

The Effects of Storing Porous Silicon Produced from Magnesium Silicide (Mg₂Si) in Inert Gas and Ambient Air

by Nathan A Banek, Dustin T Abele, Michael J Wagner, and Wayne Churaman

Approved for public release: distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

The Effects of Storing Porous Silicon Produced from Magnesium Silicide (Mg₂Si) in Inert Gas and Ambient Air

Nathan A Banek and Wayne Churaman DEVCOM Army Research Laboratory

Dustin T Abele and Michael J Wagner George Washington University

Approved for public release: distribution unlimited.

REPORT DOCUMENTATIO			ON PAGE		Form Approved OMB No. 0704-0188
Public reporting burden data needed, and comple burden, to Department o Respondents should be a valid OMB control numl PLEASE DO NOT	for this collection of informat ting and reviewing the collec f Defense, Washington Head ware that notwithstanding an per. RETURN YOUR FOR!	tion is estimated to average 1 hc tion information. Send commen quarters Services, Directorate fc yy other provision of law, no per M TO THE ABOVE ADD	our per response, including the tts regarding this burden esti or Information Operations an son shall be subject to any p RESS.	ne time for reviewing i mate or any other aspe d Reports (0704-0188 enalty for failing to co	nstructions, searching existing data sources, gathering and maintaining the et of this collection of information, including suggestions for reducing the), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, mply with a collection of information if it does not display a currently
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)
September 202	.2	Technical Report			1 October 2021–1 August 2022
4. TITLE AND SUB	TITLE				5a. CONTRACT NUMBER
The Effects of Storing Porous Silicon Produced fro (Mg ₂ Si) in Inert Gas and Ambient Air		m Magnesium Silicide		5b. GRANT NUMBER	
					5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) Nathan A Banek, Dustin T Abele, Michael J Wagn			er, and Wayne Churaman		5d. PROJECT NUMBER
					5e. TASK NUMBER
					5f. WORK UNIT NUMBER
7. PERFORMING C	RGANIZATION NAMI	E(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
DEVCOM Army Research Laboratory ATTN: FCDD-RLS-EM					ARL-TR-9556
Adelphi, MD 2	.0/83-1138				
9. SPONSORING/M	MONITORING AGENC	Y NAME(S) AND ADDRE	ESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION	AVAILABILITY STATI	EMENT			
Approved for p	oublic release: dis	tribution unlimited			
13. SUPPLEMENTA ORCID IDs: N 9559-7804; Wa	ARY NOTES lathan A Banek, (l ayne Churaman, (0000-0001-7652-55 0000-0002-5070-16	30; Dustin T Abe 595	ele, 0000-000	3-4888-0556; Michael J Wagner 0000-0001-
14. ABSTRACT Porous silicon both nitrogen g when analyzed sample stored in nitrogen was 8	was synthesized l gas and ambient a by X-ray diffract in air had increase 80 m/s while the	by reacting magnes ir for up to 29 days tion, Fourier transfe ed oxidation and sil sample stored in air	ium silicide with . No discernable orm infrared spec icon–hydrogen b r failed to propag	aluminum ch change was o troscopy, and ond loss. Ene ate when igni	loride. Samples were aged separately under bserved for the sample stored in nitrogen thermogravimetric analysis while the rgetic performance for the sample stored in ted.
15. SUBJECT TERM	15				
Electromagnet	ic Spectrum Scier	nces, Energy Scienc	ces, porous silico	n, silicon, ene	rgetics
16 SECURITY CLASSIFICATION OF			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
10. SECONTT CLASSIFICATION OF.		Wayne Churaman			
a. REPORT	b. ABSTRACT	c. THIS PAGE		18	19b. TELEPHONE NUMBER (Include area code)
Unclassified	Unclassified	Unclassified	00	10	(301) 394-0952

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18

Contents

List	st of Figures		
1.	Intr	1	
2.	Exp	erimental	1
	2.1	Porous Si from Mg ₂ Si and AlCl ₃	1
	2.2	Environment Exposure Time Study	2
	2.3	Power X-Ray Diffraction	2
	2.4	Thermal Gravimetric Analysis	3
	2.5	Fourier Transform Infrared Spectroscopy	3
	2.6	Flame Speed Tests	3
3.	Res	ults and Discussions	3
4.	Con	clusion	9
5.	Refe	erences	10
List	of Sy	mbols, Abbreviations, and Acronyms	11
Dist	ribut	ion List	12

