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1. Introduction 

The concept of causality, also referred to as cause and effect, has defined 
fundamental science since the birth of science itself. Cause and effect remain at the 
core of any scientific discovery, where the cause explains the “why” and the effect 
describes the “what.” Causality is often misused interchangeably with correlation 
even though correlation does not imply causation. Even though correlation is 
critical for science, misrepresenting correlation as causality can have adverse 
effects. For example, the correlation between Covid-19 and some medications 
caused unproven theories to spread about possible treatments for disease. 
Correlation refers to the relationship between two variables with a specific trend, 
whereas causality is the cause-and-effect relationship where the cause is 
responsible for the effect and the effect is somewhat reliant on the cause.1,2 Thus, 
causal learning is the process of generating causal connections from the data.3–5 
Causality plays a vital and omnipresent role in our daily lives as well. Every 
decision we make has a cause-and-effect variable that dictates how we live our 
lives. Therefore, it is crucial to assume that causal learning is a critical component 
of any artificial intelligence (AI) or machine learning (ML) system, regardless of 
its use in both commercial and military applications.2 Causal learning has seen an 
increase in research activity within the past two decades with yearly publications 
reflecting the rapid rise in causal research (Fig. 1).  

 
Fig. 1 Yearly publications for causal inference and causality (data derived from Scopus) 

Recent advances in AI/ML systems in the past decade has put artificial reasoning 
systems in the forefront of many industries. With AI/ML systems expected to act 
autonomously and display human-like intelligence, there are still some fundamental 
challenges remaining, such as robustness, transferability, explainability, and 
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causality. While AI/ML systems have made tremendous achievements in prediction 
accuracy and precision, they are still inherently black box models and thus lack the 
explanations for how the system came to the prediction that it did. This has caused 
unwarranted issues with the use of such systems, where biased predictions were 
made affecting human lives. This gave rise to Explainable AI (XAI), which has 
been seen as the solution for the black box problem where AI/ML systems are able 
to explain their decision-making process to the end users. One of the goals for the 
development of XAI systems is to mitigate bias from not only the model itself, but 
also from the incoming data used to make the predictions.6 Algorithmic/model bias 
can be recognized and mitigated using various techniques, but inherent bias within 
the data itself is harder to mitigate. Therefore, causality is critical for identifying 
and mitigating bias from the data for AI systems. According to Dr Judea Pearl, 
causality can allow AI/ML systems to “choreograph a parsimonious and modular 
representation of their environment, interrogate that representation, distort it 
through acts of imagination, and finally answer ‘What if?’ type questions.”7 For 
further reading on XAI, we suggest readers review detailed surveys such as Rawal 
et al.,6 Gunning et al.,8 Xu et al.,9 and Arrieta et al.10  

Even though there are related surveys and fundamental studies on causality, such 
as the ones from Judea Pearl,3,7,12 Morgan et al.,4 Yao et al.,5 and Gianicolo et al.11 
that provide great overviews, an up-to-date survey that provides a more 
comprehensive look at not just causality, but its goals and evaluation metrics as 
relating to AI/ML, is also needed. This survey report aims to fill the gaps in 
literature by providing a comprehensive survey that looks at all aspects of causality 
from development to evaluation and highlights some of the more recent 
breakthroughs and advances made toward causal AI/ML systems. The main 
contributions of this survey include the following: 

• We present a detailed overview of causality by focusing on all aspects of 
the field from design and development to evaluation.  

• We summarize a comprehensive taxonomy for design/development and 
evaluation of causality (page 17). 

• We provide a comparison of the causal learning methods. 

• We provide insights into the use of causality for cybersecurity and highlight 
some recent advances toward causal security.  

• We present an open discussion of remaining challenges in the field and 
perspectives on recommendations for addressing them. 

This report is organized as follows. Section 2 presents a taxonomy and insight into 
the levels of causal inference. Section 3 provides a brief survey of the design and 
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development methods for utilization of causal inference and causal discovery. 
Section 4 describes techniques that are used for measuring the effectiveness of 
causal AI/ML systems. Section 5 provides a brief overview of causality for 
cybersecurity. Section 6 discusses open challenges and current trends in causality 
research. Concluding remarks follow in Section 7. 

