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1 Executive Summary 

The goal of this project was to create an IoT smart space testbed with a plug-n-play ar­
chitecture to infuse privacy enhancing technologies in order to explore their effectiveness in 
protecting users' privacy while still supporting a diverse set of smart space applications. The 
testbed, entitled TIPPERS, integrated privacy technologies including specification and en­
forcement of privacy policies, use of differential privacy in both collecting and sharing data, 
and secure computation using cryptographic approaches including multi-party computation 
and secret sharing. 

In addition to providing a framework to study efficacy of privacy enhancing technologies 
listed above, TIPPERS provided a fertile tool for exploring novel challenges that arise in 
at-scale deployment of such technologies into a live real-world environment with data flowing 
from sensors being used to implement applications of everyday use. Such challenges relate to 
scaling privacy technologies to large data volumes and usage scenario complexities, or they 
relate to issues that arise in deploying such technologies, e.g., trust in infrastructure and 
organizations in adhering to policies. 
The specific contributions of the TIPPERS project included: 

• Development of a new layered approach to represent information in sensor-driven smart
spaces that allows data to be modeled at the raw sensor level, as well as, at the seman­
tically enriched level by dynamically interpreting sensor data as it arrives. Semantic
representation makes both the task of specification and reasoning with privacy policies,
as well as, application development easier.

• Creation of a novel data management technology entitled TIPPERS system that im­
plements the semantic data model. In addition, TIPPERS embodies the "privacy-by­
design" principle by creating a policy-based approach to data management wherein all
aspects of data flow - from creation, ingestion, processing, sharing, storage, and
retention are controlled by potentially fine-grained policies. TIPPERS also supports
plug-n-play mechanisms to integrate a variety of privacy technologies including differ­
ential privacy and secure storage.

• Development of an end-to-end testbed at UCI based on the TIPPERS system. The
testbed instrumented part of the campus - over 30 buildings - with sensors and sensor
processing mechanisms to create a digital representation of activities in the buildings.
Such activities include people in the building, their location, ongoing events, attendance
by people in the events, etc. In addition, the testbed included a diverse set of end-user
applications such as finding colleagues, analysing building usage, analyzing individual's
interaction with the building and/ or other users, support for contextualised messages
etc.

• Integration of Pegasus differential privacy technology into TIPPERS testbed to hide
information about individual's short term and longer term behavior.

Approved for Public Release; Distribution Unlimited.
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• Integration of Stealth's Pulsar System and Galois's Jana system into TIPPERS for
secure data storage and processing.

• Integration of the privacy assistant and privacy registry technologies developed by 
CMU into TIPPERS testbed for policy notification and preference selection.

• Development of the SEMIOTIC framework to support semantic abstraction of data in
databases in order to specify privacy policies.

• Development of PANDA framework to support partitioned computation over sensitive
and non-sensitive data in order to scale secure data management solutions to very large
data sets.

• Development of OBSCURE and PRISM frameworks to support efficient evaluation of
verifiable aggregation queries and private set operations (intersection and union) using
secret sharing.

• Development of CONCEALER and CRYSTAL frameworks to outsource dynamic sensor
data and compute both aggregation and SQL queries.

• Development of SIEVE infrastructure to scale database policy enforcement to large
number (millions) of fine-grained policies prevalent in large scale smart space applica­
tions.

• Formalization of a new challenge of preventing data leakage through inferences when
policies are specified at the semantic level of abstraction.

• A new model for one-sided differential privacy (OSDP) that exploits partial sensitivity 
of data to support increased utility (by allowing more data to be shared) while ensuring
strict privacy properties on sensitive data.

• Extension of differential privacy framework to support minimally invasive monitoring
that allows analyst to explore data at different levels of invasiveness based on the needs.

• Development of IoT NOTARY framework to verify compliance to organizational data
capture policies.

• Development of IOT EXPUNGE framework to verify the data deletion against the user's
data retention policies.

• Development of CANOPY algorithms for preventing user privacy in a smart home by 
exploiting round-robin style dataflow algorithms.

• Development of a PE-IoT framework that allows data streams to be intercepted and
for diverse privacy technologies ( differential privacy, encryption, anonymization, ran­
domization, etc.) to be applied in sharing data.

Approved for Public Release; Distribution Unlimited.
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• Detailed privacy analysis of different privacy technologies in supporting location pri­

vacy at UCL

• Transition and Deployment of TIPPERS to the US Navy and to other organizations,

including other schools such as BSU and to Honeywell Labs.

To report the accomplishments of this project's goals, the remainder of this report is 

divided into the following sections: Technical Contributions, System Testbed, Evaluation 

and Analysis of PETs, and Transition Efforts. Following that, two appendices listing the 

research manuscripts, systems, applications, and demonstrations resultant from this project 

are provided. 

Approved for Public Release; Distribution Unlimited.
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2 Introduction 

The objective of this project was to explore a new plug-n-play privacy cognizant end-to-end 
system architecture and methodology to build loT applications that serves as an underlying 
technology enabler/ driver for a myriad of smart applications made possible by the emerging 
sensing and data capture technologies. 

In loT applications, data flows from sensors through data processing pipelines that in­
terpret and enrich sensory data in various ways in order to realize the needs of diverse ap­
plications. Live data generated at sensors may be consumed by applications and/or stored 
for future analysis and processing to implement new functionalities and learn correlations 
that can help improve embedded applications. Data processing in the loT context may be 
performed in on-board sensor devices or at the trusted servers in a local infrastructure, or 
may be relegated to the possibly untrusted public cloud machines. 

We set out to create a one of a kind smart space testbed at UCI that would enable 
privacy technologies to be evaluated in live everyday context. Our concept behind the 
testbed, entitled "Testbed for loT-based Privacy Preserving Pervasive Spaces" (TIPPERS 
for short) is demonstrated in Figure 1. 

TIPPERS -Testbed at DBH 

~ 30-40 active users 

4 apps with several services launched to a 

Bren Hall residents, more to come (ongoing 

discussions) 

Over 40,000 lines of system code, 100+ AP ls 

for sensors, wrappers, tech. integration, 

privacy tech. integrated - 6 

Beacons, Wifi AP, Cameras, HVAC sensors, 

Raspberry Pi, Cell Phones, PC monitoring, .. 

7000+ sensors. 

Donald Bren Hall, 6 floors, 125 faculty, 40 

staff, 90 research labs, lecture halls,~ 500 

inhabitants, 1000+ visitors. 

Figure 1: TIPPERS Testbed Concept. 

Figure 1 embodies a novel end-to-end testbed design consisting of instrumented spaces 
( the figure shows Donald Bren Hall, that is one of the buildings instrumented as part of 
the project) with a variety of sensing devices such as Bluetooth beacons, motion sensors, 
cameras, acoustic sensors, proximity sensors, and location sensors. 
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The data flowing out of these sensors is collected and processed in a novel data manage­
ment technology, the TIPPERS system, that supports plug-n-play mechanisms to embed 
privacy technologies ranging from encryption and policy-based data processing to 
differential privacy. The TIPPERS system also provides a semantic abstraction of data 
that enables building a variety of sensor-based applications as well as making sensor 
data analysis easier. In particular, the TIPPERS database represents the sensor data 
flowing into the system as both a stream of sensor data flowing into the system over time, 
and also at a more semantic level in terms of the evolving state of the physical space and 
entities that are embedded into the physical space. Sensor data is used to determine 
location of people over time, ongoing activities/events, and people's participation in the 
events to create a digital representation of the physical world - i.e, location of individuals 
over time and their participation in activities such as meetings, classes, special events, etc. 
Such data is then used to create a variety of applications both at the aggregate / analytic 
level, as well as, at the individual level. Applications at the aggregate level include analysis 
of how a building is used, its space utilization, energy usage, etc. At the individual level, 
TIPPERS supported real-time applications such as finding location of colleagues, sending 
contextualized messages, enabling individuals to determine how they interacted with others 
and with the building, etc. With everyday applications such as above in daily use, the 
TIPPERS testbed 'P,rovided a fertile ground to study the degree to which current and 
ongoing privacy techn:ologies address individual's concerns of privacy, whether one can 
build realistic applications that provide value while ensuring privacy. 

The TIPPERS testbed, that initially started .with a single building at UCI, the Donald 
Bren Hall, spread quickly to several buildings all 0ver the campus and now TIPPERS 
enabled applications are in daily use in al?.Jout 25 buildings in the campus. In addition, 
TIPPERS was transitioned to the US Navy and the software has been deployed at Ball 
State University. 

The extended TIPPERS team that included participants from diverse Brandeis funded 
DARPA partners are sh0w in the figure entitled TIPPERS Cluster. In particular, TIPPERS 
integrated differential privacy techni ques built by the Duke, Amherst, and Colgate team 
(PeGaSus/System P�. It also integrated secure data management techniques built by Galois 
entitled Jana, and a systern entitled Pulsar built by Stealth technologies. The TIPPERS 
team collaborated with GMU to integrate the loT Assistant and the registry technologies 
that allowed smart spaces to specify their resources as well as policies for data capture and 
usage. TIPPERS also worked closely with Galois and Cybernetica for determining privacy 
expectations and leakage analysis of location data in the TIPPERS testbed. 

Since TIPPERS testbed built a full stack solution from sensors, data collection protocols, 
data management, data processing and analytics, as well as, end user applications that were 
deployed and used by the UCI students, faculty, staff and visitors on a daily basis, it provided 
a unique opportunity to study privacy challenges in a controlled, yet real-world setting. In 
particular, it enabled the (extended) team of Brandeis contributors to understand the privacy 
needs of users, develop, deploy and validate their solutions. It also allowed the TIPPERS 
team to identify and expose a variety of challenges that become evident only when we apply 
the technology to build applications for at-scale deployments . 
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privacy policies, not only requires systems to scale policy enforcement to the volume 
and speed of data as it arrives, it also raises concerns of trust i amongst the subjects 
about the data being used by organizations as intended/advertised. Such a requirement 
emerged directly from the interactions between TIPPERS team and the stakeholders 
at UCI where the TIPPERS testbed is deployed. One of the salient requirements to 
emerge was mechanisms for users to verify the actions of the system and the way the 
system uses the data. 

TIPPERS, in addition to providing a platform for other researchers to explore 
efficacy of their privacy technologies, made technical contributions to address each 
of the above challenge. To address the challenge of semantic abstraction 
mechanisms were developed to translate data/queries/policies specified at the 
higher level of abstraction to the sensor level for implementation. Techniques based 
on exploiting the fact that in any application context, only part of the data is 
sensitive, while the other part might not be was used to scale a variety of privacy 
technologies. For instance, TIPPERS explored a novel concept of partitioned 
computation where data processing is split between sensitive and non-sensitive data 
to scale data processing. Likewise, a novel concept of one-sided differential privacy 
was developed to support strong guarantees similar to differential privacy but only 
for sensitive data. Differential privacy concept was also extended to build a minimally 
invasive architec­ ture to support monitoring applications that empowers analyst to 
request more (invasive) data iteratively after establishing the need for the data. 
Mechanisms were also developed to verify that the system implements the data 
capture and retention policies. 

The rest of the report is organized as follows. In Section 3.1, we discuss the 
specific tasks that were part of the agreement and our progress and approach 
towards each of the tasks. In Section 3.2, we describe our technical 
contributions to privacy enhancing technologies that address issues related 
to semantic abstraction, scalability and verification. This is followed by the 
description of the TIPPERS system and the set of applications built using the 
system. Section 3.4 focuses on evaluating diverse privacy technologies in the 
TIPPERS testbed in the terms of location privacy. Section 3.5 describes the transition 
efforts that we undertook and the appendices contain a bibliography of all the 
scientific papers that were a by-product of the TIPPERS project. 
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turned. For instance, if ci=(Room, rdfs:subClass□f, semic:Entity), ck=(Meeting Room, 
rdfs:subClass□f, Room), and mi=(111, rdf:type, MeetingRoom), then mi will be returned 
by the ExtractEntities(U A, M) method for a U A where ci = "Room" E E. 

Execution Plans Generation. After flattening, Tu A contains the set of internal U As 
that have to be processed to handle the user action (see for instance, the different U Ai in each 
level of the flattened tree of Fig. 5(a)). Each U Ai E Tu A will require a set of device actions, 
DA, to be executed. Notice that more than one type of device could be able to perform 
such action so all the possible options have to be included as different plans. For instance, 
a particular U Ai representing a user request to obtain the occupancy of "Room 111" will 
result into a DA set to different occupancy counter sensors ( either virtual or physical). 
The execution plans generation step expands T by extending each UAi with a set of 
execution plans as T 

].Fig. 5(b)showsthestructureoftheexecutionplansforaparticularUR =< ci, Pi > that is 
used to expand the highlighted node in the Fig. 5(a). The constraints of Tu Ai are as follows: 
1) Each level of the tree contains a SR =< sk, oi , ci > which can be either for a virtual
sensor, notated by VSR and such that (sk, rdfs: subClass□f, semic :VirtualSensor), or for
a physical sensor, P SR and such that (sk, rdfs: subClass□f, semic: PhysicalSensor). 2) For
each VSR there will be an additional level with requests for those (physical or virtual) sensor
requests that need to be executed in order to obtain the input required by sk. 3) The leaf
nodes of the tree contain only PSR.

