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E-1

Executive Summary 
This memorandum describes the research conducted by Dr. Brian Rolczynski (Code 

6816) during his Jerome and Isabella Karle Distinguished Scholar Fellowship. This research 
developed computational methods to understand the nanoscale structural characteristics, 
energy levels, couplings, and related parameters for DNA-scaffolded molecular networks. Three 
methods are described: (1) a genetic algorithm approach to deduce the structures and 
Hamiltonians of molecular networks; (2) an approach based on the hierarchical equations of 
motion to calculate the vibronic dynamics and corresponding heat currents, which impact 
quantum-mechanical dephasing in these systems; (3) a Random Forest machine-learning 
algorithm to analyze the roles of particular molecular arrangements on the functional energy-
transport processes. These methods collectively reveal the structure-dynamics-function 
relationships in DNA-scaffolded molecular networks, which is an important step toward 
optimizing these materials for uses such as quantum-mechanical technology or light-harvesting 
materials.
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Computational Methods for Determining Structure and Dynamics in DNA-Scaffolded 
Molecular Networks 

Introduction 
For over 3 billion years,1 nature has developed pigment-protein complexes with well-

optimized optoelectronic functions that involve complex, efficient processes.2 In comparison, 
these feats have not yet been matched in artificial materials.3 The optoelectronic functions in 
natural systems include optimized processes like highly efficient energy transport, complicated 
mechanisms like those in water oxidation, and mechanisms involving strong nuclear-electronic 
interactions like photoprotection. 2, 4-5 These functions occur within the electronic degrees of 
freedom of these systems, which are typically the electronic or vibronic states of their 
embedded molecular networks. These natural systems indicate that repeating monomer units 
can generate this strong performance.2 As a result, the functions are dictated by the 
aggregation characteristics of the monomers. In contrast, for artificial systems, synthetic 
chemical modifications are often used to tune functional behaviors, often without much control 
of the aggregate structure. 

Quantum mechanical excitations are described by both an amplitude and phase 
component.6 When a superposition of these states is excited by coherent light, such as that 
from a laser, the excitations are also generated in-phase. By definition, coherent dynamics 
occur when the components of this superposition maintain a well-defined phase relationship as 
they propagate. Measurements of coherent electronic motion in photosynthetic proteins7-8 
have revealed the that scaffolded molecular systems can exhibit coherent electronic dynamics 
on similar time scales to their energy-transport times,8 which implies that the coherent motion 
engages in the energy-transfer dynamics. These results are relevant to applications such as 
solar-energy harvesting, or more challenging interests such as quantum information 
technologies.9 Though the biological fitness of natural systems may not depend on these 
quantum-mechanical effects,10 artificial molecular systems can still use quantum mechanical 
phenomena to perform useful quantum functions in fields such as cryptography, sensing, 
measurement, photovoltaics, and computation.11-12  

Systems that are usually considered for quantum technologies include optical cavities,13 
trapped ions,14 spins,15 nitrogen vacancies,16 and superconductors.17 These systems are largely 
inorganic materials, photonic systems, diamond lattices, or atomic condensates. In comparison, 
the electronic states of organic systems are not typically considered strong substrates for 
quantum technologies that require long-lived coherences like universal quantum computers. 
The reason is that their electronic dephasing rates are typically fast compared to analogous 
processes in these other systems. However, the dephasing rates only need to be slow relative 
to the electronic phase evolution and energy-transport, which can also be very fast in organic 
systems compared to these other media.18 Organic molecules are subject to large, thermalized 
nuclear motions which increases their dephasing rates compared to these other systems.19 Put 
differently, these molecules are more strongly coupled to their environmental baths than many 
of these other systems. Dephasing arises from dissipation of energy and quantum information 
from the system to its environment, as well as stochastic perturbations of the states that 
disrupt their phase relationships.6 In the chemical physics, these behaviors are expressed within 
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Manuscript approved November 21, 2022.



 2 

the Hamiltonian and corresponding system-bath interactions. The Hamiltonian describes the 
average couplings and energies of the system, while perturbations from these average values 
are described by the system-bath interactions. 
 In order to gain control of these processes so that they can be optimized, first we need 
the following: (a) methods to understand the nanoscale configurations of N-Site (N>1) 
heterogeneous systems, such as their molecular positions and orientations, and the 
corresponding Hamiltonian and system-bath interactions; (b) methods to compute their 
electronic dynamics based on these parameters, including the quantum-mechanical phase 
evolution; (c) methods to understand the system-bath dynamics; and (d) methods to assign the 
contributions of individual monomer Sites to bulk functions in large systems, where 
computations are difficult due to their computational expense. Here, the methods that were 
developed in all four of these areas will be described, and their results will be discussed.  

These respective methods accomplish the following: (a) To understand the nanoscale 
configurations of N-Site heterogeneous systems, genetic algorithm methods were developed 
that use physical models to calculate the linear absorption and circular dichroism spectra, and 
optimize the nanoscale characteristics in comparison to the corresponding measured spectra. 
(b, c) The electronic dynamics are calculated using the hierarchical equations of motion 
(HEOM), including methods that compute the energy transport between the system and bath. 
(d) Larger systems were addressed using a combination of experimental measurements, 
machine-learning methods, and computational modeling of subsets of the whole system. Using 
these methods, the roles of individual Sites and couplings on energy transport can be 
determined, and mapped to parameters like their positions, orientations, and chemical 
compositions.  
 