2. Overview of Causality 

As mentioned before, causality in layman’s term is the relationship between a cause 
and an effect. However, causation must be differentiated from statistical 
association. From an ML perspective, causal learning translates to the estimation 
of the changes in a variable’s prediction/decision made by the model if a different 
variable has been modified or manipulated. Here, the variable that is 
modified/manipulated is referred to as the treatment, whereas the variable whose 
change is being investigated is referred to as the outcome. Covariates are the 
background features or variables, whereas the confounders are variables that 
causally affect both the treatment and the outcome.  

The causal relations derived from data can be classified into the three general 
categories of Association, Intervention, and Counterfactuals (Fig. 2). These 
categories form the basis of the three-level causal hierarchy presented by Judea 
Pearl where causal questions at each level can only be answered when the available 
information corresponds to that specific level or higher.7 

 

Fig. 2 Causal hierarchy as presented by Judea Pearl7 

Association refers to the statistical relations within the raw data. Associative 
questions can be deduced directly from the raw data using traditional statistical 
techniques. This level of relations or questions are the foundation of ML, where 
decisions/predictions are made from statistical relations from the raw data without 
the need for causal information. 
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Intervention involves estimating the effect of an action. Questions at this level 
involve deductions from the raw data as well as modifying/manipulating the 
variables (treatment). They cannot be answered solely from the statistical relations 
within the raw data. The causal structure of the variables within the system must be 
comprehended.  

Counterfactuals are the highest level of causal information, as they incorporate 
associative and interventive questions within them. They can readily answer 
questions at both Association and Intervention levels and are related to causal 
reasoning/inference where estimates from unobserved outcomes can be predicted.  

Causality with ML can help in answering a plethora of questions for various 
applications (Table 1). These questions can mainly be grouped into two types: 

1) How much does changing one variable (treatment) affect the target variable 
(outcome)? 

2) Which variable needs to be modified/manipulated (treatment) to see a 
change in the target variable (outcome)? 

These two questions govern the study of causality with ML and can be referred to 
as causal inference and causal discovery, respectively.13,14 With causal inference, 
causal effects can be investigated by studying the extent to which a cause can be 
manipulated to influence an effect. With causal discovery, causal relations can be 
established from data between the variables.  

Causality can be investigated via either causal inference or causal discovery 
through two formal frameworks, structural causal models (SCMs) and potential 
outcome framework. SCMs consist of a causal graph and structural equations. They 
provide a comprehensive theory for causality.3,5,15,16 Causal graphs are directed 
graphs that describe the causal effects between the variables, where each node 
represents a random variable, including the outcome treatment and other 
observed/unobserved variables. A directed line x  𝑦𝑦 indicates a causal effect of x 
on 𝑦𝑦 (Fig. 3).15 These graphs inherit the conditional independence criteria as they 
form a class of Bayesian networks with causal effects represented by the edges. 
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Table 1 Causal hierarchy as presented by Judea Pearl7 

Level of causality Activity Questions Examples 

Association Seeing What is? 
What do the polls say 

about the midterm 
election? 

Intervention Doing 
Intervening What if? 

What happens when a 
candidate is endorsed 

by the president? 

Counterfactuals Reasoning 
Imagining 

Why? 
What caused the 

effect? 
What happens 

when a variable is 
modified? 

Was it the presidential 
endorsement that 

caused the rise in the 
polls? 

What if the candidate 
changed their stance 

on a major issue? 
 

 

Fig. 3 Causal graph indicating the causal effect of x on y 

Structural equations represent the effect of the treatment that directly causes an 
outcome. Given a structural equation along with the causal graph, the causal effects 
can be defined by the directed edges within the graph. Further details on structural 
equations can be found in the surveys mentioned previously.  

