

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

TRACKING HIGH-SPEED PROJECTILES
WITH AN EVENT-BASED PIPELINE

by

Andrea Hashimoto and Yolanda E. Gutierrez

March 2022

Thesis Advisor: Vinnie Monaco
Second Reader: Mathias N. Kolsch

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
March 2022

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
TRACKING HIGH-SPEED PROJECTILES WITH AN EVENT-BASED
PIPELINE

5. FUNDING NUMBERS

RCPQB
6. AUTHOR(S) Andrea Hashimoto and Yolanda E. Gutierrez

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
National Reconnaissance Office, Virginia, 20151

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
The potential accuracy and reliability of event-based pipelines in light of their low-resource and

lightweight physical demands make them promising candidates for critical systems with strict environmental
constraints. The research done for this paper is intended to expand on event-based pipelines as an optimal
means of tracking high-speed projectiles in real time. Time intervals between spikes in a neural network can
be implemented in such a way that linear mathematical functions are predictable, as shown by Xavier
Lagorce and Ryad Benosman’s 2015 paper, “STICK: Spike Time Interval Computational Kernel, A
Framework for General Purpose Computation using Neuron, Precise Timing, Delays and Synchrony.”
However, there has yet to be research on predicting non-linear functions with this method. In this work, an
event-based sensor is used to gather high-speed projectile data, which is then processed to determine the
optimal parameters for the ballistic equations. The specific spiking neural network is designed and
integrated for further implementation in STICK. While smaller components of the ballistic functions are still
necessary for the complete functionality of a STICK implementation to be applied to trajectories, this work
provides proof of concept that the combination of these two technologies has the capability to allow for
trajectory tracking without the current operational cost, constraints, and larger scale requirements of other
current tracking techniques.

14. SUBJECT TERMS
computer science, neural network, event-based, Dynamic Vision Sensor, STICK

15. NUMBER OF
PAGES

95
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

TRACKING HIGH-SPEED PROJECTILES WITH AN EVENT-BASED
PIPELINE

Andrea Hashimoto
Civilian, CyberCorps: Scholarship For Service

BS, University of California - Santa Barbara, 2016
BA, University of California - Santa Barbara, 2016

Yolanda E. Gutierrez

Lieutenant Commander, United States Navy
BS, Old Dominion University, 2013

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2022

Approved by: Vinnie Monaco
 Advisor

 Mathias N. Kolsch
 Second Reader

 Gurminder Singh
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 The potential accuracy and reliability of event-based pipelines in light of their

low-resource and lightweight physical demands make them promising candidates for

critical systems with strict environmental constraints. The research done for this paper is

intended to expand on event-based pipelines as an optimal means of tracking high-speed

projectiles in real time. Time intervals between spikes in a neural network can be

implemented in such a way that linear mathematical functions are predictable, as shown

by Xavier Lagorce and Ryad Benosman’s 2015 paper, “STICK: Spike Time Interval

Computational Kernel, A Framework for General Purpose Computation using Neuron,

Precise Timing, Delays and Synchrony.” However, there has yet to be research on

predicting non-linear functions with this method. In this work, an event-based sensor is

used to gather high-speed projectile data, which is then processed to determine the

optimal parameters for the ballistic equations. The specific spiking neural network is

designed and integrated for further implementation in STICK. While smaller components

of the ballistic functions are still necessary for the complete functionality of a STICK

implementation to be applied to trajectories, this work provides proof of concept that the

combination of these two technologies has the capability to allow for trajectory tracking

without the current operational cost, constraints, and larger scale requirements of other

current tracking techniques.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1

2 Background 5
2.1 Event-based Vision Sensors and the Biological Eye 5
2.2 Neurons and SNNs . 8
2.3 Current Solutions and Problems 14
2.4 Next Steps . 15
2.5 Research Intentions . 19

3 Experiment Design 21
3.1 Materials and Devices . 21
3.2 Cleaning Methods . 26

4 Methodology 31
4.1 Programming Environment . 31
4.2 Importing Data from AEDAT4 32
4.3 Applying a Moving Median . 35

5 Implementation 39
5.1 Ballistic Equations . 39
5.2 Curve Fit . 42
5.3 STICK Framework Design . 44

6 Results and Analysis 57
6.1 Results . 57
6.2 Proportional Error to Time . 61
6.3 Suitability of DVS . 63
6.4 Precise Timing Computation . 64

vii

7 Conclusion and Future Work 71
7.1 Overall Conclusions . 71
7.2 Continuing Work . 72

List of References 75

Initial Distribution List 77

viii

List of Figures

Figure 2.1 Light inverted on the retina . 6

Figure 2.2 Biological eye anatomy and function 6

Figure 2.3 Biological neuron anatomy . 9

Figure 2.4 Membrane potential summation in the soma 10

Figure 2.5 Action potential of a neuron . 11

Figure 2.6 Spiking Neural Network (SNN) architecture 13

Figure 2.7 von Neumann Architecture . 15

Figure 3.1 Front view of the DAVIS346 camera without the lens. 22

Figure 3.2 Visual comparisons between the Dvsnoisefilter, Knoisefilter, and
Ynoisefilter outputs. 23

Figure 3.3 Example of the module workflow in the Dynamic Vision (DV)
graphical user interface (GUI). 24

Figure 3.4 Catapult model used for data collection 25

Figure 3.5 Workflow of the Dvsnoisefilter and accumulator module applied . 27

Figure 3.6 Workflowof theDvsnoisefilter,Ynoisefilter, and accumulatormodule
applied . 28

Figure 4.1 Scatter plot: Raw data without noise 33

Figure 4.2 Scatter plot: Adjusted orientation 34

Figure 4.3 Moving median vs. moving average 36

Figure 4.4 Scatter plot: Clean trajectory . 37

Figure 5.1 Scatter plot: Horizontal component 40

ix

Figure 5.2 Scatter plot: Vertical component 41

Figure 5.3 Neuron model from Lagorce and Benosman 45

Figure 5.4 Types of synapses listed by Lagorce and Benosman 46

Figure 5.5 Inverted memory network by Lagorce and Benosman 47

Figure 5.6 Synchronizer network by Lagorce and Benosman 48

Figure 5.7 Multiplier network . 49

Figure 5.8 Subtractor network . 51

Figure 5.9 STICK framework for the horizontal component 55

Figure 5.10 STICK framework for the vertical component 56

Figure 6.1 Comparisons of Error Accumulation in Scatter Plots from Various
Trials . 58

Figure 6.2 MSE Result for a single trial. 59

Figure 6.3 RMSE Result for a single trial 60

Figure 6.4 Change in RMSE for G over time. 62

Figure 6.5 Change in RMSE for ~ over time. 63

x

List of Tables

Table 5.1 Covariance matrix . 44

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

CPS cyber physical system

DV Dynamic Vision

DVS Dynamic Vision Sensor

FOV frame of view

GUI graphical user interface

IR infrared

ISS International Space Station

LIF Leak-Integrate-Fire

LRDR Long Range Discrimination Radar

NAN not a number

SciPy Scientific Python

SNN Spiking Neural Network

STDP spike-timing-dependent plasticity

STICK spike time interval computational network

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

Acknowledgments

To my dear, loving husband, thank you for always supporting my needs and being the
camel that rode the waves of military life, navigating the seas at my side. I appreciate your
unwavering dedication and your never-ending positivity. To my wonderful, sweet children,
I would have never made it through this program without you guys being champions and
pulling through to support me in my darkest hours. I never felt alone or unloved throughout
this process.

To Dr. Vincent Monaco, thank you for your support and mentorship throughout this process.
This project was challenging and required your patience and understanding. Thank you for
all the times you explained things to us multiple times.

Last, I would like to thank Andrea Hashimoto. This project and thesis work was challenging
to say the least. We would have never made it to the finish line without you playing
taskmaster. I hope we end up working together again in the future.

-LCDR Yolanda Gutierrez, United States Navy

A huge thank you to my family who was supportive, patient and encouraging throughout my
master’s degree. Thank you to the friends who have sparked ideas and kept me persevering.
A special thanks to Dr. Vinnie Monaco, who gave endless time and support throughout the
process with more patience than I have ever encountered from a professor. This work would
not be possible without your guidance and ingenuity.

Yolanda, youwill forever hold a special place inmy life and carry the title of Thesis Partner, a
title that no one else dared to shoulder. Without your fun-loving spirit and can-do mentality,
I would not have completed this thesis. Thank you.

- Andrea Hashimoto

This material is based upon activities supported by the National Science Foundation under
Agreement No 1565443. Any opinions, findings, and conclusions or recommendations

xv

expressed are those of the author and do not necessarily reflect the views of the National
Science Foundation.

xvi

CHAPTER 1:
Introduction

The performance of cyber physical systems relies on the ability to be operational and,
thus, protected from physical attacks. Limiting adversaries’ accessibility and preventing
physical attacks on these systems protects the availability and integrity of the data within.
One concern is protecting an asset from threats moving at high speeds where fine temporal
resolution is imperative to intercepting or avoiding these threats. For instance, spacecraft
outside of our atmosphere rely on high-speed surveillance to navigate a path with minimal
collisions. Consider satellites that send and receive critical communication signals for our
nation in orbit with fragments of debris; the satellites’ ability to avoid collisions is a large
factor in their overall lifespan.

Additionally, our nation’s threat detection networks rely on the ability to accurately detect,
process, and track targets in motion. Current hardware and software implementations of
tracking systems are weighed down by the computational overhead created by frame-
based vision sensors and the processing constraints imposed by traditional computational
architecture. The current disconnect between processing and memory creates unmitigated
processing delays. This work is designed to show that an event-based Dynamic Vision
Sensor (DVS) can be used in place of traditional frame-based sensors for tracking a projectile
in motion and the spike time interval computational network (STICK) framework can be
utilized in combinationwith the DVS as a neuromorphic solution to overcome the challenges
associated with traditional von Neumann processing methods.

This work provides the building blocks for an event based implementation of a real-time
surveillance and response system to ensure the safety and efficacy of cyber physical sys-
tem (CPS) devices in high-speed environments that are essential to our information and
communications. The direction of current development in high-speed tracking techniques
is quickly moving toward the use of bio-inspired sensors and processing pipelines. Specif-
ically, the use of frame-less cameras, or event-based sensors, have been found to perform
exceptionally well in resource-constrained environments where fine temporal resolution is
imperative. While traditional, frame-based cameras record megabytes of redundant, extra-

1

neous data in every frame, event-based sensors capture only the changes, the pertinent data,
during a shot. This selective data capture minimizes unnecessary memory storage as well
as power consumption when it comes time to process the input. Mimicking the biological
eye, event-based sensors do not record input as frames like traditional cameras do. Rather
the events are asynchronously recorded upon demand, only when events occur, which again
saves energy, memory, and processing resources.

Consistent with event-based data collection, bio-inspired neural network models are created
to mimic the biological neural spikes to compute and process information similarly to
the way biological neural systems do. The use of Spiking Neural Network (SNN)s, which
mimic the electric pulses propagated across neurons, shows great promise in reducing energy
consumption, increasing processing speed, and eliminating the vonNeumann bottleneck [1].
More recently, the time interval between spikes has proven to carry data effectively, adding
the capability of memory to the spiking neural model [1]. The STICK framework introduced
in [1] uses computational units and precise timing to derive a number of both linear and non-
linear mathematical operators. The precise timing framework allows the data to be encoded
in the time intervals of each spike, thus, enabling the data to be stored and computed by
each computational unit on site [1]. This method prevents the necessity of retrieving data
from storage entirely, thereby omitting the latency of traditional computer architecture.
Not relying on traditional von Neumann architecture all together eliminates the bottleneck
created by branching and cache misses, enabling much more parallelism with the data
locally available [1]. While Lagorce and Benosman show that time intervals between spikes
can be implemented in such a way that linear mathematical functions are predictable with
their framework [1], there has yet to be research on predicting non-linear functions with this
method. Since the STICK framework is event-based, expressed as spikes, authors suggest
effective results of using STICK in combination with event-based vision algorithms [1].

The research done for this paper utilizes an event-based pipeline to show the practicality and
efficiencies of processing event data from a DVS using a SNN with a STICK framework.
The data collection using a DAVIS346 DVS paired with iniVation’s Dynamic Vision (DV)
software subsidizes the limited available documentation of its capabilities. Additionally,
the models for accurately and consistently predicting the projectile paths are refined for
accurate representation using the STICK framework. Subsequently, the logic design for
implementing the ballistic models in STICK is proposed for future work.