Thus, this step iterates for each U Ai =< ci, Pi > node in TuA and performs an iterative 
process to extract the different execution plans possible. First, the algorithm determines 
which device classes can execute the required action (i.e., which sensors can capture obser­
vations of the type associated with the property of interest or which actuators can perform 
actions of the type associated with the property of interest). To this end, it queries M 
to retrieve any device d such that: d = s if (Pi, rdfs: subClass□f, semic: ObsProperty) ,(s, 
rdfs:subClass□f, semic:Sensor),(s, semic:captures, ok),(Pi, semic:obsType, ok) and d = a 
if (Pi • rdfs:subClass□f, semic:ActProperty),(a, rdfs:subClass□f, semic:Actuator),(s, 
semic:actuates, ok),(Pi • semic:actionType, ak)-

Notice that more than one device d can be obtained for the same property. For instance, 
different virtual sensors could retrieve the occupancy values using different inputs ( e.g., WiFi 
connectivity data or video camera feeds). For each d retrieved, the algorithm creates a device 
action, DAd where DAd = SRd if d = s or DAd = ACd if d = a, and appends it as a node 
under the corresponding U Ai node. If (d, rdfs: subClass□f, semic :VirtualSensor) then such 
virtual sensor might need additional input sensor data. For each of the input observation 
types defined for the virtual sensor, the algorithm similarly retrieves devices that can capture 
such data and appends them to that node. This process is performed iteratively until all the 
leaf nodes of the tree are PSR or AC. 

Plan Realizability and Feasibility Checking. A plan could be unrealizable given the 
deployment of devices in the scenario or the policies defined by users. For example, consider 
a plan that points out that occupancy of a room can be obtained by a virtual sensor that 
analyzes images from cameras and by another virtual sensor that uses a movement detector 
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sensor in the room. Those plans will be unrealizable for a specific room that does not contain 
any movement detector or that is not in the view frustum of any video camera. Similarly, 
the plan will be unrealizable if there is policy that dictates that the camera cannot be used 
at that moment (e.g., because a user is in the space who does not want to be tracked). In 
addition, some plans can be realizable but unfeasible. For instance, for rooms that have both 
cameras and motion detectors, capturing video data and analyzing it to detect occupancy 
might be unfeasible depending on the cost constraints of the user. 

The plan realizability checking step prunes down branches of the extended TuA (i.e., TuA 

containing all the possible execution plans) that are unrealizable and classify the remaining 
regarding their feasibility. In the example tree of Fig. 5, we have marked some of the plans 
according to their realizability and feasibility as an output of this step. Notice that the 
result could be an empty tree if the whole U A is unrealizable because of a lack of devices 
that can capture raw observations or perform the required commands. In this step, SemloTic 
performs a reverse level order traversal of the tree starting with the leaf nodes, which by 
definition contain a DA =< D, ci , Oj > which is either a PSR or a AC. Given such node, 
NDA, the method getAptDevices (D Ai , M) obtains the set of those specific instances of 
physical sensors/actuators deployed in the space that can perform such action, 'D, by using 
the function checkCoverage(d,ci) for all d such that (d, semic:captures, Oj) (i.e., d is a 
device that can capture observations or actuate actions of the type related to the property of 
interest). The checkCoverage function returns true if a specific device d can cover the entity 
ci by using the semic:Extent associate with ci and the semic:location and semic:coverage 
property associated with d. This way, if the observation type to capture is "image" and 
the entity of interest is "room 111", for a camera "camlll" that has the room in its view 
frustum checkCoverage("camlll", "room 111") will return true. 

For those devices that can cover the space, the getAptDevices () method performs an 
additional call to the checkAccess (d, P) method where P is the set of all U Ps defined by 
users of SemloTic. The goal is to check whether there exists a policy that restricts access 
to d. Given a user defined policy U Pn E P the same process described so far is applied to 
generate possible execution plans. Thus, SemloTic generates a TuPn that contains all the 
different devices involved in the processing of the policy. If there exists a node Nm E TuPn

such that Nm = DA =<d, cj , ok > and the preferred action defined for the U Pn is to deny 
the access, then checkAccess () returns false. 

If 'D = 0 then NDA is removed from TuA• In such a case, SemloTic checks NDA parent 
nodes and those are also removed if they require the processing of DAi (e.g., if the parent is 
a VSR that takes as input the observations of DAi )- This is done recursively and nodes are 
removed until a parent of an unrealizable node does not require such node (e.g., because it 

can obtain its input data from another child). If 'D =/ 0 then the node NDA that specified 
an action on a general device type D has to be replaced by specific actions on the devices in 
'D. For each dk E 'D SemloTic creates a DAk =< dk, ci , oi > and this action gets added as 
child to NDA. At the same time, SemloTic computes a feasibility score for D Ak which can 
be used to compare whether a plan is more feasible than others. This score gets added to 
the metadata of NDAk · 
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Figure 6: Snippets of (a) Two domain models based on semic, (b) Code of two wrappers, and (c) 
Tree generated to handle a sample user action. 

We developed domain models, wrappers, and virtual sensors for two different scenarios: 
a smart office building and a smart home. For the domain models, we imported the semic 
metaontology in the Protege tool and extended it, with the appropriate classes and instances 
(e.g., rooms, occupancy, temperature, people, presence, etc.), to describe our smart Donald 
Bren Hall building at University of California, Irvine and a smart home (see Fig. 6(a)). We 
developed sensor wrappers to interact with real sensors in both scenarios including, among 
others, WiFi Access Points, bluetooth beacons, cameras attached to Raspberry Pis, HVAC 
sensors connected to the SkySpark framework (see Fig. 6(b)). Finally, we developed virtual 
sensors to generate occupancy, by counting the number of people in a space, and to determine 
where individuals are, using approaches such as exploiting connectivity data (e.g., from WiFi 
APs or beacons) or detecting faces on images (using OpenCV). 

Handling runtime user actions with SemloTic. We deployed two instances of 
SemloTic (i.e., SemloTic-Home and SemloTic-Building) with the previous content. We 
run the application, which shows a list of spaces extracted from the domain model, and 
select "Room 111" and "Living Room" in the SemloTic-Building and SemloTic-Home in­
stances, respectively. The application generates the following user actions that are posed into 
SemloTic-Building to control the temperature of the room and to retrieve a stream of oc­
cupancy and temperature readings of the room, respectively (similar requests are generated 
for SemloTic-Home): 
(Room111, ControlTemperature, OccupancyProp>0.5xCapacityProp) (Room111, 

OccupancyProp/TemperatureProp, 0) 

Every SemloTic instance receives and handles the request as explained before. In both 
scenarios, for the action to control the temperature, SemloTic detects the need to retrieve the 
room's occupancy and capacity properties first and then actuate the property to control the 
temperature if the condition is met. As both domain models define a virtual sensor that can 
retrieve occupancy observations (which is the value that the occupancy property requires) 
this virtual sensor is included in the tree. Next, SemloTic discovers three virtual sensors in 
the model (using WiFi observations, bluetooth observations, and images, respectively) that 
can generate the presence data required as input to the occupancy counter sensor. These 
are also included in the tree as possible plans. Then, each virtual sensor appends a request 
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to physical sensors PS� for consuming their output data (WiFi APs, bluetooth beacons, 
and cameras). 

When checking realizability and feasibility of the plan, SemloTic-Building detects that 
there are no cameras covering room 111 and that the virtual sensor based on beacon ob­
servations provides a more accurate answer than the one using WiFi data. Thus, the final 
plan selected (see Fig. 6(c)) involves a request to the virtual sensor that generates occu­
pancy data from presence data (VSR1), which is the same in the plan for the home, followed 
by a request to the virtual sensor that generates presence data using bluetooth beacon ob­
servations (VSR2) followed by requests to the three beacons covering the room (PSR1 _3). 

SemloTic-Home follows a similar process by detecting a camera with the living room in 
its view frustum (there are no WiFi APs or beacons deployed). This way, it generates a 
plan (see Fig. 6(c)) that involves a request to the virtual sensor producing presence based 
on counting faces (VSR3), followed by a request to the virtual sensor that extracts faces 
from images (VSR4), followed by a request to the camera to capture images. At execution 
time, each instance calls the appropriate virtual sensors and sensor wrappers according to 
the selected plan. 

The application populates the temperature and occupancy graph ( see Fig. 7) by using 
their definitions in the domain model. Underneath SemloTic-Building retrieves data from 
HVAC thermometers and beacons whereas SemloTic-Home uses a Raspberry Pi with a 
thermometer and a videocamera. Notice in Fig. 7 how, in the case of the building, the room 
starts getting full towards 9am ( the starting of the meeting) and there is an increase on the 
temperature. When the occupancy crosses the boundary defined (in this case 75% of the 
capacity) the parallel user action retrieves these data and turns on the AC. Then, after some 
delay, the temperature starts lowering down. In the case of the smart home the situation is 
similar even when the underlying sensors are completely different. 
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Figure 7: Graphs displayed by the application using SemloTic. 

In the case of the smart home, we decided to include a third user action: a policy that 
restricts the sharing of data. The policy ((Mary, LocationProp, LocationProp=Pri vateSpace,

Approved for Public Release; Distribution Unlimited.

20



Approved for Public Release; Distribution Unlimited.

21



of the existing devices) and to handle different user actions. Also, this development effort 
will increase significantly with the increase on the level of the complexity of user actions 
(e.g., if a complex execution plan is required involving a large chain of virtual sensors). In 
the following experiment we compare the required effort for developing an application with 
and without using SemloTic. 

We developed an algorithm that generates scenarios with different levels of complexity. A 
scenario includes a set of sensors and virtual sensors -with varying number of inputs- which 
results in multiple execution plans. The algorithm starts by generating a virtual sensor and 
then a random number of inputs ( virtual or physical sensors) by considering a maximum 
number of inputs nin ( vsi) defined as a parameter. Then, this process is performed iteratively 
for each new virtual sensor until the execution plan reaches a given level of complexity nc1,. 
The output is an execution plan involving IPSI physical sensors and IVSI virtual sensors. 
Using this algorithm we generated scenarios with increasing ncl (from 1 to 7) and with 
nin(vsi) = 4. For each level the algorithm created 500 different scenarios and then computed 
the average IPSI and IVSI. 

The algorithm also estimates the development effort to implement these plans. For that, 
it takes into account the cost in terms of lines of code (LoC) to be developed (without 
considering common tasks that have to be developed with and without SemloTic such as 
the definition of the logic/GUI of the app, logic of the virtual sensing task, definition of
metadata of the space and devices). Let LoCwith be the number of LoC required to develop
with SemloTic as LoCwith 

= n�:ap x IPSI. Where n�:ap is the average LoC required to
develop the data and scope mapping of a wrapper. The metric does not include virtual 
sensor development as we provide developers with the appropriate generic artifact so that 
they just need to implement the logic of the virtual sensing task. We measured the average 
n�:ap to be 5 LoC in the simple data type wrappers generated for the previous experiments 
(e.g., Fig. 6(b)). Then, let Locw/o be the number of LoC to develop without SemloTic as 
Locw/o = E;��I ni�c x nin(vsi)- Where ni�c is the average LoC required to setup an input 
data source (setup a consumer, configure its URI, etc). Defining ni�c is challenging as this 
may differ depending on the protocol and specific device (e.g., in [6] the authors setup an 
MQTT subscriber by using 8 LoC without considering the data mapping task). We assume 
the best case scenario when developing plans without SemloTic by considering 5 LoC for 
setting up a consumer and 2 additional LoC to perform data mapping for a simple message 
type. Thus, we consider ni�c = 7. 

Fig. 8(a) shows a plot of the average IPSI and IVSI with increasing level of complexity. 
For instance, a plan with complexity 5 would require interacting with 62 virtual sensors 
and 112 physical sensors. Fig 8(b) shows the number of LoC required to develop an ap­
plication, with and without SemloTic, vs. the complexity of the scenario. In the case of 
development with SemloTic we consider situations with different number of wrappers re­
quired as a percentage of the number of physical sensors ( as some sensors could be of the 
same type/brand and handled by the same wrapper). For instance, in our previous experi­
ment for the smart building the ratio was less than 1 % as we developed 4 wrappers in total 
for cameras (around 40), HVAC sensors (around 7K), WiFi APs (around 60), and bluetooth 
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beacons (around 200). Fig 8(b) shows, for instance, that developing the complexity 5 plan 
requires 1.2K LoC without SemloTic compared to 500, 300, 100, and 30 LoC using Seml­
oTic (having to develop wrappers for 100%, 50%, 25%, and 5% of the total physical sensors). 
Based on the results in Fig. 8(b), developing an application using SemloTic reduces the effort 
(in terms of LoC) by 97% to 55%. Notice that this experiment measures development effort 
just in terms of LoC and thus it does not consider other efforts which SemloTic alleviates. 
For instance, the effort required to find/understand/utilize libraries to handle interactions 
with different protocols, to develop the logic to handle such complex plans, to handle user 
needs in a more semantically meaningful way, etc. 

3.2.1.2 Integrating PETs into a Smart Space Platform 

One representative domain of smart space where the loT is opening the door to potential 
benefits is that of smart buildings. Here traditional HVAC (heating, ventilating, and air 
conditioning) systems are being enhanced with functionalities that ties to beacons, presence 
sensors, cameras, and personal devices such as smartphones carried by the building's inhab­
itants. The reliance on the collection of data in smart buildings contradicts the expectations 
of privacy. Especially since in loT environments, such as smart buildings, users are less likely 
to be aware of the technologies with which they might be interacting. 

We describe a framework for smart spaces which integrates different PETs includes three 
main components. First, IoT Resource Registries (IRRs) which broadcast data collection 
policies and sharing practices of the loT technologies with which users interact. Second, IoT 

Assistants which selectively notify users about the policies advertised by IRRs and configure 
any available privacy settings. Third, privacy-aware smart buildings, which publish building 
policies (e.g., through IRRs), receive the privacy settings of users (e.g., from IoTAs) and 
enforce them when collecting user data or sharing it with services1

.

To make this possible, it is important to have a language for expressing and commu­
nicating the space/building's policies as well as the privacy preferences of its inhabitants. 
While the existing privacy policy languages are expressive [7], they do not completely sup­
port capturing the policies of the building and preferences of its inhabitants regarding their 
data. Therefore, this section also presents an overview of a language which can be used for 
informing users about policies on what data is collected, how it will be safeguarded, what it 
will be used for, and the choices a user has with respect to these policies. 

