
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

77853-MA-ST1.1

860-984-8766

W911NF-21-P-0004

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

Approved for public release; distribution is unlimited.

UU UU UU

Final Report

UU

09-06-2021 1-Nov-2020 30-Apr-2021

Final Report: ISimA: Intelligent Simulation for Testing and
Training of Autonomous Single- and Multi-Vehicle Systems

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Jonathan Butzkec. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

RobotWits, LLC
1100 Crescent Pl

Pittsburgh, PA 15217 -1111

665502
665502
665502
665502
665502
665502

Agency Code: 21XD

Proposal Number: 77853MAST1

Address: 1100 Crescent Pl, Pittsburgh, PA 152171111
Country: USA
DUNS Number: 079139167 EIN:

Date Received: 09-Jun-2021
Final Report for Period Beginning 01-Nov-2020 and Ending 30-Apr-2021

Begin Performance Period: 01-Nov-2020 End Performance Period: 30-Apr-2021

Submitted By: Jonathan Butzke
Phone: (860) 984-8766

STEM Degrees: 0 STEM Participants: 1

RPPR Final Report
as of 10-Jun-2021

Agreement Number: W911NF-21-P-0004

Organization: RobotWits, LLC

Title: ISimA: Intelligent Simulation for Testing and Training of Autonomous Single- and Multi-Vehicle Systems

Report Term: 0-Other
Email: jon@robotwits.com

Distribution Statement: 1-Approved for public release; distribution is unlimited.

Major Goals: The ISimA project was designed to develop a state-of-the-art software simulation system leveraging
commercial off-the-shelf simulation engines to allow for the testing, training, and evaluation of autonomous single-
and multi-vehicle systems. In Phase I of the project, we focused on the following three questions in order to prove
the feasibility of the overall architecture:

1. The first question is whether it is feasible to build a single simulation tool that will provide adequate fidelity of
simulation for testing and training autonomous single- and multi-vehicle systems operating off-road. In particular,
the simulator will need to provide proper simulation of sensing (both LIDAR and RGB camera), vehicle dynamics,
vehicle-to-terrain interaction, limited communication bandwidth between multiple vehicles, and simulation of the
behavior of the virtual world.

2. The second question is whether it is feasible to develop an intelligence engine for generating test scenarios
and dynamic control of dynamic entities within ISimA to explicitly optimize the level of confidence in the ability of
autonomous vehicles to achieve their designated tasks.

3. The third and the final question is whether ISimA can be built on top of open-source software under proper
licenses that will allow for unrestricted use of and the ability to extend ISimA by others.

To support those major goals, we have completed the following tasks:

1. Evaluation of existing simulator systems;

2. Designed the ISimA framework;

3. Designed the Intelligent Scenario Generation framework;

4. Designed a methodology to support custom vehicle-terrain interfaces;

5. Implemented and demonstrated the feasibility of key elements of the ISimA and Intelligent Scenario Generation
frameworks.

Accomplishments: Completed all tasks as part of the Phase I project.

1. Evaluation of existing simulator systems - complete Dec 20;

2. Designed the ISimA framework - complete Apr 21;

3. Designed the Intelligent Scenario Generation framework - completed Apr 21;

4. Designed a methodology to support custom vehicle-terrain interfaces - completed Apr 21;

5. Implemented and demonstrated the feasibility of key elements of the ISimA and Intelligent Scenario Generation
frameworks - completed Apr 21.

See uploaded PDF for more detail.

Report Date: 30-Jun-2021

INVESTIGATOR(S):

Phone Number: 8609848766
Principal: Y

Name: Jonathan Butzke
Email: jon@robotwits.com

RPPR Final Report
as of 10-Jun-2021

Training Opportunities: Nothing to Report

Results Dissemination: Held discussions with Department of Energy, the Army Cold Regions Research
Laboratory, Ground Vehicle Systems Center, and other potential future users to discuss their needs regarding a
simulation framework. We have incorporated their feedback into our design as well as in our follow-on Phase II
proposal.

Honors and Awards: Nothing to Report

Protocol Activity Status:

Technology Transfer: Nothing to Report

PARTICIPANTS:

Person Months Worked: 6.00 Funding Support:
Project Contribution:
National Academy Member: N

Person Months Worked: 6.00 Funding Support:
Project Contribution:
National Academy Member: N

Person Months Worked: 6.00 Funding Support:
Project Contribution:
National Academy Member: N

Person Months Worked: 6.00 Funding Support:
Project Contribution:
National Academy Member: N

Participant Type: PD/PI
Participant: Jonathan Michael Butzke

Participant Type: Other Professional
Participant: Dan DeLano

Participant Type: Faculty
Participant: Maxim Likhachev

Participant Type: Graduate Student (research assistant)
Participant: Manash Pratim Das

RPPR Final Report
as of 10-Jun-2021

I certify that the information in the report is complete and accurate:
Signature: Jonathan Michael Butzke
Signature Date: 6/9/21 7:01PM

Partners

Pittsburgh, PA USA
Carnegie Mellon University

4
CMU and RobotWits collaborated throughout this project including on conducting detailed analysis of
existing simulation systems, generation of the simulation system framework, design of the vehicle-ground
interaction interface and conducting the demonstration and assessment of the prototype simulation
framework.