2

Aside from the aforementioned benefits of using an event-based sensor, converting events in
the world to event-based data is a natural fit for processing with a SNN. Taking event-based
input to be processed by an event-based neural network streamlines the complexities of
identifying objects in motion and their direction. As such, event-based models are highly
energy-efficient and require limited resources, which make SNNs exceptionally suited for
space-limited, weight-limited, and power-limited environments. In addition, research [2]
shows that the accuracy of SNNs’ trajectory predictions compared to those of humans
in a similar environment have a consistently lower measure of error. In various lighting
conditions, the SNN that Debat et. al. [2] constructed shows more accurate predictions on
average as compared to human predictions. The potential accuracy and reliability of event-
based pipelines in light of their low-resource demands, make them promising candidates
for critical systems with strict environmental constraints.

The structure of this paper is such that the background (Chapter 2) presents the necessary
groundwork of event-based sensors and SNNs for a thorough understanding of how these
tools were used in this research. The design of the data collection portion of the experiment
is outlined in Chapter 3, before the methodology of cleaning and preparing the data for
processing is described in Chapter 4. The implementation of curve fitting the ballistics
models and defined STICK components of the SNN can be found in Chapter 5. The results
of this work and its analysis are discussed in Chapter 6, where the error of the curve fit and
integration of the STICK computational units to form the neural network is also covered.
Lastly, Chapter 7 elaborates on the expansion and direction of neuromorphic designs in
software and hardware alike, where future work is discussed.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

CHAPTER 2:
Background

This chapter discusses the foundational research conducted in order to pursue a solution
for increasing the speed and accuracy of high-speed projectile detection and tracking. For
context, this chapter reviews the basic form and function of the eye and neuron to better
understand the similarities between these structures and the bio-inspired technology as
well as the benefits that accompany them. More specifically, event-based sensors share
many of the same functionalities as the human eye in regard to their ability to capture
events asynchronously for processing and their reliance on light. These similarities warrant
shared benefits, including maximum efficiency with minimal data collection and transport.
Likewise, SNNs are modeled after neurons in the brain that work asynchronously and as
sparsely connected networks. Just as the brain receives input from the optic nerve in the
eye, SNNs ideally receive input from event-based sensors that inherently send events for
processing. Thus, this chapter explains the compatibility between SNNs and event-based
sensors for improving tracking of projectiles and how current implementations compare
with other projectile tracking techniques.

2.1 Event-based Vision Sensors and the Biological Eye
Bio-inspired vision sensors take on many of the same attributes and most of the same
functions as their biological counterpart. The anatomy of the eye provides fundamental
similarities with event-based sensors, which results in (three) shared functionalities: (lateral
inhibition,) efficient detection of changes and preference for ideal lighting. This section will
cover the basic form and mechanisms of the biological eye as well as the advantages that
event-based sensors assimilate.

2.1.1 Basic Understanding and Anatomy of the Eye
The convex shape of the lens causes the image of the object to be inverted when light passes
through the lens such that the image is projected upside-down when it makes contact with
the retina (Figure 2.1). When the light reaches the retina, photoreceptors, known as rods

5

and cones, are stimulated. Rods and cones, receptors for grey scale in low light and color in
ample light, respectively, convert the light stimuli to electric pulses.

Figure 2.1. Light passes through the cornea, pupil, and lens. The image is
inverted as it passes through the lens. Light stream 1 and 2 crosses paths
with light streams 3 and 4, which inverts the image when projected on the
retina. Source: [3].

Figure 2.2. The retina includes five types of neurons: photoreceptors (1),
bipolar cells (2), ganglion cells (3), horizontal cells (4), and amacrine cells
(5). The layer of retinal pigment epithelial cells (6) is not addressed in this
paper. Source: [4].

6

As seen in Figure 2.2, the photoreceptors send the signal to nearby neurons (ganglion,
bipolar, horizontal, and amacrine neurons), which consolidate and funnel the signals to the
optic nerve, a bundle of 100 million neurons [4]. Given that the electric pulses are sufficient
to meet or surpass the thresholds of these neurons, the signal is passed along for the brain
to comprehend. Through this relay, a baseball player is able to recognize a ball pitched at
100 mph, to detect, extrapolate, and react to its motion with enough time remaining to fire
neurons to trigger muscles to swing the bat appropriately. This chain of events happens so
quickly, modern frame-based cameras cannot catch every movement.

2.1.2 Maximum Efficiency
Natural selection has optimized the eye to be only as complex as it has to be to fulfill
its function and as efficient as possible to minimize time and resource consumption. By
modeling camera technology after this highly optimized structure, similar benefits are
reflected in event-based cameras. The photoreceptors in the eye only need to send changes
in the environment back to the brain [5] while the static images remain the same and do
not require the brain’s attention. Similarly, event-based sensors do not record or send static
images, as traditional cameras do, but only detect and send new events, events that mark
changes in the scene. Unlike frame-based cameras that have set frame rates, each pixel on
the event-based sensor is responsible for detecting significant change in its field of view
and sending events at the unique rate of that change, not any set rate [5]. This enables
dynamic and customized rates of data collection. While the set frame rate of a traditional
camera underpolls a high-speed object and overpolls static objects, event-based sensors are
triggered by illuminated motion and therefore collect the minimal data required to update
the scene.

2.1.3 Illumination Dependency
Since human eyes rely on photons to stimulate the photoreceptors of the retina, they require
light for any visual input to be processed. There is an ideal range where objects are fully
illuminated and the pupil can adjust to accommodate brightness, but any lower and the
cones are no longer able to see color, and any higher all photoreceptors are over stimulated,
leaving residual shapes in the field of view (recall looking at the sun and looking away,
leaving a residual shape of the sun in your field of view). Analogous to this, event-based

7

cameras rely heavily on an appropriate amount of light to illuminatemoving targets.Without
enough light, pixels cannot identify changes in the scene, and with too much light, pixels
can be overstimulated, causing them to send false data when a new event is not present.
However, as discussed later in Chapter 3, minimal light is required for optimal output. The
DVS provides sensitivity settings that can be adjusted to fit the environment, preventing
pixels from being overstimulated. Just as photoreceptors in the eye convert light into electric
pulses that the brain can easily interpret, the event data from event-based sensors align well
with event-oriented processing.

2.2 Neurons and SNNs
In order to better understand the structure of neural networks, and SNNs in particular, basic
familiarity of neuron form and function is necessary. An overview of the general role of
neurons in the body as well as the more detailed process of signal propagation via action
potential are essential to thoroughly understanding the motivations and benefits of using a
SNN for processing event-based data.

2.2.1 Neuron Anatomy and Layout
Signals are passed throughout the body by way of the nervous system, which includes
the brain, central nervous system, and peripheral nervous system. Neurons are the building
blocks of the nervous system and all biological cognition. Receptors, such as photoreceptors
for light, chemoreceptors for scents and pheromones, and mechanoreceptors for movements
and touch, sense and convert input from the environment to electric impulses that can be
propagated through neurons. These neurons are aligned to construct neural pathways. Like
a trail system in a forest, the pathways that are used most frequently become dominant [6]
and the easiest to use. The less frequented pathways fade with time if not used, causing the
organism to forget. Neural pathways are interconnected in patterns throughout the brain that
encode information for the brain to recall [6]. Memories, skills, knowledge, associations,
all require a specific pattern unique to each brain that retains that information. A pattern of
neural pathways lights up in the brain when recalling a face or learning the arc of a ball [6].
The pattern of neural pathways itself encodes the data, much like the spike intervals of the
STICK framework does.

8

As shown in Figure 2.3, there are three basic parts of a neuron: the dendrites, soma, and
axon [7]. Dendrites are receivers that grow from the soma; they receive signals from other
neurons via a synapse and pass that information to the soma. The soma is the cell body,
the core of the neuron where the neuron’s structure and cellular functions are maintained.
More pertinently, the soma is responsible for the accumulation of membrane potential. The
axon is the transmitter of the neuron. Axons can be as long as 1 meter in length, including,
for instance, the sciatic nerve that runs down the length of the leg [6]. Synapses, or neural
junctions, are the small gaps of space between neurons. The neuron sending the signal
across a synapse is called the pre-synaptic neuron, and the neuron on the receiving side of
the synapse is called the post-synaptic neuron.

Figure 2.3. Essential anatomy of biological neurons. Source: [7].

2.2.2 Action Potential and Signal Propagation
Since the spiking in SNNs is very closely modeled after the action potential in biological
neurons, discussing process of signal propagation through an axon will help to better
explain the spiking behavior in neural networks. Starting from the dendrites of the pre-
synaptic neuron, we will follow signal propagation down the axon until it is passed to the
post-synaptic neuron where the relay continues.

Typical neurons start in a resting state with a membrane potential of -70mV [8]. Each den-
drite may receive inhibitory or excitatory signals, which decrease or increase the membrane
potential, respectively [9]. Neurotransmitters are chemicals sent across synapses to carry
signals from the pre-synaptic neuron to the post-synaptic neuron. As the dendrites receive

9

neurotransmitters from the axon terminals of other neurons across the synapses, the signals
accumulate in the soma. Figure 2.4 shows the summation of excitatory and inhibitory signals
in the soma that trigger the action potential. As seen by the voltage graph in Figure 2.4,
the action potential, or spike, is not generated until the voltage threshold is met. Once the
threshold is met, the action potential is then propagated down the length of the axon to the
axon terminal. After the signal travels down the axon to the axon terminal, neurotransmitters
are activated to transmit the signal across the synapse to the dendrites of nearby neurons.

Figure 2.4. The three excitatory signals raise the membrane voltage while
the two inhibitory signals lower the voltage. When the sum of these signals in
the soma reach -55mV, shown by the threshold, the action potential occurs
peaking at +30mV. Source: [10].

The neuron’s process of generating an action potential and returning to resting state is
simulated by neurons in a neural network. Both follow a cycle of resting state, depolarization,
repolarization, hyperpolarization, and return to resting state. Each of these states and the
portion of spike at which each occurs is shown in Figure 2.5. Before a neuron fires, the
membrane potential at rest is maintained at -70mV. When the sum of the incoming signals
reaches the threshold of -55mV, voltage-gated sodium ion channels in the cell membrane
are activated to open allowing an influx of sodium ions [9]. The high concentration of
sodium ions inside the axon depolarizes the cell creating an action potential that peaks at
+30mV [9]. This new voltage activates voltage-gated potassium channels to open, allowing
for an outflux of potassium ions, which repolarizes the neuron, bringing the voltage back
down [9]. However, while the potassium channels close, the voltage undershoots the initial
voltage level, causing hyperpolarization of less than -70mV. It is important to note that during

10

the repolarization state, there is no amount of stimuli that can induce the neuron to refire [9];
this is called the absolute refractory period. Again, during the hyperpolarization state when
the membrane potential is lower than -70mV, the neuron requires higher excitatory stimuli
to fire; this is known as the relative refractory period.

Figure 2.5. The action potential can be considered four states: resting at -
70mV, depolarizing from -55mV and 30mV, repolarizing from 30mV to below
-70mV, and back to resting. Source: [11].

Similarly, neurons of SNNs have been designed to follow the same depolarization, repo-
larization, hyperpolarization, and resting state cycle of their organic counterparts. When a
SNN neuron is fired, it too has a refractory period where the neuron resets before another
spike can fire. Leading researcher in neuromorphic computation Wolgang Maass explains
the foundational design of neurons in [8]. Post-synaptic neuron { has an initial resting po-
tential %{. When pre-synaptic neuron D fires at time B, the membrane potential %{ of neuron
{ is affected at time C. This contribution can be quantified by the model |D,{YD,{ (C− B), where
|D,{ is the weight of the synapse between neuron D and neuron { [8]. The weight and change
in time are related by a response function YD,{. While learning can be expressed as constant
function |D,{ (C) in a SNN, Maass acknowledges that an accurate reflection of biological

11

learning would require rapid fluctuation of the value of |D,{ (C).

Also modeled after the brain, the STICK framework includes refractory periods after a
neuron fires that disables that neuron until its state variables are reset. To represent this
disablement during the refractory period, [1] uses gate-synapses that are triggered by the
synaptic events, such as the synaptic firing of a neuron, the gate-synapse controls the
activation and deactivation of the exponential synapses by use of the gate signal which is
represented by a logical 1 to activate the gate-synapse and a 0 to deactivate the synapse. This
precise timing is controlled by the use of variables to represent the time a neuron requires to
emit the spike after reaching potential and propagation delay between the emitting neuron
and the target neurons after the spike occurs. The authors chose 10`B to represent the time
to emit the spike and 1<B to represent the propagation delay. After the neuron reaches
potential and the predetermined time intervals have occurred, the neuron’s state variables,
to include the gate, are reset to 0.