Privacy Threats in Current Smart Spaces Scenarios 

Smart spaces capture a digital representation of a dynamically evolving space at any point in 
time for purposes such as comfort and security. But this representation might contain distinct 
patterns which can reveal the absence or presence of people and their activities, potentially 
resulting in the disclosure of data that people might not feel comfortable disclosing (e.g., 

1 Note that, in order to differentiate the capture policies of the building against user-defined policies, this 

chapter refers to the former as building policies and to the latter as user preferences. The rest of the thesis 

focuses on user-defined preferences and hence the term policies will be used to refer to those. 
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where they go, what they do, when and with whom they spend time, whether they are 
healthy and more) [8]. 

For example, when a user connects to a WiFi AP in DBH, this event is logged for security 
purposes ( the information logged includes the MAC address of the device and AP, and a 
timestamp) as part of the building policy. Using background knowledge (e.g., the location of 
the AP) it is possible to infer the real-time location of a user. Also, using simple heuristics 
(e.g., non-faculty staff arrive at 7 am and leave before 5 pm, graduate students generally 
leave the building late, and undergrads spend most of the time in classrooms), it is possible to 
infer whether a given user is a member of the staff or a student. Furthermore, by integrating 
this with publicly available information (e.g., schedules of professors and the courses they 
teach or event calendars), it would be possible to identify individuals. Some people may not 
object to such data collection, while others might. One challenge associated with privacy 
is that often not all users feel comfortable about the same data practices. Therefore, it is 
important to understand user preferences and expectations with respect to the information 
collected and used by a system like BMS [9, 10]. 

Integrating User-Defined Privacy Policies 

Figure 9 outlines how a user (who will be referred to as Mary from now onward for ease of 
explanation) interacts with this infrastructure. In particular, consider a scenario where a 
building, DBH, is managed by a privacy-aware smart building management system (in this 
case TIPPERS) and users have personal assistants which handle their privacy preferences 
(in this case IoTA). 

First, the building admin of DBH uses the smart building management system (such 
as TIPPERS) to define policies regarding the collection and management of data within 
the building (step (1) in Figure 9). Based on these policies, the different sensors in the 
building are actuated and data from them, some of which might be related to its inhabitants 
(step (2)), is captured and stored (step (3)). These policies are made publicly available 
through one or more IoT Resource Registries (step (4)). As Mary walks into the building 
carrying her smartphone with loTA installed on it, the loTA discovers available registries that 
pertain to resources in her vicinity and obtains machine-readable privacy policies detailing 
the practices of resources close to her location (step (5)). The loTA displays summaries 
of relevant elements of these policies to the user (step (6)) by focusing on the elements of 
a policy that are important respect to the users privacy preferences. This is done using 
a model of Mary's privacy preferences learned over time. This might include information 
about those data collection and use of practices she cares to be informed about (step (7)). 
If a policy identifies the presence of settings, the IoTA can also use knowledge of Mary's 
privacy preferences to help configure these settings by communicating with TIPPERS (e.g., 
submitting requests to change settings) (step (8)). If a service later requests TIPPERS 
about Mary's location (step (9)), the request will be processed according to the settings 
communicated by Mary's IoTA to TIPPERS (e.g., the request might be rejected, if Mary's 
IoTA requested to opt-out of location sharing; step (10)). 

To implement this interaction, a machine-readable policy language, as a mechanism to 

Approved for Public Release; Distribution Unlimited.

24



user 

IRR 

Building Policy 

Manager 

User Preference 

Manager DB 

sma
�}uilding 

.
. ·· 

..
.. •·

0 ... •···

: ___ ---------------------------------______ (�} ____ ---► sensors ································•
·•· 

Figure 9: Interaction between privacy-aware smart building management system (TIPPERS), IoT 
Resource Registries (IRR) and loT Assistants (IoTA). 

capture and communicate building policies of smart buildings to its inhabitants, is required. 
The policy language is used to convey users' preferences and settings to the smart building 
system by the personal assistant. In the interaction described above different elements 
could use the language to advertise building policies (step (4)), match them with the user 
preferences (step (5)), and communicate the matched user preferences to the building system 
(step (8) ). 

Facets of a Privacy-Aware Smart Space Infrastructure 

Space policies and user preferences are important to ensure that a smart space system meets 
the privacy needs of its inhabitants. In the following, both space policies and user preferences 
are explained with examples. 

A space policy states requirements for data collection and management set by the tem­
porary or permanent owner. Space policies can be related to the infrastructure of the space, 
specific sensors deployed in the space or even events taking place inside the space. These 
policies (in most cases) have to be met completely by the other actors in the pervasive 
space. An example of a such a policy is Policy 1: A facility manager sets the thermostat 
temperature of occupied rooms to 70°F to match the average comfort level of users. 

To implement these policies, they have to be translated into settings that change the 
state of sensors. 

Space policies support management tasks but at the same time put user's privacy at risk. 
For example, using the data collected based on Policy 1 it is possible to discover whether 
someone's office is occupied or not which in turn can be used to learn the occupant's working 
pattern. Therefore, in smart spaces, users should be able to express their privacy preferences 
regarding the data collected by the space. 

A user preference is a representation of the user's expectation of how data pertaining 
to her should be managed by the pervasive space. These preferences might be partially or 
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completely met depending on other policies and user preferences existing in the same space. 
Smart buildings such as DBH also provide services, built on top of the collected sensor 

data, to the inhabitants of the building. Two examples of such services operating at DBH 
are 1) Smart Concierge service, which helps users locate rooms, inhabitants and events in 
the building, 2) Smart Meeting service, which can help organize meetings more efficiently. 
These services take information from the user captured by the building ( e.g., their current 
location) and return interesting information (e.g., nearest coffee machine). In addition to 
services provided by the space, there could be other third-party services running on top of the 
smart space management system. For example, a food delivery company can automatically 
locate and deliver food to building inhabitants during lunch time. 

While using a service inside the space, a user can also specify their policies in the form 
of permissions allowed for the service. This is similar to how the permissions are managed 
in mobile apps. This allows a user to directly review what information the service requests 
and for what purpose. 

Communicating Policies and Preferences. 

Space policies and user preferences have context specific requirements that need to be cap­
tured and communicated in a flexible manner. In this section, we first describe the various 
elements of our machine-readable policy. Second, we describe a high-level language schema 
that can be used to capture such policy. 

For expressing a space policy, a semi-structured language would be the best fit as the 
user is cognizant of the IoT space itself. In the case of a user preference, the goal is to reduce 
privacy fatigue as much as possible and therefore a natural language interface or a privacy 
assistant like loTA mentioned earlier would be more suitable. 
Space Specific Policy Elements. There are different elements in a space that have to be 
represented in policies such as space, users, sensors and services. For the elements described 
below, we use existing ontologies if available. 
1) Spatial Model includes information about infrastructure, such as buildings, floors, rooms,
corridors, and is inherently hierarchical. The spatial model also supports operators such as
"contained" , "neighboring" , and "overlap" .
2) User Profile models the concept of people in the environment. Profiles can be based on
groups (students, faculty, staff etc.) and share common properties (e.g., access permissions).
A user can have multiple profiles which includes information such as department, affiliation,
and office assignment in our sample scenario.
3) Sensor describes the entity which captures information about its environment. Each
sensor has a sensor type and can produce a reading based on its type. Sensors of the same
type can be organized into sensor subsystems. Examples of such subsystems are camera
subsystem, beacon subsystem, and HVAC subsystem (modelled using the haystack2 ontology
and Semantic Sensor Network ontology [11]).

2http://project-haystack.org
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designing a language schema that is capable of capturing both space policies and user pref­
erences. In the following we give an overview of the language by representing some of the 
previous examples. We use a JSON-Schema v43 for the representation. We choose JSON 
over other formats mainly because of the rapid adoption of JSON-based REST APis. 

Figure 10 shows how Policy 2 ( "Location tracking for emergency response") can be 
expressed using the language. The first part of the language expresses the general information 
about the location and sensor type (in this case location is DBH at UCI with WiFi APs 
being the sensors) whereas the second part expresses the data collection purpose ( emergency 
response), data type, and retention period of the data itself. 

{"resources": [{ 
"info": { "name": "Location tracking in DBH" }, 
"context 11: { 

11 location 11
: { 

"spatial 11
: { 

"name": "Donald Bren Hall", 
"type": "Building" 

}, 
11 location_owner 11

: { 
"name": "UCI", 
"human_description": { 

"more_info": "http:// ics. uci. edu" 

}}}, 
11 sensor 11 : { 

"type": "WiFi Access Point", 
"description": "Installed inside the building and covers rooms and corridors" 

} } ' 
"purpose" : { 

"emergency response": { 
"description": "Location is stored continuously" 

}} 
"observations": [{ 

"name": "MAC address of the device", 
"description": "If your device is connected to a WiFi Access Point in DBH, its MAC 

address is stored" 

}J, 
11 retention 11

: { 
"duration": "P6M"}}J} 

Figure 10: Policy related to data collection inside DBH. 

In case of the policies related to services such as the Smart Concierge 4 can be expressed 
as shown in Figure 11. The first part describes the information required by the service and 
the second part shows the purpose of collecting this information. 

Concerning user's preference settings, the language can express choices related to policies 
and services. In the context of Smart Concierge service, Figure 12 shows options for the 
different granularities at which location data can be collected. Thus, if a user is comfortable 
with sharing fine-grained location data with the Concierge service for directions then our 
language can capture such Preference. 

3http://json-schema.org
4Smart Concierge is a service that acts as a smartspace assistant to a building occupant/user empowering

the user with information about the current state as well as past state of the building (e.g., room occupancy, 

ongoing events ), and other occupant (e.g., their location). 
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{"observations": [{ 
11 name 11 : 11 wifi_access_point 11

, 

"description": "Whenever one of your devices connects to the DBH WiFi its MAC address is 
stored" 

} ' { 
"name": 11 bluetooth_ beacon 11

, 

"description": "When you have Concierge installed and your bluetooth senses a beacon, the 
room you are in is stored"}], 

"purpose" : { 
"providing_service": { 

"description": "Your location data is used to give you directions around the Bren Hall." 

} ' 
''service_id'': ''Concierge''}} 

{"settings": [ 
{"select": [ 

Figure 11: Policy related to a service in the building. 

{"description": "fine grained location sensing", 
"on": "http://tippers/user/concierge?beacon =opt-in&wifi =opt-in"}, 

{"description": "coarse grained location sensing", 
"on": "http://tippers/user/concierge?beacon =opt-out&wifi =opt-in"}, 

{"description": "No location sensing", 
"on": "http://tippers/user/concierge?beacon =opt-out&wifi =opt-out"}]} 

Figure 12: Privacy settings available. 

3.2.2 Scaling Encryption and Secret-Sharing Techniques 

Many untrusted cloud computing platforms ( e.g., Amazon AWS, Google App Engine, and 
Microsoft Azure) offer database-as-a-service using which data owners, instead of purchasing, 
installing, and running data management systems locally, can outsource their databases and 
query processing to the cloud. Such cloud-based services available using the pay-as-you-go 
model offers significant advantages to both small, medium and at times large organizations. 
The numerous benefits of public clouds impose significant security and privacy concerns 
related to sensitive data storage ( e.g., sensitive client information, credit card, social security 
numbers, and medical records) or the query execution. The untrusted public cloud may be 
an honest-but-curious ( or passive) adversary, which executes an assigned job but tries to 
find some meaningful information too, or a malicious ( or active) adversary, that may tamper 
the data or query. Such concerns are not a new revelation - indeed, they were identified 
as a key impediment for organizations adopting the database-as-as-service model in early 
work on data outsourcing [13, 14]. Since then, security/confidentiality challenges have 
been extensively studied in both the cryptography and database literature, which has 
resulted in many techniques to achieve data privacy, query privacy, and inference 

prevention. Existing work can loosely be classified into the following two categories: 

1. Encryption based techniques. E.g., order-preserving encryption [15], determinis­
tic encryption (Chapter 5 of [16]), homomorphic encryption [17], bucketization [13],
searchable encryption [18], private informational retrieval (PIR) [19], practical-PIR
(P-PIR) [20], oblivious-RAM (ORAM) [21], oblivious transfers (OT) [22], oblivious
polynomial evaluation (OPE) [23], oblivious query processing [24], searchable symmet-
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Data distribution: How is data distributed between private and public clouds? Data 
distribution depends on factors such as the amount of storage available on private 
machines, expected query workload, and whether data and query workload is largely 
static or dynamic. 

Query execution: Given a data distribution strategy, how do we execute a query securely 
and efficiently across the hybrid cloud, while minimizing the execution time and ob­
taining the correct final outputs? 

Since data is stored on public cloud in the clear text, data distribution strategy must 
guarantee that sensitive data resides only on private machines. Non-sensitive data, on the 
other hand, could be stored on private machines, public machines, or be replicated on both. 
Given a data distribution, the query processing strategy will split a computation between 
public and private machines while simultaneously meeting the goals of good performance 
and secure execution. 

Split Strategy 

In order to ensure a secure query execution, we develop a split strategy for executing SQL 
queries in the hybrid cloud setting. In a split strategy, a query Q is partitioned into two sub­
queries that can be executed independently over the private and the public cloud respectively, 
and the final results of the query can be computed by appropriately merging the results of 
the two sub-queries. In particular, a query Q on dataset D is split as follows: 

(1) 

where Qpriv and Qpub are private and public cloud sub-queries respectively. Qpriv is executed 
on the private subset of D (i.e., Dpriv); whereas Qpub is performed over the public subset of 
D (i.e., Dpub)- Qmerge is a private cloud merge sub-query that reads the outputs of former 
two sub-queries as input and creates the outputs equivalent to that of original Q. We call 
such an execution strategy as split-strategy. 

