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Thesis: Artificial Intelligence (AI) will fundamentally challenge current warfighting practices. 
The threat of AI-enabled battlefield technology means that the United States should invest in 
military applications of specific attacks on the machine learning (ML) algorithms underlying AI 
technology in order to be able to deceive these algorithms. This paper proposes a new framework 
for analyzing the robustness of AI from the perspective of how to deceive machine learning 
algorithms and compares the relative strength of two different attacks on ML. The Department of 
Defense (DoD) likely has under invested in AI research given future battlefield impact of this 
technology, but needs to invest more in robustness and deception with regards to Artificial 
Intelligence (AI). 
 
Discussion: The US is investing in AI, but our adversaries, such as China and Russia, are both 
investing tremendous effort in fielding autonomous systems. This means that the US military 
will likely face autonomous weapons systems or AI-enabled battlefield technology. However, 
current tactics will likely be challenged by AI, and AI will likely outperform humans in the near 
future on the battlefield. There is an emerging field of research into ways that ML can be 
deceived, however, there isn’t a framework comparing different methods of how to attack these 
algorithms. This paper proposes such a framework, experiments in using it against simple ML 
algorithms, and draws conclusions based on their performance and the experience of this 
experimentation. 
 
Conclusion: The current pace of change in AI research and the ever-increasing levels of 
investment means that the state-of-the-art in AI research from five years ago is commonplace 
now. We need to start thinking about techniques for fighting AI while AI still underperforms 
humans in warfare so that we can maintain our edge when AI represents the dominant battlefield 
technology. 
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Introduction: Negative, suppression is VOID 

 In 281, Pyrrhus of Epirus crossed the Adriatic Sea to give military aid to the Italian city 

of Tarentum against Rome. Pyrrhus brought with him a surprise weapon: 20 war elephants.1 His 

Roman opponents were unprepared to face these incredible engines of war – as they would be 

half a century later against Hannibal Barca. It took 50 years of adaptation to deal with this new 

“technology.” Finally, Scipio Africanus trained his Roman to psychologically to face these 

battlefield giants, deploying his formations with set channels to allow elephants to pass between 

them and using musicians and war cries to scare these behemoths back into the Carthaginian 

formation, leading to victory at the Battle of Zama.2   

A similar surprise awaits on the battlefield of the future in the form of fully autonomous 

weapons and Artificial Intelligence (AI) capabilities. These systems promise to drastically alter 

the character of warfare, transforming both tactics and strategy while changing the geopolitical 

calculus surrounding warfare itself. The US military must develop new techniques, tactics, and 

procedures to face these weapons before they surprise us on the battlefield. 

 Suppression is integral to modern military tactics. From the first introduction a Marine 

Officer receives to maneuver under fire during the Buddy Pair Fire and Maneuver Course at 

Officer Candidate School to the first battle drill in the Army’s field manual on platoon and squad 

tactics, suppressing fire is trained and ingrained as a tactical necessity. 3 When confronted with 

autonomous weapons, modern Marines and soldiers will likely spend effort on trying to suppress 

them. 

 But autonomous weapons cannot be suppressed. They do not feel fear. They do not have 

a cardiovascular or central system, nor do they feel the concussive effects of explosions. Any 

drive for self-preservation is programmed, capable of being modified at any time. Any effect 



fires will have on such weapons will only be through direct damage. Marines fighting on future 

battlefields against such weapons will have to leverage different tactics than the current use of 

suppression to cover maneuver. At its most basic, tactical level, fighting machines will be a 

different kind of war. 

In removing humans from the battlefield, AI promises to transform the character of war 

beyond these tactical implications. Lieutenant General H.R. McMaster’s formulation of war as 

“an uncertain contest of wills” raises the obvious question: how do you break the will of a 

machine? How do you deliver the Clausewitzian force compelling an enemy to do our will when 

that enemy never sleeps, never loses focus, and is completely dedicated to victory?4 War fought 

by machines will be like none other, as the ontology humans use to understand war, 

engagements, battles, campaigns, etc., is fundamentally predicated on human emotion and 

psychology. How does a battle cease if one side never breaks psychologically? Does a battlefield 

populated with machines constitute a change not only in the character of warfare, but in its very 

nature? 

While warfare may have its own grammar, AI will likely fight as if speaking an entirely 

different language.5 Battlefield generalship would appear to require general-purpose AI beyond 

what is currently imagined, but only the most hubristic human-chauvinist would consider it 

fundamentally out of reach for machines. On the gameboard, Gary Kasperov’s loss at Chess to 

Deep Blue and Lee Sedol’s defeat at Go by Deep Mind’s AlphaGo both demonstrate the ability 

of machines to defeat humans in areas previously thought impossible. AlphaGo’s ability to 

choose super-human moves in Go is noteworthy in that autonomous weapons and AI command 

likely will present human opponents with tactics similarly perceived as incomprehensible by 

humans.6 Indeed, Deep Mind’s latest endeavor in using AI to play the computer game Star Craft 



demonstrates this effect.7 While AlphaStar has not yet proven it can defeat every opponent, the 

program has beat professional players with similar levels of impenetrable decision-making and 

superhuman play.8 Imagine combining the shock of defeat with the emotion of not only not 

understanding how it happened, but being incapable of ever understanding it. 

The advantages of AI-enabled warfare are driving countries to adopt autonomous 

weapons, leading to a strategic AI arms race.9 While individuals such as the Secretary General of 

the United Nations, Elon Musk, Stephen Hawking, and machine learning conferences propose 

ethical AI requirements, these efforts have not stopped the development of these systems by both 

the United States and its adversaries. 10 

 What happens to our conception of war when machines do the fighting? Marine Corps 

Doctrinal Publication 1, Warfighting, defines war as “a violent struggle between two hostile, 

independent, and irreconcilable wills.”11 This definition breaks down when applied to a future 

where machines take on battlefield decision-making and autonomous weapons fight alongside 

humans. How does one defeat an enemy that is programmed to never give up? How can human 

effort outlast an enemy that never tires or sleeps? Can a person overcome an opponent devoid of 

rage, fear, and uncertainty? If one accepts Sun Tzu’s formulation that war is in essence 

deception, then the future of warfare requires its participants to master the art of deceiving 

machines. 12  

 This paper proposes a new framework for analyzing the robustness of AI from the 

perspective of how to deceive machine learning algorithms. The AI-enabled “elephants” are 

coming; the military needs new techniques, tactics, and procedures to fight them. 

AI and the DoD 



 The Department of Defense (DoD) likely has under invested in AI research given future 

battlefield impact of this technology. The Defense Advanced Research Projects Agency 

(DARPA) conducts the majority of this research, with the more recently established Joint 

Artificial Intelligence Center (JAIC) coordinating the DoD’s efforts to implement AI.13 

Individual services also are experimenting with AI technologies, demonstrating the possible 

future combat impact of the technology while also exposing resistance and difficulties in fielding 

these technologies. DoD strategy is beginning to cover the impact of AI, as shown in the 2018 

National Defense Strategy, but does not address the degree to which this technology will 

influence the character of future warfare, particularly in combat between AI-equipped 

belligerents.14 These difficulties reflect both the incredible pace of change in AI research as well 

as cultural resistance to these changes.  

 DARPA’s mission is to “make pivotal investments in breakthrough technologies for 

national security.”15 Established in 1958 as a response to the launch of Sputnik by the Soviet 

Union, DARPA has developed numerous cutting-edge technologies, such as ARPANET (the 

precursor to the internet) and stealth technology.16  As such, DARPA has been an early explorer 

of the capabilities of AI systems. In 1966, DARPA and Stanford University developed an 

autonomous robotic system that could move.17 Called “Shakey the Robot” because of how it 

shook while it moved, this effort represented the first general purpose robot.18 Shakey spurred 

pioneering research on computer vision, natural language processing, and autonomous route 

planning.19 DARPA’s research on autonomous systems reflects the pace and focus of AI 

research. For example, none of the entrants into the 2004 DARPA Grand Autonomous vehicles 

challenge completed the challenge, but in 2005, five entrants were successful.20 This DARPA-

centric approach to AI also reflects AI’s position in the DoD as a breakthrough technology. 



DARPA’s research is focused on exploring the leading-edge of AI’s capabilities, not its impact 

on warfare. 

 DARPA maintains a role in current DoD AI research. In 2015, DARPA presented its 

view of AI development as having three waves. The first wave of AI research, “handcrafted 

knowledge,” consisted of systems where human engineers set the rules and machines explored 

their implications.21 DARPA defines the second wave of AI research as statistical learning, 

focused on finding underlying patterns and structures within data and using machines trained on 

these patterns to make determinations on new inputs. DARPA sees these systems as “statistically 

impressive, but individually unreliable.”22 DARPA’s current research focuses on their proposed 

“third wave” of AI research: systems capable of contextual adaptation.23 In this area, DARPA is 

investing in “explainable AI,” where the decisions of systems like neural networks (a “second 

wave” AI technology) can explain its decisions to a human supervisor.24 Another effort of 

particular interest to this paper is DARPA’s partnership with Intel Corporation and Georgia 

Institute of Technology on developing secure AI.25 However, even this research still follows 

DARPA’s mission to develop breakthrough technologies as opposed to understanding the impact 

those technologies will have on the future battlefield. 