The potential outcome framework proposed by Rubin17 states that causality is tied 
to the treatment (modification/manipulation) applied to a unit.18 A unit is defined 
by Yao et al.5 as the atomic research object in the treatment effect study. The 
comparison of the units’ potential outcomes of treatments yields the treatment 
effect. It is widely used for learning causal effects with reference to a treatment‒
outcome pair. Given a treatment and outcome, the potential outcome of an instance 
is the outcome that would have been observed if the instance had received 
treatment. This allows for the simpler expression of the causal challenge as 
presented by Hoyer et al., where only a single outcome is possible for a given 
instance.19,20 The individual treatment effect (ITE) can be defined via the potential 
outcomes as the difference between the outcomes of a given instance with two 
different treatments. A binary treatment is often assumed for ITEs. Based on the 
ITE, the average treatment effect (ATE) can be estimated when extended on 
arbitrary populations. For subpopulations, the conditional average treatment effect 
(CATE) can be defined. For formal mathematical and detailed definitions of the 
terms mentioned in this section, readers are encouraged to read detailed surveys in  
Pearl,3,16 Yao et al.,5 and Guo et al.15 
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Between the two frameworks, an inference made in one framework can be readily 
translated into the other because as they are logically equivalent.3,5,15 However, 
there are distinctions between the two frameworks. In structural causal models, 
causal effect of any variable can be investigated, making them the preferred 
framework for learning causal relations between variables.21 In the potential 
outcome framework, the causal effects are only known for the treatment and 
specific variables, which makes the framework capable of modeling causal effects 
without knowing the complete causal graph.21 Potential outcome framework also 
eases the work of estimating treatment effects by developing estimators.15  

3. Learning Casual Effects and Relations 

Causality can be extracted from raw data by either causal inference or causal 
discovery. It has been used in a plethora of applications ranging from medicine to 
agricultural sciences (Fig. 4). This section provides an overview of the different 
methods and techniques used for causal inference and causal discovery. For 
detailed information on different methods based on the underlying techniques such 
as stratification, matching, re-weighting, readers are encouraged to read the survey 
by Yao et al.5 

 

Fig. 4 Applications for causality (data derived from Scopus) 

3.1 Methods for Causal Inference 

Causal inference can be done with a broad range of methods. Causal inference deals 
with investigating causal effects of variables within the raw data. Learning causal 
effects for a given instance refers to quantifying how the outcome is predicted to 
change when the treatment is modified. This is helpful for various applications as 
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shown in Fig. 3, where the causal effects for different populations are of critical 
importance. This can be done for both the SCM and potential outcome frameworks.  

Propensity Score is defined by Morgan and Winship as the conditional probability 
of a treatment given the background variables.1 Given a set of specific observed 
covariates, the propensity score refers to the probability of a unit being assigned to 
one specific treatment.5 These methods extract the ATE by splitting instances into 
strata and treating each one as a randomized control trial. Methods based on 
propensity scores are propensity score matching (PSM), propensity score-based 
stratification, inverse probability of treatment weighting, and propensity-based 
adjustment.1,4,22–25 PSM matches treated instances to controlled instances with 
similar propensity scores. Austin24 provides an in-depth analysis of the different 
propensity-based methods mentioned.  

Covariate balancing methods learn the sample weights via regression and sample 
re-weighting.26 Some of the methods available in literature include entropy 
balancing (EB),27 approximate residual balancing (ARB),28 covariate balancing 
propensity score (CBPS),29 and covariate balancing generalized propensity score.30 
EB learns sample weights of instances under control to match the two groups. It 
prevents data loss by keeping the weights close to the base weight and allows for 
larger constraints. ARB extracts average treatment effect from data by combining 
the weights balance and regularized regression adjustment. This is done by learning 
the sample weights, then fitting the regularized regression adjustment model, and 
finally estimating the average treatment effect. Compared with EB, ARB can 
handle the sparseness of high-dimensional data.15,31 CBPS combines covariate 
balancing and propensity scores to derive the balancing score from the propensity 
score to increase the robustness of the model toward misspecification of the 
propensity score.5 

Regression adjustment method are based on supervised ML where a function is 
fitted to predict the probability distribution with features and labels. Here, instead 
of the probability distribution, we are interested in interventional distribution and 
counterfactuals. The counterfactual outcome is based on the features x and 
treatments t, where adjustment can be done two different ways. First is by fitting a 
single function to estimate the probability distribution with the features and 
treatment, which can deduce the ITE. The second way is to fit the model for each 
individual potential outcome and then estimate the ATE. Different regression 
adjustment methods have been proposed in the literature, such as the doubly robust 
estimation,32 targeted maximum likelihood estimator (TMLE),33 and ARB.24,33–35  

While the mentioned methods are capable and robust for learning causal effect from 
raw data, they are not useful for data without observed confounders. In such cases 
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the assumption of unconfoundedness remains unsatisfied, and causal effects cannot 
be extracted from the data. Instrumental Variable15 methods allow us to extract 
causal effects from data with unobserved confounders. The IV influences the causal 
outcome by directly affecting the treatment.15 The front-door criterion36 method is 
another method for learning causal effects from data with unobserved confounders. 
Regression discontinuity design (RDD) is also capable of learning causal effects 
from data with unobserved confounders. RDD has been further expanded into other 
methods such as the Sharp RDD37,38 and Fuzzy RDD.37,39 