Methods  
Genetic algorithms. The details of the genetic algorithm method were described in 

detail previously,20 but a summary will be provided here. Genetic algorithms are a stochastic 
optimization method, where the system is funneled toward the correct solution by stochastic 
optimization steps. The goal of this approach is to determine the optimal nanoscale parameters 
from the experimental linear absorption and circular dichroism measurements. These 
parameters include the monomers’ positions, orientations, electronic transition energies, 
vibrational energies, system-bath coupling, and site-to-site electronic energy offsets. The 
reasons for using this approach are the following. First, even subtle changes in the parameters 
can lead to large differences in the calculated spectra. Second, the number of parameters can 
be quite large. For example, a two-Site homogeneous system uses 8 input parameters and 
generates an 18 x 18 Hamiltonian. In comparison, a three-Site heterogeneous system expands 
to 18 input parameters and an 81 x 81 Hamiltonian. Therefore, genetic algorithms are used 
with a Delaunay clearing protocol. Clearing protocols ensure that the search spans the search 
space broadly, rather than becoming focused on a local optimum that may not be the global 
optimum. Furthermore, Delaunay triangulation is used to project the search to empty regions 
of the search space.21  
 A flow chart for the genetic algorithm is shown in Figure 1. First, an initial guess is used, 
which contains information such as the positions, transition dipole angles, electronic and 
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vibrational energy levels, and electronic 
energy offsets of the monomers within the 
network. Second, guesses are generated by 
randomly perturbing the guess parameters, to 
create 1000 distinct guess sets. Third, each of 
these guess sets is used to generate a 
Hamiltonian, which is then used to calculate 
linear absorption and circular dichroism 
spectra. Fourth, the calculated spectra are 
compared to measured spectra to generate a 
score. Subsequently, the scores are used to 
generate a next generation of guesses, 
including occasional random variations 
(“mutations”) of the individual values. Using 
this new set of guesses, the process repeats. 
At first, the mutations occur with a large 
range, representing a coarse optimization. 
However, as the algorithm proceeds without 
increases in the score, this range sequentially 
narrows to represent a more fine-grained 
search. This range sequentially narrows from 
500 to 100, 10, 3, 1, 0.4, 0.1, 0.01, and 0.001.  
 Scores were obtained by comparison of the calculated and measured linear absorption 
and circular dichroism spectra, as well as their first derivatives. This comparison was made by 
obtaining the sum of the difference-squared between the calculated and experimental spectra. 
These terms 𝑓",$ (where 𝑖 spans 1 to 4 and is the index counting the absorption or circular 
dichroism spectra and their first derivatives) were then input into the cost function (equation 1) 
to obtain a score for the 𝑘th guess within the generation. 
 
𝐹" =

)
∏ +,,-.
-/0

∑ )
+,,-

2
$3)   (equation 1) 

 
The selection of parents for the subsequent generation was performed by assigning a 
probability to each member of the previous generation (equation 2) based on its score, and 
then selecting pairs of parents at random based on these probabilities. These parents were 
then used to parametrize each guess of the next generation, with a 50% chance of inheriting 
each parameter from each parent. Subsequently, these inherited parameters were occasionally 
assigned a mutation at random, according to the method described above.  
 
𝑃(𝑘) = 7,

∑ 789::
8/0

  (equation 2) 

 
 Spectral calculations. The spectral calculation method used for the genetic algorithm is a 
semiclassical method, which was selected for its relatively low computational cost compared to 

 
Figure 1. A flow chart for the Genetic 
Algorithm. The starting position is the 
“Initial Parameters” box. Solid arrows 
indicate the standard flow, while dotted 
lines indicate conditional paths. 
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the HEOM method described subsequently. Because the genetic algorithm performs potentially 
millions of these calculations in a typical run, speed is an important factor in the algorithm’s 
usefulness. The spectral calculations for monomers and homogeneous dimers were described 
in detail in a previous publication.20 Here, the method has been extended to heterogeneous 
systems, and systems with more than two monomer Sites. The vibronic Hamiltonian is 
described by equation 3. This Hamiltonian’s vibronic basis vectors |𝑛=, 𝑣=⟩ are defined by the 
tensor product of the electronic and vibrational states (equation 4). Here, 𝑛=  and 𝑚A  describe the 
electronic configuration, 𝑣= and 𝑙C	describe the vibrational configurations, 𝑂(𝑛=) is the electronic 
energy offset, and 𝐽G=,H= ,IA ,JC is the vibronic coupling. The generalized vector 𝑛=  is used to discuss 
networks with an arbitrary number of Sites. In the limit of a monomer system, for instance, 𝑛=  
can be replaced by a scalar Site index 𝑛. 
 
𝐻L = ∑ 𝐸G=,HA |𝑛=, 𝑣=⟩⟨𝑛=, 𝑣=| + 𝑂(𝑛=) + ∑ 𝐽G=,H=,IA ,JC|𝑛=, 𝑣=⟩P𝑚A, 𝑙C|IAQG=,JCG=,H=   (equation 3) 
|𝑛=, 𝑣=⟩ = |𝑛=⟩⊗ |𝑣=⟩  (equation 4) 
 

The vibronic coupling is described by equation 5. Here, an extended dipole model is 
used, rather than a more often-used point-dipole approximation. The reason is that the point-
dipole approximation fails for short intermolecular distances, while the extended dipole model 
is more well-behaved in this limit.22 In the extended dipole model, the polarization generated 
by the interaction between the light and electronic charge density is described by a pair of 
positively and negatively charged point charges positioned on opposite sides of the molecule 
along its transition dipole vector. 𝐶G=,IA  is the Coulombic coupling (equation 6) between 
electronic states 𝑛=  and 𝑚A , and 𝑟UV or 𝑟UW represent the positions of the positive or negative 
partial charges respectively for molecule 𝛼 (out of the total quantity of molecular sites A). The 
charge 𝑞G=  is defined in equation 7, 𝜖[ is the permittivity in free space, 𝑒 is the elementary 
charge, µG=  is the electronic transition dipole strength, and 𝐿G=  is the length of the molecule in 
the direction of the electronic transition dipole. 𝐹H,J  is the Franck-Condon factor between the 
vibrational states 𝑣 and 𝑙 (equation 8), 𝑔= is the ground vibrational state, 𝑆 is the Huang-Rhys 
factor (equation 9), 𝛾 is the Stokes shift, and ∆𝐸Hcde  is the estimated vibrational energy gap. 