2.2.3 Asynchronous Processing
Since the action potential in biological neurons abides by an “All-or-None” Law, the results
are binary: same spike each time or no spike at all. The “All-or-None” Law states that a
spike occurs only if the threshold is met and the spike always peaks at +30mV. This binary
method of spiking conserves energy and resources. Thus, when adapted to neurons in neural
networks, the same conservation applies. SNNs, which work asynchronously, are more in
line with neurological functions. SNNs maintain the same three components as other neural
networks: input layer, hidden layers, and output layer, but operate based on discrete events
or spikes in activity. Closely mirroring the behavior of a biological neuron, the neuron in
an SNN reaches the threshold determined by a differential equation, the neuron will spike
and the neuron’s potential will be reset, as shown in Figure 2.5. However, neurons in the
network that do not receive spikes that meet their threshold, do not fire, thereby preserving
resources.

2.2.4 Sparsely Connected Networks
Artificial neural networks were originally created to mimic the biological activity of the
brain. There are three main components of a neural network: the input layer, hidden layers,
and the output layer (Figure 2.6). Within an ANN, the neurons are fully connected, taking

12

continuous values as inputs and outputting continuous values. This does not accurately
portray the way the brain’s neurons process data as the brain works based on electrical
impulses, or spikes. Neurons throughout the brain are not all fully connected as they are in
ANNs. They only communicate to neighboring neurons and each neural pathway of linked
neurons processes different aspects of the stimulus independently. Since each neuron is
only reactive to the neurons nearby, stimuli of different types can initiate signals passed to
the brain simultaneously. For instance, when holding an orange, the photoreceptors in the
eye send the image and color to the brain at the same time as the mechanoreceptors in the
fingertips are getting feedback on the texture of the peel. The input of the texture and weight
of the orange is sent to the brain on a separate neural pathway from that of the visual input.
Meanwhile, the scent of citrus is picked up by the chemoreceptors in the nose that send the
smell over another neural pathway, perhaps a moment later, to the brain to process. These
neural pathways working independently more closely reflect the functionality of SNNs.

Figure 2.6. General SNN architecture showing fully connected input layer,
hidden layers, and output layer, similar to that of a ANN. Source: [12].

Since SNNs are sparsely connected, instead of fully connected, they more closely resemble
locally connected neurons in the brain, which allows for an enhanced ability to process
spatio-temporal data [12]. Thus, SNNs allow for the natural processing of data without
the increased convolution seen with the use of recurrent neural networks where the output

13

from previous steps is fed as input to the next step and so on. Aside from the biomimetic
structure, SNNs are computationally more powerful than other neural network models of
similar size [8], which makes them favorable to ANNs.

2.3 Current Solutions and Problems
The majority of commercially available non-radar based tracking systems utilize more
traditional style video cameras that represent motion as a series of frame-based camera
shots, or stills. These still frames are limited by the frame rate. The current industry
standard frame rate is somewhere between 30 - 60 frames per second for high definition
capture while the human eye can comprehend as many as 1000 changes per second [5].
When played back, these frames combined create a reproduction of the live events. However,
data is missing from all changes that occurred as the camera is blind between frames. This
has a significant impact on fast moving objects and is the reason for motion blur. Another
disadvantage of frame-based cameras is the majority of the background data in each still
frame is not useful for tracking high-speed objects and requires extra processing resources.
Each frame from a traditional camera has extraneous and redundant data that must be
removed. Not only is this extra processing, the amount of redundant data to store and
transmit is substantial. As discussed previously, this is not in line with how the cones and
rods interpret data for your brain to process a response to motion [5]. Additionally, these
tracking systems and the algorithms ran to detect objects in motion are implemented on
commercially available computer systems that are based on von Neumann architecture. The
power and time constraints with regard to von Neumann architecture limit the necessary
real world usability and increase the bulkiness of these systems.

14

Figure 2.7. The layout of traditional computer architecture retains the ex-
pensive I/O between the processor and memory, known as the von Neumann
bottleneck. Source: [13].

The von Neumann bottleneck is caused by the design of traditional computer architecture.
In von Neumann architecture, memory and processing units are separate entities as shown
in Figure 2.7 [13]. Data is stored in memory, but computation occurs in the processing
unit. Processing speed is faster than the time required to retrieve data from main memory,
thus resulting in excess power consumption and decreased throughput. This bottleneck is
especially challenging for complex machine learning algorithms as by their nature they are
power and memory intensive. Neural networks require frequent vector matrix computation
and process very large amounts of data in order to calculate weights and extract features from
the hidden layers. These constraints make it impossible for small devices to run complex
machine learning algorithms such as image processing for DVS spatio-temporal data.

2.4 Next Steps
In order for complex machine learning algorithms to progress in terms of practical tracking
of projectiles in motion, realistic solutions must be available for moving away from frame-
based video capture and circumventing the von Neumann bottleneck. Event-based vision
sensors can be used to address the capture of spatio-temporal events. As discussed previously
in Section 2.1, the use of event-based sensors to track the leading edge of movements will
more closely resemble how natural vision works by recording events as independent pixels.
Additionally, event-based sensors are computationally less demanding than frame-based
sensors, as they produce up to 1000 times less data and achieve a much higher analogous
resolution than frame-based sensors [5].

15

2.4.1 Importance of Projectile Tracking
Technology across all fields are increasingly relying on automated systems for monitoring,
detection, reacting, and, in some cases, resolving various types of problems. Repetitive
tasks that do not require human attention can easily be offloaded to machines for higher
efficiency and lower costs. The accuracy of a SNN trajectory predictions compared to
those of humans in a similar environment can be consistently better. In various lighting
conditions, the SNN Debat et. al. constructed had a lower mean absolute error for any given
light condition than that of the human prediction results [2]. Furthermore, in lower lighting,
invoking lower confidence for both humans and neural network, human predictions vary
each time whereas the SNN leans more cautiously toward the statistical average in low
lighting and veers more accurately from the average as lighting improves [2]. The potential
accuracy and reliability of event-based pipelines in light of their low-resource demands,
make them promising candidates for critical systems with strict environmental constraints.
As societies become more reliant on computer systems, the vulnerabilities therein are
apparent and concerning. From commands on the ground, to aircraft in the atmosphere,
to satellites outside the atmosphere, anywhere there are cyber physical systems, there are
countless points of failure. Collision avoidance has become a high priority for both DOD
and commercial sector. According to the director of command and control at Lockheed
Martin’s rotary and mission systems division, “the catalogue of what was needed to be
tracked was exploding” [14].

Imminently, the amount of debris orbiting the Earth continues to increase, so much that
from 1999 to 2020, the International Space Station (ISS) had to make 29 collision avoidance
maneuvers, three of which took place in 2020 [15]. Private and public sectors alike are
researching better methods of tracking debris of which there are approximately 27,000
pieces 10cm in diameter or larger traveling around 17,500 mph in orbit [15]. In such an
environment where theU.S. has critical communication systems in orbit, “Reliable detection
and tracking of high-speed projectiles is crucial in providing modern battlefield protection
or to be used as a forensic tool” [16].

2.4.2 Current Research
Interest in the field of event-based pipelines has been growing over the past several years.
As more research is done in this area, more uses, support, discoveries, and developments

16

will arise to expand the capabilities of current implementations.

In May 2021, the authors of [2] applied spike-timing-dependent plasticity (STDP) rules to
a SNN to process output from an event-based sensor. Their goal was to use this event-based
pipeline of bio-inspired components to quickly and accurately predict the end point of a
ball thrown in an arc. For their neural network, they used three layers of Leak-Integrate-
Fire (LIF) neurons that learned the weights of feedforward connections through a STDP
rule [2]. True to an event-based SNN, neurons only fire if the membrane potential reach
the threshold. Once a neuron fires, the signal is propagated to the next layer of the network
before the neuron returns to its resting potential. Each layer was trained individually and
unsupervised, using seventy percent of the data to train and thirty percent of the data to
test. All the trials were collected using a Neurosoc camera from Yumain. This camera was
deliberately chosen for its dual functionality of capturing frames and events. Thus, this
event-based camera is equipped for spatial and temporal filtering prior to spike generation,
which results in reduced noise, edge detection, and increased output sparseness [2].

The results of their researchwere three-fold: the pipelinewas able to output reliable projectile
predictions, the filter selectivity was sufficient for differentiating moving objects, and the
pipeline outperforms human predictions for ball trajectory [2]. However, their work did not
address hardware limitations due to the von Neumann processor constraints. Considering
the effectiveness of their system, the authors have begun to patent their work. Future use of
their system appears to have practical uses as it succeeds at more complex trajectories, such
as bouncing or collisions, and more complex filtering, perhaps on a trajectory with more
movement in the background.

2.4.3 Current Tracking Technology
There have been a handful ofmethods and technologies used for addressing the issue of high-
speed projectile tracking. In 2019, a space fence system was deployed for operation by the
U.S.Air Force. The space fence, a ground-basedLongRangeDiscriminationRadar (LRDR),
works with 300 other sensors that all feed data to their iSpace software for processing and
analysis [14]. The system claims to work in real-time for early detection and identification
of ballistic missiles or decoys [17]. Although it is difficult to analyze without details on
exactly how LRDR operates, most radar systems rely on a scanningmechanism that does not

17

maintain constant monitoring. This scanning essentially creates the same problem faced by
frame-based sensors: the background of non-moving objects must be processed with every
sweep, and there are moments of blindness due to the scan rate. Additionally, the space
fence operates from Earth to detect threats outside of Earth’s atmosphere. Locality alone
presents challenges for maintaining clear and accurate detection. While presently one of
the most advanced systems for tracking projectiles, the robust system undoubtedly requires
high throughput, data storage, processing power, and physical space.

Smaller, lighter systems have been used for high-speed projectile tracking as well. Acoustic
techniques are plausible for detecting and tracking supersonic projectiles. Acoustic sensors
are setup in arrays that enable them to detect shock waves to compute the projectile’s
trajectory [16]. Yet this poses a challenge for targeting subsonic or silenced projectiles.
infrared (IR) has also been explored as a viable option for tracking high-speed projectiles
at close range. IR sensors can pick up the trajectory and velocity of the projectile; however,
this technique works best when the projectile is hot from traveling at supersonic speeds.
For projectiles at subsonic speeds, no aerodynamic heat is produced creating a challenge
for IR tracking [16]. Other methods have used IR in concert with industrial cameras. As
discussed previously, even with a shutter speed of 750fps, frame-based cameras are not
accurate enough for tracking projectiles traveling at subsonic speeds of 100 to 300m/s [16].

Event-based pipelines are a light-weight, power efficient, and fast alternative to the other
tracking techniques. Given the development of neuromorphic hardware becoming more
refined, the possibility and probability of full event-based systems, from the hardware to the
software, is plausible for general use. Prophesee is a company invested in manufacturing
event-based products. Using their own event-based vision sensors for capturing data, event-
based algorithms for customized software, and neuromorphic chips on which to run the
event-based processing, Prophesee presents viable event-based machine vision products for
any high-speed tracking and real-time processing. With growing interest and investment
in event-based systems, a real-time solution for a resource constrained environment can
become general use.

18

2.5 Research Intentions
The research done for this paper is intended to elaborate on event-based pipelines as an
optimal means of tracking high-speed projectiles in real time. Given the building blocks of
the STICK framework, the design of non-linear networks combined with the use of DVS
to compute the trajectory of a projectile in motion would contribute to the expansion of
previous work. While smaller components of the ballistic functions are still necessary for
the complete functionality of a STICK implementation to be applied to trajectories, this
work provides proof of concept that the combination of these two technologies has the
capability to allow for trajectory tracking without the current operational cost, constraints,
and larger scale requirements.

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

CHAPTER 3:
Experiment Design

The experiment design for this study includes collecting data from a projectile with a set
angle of trajectory and varied force against a plain black background. This setup allows
the angle of trajectory to be set to differing angles for comparison between processing of
varied trials. With this controlled environment, the SNN implementation is not intended for
real-world application, but as a proof of concept that can be developed in future work for
practical applications on a large scale with varying environments. Therefore, the projectile’s
speed, landing distance, maximum height, size and shape are restricted by the appearance
on the DVS’s output. The projectile’s whole trajectory must be captured by the DVS and
the projectile must be easily distinguishable in the shot for the duration of the flight path for
most accurate processing.

This chapter first introduces the materials and devices necessary to run clean, consistent
trials, then walks through the filtering and data collection portion of the experiment. Chapter
4 goes into the programming details of any and all processing applied after the data is
collected.

3.1 Materials and Devices
This section is an overview of the tools used to run all of the trials. The event-based
sensor chosen to capture the motion of the projectile is the DAVIS346. Supporting software
by iniVation supplies various noise filters to apply to the capture before the data is ever
recorded. Lastly, ten identical white marbles were used as the projectile and the physical
projectile launcher was a miniature catapult.