3.2 Methods for Causal Discovery 

Causal discovery answers the question of finding causal relations within the raw 
data. Similar to causal inference, there are a handful of methods to extract causal 
relations from data. Learning causal relation for a given instance refers to 
determining whether modifying a variable x causes modification for the target 
variable x’. This can be done by hypothesizing that the causal relation between the 
variables in the data can be detected by statistical dependencies.40,41 Here, the 
causal relations can be learned via three general algorithms: constraint-based (CB), 
score-based (SB), and functional causal model (FCM)-based algorithms.42 
Constraint- and score-based algorithms are derived from statistical relations to 
determine causal graphs, while functional causal models estimate structural 
equation coefficients to learn causal relations.15  

CB algorithms derive causal relations from causal graphs that satisfy the 
conditional independence based on the faithfulness assumption via statistical 
testing.40 Examples of CB algorithms include the Peter‒Clarke algorithm,40 
inferred causation (IC) algorithm and its variants,16,40,43–48 and fast causal inference 
(FCI) and its variants.49–54 The Peter‒Clarke algorithm derives an undirected causal 
graph from the raw data and then predicts the directions for the edges for a complete 
causal graph.40 The FCI algorithms were proposed for searches through extended 
causal graphs.  

SB algorithms were proposed to overcome the faithfulness assumption by replacing 
the conditional independence tests with goodness-of-fit tests. By maximizing the 
scoring criteria to derive the causal graph’s score from the raw data, these 
algorithms are able to learn causal graphs. The score function along with the 
structural equations need to be explicitly presented for the goodness-of-fit tests. 
The structural equations are crucial to describe how a variable is affected causally 
by its parent variables and noise. Given the parameterized structural equation, the 
score function maps the candidate causal graphs.15 Examples of SB algorithms 
include the Bayesian information criterion (BIC) score,55 factorized normalized 
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maximum likelihood (NML) universal model,56 Bayesian Dirichlet score,57 Greedy 
Equivalence Search (GES),58 Fast GES,59 and the adaptation of the Greedy SP 
algorithm by Wang et al.60 Hybrid algorithms that combine CB and SB methods 
are also present in literature, for example the Max-Min Hill-Climbing (MMHC) 
algorithm.61–63  

FCM-based algorithms are capable of differentiating between directed acyclic 
graphs (DAGs) from the same class. Here, a function is written as the function of 
its direct causes and a noise term.15 Examples of FCM based algorithms include the 
Linear Non-Gaussian Acyclic Model (LiNGAM), Independent Component 
Analysis LiNGAM (ICA-LiNGAM),64 DirectLiNGAM,65 and auto-regressive 
LiNGAM.66 Additionally, relaxing the linear restriction on the variable-noise 
distribution relation via additive noise models have also been proposed to reduce 
the search space of causal graphs.14,19,67 Glymour et al. provide an in-depth survey 
of various causal discovery methods based on graphical models.68  

In addition to the three categorized methods, other methods have also been 
proposed in literature for learning causal relations. Yao et al. provides detailed 
reviews of methods such as re-weighting, stratification, matching, tree-based, 
representation learning, multi-task learning, and meta-learning methods.5 
Stratification methods adjust confounders based on subclassification or blocking.18 
Matching based methods are capable of reducing the estimation bias due to 
confounders and estimating the counterfactual. Tree-based models are a predictive 
modeling method based on decisions trees. These include the algorithms such as 
Classification and Regression Tree (CART),69 Bayesian Additive Regression Tree 
(BART),70,71 and Random Forest (RF) methods.72  

Due to the available methods for causal inference and causal discovery, AI/ML 
tools have been investigated to aid in the search for causality. ML models such as 
RF, Deep Learning (DL), Reinforcement Learning (RL), and Neural Networks 
(NNs) have all been used to learn causality. NN models such as Global Vectors 
(Glove)73 and Recurrent Neural Network (RNN)74 have been proposed to study the 
causal effects of group formation on loans for a financing application. Pham et al. 
applied NNs to estimate causal distributions.75 DL models for causality include the 
Causal Effect Variational Autoencoder (CEVAE),76 TARnet,77 and Balancing 
Counterfactual Regression.78 Tables 2 and 3 provide an overview of the available 
ML toolboxes and algorithms for causal discovery and inference.*  