 

𝐽G=,H= ,IA ,JC = 𝐹f=,H=𝐹f=,JC𝐶G=,IA g∑
)

hijkWijlh
m
U3[ − ∑ )

oip
kWip

lo
q
rQU s  (equation 5) 

𝐶G=,IA =
tuAtvw
2xy:

 (equation 6) 

𝑞G= =
czuA
{uA

 (equation 7) 

𝐹H,J = 𝑒𝑥𝑝 ~W�
�
�∑ ∑ (W))�

�!�!
J
�3[ � �(�k0)H!J!

(HW�)!(JW�)!
H
�3[  (equation 8)  

𝑆 = ~ �
�∆�����

+ )
2
� + 𝑧  (equation 9) 

 
 After the Hamiltonian is determined, the linear absorption and circular dichroism 
spectra are calculated. When pulsed light passes through the system, its electric field 
momentarily interacts with the sample’s electronic charge density, which exerts a force that 
pushes the positive holes and negative electrons in opposite directions along its transition 



 5 

dipole. After the light is gone, the system is polarized, and this polarization oscillates along its 
transition dipole until it eventually emits or otherwise dissipates its energy and returns to its 
ground state. In the absence of environmental perturbations, these oscillations occur at the 
resonant angular frequency 𝜔U  for state 𝛼, however perturbations cause the phase evolution 
to deviate according to a lineshape function 𝑔U(𝑡) (equation 10), whose effect is to contribute 
line-broadening to the corresponding optical spectra. The term 𝑃U  stands for the oscillator 
strength 𝑃U�d� (equation 11) for linear absorption spectra, or rotational strength 𝑃Ui�e (equation 
12) for circular dichroism spectra. Fourier transforms are used to convert this time-domain 
signal to the frequency-domain spectrum. µU  is the transition dipole magnitude, 𝑐�,U  is the 
overlap between Site 𝑎 and state 𝛼, and 𝑟�,� is the distance between Sites 𝑎 and 𝑏. The angular 
brackets account for static energy disorder, which occurs due to non-uniform individuals within 
the sample ensemble. These brackets are accounted for by convoluting the contents to a 
Gaussian function. 
 
𝜚(𝑡) = ∑ 𝑃U𝑒𝑥𝑝�−𝑖𝜔U𝑡 − 𝑔�(𝑡)�m

U  (equation 10) 
𝑃U�d� = 〈h𝐹[,UµUh

�〉  (equation 11) 
𝑃Ui�e = 〈∑ ∑ 𝑐�,U𝑐�,U𝐹[,�𝐹[,� ~𝑟�,� ∙ (µ� × µ�)����� 〉  (equation 12) 
 

Hierarchical equations of motion. Many methods exist to calculate the quantum 
mechanical evolution of an excited system, like the one described in the previous section. A 
major distinguishing factor in these methods is the approximations they take, with respect to 
the system and bath interactions. In the extremes where the intrasystem coupling is strong 
compared to the system-bath coupling, or vice versa, the Redfield or Förster theories are 
applicable, respectively. Redfield theory captures the quantum mechanical evolution of the 
system when the impact of the bath is small, while Förster theory primarily focuses on the 
evolution of the bath and the thermodynamic consequences of the bath relaxation on the 
system. HEOM explicitly keeps track of the system and bath configurations within a quantum-
mechanical formalism, allowing it to interpolate between these extremes at the cost of higher 
computational expense. This range is necessary because the algorithm may place the 
chromophores far apart or close together, which can correspond to the Förster or Redfield 
conditions respectively, and yet it would be desirable to be able to make an apples-to-apples 
comparison for the dynamics throughout this range. 

HEOM has been described previously,23-25 but it will be summarized here. The total 
system is assumed to be separable into three components: the electronic contribution, 
environmental bath contribution, and system-bath coupling. The Hamiltonian is therefore 
composed by the sum these three parts (equation 13). The System Hamilotonian 𝐻Ld is defined 
by the electronic Site transition energies 𝐸G and reorganization energies 𝜆G for Site 𝑛, as well as 
the vibronic couplings 𝑉GI between Sites 𝑛 and 𝑚 (equation 14). Meanwhile, the 
environmental bath Hamiltonian 𝐻Lc adopts a harmonic oscillator model, which depends on the 
momentum �̂�G£  and position 𝑥¤G£ operators and vibronic angular frequency 𝜔G£  (equation 15). 
The system-bath coupling 𝐻Ldc is shown in equation 16.  