3.1.1 The DAVIS346
Unlike traditional frame-based cameras which capture light based on a timing clock, the
DAVIS346 sensor captures light based on the dynamics of the scene. This advantage results
in fine temporal resolution imagery, that has a very dynamic range, while maintaining
low latency, making it perfect for application in object or projectile tracking. The frame

21

of view (FOV) is dependent upon the focal length of the lens and the width of the pixel
array [18]. The pixel array has a width of 346 pixels and height of 260 pixels. The width
and height of the array depends on the pitch of each pixel, 18.5`</pixel for this model [18].
With this pixel array and pixel pitch, the total resolution is 346G260, measuring 6.4mmwide
by 4.81mm high [18]. This high pixel resolution results in reduced motion blur as compared
to traditional frame-based cameras, which is instrumental in the collection and processing
of higher speed projectiles. The lens type is a C mount lens, which mounts directly in front
of the chip [18], pictured in Figure 3.1. Since the DAVIS346 can capture events and frames,
both versions were saved for comparison during the analysis phase.

Figure 3.1. The DAVIS346 front view shows the chip, which sits in front of
where the lens is mounted. Source: [18].

3.1.2 Dynamic Vision Filters
In conjunction with the DVS, we used iniVation’s DV software platform to interact with
the DAVIS346. The software comes with built-in settings, configurations, and modules that
help customize the camera’s output. Most importantly, DV has noise filter modules with
multiple options for filters including Dvsnoisefilter, Knoisefilter, and Ynoisefilter. While
there is overlap in the parameters and ideal contexts for which they are used, each filter has
varying strengths and weaknesses. The Dvsnoisefilter is the best option for this use as it
is a standard spatio-temporal filter that maps event timestamps and stores the map [19]. In
particular, the Dvsnoisefilter has a hot-pixel filter that omits output for “hot pixels”, or pixels
that are always on. However, as the Dvsnoisefilter is yet one of the more generic filters, the
application of the Ynoisefilter combined with the Dvsnoisefilter proved to be the most ideal.

22

TheYnoisefilter is amore “fine-grain filter”; one of its best uses is image reconstruction [19].
Meanwhile, the Knoisefilter is not ideal for this purpose due to its tendency to incorrectly
filter out real data as false negatives [19]. Since it is imperative to maintain as much of the
original, true data as possible, we opted against using the Knoisefilter. A visual depiction
of the differences is shown in Figure 3.2 from a comparison done by iniVation.

Figure 3.2. The Dvsnoisefilter maintains the most noise in the output but
does not corrupt real data. The Knoisefilter eliminates noise while also cor-
rupting the image by removing real events, as depicted in the frames with
portions of the bush and plane missing. The Ynoisefilter removes much of
the noise while preserving the image. Source: [19].

The DV software GUI provides a visual workflow into which custom modules, such as
noise filters, can be placed. As seen in Figure 3.3, the GUI allows users to add or remove

23

modules from the workflow while visually keeping track of the order in which the modules
are applied. For the purposes of this evolution, the Dvsnoise filter and Ynoisefilter were used
in combination with the black background screen, to allow for the removal of the majority
of background noise and any areas where light hit the background but did not represent
motion.

Figure 3.3. The DV GUI representation of a workflow stacking the Dvsnoise-
filter and Ynoisefilter modules in a single configuration.

3.1.3 Projectile, Launching Mechanism, and Staging
The projectile had to be large enough for the model to easily detect, but as small as possible
to allow for a large portion of the arc to be caught by the DVS field of view and be easily
displayed on the output screen. The projectile was a marble, chosen for its uniform shape
and ideal weight and size for our particular projectile launcher to toss. The white marbles,
measuring 1.95cm in diameter and weighing 3.97 grams, were tossed at 2.4 meters from
the DVS and 1.5 meters in front of a black background. A black photography backdrop

24

measuring ten by twelve feet was suspended evenly with the top edge eight feet from
the floor, leaving excess fabric draped on the floor. The backdrop was made out of two
millimeter thick polyester fabric and was utilized to prevent additional light reflection and
reduce gloss. The black backdrop also provided the most color distinction from the white
marble and absorbed excess light, preventing areas of color saturation from being picked up
by the DVS. Additionally, the use of a directional studio light helped to minimized as much
of the physical noise as possible and brighten the leading edge of the marble in flight.

For the projectile launcher, a small crafts catapult assembled with thin wood and rubber
bands (Figure 3.4) ensured consistency between each launch. It throws identical objects
with the same trajectory to produce consistent trials and repeatable arcs for future exper-
imentation. The catapult was set on top of a flat platform such that when the marble is
released, the release point was 56.388cm from the floor. Given the weight and size of the
marble, the catapult launched each marble an average horizontal distance of 3.15m from
the starting point.

Figure 3.4. Catapult assembled from thin wood and rubber bands for maxi-
mum consistency between trials. Marbles included for size reference.

25

3.2 Cleaning Methods
In order to obtain insight on predicting the position of a high-speed projectile using a SNN,
pre-processing of the data requires applying filters through the DV interface to filter the
events before it is piped to the screen output and saved to file. With the filters selected, the
trials are ran in a methodical manner to ensure clean, consistent shots. This section covers
the data collection process as well as the method used for confirming that the quality of
each trial is sufficient. The final steps of cleaning and testing the data with our ballistics
models are covered in depth in Chapter 4.

3.2.1 Data Collection
In an effort to conduct a repeatable experiment for any future research, we controlled asmany
aspects of the trials as we could. The aforementioned catapult was used for consistent force
and trajectory, and plain white marbles—all of the same size and weight—for consistent
tosses. Thirty trials were recorded with only the Dvsnoisefilter applied (Figure 3.5)and fifty
trials with both the Dvsnoisefilter and Ynoisefilter stacked consecutively (Figure 3.6). Of
the fifty trials with both filters, thirty of them were done with the catapult at no incline and
twenty trials with the catapult at a 2 centimeter incline. The thirty trials without incline are
intended to show a baseline for the output while the twenty trials with an incline show the
performance of the neural network when variation is introduced in the trajectory angle.

26

Figure 3.5. The output of the capture is passed to the Dvsnoisefilter, which
sends its output through the accumulator for live feedback, before sending
that output to the visualizer to be seen on screen during captures and then
recorded to be saved as a file.

27

Figure 3.6. The output of the capture is passed to the Dvsnoisefilter, which
sends its output through both the accumulator for live feedback and the
Ynoisefilter. All outputs are sent to the visualizer to be seen on screen during
captures and the recorder to be saved as a file.

3.2.2 Quality Confirmation
Plotting the Aedat4 files in Python showed a rough evaluation of the quality of the output
from the trials. Based on some of the first takes, the Dvsnoisefilter and Ynoisefilter removed
much of the noise from our scatter plot. To increase the number of events the DVS picked
up, setting up a studio light on the right side of the set so the marble was moving in the
direction of the light enabled more pixels to be lit up as it brightened the leading edge of
the marble. Based on the visual output of the DVS the projectile’s trajectory is covered
better. This is verified against the output of the scatter plot. After several iterations of using
different data collection techniques, this method worked best for collecting the most events
for each trial.

28

It is worth mentioning that the original set of trials used a black marble against a white
background with top lighting from the ceiling. This setup was specifically disadvantageous
because of the light reflecting off of the white background and the shadows cast by the lights
from above. Reversing the setup to a black-on-white scheme, limiting the ambient lighting,
and controlling the direction from which the main light source came drastically improved
the results of the scatter plot.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

CHAPTER 4:
Methodology

Prior to processing the data, it first needs to be cleaned and checked for validity and usability
within the traditional ballistics model. There are several methods available that can be used
to predict trajectories, the data needs to be verified against these different methods of
implementation to determine if the data meets the usability threshold and can accurately
predict the projectile’s path. This allows for the best data and model combination to be used
later in the SNN. This chapter will discuss the programming environment and techniques
used for preparing and processing the data collected in Chapter 3.

4.1 Programming Environment
For the programming portion Python provides the versatility, functionality, and supporting
packages and documentation that is necessary for processing DVS output with Aedat files,
prediction models, and substantial amounts of data. The most up-to-date version, 3.9.7,
supports all necessary packages for the required data processing and analysis components
to enable visualization of the events from our iniVitation DVS camera, more specifically
the output format Address Event Data 4 (Aedat4). Visual Studio Code was chosen as the
code editor due to it being open-source, its vast library of extensions, syntax support, and
user friendliness.

Required packages include:

• pandas - to organize and manipulate the data in dataframes
• numpy - to handle and manipulate data in arrays
• matplotlib.pyplot - to plot the data graphically
• math - for arithmetic calculations for ballistics equations
• curve_fit from scipy.optimize - to model the ballistics equations and find the best fit
curve for a selected number of data points

• AedatFile from dv - to load data from the Aedat4 file to Numpy arrays

31

4.2 Importing Data from AEDAT4
The DAVIS346 exports the collected input as an Aedat file, specifically version 4, which
uses the extension ".aedat4". AEDAT4 makes use of Google Flatbuffers in order to convert
the data objects that represent visualized movement of the projectile while in motion into a
more accessible format, a series of bytes that are organized in an easy to import, process, and
manipulate. It also creates the necessary support files for Python readability and interpreta-
tion (iniVation software user guide). The data is grouped by three fields, compression which
consists of an algorithm to compress all data in the file, dataTablePosition which provides
the offset information for each piece of data, enabling quick reference and non-sequential
memory access, and the infoNode which is a descriptive informational field, allowing for
the tagging of each stream.

DVS data was processed utilizing the AedatFile package imported from the DV System
for Python library which allows for the processing of AEDAT4 data into Python in the
raw or processed forms. This was utilized to port the data into Numpy arrays and Pandas
dataframes. The data was broken into columns of timestamps, x-values, y-values, and
polarities. Timestamps represent the time of capture in microseconds (`B), increasing from
the initial start of recording and progressing until the end of recording occurs. The x-values
represent the horizontal position of the projectile during its flight; the y-values represent the
vertical position of the projectile during its flight. Polarity represents the presence of light
detected by the DVS camera. A polarity of zero correlates to detection of movement, while
polarity of one correlates to the absence of light.

4.2.1 AEDAT4 File to Dataframes
The trials are recorded as one continuous file, without an organic way to distinguish where
one trial ends and the next trial begins. Additionally, each trial contains all pixels regardless
of the presence of movement from the leading edge of the projectile. Therefore, the data is
initially scrubbed of all event frames consisting of a polarity of one, which indicates there is
not a movement detected. Then, the indices are reset to reflect only the leading edge pixels.
Trials are labeled by number by separating the event data where the x-values are reset to a
lower number. A new column called trial_number was added to the dataframe in order to
capture this change. The file containing all trials was then split apart by masking the trials
by number and storing them each as a dataframe in a list of separate dataframes.

32

As shown in figure 4.1, the initial scatter plot of the data has the y-values mirrored about
the approximated line ~ = 137, the inverse of the projectile’s true motion. Additionally, the
initial data set has undesirable noise, which impacts the success of the predictive model.

Figure 4.1. Plotted raw data points before y-values are adjusted and rolling
median is taken. However, all noise has been filtered using the DV software
discussed in 3.2.1.

4.2.2 Axis Inversion and Timestamp Adjustment
Data cleaning must be conducted to ensure the integrity of the results. The origin of the axes
for DVS output is consistent with other video and imaging software which begin at the top
left corner as opposed to the bottom left where mathematical axes begin. This adjustment
only affects the y-axis, as the x-axis data remains on the left. Wemade a function to translate
the data to begin at the mathematical origin. This is done by subtracting each individual
y-value from the last y-value in the trial. The resulting curve is displayed in Figure 4.2.

33

Figure 4.2. Data plotted after the function to translate the data has been
applied. The translated data more accurately starts with the origin at the
bottom left.

In the same function, the timestamps are adjusted for ease of computing. The original
timestamps were sixteen digits long, which quickly outgrows Python’s limit of working
with twenty-digit long integers. On a 64-bit processor, the largest integer value Python 3.8
can handle is 2 exp 63 − 1 = 9223372036854775807 [20]. In order to maintain precision,
for every trial A, this function subtracts the first timestamp of trial A from each timestamp
in trial A . By subtracting off the value of the first timestamp, the differences between each
timestamp remain the same but the numbers used in calculation are only six digits in length.
The products of values in the thousands are short enough that Python does not truncate
them, and in doing so preserves precision.