 

 
* For an updated list visit the Git repository for Dr Huan Liu’s research group from Arizona State 
University: https://github.com/rguo12/awesome-causality-algorithms. 

https://github.com/rguo12/awesome-causality-algorithms
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Table 2 Available codes for causal learning 

Causal 
learning Name  Language Paper and link 

ITE  

PSM Python https://github.com/akelleh/causality/tree/master/causality/
estimation22 

Counterfactual 
Regression Python https://github.com/oddrose/cfrnet77 

CEVAE Python https://github.com/AMLab-Amsterdam/CEVAE76 

Causal Forest R  
Python 

https://github.com/kjung/scikit-learn 
https://github.com/grf-labs/grf81 

ATE  

EB R https://github.com/cran/ebal27 
TMLE 

(Regression 
adjustment) 

R https://cran.r-project.org/web/packages/tmle/index.html82 

Inverse 
probability       

re-weighting  
R https://github.com/cran/ipw22 

DRE 
(Regression 
adjustment) 

R https://github.com/gregridgeway/fastDR83 

Causal 
effect 

Dose response 
networks 
(DRNets) 

Python https://github.com/d909b/drnet84 

Causal Impact R  
Python 

https://github.com/synth-inference/synthdid 
https://github.com/MasaAsami/pysynthdid85 

Linked Causal 
Variational 

Autoencoder 
(LCVA) 

Python https://github.com/rguo12/CIKM18-LCVA86 

Deconfounded 
RL Python  https://github.com/CausalRL/DRL87 

Causal 
relations  

Causal PSL Java  https://bitbucket.org/linqs/causpsl/src/master/88 
Temporal Causal 

Discovery 
Framework 

(TCDF) 

Python https://github.com/M-Nauta/TCDF89 

PC algorithm 
Python  

R  
Julia 

https://github.com/keiichishima/pcalg  
https://github.com/cran/pcalg 

https://github.com/mschauer/CausalInference.jl90 
Scalable and 

hybrid ensemble-
Based causality 

discovery 

Python  https://github.com/big-data-lab-
umbc/ensemble_causality_learning91 
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Table 3 Available toolboxes for causal learning 

Toolbox Language Paper and link 
Uber CausalML Python https://github.com/uber/causalml92 

CausalNex Python https://github.com/quantumblacklabs/causalnex 
Causal 

DiscoveryToolbox Python https://github.com/FenTechSolutions/CausalDiscoveryToolbox93 

CausalToolbox R https://github.com/forestry-labs/causalToolbox94 
CausalVAE Python https://github.com/huawei-noah/trustworthyAI95 
Econ ML Python https://econml.azurewebsites.net/spec/spec.html96 
DoWhy Python https://github.com/microsoft/dowhy97 
gCastle Python https://github.com/huawei-noah/trustworthyAI98 

TETRAD 
Toolbox R https://github.com/bd2kccd/r-causal99 

JustCause Python https://github.com/inovex/justcause 

These methods are useful for extracting causal information derived from 
experimental data. However, for deriving causality from observational data, the 
following assumptions must be made for consistent and accurate causal 
estimates.5,15,79,80  

Assumption 1: Stable Unit Treatment Value Assumption (SUTVA) – The potential 
outcomes for any units do not vary with the treatment assigned to others. For each 
unit, there is only one version of treatment level that leads to one potential outcome. 
Here, the independence of each unit and well-defined treatment levels are 
emphasized.  

Assumption 2: Ignorability – For any given background variable, the treatment is 
independent of the potential outcomes.  

Assumption 3: Positivity – The probability of receiving every value of treatment 
conditional on some measured covariates X is greater than zero.80 

Assumption 4: Consistency – For any assigned treatment, the potential outcome is 
independent of the treatment.  