 
𝐻Le�e = 𝐻Ld + 𝐻Lc + 𝐻Ldc  (equation 13) 
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𝐻Ld = ∑ (𝐸G − 𝜆G)|𝑛⟩⟨𝑛| + ∑ 𝑉GI|𝑛⟩⟨𝑚|¥
IQG

¥
G  (equation 14) 

𝐻Lc =
)
�
∑ ∑ ¦¤u8

9

Iu8
+ 𝑚G£𝜔G£� 𝑥¤G£�§

£
¥
G  (equation 15) 

𝐻Ldc = ∑ ∑ 𝑐G£𝑥¤G£|𝑛⟩⟨𝑛|§
£

¥
G  (equation 16) 

 
For the system modeled here using this method, the monomers were several 

nanometers apart and therefore the point-dipole approximation was used to find the vibronic 
coupling between the Sites (equation 17). Here, 𝜅GI is the orientation factor (equation 18), µG 
is the transition dipole (equation 19), 𝑛[ is the index of refraction (which was set to 1.333, 
which is the value in water at room temperature), 𝑛[� approximates the dielectric constant 
(along with a component included into the scalar term in front of equation 17),26-27 and 𝑅ª⃗ GI is 
the displacement between Sites 𝑛 and 𝑚. Furthermore, 𝑟G is the unit vector for the 
displacement, 𝑐 is the speed of light, 𝜔A is the weighted average of the absorption spectrum’s 
frequency, and 𝜖(𝜔) is the extinction coefficient. 

 
𝑉GI = (5.035 ∙ 10±) ²uvzuzv

G:9h³ª⃗ uvh
´   (equation 17) 

𝜅GI = 𝑟G ∙ 𝑟I − 3(𝑟G ∙ 𝑟GI)(�⃗�I ∙ 𝑟GI) (equation 18) 

µG = �2.±)µ∙)[l¶∙±ℏc9

2x�I� A̧
∫ 𝑑𝜔𝜖(𝜔)  (equation 19) 

 
 The bath was modeled using a Brownian multimode oscillator model, allowing the 
system-bath coupling 𝑉dc(𝜔) to be modeled using the Drude-Lorentz spectral density (equation 
20). Here, 𝜆 was the nuclear relaxation rate, which was set to 10 ps-1 in correspondence to 
other organic chromophore networks.28-29 Because the calculations assumed a temperature of 
298 K, the low-temperature correction was not included in the computation.28 
 
𝑉dc(𝜔) =

�»�¸
¸9V�9

  (equation 20) 

 
 Using the system-bath coupling, the correlation function 𝐶£(𝑡) for the collective bath 
operator is calculated (equation 21). The independent bath assumption was applied, so each 
vibronic state was assigned its own bath. 
 

𝐶£(𝑡) =
)
x ∫ 𝑑𝜔𝑉dc(𝜔)

cl-¼�

)Wclpℏ¼
§
W§  (equation 21) 

 
Because the correlation function is difficult to compute in this form, it was recast using 
Matsubara frequencies 𝑣" and their coefficients 𝑎" (equations 22-26). The expansion into 
Matsubara frequencies extends to infinite terms, however a reasonable approximation is 
obtained when a hierarchy cut-off function 𝐾 is applied (here, it is set to 2).28, 30 This 
approximation is equivalent to the 2𝐾th order in perturbation theory.31 Here, 𝛽 = )

"¿À
 with the 

Boltzmann constant 𝑘q and temperature 𝑇. The terminator contributions for orders above 𝐾 
are then added after applying the Markovian approximation.25, 32 
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𝐶£(𝑡 > 0) = ∑ 𝑎"𝑒WH,eÃ

"  (equation 22) 

𝑎"3[ =
»�
ℏ
Ä𝑐𝑜𝑡 ~r�

�
� − 𝑖Æ (equation 23) 

𝑎"�[ =
2»�H,

rℏ9�H,
9W�9�

 (equation 24) 

𝑣"3[ = 𝛾  (equation 25) 
𝑣"�[ =

�x"
rℏ

 (equation 26) 

 
Meanwhile, the evolution of the density operator 𝜌¤G was computed using equations 27-

28.25, 30, 32-33 Here, 𝑛£"  is a non-negative index spanning the electronic states 1 ≥ 𝑗 ≥ 𝑁 and 
Matsubara expansion terms 0 ≥ 𝑘 ≥ 𝜉, where 𝑁 is the number of vibronic states and 𝜉 was set 
to 1. Also,	𝑛£"

± = 𝑛£" ± 1, except negative indices were set to zero. The scaling of this master 
equation was discussed in more detail previously.33 The Quantum Toolbox in Python (QuTiP) 
library was used for the HEOM calculations.34-35 
 
Í
Íe
𝜌¤G =

W$
ℏ
[𝐻d, 𝜌¤G] − ∑ ∑ 𝑛£"𝑣"𝜌¤G

�
"3[

¥
£3) − 𝑖 ∑ ∑ ��𝑛£" + 1�|𝑎"| Ä𝑃Ð£, 𝜌¤G8,k Æ −

�
"3[

¥
£3)

∑ ~∑ �v
Hv

§
I3�V) � Ä𝑃Ð£, Ñ𝑃Ð£, 𝜌¤GÒÆ − 𝑖¥

£3) ∑ ∑ �
G8,
|�,|

~𝑎"𝑃Ð£𝜌¤G8,l − 𝑎"∗𝜌¤G8,l 𝑃Ð£�
�
"3[

¥
£3)  (equation 27) 

𝑃Ð£ = |𝑗⟩⟨𝑗| (equation 28) 
 

