logic (FOL)

The participant stream-of-consciousness transcript from Experiment-Monologue
was first annotated according to if the utterance was 1) a description of something
in the environment, 2) a statement classifying an anomaly, or 3) a possible or plau-
sible explanation for the anomaly, if one exists. Table 2 shows this annotation in the
middle column for the transcription excerpt in the left-most column.

Table 2. Experiment-Monologue transcription, annotation, and FOL

Participant utterance Utterance
function

First-order logic

Okay so this looks like a living room Description ISA(ENVIRONMENT1, LIVING
ROOM)

The first anomaly I see is a large tv
remote on this table

Description ISA(LARGE REMOTE, REMOTE),
SIZEOF(LARGE REMOTE), ON-
TOPOF(LARGE REMOTE, TABLE2)

It is anomalous because its very
large

Anomaly classifi-
cation

SIZEOF(LARGE REMOTE)

Much larger than normal remotes Anomaly classifi-
cation

SIZEOF(LARGE REMOTE)

A possible cause could be a deco-
ration or someone is just collecting
large remotes

Possible explana-
tion

ISA(LARGE REMOTE, DECORA-
TION), COLLECTS(OCCUPANT,
OBJECTSOFTYPE(LARGE RE-
MOTE))

Another anomaly is this very small
couch

Object descrip-
tion

ISA(LITTLE COUCH, COUCH),
SIZEOF(LITTLE COUCH)

This is anomalous because couches
usually aren’t that small

Anomaly classifi-
cation

SIZEOF(LITTLE COUCH)

A possible cause could be that it’s a
toy or a doll house or a small alien

Possible explana-
tion

ISA(LITTLE COUCH, TOY),
ISA(LITTLE COUCH, MODEL),
BELONGSTO(LITTLE COUCH,
SMALL ALIEN)

This data was further transformed into FOL shown in the right-most column of
Table 2. The purpose was to compare a priori expected observations against the
observations of the current environment through a representation that encodes in-
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formation about properties of an object. To narrow in on one example of how the
expected or unexpected properties of an object can be harnessed, consider the size
of remote controls. Based on prior observations, their typical size has been observed
and may be recorded in some kind of existing knowledge graph. This statement can
be encoded in FOL as ISA(OBJ1, REMOTE), SIZEOF(OBJ1) = 0.3 M3. However,
if a “large, 4 cubic meter” remote control is observed in the current environment,
its FOL representation, ISA(OBJ1, REMOTE), SIZEOF(OBJ1) = 4M3, contradicts
the prior observations. Depicted graphically, if a knowledge base of some kind is
able to capture enough observations of SIZEOF for remote controls, a distribution
can be plotted—hypothesized in Fig. 3—and if an attribute falls outside the normal
distribution, a flag can be set to its anomalous property.

Fig. 3. Sample distribution of remote control size as encoded in a hypothetical knowledge graph

6.3 Coding Dialogue Informativeness

The participant and WoZ-Robot dialogue from Experiment-Dialogue was annotated
at two levels. First, participant and WoZ-Robot utterances were grouped together at
the Transaction Unit (TU) level. Used in prior dialogue research, a TU represents
a group containing the initiation and potential fulfillment of an intent.22–24 Here,
TUs were grouped around the entity under examination, where the intent refers to
an assessment for particular anomalous attributes. Future work will examine the
selected level of granularity of TU annotation. Table 3 shows the TU annotation,
where each TU is visually separated by a double line in the table. TU-1 assesses the
type of room the robot is seeing, TU-2 and TU-3 inquire about the bed, and TU-4
inquires about the lamp.

The second annotation conducted was labeling participant utterances according to
what property in the taxonomy they were assessing, in other words, what the partic-
ipant was hoping to learn by asking the question. At the end of TU-3, the participant
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Table 3. Experiment-Dialogue transcription and TU annotation

Participant utterance Robot utterance TU Identification

What kind of room are we in now? 1 Room

A bedroom. 1

Is there a bed? 2 Co-Location / In-
side of

Yes. 2

Ok. Is the bed made like neatly? 2

Decently. 2

Is there anything else on the bed?
Like other items that have been
placed there?

3 Co-Location / On
top of

There’s a lamp. 3

And there’s a sniper rifle
leaning on the bed.

3

Oh ok. So the gun should not be in
the bedroom.

3

It should be locked away. Not a good
place to keep that.

3

The lamp, is it like a desk lamp? 4 Size

It could be a desk lamp. It’s
one of the lamps you keep on
a dresser or nightstand.

4

Is it plugged in? 4 Pattern Breaking

No. 4

So there’s just a lamp in the middle
of the bed?

4 Co-Location / On
top of

Yes. 4

Ok. So that’s obviously not where
lamps usually go.

4

was able to make a deduction about the (inappropriate, in their interpretation) pres-
ence of the weapon based on the “room” question in TU-1, yet the participant did
not learn of its presence until asking about the objects on the bed at the start of TU-
3. We also observe that the participant started a line of questioning about the size
and state of the lamp in TU-4, until it was abandoned and a more direct co-location
line of questioning adopted instead.
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6.4 Interpretations

These analyses represent the first step in understanding how anomalies are ob-
served at an environment level using our proposed taxonomy. Our analysis of the
Experiment-Monologue data segmented the users’ utterances into three types of be-
haviors. The description utterances serve as salient visual filtering, indicating which
part of the environment contains the anomaly, while the classification serves as the
evidence for it. Formalizing this into FOL provides one approach for unifying the
representation of different types of anomalies within a single computational space.