1. Contract and Proposal Number: W911NF21P0004 A20B-T006-0268

2. Contractor’s name and address: Dr. Jonathan Butzke, 5001 Baum Blvd STE 434, Pittsburgh,

PA 15213

3. Title of the project: ISimA: Intelligent Simulation for Testing and Training of Autonomous

Single- and Multi-Vehicle Systems

4. Contract performance period: 01 Nov 2020 – 30 Apr 2021

5. Total contract amount: $166,478.30

6. Amount of funds paid by DFAS to date: $138,731.92

7. Total amount expended/invoiced to date: $166,478.30

8. Number of employees working on the project: 2 + 2 subcontractors (CMU)

9. Number of new employees placed on contract this month: 0

STTR Topic: Intelligent Simulation for
Testing and Training Autonomous Teams
(ISimA)

1 OVERVIEW AND PROJECT OBJECTIVES

The ISimA project was designed to develop a state-of-the-art software simulation system

leveraging commercial off-the-shelf simulation engines to allow for the testing, training, and

evaluation of autonomous single- and multi-vehicle systems. In Phase I of the project, we

focused on the following three questions in order to prove the feasibility of the overall

architecture:

1. The first question is whether it is feasible to build a single simulation tool that will

provide adequate fidelity of simulation for testing and training autonomous single- and

multi-vehicle systems operating off-road. In particular, the simulator will need to

provide proper simulation of sensing (both LIDAR and RGB camera), vehicle dynamics,

vehicle-to-terrain interaction, limited communication bandwidth between multiple

vehicles, and simulation of the behavior of the virtual world.

2. The second question is whether it is feasible to develop an intelligence engine for

generating test scenarios and dynamic control of dynamic entities within ISimA to

explicitly optimize the level of confidence in the ability of autonomous vehicles to

achieve their designated tasks.

3. The third and the final question is whether ISimA can be built on top of open-source

software under proper licenses that will allow for unrestricted use of and the ability to

extend ISimA by others.

To answer these questions, we have designed a simulation architecture called ISimA and tested

critical technologies as a proof-of-concept. There are three main characteristics that set this

software apart from existing simulation tools. First, ISimA provide a suite of simulation

capabilities directed specifically towards the operation of single- and multi-vehicle systems

performing missions in unstructured environments and over a wide range of terrains. Second,

ISimA is integrated with an intelligent scenario generation capability for the automated creation

of test scenes and supporting independent autonomous control of dynamic entities present in

the virtual world in order to dynamically provide test conditions that build up confidence in the

ability of autonomous vehicles to accomplish their designated tasks. Finally, ISimA is designed

on top of existing open-source software and allows for extension of the baseline system by

other parties.

1.1 SUMMARY OF PHASE I WORK PERFORMED
In phase I we have completed five primary tasks supporting our overall objective.

1. Evaluation of existing simulator systems

2. Designed the ISimA framework

3. Designed the Intelligent Scenario Generation framework

4. Designed a methodology to support custom vehicle-terrain interfaces

5. Implemented and demonstrated the feasibility of key elements of the ISimA and Intelligent

Scenario Generation frameworks

2 EVALUATION OF EXISTING SIMULATOR SYSTEMS

Before we started designing the ISimA system, we first evaluated the existing open-source simulation

software. We looked at all of the features required to adequately support our goal of a system capable

of training, testing, and evaluating autonomous single- and multi-vehicle systems. In particular, we

evaluated each candidate under the following criteria:

1. Physics Engine – fidelity and accuracy

2. Terramechanics – modeling of tire-ground interface, physics support for deformable surfaces,

off-road capabilities, difficulty in adding new tire-ground interface models

3. Customization – ability to generate custom maps and environments, modeling scenarios

4. Open-source/licensing – what are the restrictions on licensing

5. ROS support – capabilities to integrate with ROS or other middleware

6. Photo-realistic rendering – ability to support high-definition camera models for accurate

simulation of camera-based sensors

7. GPU support – ability to speed up processing by using the GPU

8. Built-in sensor support – which sensors are available off-the-shelf such as LIDAR, RADAR, GPS,

IMU, etc., how difficult to add custom sensors

9. Scenario details – pedestrians, weather conditions, different/custom vehicles and their

associated intelligence capability/interface

10. Plug-in support – ability to automate aspects of the simulation system or tune environmental

parameters via plug-in API

11. Operating System support

12. Communications modeling – inter-vehicle communications modeling with the capability to

insert delays, simulate packet loss, or model occlusions/dead zones

Based on these 12 criteria we examined 13 candidate simulation systems, both open- and closed-source.