 The DoD’s initial effort to leverage modern AI technologies (second-wave technologies 

in DARPA’s framework) in combat fell under the Algorithmic Warfare Cross-Functional Team 

(AWCFT). The AWCFT was established in 2017 to “integrate artificial intelligence and machine 

learning more effectively across operations to maintain advantages over increasingly capable 

adversaries and competitors.” Project MAVEN (another name for the AWCFT) was a notable 

first step in integrating AI capabilities into combat operations. MAVEN first focused on using 

computer vision in order to assist in the Processing, Exploitation, and Dissemination (PED) of 



full-motion video (FMV).26 This project directly addressed the need brought on by the 

proliferation of battlefield sensors, with some FMV systems producing over 400 gigabytes of 

data per second.27 As Lieutenant General David Deptula, Air Force Deputy Chief of Staff for 

Intelligence, Surveillance, and Reconnaissance, summarized, “We’re going to find ourselves in 

the not too distant future swimming in sensors and drowning in data.”28 Project MAVEN 

foresaw many other areas of AI integration, such as document processing, natural language 

processing, persona identification, and optical character recognition.29 However, this effort 

encountered obstacles. In particular, Google dropped out of Project MAVEN after employees 

protested their involvement in DoD projects.30  

JAIC’s establishment in 2018 is a reflection of the successes of Project MAVEN as well 

as the need for more investment and coordination. The 2018 National Defense Strategy stated 

that ongoing advances in AI would change “the character of war.” JAIC was established in order 

to speed delivery of AI technologies in response to this change.31 JAIC’s first National Mission 

Initiative (JIAC’s term for their premier research projects) was taking over Project MAVEN, and 

JAIC’s funding reflected a marked increase in the size of these AI-related contracts. JAIC’s early 

emphasis on ethics in AI implementation and research also reflected MAVEN’s problems with 

Google.32 In these respects JAIC represents a step forward from MAVEN in both effort and 

synchronization. 

Unlike DARPA, JAIC exists to explore the implementation of AI into DoD operations.  

JAIC is the DoD’s “Center of Excellence” that provides a critical mass of expertise to help the 

Department harness the game-changing power of AI.”33 Reflecting the rapid progress of AI 

research and the imperative to prevent adversaries from developing and fielding systems before 

the US can, the JAIC focuses on speed and agility. This speed and agility are necessary, as are 



JAIC’s efforts to unify AI efforts across the services.34 Lost in recognition that AI will change 

the character of war and the necessity for accelerating the deployment of AI technologies is an 

understanding of what this change will look like and how these technologies will be used.  

 Experimentation in AI-involved combat has revealed the incredible capability afforded 

by such systems. DARPA’s AlphaDogfight program sought to demonstrate the capability of AI 

systems in simulated air-to-air combat over the course of 2020. This experiment consisted of 

three events, pitting teams of AI programmers against each other with a final challenge against a 

human pilot. The winning team’s system demonstrates the degree to which AI systems will 

likely change the character of war. The AI outmatched the human pilot, winning all five of the 

simulated dogfights.35 The way the winning team won was also informative: The Heron Systems 

Falco AI, the challenge winner, performed maneuvers that were far more aggressive than would 

be considered by a human pilot, such as head-on approaches, and had near-perfect accuracy in its 

gunnery.36 This level of aggression demonstrates how AI changes the character of warfare in that 

autonomous systems will not fight like humans, while the perfect aiming shows the same super-

human mastery demonstrated by Deep Blue and AlphaGo. These systems will only improve in 

their capabilities, likely resulting in them being fielded before most service members are ready. 

 AI as a technology presents what author Clayton Christensen calls “the innovator’s 

dilemma.” 37 Although AI-enabled technologies currently under-perform cutting edge weapons 

systems, dissuading early investment, these technologies will over-perform in the future. Like 

the hard drive manufacturers in Christensen’s book, DoD leadership and Congress have been 

incentivized to invest in technologies that are currently most capable instead of future 

prospective dominance. For example, Congress denied the U.S. Navy’s request for funding for 

un-crewed vessels, demanding that the Navy work out every component of the vessel before 



moving forward with the acquisitions plan.38 Leaders are also unlikely to invest in technologies 

that threaten human primacy in their communities. This is demonstrated by resistance to 

technologies that threatened manned programs, such as the Unmanned Combat Aerial Vehicle 

and correspondingly the F-35.39 Another challenge is that the DoD workforce lacks the technical 

acumen necessary to understand the impact of AI. The Marine Corps’ Manned-Unmanned 

Teaming program lead at the Marine Corps Warfighting Lab, Colonel J. Darren Duke claims, 

“The reason for this narrow scope and glacial pace of exploitation [of AI technology] is data-

illiteracy.”40  

While the DoD is accelerating its AI research and development efforts, these likely 

remain undersized when compared to the changes that AI will bring to the character of future 

warfare. Despite these obstacles, the DoD must not only continue its efforts, like the JAIC, to 

field these technologies but also to understand the impact they will have once fielded by the 

United States’ adversaries. Increased funding for JAIC and increased emphasis on AI programs 

are necessary to ensure that the United States does not suffer capability surprise from future AI 

weapons systems. 

The AI Arms Race: China, Russia, and ISIS 

 China and Russia are investing in AI technologies in different applications, but both see 

AI as the future of warfare and an opportunity to reshape the global balance of power. The 

Chinese Communist Party (CCP) sees AI as on par with the industrial revolution, presenting a 

key opportunity to become a world economic and military leader and is investing strategically in 

order to gain economic and military advantage.41 Russia is focusing on developing autonomous 

systems for combat and has experience deploying un-crewed ground vehicles in combat 

operations in Syria.42 The rapid pace of AI development also poses a proliferation risk, as 



terrorist groups could re-purpose Commercial Off the Shelf (COTS) AI solutions as battlefield 

weapons. The breadth and scope of adversary interest and investment in leveraging AI in warfare 

will almost certainly lead to the proliferation of such technology on the future battlefield. 

 The Chinese Communist Party sees AI as revolutionary technology that will allow China 

to surpass the United States in scientific, economic, and military dominance. The President of the 

People’s Republic of China, Xi Jinping, has stressed the importance of AI, stating that it is “a 

strategic technology heralding this round of scientific and industrial revolution and industrial 

change.”43 The CCP sees the AI revolution as an opportunity for “leapfrog development,” where 

lagging countries can skip a development stage to overcome more developed competitors.44 This 

assessment parallels Christensen’s analysis: China’s lack of competitiveness in current-

generation technologies represents an advantage in their ability to adopt AI.45 China seeks the 

“first mover” advantage in AI investment not only to accelerate its development but also as a 

means for great power competition. The CCP’s 2017 New Generation Artificial Intelligence 

Development Plan states that “AI has become a new focus of international competition.”46 

China’s investment in AI across economic and national security applications has grown 

accordingly. 

 The CCP is systematically investing in AI with a unified strategy in order to become a 

global leader in AI technologies. The 2017 New Generation Artificial Intelligence Development 

Plan set goals of “achieving important progress” in AI by 2020, “major breakthroughs” by 2025, 

and become a world leader by 2030.47 China’s AI investments have followed this strategy, with 

the CCP making over 70% of global investments in AI in 2017, later surpassing the US to 

become the top nation state investor in AI in 2018.48 Similar to DARPA and JAIC, China has 

established two major research organizations—some of the largest government research agencies 



in the world with each employing more than 100 researchers.49 The CCP has also pushed for 

increases in AI research and education at Chinese universities.50 This strategic approach has 

placed China as the world leader in AI papers, patents, and venture capital investment,  second 

only to the United States in terms of the number of AI companies and the size of its AI talent 

pool.51  

The People’s Liberation Army (PLA) benefits from all facets of Chinese AI research 

through Military-Civil Fusion (MCF). MCF is a two-way transfer of knowledge, with the PLA 

able to leverage research done at any Chinese company or institution while also supporting such 

research through funding and espionage.52 MCF seeks to create and leverage these synergies in 

order to achieve both the national security and economic transformational goals of its AI 

strategy.53 Chinese government dominance over AI research prevents Chinese companies from 

backing out of military partnerships, in contrast to Google’s decision to end participation in 

Project MAVEN, and allows the CCP to hide the degree to which their domestic AI industry is 

focused on military development. 

The PLA seeks to adopt AI technologies to achieve parity with the US military. The PLA 

increasingly refer to “intelligent” or “intelligentized” technology as the basis for future war. 54 

Zeng Yi, an executive at the Chinese defense company NORINCO, expressed their view on 

autonomous weapon systems, stating, “In future battlegrounds, there will be no people fighting,” 

and that the military use of AI is “inevitable.” 55 The People’s Liberation Army also sees human 

cognition as a limiting factor in future conflict and is leveraging AI in order to augment decision-

making: “Only relying on the command experience of individuals, and adopting simple, direct, 

qualitative decision methods to form the operational resolution, are by far no longer able to 

adapt.”56 Zeng’s opinions reflect this as well, stating that “AI may completely change the current 



command structure, which is dominated by humans” to one that is dominated by an “AI 

cluster.”57 The PLA is also investing in AI-enabled “assassin’s mace” technologies, such as 

autonomous mini-submarines to threaten aircraft carriers and drone swarms capable of taking out 

high value air defense targets.58 The PLA and Chinese defense industry’s enthusiasm for AI-

enabled battlefield technology increases the likelihood of near-term employment of AI on the 

battlefield. 