Next, this method is used to calculate the heat current between the system and its 
baths. These calculations result in the quantum heat currents from the perspective of the 
system 𝑗�Ã (equation 29) or bath 𝑗qÃ (equation 30), while 𝐴"(𝑡) is specified by equation 31.36-37 
Because the baths coupled to each vibronic state are assumed to be independent from one 
another, the interbath interaction terms were omitted from equation 30.36 These dissipation 
effects are important for the dephasing characteristics in these systems, which also impact the 
systems’ quantum dynamics. In equations 29-30, 𝑗 (out of max 𝐽) is the index for the auxiliary 
density operator in HEOM, which specifies the configuration of each bath mode. The terminator 
component Δ" that is approximated by the Markovian approximation is obtained, following the 
work by Ishizaki and Tanimura.25, 32 The imaginary component of the correlation function at 
time-zero is denoted by 𝐶"Ö(0). The coupling between the system and each bath is denoted by 
𝑉Ð" . All of these terms are available within an HEOM calculation.36 
 
𝑗�Ã = −∑ 𝑇𝑟×𝐴"(𝑡)𝜌¤£(𝑡)Ø +

$
ℏ
Δ"𝑇𝑟×Ñ𝐴"(𝑡), 𝑉Ð"Ò𝜌¤£(𝑡)Ø

Ù
£   (equation 29) 

𝑗qÃ =
Í
Íe
〈𝐻qÃ〉 = ∑ 𝛾"8𝑇𝑟×𝑉Ð"𝜌¤£(𝑡)Ø +
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Random Forest machine-learning algorithm. The Random Forest algorithm was 
described previously,38-39 however it is summarized here. This algorithm is useful when the goal 
is to map input parameters to output values, for some collection of measurements. The 
premise of this algorithm is to develop a series of weak predictions based on subsets of the 
existing data, and to average these weak predictions together in order to generate a stronger 
prediction overall. It has numerous advantages, such as a natural resistance to overfitting, no 
dependence on a posited physical model, scalability to large data sets, a natural tabulation of 
non-linear variable dependencies (ie., when the input variables depend on each other), and 
well-established validation methods.38  

The Random Forest method generates a set of short binary regression trees that 
describe aspects of the data set, and then averages their predictions to produce a predictive 
model. The algorithm is described in Figure 2a. The initial data are comprised of input 
parameters and their corresponding output values. In this case, the input values are Booleans 
for each Site, indicating whether it is present or absent from the system. The output values are 
the FRET efficiencies. The data are binned and Bayesian optimization is used to determine the 
optimal hyperparameters for the machine-learning method. The hyperparameters are the 
minimum number of observations per terminal node (a.k.a. the “minimum leaf size”), the 
maximum number of splits in the binary trees, and the quantity of predictors (data points) 
selected. The data are then resampled, as shown in Figure 2b for an example with 143 data 
points. The resampled bootstrap aggregates (known in the machine-learning field as “bags”) are 
then used to produce binary trees, as shown in Figure 2c. The out-of-bag (oob) component, 
containing all the predictors that were not selected during the selection process, are “new 

 
Figure 2. (a) A schematic showing the Random Forest algorithm. (b) An example of 
resampling. (c) An example of binary regression trees. 
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measurements” from the perspective of the model and therefore used to test its ability to 
predict new measurements. This algorithm used the Matlab TreeBagger and Bayesopt 
algorithms. 

The importance of each input parameter is inferred by building a subsequent Random 
Forest model and subtracting its predictions from those of the first model. The difference in this 
subsequent model is that a single input parameter is randomly redistributed across the 
predictors, effectively breaking its correlation to the output values, while still retaining the data 
set’s overall statistics so that apples-to-apples comparisons can be made across the two 
models.38 In practice, every model is produced ten times and averaged, to reduce the statistical 
variations. When this inference approach is performed for an input parameter, its Linear 
Variable Importance (LVI) is obtained. The LVI describes how significant that input parameter is 
for determining the output values. If randomly scrambling the input parameter does not 
significantly change the model predicts, then the LVI is low and the parameter is not very 
relevant for the underlying processes. However, if the model predictions change significantly 
when the input parameter is randomly scrambled, then that parameter must be important. 
Likewise, by subtracting the LVI in the presence of a second Site, from the LVI in the absence of 
that second Site, the Nonlinear Variable Importance (NVI) between these two Sites is obtained. 

 
Figure 3. The genetic algorithm method was used to obtain nanoscale parameters for Cy3 (a-
c) and Cy5 (d-f) dimers. The results aggregation characteristics are shown in figures g-h. The 
corresponding parameters are shown in Table 1. 
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The NVI describes cooperative (if positive-valued) or inhibiting (if negative-valued) effects 
between input parameters.  

 

Results 
 Genetic algorithms. Initially, the genetic algorithm approach was only valid for 
homogeneous dimer systems.20 First, these are shown as a starting point. Two different DNA-
scaffolded dye systems were synthesized, containing either Cyanine-3 (Cy3) or Cyanine-5 (Cy5) 
monomers. Their linear absorption and circular dichroism spectra were measured, as well as 
those of the corresponding DNA-monomer systems. For the corresponding spectroscopic 
calculations, the temperature was assumed to be 298 K, and the cut-off frequency of the Ohmic 
spectral density was assumed to be 200 cm-1. The transition dipole moments for Cy3 and Cy5 
were 12.8 and 13.4 D, respectively. For the Delaunay triangulation in these calculations, only 
the highest-scoring 100 members were considered, and four degrees of freedom were 
considered at a time per iteration (randomly selected). The reassignment threshold was set to 
10-10, which was intended to reassign near-duplicates only. Using these parameters, the results 
are shown in Figure 3, and the resulting nanoscale parameters were obtained (Table 1). 
 The parameters in Table 1 describe the relative positions and orientations of the 
monomers within the dimer system, as well as their optical gap, vibrational spacing, and static 
inhomogeneous broadening. Note that this method distinguishes the static inhomogeneous 
broadening contribution, which may arise from static or effectively static polydispersity within 
the sample ensemble, from the dynamic inhomogeneous broadening and homogeneous 
broadening contributions that arise from the electronic-nuclear interactions. More information 
is available in a previous publication.20 