While none of the candidates were able to perform all of the required elements, two broad categories

met the majority of requirements and also had a significant installed user base developing new

capabilities. These two groups were the Unreal Engine based simulators, to include the two derivatives:

CARLA (self-driving car focused), and AirSim (autonomous aerial vehicle focused); and the Unity

simulator system. The full comparison and evaluation details can be found in Appendix 1.

Ultimately, we selected the CARLA simulator running on Unreal Engine as our baseline simulator for

three primary reasons:

1. Large installed user base meant large amounts of support and expertise exists for making

modifications and implementing new features

2. Well defined capability to create custom scenarios easily as well as stable API for interacting

with simulator system

3. Built in autonomous vehicle capabilities allow for jumpstarting new project development

3 FRAMEWORK FOR ISIMA

Overall, the ISimA framework was responsible for supporting the simulation of off-road navigation tasks

for single- and multi-vehicle test scenarios. These scenarios could encompass a variety of terrain types,

weather conditions, communication environments, and vehicle types. ISimA was designed to support

this variety through a combination of purpose designed components coupled with existing open-source

simulation engines along with a scheme to allow for user created or specified plug-ins to augment this

baseline system as required.

The ISimA framework is built around the Unreal Engine 4 and CARLA functionality to provide the

additional flexibility and functionality required to support off-road simulation of multiple vehicles. The

primary ISimA components are built on the Unreal Engine foundation with custom CARLA plug-ins to

extend the functionality to the CARLA specific capabilities. By using this setup, we can reuse existing

capability from both CARLA and Unreal Engine, while allowing for new functionality across both. The

overall system is shown in Figure 1.

Plugins provide the implementation of objects such as Autonomous Agents, Weather Engine,

Communications Emulator, and Sensors. To enable any of these objects in the simulator, they must be

spawned into the Virtual World via the Runtime Environment Builder or Autonomous Agent Handler(s).

Autonomous Agent Handler(s) deals with spawning / despawning only autonomous agents (each agent

can have its own handler), while Runtime Environment Builder deals with spawning / despawning

anything other than autonomous agents, such as landscape, map objects, world sensors, weather

engine components, etc.

Once all the necessary objects are spawned into the Virtual World, all the runtime data such as

controlling the agents, reading scenario performance, world state, ground-truth navigation maps etc.,

can be accessed from the objects in the world via the APIs as Runtime World Data.

Thus, ISimA has only three Data Interfaces: two of them only deal with spawning / despawning

(Environment Description and Autonomous Agent Description), and the last one deals with run-time

data.

Figure 1: ISimA Overview

The Unreal Engine based components are:

1. Runtime Environment Builder – creates the simulator environment for a given test run based on

the Environment Description provided. This also allows other objects to be spawned in the

simulation.

2. Procedural Landscape Builder – constructs the physical landscape in the simulator based on

directions from the Runtime Environment Builder

3. Ground Truth Map Generator – creates the maps used by various other components based on

the environment and virtual world generated by the Runtime Environment Builder

4. Multi-agent Communication Simulator – provides a simulation pathway for vehicle-to-vehicle

and vehicle-to-infrastructure communications

5. Autonomous Agents – extends the existing Unreal Engine framework for wheeled vehicles to

allow for additional motion modalities such as tracked, legged, or aerial vehicles. Additionally,

allows for custom physics for wheeled vehicles.

6. Weather Physics Engine – Allows weather effects to modify terrain characteristics and the

underlying vehicle physics simulation

Within CARLA there are four planned plug-ins to provide additional capabilities:

1. Custom Vehicle Physics – allows for replacement of the standard NVidia PhysX engine for

wheeled vehicles with a custom physics simulation for special case scenarios and to allow for

weather-based physics

2. Weather Bridge – ties CARLA weather phenomena to the Weather Physics Engine

3. Custom Sensors – allows for additional sensor modalities as well as weather impacts to sensors

4. Augmented Semantic Data – Provides higher level labeling of elements of the Virtual World to

allow for training, testing, and specialized physics

3.1 UNREAL ENGINE-BASED COMPONENTS OVERVIEW

3.1.1 Runtime Environment Builder

The Runtime Environment Builder is the principal component for establishing and defining the

Virtual World within the simulation system and is shown in Figure 2. It is responsible for the

creation and destruction of elements within the simulator Virtual World (called, respectively,

spawning and despawning) such as landscape, map objects, world sensors, weather engine

components etc. The one exception is all controlled vehicles1 are spawned / despawned by their

respective Autonomous Agent. To accomplish this, the Runtime Environment Builder has access

to a library of objects such as 3D meshes and weather engine objects, which can be spawned

and initialized in the Virtual World.

The Runtime Environment Builder internally calls the Procedural Landscape Builder module to

generate 3-D off-road environments without manual 3D modelling. Additionally, it can populate

objects for later use by CARLA into the appropriate library. This module can also change the

environment during runtime providing for quick scenario changes without requiring time

consuming simulator resets. It can also generate and track numerous sub-worlds inside a single

Virtual World.