 The Russian Federation also sees AI as the key to future global competition. In an 

address to Russian schoolchildren in 2017, President Vladimir Putin stated, “Whoever becomes 

the leader in this [AI] sphere will become the ruler of the world.”59 Russian Defense Minister 

Sergei Shogyu ordered production of un-crewed ground vehicles in 2018 and stated that Russia’s 

military must introduce intelligent weapons systems.60 The Russian defense industrial base and 

military theorists agree. General Valery Gerasimov, the Chief of the General Staff of the Russian 

Armed Forces stated that in his view, the main features of future conflicts will be precision 

weapons and robotics.61 While Russia lacks the economic strength of the US or China and 

cannot match either’s investment, Russia has strategically invested in civilian-military 

partnerships, including an AI and semantic data analysis research project that represents one of 

the largest in Russia to date. Russia has even launched its own DARPA-like organization, the 

Foundation for Advanced Studies, to research military robotics applications. 62 Like most of 

Russia’s defense expenditures, AI represents an avenue to find asymmetric advantage against the 

US military, allowing Russia to target specific defense projects to achieve outsized advantage 

when compared to the relative size of its economy. While Russia’s AI programs are smaller, they 

have led to meaningful experimentation and could easily produce the weapons systems 

envisioned by Russian leadership. 



 Russia has led in battlefield experimentation with un-crewed ground vehicles. Russia has 

used the conflicts in Syria, Ukraine, and Libya as opportunities to gain battlefield experience 

with its newest weapons systems, and has leveraged this opportunity to experiment with the 

tactical employment of its latest weapons systems. Russia has experimented with the Uran-6, 

Uran-9, Scarab, and Sphera un-crewed vehicles in Syria and Ukraine, with the Uran-6 and 

Sphera rated highly for their performance.63 While the Uran-9 was rated poorly, this sort of 

experimentation is priceless in developing techniques, tactics, and procedures for the tactical 

integration of such systems. Though Russian military theorists emphasize their desire to maintain 

a “human-in-the-loop” for such systems, developing a wide variety of un-crewed systems means 

that the Russian military is poised to integrate AI-enabled autonomy, were such technology to be 

developed. 

 Though non-state actors likely will not possess the ability to develop AI-enabled weapons 

systems, they likely will be able to integrate COTS AI-solutions into improvised weapons. The 

Islamic State of Iraq and Syria (ISIS), as well as other Syrian militia groups, was particularly 

adept at using commercial drones for surveillance and as improvised weapons. ISIS deployed 

these drones in swarms, sometimes rigged to drop 40mm grenades.64 In one video posted by the 

group, a hovering drone perfectly hits the open hatch of a stationary M1 Abrams tank.65 AI 

technology likely will be no different, with terrorist groups re-purposing existing systems 

towards creating more lethal and harder to counter threats. As AI permeates everyday technology 

through the internet of things, it likely will present a proliferation threat for non-state adoption.66 

Improvised explosive devices capable of visually identifying their targets and small unmanned 

air systems capable of navigating without outside control and navigation likely would negate 

much of the technology currently employed to defend against such systems. At the current pace 



of research and development, battlefield-applicable AI likely will not remain the sole purview of 

nation states. 

 The United States’ adversaries are poised to develop and adopt AI weapons systems. 

Though these will initially underperform the state of the art in military technology, it is likely 

that such technology will rapidly transform the character of war, changing who fights warfare 

and how they fight. The US military must begin thinking through ways to defeat such systems 

before they appear, rather than suffer capability surprise and possible defeat when these systems 

are fielded on the other side. 

How Machines “Think” 

 Fighting AI requires an understanding of what AI is and how it works. AI presents a 

battlefield challenge not only through its ability to demonstrate super-human skill in certain 

aspects of decision-making, but also in the fact that this ability often results from processes 

distinct from human cognition. As such, users need to understand how these systems work 

instead of projecting human thought processes on to them. 

 There is no agreed upon definition for AI. The diversity in research approaches and 

topics covered under AI means that there is no commonly accepted definition of AI in the field. 

There is also no official US government definition of AI.67 The 2018 DoD Strategy on AI 

defines it as: “the ability of machines to perform tasks that normally require human intelligence–

for example, recognizing patterns, learning from experience, drawing conclusions, making 

predictions, or taking action–whether digitally or as the smart software behind autonomous 

physical systems.”68 This definition is telling: definitions of AI frame it in terms of human 

intelligence. Humans deem intelligence upon machines that accomplish tasks without human 



supervision that would normally require human intelligence. This fallacy is dangerous, as the 

assumption that a machine is thinking like a human exposes the assumer to deception. 

Machine Learning (ML) is a subset of AI research where algorithms make decisions 

based on rules inferred from pre-existing training data. In this respect, ML emulates human 

learning. ML is a major component of the latest phase of AI research, which DARPA would 

classify as “the second wave.”69 ML uses a training set, which consists of data that is labeled—or 

marked with the correct decision—to develop rules to classify data that is unlabeled. The graph 

below shows five classes of data, labeled with their respective color: 

 

Figure 10 – Simulated Data with Five Clusters, Generated with MatPlotLib. 

ML is about inferring data labels from patterns in the  training data. In other words, given the 

labels applied to the data in this training set, how does one label new data, such as the circled 

points below? 



 

Figure 11 – Simulated Clusters with Three Un-Labeled Data Points. 

For the grey point, the answer is intuitive: yellow. Problems arise from examples like the two 

circled red points: one is not close to any example to be labeled with certainty, while the other is 

equally close to several colors (purple, green, yellow) which could be suitable labels. While this 

seems simple, in a real-world application, each dimension could be a pixel in an image or a gene 

in a DNA sequence and the label as something like: “Tank,” Civilian,” or “Cancer.” These 

examples demonstrate how relatively simple algorithms make choices in real world applications. 

 There are many ways to infer new labels in ML. A simple method is picking the closest 

point in the training set (or a collection of closest points, numbered k) and assuming that the 

unlabeled data shares class membership with that point (or points). This method is known as k-

Nearest Neighbor (k-NN for short).70 Another method is to find functions of the underlying 

classified data values that produce an overall score for each data point and then comparing those 

values to a threshold to determine class membership. This can be thought of as finding 

boundaries that separate each class. If the functions are purely linear combinations of the data 



values, those boundaries are lines or planes in the data space. This paper will focus on two such 

methods: Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM).71 

ML problems are most easily understood in the case where there are only two classes. For 

example, determining whether an image of an animal is a cat or a dog would be a two-class 

problem. Consider the example below: 

 

Figure 12 – Two-Class Simulated Data Problem Using Numpy and MatPlotLib. 

In this case there are two classes (Class_0 and Class_1) occupying a two-dimensional data space. 

An LDA classifier separates these classes based on their statistics (their mean and covariance) to 

find the plane across which the separation is most statistically clear, such as the separating line 

below: 



 

Figure 13 – LDA applied to the Simulated Data in Figure 3. 

The algorithm then classifies unknown data based on which side of the line the new data falls in 

the data space.  

In contrast, for a SVM, the goal is to find the line that provides the maximum spatial 

separation between these clusters (aside from a minimal number of errors in this case represented 

by the two dashed lines. 



 

Figure 14 – SVM Applied to the Simulated Data in Figure 3. 

An SVM classifies each class into either 1 or -1, and seeks to maximize the margin between 

points classified as such. Here the circled points are the “Support Vectors,” lying either directly 

on the maximum spatial separation line or between -1 and 1 from the maximum spatial 

separation line. An SVM can classify unknown data mathematically from these points (via the 

dot product), which allows it to be extended through transformations of the data space, like so: 

 

Figure 15 – SVM with Non-Linear Kernel Applied to Simulated Data in Figure 3. 



This property allows SVMs to be used in cases where the data is not linearly separable. This 

transformability makes the SVM a versatile classifier for tasks such as handwriting recognition 

and identifying the classification of genes.72  

 Given this understanding of how ML works, how can humans deceive these types of 

algorithms into miss-classified data? One solution is to perturb data from one class such that the 

algorithm incorrectly classifies it as another class. For example, the image below demonstrates 

the deception of an LDA by moving a point from Class_0 and making it appear to the classifier 

as if it were Class_1:  

Here the target data (the green star) is manipulated such that it falls on the LDA classifying line 

(purple star) as an “adversarial example.” This technique works equally well for SVMs: 

Figure 16 – Adversarial Example Attack Against SVM 
from Figure 4. 



 

Figure 17 – Adversarial Example Applied to the SVM in Figure 5. 

 Another solution is to modify the training data in order to shift the decision boundary. 