34

4.3 Applying a Moving Median
As discussed previously, the noise filters are responsible for the majority of the data prepa-
ration. In order to remove any remaining noise from the data, a moving, rolling median is
applied to the dataframes. The moving median is robust against anomalies and works to
smooth out the curve. A moving median was selected over the use of a moving average
in order to ensure the presence of anomalies would not impact the trend calculations. The
moving median is considered a robust statistic and is not affected by inconsistencies such as
outliers and data anomalies [21]. Figure 4.3 shows the contrast between applying a moving
average vice a rolling median for a raw data set with an obvious outlier. When running the
trials for our data set, the leading edge of the marble lit up multiple pixels throughout the
arc, causing the progression of pixels to appear to move backwards on the x-axis in some
instances. This backward progress causes an issue for the models’ predictive abilities. To
avoid this issue, rows where this anomaly occurred were purged from the dataframe. The
resultant data is clean and appropriate to be utilized as input for the models to produce valid
outputs.

35

Figure 4.3. Top: Raw data set with apparent outlier. Middle: Moving average
applied to the raw data smooths the outlier but is not as robust as the moving
median. Bottom: Moving median applied to the data set removes the outlier
completely, making the moving median a robust statistic. Source: [21].

Pandas.series.rolling function was used independently on the x- and y-values in order to
achieve this objective. The window size, or number of distinct observations, utilized to
calculate the resultant figure is varied based on the number of data points per trial in an
effort to achieve the best outcome. The "center" parameter is set to true for the rolling
function in order to center align the values. This prevents the resulting column of values
from developing a right skew. Additionally, the parameter for min_periods was set to the
value of 1, in order to preserve the array size and keep the dataframes aligned, without the
addition of NAN values to the end. The resulting curve is displayed in Figure 4.4.

36

Figure 4.4. Clean data, ready to be used as input to the models.

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

CHAPTER 5:
Implementation

After the data collection and pre-processing is complete, the next step is to verify that the
ballistics equations are accurately fit to the data, without overfitting, before creating the
implementation with the STICK framework. The horizontal and vertical components of the
trajectory are discussed separately as they are modeled by two different equations and are
implemented independently. This chapter walks through how the ballistic models are set
up and how to estimate the parameters used to determine initial height, initial velocity, and
initial launch angle through the use of a curve fitting tool. This chapter further discusses the
implementation of STICK framework to create the ballistics equations as a neuromorphic
computing solution and defines the specifics of each component required for the final
implementation. Finally, it covers how these pieces work together to produce estimated
projectile trajectories through the event-based network.

5.1 Ballistic Equations
When looking at projectile motion, Newtonian physics separates the forces working on the
projectile into two vectors: vertical and horizontal. The forces at play in the vertical direction
are gravity pulling down towards the Earth, air resistance opposing the projectile’s vertical
motion, and the catapult’s thrust upward. The horizontal forces at play are the catapult’s
thrust horizontally on the projectile and air resistance opposing the projectile’s horizontal
motion. In a vacuum, air resistance is non-existent; however, in this set up, air resistance is
present, but considered negligible. Therefore, in Section 5.1.1 the omission of air resistance
from all ballistic equations and models is further discussed.

Horizontal Component of Ballistics Model
Considering the separate horizontal and vertical components of a projectile launched in
an arc, the ballistics equations of each component is used as a separate model for the
predictions. The horizontal component requires a linear equation (Equation 5.1) taking two

39

parameters: time C and initial velocity {0G .

G = {0GC, (5.1)

where G is the predicted x-coordinate, {0G is the initial velocity in the G direction, and C is
the timestamp at which the x-coordinate is predicted. This linear function is expected to
output a straight line with a positive slope, which expresses the horizontal movement of
the projectile independent of the vertical component. At every consecutive timestamp, the
projectile is expected to move farther from its initial position, thus, farther from the x-axis,
while also moving away from the y-axis as time moves away from the starting time. The
horizontal component of the projectile motion is shown in Figure 5.1.

Figure 5.1. Plotting the x-values versus time shows the horizontal component
graphed without the vertical component results in a line starting at the origin
with a positive slope.

Vertical Component of Ballistics Model
Independent of the horizontal component, the vertical component is derived from the classic
parabolic equation in the form of ~ = 0G2 + 1G + 2. Equation 5.2 takes three parameters:

40

time C, initial vertical velocity {0~, and initial height ℎ, as seen in the following equation:

~ = ℎ + {0~C −
1
2
�C2, (5.2)

where ℎ is the initial height of the projectile’s motion, {0 is the initial vertical velocity, C is
the time at which the position occurs, and � is the gravitational acceleration.

When graphed, the expected path of the vertical motion is a parabola with respect to time
where the initial angle and initial height are consistent with those from Equation 5.2, as seen
in Figure 5.2. The y-values move farther from the x-axis as the position of the projectile
increases to an apex before decreasing toward the x-axis as time continues to move away
from the y-axis as time passes.

Figure 5.2. Plotting the y-values versus time shows the vertical component
graphed without the horizontal component.

5.1.1 Air Resistance
Since air resistance changes depending upon the surface texture of the sphere, the air
density—dependent on air temperature, and the instantaneous velocity of the sphere [22],

41

the air resistance coefficient is estimated as a constant for this model. In practicality, air
resistance is dynamic and changes with the environment and velocity of the projectile.
These ballistic equations do not directly address air resistance because, when curve fitting
the model, air resistance is taken into consideration in the coefficient estimations.

5.2 Curve Fit
For each model, several variables are unknown and must be estimated. The initial launch
angle, while known at time of projectile launch by the experimenters, is unknown to the
program. Thus, the initial launch angle is one of the variables that must be estimated.
Additionally, the initial velocity of the projectile is unknown. The initial velocity must
be predicted as the projectile equation depends on the constant velocity of the horizontal
component and the updating velocity of the vertical component. This requires a method
for determining estimated values of the variables for the model. Curve fitting is a known
reliable way to determine best fit for projectile motion, as it works to fit the data points to a
curve. The resultant output from curve fitting should provide the most optimal parameters
for the ballistics equations used in the model. The Scientific Python (SciPy) library contains
a built in function, which was used here, to fit a curve to the projectile’s data points.

SciPy.optimize.curve_fit works by using a mapping function, or basis function, before
searching for the most accurate weights to produce the minimum error possible. It does
this by finding the lowest sum of the squared residuals, a method called non-linear least
squares which confirms that the error with curve_fit is as minimal as possible. The key
to curve_fit is the form of the mapping function. As discussed previously in Section 5.1,
the horizontal component and vertical component variables are independent. Therefore, the
mapping functions for the projectile’s vertical and horizontal components of motion will be
calculated with two separate mapping functions. In order to preserve a measure of training
and test data, twenty percent of the data is used with the curve_fit function to train, with
eighty percent of the data used to test for each individual trial.

5.2.1 Curve Fitting the Horizontal Component
For the horizontal component of the projectile’s motion, the mapping function used with
curve_fit is shown in Equation 5.1, which is the standard linear equation for predicting

42

locations given time and the initial velocity of G. The velocity is multiplied by the amount
of time that has passed since the initial leading edge of the projectile was detected. The
training portion of data is fed to the curve_fit function in order to best predict the values
for estimated parameters. In this case, the intent is to create a best fit estimate of the initial
velocity. curve_fit returns two pieces of data: ?>?C and ?2>{. ?>?C is an array containing
the optimal values of the parameters, in the case for the horizontal component of motion
this is just one variable: the initial velocity of G. ?2>{ is the estimated covariance matrix
of ?>?C parameters; the covariance for x is 3.0e-12, this is trivial factor for the horizontal
component. The initial velocity value returned by the curve_fit function is then used along
with the testing data in the linear ballistics equation for predicting the horizontal trajectory.
The outcome of running this model is an array of predicted x-values based on the real-time
values, plotted in Figure 5.1. The resultant plot is a smooth, consistent line, as expected
when predicting the horizontal trajectory.

5.2.2 Curve Fitting the Vertical Component
For the vertical component of the projectile’s motion, the mapping function used with
curve_fit must be non-linear since the vertical motion of the projectile is non-linear. Like
the horizontal component, the vertical component is a function of the amount of time that
has passed since the leading edge of the projectile was detected. However, gravity and the
initial angle of trajectory are also incorporated in the parabolic function for themost accurate
flight path. Since the vertical velocity is constantly changing throughout the arc of motion,
both the launch angle and initial ~ velocity are parameters that must be calculated. Since the
projectile was launched from an elevated position, the initial height must be estimated as
well. The ballistics equation adds the height to the parabolic ballistics equation, as seen in
Equation 5.2. The curve_fit function again returns two types of data for non-linear functions:
?>?C and ?2>{. This time, ?>?C returns the optimal values for initial height and the initial
y-velocity. ?2>{ returns the covariance matrix for these parameters, as shown in Table 5.1.
Since the initial height and initial velocity are independent variables with no effect on each
other, the results of covariance support this relationship, as ?2>{ is consistently a trivial
value. While the covariances for each trial vary from values between -9.8e-07 to 5.0e-02,
they all are low enough to show the trivial relationship between the ?>?C values.

The estimated weights, determined by training the ballistics equation model, are fed back

43

Covariance Initial height Initial velocity

Initial height 1.02102872e-02 -1.65505610e-07
Initial velocity -1.20928535e-07 1.82734806e-12

Table 5.1. The ?2>{ matrix of a single trial shows the ?2>{ values for the
estimated parameters.The pcov matrix does not calculate covariance of a
variable against itself.

into the ballistics equation function along with the timestamps of the testing data. This
results in the creation of an array of y-values corresponding to the timestamps where real y-
values were recorded. The data for both the y-component and x-component of the projectile
motion are now ready to be analyzed to determine their level of accuracy. These weights
will be found for each individual trial separately, as each trial has a unique launch angle and
velocity.

5.3 STICK Framework Design
The STICK framework was developed as a solution to the von Neumann bottleneck seen in
traditional computer hardware. This solution does not separate memory from computation,
rather it inherently stores the data and uses the data for computation simultaneously [1].
Lagorce and Benosman use the time intervals between spikes in a SNN to encode the values
used as input for the neural network. In this way, the data is processed in memory, without
experiencing the latency created by conventional architecture. Their set up is such that, every
input has two spikes and two input neurons: 5 8ABC and ;0BC. The duration between these
spikes can be encoded using various methods, including logarithmic, linear, and luminance
time encoding; however, they use the following linear encoding for their research to account
for the refractory period:

ΔC = 5 (G) =)<8= + G.)2>3 (5.3)

where Gn [0, 1],)<8= = 10<B and)2>3 = 100<B is the smallest time step.

44

Lagorce and Benosman’s work shows that the use of neuromorphic networks allows for the
creation of a Turing complete framework that can calculate all known mathematical func-
tions using non-von Neumann architecture. [1]. Therefore, STICK allows for the derivation
of all mathematical operators, linear and non-linear [1]. With this foundation, the networks
developed in the STICK research paper were modified and networks joined or combined to
fit the ballistic models for the flight path of a projectile.

STICK Neuron Model
The neuron model shown as Figure 5.3 is utilized as the foundation for the creation of the
computational units. It is assumed to be non-leaking, meaning there is no leakage of the
membrane voltage, + , or leakage is of a negligible amount. �4 is the constant input current
that is only changed through synaptic events. � 5 is the exponential input synaptic events,
these are controlled by the synaptic gate signal. g< is the time constant of the membrane, set
to 100milliseconds by the authors. g 5 is the exponential time constant, set to 10milliseconds
by the authors [1].

Figure 5.3. The neuron model used by Lagorce and Benosman where + is
the membrane potential. Source: [1].

STICK Synaptic Model
There are four synapses as shown below in Figure 5.4. These synapses represent the con-
nection between neurons in the network and handle the propagation of signals. These
synaptic inputs directly change the respective neurons. | is the weight of each synapse.
Each computational unit synapse simultaneously stores and uses the transmitted data [1].

45

Figure 5.4. The four types of synapses used with weight | for each.
Source: [1].

STICK Memory Storage
In order to store and recall values without modification, a memory capability was created as
shown in Figure 5.5. The network is composed of two input neurons, three internal neurons,
and an output neuron. The 5 8ABC and ;0BC neurons are used to sort spikes as each pair
of spikes reach the input neuron. Synaptic connections from 5 8ABC to ;0BC cause 5 8ABC to
post-synaptically spike only upon receiving the 5 8ABC spike (at time C1

8=
) and ;0BC to post-

synaptically spike only upon receiving the second spike (at time C2
8=
) [1]. The membrane

potential of 022 after both input spikes is the difference in C2
8=
and C1

8=
. The A420;; neuron is

the other input neuron and reads out the value stored in the membrane potential of the 022
neuron when it is triggered. When the A420;; neuron fires, the integration process begins
again. As a result, an output spike equal to the represented value minus the encoding time is
produced, thereby enabling memory recall. Two inverted memory networks can be linked
to store and recall the non-modified value [1].