Figure 2: Runtime Environment Builder

3.1.2 Procedural Landscape Builder

This module allows for the generation of 3-D terrains without manual construction based on

directions from the Runtime Environment Builder. It can programmatically generate height

maps, road networks, and terrain types (such as mud, grass, rock, etc.) and use that information

1 A controlled vehicle is one that has logic attached to its motion so that it moves about the environment according
to some directives. For example, other friendly forces, hostile forces, and moving neutral forces are all controlled
vehicles, while a permanently stationary vehicle is considered part of the landscape and is not a controlled vehicle.

for constructing the follow-on OpenDrive formatted map information as well as other required

data for the Ground Truth Map Generator. This data is primarily for use by the ISimA system,

rather than for the autonomous agents themselves. The Autonomous Agents get their maps

from the Ground Truth Map Generator.

3.1.3 Ground Truth Map Generator

Creates the maps used by the Autonomous Agents based on the Virtual World and a trigger

from the Runtime Environment Builder. The Ground Truth Maps Generator is depicted in Figure

3. Upon trigger, this module will generate all necessary maps such as Elevation Map, Occupancy

Grid, Semantic Segmentation Map, etc. which might be required by the Autonomous Agents for

navigation. By separating this functionality from the Procedural Landscape Builder, it becomes

possible to introduce mapping errors into the Autonomous Agents’ maps while still retaining

perfect mapping within the simulator system for other purposes.

It is supported by Augmented Semantic Data module which augments the standard CARLA map

data to add semantic labels for objects that can be found in off-road environments.

Figure 3: Ground Truth Maps Generator

3.1.4 Multi-agent Communication Simulator

Provides a simulation pathway for vehicle-to-vehicle and vehicle-to-infrastructure

communications within the ISimA environment and is shown in Figure 4. This module is capable

of limiting communication between transceivers based on geography, distance, jamming, and

other considerations. It is designed to support line-of-sight, point-to-point, satellite, and other

communication paradigms by allowing for custom communication emulators as plug-ins.

It has two components: one which simulates how a message would pass from point A to point B

in the Virtual World considering the transmission media. The other emulates the network graph

which can be modified to support any type of network structure.

Figure 4: Multi-Agent Communication Emulator

3.1.5 Other Autonomous Agents

The CARLA/Unreal Engine framework natively supports Autonomous Agents for standard

wheeled vehicles with Ackermann type steering systems. ISimA extends this functionality by

allowing for plug-ins to be added to support a wider array of vehicle types such as tracked,

legged, or aerial vehicles. Furthermore, this function allows additional controlled vehicles to be

spawned in the simulator allowing for more than one controlled vehicle in a given environment.

3.1.6 Weather Physics Engine

The Weather Physics Engine allows custom weather effects to modify terrain characteristics and

the underlying motion control physics simulation as depicted in Figure 5. It performs this by

interfacing with the Custom Vehicle Physics as well as simulating the effect of weather on

Custom Sensors. This module also relies on the CARLA Weather Bridge to pass information to

the CARLA system.

Figure 5: Weather Engine

3.2 CARLA-BASED COMPONENTS OVERVIEW
Within CARLA there are four planned plug-ins to provide additional capabilities:

3.2.1 Custom Vehicle Physics

This module allows for replacement of the standard NVidia PhysX engine for wheeled vehicles

with a custom physics simulation for higher fidelity vehicle simulation and to allow for weather-

based physics. This module groups all autonomous agents including wheeled vehicles or Other

Autonomous Agents such as legged and flying robots into a single framework as shown in Figure

6. This module however does not include pedestrians, as CARLA natively supports pedestrian

motion and controls. CARLA natively provides support for wheeled vehicles (CARLA Vehicle

Class), which builds upon the wheeled vehicle model of NVidia PhysX (UE4 Vehicle Class).

However, ISimA adds a layer between the two allowing for the integration with user-defined

custom vehicle and terramechanics models as well as integration with weather-modified terrain

functionality. ISimA does allow a standard wheeled vehicle to use the native CARLA interface for

control if desired.

This setup does allow for a user to replace the ISimA custom vehicle physics with a module of

their own (or from a third-party) without impacting the remainder of the simulation system.

Figure 6: Custom Vehicle Physics

3.2.2 Weather Bridge

Ties CARLA weather phenomena to the Weather Physics Engine and serves as a bridge between

the Unreal Engine- and CARLA-based components.

3.2.3 Custom Sensors

Allows for additional sensor modalities as well as weather impacts to sensors. CARLA and

Unreal Engine do not natively support weather impact to sensor systems requiring this plug-in

capability to provide that feature.

3.2.4 Augmented Semantic Data

Provides higher level labeling of components in the Virtual World to allow for training and

testing of Autonomous Agents, as well as for use with the custom physics to apply different

effects for different terrain types. An example of this is the generation of semantic

segmentation maps or semantic camera features.