These are called “data-poisoning” attacks which focus on shifting a point or group of points in 

order to make the classifier misclassify un-modified data. 

 While these attacks seem extreme in the two-dimensional case shown above, most 

machine learning problems have higher-dimensional data-spaces. For example, while humans 

see handwriting as a 2-dimensional problem, handwriting recognition algorithms see it as a 784-

dimensional problem.73 As the number of dimensions grow, the concept of distance changes. 

Points are geometrically farther away from each other in these high-dimensional spaces. For 

example, to cover 10% of the volume of a cube in 10 dimensions requires a cube having 80% of 

the length of the original. This “Curse of Dimensionality” allows these adversarial attacks and 

data poisoning attacks to visually appear as noise to humans, while still being effective against 

machines.74 

 Understanding how AI and ML works illuminates the kinds of vulnerabilities these 

algorithms have. Though the above cases and the ones considered in this paper are simple, they 

demonstrate how humans could deceive AI on the battlefield. Research in the area of adversarial 



examples and data poisoning attacks has military relevance as the US and its adversaries rush to 

deploy these systems. 

Technical Background on Adversarial Examples and Data Poisoning Attacks 

 In Can Machine Learning Be Secure, Marco Barreno et al. (2006) proposed a framework 

for understanding the security of machine learning and AI. Their attack model defines three 

relevant properties for analyzing attacks on machine learning systems: influence, specificity, and 

security violation.75 The influence of the attack can be causative or exploratory depending on 

whether the attacker alters the machine learning algorithm by controlling the training data or 

training process or exploits the algorithm through offline analysis or queries of the trained 

learning system.76 This framework has been recently extended to include a third category, 

attacks that are exploitative. These so-called “inversion attacks” seek to recover sensitive 

information from the training set based on the behavior of the trained algorithm.77 The 

specificity of an attack refers to whether the attack is targeted, in that it alters the output of the 

algorithm in a specified way, or indiscriminate, in that the attack evades proper classification.78 

Finally, the security violation property of an attack is whether the attack allows an attacker 

special privilege in evading proper classification from the system in the case of an attack on the 

integrity of the system, or the attack makes the algorithm unusable in an attack on the availability 

of the system. Research into these types of attacks has typically been studied independently and 

there is a need to both compare their relative strength as well as investigate combining their 

effects. 

The most likely available attack surface of a machine learning algorithm is its input, and 

significant research exists into the viability of such attacks. Battista Biggio et al. in their paper 

Evasion Attacks Against Machine Learning at Test Time (2013), demonstrated a gradient descent 



attack, making repeated small changes to the input along the path maximizing the overall error, 

resulting in an input that evades proper classification by a trained algorithm. 79 In the paper, 

Intriguing properties of neural networks, Christian Szegedy et al. (2014) demonstrated that 

discontinuities in the input-output mappings for neural networks allowed an attacker to force a 

network to misclassify an image with a visually imperceptible perturbation. This paper coined 

the term “adversarial examples” to describe these non-random attacks on neural networks.80 

Early explanations for adversarial examples conjectured that they took advantage of the non-

linearity in machine learning algorithms, but in Explaining and Harnessing Adversarial 

Examples (2015), Ian Goodfellow et al. hypothesized that adversarial examples are the result of 

both the linearity of such algorithms and the high dimensionality of the data.81 Another 

hypothesis in Andrew Ilyas et al. Adversarial Examples Are Not Bugs, They Are Features 

(2019), is that adversarial examples are the result of spurious correlations in the training data, 

and that optimizing for accuracy emphasizes their effect.82 

The adversarial examples studies by Biggio, Szegedy, and Goodfellow required 

knowledge of the internals of the target algorithm or the data set used to train it. These “white 

box” attacks, while alarming, still required extensive knowledge on the attacking side for 

success. Nicolas Papernot et al. first demonstrated the ability to generate adversarial examples 

that function against “black box” deep neural networks, such that the attacker does not have 

access to the details of the machine learning algorithm, just its performance. Papernot, 

McDaniel, and Goodfellow demonstrated transferability in such black box attacks in their paper, 

Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial 

Samples (2016), finding that adversarial examples generated against one machine learning 

architecture are often effective against other architectures.83 The ability to create synthetic 



training sets to perform a black box attack on a machine learning algorithm along with the 

transferability of such attacks proves their applicability given that an attacker can create 

adversarial examples without detailed knowledge. 

Early research on defenses against adversarial examples focused on hiding the gradient 

values used by Biggio (2013) from queries to target algorithm, adding adversarial examples to 

training sets, or detecting them via a separate algorithm. 84 However, each of these defensive 

strategies has not been able to prevent attackers from creating effective adversarial examples. In 

Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial 

Examples, Anish Athalye et al. (2018) demonstrate that defensive techniques focused on hiding 

or manipulating the gradient values of a machine learning algorithm are not effective in 

preventing an attacker from creating strong adversarial examples against the algorithm.85 Adding 

adversarial examples to an algorithm’s training set, called adversarial training, was suggested by 

Szegedy et al. (2014) in the original paper on the topic.86 Aleksander Madry et al. formalized this 

training as a min-max optimization problem, solving for the optimal mix of adversarial examples 

in the training set by gradient descent.87 Alexey Kurakin et al. in their paper, Adversarial 

Machine Learning at Scale (2016), demonstrated the effectiveness of this technique in defeating 

simple adversarial examples.88 However, Florian Tramèr et al. in Ensemble Adversarial 

Training: Attacks and Defenses (2018), show that this technique can be defeated with more 

complex adversarial examples.89 Another paper on this topic, Robustness May Be at Odds with 

Accuracy by Dimitris Tsipiras et al. (2019) shows that adversarial training lowers the overall 

accuracy of the algorithm, and that these adversarial trained algorithms are still vulnerable.90 A 

third avenue for hardening machine learning algorithms is through trying to detect adversarial 

examples before they are input into the machine learning algorithm. In Adversarial Examples 



Are Not Easily Detected: Bypassing Ten Detection Methods, Nicholas Carlini and David Wagner 

(2017) demonstrate that these detection methods are also ineffective.91 Finally, in Adversarial 

Example Defenses: Ensembles of Weak Defenses are not Strong, Warren He et al. (2017) 

demonstrate that not only are individual defensive techniques against adversarial examples 

ineffective, but that attackers can create effective adversarial examples against collections of 

defenses constructed from weak defensive techniques. This paper also demonstrated that evasion 

techniques against individual defenses show transferability across other defensive techniques and 

that the minimal perturbation needed to create an adversarial example is nearly as small as what 

is required to bypass the strongest detector.92 

 Modifying training data presents another avenue for an attacker to subvert machine 

learning algorithms. In Poisoning Attacks against Support Vector Machines, Battista Biggio et 

al. (2012) demonstrate the ability for a single malicious data entry to cause machine learning 

algorithms, in this case SVMs, to miss-classify test samples indiscriminately, a low-specificity 

attack. 93 Huang Xiao et al. (2015) showed that similar data poisoning attacks were possible 

against linear regression techniques, such as Least Absolute Shrinkage and Selection Operator 

(LASSO) regression and ridge regression in Is Feature Selection Secure against Training Data 

Poisoning?94 In Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine 

Learners, Shike Mei and Xiaojin Zhu (2015) demonstrated data poisoning attacks against 

logistic regression. In each of these examples, the algorithm in question is linear and the attack 

was against data with only two categories of classification.95 Luis Muñoz-González et al. in 

Towards Poisoning of Deep Learning Algorithms with Back-gradient Optimization (2017), 

demonstrated data poisoning both against a multi-classification problem and against non-linear 

algorithms, most importantly neural networks.96 These papers demonstrate data-poisoning as an 



effective technique in theory, but as a practical attack vector, the inputs were not constrained to 

be tagged by a human observer, a critical component of practical real world attacks. 

Translating theoretical data-poisoning attacks into practical examples requires some 

method to add the poisoned data to the training set. One such method is making the data appear 

natural to a human observer. Initial attempts at such attacks focused on creating a so-called 

“backdoor” by adding a feature to a subset of the training data, then using that feature to mislead 

the trained algorithm on specific data points, thus conducting a targeted attack on the algorithm. 

In Trojaning Attack on Neural Networks, Yinqi Liu et al. (2017) showed how a model could be 

retrained with a specific trigger, creating a backdoor for an attacker. Retrained algorithms are 

fooled when they are presented with images containing the trigger when they would otherwise 

properly classify the input.97 These attack vectors are considered “clean label” attacks, as a 

human observer will correctly classify the image and the attack works with the data properly 

labeled in the training set. In Clean-Label Backdoor Attacks, Alexander Turner et al. (2018) 

refined this technique, using a small black and white backdoor feature in the corner of human 

recognizable images.98 Further research showed that these attacks are possible without the 

backdoor feature. In Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural 

Networks, Ali Shafahi et al. (2018) create clean label examples leveraging “feature collision” 

within the overall data set in a targeted attack that caused the trained algorithm to misclassify 

specific inputs.99 This feature collision used human-invisible features within the training set as 

their own sort of backdoor attack, causing the algorithm to misclassify inputs. These clean label 

attacks demonstrate an attacker’s ability to inject their poisoned data into the training pool in a 

way that would not be detected by a human observer.  