Assumption 5: Causal Sufficiency – A set of variables is causally sufficient for a 
process, if and only if it includes all common causes of every two pairs in the set.80 

Assumption 6: Faithfulness – The independence explained from any data 
generating causal graphs may not be violated by the statistical relations between 
variables within the data.  
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4. Evaluation Metrics 

Causality in many cases is estimated/predicted based on causal experiments. For 
example, in the medical field, Randomized Control Trials are performed for this 
reason. However, experimental trials are not always feasible, and investigators 
must rely on observational studies to conduct causal studies. This can cause issues 
to arise such as the lack of randomization within the observational data. Thus, the 
issue of effect of confounders must be accounted for in the causal studies. 
Traditional methods for dealing with the confounders in causal studies include 
stratification, matching-based methods, and PSM.100–102 While these methods are 
able to mitigate the issues arising from the presence of observed and unobserved 
confounders, they still have to be evaluated for causal accuracy. This section 
provides an overview of some methods used to evaluate the robustness of causal 
methods from either experimental or observational studies.  

Some of the first evaluation metrics for causality come from Sir Bradford Hill, who 
proposed the aspects of causality for studies where experimental data was not 
readily available and investigators had to rely on observational data. He proposed 
the following the criteria for causality103–105: 

• Strength: Strong association between the variables, decreasing the 
probability for the randomized correlation.  

• Consistency: Association observed in multiple studies under varying 
conditions. 

• Specificity: Causation between specific variables.  

• Temporality: Effect is temporally subsequent to cause. 

• Plausibility: Plausible link between the cause and effect.  

• Coherence: Non-conflicting causal interpretation.  

• Analogy: Similar causes with similar effects.  

• Experimental evidence: Experimental evidence for observational data will 
be the best evidence for any causal reasoning (if possible). 

• Biological gradient: For medical studies, a dose-response effect is 
displayed.  

Evaluating causality is often done via a comparison of the estimated/predicted 
causal graphs to the ground truth via the equivalence class condition. The condition 
of equivalence class states that “two causal graphs can belong to the same class if 
and only if each conditional independence that the one graph is also implied by the 
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other.”15 de Jongh et al. present an excellent review of evaluation metrics for 
comparing the distances between the predicted causal graphs and the ground 
truth.106 They proposed the following metrics and measures: 

• Missing edges: Edges present in the ground truth but not in the learned 
graph. (Lower is better.) 

• Extra edges: Edges present in the learned graph but not in the ground truth. 
(Lower is better.) 

• Correct edges: Edges present in both learned graph and the ground truth. 
(Higher is better.) 

• Correct edge direction: Correctly oriented edges in the learned graph. 
(Higher is better.) 

• Incorrect edge direction: Incorrectly oriented edges in the learned graph. 
(Lower is better.) 

• Topology: Normalized and weighted combination of the missing, extra, and 
correct edges. (Higher is better.) 

• Hamming Distance: Number of edits needed for the learned graph to imitate 
the ground truth. (Higher is better.) 

The structural hamming distance (SHD) has been most commonly used to compare 
the causal graphs with the ground truths.62,65,107 It is defined as the number of edits 
needed for the predicted causal graph to become the same as the ground truth. 
Beyond the relation between the predicted and ground truth causal graphs, other 
metrics used for measuring the accuracy of causality include the following80: 

• True/False Positive Rates: True positive rate (TPR) is the number of 
common edges found in the learned causal graph plus the edges in the 
ground truth divided by the edges in the ground truth. Similarly, the false 
positive rate (FPR) is the number of common edges found in the learned 
causal graph plus the edges in the ground truth divided by the absolute 
difference between the number of edges in the ground truth and the learned 
causal graph.108–111 

• Receiver Operator Characteristic (ROC) curve: The ROC curve is a 
common metric for the accuracy of statistical and machine learning models. 
It is simply the ratio of the TPR and the FPR.112–116  

• Precision, Recall, and Precision Recall Curve: Precision is the proportion 
of correct positive identifiers. It is ratio of total correct positive predictions 
to the total positive predictions. Recall is the proportion of the actual 
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positives predicted accurately. It is the ratio of correct positive predictions 
to all the predictions. The precision recall curve is the ratio of the precision 
and recall.116,117 

• F1-Score and F-test: F1 Score is weighted average of Precision and Recall. 
F-test is a statistical test. To perform the F-test, a null and alternative 
hypothesis is used to derive the F-value and F-Statistic.118 

• Mean Squared Error (MSE): MSE is the average of the square of the 
difference between the correct and predicted values.119,120 

Figure 5 provides a taxonomy for both methods and evaluation metrices for causal 
learning as provided in the preceding sections.  