46

Figure 5.5. The inverted memory network stores a value until it is recalled
and outputs the inversion of the input value. Input neurons are shown in
blue, internal neurons are shown in black, and the output neuron is shown
in red. Source: [1].

5.3.1 Computational Units Needed
To apply the STICK framework to the ballistic models described in Sections 5.1 and 5.2, four
main computational units are necessary to carry out computations for both the horizontal
trajectory prediction and vertical trajectory prediction. Each of the components is described
in detail to fully explain its structure and functionality.

Synchronizer Network
Figure 5.6 displays the STICK synchronizer network. The network receives a number of
inputs, represented asN and stores their values through the use of individual STICKmemory
storage devices discussed in Section 5.3. Once the synchronizer receives the last pair of
input spikes, the synchronizer neuron will fire, causing the stored values to be read out
simultaneously [1].

47

Figure 5.6. Two memory networks store values until the B~=2 neuron recalls.
The B~=2 neuron only recalls these values once the last value is stored. In
this way, all output spikes occur simultaneously. Source: [1].

Accumulator Neuron
The accumulator neuron is where the difference in time Δ)8=, between the first spike of
8=?DC1 and the second spike of 8=?DC1, is stored. This Δ)8= is the value necessary for further
processing or future operations. Values are stored in the accumulator’s membrane potential
by the same method as described in the memory network discussed in 5.3. When the recall
neuron is triggered, the value stored in the accumulator neuron is read out [1].

Multiplier Network
The multiplier network calculates the product of two inputs by taking the exponent of the
sum of the natural logs of each input, as follows: 4G?(;>�(G1) + ;>�(G2)). Each input pair
is comprised of a 5 8ABC and ;0BC spike. It uses two computational neurons, 022_;>�1 and
022_;>�2 to calculate the natural logarithm of the input using the � 5 dynamics of neuron
022. The input value is first stored in themembrane potential of neuron 022. Once the second
encoding spike appears, the delay function of the log is calculated [1]. The completion of
the logarithmic computation done in 022_;>�1 activates 022_;>�2, which sends the results

48

to the exponential circuit. The resulting calculation of the final product is sent to the >DC?DC
neuron, as shown in Lagorce and Benosman’s multiplier network (Figure 5.7):

Figure 5.7. The multiplier network calculates the product of two inputs
by summing their natural logs and taking the exponential of the sum.
Source: [1].

Subtractor Network
The subtractor network subtracts its two inputs. Due to the synchronization of the inputs,
the difference is found by subtracting the time between action potentials of the second spike
of each input [1]. A positive difference is output to the >DC?DC+ neuron and a negative
difference is output to the >DC?DC− neuron, as shown in Figure 5.8. Activation of both input
neurons triggers B~=21 and B~=22 neurons to set their membrane potentials to 1

2+C . The
B~=2 neurons signal the inhibitor neurons, such that B~=21 excites 8=11 and inhibits 8=12
while B~=22 excites 8=12 and inhibits 8=11. Each inhibitor neuron inhibits its output neuron

49

allowing the opposite output neuron to spike first. The job of the 8=11 neuron is to inhibit
the >DC?DC+ neuron, while the job of 8=12 is to inhibit the >DC?DC− neuron. The network
takes advantage of the sequential nature of time by ensuring that if the first input is smaller
than the second, then the >DC?DC− neuron is activated first, whereas, if the second input is
smaller than the first, then the >DC?DC+ neuron is activated first. This set up ensures that the
appropriate parity is assigned to the output.

The I4A> neuron detects the case where the subtraction results in zero and outputs a zero
on the >DC?DC+ neuron. The authors chose to count zero as a positive output to alleviate
the system spiking both positive and negative neurons on a zero [1]. After the first spike of
each input is synchronized, the last spike at the B~=2 neuron excites its inhibitor, inhibits
the opposite inhibitor, then excites its output neuron, and inhibits the opposite output. At
the same time, it signals the I4A> neuron. If the spikes from both B~=21 and B~=22 arrive at
the I4A> neuron at the same time, the I4A> neuron inhibits 8=12 and inhibits the negative
output neuron with double the weight to ensure that the signal will only propagate to the
positive output neuron.

50

Figure 5.8. The difference between two inputs yields a single output in either
the positive or negative output neurons. The I4A> neuron, shown in fuchsia,
prevents both output neurons from spiking. Source: [1].

5.3.2 Putting It All Together
As stated previously in 5.1, the linear model yields the x-coordinates by taking the product
of the instantaneous horizontal velocity {0G and the time C. The non-linear polynomial
regression yields the y-coordinate by taking the sumof the products of the defined parameters
and time C. In order for these values to be used by STICK, each value must be converted to a
time interval, implying that two precisely timed spikes must be passed to the network. The
beauty of piping the input directly from an event-based sensor is that such time encoding
can be simple. Each event is already correlated with a single timestamp. Given a list of
these times 4= (8), the signal D(C) can be accurately converted to a series of spiking events

51

for neuron = with the encoding function also used in [1], as follows:

D(C) = D(4= (8)) = 5 −1(4= (8 + 1) − 4= (8)),∀8 = 2.?, ? ∈ N (5.4)

where 8 is an even index of 4= (8). The inverse function used in 5.4 is the inverse of the
chosen encoding function. For proof of concept, linear encoding will suffice; however, in
practicality, any of the aforementioned encodings (5.3) may be more appropriate depending
on the size of the input values and precision requirements. The linear encoding function 5
for this implementation is the same as that used in Lagorce and Benosman, as it takes into
account the refractory period of a neuron and satisfies our precision requirements:

ΔC = 5 (G) =)<8= + G.)2>3 ,∀G ∈ [0, 1] (5.5)

where ΔC is the time interval between spikes,)<8= = 10<B allocates the minimum time
between spikes to allow the neuron to reset, and)2>3 = 100<B as the smallest time step.

Both the horizontal motion prediction and vertical motion prediction rely on this encoding
scheme for accurate data processing. The STICK implementation for each dimension of
projectile motion is detailed in the following sections.

Processing the Horizontal Component of Projectile Motion
The horizontal position G of a projectile in motion is composed of the initial velocity {G
of the projectile and the time C at which the position occurs. The initial velocity of G, as
calculated by the classic equation {4;>28C~ = 38BC0=24

C8<4
, which can be estimated for this use

by
{=,=+1 =

G=+1 − G=
C=+1 − C=

, (5.6)

where {=,=+1 is the instantaneous velocity for any two consecutive G positions, G= and G=+1
over the time span from C= to C=+1.

As shown in Figure 5.9, the STICK multiplier network is applied to the application of the
ballistic model for the horizontal projectile motion. Using the two previous functions (5.4,
5.5), the initial horizontal velocity {G is encoded as the time interval between two spikes,

52

ΔC{G . The first neuron, 5 8ABC1, spikes, then after ΔC{G has passed the second neuron, ;0BC1,
spikes. The signal is fed to the STICKmultiplication network, representing the {G parameter
of the ballistics equation. The second input to the multiplier component, �=?DC2, is the
timestamp C from the event-based sensor linearly encoded to the interspike time ΔCC between
5 8ABC2 and ;0BC2, just as we did for {G . This network will be iterated through until the series
of timestamps necessary for calculating future projected locations of the horizontal motion
of the projectiles is complete. Since the projectile motion in the horizontal direction only
advances in a positive direction, the output of the multiplier will always have a positive
output. However, for more variable applications where horizontal movement may have
backward or forward progress, the signed multiplier network allows for both negative and
positive outputs, as shown by $DC?DC+ and $DC?DC− in Figure 5.9. This functionality may
be elaborated upon in future work.

Processing the Vertical Component of Projectile Motion
Consistent with the ballistic models of each direction of motion, the STICK implementation
of the vertical component of the projectile’s motion is more involved than that of the hori-
zontal component’s. The ballistic model of the vertical component described by Equation
5.2 can be broken down into more singular operations, each of which is computed by the
respective computational network.

Since the twomathematical operator networks are the subtractor andmultiplier, the ballistics
model requires twominor adjustments. Rather than use C2 for the second-degree polynomial,
multiplication can be substituted for the square. Instead of summing the initial height ℎ and
the product of the initial velocity {0~, subtracting the negative value of {0~ from ℎ yields the
same mathematical results. Thus, the adjusted ballistics model for the vertical component
of the flight is:

~ = ℎ − (−({0~C)) − (
1
2
�C)C (5.7)

Next, the model must be subdivided into individual expressions of like operators in ac-
cordance with the mathematical order of operations. This is done by first computing the
multiplication expressions: {0~C and (12�C)C Since the multiplier network only takes two
inputs, the second expression is further broken down to 1

2�C and C. Because � is a predefined
constant, 1

2� is a single known value that can be treated as a single input. The products from
these subdivisions are then strategically computed using two subtractor networks. Figure

53

5.10 diagrams how the computational units are chained together to output the estimated
y-position of the projectile. This displays the combination of three multiplier networks and
two subtractor networks. As signals are passed throughout the fully integrated network, the
synchronizers will be used to store the updated variables until each individual network has
received the requisite spiking pair inputs.

54

Figure 5.9. The multiplier network adapted for processing the horizontal
component of the projectile’s path.

55

Figure 5.10. All computational units chained together for a fully integrated
design for the predicted y-position of the projectile in flight.

56

CHAPTER 6:
Results and Analysis

After processing the data with the horizontal and vertical models, scatter plots of each
component and the overlaid estimated data on the original data reveal the accuracy and
error of the predictions. As expected, error accumulates with time resulting in the most
inconsistencies appearing at the end of the flight path. In order to quantify the error for each
trial, the Root Mean Squared Error (RMSE) of each is calculated and compared. Because
error accumulates over time, comparing the error over various intervals of time assists
in determining the largest time interval that maintains the highest accuracy. For practical
applications, these statistics indicate how reliable a prediction may be at any given time
from the first reading.

6.1 Results
The visual results of the predicted curves based on the ballistic models are reviewed in this
section as well as the results of the calculated error for each the ballistic models. In an effort
to quantify the error for thorough analysis, Mean Squared Error (MSE) and RMSE results
are introduced.

6.1.1 Error Accumulation
Given a training portion of the data set, approximately twenty percent as mentioned pre-
viously, the estimated variables will inevitably result in the predicted curve being most
accurate at the start of each trial, diminishing in accuracy farther along the curve. The
error steadily accumulates as time increases, although the rate of accumulation varies from
trial to trial, as seen in Figure 6.1. In the first trial (a), the error is not apparent until the
curve surpasses the last real data point, whereas in trials (d), (e), and (f) significant error is
apparent at or after the apex of the arc. These variations and their causes will be discussed
in depth in the analysis section.

57

Figure 6.1. The new estimated positions are plotted as horizontal location
versus vertical location. The rate at which error accumulates in each trial
varies from the apex of the path to the very end of the trial.

6.1.2 Measurements of Error
Since using the curve_fit function to predict data points is the central aspect of predicting
the projectile’s flight path, the standard deviation of the predicted points from the original
data points is an appropriate measure of error for regression models. To quantify the error
accumulation, the RMSE best calculates the fit of a curve to a given set of points while
presenting the error in the same units of as the data. To calculate the RMSE, first MSE is
needed. The MSE finds the vertical distance A from each data point to the curve and squares
that distance A to ensure all measurements for comparison are positive, thereby preventing
negative values from negating the positive values [23]. All of these squared distances are
averaged to determine the MSE for the data set and curve [23]. The RMSE is found by
taking the square root of the MSE to better relate the error to the data. Therefore, the lower
the MSE is, the lower the RMSE, and the better the fit of the curve to the data. However,

58

it should be noted that an RMSE of 0 indicates an perfect prediction, in which case the
prediction modeling problem is trivial.

Mean Squared Error per Trial
For each trial, the MSE is calculated for the entire curve over all the real data points for
that trial. To observe the change in the MSE as time increases, each trial is split into twelve
sections: eleven parts of equal length and the last part the length remaining from the end
of the eleventh to the completion of the trial. For each of these twelve parts, the MSE
is calculated and appended to a text file for further analysis. One run of a single trial is
displayed in the following Figure 6.2.

Figure 6.2. The overall MSE for the trial is shown in the first two lines
followed by the twelve splits, each with the calculated MSEs of the G and ~
components separately.