Two aspects of split-strategy are noteworthy: 

1. It offers full security, since the public machines only have access to Dpub that do not
contain any sensitive data. Moreover, no information is exchanged between private
and public clouds during the execution of Qpub, resulting in the execution at the public
cloud to be observationally equivalent to the situation where Dpriv could be any random
data.

2. Split-strategy gains efficiency by executing Qpriv and Qpub in parallel at the private and
public cloud respectively, and furthermore, by performing inter-cloud data transfer at
most once throughout the query execution. Note that the networks between private
and public clouds can be significantly slower compared to the networks used within
clouds. Thus, minimizing the amount of data shuffling between the clouds will have a
big performance impact.
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Figure 18: Comparison of pseudo-sensitive data and sensitivity ratio. 

these approaches compared to All-Private in terms of the overall workload execution time. 
As indicated in Figure 17, until 25% sensitivity, CPT-P's data preparation time is less than 
that of performance gain in Hadoop; whereas in Spark, data preparation time is always 
higher than the performance gain for both CPT-P and CPT-C. Note that, we prepare the 
CPT column only once on a static data for an expected workload that will more likely be 
executed more than once with different selection and projection conditions. In Spark, if the 
sensitivity ratio is as high as 10%, executing the workload more than once will be enough for 
the performance gain of CPT-P solution to be higher than the overhead of data preparation 
time. 

Size of Private Storage. Besides storing sensitive data, in our technique, we also store 
pseudo-sensitive data on the private cloud. This enables us to execute queries in a partitioned 
manner while minimizing expensive inter-cloud communication during query execution. In 
Figure 18, we plot the size of pseudo-sensitive data as a percentage of total database size at 
different sensitivity levels. We note that even when sensitivity levels are as high as 5-10%, 
the pseudo-sensitive data remains only a fraction (15-25% of the total data). At smaller 
sensitivity levels, the ratio is much smaller. 

3.2.2.2 Partitioned Computations at the Public Cloud via Panda 

In this section, we define the partitioned computation, illustrate how such a computation 
can leak information due to the joint processing of sensitive and non-sensitive data, discuss 
the corresponding security definition, and finally discuss system and adversarial models under 
which we will develop our solutions. 

Partitioned Computations 

Let R be a relation that is partitioned into two sub-relations, Re 2 Rs and R
p 

� Rns , 
such that R = Re U R

p
. The relation Re contains all the sensitive tuples ( denoted by Rs ) 

of the relation R and will be stored in encrypted form in the cloud. Note that Re may 
contain additional (non-sensitive) tuples of R, if that helps with secure data processing). 
The relation Rp refer to the sub-relation of R that will be stored in plain-text on the cloud. 
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Naturally, Rp does not contain any sensitive tuples. For the remainder of the report, we will 
assume that Re = Rs and Rp = Rns , though our approach will be generalized to allow for 
a potentially replicated representation of non-sensitive data in encrypted form, if it helps to 
evaluate queries more efficiently. Let us consider a query Q over relation R. A partition 
computation strategy splits the execution of Q into two independent sub-queries: Q s: a 
query to be executed on E(Re) and Qns : a query to be executed on R

p
. The final results are 

computed (using a query Qmerge) by appropriately merging the results of the two sub-queries 
at the trusted database (DB) owner side (or in the cloud, if a trusted component, e.g., Intel 
SGX, is available for such a merge operation). In particular, the query Q on a relation R is 
partitioned, as follows: 

(6) 

Let us illustrate partitioned computations through an example. 

Eld FirstName LastName SSN Office# Department 

t1 ElOl Adam Smith 111 1 Defense 

t2 E259 John Williams 222 2 Design 
t3 E199 Eve Smith 333 2 Design 

t4 E259 John Williams 222 6 Defense 
t5 E152 Clark Cook 444 1 Defense 

t5 E254 David Watts 555 4 Design 
t7 E159 Lisa Ross 666 2 Defense 

ts E152 Clark Cook 444 3 Design 

Figure 19: A relation: Employee. 

Example 1: Consider an Employee relation, see Figure 19. In this relation, the at­
tribute SSN is sensitive, and furthermore, all tuples of employees for the Department =

"Defense" are sensitive. In such a case, the Employee relation may be stored as the following 
three relations: ( i) Employee1 with attributes Eld and SSN (see Figure 7a); ( ii) Employee2 

with attributes Eld, FirstName, LastName, Office#, and Department, where Department 

= "Defense" (see Figure 7b); and (iii) Employee3 with attributes Eld, FirstName, Last­

Name, Office#, and Department, where Department<> "Defense" (see Figure 22). Since 
the relations Employee1 and Employee2 (Figures 7a and 7b) contain only sensitive data, 
these two relations are encrypted before outsourcing, while Employee3 (Figure 22), which 
contains only non-sensitive data, is outsourced in clear-text. We assume that the sensitive 
data is strongly encrypted such that the property of ciphertext indistinguishability (i.e., an 
adversary cannot distinguish pairs of ciphertexts) is achieved. Thus, the two occurrences of 
E152 have two different ciphertexts. 

Consider a query Q: SELECT FirstName, LastName, Off ice#, Department from 
Employee where FirstName = ''John''. In partitioned computation, the query Q is par­
titioned into two sub-queries: Qs that executes on Employee2, and Qns that executes on 
Employee3. Qs will retrieve the tuple t4 while Qns will retrieve the tuple b Qmerge in this 
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Eld SSN 

t1 ElOl 111 

t2 E259 222 
t3 E199 333 

t5 E152 444 

t5 E254 555 
t7 E159 666 

Figure 20: A sensitive relation: Employeel. 

Eld FirstName LastName Office# Department 

t1 ElOl Adam Smith 1 Defense 
t4 E259 John Williams 6 Defense 
t5 E152 Clark Cook 1 Defense 
t7 E159 Lisa Ross 2 Defense 

Figure 21: A sensitive relation: Employee2. 

Eld FirstName LastName Office# Department 

t2 E259 John Williams 2 Design 
t3 E199 Eve Smith 2 Design 

t5 E254 David Watts 4 Design 
ts E152 Clark Cook 3 Design 

Figure 22: A non-sensitive relation: Employee3. 

example is simply a union operator. Note that the execution of the query Q will also retrieve 
the same tuples. 

Inference Attack in Partitioned Computations 

Partitioned computations, if performed naively, could lead to inferences about sensitive data 
from non-sensitive data. To see this, consider following three queries on the Employee2 and 
Employee3 relations: ( i) retrieve tuples of the employee Eid = E259, ( ii) retrieve tuples of 
the employee Eid = E101, and ( iii) retrieve tuples of the employee Eid = E199. We consider 
an honest-but-curious adversarial cloud that returns the correct answers to the queries but 
wishes to know information about the encrypted sensitive tables, Employeel and Employee2. 

Table 1 shows the adversary's view based on executing the corresponding Qs and Qns

components of the above three queries assuming that the tuple retrieving cryptographic ap­
proaches are not hiding access-patterns. During the execution, the adversary gains complete 
knowledge of non-sensitive tuples returned, and furthermore, knowledge about which en­
crypted tuples are returned as a result of Q s ( E (ti) in the table refers to the encrypted tuple 

ti)-
Given the above adversarial view, the adversary learns that employee E259 has tuples 

in both D8 (= De) and D
P 

(= Dns)- Coupled with the knowledge about data partitioning, 
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simple search or join query may reveal how many tuples have the same value. Based on the 
above two requirements, we can define a notion of partitioned data security. 

Partitioned Data Security at the Public Cloud 

Let R be a relation containing sensitive and non-sensitive tuples. Let Rs and Rns be the 
sensitive and non-sensitive relations, respectively. Let q(Rs, Rns)[A] be a query, q, over an 
attribute A of the Rs and Rns relations. Let X be the auxiliary information about the 
sensitive data, and Pr Adv be the probability of the adversary knowing any information. 
A query execution mechanism ensures the partitioned data security if the following two 
properties hold: 

• Pr Adv[ei a nsj lX] = Pr Adv[ei a nsj lX, q(Rs, Rns)[A]], where ei = E(ti)[A] is the
encrypted representation for the attribute value A for any tuple ti of the relation Rs

and nsj is a value for the attribute A for any tuple of the relation Rns • The notation a

shows a sensitive value is identical to a non-sensitive value. This equation captures the
fact that an initial probability of linking a sensitive tuple with a non-sensitive tuple
will be identical after executing several queries on the relations.

• PrAdv[vi � Vj lX] = PrAdv[vi � Vj lX,q(Rs,Rns)[A]], for all Vi,Vi E Domain(A). The
notation � shows a relationship between counts of the number of tuples with sensitive
values. This equation states that the probability of adversary gaining information
about the relative frequency of sensitive values does not increase by the query execution.

The definition above formalizes the security requirement of any partitioned computation 
approach. Of course, a partitioned approach, besides being secure, must also be correct in 
that it returns the same answer as that returned by the original query Q if it were to execute 
without regard to security. 

Query Binning: A Technique for Partitioned Computations using a Crypto­
graphic Technique at the Public Cloud 

In this section, we will study query binning (QB) as a partitioned computing approach. QB 
is related to bucketization, which is studied in past [13]. While bucketization was carried over 
the data in [13], QB performs bucketization on queries. In general, one may ask more queries 
than original query while adding overhead but it prevents the above-mentioned inference 
attack. We study QB under some assumption and setting, given below.5•

Problem Setup. We assume the following two entities in our model: ( i) A database (DB) 
owner: who splits each relation R in the database having attributes Rs and Rns containing 
all sensitive and non-sensitive tuples, respectively. ( ii) A public cloud: The DB owner 
outsources the relation Rns to a public cloud. The tuples in Rs are encrypted using any 

5Some of these assumptions are made primarily for ease of the exposition and will be relaxed in [39]. 
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existing mechanism before outsourcing to the same public cloud. However, in the approach, 
we use non-deterministic encryption, i.e., the cipher representation of two occurrences of an 
identical value has different representations. 

DB Owner Assumptions. In our setting, the DB owner has to store some (limited) 
metadata such as searchable values and their frequency counts, which will be used for ap­
propriate query formulation. The DB owner is assumed to have sufficient storage for such 
metadata, and also computational capabilities to perform encryption and decryption. The 
size of metadata is exponentially smaller than the size of the original data. 

Adversarial Model. The adversary ( i.e., the untrusted cloud) is assumed to be honest-but­
curious, which is a standard setting for security in the public cloud that is not trustworthy. 

An honest-but-curious adversarial public cloud, thus, stores an outsourced dataset without 
tampering, correctly computes assigned tasks, and returns answers; however, it may exploit 
side knowledge ( e.g., query execution, background knowledge, and the output size) to gain 
as much information as possible about the sensitive data. Furthermore, the adversary can 
eavesdrop on the communication channels between the cloud and the DB owner, and that 
may help in gaining knowledge about sensitive data, queries, or results. The adversary has 
full access to the following information: ( i) all non-sensitive data outsourced in plain-text, 
and ( ii) some auxiliary information of the sensitive data. The auxiliary information may 
contain the metadata of the relation and the number of tuples in the relation. Furthermore, 
the adversary can observe frequent query types and frequent query terms on the non-sensitive 
data in case of selection queries. The honest-but-curious adversary, however, cannot launch 
any attack against the DB owner. 

Assumptions for QB. We develop QB initially under the assumption that queries are 
only on a single attribute, say A. The QB approach takes as inputs: ( i) the set of data 
values ( of the attribute A) that are sensitive along with their counts, and ( ii) the set of data 
values (of the attribute A) that are non-sensitive, along with their counts. The QB returns 
a partition of attribute values that form the query bins for both the sensitive as well as for 
the non-sensitive parts of the query. 

In this report, we also restrict to a case when a value has at most two tuples, where one of 
them must be sensitive and the other one must be non-sensitive, but both the tuples cannot 
be sensitive or non-sensitive. The scenario depicted in Example 1 satisfies this assumption. 
The Eld attribute values corresponding to sensitive tuples include (E101, E259, E152, E159) 
and from the non-sensitive relation values are (E199, E259, E152, E254). Note that all the 
values occur only one time in one set. 

Full version. In this report, we restrict the algorithm for selection query only on one 
attribute. The full details of the algorithm, extensions of the algorithm for values having 
a different number of tuples, conjunctive, range, join, insert queries, and dealing with the 
workload-skew attack is addressed in [39]. Further, the computing cost analysis and effi­
ciency analysis of QB at different or identical-levels of security against a pure cryptographic 
technique is given in [39]. 

The Approach. We develop an efficient approach to execute selection queries securely 
(preventing the information leakage as shown in Example 1) by appropriately partitioning 
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the query at a public cloud, where sensitive data is cryptographically secure while non­
sensitive data stays in clear-text. For answering a selection query, naturally, we use any 
existing cryptographic technique on sensitive data and a simple search on the clear-text 
non-sensitive data. Naturally, we can use a secure hardware, e.g., Intel SGX, for all such 
operations; however, (as mentioned in Figure 13), SGX-based processing takes a significant 
amount of time, due to limited space of the enclave. 