 

Fig. 5 Taxonomy for causal learning methods and evaluation 

5. Causal Learning and Cybersecurity 

In the field of cybersecurity, the comprehension of a cyberattack, including how it 
unfolds in real-time, is critical for developing techniques to defend against them. 
Here, causal learning can play a crucial role in understanding and mitigating these 
cyber threats. However, the application of causality with cybersecurity is still a very 
novel concept, as there is a scarcity of studies and reports in literature, as shown in 
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Fig. 6. Even though the field is still in its infancy, causal cybersecurity is poised to 
be vital in securing the next generation of AI/ML systems.  

 

Fig. 6 Studies for causal learning and causality with cybersecurity (data derived from 
Scopus) 

The application of causal learning for threat detection and mitigation via causal 
effect of actions from observational data is being pursued by researchers. For 
example, at the world-renowned Alan Turing Institute, causal inference is being 
used for improved cybersecurity threat detection.121 Research applications such as 
cyberattack indicator identification, the sequence for an optimal attack and counter-
defense, addition of a causal dimension to network threat detection, and the 
combination of causal queries with cyber data sets are being studied at the institute. 
Dhir et al. provided some benefits of using causality with cybersecurity121: 

• Causal approach allows for the comprehension of the cyberattack tactic, and 
determination of their consistency. 

• Potential for a defensive strategy for cyberattacks if the causal structure of 
attacks can be learned from data. 

Dhir et al. described the use of causality for active cyber defense by applying the 
causal inference on the MITRE ATTACK framework to achieve threat detection 
and mitigation.121 

Qin et al. provided another use-case example for using causal inference to analyze 
and predict attack scenarios using the US Defense Advanced Research Projects 
Agency (DARPA) Grand Challenge Problem data set.122 The authors built an 
attack-tree-based causal network with characteristics such as the final goal of the 
attack, subgoals, and evidence. They identified and predicted upcoming attacks via 
the causal network based on the attack trees (Fig. 7). 
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Fig. 7 Notional example of a causal graph for cyberattack 

Causal discovery algorithms have also been used in cybersecurity. Mueller et al. 
used causal discovery for cybersecurity research and provided assessment of 
cyberattack databases with the Cyber Kill Chain framework.123 Cause‒effect 
relationships for attack types were discussed for the characterization of attack types 
from real cyberattack data sets. Evidence for several phases of the Cyber Kill Chain 
framework was presented with the use of causal discovery algorithms such as the 
Fast Greedy Equivalent Search (FGES).  

Tople et al. presented the use of causal learning for privacy guarantee using causal 
structures.124 The study showed better performance for causal structure models for 
data generalization than trained distribution models. This was used to theorize the 
relation between causality and privacy: Causal models are more robust to 
membership inference attacks and offer much better privacy guarantees. The study 
provided an outlook for the use of causal learning for training models to achieve 
better robustness against privacy attacks.  

6. Open Challenges and Perspectives 

Even though causal inference and causal discovery have made remarkable strides, 
numerous challenges still remain. These include the lack of experimental data sets 
for studies, lack of ground truth for current relevant data sets, lack of universally 
adopted definition, standards, and measures for the causality of AI/ML systems, the 
need for better evaluation metrics for causality-based ML models, the balance 
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between causality and performance, and the challenges of making DL models 
causal. 

The lack of experimental data for today’s relevant applications remains a major 
challenge. While learning causality from observational data has achieved major 
advances within the past decade, there is no substitute for data from experimental 
studies for causality. Since experimental studies are not always feasible and 
practical (both cost and timewise), observational studies are performed for the ease 
of data compilation. To solve this problem, a repository with experimental data sets 
for applications relevant to today’s challenges, such as the Internet of Things and 
the Internet of Battlefield Things, is needed for the practical and robust integration 
of causality with AI/ML systems. Synthetic data emulating real-world experimental 
conditions can be generated and used where possible. Learning causality from 
observational data presents its own challenges such as the handling of anomalies. 
Toward this end, Kaize et al. proposed a DL model that models the topological 
structure via an autoencoder that uses learned embeddings to reconstruct the 
original data.125 Additionally, other challenges for observational data include the 
complexity in handling data entanglement, complex treatments, and temporal 
observations.126–129  

The absence of ground truth for observational data. When observational data is 
available for studies, the unavailability of ground truth is a hindrance for studies 
involving current state of the art applications and data sets for both commercial and 
military applications. Thus, there needs to be an alternative for studies when it is 
not possible to obtain ground truth for the data. Feature labels can be used as a 
substitute for some observational data from modalities such as audio, text, and 
images. For example, images and audio labeled as “beach” can be set to the ground 
truth with the image of sand and water along with the audio of waves at a beach.  

