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1. Introduction 

Theory of Mind (ToM) and metareasoning, as discussed in the following, have 
become areas of interest in artificial intelligence (AI) and human‒agent teaming. 
Both hold promise for developing more robust, more collaborative, and even more 
human-like systems by taking inspiration from humans: ToM, through focus on 
another’s mental states (or their computer analogs), and metareasoning, as a form 
of reasoning over these mental states. The following two sections present an 
overview of ToM and metareasoning, including past and potential applications to 
multi-human/agent systems performing multi-domain operations in complex 
environments. 

2. Theory of Mind 

2.1 Theory of Mind within Humans 

Theory of Mind (ToM) within psychology describes the human ability to represent 
and reason about the mental states of others (Premack and Woodruff 1978). A 
hallmark of this is the ability to recognize false beliefs in others, where a person 
uses ToM to recognize that the state of the world is inconsistent with another 
person’s beliefs. The Sally‒Anne test (Wimmer and Perner 1983) is a classic task 
to assess this ability to recognize false beliefs. In this task, represented in Fig. 1, a 
research participant watches a scene with Sally and Anne, where Sally places an 
item in one location and then leaves. While Sally is gone, Anne moves the item to 
a new location. When Sally returns, the participant is asked where she will look for 
the item. If the participant exercises ToM, they should recognize Sally’s false belief 
that the item is still in its original location. Otherwise, they are likely to indicate 
that Sally will look in the item’s actual moved location.  
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Fig. 1 A depiction of the Sally‒Anne task for assessing ToM through a false belief task. 
(Baron-Cohen et al. 1985).  

Tasks like the Sally‒Anne task have been used to suggest that ToM is inaccurate 
or not available in very young children (Wellman et al. 2001), in people with autism 
(Baron-Cohen et al. 1985), and in nonhuman animals. However, nondeclarative 
tasks (ones that do not require an explicit answer as in the Sally‒Anne task but that 
measure, e.g., looking time or first looks to locations in a scene) suggest that this 
type of reasoning is available at younger ages and even in nonhuman primates and 
corvids (Baillargeon et al. 2010; Horschler et al. 2020; Hampton 2021). 
Researchers have also emphasized the importance of uncertainty and interactivity 
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in tests, where ToM is more likely to be exercised in environments with greater 
uncertainty and asymmetries in knowledge between the research participant and the 
subject of inference as well as in tests with greater interaction between the 
participant and the subject of inference (Rusch et al. 2020). Conversely, tests of 
ToM that do not involve sufficient uncertainty or knowledge asymmetries may fail 
to find evidence of ToM in participants who do indeed exhibit it in other 
environments, presumably because they do not sufficiently prompt a participant to 
consider another’s perspective.  

Finally, as emphasized in Blaha et al. (2022), those capable of showing evidence of 
ToM in tests often do not do the same in real-world interactions. In a 
communication game, Keysar et al. (2003) found that neurotypical adult 
participants, when given directions from an instructor, would act as though the 
instructor had accurate knowledge that they (the instructor) were known to lack or 
even hold false beliefs about. Similarly, Bryant et al. (2013) sampled participants 
randomly throughout their day to assess how frequently and under what 
circumstance they considered the mental states of others, and they found that 
participants rarely thought about mental states, were less likely to think about 
mental states during a social interaction than when alone, and furthermore were 
more likely to think of their own mental states than others. These results suggest 
that adults may find social interactions too cognitively taxing to employ ToM in 
considering others’ mental states on the fly.  

2.2 Modeling Human Theory of Mind 

Computational modeling of ToM is often undertaken to develop and test cognitive 
theories of ToM as well as to allow us to build technologies that can interact more 
naturally and effectively with human users. Much research in this area has shown 
that Bayesian models can provide an impressive approximation of ToM (Baker  
et al. 2017; Csibra 2017; see also Yoshida et al. 2008 and Robalino and Robson 
2012 for game theory and k-level thinking approaches that apply Bayesian 
reasoning). 

This Bayesian inferencing is often performed through inverse reinforcement 
learning (IRL). As Jara-Ettinger (2019) describes, “Predicting other people’s 
actions is achieved by simulating a RL model with the hypothesized beliefs and 
desires, while mental-state inference is achieved by inverting this model” (p. 105), 
and research has found that “In simple two-dimensional displays, IRL through 
Bayesian inference produces human-like judgments when inferring people’s goals 
[Baker et al. 2009], beliefs [Baker et al. 2017], desires [Jern et al. 2017], and 
helpfulness [Ullman et al. 2009]” (p. 105). Inverting Bayesian reasoning, however, 
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requires strong priors to be successful (Baker et al. 2009). While humans likewise 
seem to employ strong priors, and while these priors may not always be well 
justified in novel situations, they are at least fairly transparent within models. 