4 FRAMEWORK FOR INTELLIGENT SCENARIO GENERATOR (ISG)

Outside of the base simulator system, the second principal component developed under this project was

the Intelligent Scenario Generator (ISG) system. This group of sub-components allows for the user to

specify the variable parameters to consider while testing an autonomous vehicle stack, then run a series

of scenarios intelligently modifying these test parameters to evaluate the stacks performance. As part

of ISG, the scenario is analyzed both during and post-run to determine the critical metrics of the

autonomous system under test. Based on these, the ISG system determines which parameters to

modify, as well as by how much and in what direction in response to how well or poorly the

autonomous system performed.

For example, if the user desires to test an autonomy stacks performance in woodland environments,

they may decide to determine at what tree density the stack fails to plan successfully on average. They

could specify that the variable parameter is the density of trees, the ISG would generate an initial

scenario with a baseline density, run the scenario collecting data on the autonomous stack’s

performance, then either if the autonomous system performed well, would increase the density and re-

run the scenario. The ISG system is not limited to modifying single parameters, nor to using parameters

with simple linear effects (i.e., higher tree density monotonically results in lower performance, but cloud

cover may initially improve performance by eliminating glare before reducing performance due to low

light levels. Other variables may have even more complicated impacts on stack performance.)

4.1 ISG COMPONENTS OVERVIEW
The ISG is comprised of 4 primary components as laid out in Figure 7:

1. Intelligent Parameter Generator (IPG)

2. Scenario Configuration Generator (SCG)

3. Scenario Controller (SC)

4. Scenario Analysis (SA)

These components collectively perform the following tasks during a test run:

1. Generate a scenario from the operator input

2. Configure the simulation system to execute the scenario

Figure 7: Intelligent Scenario Generator Overview

3. Monitor performance of the autonomy stack during execution

4. Terminate the simulation environment when required criteria are met

5. Perform post-simulation analysis of stack performance

6. Adjust scenario parameters to meet operator requirements based on the analysis

4.2 ASSUMPTIONS AND REQUIREMENTS FOR ISG
The ISG sub-system is designed to be highly modular allowing for easy expansion of capabilities to meet

operator needs. The initial configuration file that the Intelligent Parameter Generator uses to initialize

the test setup is human readable YAML-like configuration file that the operator will use to specify what

the parameters to adjust during the test run are, what the analysis termination conditions are, the

number and type of vehicles (including whether they are “friendly”, “hostile”, “neutral”, etc.). An

example of the configuration file parameters is shown in Appendix B.

However, due to this high level of configurability, the ISG is tightly coupled with the ISimA simulation

system. In order to have the ability to modify scenario parameters such as surface type, obstacle

placement, and non-player-controlled vehicles, the ISG must communicate with a simulation system

that supports the required API layer for these items.

4.3 BLOCK COMPONENTS DESCRIPTION

4.3.1 Intelligent Parameter Generator (IPG)

The Intelligent Parameter Generator is the core functional component of the ISG. It is this module that

configures the other modules based on the operator input, as well as determines how to change the test

parameters to achieve the desired testing result. The operator input is provided in the form of a YAML-

like test configuration file, while the other communication paths are transmitted via a middleware

system, such as ROS, to the other components. The components of the IPG are detailed in Figure 8:

Intelligent Parameter Generator.

Figure 8: Intelligent Parameter Generator

The test configuration file is a human readable text file with fields for configuring the scenario

environment, setting the type and number of dynamic vehicles in the scenario, specifying the

termination conditions and variable test parameters, as well as other configuration information. Further

details are included in Scenario Test Configuration File.

Based on the test configuration file, the IPG will generate the initial configuration for the scenario and

transmit this to the Scenario Configuration Generator. Once the scenario is complete and the Scenario

Analysis module communicates its final results to the IPG, it uses an update scheme, such as Bayesian

Optimization system (comprised of a Gaussian Process along with a user specified Acquisition Function),

to determine how to modify the variable test parameters for the next run. These modified variable

parameters are combined with the fixed parameters and once again passed to the SCG for the next

simulation run. This process repeats until the desired test end-state is reached2.

4.3.2 Scenario Configuration Generator (SCG)

The Scenario Configuration Generator serves the primary purpose of translating the user- and IPG-

specified configuration requirements into valid simulation components for execution. As part of this

process, the SCG is responsible for the following items as detailed in Figure 9.

1. Autonomous agent configuration – to include setting up required non-player-controlled (NPC)

vehicles

2. Map generation – generates all required maps for the Autonomous Agents and the ISimA

system

3. ISimA configuration – start and goal locations for vehicles, environmental parameters, etc.

4. Scenario Controller configuration – all required configuration parameters for the Scenario

Controller including completion criterion

2 The end-state can have total elapsed time, number of iterations, and other test related criteria as part of it.

Figure 9: Scenario Configuration Generator

5. Scenario Analysis configuration – all required configuration parameters for the Scenario Analysis

module including metrics to be measured from test runs

4.3.3 Scenario Controller (SC)

The Scenario Controller is the portion of the ISG that directly controls the simulator system. It provides

the run/stop/reset commands to the simulator based on the configuration provided by the SCG. It

monitors scenario performance by receiving scenario data from the ISimA system to determine when

the stopping criteria are met. The SC is detailed in Figure 10.