Informally, QB distributes attribute values in a matrix, where rows are sensitive bins, and 
columns are non-sensitive bins. For example, suppose there are 16 values, say 0, 1, . . .  , 15, 
and assume all the values have sensitive and associated non-sensitive tuples. Now, the DB 
owner arranges 16 values in a 4 x 4 matrix, as follows: 

I NSBo I NSB1 I NSB2 I NSB3 I 
SBo 11 2 5 14 
SB1 10 8 7 
SB2 0 6 � 

SB3 13 

3 
15 
1 12 9 

In this example, we have four sensitive bins: SB0 !11,2,5,lll1�, SB1 {10,3,8,7}, SB2 
{0,15,6,4}, SB3 {13,1,12,9}, and four non-sensitive 10ins: NSB0 {11,10,0,13}, NSB1

{2,3,15,1 }, NSB2 {5,8,6,12}, NSB3 {14,7,4,9}. Wlien a query arrives for a value, say 1, 
the DB owner searches for the tuples containing values �,3,15,1 (viz. NSB1) on the non­
sensitive data and values in SB3 (viz., 13,1,12,9J OIJ! the sensitive data using the cryptographic 
mechanism integrated into QB. While the aa.veFsary learns that the query corresponds to 
one of the four values in NSB1 , s·nce query vahies in SB3 are encrypted, the adversary does 
not learn any sensitive value ou a non-sensitive i\Talue that is identical to a clear-text sensitive 
value. 

Formally, QB appro riatel . mags a selection query for a keyword w, say q( w), to cor­
responding queries 0¥.en {he non-sensitive relation, say q(Wns)(Rns), and encrypted relation, 
say q(Ws)(Rs)- The gueries q(Wks)(Rns) and q(Ws)(Rs), each of which represents a set of 
query values that are executed o;v:er the relation Rns in plain-text and, respectively, over the 
sensitive relation Rs, usmgi the underlying cryptographic method. The sets Wns from Rns 

and Ws from Rs are selectea such that: ( i) w E q(Wns)(Rns) n q(Ws)(Rs) to ensure that all 
the tuples containing w are retrieved, and, ( ii) the execution of the queries q(Wns)(Rns) and 
q(Ws)(Rs) does not reveal any information (and w) to the adversary. The set of q(Wns)(Rns) 
is entitled non-sensitive bins, and the set of q(Ws)(Rs) is entitled sensitive bins. Algorithm 1 
provides pseudocode of bin-creation method.6 Results from the execution of the queries 
q(Wns)(Rns) and q(Ws)(Rs) are decrypted, possibly filtered, and merged to generate the 
final answer. 

Based on QB Algorithm 1, for answering the above-mentioned three queries in Example 1, 
given in Section 3.2.2.2, Algorithm 1 creates two sets or bins on sensitive parts: sensitive bin 

6The function approx_sqJactors in Algorithm 1 two factors x and y of a number n, such that either they 
are equal or close to each other so that the difference between x and y is less than the difference between 

any two factors of n (and xx y = n). 
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Query value Returned tuples/ Adversarial view 
Employee1 Employee2 

E259 𝐸𝐸(𝑡𝑡4), 𝐸𝐸(𝑡𝑡1) 𝑡𝑡2, 𝑡𝑡6 
E101 𝐸𝐸(𝑡𝑡4), 𝐸𝐸(𝑡𝑡1) 𝑡𝑡3, 𝑡𝑡8 
E199 𝐸𝐸(𝑡𝑡4), 𝐸𝐸(𝑡𝑡1) 𝑡𝑡3, 𝑡𝑡8 
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Algorithm 2: Bin-retrieval algorithm. 

Inputs: w: the query value. 
Outputs: SBa and NSBb: one sensitive bin and one non-sensitive bin to be 
retrieved for answering w. 

Variables: found +-- false 
1 Function retrieve_bins( q( w)) begin 
2 for (i,j) E (0, SB - 1), (0, ISBI - 1) do 

if w = SBi[j] then 
a I return SBi and NSBi ; found true; break 

end 

end 
4 if found =/:- true then 
5 for (i,j) E (0, NSB - 1), (0, INSBI - 1) do 
6 if w = NSBi [j] then 

I return NSBi and SBi ; break 
end 

end 

end 
7 Retrieve the desired tuples from the cloud by sending encrypted values of the bin 

SBi (or SBi ) and clear-text values of the bin NSBi (or NSBi ) to the cloud 
end 

{E101, E259} or {E152, E159}, since we retrieve the set of these two values . Note that 
before executing a query, the probability of an encrypted value, say Ei , (where Ei may be 
E101, E259, E152, or E159) to have the clear-text value is 1/4, which QB maintains at the 
end of a query. Assume that E1 and E2 are encrypted representations of E101 and E259, 
respectively. Also, assume that v1, v2, v3, v4 are showing the clear-text value of E259, E254, 
E199, and E152, respectively. 

When the query arrives for (Ei, E2, vi, v2), the adversary gets the fact that the clear-text 
representation of Ei and E2 cannot be v1 and v2 or v3 and v4. If this will happen, then 
there is no way to associate each sensitive bin of the new bipartite graph with each non­
sensitive bin. Now, if the adversary considers the clear-text representation of E1 is v1, then 
the adversary have four possible allocations of the values vi, v2, v3, v4 to Ei, E2, E3, E4,

such as: (vi, v2, V3, v4), (vi, v2, V4, v3), (vi, V3, V4, v2), (vi, V4, V3, v2). 
Since the adversary is not aware of the exact clear-text value of E1, the adversary also 

considers the clear-text representation of E1 is v2, v3, or v4. This results in 12 more possible 
allocations of the values v1, v2, v3, v4 to Ei, E2, E3, E4. Thus, the retrieval of the four tuples 
containing one of the following: (Ei, E2, vi, v2), results in 16 possible allocations of the values 
v1, v2, v3, and v4 to E1, E2, E3, and E4, of which only four possible allocations have Vi as 
the clear-text representation of Ei . This results in the probability of finding E1 = v1 is 1/4. 

Note that following this technique, executing queries under for each keyword will not 
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Cost crypt(x, D) is the sum the processing cost of x selection queries on encrypted data and 
the communication cost of moving all the tuples having x predicates from the cloud to 
the DB owner, i.e., PeD + pxDCcom , where p is the selectivity of the query. Note that 
cost of evaluating x queries over encrypted data using techniques such as [18, 28, 33], 
is amortized and can be performed using a single scan of data. Hence, x is not the 
factor in the cost corresponding to encrypted data processing. 

Given the above, we define a parameter rJ that is the ratio between the computation and 
communication cost of searching using QB and the computation and communication cost 
of searching when the entire data (viz. sensitive and non-sensitive data) is fully encrypted 
using the cryptographic mechanism. 

Cost crypt(ISBI, S) Cost
p
lain(INSBI, NS) 

rJ=---=------+-�------
Cost crypt(l, D) Cost cryp

t(l, D) 

Filling out the values from above, the ratio is: 

CeS + ISBlpDCcom INSBI log(D)C
p 

+ INSBlpDCcom rJ=-------+------------
CeD + pDCcom CeD + pDCcom 

Separating out the communication and processing costs, rJ becomes: 

S Ce INSBI log(D)C
p 

pDCcom(INSBI + ISBI) 
T/ = ----- + ------ + ---------D Ce+ pCcom CeD + pDCcom CeD + pDCcom 

Substituting for various terms and cancelling common terms provides: 

1 log(D) INSBI p INSBI + ISBI 
TJ = a (1 + �) + 

D ,8(1 + �) + 
7 (1 + �)

(7) 

(8) 

(9) 

(10) 

Note that p/1 is very small, thus the term (1 + p/1) can be substituted by 1. Given the 
above, the equation becomes: 

TJ =a+ log(D)INSB/ D,B + p(INSBI + ISBl)/1 (11) 

Note that the term log(D)INSBI/ D,B is very small since INSBI is the number of distinct 
values ( approx. equal to /fNST) in a non-sensitive bin, while D, which is the size of a 
database, is a large number, and ,B value is also very large. Thus, the equation becomes: 

rJ =a+ p(ISBI + INSBl)/1 (12) 

QB is better than a cryptographic approach when TJ < 1, i.e., a+ p( I SB I + I NSB I)/"/ < 1.
Thus, 

a< l _ p(ISBI + INSBI)

"I 
(13)
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Note that the values of ISBI and INSBI are approximately JTNST, we can simplify the 
above equation to: a < 1 - 2pJTNSTj,-y. If we estimate p to be roughly 1/INSI (i.e., we 
assume uniform distribution), the above equation becomes: a< 1 - 2/-yJTNST. 

The equation above demonstrates that QB trades increased communication costs to re­
duce the amount of data that needs to be searched in encrypted form. Note that the reduction 
in encryption cost is proportional to a times the size of the database, while the increase in 
communication costs is proportional to .JfDT, where IDI is the number of distinct attribute 
values. This, coupled with the fact that 'Y is much higher than 1 for encryption mechanisms 
that offer strong security guarantees, ensures that QB almost always outperforms the full 
encryption approaches. For instance, the cryptographic cost for search using secret-sharing 
is ,::::; lOms [33], while the cost of transmitting a single row (,::::; 200 bytes for TPCH Customer 
table) is ,::::; 4 µs making the value of 'Y ,::::; 25000. Thus, QB, based on the model, should 
outperform the fully encrypted solution for almost any value of a, under ideal situations 
where our assumption of uniformity holds. Figure 25 plots a graph of TJ as a function of 'Y, 
for varying sensitivity and p = 10%. 

To explore the effectiveness of QB under different DB sizes, we tested QB for 3 DB sizes: 
150K, 1.5M, and 4.5M tuples. Figure 26 plots TJ values for the three sizes while varying a. 
The figure shows that T/ < 1, irrespective of the DB sizes, confirming that QB scales to larger 
DB sizes. 
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Figure 25: Efficiency graph using equation TJ =a+ p(ISBI + INSBl)/'y. 
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Figure 26: Dataset size. 
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3.2.2.3 Scaling Secret-Sharing-based Techniques via Obscure 

MPC-based databases systems that offer strong security guarantees. Benefits of MPC­
based methods in terms of both higher-level security and relatively efficient support for 
aggregation queries have been extensively discussed in both scientific articles [40, 41, 42, 43] 
and popular media [44, 45, 46, 47]. 

Much of the work on MPC-based secure data management requires several servers to 
collaborate to answer queries. These collaborations require several rounds of communication 
among non-colluding servers. Instead, we explore secure data management based on SSS that 
does not require servers to collaborate to generate answers and can, hence, be implemented 
more efficiently. There is prior work on exploring secret-sharing for SQL processing [48, 
33, 49, 50], but the developed techniques suffer from several drawbacks, e.g., weak security 
guarantees such as leakage of access patterns, significant overhead of maintaining polynomials 
for generating shares at the database (DB) owner, no support for third-party query execution 
on the secret-shared outsourced database, etc. 

In this section, we provide SSS-based algorithms (entitled OBSCURE) that support a large 
class of access-pattern-hiding aggregation queries with selection. OBSCURE supports count, 
sum, average, maximum, minimum, top-k, and reverse top-k, queries, without revealing 
anything about data/query/results to an adversary. OBSCURE also comes with an oblivious 
result verification algorithm for aggregation queries such that an adversary does not learn 
anything from the verification. OBSCURE's verification step is not mandatory. A querier 
may run verification occasionally to confirm the correctness of results. In this report, we will 
focus only on count and sum queries only. 

Building Blocks 

OBSCURE is based on SSS, string-matching operations over SSS, and order-preserving secret­
sharing (OP-SS). This section provides an overview of these existing techniques. 
Shamir's secret-sharing (SSS). In SSS [27], the DB owner divides a secret value, say S,

into c different fragments, called shares, and sends each share to a set of c non-communicating 
participants/servers. These servers cannot know the secret S until they collect d < c shares. 
In particular, the DB owner randomly selects a polynomial of degree d with d random 
coefficients, i.e., f(x) = a0 + a1x + a2x2 

+ · · · + ac,xc', where f(x) E IF
p

[x], pis a prime 
number, IF

P 
is a finite field of order p, a0 = S, and ai E N(l � i � d).. The DB owner 

distributes the secret S into c shares by placing x = 1, 2, . . .  , c into f(x). The secret can 
be reconstructed based on any d + 1 shares using Lagrange interpolation [51]. Note that 
d � c, where c is often taken to be larger than d to tolerate malicious adversaries that may 
modify the value of their shares. For this paper, however, since we are not addressing the 
availability of data, we will consider c and d to be identical. 

SSS allows an addition of shares, i.e., if s(a)i and s(b)i are shares of two values a and b, 
respectively, at the server i, then the server i can compute an addition of a and b itself, i.e., 
a+ b = s(a) + s(b), without knowing real values of a and b. 
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String-matching operation on secret-shares. Accumulating-Automata (AA) [31] is a 
new string-matching technique on secret-shares that do not require servers to collaborate to 
do the operation, unlike MPG-techniques [52, 53, 54, 55, 56, 57]. Here, we explain AA to 
show how string-matching can be performed on secret-shares. 

Let D be the clear-text data. Let S(D) i (1 ::; i ::; c) be the i th secret-share of D stored 
at the i th server, and c be the number of non-communicating servers. AA allows a user 
to search a pattern, pt , by creating c secret-shares of pt ( denoted by S (pt )i, 1 ::; i ::; c), 
so that the i th server can search the secret-shared pattern S(pt) i over S(D) i . The result 
of the string-matching operation is either 1 of secret-share form, if S(pt) i matches with a 
secret-shared string in S(D) i or 0 of secret-share form; otherwise. Note that when searching 
a pattern on the servers, AA uses multiplication of shares, as well as, the additive property 
of SSS, which will be clear by the following example. Thus, if the user wants to search a 
pattern of length l in only one communication round, while the DB owner and the user are 
using a polynomial of degree one, then due to multiplication of shares, the final degree of 
the polynomial will be 2l, and solving such a polynomial will require at least 2l + 1 shares. 
Example. Assume that the domain of symbols has only three symbols, namely A, B, and 
C. Thus, A can be represented as (1, 0, 0). Similarly, B and C can be represented as (0, 1, 0)
and (0, 0, 1), respectively.
DB owner side. Suppose that the DB owner wants to outsource B to the ( cloud) servers.
Hence, the DB owner may represent B as its unary representation: (0, 1, 0). If the DB owner
outsources the vector (0, 1, 0) to the servers, it will reveal the symbol. Thus, the DB owner
uses any three polynomials of an identical degree, as shown in Table 3, to create three shares.