Subsequently, the algorithm was expanded to accommodate both heterogeneous 
molecular networks, as well as those that contain more than two Sites. For heterogeneous 
networks, two assumptions were relaxed. The first is that some of the parameters, such as the 
optical gap and vibrational spacing, were no longer assumed to be identical for each monomer. 
The impact of this change was to increase the number of optimization parameters. Secondly, a 
zero-energy offset was applied to account for different ground-state energies in the distinct 
monomers. Meanwhile, to expand the computation to more than 2 Sites, much of the physics 

Table 1. The difference in inclination angle (𝜃), azimuthal angle (𝜙), and position coordinates 
(𝑥, 𝑦, 𝑧) are shown, as well as the optical gap (𝑬𝟎W𝟎), vibrational spacing (∆𝑬𝒗), and peak 
broadening half-width at half-maximum (HWHM).  

 Cy3 Cy5 
𝜽 (deg.) 99.3 104.6 
𝝓 (deg.) 8.27 87.4 
𝒙 (Å) -6.3 -2.9 
𝒚 (Å) -0.9 -4.6 
𝒛 (Å) -1.5 -9.0 

𝑬𝟎W𝟎 (cm-1) 18104 15412 
∆𝑬𝒗 (cm-1) 1144 1082 

HWHM (cm-1) 126 135 
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had to be generalized to accommodate variably sized Hamiltonians and other parameters, and 
some of the parameters had to be expanded into Cartesian products to scale properly. Because 
the computational cost also increased from these changes, substantial work was put into 
speeding up the algorithm, by making the code more efficient, improving the parallel 
processing, and converting to Python-wrapped c or machine language by using Cython or 
Numba just-in-time compiling (“jitting”) methods, respectively and as appropriate. The code 
was also made receptive to GPU computation. The result was approximately a 50x speed-up. 
Overall, these changes required a substantial rewriting of thousands of lines of code. 

The improved algorithm was used on a three-site, heterogeneous system. This system 
was composed of Cyanine-3.5 (Cy3.5), Cy5, and Cy3. The results for the monomers’ linear 
absorption spectra and trimer’s linear absorption and circular dichroism spectra are shown in 
Figure 4. By comparing the dimer spectra in Figure 3 with the trimer spectra in Figure 4, it is 
apparent by the larger quantity of red bars in Figure 4 that there are many more states, and 
corresponding optical transitions, involved. Generally speaking, in the vibronic model, even 
considering only 3 electronic states containing 3 vibrational sub-levels each is enough for the 
blue edge of the spectrum to encompass a very large number of overlapping spectral peaks. As 
a result, it should not be attempted to judge peak widths, electronic couplings, transition 
frequencies, or similar parameters from the bluer peaks without a physical model like the one 
used here. This increasing complexity compared to the dimer model also explains why it is 
difficult to get as precise coincidence between the computed and measured spectra. 
Additionally, when more Sites are present, then more variations can exist in terms of defects, 

 
Figure 4. (a-e) The absorption and circular dichroism spectra of the DNA-scaffolded 
Cy3.5Cy5Cy3 trimer system are shown, as well as the constituent monomers’ spectra. (f) The 
aggregate structure of the trimer system is shown, as obtained by the genetic algorithm. 
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where one or more of the Sites are missing in a small proportion of the samples. This 
polydispersity is not included in the model, but it could also explain some of the variations 
found between the computed and experimental spectra. Nonetheless, the model predicts a 
physically plausible configuration, in which the Cy3.5 and Cy5 are aggregated, while the Cy3 is 
more distant. The Cy3.5 and Cy5 have zero base-pair separation in the system, while the Cy3 
does not, making this solution plausible. The nanoscale parameters for the trimer system are 
shown in Table 2. Note that Table 1 shows the difference in the angles and positions between 
the two monomers, because that reduces the number of parameters in the dimer system; while 
Table 2 shows their values, because there is no similarly easy simplification. 
 These results indicate that the vibrational mode is nearly unchanged, when comparing 
Cy3.5 and Cy3, at 1158 and 1157 cm-1, respectively. Meanwhile, Cy5 has a vibrational frequency 
of 1116 cm-1. This result indicates that the vibrational mode likely depends more on the chain 
bridging the two conjugated rings, than on the conjugated rings themselves. The Cy3.5 and Cy5 
moieties have only a 0.2 cm-1 ground-state offset, while the Cy3 is more offset at 1432 cm-1. 
 
 Hierarchical equations of motion. HEOM was used to calculate two systems. The first 
was a 14-Site DNA-scaffolded system whose structure was determined by MD simulations,40 
and the second was a trimer whose structure was deduced using the genetic algorithm method.  
 The 14-Site system was intended to be a molecular wire for energy transport, where the 
energy flows from a Donor end to an Acceptor end of its molecular network. This system was 
composed of two Donor Sites (Alexafluor 488 or AF488), followed by 10 Relay Sites (Cy3.5), and 
finally two Acceptor Sites (Alexafluor 647 or AF647). In order to understand the roles that the 
individual Sites played in this energy transport, the energy-transport dynamics were modeled 
using HEOM. The reason for using this more computationally expensive method, instead of 
other energy-transport models such as the Redfield and Förster models is that it, unlike these 
latter two models, HEOM interpolates between the extremes of stronger intra-network 
coupling or stronger system-bath coupling.41 Because the systems under investigation are not 
guaranteed to be in either category, HEOM is used to take away the dependence on it.  