List of Figures

Fig. 1	Powder X-ray diffraction patterns for pSi stored in N_2 after (black) 1 day and (red) 29 days
Fig. 2	Powder X-ray diffraction patterns for pSi stored in ambient air. The day of scan progresses upward from (black) day 1 to (light blue) day 29, as indicated on the plot
Fig. 3	FTIR spectra for (black) freshly prepared pSi, (red) pSi stored in N ₂ for 29 days, and (green) pSi stored in ambient air for 29 days
Fig. 4	Mass change from 100% on a thermogravimetric analyzer heated when stored in (red) air and (black) N_2 7
Fig. 5	Flame propagation frame captures $(1.9 \ \mu s)$ for pSi after 29 days stored in N ₂ then oxidized with sodium perchlorate and ignited
Fig. 6	$eq:speed_$

-

1. Introduction

The reaction between porous silicon (pSi) and sodium perchlorate (NaClO₄) has produced flame speeds recorded up to 3000 m/s upon ignition for on-chip devices due to the high porosity and small average pore size of pSi.¹ Traditionally, pSi has been produced by anodic-etching of p-type silicon (Si) wafers. With the relatively high flame speed of pSi compared with other energetic materials, a powder form of pSi is desirable for expanded use; however, the cost of p-type wafers is a significant limitation. Previously, pSi when prepared from the reaction between magnesium silicide (Mg₂Si) and aluminum chloride (AlCl₃) was shown to be a scalable and low-cost alternative to anodic etching of p-type wafers.² The energetic performance of pSi particles produced from Mg₂Si is comparable to pSi particles produced by anodic etching of p-type Si wafers (906 ± 63 m/s vs. 969 ± 14 m/s for pSi from Mg₂Si and pSi from anodic etching, respectively) and could open potential applications to larger propellant and explosive formulations.

Despite relatively similar flame average speed rates, the particles produced from Mg_2Si were more susceptible to oxidation compared to the anodically etched particles, likely due to their smaller size. This raises the question of whether or not pSi produced from Mg_2Si will have long-term stability when stored under inert conditions and what the effects of ambient air exposure are. Degradation of the hydrogen surface termination could be detrimental to the energetic performance when combined with an oxidizer and ignited.³

This technical report details the surface functionalization, oxide content, crystallinity, and energetic performance of pSi produced from Mg₂Si after extended storage in both ambient air and inert gas.

2. Experimental

2.1 Porous Si from Mg₂Si and AlCl₃

A modified synthesis method was followed from a previous report.⁴ The minor impurities of the bulk Si in the Mg₂Si starting material were not considered to have an impact on the study, thus the material was used as is. Powders of 0.367 g (4.79 mmol) of Mg₂Si (99.9%, Alfa Aesar), 10.85 g (81.4 mmol) of AlCl₃ (Alfa Aesar, 99.985%), and 2.38 g (40.7 mmol) of sodium chloride (NaCl) (99.9% previously dried at 300 °C, Fisher Scientific) were combined into a 80-mL hardened steel ball mill cup with ten 1-cm hardened steel balls for a ball-to-powder ratio of 10:1. The cup was sealed with a Viton O-ring and lid, and then sealed additionally

with electrical tape to help prevent air and moisture from contaminating the contents.

The materials were lightly milled for 30 min at 200 rpm, after which the cup was brought back into the dry box and the contents were removed. Then, 13 g of the powder were transferred into a round bottom flask and sealed with a rubber septum.

The contents were placed under a flowing argon stream through the flask septum with a needle to ensure any generated pressure would not dislodge the septum from the flask and expose the contents to air atmosphere. The flask was then submerged in an oil bath, preheated to 125 °C, to allow the AlCl₃ and NaCl contents to become molten. After the contents were liquid, the stir plate was turned on to mix the reactants for 5 min. Then, the flask was removed from the oil bath and let to cool naturally.

The flask was then placed into an ice bath, and 200 mL of degassed methanol (99.8%, Fisher Scientific) was added to the flask and stirred until gas ceased to evolve. Ten milliliters of concentrated hydrochloric acid (VWR Life Science) were added and stirred for an additional 10 min.

The sample was recovered by vacuum filtration and then placed into 150 mL of degassed H_2O and agitated by sonication for 30 s to dissolve the remaining salts, and then recovered immediately by vacuum filtration and further washed with methanol. The product was dried under dynamic vacuum and stored in a nitrogen (N₂)-filled drybox until further use.

2.2 Environment Exposure Time Study

The dried pSi powder was halved by mass and stored in different conditions. Half of the sample was stored in an N₂ drybox (<1 ppm oxygen [O₂] and H₂O) and the remaining half was stored in ambient atmosphere on a benchtop at 23 °C and approximately 30% relative humidity. Initial data were collected at day 1, including powder X-ray diffraction, thermal gravimetric, and Fourier transform infrared (FTIR) spectroscopy analysis. Subsequent data were collected at day 4, 7, 12, 19, 26, and 29.