Root Mean Squared Error per Trial
Once the MSE is known, the RMSE is calculated to provide a more favorable measure for
goodness of fit [23]. As seen in Figure 6.3, the RMSE for both G and ~ components start

59

small, much smaller than the overall RMSE, and climb to a higher value, measuring more
than five times that of the overall RMSE. Depending on the trial, the splits begin to rise
around the fifth or sixth time interval.

Figure 6.3. The overall RMSE for the trial is shown in the first two lines
followed by the twelve splits, each with the calculated RMSEs of the G and
~ components separately. While these values represent the same amount of
error for each split, the value is significantly lower than the MSE values.

Considering that the linear model for the x-component only estimates one parameter while
the parabolic model for the y-component estimates three parameters, the RMSE is affected
based on the number of estimated parameters. This will have a slight impact on the fit of
the y-component, but is negligible. The variation of the overall RMSE for the x-component
for all trials ranges from 6.12 to 14.35. Meanwhile, the overall y-component RMSE ranges
from 2.15 to a maximum of 3.93. The difference in ranges between the G and ~ components
shows the x-component range to be 4.63 times larger that of the y-component’s range. While
the RMSE for the y-component is consistently much lower than that of the x-component
for each time interval, this scales appropriately as x-component data has a wider range of
values than the y-component does.

60

Scattered Index
In order to gauge the meaning of the RMSE values, a scattered index can be used to
normalize the RMSE to the mean of the original data set. Additionally, the RMSE was used
in calculating the scatter index of the error. The scattered index is calculated by dividing
the RMSE by the mean of the original data, then multiplying the result by 100 to represent
the metric as a percentage, as shown here:

(� =
'"(�

-̄
∗ 100 (6.1)

When calculating the scattered index for the predictions made by the curve_fit function,
the overall scattered index is 4.158% for the G predictions and 6.949% for the ~ predic-
tions. Within a given trial, the scattered index can vary from 0.46% to 14.22%, the last
measurement showing the most error.

Therefore, these metrics show that the RMSEs, when normalized by the mean of the original
data, show the model is 4.15% accurate for G and 6.95% accurate for ~ for the overall trial.
Moreover, the model has an average of (0.46%, 0.97%) accuracy for the first two time blocks
and can be used to predict the projectile’s positions. While this model does not account
for live positional updates to the location of the projectile, the overall RMSE and scattered
index of each trial run provides an acceptable baseline of error for the implementation of
this model.

6.2 Proportional Error to Time
As expected, the analysis of the RMSE results reveals that predicted x,y positions vary
from the true data points the farther from the initial position as time increases. With each
trial varying from 317 to 354 usable data points, splitting the trials into twelve time chunks
provided appropriately-sized intervals for comparing the rate of increasing error. Each
successive interval shows an accumulation of error until the final calculation shows the
highest RMSE of that trial. As shown by Figures 6.4 and 6.5, the error tends to accumulate
at an exponential rate.

61

Figure 6.4. RMSE values computed for the estimated x-positions are plotted
at each of the 12 time intervals. The error for the horizontal component
grows nearly exponentially with time.

62

Figure 6.5. RMSE values computed for the estimated y-positions are plotted
at each of the 12 time intervals. As expected, the error for the vertical
component increases exponentially with time.

6.3 Suitability of DVS
As shown by the data collected with the DVS and then processed using the methods
described in Chapter 5, this event-based pipeline is adequate for use in predictive models.
By utilizing the curve_fit function, the values of parameters initial velocity, initial height,
and initial angle trajectory can accurately be estimated and predictions can be made with
a scatter index of 4.16% and 6.95% for G and ~, respectively. This is consistent with an
overall RMSE for x,y of 6.754, 2.786 for the same trial. Since this is measured over the
entire trial, the scatter index is much lower for predictions made closer to the initial reading.
The average over the first two time blocks is 0.46%, 0.97% for G and ~ respectively. The
model is expected to receive updated readings before the projectile travels outside of an

63

acceptable threshold for the environment. These results support the original hypothesis that
DVS sensors are suited to tasks like projectile tracking, omitting all of the computational
overhead created by the processing of background data from frame-based recording devices.
The leading edge of the selected projectile, a round white marble, is generously estimated to
average four pixels in size in a shot. Since only the leading edge of the projectile is changing,
roughly 0.00333% of the shot is being recorded as an event, compared to 100% of the frame
being captured by frame-based sensors. Additionally, since frame-based sensors do not
collect data continuously, data is missing from the projectile’s path. An event-based camera
captures events continuously, the data created by each capture of the projectile, 0.00333%,
portion of the frame updating continuously over a two second period, does not amount to
the data captured by the roughly 30 to 60 frames per second of a frame-based sensor.

6.4 Precise Timing Computation
In order to address the STICK pipelines laid out in Sections 5.3.2 and 5.3.2, we recognize
that the ballistic model for the horizontal component ({0C) of the projectile trajectory is a
subcomponent of the ballistic model for the vertical component (ℎ+{0C− 1

2�C
2). As such, the

congruent portion of the vertical component’s STICKpipeline (Figure 5.10) is theMultiplier
Network C. Thus, the vertical component’s STICK pipeline will be addressed first, and the
reasoning applied to Multiplier Network C, by transitivity. The only difference between the
horizontal component’s pipeline and the Multiplier Network C component is the outputs are
not swapped after the multiplier finishes, as they are for the Multiplier Network C, because
no sign inversion is necessary for the horizontal component.

The fully implemented networks from Section 5.3.2 requires at minimum three multiplier
networks and two subtractor networks. Each network has a synchronizer, which allows for
each input to arrive at separate times. The accumulator is the component that stores input
values until the synchronizer signals. When the last input is received, the synchronizer
network is triggered, which in turn recalls stored values from the accumulator. Considering
the sensitive timing of the spiking in each of the networks, the full implementation of the
integrated computational units relies on the underlying individual proofs done by Lagorce
and Benosman, as follows:

• Multiplier Network A handles the 1
2�C portion of the equation by taking two inputs:

64

the constant 1
2� and time C. Each input is encoded to a time interval ΔC8=1 and ΔC8=2 at

�=?DC1 and �=?DC2, respectively. It follows that �=?DC1 has a 5 8ABC spike at time:

C15 8ABC1 = C
1
8=1 +)B~= +)=4DA (6.2)

Similarly, the time of the ;0BC spike is at:

C1;0BC1 = C
2
8=1 +)B~= +)=4DA (6.3)

The same applies to �=?DC2, resulting in 5 8ABC and ;0BC spikes occurring respectively
at times C1

5 8ABC2 and C2
;0BC2. Once the ;0BC spike of each input is propagated, the B~=2

neuron spikes at CB~=2.
As the multiplier network computes the log of each input, it has two 022_;>� neurons,
which the B~=2 neuron activates to trigger the readout of the values. The 022_;>�1
neuron has been integrating from time:

C10221 = C
1
5 8ABC1 +)B~= +)=4DA (6.4)

] to time:
C20221 = C

1
;0BC1 +)B~= (6.5)

After C2
0221 has passed, the membrane potential of 022_;>�1 is (from proof in [1]):

+BC>1 = +C
Δ)2>31
)2>3

(6.6)

The same occurs in 022_;>�2, resulting in 022_;>�2 having an membrane potential
of:

+BC>1 = +C
Δ)2>31
)2>3

(6.7)

after time C2
0221 passes.

To extract the sum of the outputs from 022_;>�1 and 022_;>�2, the activation of
the 022_;>�1 activates the 022_;>�2. Specifically, the readout of 022_;>�1 at time
C1
BC1 = CB~=2 +)B~= emits a spike at time C1

;>�1 (determined in [1]), triggering the readout

65

of 022_;>�2 at time C1
BC2 = C

2
;>�1 +)B~=, followed by a spike at time:

C1;>�2 = −g 5 ;>�(
Δ)2>31
)2>3

) + C1BC (6.8)

This produces the first output spike at time:

C1>DC = C
1
;>�2 + 2)B~= (6.9)

which will be the input to the exponential network.
At the time that the synchronizer activates 022_;>�1, it simultaneously activates the
022_4G? neuron by firing the exponential’s 5 8ABC neuron at time:

C1BC3 = CB~=2 + 3)B~=

The output spike from 022_;>�2 triggers the ;0BC neuron of the exponential network
at time:

C14=33 = C
1
;>�2 +)B~=

At this time, the 022_;>�2 neuron completes its integrating triggered by 022_;>�1,
with a spike at time:

C14G? = C
1
4=33 +)2>3 .4

− 1
g 5
(C1
4=33−C

1
BC3)

This spike stimulates the second and final output spike a time:

C2>DC = C
1
4G? +)B~= +)<8=

Thus, the output value from the network is encoded as Δ)>DC , where:

Δ)>DC = C
2
>DC − C1>DC

= (C14G? +)B~= +)<8=) − (C1;>�2 + 2)B~=)

= (C14=33 +)2>3 .4
−

C1
4=33−C

1
BC3

g 5) +)<8= −)B~= + (−g 5 ;>�(
Δ)2>31
)2>3

) + C2BC)

=)<8= +)2>3 .4
− 1

g 5
(C1
4=33−C

1
BC3)

(6.10)

66

• Multiplier Network B handles the (12�C)C portion of the ballistics equation. It receives
two inputs: the first, the output from Multiplier Network A, and the second, another
timestamp value encoded as the time interval between the 5 8ABC2 and ;0BC2 neurons.
Identical to the process in Multiplier Network A, the last action potential from inputs
trigger the synchronizer to begin the cascade of activations. Each neuron is activated
at exact the right timing such that the network outputs the product of the two input
values accurately. This value is encoded as an interspike time interval and sent to
Subtractor Network B.

• Multiplier Network C follows the same process as that of Multiplier Network A,
the only differences are the portion of the ballistic equation that it handles and sign
inversion on the output of the network. Multiplier Network C handles the {0~C portion
of the equation, thus, �=?DC1 encodes the vertical initial velocity {0~ and �=?DC2
encodes the timestamp. The internals follow the same precise timing computations,
resulting in a Δ)>DC value encoded as the time interval between C1>DC and C2>DC . However,
after the output action potentials fire, the >DC?DC− spike is sent to the 8=2+ neuron
and the >DC?DC+ spike is sent to the 8=2− neuron. This accounts for the sign inversion
necessary for this expression to be used in a subtractor network. Any positive value
{0~ will be inverted and subtracted from ℎ, producing the equivalent to adding the
original positive value. Any negative value {0~ will be inverted to a positive value to
be subtracted from ℎ—the equivalent of adding the original negative value.

• Subtractor Network A handles the subtraction of the initial height ℎ and the inverted
output of Multiplier Network C, −{0~C, allotting to the subdivision, ℎ − (−{0~C), of
the ballistics equation. Like the multiplier network, the subtractor network starts with
the encoding of each input value as the time interval, the time between the 5 8ABC and
;0BC spikes for each input. Δ)8=1 = C

2
8=1 − C

1
8=1 and Δ)8=2 = C

2
8=2 − C

1
8=2 for 8=1 and 8=2,

respectively. Relying on the synchronizer to start aligning the first spikes, the initial
start time for both inputs is:

C18=1 = C
1
8=2 (6.11)

Since C1
8=1 = C1

8=2, the smaller value, encoded to the shorter Δ)8=, will inhibit the
inhibitor neuron for the other input prior to that output being triggered. In the case

67

that the 8=?DC1 is less than 8=?DC2, 8=?DC1 triggers B~=21 at time:

C1B~=2 = C
2
8= +)B~= +)=4DA (6.12)

The 8=12 neuron is then set to −+C after time)B~=, which triggers the >DC?DC− neuron
at time: The spike from B~=21 also excites the >DC?DC+ neuron at time:

C1>DC+ =)
1
B~=21 + 3)B~= + 3)=4DA (6.13)

However, slightly before the excitatory spike arrives at >DC?DC+ at time:

C18=11 = CB~=2 +)B~= +)=4DA (6.14)

the inhibitory spike of weight 2|8 from 8=ℎ811 drops the >DC?DC+ neuron’s potential,
preventing it from spiking.
By this time, the last spike of the larger input, 8=?DC2, has triggered a spike at B~=22
at time:

C1B~=22 = C
2
8=1 +)B~= +)=4DA

as well as sets the 8=ℎ811 potential to −+C and resets 8=12 and >DC?DC− back to resting
potential. The second output spike is triggered at time:

C2>DC− = CB~=22 +)<8= + 3.)B~= + 2.)=4DA +)=4DA
= C28=2 +)<8= + 4.)B~= + 4.)=4DA

(6.15)

Thus, the correct negative output value is encoded as the time:

Δ)>DC = C
2
>DC− − C1>DC

=)<8= + C28=1 − C
2
8=2

=)<8= + (C28=1 − C
1
8=1) − (C

2
8=2 − C

1
8=2)

=)<8= + (Δ)8=1 − Δ)8=2)
=)<8= + (Δ)8=1 −)<8=) − (Δ)8=2 −)<8=)

(6.16)

• Subtractor Network B handles the final subtraction of the output of Multiplier Net-
work B, 1

2�CC, and Subtractor Network A, ℎ − (−({0~C)), as first and second inputs,

68

respectively. This completes the computation using the same internal logic as that of
Subtractor Network A to output the y-value for the predicted position of the projectile
at time C.