Data-poisoning attacks demonstrate much of the same transferability as adversarial 

examples. In Transferable Clean-Label Poisoning Attacks on Deep Neural Nets, Chen Zhu et al. 

(2019) extended the techniques from Shafahi (2019) to an environment without attacker access 

to the underlying machine learning algorithm. 100 This attack uses a “convex polytope” to 

surround a portion of the data set with poisoned data, causing the attacked algorithm to 

misclassify data falling within the region bounded by this poisoned data. In MetaPoison: 

Practical General-purpose Clean-label Data Poisoning, W. Ronny Huang et al. (2020) 

developed a robust method to create tailored clean-label, black box, transferable data poisoning 

attacks. This technique frames the data-poisoning attack generation as a bi-level optimization 

problem, similar to methods used to create adversarial examples.101 This research shows that 

data-poisoning likely has the same advantages in black-box generation and transferability as 

adversary examples. 

As in the case of adversarial examples, the discovery of practical data-poisoning attacks 

has driven research into defensive techniques against these attacks. Research predating the 

discovery of transferable data-poisoning focused on cleaning training sets. In Casting out 

Demons: Sanitizing Training Data for Anomaly Sensors, Gabriela F. Cretu et al. (2008) used a 

data-sanitization step to try to remove erroneously labeled or malicious data through examination 

of small subsets of training data for network intrusion detection systems.102 Directly addressing 

the threat of data poisoning attacks, Jacob Steinhardt et al.  demonstrated how an oracle, or 

perfect outside database, with knowledge of the true statistics of the un-poisoned data can limit 

the effectiveness of such attacks against SVMs in Certified Defenses for Data Poisoning Attacks 

(2017).103 In Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering, 

Bryant Chen et al. (2018) showed that backdoor attacks could be detected by looking for 



clustering in the activation of nodes while training the neural network.104 In defending against 

the targeted clean-label attacks outlined by Shafahi (2019) or the convex polytope attacks 

demonstrated by Zhu (2019), Peri et al. showed that using a K- Nearest Neighbor (kNN) 

algorithm to pre-filter training data removed poisoned data in Deep k-NN Defense Against 

Clean-label Data Poisoning Attacks (2020). 105 

Assumed Threat Model for Analysis 

 Comparing adversarial examples to data poisoning attacks requires a threat model where 

the attacker can leverage both methods – otherwise comparison makes little sense. This model 

also must introduce some form of a trade-off between both attacks. The threat model also should 

demonstrate whether the attacker is performing a white box attack—where the attacker knows 

details of the defender’s machine learning algorithm—or a black box attack—where the attacker 

has no such knowledge.  

For this analysis, the defender is constructing a machine learning algorithm to properly 

classify inputs by training a machine on properly tagged data. This input/initial data is 

aggregated from web-scraping or other open sources. This machine learning algorithm is then 

deployed in an operational environment to classify inputs from an external environment. For 

example, this could be an algorithm designed to identify and classify military vehicles, similar to 

a French proposal for machine learning.106 In this proposal, the training data set is open-source 

images of military vehicles which are properly tagged, and the deployment use-case is deploying 

the algorithm to identify military vehicles on the battlefield. 

 The attacker for this analysis seeks to subvert the defender’s efforts to properly classify 

inputs. They can modify data in the defender’s training library—perturbing a properly tagged 

datum—or modify initial inputs to the defender’s trained algorithm. The attacker achieves 



success if the defender’s algorithm misclassifies a target element through either perturbing the 

input or changing the algorithm’s ability to classify it. For the French proposal above, the 

attacker could seed the open-source data environment with properly tagged images of military 

vehicles that have been modified specifically to target the vehicle recognition algorithm or the 

attacker could modify the camouflage or silhouette of their deployed vehicles in order to deceive 

the trained system. For the purposes of this paper, the attacks will be white box attacks where the 

attacker knows the details of both the defender’s training set and machine learning algorithm. 

These assumptions are not unreasonable, given that many machine learning companies publish 

enough details regarding their methodology that an attacker reasonably could be certain which 

algorithms they are attacking.107  Additionally, the defender’s use-case will allow the attacker to 

be able to determine what type of data is being used to train the algorithm. Assuming perfect 

knowledge will simplify the following analysis without losing generalizability.  

Though adversarial examples and data-poisoning attacks share commonalities, little 

research has been done comparing these two techniques. Preliminary research into how different 

defensive techniques perform indicates that hardening an algorithm against one form of attack 

may make it more susceptible to others.108 Combining data-poisoning and adversarial example 

approaches treats the entire life-cycle of the machine learning algorithm as an attack surface. As 

data-poisoning and adversarial examples use the same definitions of closeness, these measures 

could be used as a way to measure the trade-off between each method of attack, finding the best 

technique for a given Euclidean distance. If simultaneously solving two bi-level optimization 

problems is feasible, this method of comparison could find mixed approaches outperforming 

either technique alone. 

Methodology 



 This paper analyzes the LDA from Elements of Statistical Learning in order to derive a 

single-point adversarial example for the classifier as well as a determine a method for generating 

a single-point data poisoning attack for the same classification method.109 The same was 

attempted with an SVM using a linear kernel, via the method outlined in Poisoning Attacks 

against Support Vector Machines, by Battista Biggio et al. (2012).110  

 These methods were applied to simulated data sets drawn from 2-dimensional Gaussian 

distributions. These methods were chosen in order allow both the LDA and SVM to be 

applicable to the ML data space. All analyses were completed using the Python coding language 

in the Jupyter Notebook web-based interactive environment. 111 Numerical calculations were 

processed using the Numpy package for Python, and the SciKit Learn SVM was used for all 

SVM-related research. 112 The Python code for this research is included as Appendix A. 

Findings 

 For the LDA, single-point poisoning attacks were far larger than the corresponding 

adversarial examples. Over 10,000 trials covering a variety of distances between clusters, the 

average data-poisoning attack was 164.9 times larger than an adversarial example for the same 

target data, with a standard deviation of 29.9 for this ratio. This shows that data poisoning attacks 

against LDAs are far larger than adversarial examples. 



 

Figure 18 - Histogram of Ratios Between Adversarial Examples and Equivalent Data Poisoning Attacks 

The variation in this ratio was not correlated to the distance between the two clusters, and was 

likely dependent on the random selection of a target data point in each test. 

 

Figure 19 – Scatter Plot of Ratio Versus Distance Between Means of Simulated Data-Clusters 

 The code for this paper measured accuracy by comparing the poisoned and un-poisoned 

LDAs with data drawn from the same distribution as the training set. The accuracy dropped 



across all poisoned LDAs. The average poisoned LDA was only 77.5% as accurate with a 

standard deviation of 2.3% after being attacked as it was prior to it, as shown by the ratio 

displayed below: 

 

Figure 20 – Accuracy of Poisoned LDA Classifiers 

This drop in accuracy had less variation than the ratios, but this drop in accuracy did not appear 

to vary as the distance between the clusters increased. 



 

Figure 21 – Accuracy of Poisoned LDA Classifiers Compared with Distance Between Clusters 

 Comparing single-point data poisoning to adversarial attacks with SVMs proved more 

challenging. While the LDA attacks worked across any point with a target selected at random, 

the SVM version was not as accurate. However, some of the results where the code created a 

successful attack were informative regarding how data poisoning works against SVMs. For 

example, in the picture below the target’s location within the margin means that the attack could 

easily succeed (in this case the data poisoning was a point identical to the target with the 

opposite class tag): 



 

Figure 22 – Example of a Successful Adversarial Example Attack on an SVM 

In other examples where the target was outside the SVM’s margin region, the gradient descent 

algorithm (following the path of greatest change locally) managed to change the maximum 

separating hyperplane drastically, such as in the picture below: 



 

Figure 23 – Another Example of a Successful Adversarial Example Attack on an SVM 

 It is likely that a better comparison between attacks is possible with an impoved 

algorithm, better coding, and a more elegant target selection method.  

Though exact mathematical derivations of minimal attacks are possible on paper, they are 

less robust in application on a computer. Often these attacks had to be scaled by small amounts 

(1-2%) in order to adjust for underlying rounding and approximation done by the computer. In 

particular, there was a considerable disadvantage for the attacker with “grey box” knowledge of 

the distribution from which the simulated data was taken versus an attacker who had perfect 

access to actual data used to train the algorithm. Small approximations or simplifications in 

deriving the data poisoning attack also changed the results in ways that were counter-intuitive. 

For example, disregarding higher-order terms in the derivation led to much larger attacks than 



necessary. The exact solution for these attacks was thrown off by small approximations, while an 

algorithm following a simple, iterative technique of following the slope of the loss function was 

successful. 

Analysis and Future Research 

 Both the literature review and the simulations for this paper suggest that techniques like 

adversarial examples and data poisoning are viable against the future threat of AI. The DoD 

should investigate both defensive applications—such as robust AI and ML research—as well as 

offensive techniques—including blended attacks using both adversarial attacks and data 

poisoning in order to deceive adversary AI systems. 