The 14-Site Hamiltonian was computationally expensive to calculate, so the system was 
considered in terms of three subsets. The first five Sites, central ten Sites, and five last Sites 

Table 2. The inclination angle (𝜃), azimuthal angle (𝜙), and position coordinates (𝑥, 𝑦, 𝑧) are 
shown, as well as the optical gap (𝑬𝟎W𝟎), vibrational spacing (∆𝑬𝒗), and electronic energy 
offset (O).  

 Cy3.5 Cy5 Cy3 
𝜽 (deg.) 0 22.9 150.6 
𝝓 (deg.) 0 63.2 56.9 
𝒙 (Å) 0 4.8 5.2 
𝒚 (Å) 0 -0.7 8.5 
𝒛 (Å) 0 -0.6 9.8 

𝑬𝟎W𝟎 (cm-1) 16,982 15,486 18,245 
∆𝑬𝒗 (cm-1) 1,158 1,116 1,157 

O (cm-1) 0 -0.2 -1,432 
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were separately calculated. Note that some of the Relay Sites were computed twice using this 
approach. The first five Sites were important because they were composed of the two Donor 
sites, as well as the nearest three Relay Sites that could act as energy acceptors in an energy-
transport process. Likewise, the last five Sites included three Relay Sites that could act as 
energy donors to the two Acceptor Sites. The Relay itself was calculated to assess transport 
across the long (10-Site) segment of homogeneous monomers. The dynamics resulting from 
these calculations are shown in Figure 5. Note that, because the monomers were spaced 
several nanometers apart, there are no oscillations indicative of coherent energy transport. 
These dynamics proceeded mainly by the Förster energy transport model. 

 
Figure 5. The electronic population dynamics are shown for the specified Sites (n), as 
calculated using HEOM. (a) The dynamics of the first five Sites within a 14-Site system are 
shown, containing two Donor monomers (1-2) and three Relay monomers (3-5). Sites 1-2 are 
initially populated. (b) The dynamics of the last five Sites are shown, containing three Relay 
monomers (10-12) and two Acceptor monomers (13-14). Sites 10-12 are initially populated. 
(c-d) The dynamics are shown when only Site 3 is initially populated (c) or when all of the 
Sites are initially populated (d). The transport across these various sub-sections of the 
molecular network are represented by these population dynamics. 
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 Separately, the 3-Site system was investigated using HEOM. In this representative 
calculation, the Cy3.5 Site was initially populated. Its vibronic Hamiltonian contained 81 states, 
all of which participated in the population dynamics; but in the interest of brevity only a few 
subsets of the population dynamics are plotted here (Figure 6). The population dynamics are 
shown for the lowest vibronic state for each of the Sites, the second-fourth vibronic states, the 
lowest three vibronic states for Cy3.5, and the second-fourth states for Cy3.5.  
 Next, the heat currents are considered. These currents represent the energy transport 
dynamics between the chromophore system and its environmental bath, which are an 
important part of the quantum mechanical dephasing process. These results are available to 
HEOM, and unavailable to the Redfield and Förster models, because they involve quantum-
mechanical entanglement between the system and its environmental bath states. Whereas 
these other models only treat the environment in a phase-averaged sense, which therefore 
averages out the quantum mechanical motion, HEOM retains the bath’s phase information and 
therefore is capable of determining these quantum-mechanical heat currents. Following the 
methodology by Kato and Tanimura,36 these currents are considered from the perspectives of 
the system energy, or the bath energy (Figure 7).  
 
 Random Forest Machine-Learning Algorithm. The Random Forest Machine-Learning 
Algorithm was used to investigate the contributions of individual Sites toward energy transport 
in a 14-Site DNA-scaffolded molecular network. Realistic functional materials will often require 
large molecular networks, however their complexity and computational cost increase with size. 

 
Figure 6. The population dynamics are shown for various subsets of the states for a 3-Site 
DNA-scaffolded molecular system.  
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Therefore, it becomes preferable to use experimental methods such as FRET measurements to 
understand their optimization rules. However, due to the complexity, machine-learning 
methods can recognize trends or patterns that unaided human observation can struggle to find. 
Furthermore, the modular nature of DNA-scaffolded systems allows systematic investigations. 
However, this process can be challenging when the variations have a non-trivial impact on the 
figures of merit, as is the case here with the impact of the molecular aggregation characteristics 
on the circular dichroism spectra for instance. Here, over 100 variations of the 14-Site system 
were made by removing zero or more Sites from the system. As the result, the eigenstates and 
eigenvectors of the system Hamiltonian were changed and the energy-transport efficiencies 
across the system varied in non-trivial ways. Therefore, machine-learning methods were used 
to understand the patterns within this big-data approach.  
 The linear Importance indicators of the various Sites were investigated, as well as their 
nonlinear Importances (Figure 8). Linear Importances are those that depend on the individual 
Sites without regard to the other Sites. In contrast, Nonlinear Importances describe cooperative 
or inhibiting effects that depend on clusters of Sites instead of just individual ones. Using these 
methods, three figures of merit were investigated. They were the Donor-quenching, Relay-
quenching, and Wire-transfer efficiencies. These figures of merit coincide approximately with 

 
Figure 7. The bath (a, c) and system (b, d) heat currents are shown for the lowest vibronic 
state of all the Sites (a, b) and Cy3.5 alone (c, d). 
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the sub-sections of the molecular network used to calculate the population dynamics in Figure 
4. Likewise, the linear and nonlinear variable importances were obtained for the donor- and 
relay-quenching efficiencies (Figure 9). 
 