This proof of concept demonstrates that a fully event-based pipeline can be created to track
projectile motion. A pipeline that can simultaneously computationally process and store
information in memory, thereby subverting the von Neumann architectural bottleneck.

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

CHAPTER 7:
Conclusion and Future Work

7.1 Overall Conclusions
Utilizing an event-based pipeline, comprised of DVS and SNNs shows great promise in
reducing resource requirements, increasing energy efficiency, and improving the processing
speed and accuracy of the automated find, fix, and track components of the targeting
kill-chain. The potential accuracy and reliability of event-based pipelines in light of their
low-resource demands, make them especially well-suited for systems with high fidelity
requirements. Building off of the STICK research conducted by Lagorce and Benosman,
which demonstrated a framework with the capability to utilize a SNN to transmit data, this
research shows that:

• The data produced byDVSwith proper noise-filtering and data cleaning is of a suitable
quality to be utilized in neuromorphic computing solutions as shown by the (0.46%,
0.97%) RMSE values for the x and y components of motion achieved in modeling the
first and second time blocks, it is easily represented as spike pairs, and more closely
mimics natural biological processes.

• The STICK framework can be utilized in combination with an event-based sensor,
such as DVS, to create an event-based pipeline capable of real-time tracking. This
pipeline is ideal for capturing objects moving at very high speeds that traditional
frame-based sensors are known to portray inaccurately due to motion blur.

• The design and proof of this event-based pipeline created to mimic neurological
processes is uniquely suited to automatic target detection and tracking. It is well suited
to this application because it reduces the data used for identification and tracking by
roughly 99%. This is especially useful to development of systems that must operate
in constrained environments.

This research is fundamental to the future development of automatic detection and tracking
of targets for critical systems with strict environmental constraints. This type of event-based
pipeline is especially ideal for space-based projectile tracking. For instance, spacecraft out-

71

side of our atmosphere rely on high-speed surveillance to navigate a path with minimal
collisions. Consider satellites that send and receive critical communication signals for our
nation in orbit with fragments of debris — the satellites’ abilities to avoid collisions is a
large factor in their overall lifespan. The satellites must be designed in such a way as to
minimize weight, while maximizing payload capability. The emergence of third generation
AI technological capabilities have the potential to assist the U.S. in maintaining its com-
petitive edge and assuring U.S. national security in the future. The reduction of processing
requirements, coupled with the reduction of power requirements will allow for the devel-
opment of systems with a smaller footprint that are capable of increased processing speeds
and improved accuracy and precision. While this particular work is a proof of concept for
future development, the underlying technology has various applications, including CPS.

7.2 Continuing Work
Building upon the research conducted to implement an event-based pipeline, the most
imminent work carries forth the implementation of DVS event-based data processing and
the diagrammed logic of the non-linear function with the STICK framework. Aside from
this, suggested future work for other aspects of this pipeline includes:

• Testing DVS output for susceptibility to cybersecurity threats and attacks. DVS events
rely on leading-edge indications, seen through the detection and movement of light.
Attacks that alter the output of pixels, represented by G and ~ components, could have
a significant impact on the data filtering, cleaning, and processing which could result
in inaccurate or incomplete tracking data.

• Implementing a function in STICK to closely estimate the parameters, i.e. initial
height and initial velocity of the projectile.

• Implementing event-based pipelines for other non-linear ballistics models that include
varying air resistance, rebounds, collisions, and self-propulsion.

• Tracking multiple projectiles simultaneously, moving at varying speeds.
• Deploying multiple DVSs to capture various angles allowing for multi-dimensional
tracking.

• Conducting a comparison of radar-based object tracking systems, such as the new
space fence, to tracking capabilities with an event-based pipeline. Space fence relies
on LRDR capabilities that are limited by scan rate; however, whether an event-based

72

pipeline can outperform these capabilities should be tested.
• Implementing this event-based pipeline and testing on recently developed neuromor-
phic computing solutions. Examples include IBMTrueNorth, Neurogrid, BrainScaleS
system by the Kirchhoff Institute for Physics, and SpiNNaker at the University of
Manchester. These systems are specifically designed to emulate biological processing
capabilities.

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

List of References

[1] X. Lagorce and R. Benosman, “STICK: Spike time interval computational kernel, a
framework for general purpose computation using neurons, precise timing, delays,
and synchrony,” Neural Computation, vol. 27, no. 11, Nov. 2015 [Online]. Available:
doi:10.1162/NECO_a_00783

[2] G. Debat, T. Chauhan, B. R. Cottereau, T. Masquelier, M. Paindavoine, and R. Bau-
res, “Event-based trajectory prediction using spiking neural networks,” Frontiers
in Computational Neuroscience, Mar. 2021 [Online]. Available: https://doi.org/10.
3389/fncom.2021.6587642

[3] P. P. Urone and R. Hinrichs, College Physics. Houston, Texas: OpenStax, June 2012,
ch. 26.1.

[4] D. Holmes, “Reconstructing the retina,” Sep. 2018 [Online]. Available: https://www.
nature.com/articles/d41586-018-06111-y

[5] Prophesee, “Event-based sensing enables a new generation of machine vision so-
lutions,” Nov. 2021 [Online], last accessed 2 February 2022. Available: https:
//www.prophesee.ai/wp-content/uploads/2021/11/PROPHESEE_Event_Based_
Vision_White_Paper_November_2021.pdf

[6] lifeXchange, “Neural pathways: How your mind stores the info and thoughts that
affect your behaviour,” Jan. 2022 [Online]. Available: https://lifexchangesolutions.
com/neural-pathways/

[7] E. A. Weaver II and H. H. Doyle, “Cells of the brain,” Aug. 2019 [Online]. Avail-
able: https://www.dana.org/article/cells-of-the-brain/

[8] W. Maass, “Networks of spiking neurons: The third generation of neural network
models,” Neural Networks, vol. 10, no. 9, Dec. 1997 [Online]. Available: doi:10.
1016/S0893-6080(97)00011-7

[9] B. Sciences, “Action potential,” May 2016. Available: https://www.youtube.com/
watch?v=HYLyhXRp298

[10] OpenStax, “Post synaptic potential summation,” May 2016 [Online]. Available:
https://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface

[11] OpenStax, “Action potential,” May 2016. Available: https://cnx.org/contents/
FPtK1zmh@8.25:fEI3C8Ot@10/Preface

75

doi: 10.1162/NECO_a_00783
https://doi.org/10.3389/fncom.2021.6587642
https://doi.org/10.3389/fncom.2021.6587642
https://www.nature.com/articles/d41586-018-06111-y
https://www.nature.com/articles/d41586-018-06111-y
https://www.prophesee.ai/wp-content/uploads/2021/11/PROPHESEE_Event_Based_Vision_White_Paper_November_2021.pdf
https://www.prophesee.ai/wp-content/uploads/2021/11/PROPHESEE_Event_Based_Vision_White_Paper_November_2021.pdf
https://www.prophesee.ai/wp-content/uploads/2021/11/PROPHESEE_Event_Based_Vision_White_Paper_November_2021.pdf
https://lifexchangesolutions.com/neural-pathways/
https://lifexchangesolutions.com/neural-pathways/
https://www.dana.org/article/cells-of-the-brain/
doi: 10.1016/S0893-6080(97)00011-7
doi: 10.1016/S0893-6080(97)00011-7
https://www.youtube.com/watch?v=HYLyhXRp298
https://www.youtube.com/watch?v=HYLyhXRp298
https://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface
https://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface
https://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface

[12] D. Soni, “Spiking neural networks, the next generation of machine learning,” Jan.
2018 [Online]. Available: https://towardsdatascience.com/spiking-neural-networks-
the-next-generation-of-machine-learning-84e167f4eb2b

[13] NCLab, “John von Neumann and modern computer architecture,” Feb. 2017 [On-
line]. Available: https://nclab.com/john-von-neumann-and-modern-computer-
architecture/

[14] S. Magnuson, “News from space symposium: Tracking objects in space
both easier, more complicated,” Nov. 2019 [Online]. Available: https://www.
nationaldefensemagazine.org/articles/2019/4/11/tracking-objects-in-space-both-
easier-more-complicated

[15] NASA, “Space debris and human spacecraft,” May 2021 [Online]. Available: https:
//www.nasa.gov/mission_pages/station/news/orbital_debris.html

[16] I. Stancic, M. Bugaric, and T. Perkovic, “Active IR system for projectile detection
and tracking,” Advances in Electrical and Computer Engineering, vol. 17, Nov. 2017
[Online]. Available: doi:10.4316/AECE.2017.04015

[17] L. Martin, “A new breed of radar,” 2022 [Online]. Available: https://www.
lockheedmartin.com/en-us/products/long-range-discrimination-radar.html

[18] iniVation, User Guide - DAVIS346, 2021 [Online], last accessed 1 November 2021.
Available: https://inivation.github.io/inivation-docs/Hardware%20user%20guides/
User_guide_-_DAVIS346.html

[19] iniVation, Noise Filters, 2021, last accessed 1 November 2021 [Online]. Available:
https://inivation.gitlab.io/dv/dv-docs/docs/noise-filters/

[20] P. S. Company, sys—System-specific, Feb 2022 [Online]. Available: https://docs.
python.org/3/library/sys.html#sys.maxsize

[21] Anomaly.io, “Moving median is robust to anomalies,” Nov. 2015 [Online]. Avail-
able: https://anomaly.io/moving-median-robust-anomaly/index.html

[22] P. P. Urone and R. Hinrichs, College Physics. Houston, Texas: OpenStax, June 2012,
ch. 8.6.

[23] J. Brownlee, “Regression metrics for machine learning,” Jan. 2021 [Online]. Avail-
able: https://machinelearningmastery.com/regression-metrics-for-machine-learning/

76

https://towardsdatascience.com/spiking-neural-networks-the-next-generation-of-machine-learning-84e167f4eb2b
https://towardsdatascience.com/spiking-neural-networks-the-next-generation-of-machine-learning-84e167f4eb2b
https://nclab.com/john-von-neumann-and-modern-computer-architecture/
https://nclab.com/john-von-neumann-and-modern-computer-architecture/
https://www.nationaldefensemagazine.org/articles/2019/4/11/tracking-objects-in-space-both-easier-more-complicated
https://www.nationaldefensemagazine.org/articles/2019/4/11/tracking-objects-in-space-both-easier-more-complicated
https://www.nationaldefensemagazine.org/articles/2019/4/11/tracking-objects-in-space-both-easier-more-complicated
https://www.nasa.gov/mission_pages/station/news/orbital_debris.html
https://www.nasa.gov/mission_pages/station/news/orbital_debris.html
doi: 10.4316/AECE.2017.04015
https://www.lockheedmartin.com/en-us/products/long-range-discrimination-radar.html
https://www.lockheedmartin.com/en-us/products/long-range-discrimination-radar.html
https://inivation.github.io/inivation-docs/Hardware%20user%20guides/User_guide_-_DAVIS346.html
https://inivation.github.io/inivation-docs/Hardware%20user%20guides/User_guide_-_DAVIS346.html
https://inivation.gitlab.io/dv/dv-docs/docs/noise-filters/
https://docs.python.org/3/library/sys.html#sys.maxsize
https://docs.python.org/3/library/sys.html#sys.maxsize
https://anomaly.io/moving-median-robust-anomaly/index.html
https://machinelearningmastery.com/regression-metrics-for-machine-learning/

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

77

	22Mar_Hashimoto_Gutierrez
	22Mar_Hashimoto_Gutierrez
	Introduction
	Background
	Event-based Vision Sensors and the Biological Eye
	Neurons and SNNs
	Current Solutions and Problems
	Next Steps
	Research Intentions

	Experiment Design
	Materials and Devices
	Cleaning Methods

	Methodology
	Programming Environment
	Importing Data from AEDAT4
	Applying a Moving Median

	Implementation
	Ballistic Equations
	Curve Fit
	STICK Framework Design

	Results and Analysis
	Results
	Proportional Error to Time
	Suitability of DVS
	Precise Timing Computation

	Conclusion and Future Work
	Overall Conclusions
	Continuing Work

	List of References
	Initial Distribution List