Our analysis of the Experiment-Dialogue reveals the types of questions within the
taxonomy that the user determined were the most important in assessing the envi-
ronment. The questions probe at properties that are hypothesized to be anomalous
and informative in subdividing the search space within the environment. Both the
singular object and relationship between objects in the taxonomy were used for
understanding, showing the flexibility and coverage of the taxonomy.

7. Conclusion and Ongoing Work

This work presented a shallow yet complete pass through the problem space of
determining how a robot and a human–robot team can detect and describe anoma-
lies in environments. The proposed taxonomy is multipurpose in supporting the
development of varied anomalous environments, as well as strategies for detecting
anomalies and which may be more salient.

Ten environments were curated in Unity to support anomaly exploration and supple-
mented with the capability for point and click teleportation for virtual reality navi-
gation. Twenty trials were conducted resulting in a small data set of 10 transcripts in
the Experiment-Monologue condition and 10 dialogues in the Experiment-Dialogue
condition. Two transcripts from each experiment were annotated with novel anno-
tation schemas tying back to the developed taxonomy.

Moving forward, the preprocessing pipeline will be refined and the remaining tran-
scripts created. The annotation schema will be applied to the rest of the corpus.
The behaviors observed in annotation will form the basis of training data and serve
as a baseline in developing automated systems to follow the process of detecting
and describing anomalies. Furthermore, more environments will be designed to test
different properties of the taxonomy, and additional data will be collected.
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Appendix. Log of Scenes and Anomalies
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Anomalies in Scene 1 from Experiment-Monologue, pictured in Fig. A-1:

1. Upside down clock (orientation)

2. Mining tools (co-location, inside of room)

3. Painting on floor (co-location, on top of)

Fig. A-1. Scene 1 from Experiment-Monologue

Anomalies in Scene 2 from Experiment-Monologue, pictured in Fig. A-2:

1. Giant lotion bottle (size)

2. Toaster in bathtub (co-location, inside of)

3. Garbage can on top of toilet (co-location, on top of)

Fig. A-2. Scene 2 from Experiment-Monologue
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Anomalies in Scene 3 from Experiment-Monologue, pictured in Fig. A-3:

1. Giant coffee mug (size)

2. Full roll of toilet paper in the trash (co-location, inside of)

3. Table on its side (orientation)

4. Chemistry equipment (co-location, inside of)

5. Coffee machine on top of stove (co-location, on top of)

Fig. A-3. Scene 3 from Experiment-Monologue

Anomalies in Scene 4 from Experiment-Monologue, pictured in Fig. A-4:

1. Toilet in living room (co-location, inside of)

2. Gun inside of living room (co-location, inside of)

3. Giant remote (size)

4. Tiny couch (size)
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Fig. A-4. Scene 4 from Experiment-Monologue

Anomalies in Scene 5 from Experiment-Monologue, pictured in Fig. A-5:

1. Giant watch (size)

2. Gun inside of living room (co-location, inside of)

3. Table upside down (orientation)

4. Couch on its side (orientation)

Fig. A-5. Scene 5 from Experiment-Monologue

Anomalies in Scene 1 from Experiment-Dialogue, pictured in Fig. A-6:

1. Large bat on door (size, orientation, odd state)

2. Chair on bed (co-location, odd state)

3. Alarm clock in plant (co-location, odd state)

4. Very thick phone (size)
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5. Bat on laptop (co-location, odd state)

Fig. A-6. Scene 1 from Experiment-Dialogue

Anomalies in Scene 2 from Experiment-Dialogue, pictured in Fig. A-7:

1. Bat in large mug on bed (co-location, size)

2. A lot of basketballs (quantity)

3. Knocked over trash can in front of door (material, color, orientation)

Fig. A-7. Scene 2 from Experiment-Dialogue

Anomalies in Scene 3 from Experiment-Dialogue, pictured in Fig. A-8:

1. Laptop and phone on sofa on couch (co-location)

2. Knocked over statue (orientation, odd state)

3. Large remote (size)

4. Knocked over plant (orientation, odd state)
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Fig. A-8. Scene 3 from Experiment-Dialogue

5. TV in front of door (co-location, odd state, orientation)

Anomalies in Scene 4 from Experiment-Dialogue, pictured in Fig. A-9:

1. Many plants on table (quantity)

2. Very tall box (size, difficult to identify)

3. Painting in front of couch (location, odd state)

4. Lamp in front of couch (location, orientation, odd state)

5. Two TV’s holding a third TV (quantity, orientation, odd state)

Fig. A-9. Scene 4 from Experiment-Dialogue
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Anomalies in Scene 5 from Experiment-Dialogue, pictured in Fig. A-10:

1. Bat on door handle (co-location)

2. Laptop on chair knocked over (co-location, orientation, odd state)

3. Lamp on crooked bed (co-location, odd state)

4. Sniper rifle on bed (co-location, odd state)

5. Pillow on box (co-location)

6. Drawers left open (odd state)

7. Large bowl on floor (size, odd state)

8. Pencil and pen on floor (odd state)

9. Phone on trash can (co-location, material, color)

Fig. A-10. Scene 5 from Experiment-Dialogue
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List of Symbols, Abbreviations, and Acronyms

AI2-Thor – A near photo-realistic interactable framework for embodied AI agents

ARL – Army Research Laboratory

ASR – Automated Speech Recognition

DEVCOM – US Army Combat Capabilities Development Command

ffmpeg – A framework for streaming, encoding, and decoding multimedia files

FOL – first-order logic

RIVR – Robot Interaction in Virtual Reality

ROS – Robot Operating System

TU – Transaction Unit

WoZ – Wizard of Oz
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