Program Final Report PFR-3202

Aircraft laser strike geolocation system overview

B. G. Saar R. C. Westoff E. M. Tomlinson T. G. Reynolds

18 October 2019

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Lexington, Massachusetts

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Massachusetts Institute of Technology Lincoln Laboratory

Aircraft laser strike geolocation system overview

Brian G. Saar Richard C. Westoff Group 91 Erin M. Tomlinson

Group 82 Thomas G. Reynolds Group 43

Project Report PFR-3202 18 October 2019

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported under Air Force Contract No. FA8702-15-D-0001.

Lexington

Massachusetts

Aircraft Laser Strike Geolocation System Overview

Dr. Brian Saar & Dr. Richard Westhoff Advanced Capabilities & Technologies Group

Erin Tomlinson Laser Technology and Applications Group

Dr. Tom G. Reynolds Air Traffic Control Systems Group

This material is based upon work supported under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

© 2019 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Continuing Laser Strike Threat to US Aviation

Laser Pointers Commercially Available Online

POLICY

HARDEN AIRCRAFT

FIND PERPETRATOR

Laser Strike Mitigation Options

	Approach	Laser Mitigation Effectiveness	Pilot Effects	Technical Risk	Estimated Relative US-Wide Cost
	Legislation, Public Aware- ness Campaign	May encourage perpetrators	None	Available today	0-low (laws already exist)
	Passive Glasses/ Goggles	Effective for common lasers	Reduces ambient light, pilot non- compliance	Available today	\$100s millions (all certified pilots)
	Cockpit Window Treatment	Effective for common lasers	Reduces ambient light	Available today	\$billion (all commercial aircraft)
	Airborne	Effective only if		Available today (military)	\$100s millions (police a/c)
	Geolocation Sensor	aircraft struck	None		\$billion (all aircraft)
	Ground-Based Geolocation Sensor Network	No aircraft strike required	None	Demonstrated technical viability: needs operational demo	\$10s millions (total for top 30 airports, individual airport cost \$250k-750k depending on # sensors needed)

Need for ground-based sensor system to support rapid, targeted law enforcement response

Laser Aircraft Strike Suppression Optical System (LASSOS)

- 1. Perpetrator shines laser at airplane
- 2. Laser light scatters off air molecules and particulates
- 3. Two ground sensors detect scattered light
- 4. Sensor imagery processed to geolocate source
- 5. Location sent to law enforcement for rapid, targeted response
- 6. Evidence collection for post-event analysis & prosecution

LASSOS Initial Sensor Prototype

1944				Minimum enhancements for operational prototype	
		4 inch/10 cm		Power & Network Connections • Enables long duration unattended operation • Communication to centralized law enforcement command center Rugged Enclosure • All-weather operation Real-time Processing	
Camera • Andor astronomy- grade cooled CCD camera	Star Tracker • Kodak low noise CCD, Nikon lens	Lens Large commercially available aperture (10) 	• Filter b	For rapid geolocation estimates <i>Filter</i> locks all irrelevant	
 Very low noise and high sensitivity (single photons) 	For sensor attitude determination	cm) to capture more light onto camera	wavele backgr lowerin	wavelengths (e.g., sky background light), thereby lowering the noise in the image • 94% US laser incidents are green	

Geolocation accuracy <10 m (30 ft) at 9 nmi range within 15 secs

USAF funding Lincoln to develop and demonstrate ruggedized, portable LASSOS for field deployment

- Increase sensor field of view
 - Increase camera sensor size and/or decrease lens focal length
- Explore options for multi-spectral capability
 - Existing multiple filters → multi-line filters/wheel
- Environmental protection for sensors
 - Enclosures & cooling
- Develop/demonstrate software control of sensors
 - Camera control, image acquisition, calibration → more automation
- System integration & testing

Ruggedized Sensor Testing at Boston Logan Airport

- Performed live laser testing at locations 5-7 nmi south of the airport
 - Tests conducted in early hours of morning when traffic was minimal
 - Conditions more taxing than previous tests (high ambient light background)
- Extensive support from Massport, MA State Police & Federal Aviation Administration

Ruggedized Sensor Testing at Boston Logan Airport

Demonstrates performance under low Signal-to-Noise Ratio conditions and 10 Hz updates allowing time domain analysis

Ruggedized Sensor Testing at Boston Logan Airport

- Successful laser streak detections at all test sites (5-7 nmi range)
 - Green & blue lasers
 - Some detections depended on laser streak orientation relative to sensor
- Similar geolocation accuracy as Lincoln tests

Demonstrates viability of LASSOS system in operationally realistic conditions

- Prototype ground-based laser strike geolocation system developed
 - Current testing shows very promising results (<10 m geolocation accuracy in less than 15 secs)
 - Operational airport testing confirms viability in field conditions
- Seeking to conduct longer term deployment, testing and refinement at US airport location
 - In discussions with FAA, FBI & airport authorities about support
 - Keen for new stakeholder engagement
- Ultimately plan to transition to federal government or industry for widespread deployment
- Contacts: Brian Saar (saar@ll.mit.edu) & Tom Reynolds (tgr@ll.mit.edu)

Questions