4.3.4 Scenario Analysis (SA)

The final primary sub-component of the ISG is the Scenario Analysis module. This module, using the

configuration provided by the SCG module, evaluates the autonomy stack under test both during run-

time as well as post-run. Once the metrics are calculated for a given run, this data is provided back to

the IPG to determine how the parameters should be modified for the next run.

As this component is likely to have very specific requirements for different users it will support a plug-in

capability in order to allow for user designed metrics and analysis tools to be specified.

4.4 INTERFACE WITH ISIMA
There are three primary input points for the ISG with the baseline ISimA system:

1. Configuration and setup of the autonomous agents (AA)

a. From the SCG to the AA modules

2. Scenario and simulator configuration

Figure 10: Scenario Controller

a. From the SCG to ISimA

3. Start and stop commands

a. From the SC to both the AA modules and the ISimA system

As the simulation is progressing there is a single output interface:

1. Simulation run data

a. From ISimA to both the SC and the SA

5 VEHICLE TERRAIN MODELING

5.1 OVERVIEW
The native Unreal Engine/CARLA simulator system uses the NVidia PhysX engine for wheeled vehicles by

default. This introduces a few known limitations in its accuracy:

1. Each wheel is only collision checked along a single ray

2. Terrain (and thus physics) not modified by weather

3. Terrain is not deformable (no high-centering on snow or mud, for example)

ISimA implements a modified terrain model to improve fidelity of off-road simulation and provide a

proof-of-concept for more advanced terrain interaction models. This module plugs into CARLA and is

implemented via an interface with the Custom Vehicle Physics module as detailed in Figure 6 and

Section 3.2.1.

The prototype implementation provides improved fidelity by determining the terrain type under each

point of contact of the vehicle. In this way, torsional effects can be accurately modeled (for example if

the left wheels are on mud while the right wheels are on solid ground) as well as effects from having one

(or more) wheels lose contact with the ground (for example, while traversing uneven terrain, it may be

possible to lift one wheel off the ground and the wheel-terrain model would update accordingly).

6 DEMONSTRATION SCENARIO

6.1 OVERVIEW
To demonstrate the overall feasibility of our approach we have implemented certain key elements of

the system using the target Unreal Engine 4 / CARLA simulator platform and custom modules. The

proof-of-concept demonstration system generates a programmatically modified terrain and then

executes a series of simulation runs while modifying two test parameters. The Scenario Analysis module

can make the two test parameters easier or harder independently to test the capabilities of the

autonomy stack under test using the simulation results to determine both direction and magnitude of

the changes to make.

6.2 EXAMPLE SCENARIO SETUP
The demonstration test scenario consists of a hilly environment with a narrow traversable path crossing

through it. The central section of this path widens considerably allowing for multiple valid trajectories

through this portion. In the middle of this wider area, there is a band of icy ground with very low

traction for our test autonomous vehicle. This ice patch width can be varied programmatically to allow

for testing of the autonomous system capabilities for reasoning about the limited traction as well as

testing the controller sub-system on its ability to maintain and/or recover from unpredicted loss of

traction.

Additionally, this wider area may have randomly placed trees at a programmatically determined density.

These trees impact the autonomous vehicle’s ability to take its desired path across the ice patch as well

as increasing the difficultly of the base planning problem of navigating through the environment without

collision.

6.3 COMPONENTS IMPLEMENTED
The baseline ISimA simulator is a modified Unreal Engine 4 and CARLA codebase with custom export

functionality implemented to generate the required map components for the Autonomous Agents.

Additionally, prototype interfaces have been implemented to allow for data passing between the core

ISimA system and the Intelligent Scenario Generator system.

For the Intelligent Scenario Generator system, we have implemented partial versions of all sub-

components. For our demonstration system, the ISG is capable of modifying only 2 test parameters of

the scenario allowing for changes in ice coverage and obstacle (tree) density. The demonstration system

also uses a single map for all scenario tests and does not modify the elevation profiles or terrain types.

The SCG is currently limited to only instantiating a single Autonomous Agent and performs only the

minimum configuration of the ISimA system.

The SA sub-component uses a simple linear regression due to the known monotonic relationship

between the two available test parameters and overall autonomy system performance. Additionally,

the analysis portion of the SA module only performs a rudimentary analysis of system performance.