Partially observable Markov decision processes (POMDPs), as part of IRL, have 
been effectively used to model human ToM, where an agent’s actions are 
observable within an environment but their beliefs and goals must be inferred 
through inverse planning with an assumption of approximate rationality. Such 
models, as in Fig. 2, have been shown to provide judgements comparable to those 
made by humans (Baker 2012). For example, in Baker (2012), human participants 
+ POMDP models observed a simulated agent navigating a simple terrain with 
occlusion to select a food truck from which to purchase lunch, and they were then 
asked to provide judgments of the agent’s goal (i.e., preferred food truck). In this 
context, the judgments from a model that allowed for changing goals provided 
results that matched human judgments closely and better than similar models that 
did not allow changing goals or that allowed goals to include subgoals. These 
results suggest that such a model can artificially approximate human judgments and 
may even be used by human reasoners.  

 
Fig. 2 Causal graph of ToM hypothesized in Baker (2012), where observed (gray) 
information influences an agent’s (unobserved) beliefs, desires, and ultimately actions, 
mediated by rationality. (Image adapted with permission from Baker [2012].) 

Similar work has explored more-complex reasoning environments, such as using a 
meta-Bayesian framework to model human ToM under conditions of varying 
trustworthiness (Diaconescu et al. 2014). Participants played an economic game in 
which they were given (veridical, nonsocial) probabilistic information to help them 
make a choice in a binary lottery, and they were also given (social) information 
from an advisor whose incentive for helping the player varied. Human results were 
best modeled by a hierarchical model that can assign different weights to social and 
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nonsocial information, and that allows inferences about an advisor’s changing goals 
based on dynamic estimates from past performance.* While this and other (e.g., 
Meinhardt-Injac et al. 2018) work has explored human inference using cues from 
social versus nonsocial sources, research does not seem to have modeled ToM 
involving a wider variety of uncertain information sources and how humans 
prioritize and incorporate them in decision-making processes.  

These types of models of ToM suggest that ablating parts of the model may be 
possible, with predictable results. For example, if humans use Bayesian priors when 
reasoning about others, and we update these priors based on experience, there may 
be individuals who are unable to effectively update priors. Indeed, this may be the 
case in schizophrenia, where people hold particularly negative and suspicious 
views of others that are not ameliorated through positive interactions. Autism, on 
the other hand, may represent a more general ablation of (access to) the entire ToM 
mechanism, as people with autism tend to perform poorly on tests of ToM (TEDx 
Talks 2014; Prevost et al. 2015). 

2.3 Theory of Mind within Machines 

Computational ToM is also used not to directly model human reasoning, but as a 
framework to allow agents to reason about other agents. Additionally, such agents 
may be more interpretable and lead to better human‒agent interactions. ToM can 
allow an agent to hold appropriate priors about other agents even before they have 
been encountered, update beliefs about them, and recognize their false beliefs.  

This is illustrated in Rabinowitz et al. (2018), where models learned to recognize 
different species of agents (e.g., one species tends to pursue a nearby object versus 
a faraway object) by predicting their future behavior based on their past behavior. 
Notably, this work included a false belief task, where an agent with limited vision 
observed its final goal object, which probabilistically changed position either 
within or outside of the agents view as it first pursued a subgoal object. The agent 
was observed to then pursue the final goal object in its original position more often 
when it had moved unobserved than when the move had been observed. This 
suggests that the model learned to represent its full knowledge of the environment 
separately from the agent’s limited knowledge in a way that allowed it to recognize 
the agent’s false beliefs.† 

 
*This work supports results from fMRI (functional magnetic resonance imaging) and other modeling 
studies that find separate mechanisms for processing social and nonsocial information (Behrens et 
al. 2008). 
†An important distinction between the work by Rabinowitz et al. (2018) and Baker (2012) is that 
the Rabinowitz models were learned whereas the Baker models were handcrafted a priori based on 
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2.4 Theory of Mind between Humans and Machines 

When humans are able to make accurate inferences about machines’ “states of 
minds,” it likely improves trust and performance. This has become a motivation 
within the field of explainable AI for improving trust and performance (Akula  
et al. 2019). Similarly, as machines are more accurately able to infer human 
intentions, their utility increases and they further gain trust (Winfield 2018). 

3. Metareasoning 

Metareasoning is a general AI term for “thinking about thinking” within a 
computational system.* While reasoning algorithms are used to make decisions, a 
metareasoning algorithm is used to control a reasoning algorithm or to select among 
a set of reasoning algorithms, determining which decision-making method should 
be used under different circumstances (Cox and Raja 2011). A classic example of 
metareasoning is to determine whether a reasoning algorithm should stop or 
continue in a given context (e.g., Carlin 2012).  