 
  

 
Figure 8. The dependence of the Wire Transfer FRET efficiency on the individual Relay sites is 
shown. (a) The linear variable importance is shown. (c) The nonlinear variable importance is 
shown, for when the Relay (17,094 cm-1) or Donor (21,459 cm-1) segments are excited. (b, d) 
Histograms are shown indicating the nonlinear variable importance of the indicated regions 
within the nonlinear variable importance 2D plot. 
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Discussion 
 The results focused on two systems, the 14-Site and 3-Site chromophore networks. The 
14-Site system was intended to be a photonic wire, which transports energy from two initially 
photoexcited Donor Sites, through 10 Relay Sites, and finally into two Acceptor Sites.40, 42 These 
Sites were arranged so that their excited-state potential energy surface allowed energy to flow 
downhill from the Donor to Acceptor Sites. While the detailed study of this system is contained 
in a manuscript currently submitted for publication,40 the results are summarized here. The 
Random Forest analysis indicates that Sites 5 and 10-12 have cooperative effects that are 
important for energy transport. This result establishes that cooperative effects can take place 
over long distances, which in this case was as much as 20 nm and therefore too distant for 
direct energy transfer using a FRET mechanism. These cooperative effects are therefore 
indirect, where the energy originating on Site 5 eventually hops onto several Sites before 
reaching Sites 10-12. This analysis also indicated that Site 3 has an inhibiting interaction with 
most of the other Sites, which is likely due to its position furthest from the Acceptor Sites. It 
therefore provides a position that the population can reach through random walk or direct 
transfer from the Donor segment, which then has trouble percolating through the network to 
the Relay-Acceptor interface. Meanwhile, the Donor-quenching and Relay-quenching revealed 

 
Figure 9. The linear (a, b) and nonlinear (c, d) variable importances are shown for the donor 
quenching efficiency (a, c) and relay quenching efficiency (b, d).  



 18 

a strong distance-dependence for direct energy transport from the Donor or Relay sites, 
respectively. However, especially in the case of the Donor-quenching results, there were 
cooperative interactions throughout the Relay Sites. These are difficult to explain, but may have 
to do with how the presence of these Sites mix to influence the vibronic eigenstates that are 
involved with the transport. Meanwhile, the HEOM results indicate that transport proceeds 
approximately equally from both of the Donor Sites, and that the Relay sites also accept the 
energy approximately equally, so that there is only a single transport channel. However, at the 
Relay-Acceptor interface, Site 12 is mainly involved with the energy transport to the acceptors. 
The other Sites therefore act cooperatively with Site 12, and influence the energy transport to 
Sites 13-14 mostly indirectly. 
 For the 3-Site system, the genetic algorithm was able to produce nanoscale parameters 
that could be used as inputs to produce the HEOM results. The aggregate structure obtained by 
the genetic algorithm made sense, because neighboring (0 base-pair separation) Sites were 
aggregated together, while the Site that was known to be more distant appeared distant in the 
genetic algorithm results as well. In the preliminary analysis of the HEOM results, the coherent 
dynamics are found to last for approximately 200 fs in both the system’s population dynamics 
and heat currents. During this time, much of the signal decays as well for the initially populated 
vibronic state (State 1). Therefore, the vibronic coherences are present for the energy-transport 
dynamics in these systems, and the system is in a regime where the population motion can be 
controlled by coherent quantum-mechanical effects. The coherent heat exchange between the 
system and bath takes place for about 100 fs, as indicated by the oscillating pattern in the Bath 
Heat Currents. However, the coherences last about 200 fs in the System Heat Currents, 
suggesting that the coherences between the system and bath persist for about 100 fs, but that 
the system’s coherences persist for twice as long among the other vibronic states in the system. 
These results establish that the heat currents in these DNA-scaffolded systems are capable of 
coherent quantum-mechanical motion; but the results are recent and preliminary, and 
therefore have not yet been fully analyzed. After understanding these results, the next step is 
to calculate the results for the same set of molecules under different hypothetical orientations, 
to determine the influence on the System and Bath Heat Currents and understand how these 
dynamics relate to the nanoscale structural and energetic system parameters. 
 

Conclusion and Future Directions 
 The methods discussed here have enabled the nanoscale characteristics to be 
understood in DNA-scaffolded molecular networks, as well as the contributions of their Sites to 
energy transport. Having multiple approaches like the ones shown here allow diverse systems 
to be interrogated. Those that are too large for expensive computational work can be probed 
experimentally and analyzed using machine-learning methods, while the quantum-mechanical 
heat currents of smaller systems can be understood more precisely using the genetic algorithm 
and HEOM methods. The coherence lifetimes can also be obtained, providing a substantial suite 
of tools for understanding how to optimize the coherent motion for quantum-mechanical 
functions.  
 The first future direction will be to complete the construction of a 2D electronic 
spectrometer, which is able to obtain experimental measurements of the coherent dynamics to 
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compare to the computational results. The combination of these techniques will grant both 
predictive power for strong-performing members, and also experimental corroboration of 
predictions or simulated results.  
 The second future direction is to use these methods, which are now developed and 
working properly, to understand how to control the heat currents based on the molecular 
parameters. These heat currents are related to dephasing in these systems. As discussed in the 
introduction, organic systems are usually not considered for quantum information applications 
because of their fast dephasing, so controlling these characteristics is a high-value target for 
making these systems more viable for these applications. 
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