6.4 VIDEO DESCRIPTION
In the video located at the below link is a demonstration of the ISimA Framework and Intelligent

Scenario Generator prototype implementation. In this video, the system initially runs three scenarios:

1. No trees and no ice along route

2. Minimal trees and ice along route

3. Medium trees and ice along route

After these first three runs are complete, the ISG system analyzes the performance to the autonomy

stacks operation and generates a new parameter set for run #4. The simulator is run with the new

parameters and the results are again analyzed by the ISG system. Since the vehicle was able to

successfully navigate through the trees and ice as presented in run #4, the ISG system generates a

harder set of parameters (medium high trees with a large ice patch). With this harder set of parameters,

the Autonomous Agent attempts to navigate the course and, in this case, collides with a tree due to the

ice. Depending on the test setup, the system would either halt and report its results at this point, or re-

run the simulation with a set of parameters in between scenarios #4 and #5 in difficulty.

https://drive.google.com/file/d/15UObrRg1p1Hn_Yrswh_5v9h8KgCbjGkq/view?usp=sharing

7 TECHNICAL FEASIBILITY OF FOLLOW-ON PHASE

The prototype implementation of the ISimA framework demonstrates the technical feasibility of

expanding implementation of the full system. All critical elements of the ISimA framework have been

tested as part of Phase I. For a Phase II project, the following tasks would be completed:

1. Cloud Capable Infrastructure

2. Multiple Vehicles

a. Realistic communication simulation

b. Dynamic intelligence of NPC vehicles

3. Rich real-world scenarios

a. Deformable terrain modeling

b. Weather effects on sensing

c. Validate simulation with limited physical twin

4. Soft real-time capability

5. Integration with ADPT Drive Autonomy stack

6. Intelligent generation of test conditions

Appendix A. COMPARISON OF EXISTING SIMULATION SYSTEMS

Yellow – partial support for requirements; Red – no or limited support for requirements; Blank – unknown level of support

Name

Base
Simulation
System

Physics Engine State of tire
/ road
interaction
physics

Physics for
driving
simulation

Any off-
road
limitations

Ease and quality
of Custom
environment

Off-road

Open
source /
Free
License

ROS Easy to scale
up to Photo
realistic
rendering

GPU vs
CPU for
Physics
Engine

Real
time
factor

Sensors

Existing
sensors +
ability to add
new

Pedestrian,
weather and
vehicles
support

Plugin Support +
Documentation

Operating
System +
Cloud Support

Ability to simulate
Communication
delays

How would we
be able to
modify road-
tire
interactions:

1) Change
params of an
in-built model
2) Change the
model
3) None

Unreal

Base for a lot
of high-
fidelity
simulators

Yes. Very good
physics engine made
for Games and
Simulators

Uses Nvidia PhysX

Supports
basic
interaction.
Some
attempts to
add a high-
fidelity road-
tire
interaction
model in
progress.

No

Has Unreal editor
to edit
environments.
Tools to add in
common elements
like foliage,
landscape.

Extensive tools to
create landscape
and terrains

Free to

use for

our use-

case

[1]
Provides a
wrapper
for ROS.
Not sure
about 2.0

State of the art GPU

RTF Y

Camera
exists.

[1] provides
GPS, Lidar,
IMU. Can add
new sensors

Yes, has a
pedestrian
modelling
system.

Lots of 3rd party
pedestrian AI
plugins exits

Support visual
scripting language
(Blueprint) for
prototyping. Which
can be converted to
efficient C++.
Support python
scripting.

Windows
recommended
for manually
modeling
environments

Supports Linux

have to emulate
communication delay
b/w agents

Change
params of the
PhysX model

Can also
change model

Carla
Built on
Unreal

with driving
features

Uses Unreal Engine Same as
Unreal.
Except,
addition
such as [1]
might break
other
features

One can create
custom maps, but
need to use
specific
description for
road, traffic lights,
foot-paths etc.

Yes
MIT
license

But
requires
UE4
license

ROS
bridge
exists. No
stable
support for
2.0 yet.

Uses UE4 GPU

RTF Y

Yes, has all
autonomous
driving related
sensors. Can
add new ones.

Has support to
control weather.
Controller
pedestrian and
other traffic
might be
somewhat
restrictive.

Based on C++ and
open source.

Large community

Supports Both -same- Same as above
for vehicle.

Can add
cuboidal
patches in the
env with diff
friction

AirSim
Built on
Unreal

Uses Unreal Ability to
write new
physics
model:

Can load custom
UE4
environments
easily

But
requires
UE4
license

Partial
support

Uses UE4 GPU

RTF Y

Has the
common
sensors

No pedestrians.
Can add other
vehicles and
weather

Opensource. Not
good documentation
support

Support both -same- Can change
both model and
params.

Nvidia Drive
Sim

Very high-
fidelity road-
tire
interaction.

Not open
source

Bullet Has better n-body
simulation than
Nvidia PhysX

Has a very
simple
vehicle
model. But
Bullet is
highly
configurable

Not easy. Not
developed to
support off-road
terrains

zlib
license

Good
ROS
support

Does not
support
photoreal
rendering.

In future might
get integrated
with Unity

GPU

RTF Y

Camera, Lidar.
Not high-
fidelity

None Large community.
Python and C++
plugins

Both -same- It is a
barebones
physics
engine.

Need to model
everything
ourselves.

Gazebo
Link

ODE,Bullet,Simbody,
DART

Vehicle
plugin
exists. But
not does not
have
realistic
models

Difficult Yes Yes Uses Ogre3D.
Not photoreal

CPU
RTF N

Yes Weather: not off
the shelf.