Table 3: Secret-shares of a vector (0, 1, 0), created by the DB owner. 

Vector values Polynomials First shares Second shares Third shares 
0 0+5x 5 10 15 
1 1 +9x 10 19 28 
0 0+2x 2 4 6 

User-side. Suppose that the user wants to search for a symbol B. The user will first represent 
B as a unary vector, (0, 1, 0), and then, create secret-shares of B, as shown in Table 4. Note 
that there is no need to ask the DB owner to send any polynomials to create shares or ask 
the DB owner to execute the search query. 

Table 4: Secret-shares of a vector (0, 1,0), created by the user/querier. 

Vector values Polynomials First shares Second shares Third shares 
0 o+x 1 2 3 
1 1 +2x 3 5 7 
0 0+4x 4 8 12 

Server-side. Each server performs position-wise multiplication of the vectors that they have, 
adds all the multiplication resultants, and sends them to the user, as shown in Table 5. An 
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important point to note here is that the server cannot deduce the keyword, as well as, the 
data by observing data/ query /results. 

Table 5: Multiplication of shares and addition of final shares by the servers. 

Computation on 
Server 1 Server 2 Server 3 
5x1=5 10 X 2 = 20 15 X 3 = 45 
10 X 3 = 30 19 X 5 = 95 28 X 7 = 196 
2x4=8 4 X 8 = 32 6 X 12 = 72 
43 147 313 

User-side. After receiving the outputs ( (y1 = 43, y2 = 147, y3 = 313)) from the three servers, 
the user executes Lagrange interpolation [51] to construct the secret answer, as follows: 

(x - x2)(x - X3) (x - x1)(x - X3) (x - x1)(x - x2) 
------ X YI+------ X Y2 + ------ X Y3 (14) 
(x1 - x2)(x1 - X3) (x2 - x1)(x2 - X3) (x3 - x1)(x3 - x2) 

(x - 2)(x - 3) (x - l)(x - 3) (x - l)(x - 2) 
= 

(l _ 2)(l _ 3) X 43 + (2 _ l)(2 _ 3) X 147 + (3 _ l)(3 _ 2) X 313 = 1 (15) 

The final answer is 1 that confirms that the secret-shares at the servers have B. 

Adversarial Model 

We consider two adversarial models, in both of which the cloud servers (storing secret­
shares) are not trustworthy. In the honest but curious model, the server correctly computes 
the assigned task without tampering with data or hiding answers. However, the server may 
exploit side information (e.g., query execution, background knowledge, and output size) to 
gain as much information as possible about the stored data. Such a model is considered 
widely in many cryptographic algorithms and in widely used in DaS [58, 13, 59, 60]. We also 
consider a malicious adversary that could deviate from the algorithm and delete tuples from 
the relation. Users and database owners, in contrast, are assumed to be not malicious. 

Only authenticated users can request query on servers. Further, we follow the restriction 
of the standard SSS that the adversary cannot collude with all ( or possibly the majority of) 
the servers. Thus, the adversary cannot generate/insert/update shares at the majority of 
the servers. Also, the adversary cannot eavesdrop on a majority of communication channels 
between the user and the servers. This can be achieved by either encrypting the traffic 
between user and servers, or by using anonymous routing [61], in which case the adversary 
cannot gain knowledge of servers that store the secret-shares. Note that if the adversary 
could either collude with or successfully eavesdrop on the communication channels between 
the majority of servers and user, the secret-sharing technique will not apply. 7 The validity 

7The DB owner/user can use anonymous routing to send their data to the servers, thereby preventing an adversary from de­

termining which user is connecting to which server. If the adversary knows the majority of the communication channels/servers, 

then it can construct the secret-shared query, outputs to the query, and the database. 
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of the assumptions behind secret-sharing has been extensively discussed in prior work [40, 
41, 42, 43]. The adversary can be aware of the public information, such as the actual 
number of tuples and number of attributes in a relation, which will not affect the security 
of the proposed scheme, though such leakage can be prevented by adding fake tuples and 
attributes. 8 

Security Properties 

In the above-mentioned adversarial model, an adversary wishes to learn the (entire/partial) 
data and query predicates. Hence, a secure algorithm must prevent an adversary to learn 
the data ( i) by just looking the cryptographically-secure data and deduce the frequency of 
each value (i.e., frequency-count attacks), and (ii) when executing a query and deduce which 
tuples satisfy a query predicate (i.e., access-pattern attacks) and how many tuples satisfy 
a query predicate (i.e., output-size attacks). Thus, in order to prevent these attacks, our 
security definitions are identical to the standard security definition as in [62, 63, 64]. An 
algorithm is privacy-preserving if it maintains the privacy of the querier (i.e., query privacy), 
the privacy of data from the servers, and performs identical operations, regardless of the user 
query. 

Query /Querier's privacy requires that the user's query must be hidden from the server, 
the DB owner, and the communication channel. In addition, the server cannot distinguish 
between two or more queries of the same type based on the output. Queries are of the same 
type based on their output size. For instance, all count queries are of the same type since 
they return almost an identical number of bits. 
Definition: User's privacy. For any probabilistic polynomial time adversarial server hav­
ing a secret-shared relation S(R) and any two input query predicates, say PI and p2, the 
server cannot distinguish PI or p2 based on the executed computations for either PI and p2. 

Privacy from the server requires that the stored input data, intermediate data during a 
computation, and output data are not revealed to the server, and the secret value can only be 
reconstructed by the DB owner or an authorized user. In addition, two or more occurrences 
of a value in the relation must be different at the server to prevent frequency analysis while 
data at rest. Recall that due to secret-shared relations (by following the approach given in 
§3.2.2.3), the server cannot learn the relations and frequency-analysis, and in addition, due
to maintaining the query privacy, the server cannot learn the query and the output.

Here, we, also, must ensure that the server's behavior must be identical for a given query, 
and the servers provide an identical answer to the same query, regardless of the users ( recall 
that user might be different compared to the data owner in our model). To show that we 
need to compare the real execution of the algorithm at the servers against the ideal execution 
of the algorithm at a trusted party having the same data and the same query predicate. An 
algorithm maintains the data privacy from the server if the real and ideal executions of the 
algorithm return an identical answer to the user. 

8The adversary cannot launch any attack against the DB owner. We do not consider cyber-attacks that can exfiltrate data 

from the DB owner directly, since defending against generic cyber-attacks is outside the scope of this paper. 
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Definition: Privacy from the server. For any given secret-shared relation S(R) at a 
server, any query predicate qp, and any real user, say U, there exists a probabilistic polyno­
mial time (P PT) user U' in the ideal execution, such that the outputs to U and U' for the 
query predicate qp on the relation S(R) are identical. 

Properties of verification. We provide verification properties against malicious behaviors. 
A verification method must be oblivious and find any misbehavior of the servers when com­
puting a query. We follow the verification properties from [54], as follows: ( i) the verification 
method cannot be refuted by the majority of the malicious servers, and ( ii) the verification 
method should not leak any additional information. 

Obscure Overview 

Let us introduce OBSCURE at a high-level. OBSCURE allows single-dimensional and multi­
dimensional conjunctive/disjunctive equality queries. Note that the method of OBSCURE

for handling these types of queries is different from SQL, since OBSCURE does not support 
query optimization and indexing9 due to secret-shared data. Further, OBSCURE handles 
range-based queries by converting the range into equality queries. Executing a query on 
OBSCURE requires four phases, as follows: 
PHASE 1: Data upload by DB owner(s). The DB owner uploads data to non-communicating 
servers using a secret-sharing mechanism that allows addition and multiplication (e.g., [31]) 
at the servers. 
PHASE 2: Query generation by the user. The user generates a query, creates secret-shares 
of the query predicate, and sends them to the servers. For generating secret-shares of the 
query predicate, the user follows the strategies given in §3.2.2.3 (count query), §3.2.2.3 and 
(sum queries). 
PHASE 3: Query processing by the servers. The servers process an input query in an oblivious 
manner such that neither the query nor the results satisfying the query are revealed to the 
adversary. Finally, the servers transfer their outputs to the user. 
PHASE 4: Result construction by the user. The user performs Lagrange interpolation on the 
received results, which provide an answer to the query. The user can also verify these results 
by following the methods given in §3.2.2.3, §3.2.2.3. 

Data Outsourcing 

This section provides details on creating and outsourcing a database of secret-shared form. 
The DB owner wishes to outsource a relation R having attributes A1, A2, ... , Am and n 
tuples, and creates the following relations R1 and R2

:

• Relation R1 that consists of all the attributes A1, A2, ... , Am along with two additional
attributes, namely TID (tuple-id) and Index. The TID attribute will help in finding tuples

9For the class of queries considered (viz. aggregation with selection), the main optimization in standard databases is to 

push selections down and to determine whether an index-scan should be used or not. In secret-sharing, an index scan cannot be 

used (at least not in any obvious way), since sub-setting the data processed will reveal access-patterns, making the technique 

less secure. Hence, we avoid using any indexing structure. 
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having the maximum/minimum/top-k values, and the Index attribute will be used to know 
the tuples satisfying the query predicate. The ith values of the TID and Index attributes 
have the same and unique random number between 1 to n. 
• Relation R2 that consists of three attributes CTID ( clear-text tuple-id), SSTID ( secret­
shared tuple-id), and an attribute, say Ac, on which a comparison operator (minimum,
maximum, and top-k) needs to be supported.10

The ith values of the attributes CTID and SSTID of the relation R2 keep the ith value of
the TID attribute of the relation R1

. The ith value of the attributes Ac of the relation R2

keeps the ith value of an attribute of the relation R1 on which the user wants to execute
a comparison operator. Further, the tuples of the relations R2 are randomly permuted.
The reason for doing permutation is that the adversary cannot relate any tuple of both the 
secret-shared relations, which will be clear soon by the example below. 
Note. The relation S(R1 ) will be used to answer count and sum queries, while the user uses 
the two relations S(R1 ) and S(R2 ) together to fetch a tuple having maximum/minimum/top­
k/reverse-top-k value in an attribute. 

Table 6: A relation: Employee. 

I EmpID I Name I Salary I Dept

ElOl John 1000 Testing 

ElOl John 100000 Security 

E102 Adam 5000 Testing 

E103 Eve 2000 Design 

E104 Alice 1500 Design 

E105 Mike 2000 Design 

Example. Consider the Employee relation (see Table 6). The DB owner creates R1 =
Employee! relation11 (see Table 7a) with TID and Index attributes. Further, the DB owner 
creates R2 = Employee2 relation (see Table 7b) having three attributes CTID, SSTID, and
Salary. 
Creating secret-shares. Let Ai [aj] (1 ::S i ::S m + 1 and 1 ::S j ::S n) be the lh value of the 
attribute Ai. The DB owner creates c secret-shares of each attribute value Ai [aj ] of the 
relation R1 using a secret-sharing mechanism that allows string-matching operations at the
server. However, c shares of the lh value of the attribute Am+2 (i.e., Index) are obtained 
using SSS. This will result in c relations: S(R1 )i, S(R1 )2, ... , S(R1 )c, each having m + 2 
attributes. The notation S(R1 )k denotes the kth secret-shared relation of R1 at the server k.
We use the notation Ai [S(ai)]k to indicate the lh secret-shared value of the ith attribute of 
a secret-shared relation at the server k. 

10If there are x attributes on which comparison operators will be executed, then the DB owner will create x relations, each 

with attributes CTID, SSTID, and one of the x attributes. 

11For verifying results of count and sum queries, we add two more attributes to this relation. However, we do not show here, 

since verification is not a mandatory step. 
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Table 7: Two relations obtained from Employee relation. 

(a) R1 = Employee! relation. 

I EmpID I Name I Salary I Dept 

ElOl John 1000 Testing 
ElOl John 100000 Security 
E102 Adam 5000 Testing 
E103 Eve 2000 Design 
E104 Alice 1500 Design 
E105 Mike 2000 Design 

I TID I Index I 
3 3 
2 2 
5 5 
4 4 
1 1 
6 6 

(b) R2 = Employee2 relation. 

I CTID I SSTID I Salary I 
1 1 1500 
5 5 5000 
3 3 1000 
6 6 2000 
2 2 100000 
4 4 2000 

Further, on the relation R2, the DB owner creates c secret-shares of each value of SSTID
using a secret-sharing mechanism that allows string-matching operations on the servers and 
each value of Ac using order-preserving secret-sharing [48, 65, 33]. The secret-shares of the 
relation R2 are denoted by S(R2) i (1 ::; i ::; c). The attribute CTID is outsourced in clear­
text with the shared relation S(R2)i. It is important to mention that CTID attribute allows
fast search due to clear-text representation than SSTID attribute, which allows search over 
shares. 

Note that the DB owner's objective is to hide any relationship between the two relations 
when creating shares of the relations S(R1

) and S(R2
), i.e., the adversary cannot know by

just observing any two tuples of the two relations that whether these tuples share a common 
value in the attribute TID/SSTID and Ac or not. Thus, shares of an i th (1 ::; i ::; n) value of
the attribute TID in the relation S(R1 )i and in the attribute SSTID of the relation S(R2)i

must be different at the /h server. Also, by default, the attribute Ac have different shares in 
both the relations, due to using different secret-sharing mechanisms for different attributes. 
The DB owner outsources the relations S(R1 )i and S(R2) i to the i th server.

Count Query and Verification 

In this section, we provide techniques to support count queries over secret-shared dataset 
outsourced by a single or multiple DB owners. The query execution does not involve the DB 
owner or the querier to answer the query. Further, we develop a method to verify the count 
query results. 

Conjunctive count query. Our conjunctive equality-based count query scans the entire 
relation only once for checking single/multiple conditions of the query predicate. For ex­
ample, consider the following conjunctive count query: select count ( *) from R where 
A1 = V1 I\ A2 = V2 I\ ... I\ Am = Vm. 