 Though minimal attacks are interesting from a research perspective, the process of 

developing them indicates that they are more challenging to apply real-world applications. The 

approximations made during ML training suggest that a healthy margin likely is necessary to 

produce consistent effects. Also, military denial and deception usually consist of large 

perturbations: wearing face paint or covering a tank in foliage are very noticeable changes. AI 

research into the effectiveness of usual camouflage techniques against machine vision would be 

an interesting avenue of future research: AI could be effective in penetrating some denial and 

deception techniques or could be deceived simultaneously along with human vision. Adversarial 

examples, such as those demonstrated in Adversarial Patch by Tom B. Brown et al. (2017) could 

either be embedded into existing camouflage patterns or put on a patch deployed during combat 

in order to deceive AI systems.113 Similar techniques could embed text or cyberspace exploits 

into visually meaningless patterns as well, facilitating the introduction of malicious code from a 

physical object into a machine vision system. 



 Adversarial Examples Are Not Bugs, They Are Features, by Andrew  (2019), is of 

particular interest from the perspective of training and designing AI algorithms. 114  More 

research is needed on making algorithms focus on robust features—such as those that are used 

by humans during vehicle recognition—while suppressing spurious correlations. From an 

acquisitions perspective, this paper and Tsipiras et al. Robustness May Be at Odds with Accuracy 

(2019), indicate that vendors could develop vulnerable algorithms seeking to meet performance 

requirements or could promise performance that comes at the expense of robustness.115 Defense 

AI acquisitions programs should prioritize robustness in order to ensure that our future AI 

systems are not vulnerable to attack.  

 Professional Military Education (PME) should focus more on technical subjects across all 

PME programs. Military leaders need to understand both the incredible capabilities afforded by 

AI, as well as the severe limitations of the current state of the art. The U.S. military should make 

every effort to ensure data-literacy given the importance afforded to AI by our adversaries. 

Limiting technical education to a small number of PME students likely will exacerbate the 

problems identified by Col. J. Darren Duke in our limited approach to AI: “the U.S. military’s 

lag in applying this critical technological development is not due to a moral blind spot but rather 

a crippling type of illiteracy—data illiteracy.”116  

 The DoD and service components need to increase funding for AI experimentation 

alongside funding for new technologies. JAIC is ideally postured to coordinate experimentation 

at the department level and needs greater funding to do so. Service experimentation is also 

critical. AI will present an innovator’s dilemma, and institutional bias and resistance needs to be 

met with change-inducing experiences.117 Such experimentation should not only address how to 



integrate AI enabled technology into our warfighting but must also address the challenges of 

fighting AI. 

Conclusion 

 The AI elephants are coming. If we are lucky, we will also be riding them. However, the 

U.S. will not have 50 years to develop the right tactics to counter and leverage AI. The current 

pace of change in AI research and the ever-increasing levels of investment means that the state-

of-the-art in AI research from five years ago is commonplace now. We need to start thinking 

about techniques for fighting AI while AI still underperforms, so that we can maintain our edge 

when AI represents the dominant battlefield technology.  

 AI challenges our conception of warfare. Autonomous systems make decisions about 

violence without supervision, ending a human monopoly on violence that has lasted for the entire 

history of warfare. Will a future conflict fought by machines even be considered a war? While 

this idea seems like science fiction, it encompasses conceptual challenges faced in space and 

cyberspace today. 

This change does not mean an end to human participation in warfare. The US military 

must prepare its soldiers, sailors, airmen, and Marines for the challenge of fighting against 

machines. The impotence of tactics based on suppression will exacerbate the psychological 

impact of fighting a machine. However, we can develop new techniques, tactics, and procedures 

to leverage adversarial examples, data poisoning, and other yet-to-be-developed methods as 

substitutes for suppression. Just as the Romans had to learn to fight elephants, future Marines 

will have to learn to fight machines—and win. 
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Appendix A 

Below is the code that was used to simulate adversarial example and data poisoning attacks against 

LDAs: 

import numpy as np 
import matplotlib.pyplot as plt 
import copy 
import statistics 
from matplotlib.colors import ListedColormap 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import StandardScaler 
from sklearn.preprocessing import FunctionTransformer 
from sklearn.covariance import EmpiricalCovariance 
from sklearn.svm import SVC 
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA 
 
#This function generates a random covariance matrix 
#and ensures that none of the eigenvalues are small 
#in order to prevent the inverse from exploding 
def Generate_Covariance(dimension, thresh): 
    eigenvalues = np.zeros((dimension)) 
    while np.amin(eigenvalues) < thresh: 
        A = np.random.rand(dimension,dimension) 
        covariance_matrix = np.dot(A, A.transpose()) 
        eigenvalues = np.linalg.eigvals(covariance_matrix) 
    return covariance_matrix 
 
def Get_statistics(A_class, Target_class, A_class_size, Target_class_size): 
    #This function computes the mean and covariance for each of the clases 
    #print("Computing statistics for attack generation") 
    cvf = EmpiricalCovariance() 
    cov_class_A = cvf.fit(A_class) 
    covariance_A = cov_class_A.covariance_ 
    mean_class_A = cov_class_A.location_ 
    #print("The observed mean for the class of the target data is ", mean_class_A) 
    cov_target_class = cvf.fit(Target_class) 
    mean_target_class = cov_target_class.location_ 
    #print("The observed mean for the target class is ", mean_target_class) 
    covariance_target = cov_target_class.covariance_ 
    #Then, the function computes the overall covariance across the groups 
    #using the formula from p 109 of Elements of Statistical Learning 
    k_one = np.divide(A_class_size - 1, A_class_size + Target_class_size -2) 
    k_two = np.divide(Target_class_size - 1, A_class_size + Target_class_size -2) 
    covariance = np.multiply(k_one, covariance_A) + np.multiply(k_two, covariance_target) 
    #print("The observed covariance is ", covariance) 
    return mean_class_A, mean_target_class, covariance 
 
#This function serves as the LDA from page 109 for Statistical Learning 
#This function serves as the LDA from page 109 for Statistical Learning 



def LDA_from_statistics(x_evaluate, mean_0, mean_1, covariance, size_0, size_1): 
    covariance_inverse = np.linalg.inv(covariance) 
    alpha = np.add(mean_0, mean_1) 
    beta = np.subtract(mean_1, mean_0) 
    threshold = np.multiply(.5, np.dot(alpha, np.dot(covariance_inverse, beta))) - np.log(np.divide(size_1, 
size_0)) 
    value = np.dot(x_evaluate, np.dot(covariance_inverse, beta)) 
    evaluation = 0 
    if value >= threshold: 
        evaluation =1 
    return evaluation 
 
#This function helps to plot the decision boundary for the LDA from 
#statistics function 
def LDA_Line_Values(mean_0, mean_1, covariance, size_0, size_1): 
    covariance_inverse = np.linalg.inv(covariance) 
    alpha = np.add(mean_0, mean_1) 
    beta = np.subtract(mean_1, mean_0) 
    threshold = np.multiply(.5, np.dot(alpha, np.dot(covariance_inverse, beta))) - np.log(np.divide(size_1, 
size_0)) 
    vector = np.dot(covariance_inverse, beta) 
    slope = np.divide(vector[0], vector[1]) 
    intercept = np.divide(threshold, vector[1]) 
    return slope, intercept 
 
#This function generates an adversarial perturbation against an LDA 
#It takes a target datum and statistics about the dataset to compute the attack 
def LDA_Adversarial_Attack_Generator(a_target, mean_a, mean_b, covariance, Target_class_size, 
A_class_size): 
    beta = np.subtract(mean_b, mean_a) 
    norm_beta_squared = np.dot(beta, beta) 
    gradient_adversarial = np.multiply(np.divide(1, norm_beta_squared),np.dot(covariance, beta)) 
    constant = np.multiply(.5, np.dot(np.add(mean_b, mean_a), np.dot(np.linalg.inv(covariance), beta))) - 
np.dot(a_target, np.dot(np.linalg.inv(covariance), beta)) - np.log(np.divide(Target_class_size, 
A_class_size)) 
    zeta_adversarial_example = np.multiply(constant, gradient_adversarial) 
    return zeta_adversarial_example 
 
#This function gets the gradient of the margin for a poisoned LDA given 
#a data-poisoning perturbation of the training set zeta, the target data 
#and the current covariance and target set size 
def LDA_Gradient(zeta, z, covariance, a_size): 
    gradient = np.matmul(np.linalg.inv(covariance), zeta),  
    gradient = np.divide(gradient, np.multiply(2, np.multiply(a_size, a_size))) 
    gradient = np.divide(z, a_size) - gradient 
    return gradient 
 