The lack of a universal standard. Another vital challenge within the field of 
causality is the ambiguity of definitions for the available terminology. As 
mentioned previously, correlation is often implied to be causation. Furthermore, 
terms like causal inference and causal discovery are used interchangeably as 
synonyms and have only in the past decade taken on strict distinct definitions. This 
can also be due to the lack of a standard unified theory of causality even though 
fundamental works from Pearl and Spirtes et al. have been monumental in the effort 
to understand causality.3,12,16,36,40,90,130 A unifying framework for causality provides 
common ground for researchers to contribute to distinctive needs and challenges of 
the field. Additionally, the lack of evaluation metrics for causal models in the 
absence of ground truth is also a hindrance. Even though the works presented in the 
previous sections are capable of evaluating and measuring the models’ accuracy, 
they rely heavily on the presence of ground truth. 



 

18 

Model selection. When learning causality from observational data, model selection 
plays a vital role in the accuracy of causal learning. Since there are no readily 
available ML models that are explicitly used for causal learning, model selection 
will depend on the type of application. Using causality to improve ML and using 
ML to improve causality are both open-ended challenges that need to be addressed 
by the field. Potential research directions for the field include the use of causality 
for XAI bias detection, and mitigation.131,132 Moraffah et al. present an excellent 
survey of causal interpretable models with insights into the methods and evaluation 
metrics for causal interpretability.79  

Causality for time series data. Even though causality is generally seen as a time-
dependent concept, learning causality from time-series data remains more 
challenging than with time-independent data. Nonstationary time series, noise 
presence, and data scarcity are some of the challenges arising from time-series data. 
To this end, Moraffah et al. present an in-depth survey of existing methods for 
causal inference from time-series data.80 The survey categorizes time-series 
causality into three types: time-invariant treatment effect, time-varying treatment 
effect, and dynamic regimes. It also provides examples of causal discovery for 
various scientific applications such as identification of stock indicators133 and 
variables for climate change.134,135 

Imperfections and bias in data. Bias within data, whether experimental or 
observational, is a major challenge faced by not just causal research, but the AI/ML 
research field as a whole. Fairness and bias detection are critical for the success of 
any causal AI/ML system regardless of the application. Accountable AI, including 
laws within both the United States and Europe, demand fair and unbiased decision 
making from causal models that affect human lives. For experimental studies, the 
quality of randomization dictates the validity of randomized experiments where 
false relations between variables could be detected due to sampling. Imperfections 
within the data such as bias, missing/incorrect values, errors with measurements, 
and noise can lead to wrongful and errored causal relations. Causal models, unlike 
statistical models, might not be robust against such imperfections and can produce 
causal relations within variables that have no causal relations whatsoever. Sample 
bias from observational data, especially big data, is also a major concern because 
these data are collected freely without any set of rules. There is a need for methods 
to detect and mitigate such imperfections within data.136 

Hybrid observational and experimental data. Even with all the advances in 
computational studies, they are still looked upon as being second-class to 
experimental studies. Due to the lack of experimental data/studies, observational 
studies are conducted in substitution. However, these studies are sometimes 
considered to be unreliable compared with experimental studies with controlled 
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trials. Therefore, studies that combine both observational and experimental portions 
should be developed to overcome the shortcomings of the two types of studies. Post 
hoc methods to combine experimental and observational data for causal studies 
would be immensely helpful for a variety of applications.136 

Uncertainty quantification. Uncertainty of information is another challenge faced 
by the data industry. This problem is very relevant for causal studies done from 
observational data where the data is finite. Quantifying uncertainty is needed for 
handling prediction errors resulting from model complexity and data 
quantity/quality.136 

7. Conclusion 

Causal learning will play a vital role in the development and application of artificial 
reasoning systems. In this report we presented a taxonomy and literature survey of 
causal learning. Different terms associated with causality were defined, and goals 
and methods for the design and development causal learning models were 
presented. Various challenges were also described.  
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