The user transforms the query predicates to c secret-shares that result in the following 
query at the/h server: select count(*) from S(R1)i where A1 = S(v1)i I\ A2 = S(v2)i

I\ ... I\ Am
= S ( vm) i. Note that the single-dimensional query will have only one condition. 
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Table 8: An execution of the conjunctive count query. 

I Name II 01 I Salary I 02 I 01 x 02 I 
John 1 1000 1 1 
John 1 100000 0 0 
Adam 0 5000 0 0 
Eve 0 2000 0 0 
Alice 0 1500 0 0 
Mike 0 2000 0 0 

1 

Each server j performs the following operations: 

(16) 

® shows a string-matching operation that depends on the underlying text representation. 
For example, if the text is represented as a unary vector, ® is a bit-wise multiplication and 
addition over a vector's elements, whose results will be O or 1 of secret-share form. Each 
server j compares the query predicate value S(vi) against kth value (1 � k � n) of the
attribute Ai, multiplies all the resulting comparison for each of the attributes for the kth 

tuple. This will result in a single value for the kth tuple, and finally, the server adds all those
values. Since secret-sharing allows the addition of two shares, the sum of all n resultant 
shares provides the occurrences of tuples that satisfy the query predicate of secret-share 
form in the relation S(R1) at the /h server. On receiving the values from the servers, the
user performs Lagrange interpolation [51] to get the final answer in clear-text. 

Correctness. The occurrence of kth tuple will only be included when the multiplication of
m comparisons results in 1 of secret-share form. Having only a single O as a comparison 
resultant over an attribute of kth tuple produce O of secret-share form; thus, the kth tuple
will not be included. Thus, the correct occurrences over all tuples are included that satisfy 
the query's where clause. 

Example. We explain the above conjunctive count query method using the following query on 
the Employee relation (refer to Table 6): select count(*) from Employee where Name = 
'John' and Salary = '1000'. Table 8 shows the result of the private string-matching on 
the attribute Name, denoted by o1, and on the attribute Salary, denoted by o2. Finally, the 
last column shows the result of the query for each row and the final count answer for all 
the tuples. Note that for the purpose of explanation, we use clear-text values; however, the 
server will perform all operations over secret-shares. For the first tuple, when the servers 
check the first value of Name attribute against the query predicate John and the first value 
of Salary attribute against the query predicate 1000, the multiplication of both the results 
of string-matching becomes 1. For the second tuple, when the server checks the second value 
of Name and Salary attributes against the query predicate John and 1000, respectively, the 
multiplication of both the results become 0. All the other tuples are processed in the same 
way. 
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Disjunctive count query. Our disjunctive count query also scans the entire relation 
only once for checking multiple conditions of the query predicate, like the conjunctive count 
query. Consider, for example, the following disjunctive count query: select count ( *) from

R -where A1 = V1 V A2 = V2 V . . . V Am = Vm

The user transforms the query predicates to c secret-shares that results in the follow­
ing query at the lh server: select count(*) from S(R1 )j -where A1 = S(v1 )j V ... V

Am = S( vm)j The server j performs the following operation: 

Output= EZ:�(((Result� OR Result�) OR Result�) ... OR Result':n) (18) 

To capture the OR operation for each tuple k, the server generates m different results either 
0 or 1 of secret-share form, denoted by Resulti (1 :::; i :::; m), each of which corresponds to 
the comparison for one attribute. To compute the final result of the OR operation for each 
tuple k, one can perform binary-tree sty le computation. However, for simplicity, we used an 
iterative OR operation, as follows: 

temp� = Result� + Result� - Result� x Result� (19) 

temp� = temp� + Result� - temp� x Result� (20) 

Outputk = temp':n_ 1 + Result':n - temp':n_ 1 x Result':n (21) 

After performing the same operation on each tuple, finally, the server adds all the re­
sultant of the OR operation (EZ:� Outputk) and sends to the user. The user performs an 
interpolation on the received values that is the answer to the disjunctive count query. 
Correctness. The disjunctive counting operation counts only those tuples that satisfy one of 
the query predicates. Thus, by performing OR operation over string-matching resultants for 
an i th tuple results in 1 of secret-share form, if the tuple satisfied one of the query predicates. 
Thus, the sum of the OR operation resultant surely provides an answer to the query. 
Information leakage discussion. The user sends query predicates of secret-share form, 
and the string-matching operation is executed on all the values of the desired attribute. 
Hence, access-patterns are hidden from the adversary, so that the server cannot distinguish 
any query predicate in the count queries. The output of any count query is of secret-share 
form and contains an identical number of bits. Thus, based on the output size, the adversary 
cannot know the exact count, as well as, differentiate two count queries. However, the 
adversary can know whether the count query is single-dimensional, conjunctive or disjunctive 
count query. 
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Verifying Count Query Results 

In this section, we describe how results of count query can be verified. Note that we explain 
the algorithms only for a single-dimensional query predicate. Conjunctive and disjunctive 
predicates can be handled in the same way. 

Here, our objective is to verify that ( i) all tuples of the databases are checked against 
the count query predicates, and ( ii) all answers to the query predicate (0 or 1 of secret-share 
form) are included in the answer. In order to verify both the conditions, the server performs 
two functions, f1 and h, as follows: 

(22) 

(23) 

i.e., the server executes the functions Ji and h on n secret-shared values each (of two newly
added attributes Ax and A

y
, outsourced by the DB owner, described below). In the above

equations Oi is the output of the string-matching operation carried on the i th value of an
attribute, say Ai, on which the user wants to execute the count query. The server sends the
outputs of the function f 1, denoted by op1, and the sum of the outputs of f 1 and h, denoted
by op2, to the user. The outputs op1 and op2 ensure the count result verification and that
the server has checked each tuple, respectively. The verification method for a count query
works as follows:

The DB owner. For enabling a count query result verification over any attribute, the 
DB owner adds two attributes, say Ax and A

y
, having initialized with one, to the relation 

R1
. The values of the attributes Ax and A

y 
are also outsourced of SSS form (not unary 

representations) to the servers. 
Server. Each server k executes the count query, as mentioned in §3.2.2.3, i.e., it executes 
the private string-matching operation on the i th (1 ::; i ::; n) value of the attribute Ai 
against the query predicate and adds all the resultant values. In addition, each server k 
executes the functions Ji and h- The function Ji (and h) multiplies the i th value of the Ax

(and A
y
) attribute by the i th string-matching resultant (and by the complement of the i th

string-matching resultant). The server k sends the following three things: (i) the sum of the 
string-matching operation over the attribute Ai, as a result, say (result)k, of the count query, 
(ii) the outputs of the function Ji: (op 1

)k, and (iii) the sum of outputs of the function Ji
and h: (op2 )k, to the user.
User-side. The user interpolates the received three values from each server, which result in
!result, Iop1, and Iop2• If the server followed the algorithm, the user will obtain: !result =
lop1 and Iop2 = n, where n is the number of tuples in the relation, and it is known to the
user.

Example. Here, we explain the above method using the following query on the Employee 

relation (refer to Table 6): select count(*) from Employee where Name = 'John'. Ta­
ble 9 shows the result of the private string-matching, functions Ji and h at a server. Note 
that for the purpose of explanation, we use clear-text values; however, the server will perform 
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Table 9: An execution of the count query verification. 

I Name 11 String-matching results I /1 I h I 
John 1 1 0 
John 1 1 0 
Adam 0 0 1 
Eve 0 0 1 
Alice 0 0 1 
Mike 0 0 1 

II 2 I 2 I 4 I 
all operations over secret-shares. For the first tuple, when the servers check the first value 
of Name attribute against the query predicate, the result of string-matching becomes 1 that 
is multiplied by the first value of the attribute Ax , and results in 1. The complement of 
the resultant is multiplied by the first value of the attribute Ay , and results in 0. All the 
other tuples are processed in the same way. Note that for this query, result = op1 = 2 and 
op2 = 6, if server performs each operation correctly. 
Correctness. Consider two cases: ( i) all servers discard an entire identical tuple for process­
ing, or (ii) all servers correctly process each value of the attribute Ai, op1, and op2; however, 
they do not add an identical resultant, oi (1 ::; i ::; n), of the string-matching operation. 
In the first case, the user finds !result = Jop 1 to be true. However, the second condition 
(Iop2 = n) will never be true, since discarding one tuple will result in Jop2 = n - 1. In the 
second case, the servers will send the wrong result by discarding an i th count query resultant,
and they will also discard the ith value of the attribute Ax to produce !result= Jop1 at the
user-side. Here, the user, however, finds the second condition Jop2 = n to be false. 

Thus, the above verification method correctly verifies the count query result, always, 
under the assumption of SSS that an adversary cannot collude all ( or the majority of) the 
servers, as given in §3.2.2.3. 

Sum and Average Queries 

The sum and average queries are based on the search operation as mentioned above in the 
case of conjunctive/disjunctive count queries. In this section, we briefly present sum and 
average queries on a secret-shared database outsourced by single or multiple DB owners. 
Then, we develop a result verification approach for sum queries. 

Conjunctive sum query. Consider the following query: select sum (A,) from R where 
A1 = V1 I\ A2 = V2 I\ ... I\ Am = Vm. 

In the secret-sharing setting, the user transforms the above query into the following query 
at the y ih server: select sum(Ag) from S(R1)i where A1 = S(v1)i I\ A2 = S(v2)i I\ ... I\

Am
= S(vmk This query will be executed in a similar manner as conjunctive count query 

except for the difference that the i th resultant of matching the query predicate is multiplied
by the ith values of the attribute Ag. The /h server performs the following operation on each
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attribute on which the user wants to compute the sum, i.e., At and Aq: 

(24) 

Correctness. The correctness of conjunctive sum queries is similar to the argument for the 
correctness of conjunctive count queries. 
Disjunctive sum query. Consider the following query: select sum(At ) from R where

A1 = v1 V A2 = v2 V ... V Am = Vm · The user transforms the query predicates to c secret­
shares that results in the following query at the lh server: select sum(At ) from S(R1)i

where A1 = S( v1)j V A2 = S( v2)j V ... V Am = S( vm)i 

The server j executes the following computation: 

Output= z=z:� Af[S(ak)]i x (((Result� OR Result�) OR Result�) ... OR Result�) (26) 

The server multiplies the kth comparison resultant by the kth value of the attribute, on 
which the user wants to execute the sum operation ( e.g., At), and then, adds all values of 
the attribute At. 
Correctness. The correctness of a disjunctive sum query is similar to the correctness of a 
disjunctive count query. 
Average queries. In our settings, computing the average query is a combination of the 
counting and the sum queries. The user requests the server to send the count and the sum 
of the desired values, and the user computes the average at their end. 
Information leakage discussion. Sum queries work identically to count queries. Sum 
queries, like count queries, hide the facts which tuples are included in the sum operation, 
and the sum of the values. 

Result Verification of Sum Queries 

Now, we develop a result verification approach for a single-dimensional sum query. The 
approach can be extended for conjunctive and disjunctive sum queries. Let At be an attribute 
whose values will be included by the following sum query. select sum(At ) from R where

Aq =v. 
Here, our objective is to verify that ( i) all tuples of the databases are checked against 

the sum query predicates, Aq = v, and ( ii) only all qualified values of the attribute At are 
included as an answer to the sum query. The verification of a sum query first verifies the 
occurrences of the tuples that qualify the query predicate, using the mechanism for count 
query verification (§3.2.2.3). Further, the server computes two functions, Ji and /2, to verify 
both the conditions of sum-query verification in an oblivious manner, as follows: 

(27)
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(28) 

i.e., the server executes the functions Ji and h on n values, described below. In the above
equations, oi is the output of the string-matching operation carried on the ith value of the
attribute Aq, and ai be the i th (1 :::; i :::; n) value of the attribute A.e. The server sends the
sum of the outputs of the function J1 , denoted by op1, and the outputs of h, denoted by
op2, to the user. Particularly, the verification method for a sum query works as follows:

The DB owner. Analogous with the count verification method, if the data owner wants to
provide verification for sum queries, new attributes should be added. Thus, the DB owner
adds two attributes, say Ax and Ay, to the relation R1

. The i th values of the attributes Ax

and Ay are any two random numbers whose difference equals to -ai , where ai is the i th value
of the attribute A.e. The values of the attributes Ax and Ay are also secret-shared using SSS.
For example, in Table 10, boldface numbers show these random numbers of the attribute Ax 

and Ay in clear-text.
Servers. The servers execute the above-mentioned sum query, i.e., each server k executes
the private string-matching operation on the i th (1:::; i:::; n) value of the attribute Aq against
the query predicate v and multiplies the resultant value by the ith value of the attribute A.e.
The server k adds all the resultant values of the attributes A.e.
Verification stage. The server k executes the functions f 1 and h on each value Xi and Yi of
the attributes Ax and Ay, by following the above-mentioned equations. Finally, the server
k sends the following three things to the user: ( i) the sum of the resultant values of the
attributes A.e, say (sum.e)k, (ii) the sum of the output of the string-matching operations
carried on the attribute Aq, say (sumq } k , 12 against the query predicate, and (iii) the sum of
outputs of the functions f1 and h, say (sumf112)k-
U ser-side. The user interpolates the received three values from each server, which results in 
Isum.e, Isumq, and Isum1112. The user checks the value of Isum1112 - 2 x Isumq and Isum.e, 
and if it finds equal, then it implies that the server has correctly executed the sum query. 

Example. We explain the above method using the following query on the Employee relation 
(refer to Table 6): select sum(Salary) from Employee where Dept = 'Testing'. Ta­
ble 10 shows the result of the private string-matching (o), the values of the attributes Ax

and Ay in boldface, and the execution of the functions f1 and h at a server. Note that for 
the purpose of explanation, we show the verification operation in clear-text; however, the 
server will perform all operations over secret-shares. 