#This function generates a single-point data poisoning attack using the gradient function above 
def LDA_Data_Poisoning_Attack_Generator_Gradient(a_target, class_A, class_B, size_A, size_B, step): 
    mean_A, mean_B, covariance_i = Get_statistics(class_A, class_B, size_A, size_B) 
    test = LDA_from_statistics(a_target, mean_A, mean_B, covariance_i, size_A, size_B) 



    z = np.subtract(a_target, mean_B).transpose() 
    while test != 1: 
        class_A[0] = class_A[0] + z.reshape(2) 
        mean_A, mean_B, covariance_i = Get_statistics(class_A, class_B, size_A, size_B) 
        test = LDA_from_statistics(a_target, mean_A, mean_B, covariance_i, size_A, size_B) 
        z = np.subtract(a_target, mean_B).transpose() 
    return class_A[0] 
 
#This function generates both attacks and compares them. 
def LDA_Attack_Tester(mu_0, mu_1, sigma, size): 
     
    #select machine learning algorithms 
    clf_lda = LDA() 
    clf_svm = SVC(kernel = 'linear') 
     
    #generate data 
    Class_0, Class_1, X, y = generate_data(mu_0, mu_1, sigma, sigma, size, size) 
    Class_T0, Class_T1, Xt, yt = generate_data(mu_0, mu_1, sigma, sigma, size, size) 
    #get the statistics for the LDA and the attack generator 
    mean_class_0, mean_class_1, sigma_observed = Get_statistics(Class_0, Class_1, size, size) 
     
    clf_lda.fit(X, y) 
    clf_svm.fit(X, y) 
    svm_vector = clf_svm.coef_[0] 
    svm_intercept = clf_svm.intercept_[0] 
  
    #select target data 
    #select a target from Class_0 to attack/posion to Class_1 
    t = 1 
    u = 1 
    v = 1 
    aa = 1 
    bb = 1 
    while v != 0: 
        target = np.random.multivariate_normal(mu_0, sigma, 1) 
        t = LDA_from_statistics(target, mu_0, mu_1, sigma, size, size)  
        u = LDA_from_statistics(target, mean_class_0, mean_class_1, sigma_observed, size, size) 
        aa = clf_lda.predict(target) 
        bb = clf_svm.predict(target) 
        v = t + u + aa + bb 
    print("The target data is ", target) 
     
    step = 1 
    Class_0_attacked_observed = copy.deepcopy(Class_0) 
    z_ae_observed_stats = LDA_Adversarial_Attack_Generator(target, mean_class_0, mean_class_1, 
sigma_observed, size, size) 
    z_p_observed_stats = LDA_Data_Poisoning_Attack_Generator_Gradient(target, 
Class_0_attacked_observed, Class_1, size, size, step) 
    z_ae_svm = SVM_Adversarial_Attack_Generator(target, svm_vector, svm_intercept) 
         
    #Demonstrate attacks 



    u = LDA_from_statistics(target + z_ae_observed_stats, mean_class_0, mean_class_1, sigma_observed, 
size, size) 
 
    Class_0_attacked_observed = copy.deepcopy(Class_0) 
    Class_0_attacked_observed[0] = np.add(Class_0_attacked_observed[0], z_p_observed_stats) 
    mean_attacked_0o, mean_attacked_1o, sigma_attacked_o = Get_statistics(Class_0_attacked_observed, 
Class_1, size, size) 
    q = LDA_from_statistics(target, mean_attacked_0o, mean_attacked_1o, sigma_attacked_o, size, size) 
 
    z_o = np.multiply(z_ae_observed_stats, 1) 
    if u == 0:    
        delta = .01 
        i = 1 
        while u != 1: 
            z_o = np.multiply(z_ae_observed_stats, 1 + delta) 
            u = LDA_from_statistics(target + z_o, mean_class_0, mean_class_1, sigma_observed, size, size) 
            delta += .01 
            i += 1    
    else:    
        delta = 0 
        i = 0 
        while u == 1: 
            z_o = np.multiply(z_ae_observed_stats, 1 - delta) 
            u = LDA_from_statistics(target + z_o, mean_class_0, mean_class_1, sigma_observed, size, size) 
            delta += .01 
            i += 1 
    z_p = z_p_observed_stats 
    Class_Po = copy.deepcopy(Class_0) 
    if q == 0: 
        delta = .01 
        i = 1 
        while q != 1 and  i != 100: 
            z_p = np.multiply(z_p_observed_stats, 1 + delta) 
            Class_Po[0] = np.add(Class_0[0], z_p) 
            mu_0o, mu_1o, sigma_o = Get_statistics(Class_Po, Class_1, size, size) 
            q = LDA_from_statistics(target, mu_0o, mu_1o, sigma_o, size, size) 
            delta += .01 
            i += 1 
    else: 
        delta = 0 
        i = 0 
        while q == 1: 
            z_p = np.multiply(z_p_observed_stats, 1 - delta) 
            Class_Po[0] = np.add(Class_0[0], z_p) 
            mu_0o, mu_1o, sigma_o = Get_statistics(Class_Po, Class_1, size, size) 
            q = LDA_from_statistics(target, mu_0o, mu_1o, sigma_o, size, size) 
            delta += .01 
            i += 1 
    z_s = z_ae_svm 
 
    score_LDA = 0 



    score_poisoned = 0 
    Class_0pt = copy.deepcopy(Class_T0) 
    Class_0pt[0] = Class_T0[0] + z_p 
    mean_tp0, mean_tp1, sigma_tp0 = Get_statistics(Class_0pt, Class_T1, size, size) 
    for i in range(size + size): 
        if LDA_from_statistics(Xt[i], mean_class_0, mean_class_1, sigma_observed, size, size) == yt[i]: 
            score_LDA += 1 
        if LDA_from_statistics(Xt[i], mean_tp0, mean_tp1, sigma_tp0, size, size) == yt[i]: 
            score_poisoned +=1 
 
    return target, z_o, z_p, z_s, score_LDA, score_poisoned, Class_0, Class_1 
 
#This function runs a series of tests (runs)  
#for a given relationship between the centers of each cluster 
def Attack_Size_Comparison(j, runs, center_1, center_2, dimension, thresh, data_size): 
    ratio = 0 
    score_un_poisoned = 0 
    score_poisoned = 0 
    i = 0 
    thresh = .01     
    while i < runs: 
        print("RUN ", j, "/", i+1) 
        spread = Generate_Covariance(dimension, thresh) 
        mean_0 = np.ravel(np.random.multivariate_normal(center_1, spread, 1)) 
        mean_1 = np.ravel(np.random.multivariate_normal(center_2, spread, 1)) 
        cov_matrix = Generate_Covariance(dimension, thresh) 
        target, z_o, z_p, z_s, score_LDA, score_p, Class_0, Class_1 = LDA_Tester(mean_0, mean_1, 
cov_matrix, data_size) 
        ratio += np.divide(np.linalg.norm(z_p), np.linalg.norm(z_o)) 
        print("ratio is ", ratio) 
        score_un_poisoned += score_LDA 
        print("score_un_poisoned is ", score_un_poisoned) 
        score_poisoned += score_p 
        print("score_poisoned is ", score_poisoned) 
        i += 1 
    print("Runs ", j, " Concluded") 
    ratio = np.divide(ratio, i) 
    score_un_poisoned = np.divide(score_un_poisoned, i) 
    score_poisoned = np.divide(score_poisoned, i) 
    return ratio, score_un_poisoned, score_poisoned 
 
simulations = 100 
runs = 100 
dimension = 2 
thresh = .01 
data_size = 1000 
center_1 = (1, 1) 
center_2 = (1, 1) 
step = (.1, .1) 
j =1 
 



ratio_between_attacks = list() 
score_for_poisoned_classifier = list() 
score_for_LDA = list() 
 
while j < simulations: 
    center_2 = np.add(center_2, step) 
    print("center 2 is ", center_2) 
    ratio, score_un_poisoned, score_poisoned = Attack_Size_Comparison(j, runs, center_1, center_2, 
dimension, thresh, data_size) 
    ratio_between_attacks.append(ratio) 
    score_for_poisoned_classifier.append(score_poisoned) 
    score_for_LDA.append(score_un_poisoned) 
    j += 1 
 
The code below was used to investigate the difference between adversarial example and data poisoning 

attacks for the SciKit SVM: 

import numpy as np 
import matplotlib.pyplot as plt 
import copy 
from matplotlib.colors import ListedColormap 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import StandardScaler 
from sklearn.preprocessing import FunctionTransformer 
from sklearn.covariance import EmpiricalCovariance 
from sklearn.svm import SVC 
 
#This function generates a random covariance matrix 
#and ensures that none of the eigenvalues are small 
#in order to prevent the inverse from exploding 
def Generate_Covariance(dimension, thresh): 
    eigenvalues = np.zeros((dimension)) 
    while np.amin(eigenvalues) < thresh: 
        A = np.random.rand(dimension,dimension) 
        covariance_matrix = np.dot(A, A.transpose()) 
        eigenvalues = np.linalg.eigvals(covariance_matrix) 
    return covariance_matrix 
 