Metareasoning can be described as in Fig. 3, where reasoning occurs at the Object 
Level based on observations at the Ground Level, and the decisions made at the 
Object Level are enacted at the Ground Level. For example, a sensored alarm might 
sound at the Ground Level when an algorithm at the Object Level determines from 
sensor input that an intruder was present (e.g., this algorithm may sound an alarm 
when two or more motion events are detected within a 10-s window). 
Metareasoning then occurs when information from the Object Level is observed 
and altered at the Meta-Level. In the previous example, an algorithm at the Meta-
Level might adjust the sensitivity of the alarm if it is triggered too often, causing 
battery issues (e.g., this Meta-Level algorithm might impose a new algorithm at the 
Object Level that sounds the alarm only when three or more motion events are 
detected within a 10-s window).  

  

 
cognitive theories. Thus, while Baker’s method provides a way to test theories, Rabinowitz’s 
method will likely scale better for real-world application. 
*Metareasoning is a topic of interest in other fields as well, such as philosophy and psychology, 
where it is often referred to as “metacognition” (Cox 2005). 
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Fig. 3 Classic decision‒action loop diagram of metareasoning, where reasoning happens at 
the object level to select the actions that will happen at the ground level, and metareasoning 
happens at the meta-level to control what occurs at the object level 

Metareasoning can occur within a single agent, as depicted in Fig. 3, or it can occur 
within a multi-agent system (MAS) (Fig. 4). Metareasoning is often used in a  
multi-agent setting to optimize the performance of an entire system, and there are 
many options for how it is implemented with different consequences for resources 
such as time and compute power. For example, agents within an MAS may perform 
their metareasoning independently and communicate at the Object Level, which 
may be a good solution when communication is costly and coordination is a low 
priority. When coordination is more important, independently metareasoning 
agents may communicate at the Meta-Level to jointly determine how they will 
independently metareason (Langlois et al. 2020). 
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Fig. 4 (top) An MAS system where metareasoning occurs independently for each agent. 
(bottom) An MAS where each agent’s metareasoning communicates and coordinates with 
each other agent’s metareasoning. (Diagrams from Langlois et al. [2020] with permission.)  

Metareasoning can also be performed in a more centralized fashion by separate 
metareasoning agents (Fig. 5, top). As communication resources allow, the best 
coordination and metareasoning is expected to come from a single centralized 
metareasoning agent (Fig. 5, bottom) (Langlois et al. 2020).  
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Fig. 5 (top) An MAS with multiple separate metareasoning agents. (bottom) An MAS with 
a single centralized metareasoning agent. (Diagrams from Langlois et al. [2020] with 
permission.) 

Systems also vary in the object of their metareasoning. Single agent metareasoning 
is often used, as described in the opening of this section, to control algorithm halting 
or switching and applied to a wide variety of fields, including scheduling and 
planning (e.g., Lin et al. 2015), heuristic search (Gu 2021), and object detection 
(e.g., Parashar and Goel 2021). Within MASs, metareasoning is often used to 
control communication and resources within the systems, including controlling 
communication frequency or content, or assigning tasks (Herrmann 2020). 

An additional concern in metareasoning is how much learning or metareasoning 
should happen online versus offline. Because online metareasoning can be costly 
in terms of time and computation, offline policies are often maximized to the extent 
that they do not unduly impair system accuracy (e.g., Carrillo et al. 2020). 
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Broadly speaking, ToM is a form of metareasoning, or “thinking about thinking.” 
As described in Fig. 3, however, metareasoning is performed through monitoring 
and controlling the Object Level, whereas ToM involves making inferences from 
what is happening at the Ground Level without direct access to the Object Level 
(e.g., an agent’s beliefs).  

4. Conclusion 

While metareasoning is already widely used in single- and multi-agent systems to 
improve performance, ToM approaches arguably have not been explored as deeply 
as a method to improve performance of an artificially intelligent agent. This is 
almost certainly in part because ToM is more closely tied to human cognition, 
which places strong restrictions on plausible ToM models and biases research 
toward human applications. Additionally, ToM itself is still somewhat 
controversial (e.g., Who has it? When is it acquired? Under what conditions is it 
exercised?) but it holds promise for creating more-transparent (if not authentically 
human) systems, especially systems reasoning with multiple sources of information 
and with differing provenance and certainty. In particular, recent computational 
ToM approaches, which use simpler, heuristic definitions of ToM (e.g., Rabinowitz 
et al. 2018), may be the best source of innovation in this field. 
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POMDP partially observable Markov decision process 
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