2.3 Power X-Ray Diffraction

Powder X-ray diffraction patterns were collected for the samples on a Bruker D2 Phaser X-ray diffractometer. Copper was used as the X-ray source with a nickel filter (CuK $\alpha \lambda = 1.5406$ Å). Patterns were obtained using an Si low = background sample holder from a continuous scan of 8 s per step and a step width of 0.1° 20.

2.4 Thermal Gravimetric Analysis

Thermogravimetric oxidation measurements were collected on a PYRIS 1 thermogravimetric analyzer (Perkin Elmer) using a platinum crucible. Samples were heated from 30 to 1000 °C at 20 °C/min.

2.5 Fourier Transform Infrared Spectroscopy

Infrared absorption spectra were collected on a Spectrum One (Perkin Elmer) using a molecular liquid N_2 cooled mercury–cadmium–telluride detector in attenuated-total-reflection mode on a diamond reflection crystal.

2.6 Flame Speed Tests

Flame speed measurements were performed by placing a small quantity (5 mg) of pSi powder into a 3-D-printed trench with a cavity measuring 20 mm \times 1.5 mm \times 1 mm. The trench was then placed into a N₂-containing chamber with a nichrome (NiCr) wire embedded into the pSi powder at one end of the trench. Enough oxidizer (3.2 M sodium perchlorate in methanol) was added to the trench to saturate the pSi powder and was dried for 15 min under N₂ flow in the chamber. Ignition was triggered by a 4-A square wave current pulse (0.100 s) delivered from a Quantum Composers 9730 series pulse generator with the trigger signal split to a Photon FASTCAM SA5 to record the ignition. Flame speed measurements were performed using ImageJ (www.imagej.net) by measuring the flame propagating along the trench gap opening with respect to the time evolved per ensuing frame recorded. Camera data were recorded at 192 \times 32 pixels at a frame rate of 500000 s⁻¹.

3. Results and Discussion

The region of interest for the powder X-ray diffraction pattern pSi powder from Mg₂Si consisted of a broad peak from 18 to 30° 2 θ . The sample is mostly amorphous or has no long-range crystalline domains but a sharp peak occurring at 28.44° 2 θ , which was determined to be a crystalline Si "impurity" from the Mg₂Si starting material, non-appreciable to approximately 1% of its total mass. There was no large change in the diffraction pattern for the pSi when stored in a N₂ for 29 days (Fig. 1). The diffraction patterns for the sample exposed to ambient air in the laboratory revealed a gradual peak shift to lower angles with the pattern's intensities normalized to the crystalline Si peak (Fig. 2). After only 4 days of air exposure, a significant shift in the peak position occurred from approximately 25° to 22° 2 θ . This indicates the sample has oxidized. The low-angle peak for nano

silicon dioxide (SiO₂) broadly appears between 20° and $25^{\circ} 2\theta$ representing the (100) reflection of silica.⁵ Visually, the color of the sample changes gradually from a reddish brown to a light brown. The high-surface-area pSi is highly susceptible to oxidation when stored in ambient air.

Fig. 1 Powder X-ray diffraction patterns for pSi stored in N₂ after (black) 1 day and (red) 29 days

Fig. 2 Powder X-ray diffraction patterns for pSi stored in ambient air. The day of scan progresses upward from (black) day 1 to (light blue) day 29, as indicated on the plot.

The FTIR pattern for the pSi as synthesized consisted of Si–hydrogen (H) bonding present at approximately 625 cm^{-1} attributed to Si–H bending, at approximately 660 cm^{-1} attributed to Si–H wagging, and at approximately 2100 cm^{-1} attributed to Si–H stretching; and Si–H–O back-bond oxidation at approximately 2250 cm^{-1} attributed to O₃–SiH stretching, Si-O bending at approximately 880 cm^{-1} , and Si–O stretching between 1000 and 1200 cm⁻¹. The S–H bonding is presumed to form during the removal of aluminum when significant amounts of molecular H₂ evolved. As synthesized, some oxidation of the sample is largely unavoidable when salt is removed from the raw product during washing.

By this synthesis method, there is still an appreciable amount of S–H bonds present on the powder surface (Fig. 3). After 29 days of sample storage in a N₂, the FTIR pattern remains unchanged. Conversely, the sample stored in ambient air for 29 days saw a reduction in the Si–H bonding in the wavenumber regions between 620 and 670 cm⁻¹ and at 2100 cm⁻¹.