Very configurable
with plugins

Linux preferred -same- Custom model

https://www.youtube.com/watch?v=97JRYhKLhSY

Coppeliasim
Link

Bullet Physics, ODE,
Newton and Vortex

Vehicle
plugin
exists. But
not does not
have
realistic
models

Difficult Yes.
Source
code only
for EDU

Yes No CPU
RTF N

Yes Weather: not off
the shelf.

Plugins can be
written in Python,
Lua, C, Java,
Matlab

Linux preferred -same- Custom model

Unity Uses Nvidia PhysX High-fidelity
pay-ware
plug-ins
available for
vehicle
physics

Has user friendly
tools to generate
off-road terrains

Not free.

$1800 /
year

None Has
photorealistic
rendering

GPU Camera yes.
Rest: Not off
the shelf. Need
to develop or
buy 3rd party
assets

Weather yes.
Off the shelf
pedestrian no.

Mostly close source
and 3rd party asset
on the store

Windows is
preferred.

-same- Probably only
params

rfpro High quality vehicle
dynamics model

 Can use PC for
terrain

Not free Not sure Yes GPU Yes High quality
weather

Closed source - -same- Not enough
information

SUMO

Not for off-road

Someone
used Unity for
viz

C2X communication
technologies by
coupling to a
communication
network simulator
(OMNeT++ or ns-3)

LGSimulator

Nvidia PhysX

Unity Has free
+ pro
versions

Yes Yes GPU Yes Not sure Possible alternative
in the future, but not
enough support at
current time

ADAMS

Not free

Possible alternative
in the future, but not
enough support at
current time

Anvel

Not
available

https://www.youtube.com/watch?v=2IuFKItKyE8

Appendix B. SCENARIO TEST CONFIGURATION FILE

ISimA will be able to run a complete scenario, including setup, simulation, control of dynamic
entities, logging, analysis, and cleanup, from a set of configuration files. This approach allows
the user to build a proper level of confidence in the ability of their autonomous vehicle system
by running a scenario repeatedly. The user can also modify parameters to gain confidence in
the system through a variety of scenarios.

Each run will be generated from configuration files that describe the following scenario
components:

Map:

• Manual Generation: select map from a list of pre-generated maps
o Example parameters: map selection

• Semi-Manual Generation: select map from list of pre-generated maps and apply a
transform

o Example: The pre-generated map may be a path through the woods, and the
transform may add an ice patch in different positions or sizes

o Example parameters: map specific pass-through parameters (ice area, hill grade,
tree density, etc.)

• Automatic Map Generation: The map is completely regenerated each run according to
some constraints

o Example parameters: map specific pass-through parameters (tree coverage
percent, elevation changes)

NPCs:

• Parameters: Spawn location
• Sub-components: NPC blueprint, NPC Controller

NPC blueprint:

• Unreal blueprint for the NPC vehicle. While this will mainly be selected from a pre
populated list, some blueprints may have the ability to take parameters that modify the
physical behavior of the vehicle.

• Example parameters: physical attributes - mass, torque, hp, max speed

NPC Controller:

• Each NPC can be controlled in several ways, e.g.: AI blueprints built into Unreal (spline
follower, chase player, move towards goal), registering with a group controller like
Carla’s traffic manager, or a custom script that provides input based on sensor
information.

• Example parameters: goal, spline to follow, traffic manager instance

Success and failure criteria:
• ISimA allows for flexible success and failure criteria. A basic example uses reaching a

spatial goal as the success criterion and any collision as the failure criterion. A slightly
more complicated example would be to maneuver for a set time without collisions or
being sighted by an NPC.

• Example parameters: spatial goal, maximum acceptable collision force, maximum time
allowed

Additionally, ISimA will have built-in intelligence for the automated generation of test
scenarios to dynamically provide test conditions that build up confidence in the ability of
autonomous vehicles to accomplish their designated tasks. Each parameter is fixed by default,
but can also be specified as a discrete (i.e., a list of options) or continuous range. The span of
these discrete and continuous ranges defines the search domain across which the ISimA
operates.

Scenario Set Specification:

• Inputs: None (manually generated)
• Represents requirement set
• YAML file
• Subsection for each component defines a generator for that component

o Input parameters can be created in several ways:
▪ Fixed (e.g., testing on a single map)
▪ Select-from-list (e.g., select NPC vehicles from a list of pre-fabricated

blueprints)
▪ Generate-from-distribution (e.g., NPC start position may be selected from

a gaussian to provide variance in the interactions)

Configuration Generator:

• Inputs: scenario set specification, previous scenario results
• Generates specific instance for each parameter according to distribution configuration
• Optionally, takes metrics from previous scenario runs to inform parameter generation

o E.g., a single generate-from-distribution variable may remain at the previous
value, while other parameters are regenerated after a failed test in order to
explore causality.

Scenario Controller:

• Inputs: scenario configuration, scenario measurements
• From specific parameters, generates instances of each component, launches scenario,

and takes in measurements to determine when to stop and clean up scenario