#This function generates random data  
#This function samples using a multivariate normal distribution 
#mean_1, cov_1 are the mean and covariance for class 0 
#mean_2, cov_2 are the mean and covariance for class 1 
#size_1, size_2 are the number of data points in class 0, 1 
def generate_data(mean_1, mean_2, cov_1, cov_2, size_1, size_2): 
    #X is the generated data set 
    class_zero = np.random.multivariate_normal(mean_1, cov_1, size_1) 
    class_one = np.random.multivariate_normal(mean_2, cov_2, size_2) 
    #A = np.r_[class_zero, class_one + np.array([1, 1])] 
    A = np.r_[class_zero, class_one] 
    #y is the vector of class variables for X 



    b = np.hstack((np.zeros(size_1), np.ones(size_2))) 
    return class_zero, class_one, A, b 
 
def Get_statistics(A_class, Target_class, A_class_size, Target_class_size): 
    #This function computes the mean and covariance for each of the clases 
    #print("Computing statistics for attack generation") 
    cvf = EmpiricalCovariance() 
    cov_class_A = cvf.fit(A_class) 
    covariance_A = cov_class_A.covariance_ 
    mean_class_A = cov_class_A.location_ 
    #print("The observed mean for the class of the target data is ", mean_class_A) 
    cov_target_class = cvf.fit(Target_class) 
    mean_target_class = cov_target_class.location_ 
    #print("The observed mean for the target class is ", mean_target_class) 
    covariance_target = cov_target_class.covariance_ 
    #Then, the function computes the overall covariance across the groups 
    #using the formula from p 109 of Elements of Statistical Learning 
    k_one = np.divide(A_class_size - 1, A_class_size + Target_class_size -2) 
    k_two = np.divide(Target_class_size - 1, A_class_size + Target_class_size -2) 
    covariance = np.multiply(k_one, covariance_A) + np.multiply(k_two, covariance_target) 
    #print("The observed covariance is ", covariance) 
    return mean_class_A, mean_target_class, covariance 
 
#This function generates an adversarial perturbation against an SVM 
#It takes a target datum and the values w and b for the equation y = wx + b 
#of the maximally separating hyperplane of the SVM 
def SVM_Adversarial_Attack_Generator(target, w, b): 
    #First, this function calculates the distance between the target and the hyperplane 
    distance = np.divide(np.absolute(np.add(np.dot(target, w), b)), np.linalg.norm(w)) 
    #then it creates a vector along that distance to generate the adversarial example 
    zeta_adversarial_example = np.multiply(np.divide(w, np.linalg.norm(w)), distance) 
    return zeta_adversarial_example 
 
#This function calculates the gradient for a poisoning attack 
#against a SVM 
#Based on the paper Poisoning Attacks against Support Vector Machines 
#by Biggio 
def SVM_Poisoning_Attack_Gradient(c, s_indices, a, y, data_size): 
    j = 0 
    for i in range(np.shape(s_indices)[0]-1): 
        if c[0][i]<1 and c[0][i] > -1: 
            j += 1 
    v_s = np.zeros((1,j)) 
    q_s = np.zeros((j, 2))    
    i = 0 
    for i in range(j): 
        v_s[0][i] = y[s_indices[i]] 
        q_s[i] = A[s_indices[i]]*v_s[0][i] 
    q_ss = np.dot(q_s, q_s.transpose()) 
    gamma = np.dot(v_s, np.dot(np.linalg.inv(q_ss), v_s.transpose())) 
    v = np.dot(np.linalg.inv(q_ss), v_s.transpose()).reshape(1,j) 



    q_t = np.multiply(np.ones((1,1)), target) 
    q_ks = np.dot(q_t, q_s.transpose()) 
    m_k = np.multiply(gamma, np.linalg.inv(q_ss))  
    m_k = m_k - np.dot(v.transpose(), v) 
    m_k = np.dot(q_ks, m_k) 
    m_k = m_k - v 
    m_k = -np.divide(m_k, gamma) 
    length_y = len(y)-1 
    length_A = len(A)-1 
 q_c = np.dot(np.ones(1).reshape(1,1),    

A[length_A].reshape(dimension,1).transpose()).transpose() 
    q_sc = np.dot(q_s, q_c).reshape(j,1) 
    q_k = np.dot(-np.ones((1,1)), target)          
    q_kc = np.dot(q_k, q_c) 
    gradient = np.dot(m_k, q_sc) 
    gradient = np.add(gradient, q_kc) 
    gradient = np.multiply(gradient, c[0][j]) 
    return gradient 
 
#This function generates a data poisoning attack against a SVM  
#Based on the paper Poisoning Attacks against Support Vector Machines 
#by Biggio 
def SVM_Data_Poisoning_Attack_Generator(target, target_p, Class_0, Class_1, A, b, data_size, step): 
    clf_svm = SVC(kernel = 'linear') 
    x_c = target_p 
    A = np.r_[Class_0, Class_1, x_c] 
    b = np.hstack((np.zeros(data_size), np.ones(data_size + 1))) 
    clf_svm.fit(A, b) 
    x_c_list = list() 
    x_c_list.append(x_c) 
    while clf_svm.predict(target)[0] != 1: 
        print(clf_svm.predict(target)) 
        a = clf_svm.support_vectors_ 
        s_indices = clf_svm.support_ 
        c = clf_svm.dual_coef_ 
        y = copy.deepcopy(b) 
        y = np.multiply(y, 2) 
        y = np.subtract(y, 1) 
        alphas = clf_svm.dual_coef_ 
        grad = SVM_Poisoning_Attack_Gradient(c, s_indices, a, y, data_size) 
        grad = np.multiply(grad, np.multiply(step, x_c)) 
        grad = np.divide(grad, np.linalg.norm(grad)) 
        print("grad is ", grad) 
        x_c += np.multiply(step, grad) 
        if np.any(x_c_list == x_c): 
            step = np.multiply(step, 1.5) 
        x_c_list.append(x_c) 
        print("x_c is ", x_c) 
        A[2*data_size] = x_c 
        clf_svm.fit(A, b) 
        print("x_c is ", A[2*data_size]) 



    print(clf_svm.predict(target)) 
    return x_c 
 
def SVM_Attack_Tester(mu_0, mu_1, sigma, size): 
     
    #select machine learning algorithms 
    clf_lda = LDA() 
    clf_svm = SVC(kernel = 'linear') 
     
    #generate data 
    Class_0, Class_1, X, y = generate_data(mu_0, mu_1, sigma, sigma, size, size) 
    #get the statistics for the LDA and the attack generator 
    mean_class_0, mean_class_1, sigma_observed = Get_statistics(Class_0, Class_1, size, size) 
     
    clf_lda.fit(X, y) 
    clf_svm.fit(X, y) 
    svm_vector = clf_svm.coef_[0] 
    svm_intercept = clf_svm.intercept_[0] 
  
    #select target data 
    #select a target from Class_0 to attack/posion to Class_1 
    t = 1 
    u = 1 
    v = 1 
    aa = 1 
    bb = 1 
    dd = 1 
    while v != 0: 
        target = np.random.multivariate_normal(mu_0, sigma, 1) 
        t = LDA_from_statistics(target, mu_0, mu_1, sigma, size, size)  
        u = LDA_from_statistics(target, mean_class_0, mean_class_1, sigma_observed, size, size) 
        aa = clf_lda.predict(target) 
        bb = clf_svm.predict(target) 
        v = t + u + aa + bb 
    while dd != 0: 
        target_p = target = np.random.multivariate_normal(mu_0, sigma, 1) 
        dd = clf_svm.predict(target) 
     
    print("The target data is ", target) 
    return target, target_p, Class_0, Class_1, X, y 
 
i = 0 
runs = 10 
center_1 = (1, 1) 
center_2 = (3, 3) 
dimension = 2 
thresh = .01 
spread = [[4, 0],[0, 4]] 
data_size = 10 
dimension = 2 
thresh = .01 



     
mean_0 = np.ravel(np.random.multivariate_normal(center_1, spread, 1)) 
mean_1 = np.ravel(np.random.multivariate_normal(center_2, spread, 1)) 
cov_matrix = Generate_Covariance(dimension, thresh) 
print("stats for the run ", mean_0, mean_1, cov_matrix) 
 
target, target_p, Class_0, Class_1, A, b = SVM_Attack_Tester(mean_0, mean_1, cov_matrix, data_size) 
clf_svm = SVC(kernel = 'linear') 
clf_svm.fit(A, b) 
target_b = copy.deepcopy(target) 
w = clf_svm.coef_[0] 
b = clf_svm.intercept_[0]  
x_ae = SVM_Adversarial_Attack_Generator(target, w, b) 
 
step = 2 
x_c = SVM_Data_Poisoning_Attack_Generator(target, target_p, Class_0, Class_1, A, b, data_size, step) 
 
poison = x_c - Class_0[0] 
 
print("The Adversarial Attack is ", x_ae, "and the poisoning attack is ", x_c) 
 
#demonstrate the attack 
 
A = np.r_[Class_0, Class_1] 
b = np.hstack((np.zeros(data_size), np.ones(data_size))) 
clf_svm.fit(A, b) 
t = clf_svm.predict(target_b) 
 
C = np.r_[Class_0, Class_1, x_c] 
d = np.hstack((np.zeros(data_size), np.ones(data_size + 1))) 
clf_svm.fit(C, d) 
u = clf_svm.predict(target_b) 
 
print(t, u) 
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