Fig. 3 FTIR spectra for (black) freshly prepared pSi, (red) pSi stored in N₂ for 29 days, and (green) pSi stored in ambient air for 29 days

Thermogravimetric analysis was used to determine the amount of oxide present prior to heating using the final mass gain value. A fully oxidized sample would not have a mass increase, while the mass of an unoxidized sample would increase 2.14 times (214% from 100%). Partially oxidized Si would exist as $Si_x + (SiO_2)_{1-x}$ ($0 \le x \le 1$).

Both samples, freshly prepared, had an identical mass gain of 1.44 times the original mass giving the stoichiometric equivalent of $SiO_{0.85}$. After 4 days, the stoichiometric ratios between Si and O were $SiO_{0.95}$ and $SiO_{0.83}$ for storage in ambient air and N₂ atmosphere, respectively (Fig. 4). The sample stored in air continued to oxidize. At day 29 of air storage, the ratio was $SiO_{1.15}$, which is a significant increase in oxide content and corroborates the data collected with the X-ray diffractometer.

Fig. 4 Mass change from 100% on a thermogravimetric analyzer heated when stored in (red) air and (black) N₂

Flame speed tests were initiated by heating a NiCr wire that was embedded into the pSi powder prior to adding the oxidizer. A stock reference photo was taken for each test to determine the pixel-to-distance ratio of 7.4 pixels/mm. The flame propagation for pSi from Mg₂Si was recorded at 1.9- μ s intervals with the frame containing the first visible light set as 0 μ s (Fig. 5). Velocity measurements were calculated using the slope of the propagation data from the flame speed front pixel location versus time (Fig. 6). A flame speed was measured at 880 m/s for pSi powder stored after 29 days of storage in N₂ atmosphere. The sample stored in air after 29 days failed to ignite and propagate, likely due to excessive oxidation and Si–H bond loss.

Fig. 5 Flame propagation frame captures (1.9 μ s) for pSi after 29 days stored in N₂ then oxidized with sodium perchlorate and ignited

Fig. 6 Flame-speed velocity calculation for pSi from Mg2Si after 29 days of storage in N2

4. Conclusion

Powder X-ray diffraction, FTIR, and thermogravimetric analysis data showed that pSi prepared from Mg₂Si stored under N₂ for at least 29 days at less than 1 ppm O₂ and H₂O did not change and was still energetic when oxidized with sodium perchlorate and subsequently ignited. The flame speed measurement was 880 m/s, a value within the standard deviation of the average flame speed previously reported for pSi from Mg₂Si.¹ Storing the sample in ambient air caused an increase in oxide mass and a reduction in the S–H bond quantity, thus inhibiting its ability to ignite and propagate. Minor (ppm) O₂ and H₂O impurities, which are often present in some inert gas sources, could cause oxidation when stored on the order of years. Further studies on long-term storage (years), and in dry air and under vacuum are encouraged.

5. References

- 1. Becker CR, Apperson S, Morris CJ, Gangopadhyay S, Currano LJ, Churaman WA, Stoldt CR. Galvanic porous silicon composites for high-velocity nanoenergetics. Nano Letters. 2011;11(2):803–80.
- Banek NA, Abele DT, Price KM, Guerieri PM, Churaman WA, Wagner MJ. Rapid and low-cost synthesis of porous silicon powder from Mg₂Si for energetic applications. DEVCOM Army Research Laboratory (US); 2021. Report No.: ARL-TR-9290.
- 3. Becker CR, Currano LJ, Churaman WA, Stoldt CR. Thermal analysis of the exothermic reaction between galvanic porous silicon and sodium perchlorate. ACS Appl Mater Interfaces. 2010;2(11):2998–3003.
- 4. Banek NA, Wagner MJ. The George Washington University, assignee. Low temperature, high yield synthesis of nanomaterials and composites from Zintl phases. United States patent application US 2020/0014024 A1. 2020 Jan 9.
- Huang D, Guo C, Zhang M, Shi L. Characteristics of nanoporous silica aerogel under high temperature from 950 °C to 1200 °C. Materials & Design. 2017;129:82–90.

List of Symbols, Abbreviations, and Acronyms

AlCl3	aluminum chloride
FTIR	Fourier transform infrared spectroscopy
Н	hydrogen
H_2O	water
Mg2Si	magnesium silicide
NaCl	sodium chloride
NiCr	nichrome
0	oxygen
pSi	porous silicon
Si	silicon
SiO ₂	silicon dioxide

1	DEFENSE TECHNICAL
(PDF)	INFORMATION CTR
	DTIC OCA

- 1 DEVCOM ARL
- (PDF) FCDD RLD DCI TECH LIB
- 1 DEVCOM ARL
- (PDF) FCDD RLS EM
 - W CHURAMAN
- 2 GWU
- (PDF) D ABELE M WAGNER