For the first tuple, when the server checks the first value of Dept attribute against the 
query predicate, the string-matching resultant, o1 , becomes 1 that is multiplied by the first 
value of the attribute Salary. Also, the server adds the salary of the first tuple to the 
first values of the attributes Ax and Ay with o1 . Then, the server multiplies the summation 
outputs by 01.

For the second tuple, the servers perform the same operations, as did on the first tuple; 
however, the string-matching resultant o2 becomes 0, which results in the second values of 

12If users are interested, they can also verify this result using the method given in §3.2.2.3.
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I Dept

Testing 
Security 
Testing 
Design 
Design 
Design 

Table 10: An execution of the sum query verification. 

I Salary I o values I Ax and !1 I A
y 

and h

1000 1 
100000 0 
5000 1 
2000 0 
1500 0 
2000 0 

12 

1 ( 200+ 1000+ 1) = 1201 
0(1000+ 100000+0)=0 
1(-5900+5000+1)= -899 
0( 2000+ 2000+0 )=0 
0(500+ 1500+0)=0 
0(-2100+2000+0)=0 

I Eli =302

1(-1200+1000+1)= -199 
0(-101000+100000+0)=0 
1 ( 900+5000+ 1) =5901 
0(-4000+2000+1)=0 
0( -2000+ 1500+0 )=0 
0(100+2000+0)=0 

I Eh =5702

the attributes Ax and A
y 

to be 0. The servers perform the same operations on the remaining 
tuples. Finally, the servers send the summation of oi (i.e., 2), the sum of the salaries of 
qualified tuples (i.e., 6000), and the sum of outputs of the functions f1 and h (i.e., 6004), to 
the user. Note that for this query, Isum1112 - 2 x Isum

q 
= Isumg, i.e., 6004 - 2 x 2 = 6000. 

Correctness. The occurrences of qualified tuples against a query predicates can be verified 
using the method given in §3.2.2.3. Consider two cases: ( i) all servers discard an entire 
identical tuple for processing, or ( ii) all servers correctly process the query predicate, but 
they discard the i th values of the attributes At, Ax , and A

y
. 

The first case is easy to deal with, since the count query verification will inform the 
user that an identical tuple is discarded by the server for any processing. In the second 
case, the user finds Isum1112 - 2 x Isum

q 
=I Isumg, since an adversary cannot provide a 

wrong value of Isum
q
, which is detected by count query verification. In order to hold the 

equation Isum1112 - 2 x Isum
q 

= Isumg, the adversary needs to generate shares such that 
Isum1112 - Isumg = 2 x Isum

q
, but an adversary cannot generate any share, as per the 

assumption of SSS that an adversary cannot produce a share, since it requires to collude 
all ( or the majority of) the servers, which is impossible due to the assumption of SSS, as 
mentioned in §3.2.2.3. 

3.2.3 Scaling Privacy Techniques 

With strong mathematical guarantees, differential privacy has emerged as a de-facto 
approach to supporting privacy preserving data sharing when sharing is intended to support 
aggregate level data. Differential privacy is based on a concept that the answer to the query 
returned by the database must not reveal whether or not any particular record is in the 
database used to generate the answer. More specifically, 

Differential privacy [66J. A randomized algorithm M satisfies E-differential privacy if for 
all D and D' E N(D) and all O � range(M): 

Pr[M(D) E OJ S eEPr[M(D') E OJ. (29) 

Where the probabilities are taken over coin tosses of M.

In DP, E plays the role of a privacy knob - with lower E values corresponding to higher 
levels of privacy. Since the seminal work in [66J that introduced differential privacy, it has 
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been applied as an approach to supporting privacy in a variety of settings from database 
query processing, to machine learning over diverse type of data - stored structural/relational 
data, streaming data, time-series datasets, multidimensional data, etc. 

A key challenge in applying differential privacy is that in a large number of practical 
settings, for differential privacy guarantee to hold (i.e., small epsilon values), the resulting 
data is too noisy to be useful for applications. Trading privacy for utility of data has thus 
emerged as an important challenge in data sharing using differential privacy. 

Our work in this context explores two novel dimensions: first, similar to the approach of 
scaling secure data processing, we extend differential privacy to a setting when only part of 
data may be sensitive while the other is not sensitive. Such is the nature of data in most 
practical settings. We exploit such partial sensitivity of the data in a systematic manner to 
enable data owners to share less noisy data while still supporting strong privacy guarantees 
on the sensitive data. This led to the concept of one-sided differential privacy discussed in 
the following subsection. 

Another extension of differential privacy is to adapt it to a situation suitable for moni­
toring. This led us to the concept of minimally invasive monitoring that will be discussed 
subsequently. 

3.2.3.1 Scaling Differential Privacy via One Sided Differential Privacy 

Public and private organizations capture and store diverse types of information about 
individuals that are either obligated to publish or could benefit from sharing with others 
[67]. A key impediment in sharing is the concern of privacy. For instance, information about 
online purchases, movie preferences [68], or web searches [69] can lead to inferences about 
sensitive properties like health, religious affiliation, or sexual orientation. 

In recent years, the field of privacy preserving data-sharing has flourished and differential 

privacy [70] (DP) has emerged as the predominant privacy standard. Informally, DP states 
that for a database that contains a single record per user, the participation of an individual 
changes the output of an analysis by a bounded factor. Most work in DP (with the exceptions 
of [71, 72]) has been developed under the assumption that every record in the database is 
equally sensitive. 

In this work, we depart from the above well trodden path, as we consider data sharing 
when only part of the data is sensitive, while the remainder is non-sensitive. In real-world 
scenarios, the sensitive/non-sensitive dichotomy of data is not always apparent, but in certain 
cases it naturally occurs as a consequence of legislature, personal preferences, and privacy 

policies. For instance, the General Data Protection Regulation [73, 74] (GDPR) imposes 
strict rules on how information about EU citizens is handled by companies. Individuals 
must provide an affirmative consent (opt-in) in order to allow the collection and analysis 
of their data. Additionally, information about minors under 16 years old can not be stored 
and processed without parental authorization. The opt-in nature of GDPR implies that a 
fraction of individuals will declare their data non-private and thus create a dichotomy in the 
dataset. 
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For example, consider a smart building management system (SBMS) that can track 
individuals using indoor localization sensors and devices. The data collected from an SBMS 
might be restricted due to legislature and privacy policies. Privacy policies might be value­
based, e.g., non-residents are by default opted-out from data collection, no data collection 
in locations like restrooms, etc. Additionally, policies can be value-independent but rather 
be a result of personal preferences, e.g., "privacy fundamentalists" [75] can opt-out from the 
tracking system, at the expense of enjoying only limited services. Either case results in a 
dichotomy in the sensitivity status of records in the data. More specifically, non-sensitive 
records can be either the minority or the majority. For instance, consider a university 
building and a policy that specifies that residents are non-sensitive, then on most days non­
sensitive records will be the majority of the data collected. However, on days where an 
invited speaker gives a talk the sensitive/non-sensitive ratio will be inversed, as the majority 
of the data collected will be on visitors of the building whose records are sensitive. 

In this work, we used policies as the language for specifying sensitivity. Traditionally, 
query answering in the presence of policies has been the focus of access control literature 
[76, 77, 78]. The Truman and non-Truman models offer two general ways for query answering 
in access control[79], with the Truman model generalizing the parameterized views framework 
used in Oracle RDBMs [77]. Based on the Truman model, queries are transparently re­
written to ensure users only see what is contained in the authorized view. Thus, the result 
is correct only with respect to the restricted view. In non-Truman models queries that can 
not be answered correctly are rejected. However, both approaches can reveal sensitive record 
values, as we illustrate in the following example. 

Example Consider a smart building with a location-based privacy policy where the smoker's 
lounge the only sensitive location. Alice can query whether Bob is in location £, for all 
locations. If Bob is in the smoker's lounge, then following the Truman model the answer 
will be empty, while under the non-Truman model the query is rejected. Under either model 
Alice can correctly infer that Bob's true location, thus violating the privacy policy. 

This example highlights that simple access control mechanisms fail to protect the privacy 
of sensitive records. Both approaches do not actually protect the sensitivity status of records, 
but rather transparently reveal whether a record is sensitive or not which in turn can reveal 
the value of the record. In this work our goal is to hide the sensitivity status of all records 
in a database. 

One solution to that is to directly apply DP; this would hide all properties of a record 
(including its sensitivity). However, DP algorithms do not leverage the fact that part of the 
data is non-sensitive to lower the error rates of the query answers. 

Our work instead introduces one-sided differential privacy (OSDP), a novel privacy def­
inition that provides rigorous privacy guarantees on the sensitive portion of the data while 
ensuring that the non-sensitive data released does not provide adversary with any knowledge 
about the sensitive data. To define OSDP, let us first formalize the notion of policies. 

[Policy Function] A policy function P: T-+ { 0, 1} denotes whether a record r E Tis 
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sensitive (P(r) = 0) or non-sensitive (P(r) = 1). 
A policy function (or simply policy) classifies database records as either sensitive or non­

sensitive, examples of policy functions include: 

• >..r.if(r.Age::; 17) : O; else : 1 encodes the policy that records corresponding to minors
are sensitive.

• >..r.if(r.Race = NativeAmerican V r.Optin = False) : O; else : 1 implies that all
records who have either opted out, or are native Americans are sensitive.

We can now formalize the notion of one-sided differential privacy that provides rigorous 
privacy guarantees for the sensitive records - i.e., {r: P(r) = 0}vrED· To this end, we define 
one-sided neighboring databases under policy P.

[One-sided P-Neighbors] Let D, D' be two databases and P a policy function. D' is a 
one-sided P-neighbor of D, i.e., D' E Np(D), if and only if: :3r E D s.t. r E Ts, :3r' E D' s.t. 
r' =/- r, and D' = D\{r} U {r'}. 

One-sided neighbors under policy P are created by replacing a single sensitive record with 
any other possible record. This implies that the Np relation is asymmetric, i.e., D' E Np(D) 
does not imply D E Np( D'). 

[One-sided Differential Privacy] Let M be a randomized algorithm. Algorithm M

satisfies (P, c)-one-sided differential privacy, if and only if \;/() � range(M), and VD, D' E 
Np(D): 

Pr[M(D) E V] ::; eE Pr[M(D ') E V] (30) 

Where the probabilities are taken over coin tosses of M.

Similar to DP, data owners can control the privacy levels of OSDP by appropriately 
selecting the privacy parameter E and the policy P. OSDP provides an indistinguishability 
property similar to bounded DP, but only for the sensitive records - i.e., OSDP does not 
protect whether any record is present in the database or not, but rather protects each record's 
value and whether it is sensitive or not. Note, that OSDP does not bound the information 
leakage of non-sensitive records. 

We develop a variant of the randomized response algorithm, that can truthfully release a 
sample of the non-sensitive data, while satisfying OSDP. We use this to release and analyze 
mobility trajectories of users in the context of smart buildings. DP algorithms are unable 
to analyze these data with low error. In contrast, data released under OSDP supports 
these analyses with reasonably high accuracy, for policies with varying sensitive/non-sensitive 
ratios. 

We also proposed a new general recipe for adapting DP algorithms for answering his­
togram queries to OSDP. Our approach exploits the presence of non-sensitive records and 
improves state-of-the-art DP algorithms by up to 6x for certain inputs. 
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3.2.3.2 Minimally Invasive Monitoring 

Traditionally, privacy-preserving data sharing has been designed for situations where 
data is collected and shared in aggregate form, either as a synthetic dataset generated based 
on the original data, or in the form of query answers. Examples of such situations include 
privacy-preserving sharing of demographic data (e.g., US Census), medical data (e.g., can­
cer registries), or click-stream data for vulnerability analysis (e.g., from browsers). While 
differential privacy (DP) is suited for static sharing situations as above, its usefulness in the 
context of decision support (DS) applications such as monitoring, event/anomaly detection 
is limited. 

DP-based approaches focus on providing formal privacy guarantees (in the form of a 
privacy parameter) but do not provide guarantees on the quality of data outputted. DS 
tasks, on the other hand, require guarantees on the quality of the output, specially, for false 
negatives, which may prevent, for instance, timely actions/interventions. The DS context 
poses an interesting dichotomy for privacy technologies: if we release data so as to have 
strong confidence in our decision, we possibly have to output data quite accurately violating 
privacy. In contrast, if we output data with strong privacy guarantees, we might not be able 
to support decision support tasks with much confidence. 

Our work explored a radically new concept of minimally invasive monitoring (MIM) that 
attempts to resolve this paradox. The developed MIM approach, instead of optimizing for 
utility, while implementing strong privacy guarantees ( as is done traditionally), changes the 
objective to achieve a (probabilistic) bound on utility while optimizing (maximizing) privacy. 
The utility constraint, itself, is set in a conservative manner such that the decision support 
task results in a limited level of false negatives. 

Decision support tasks such as classification or queries can often be implemented in a 
manner such that false negatives can be arbitrarily decreased at the cost of increasing false 
positives. As a simple example, consider a binary classifier over a single variable X corre­
sponding to a threshold query (X > c) used to detect anomalously large values of X. One 
can reduce false negatives by simply reducing the threshold tau at the cost of increased 
false positives. Such a strategy of using generalization/specialization to control the tradeoff 
between false negatives and positives is broadly applicable in classifiers. The MIM infrastruc­
ture exploits such an observation to support guaranteed utility while maximizing privacy. 
Specifically, in MIM, the classifier conditions are weakened (i.e., generalized) to limit the 
increase in the false negatives due to noise added to implement differential privacy, such a 
strategy comes with the increase in false positives, which in turn leads to a more invasive 
exploration of data to differentiate between true/false positives. 

Our goal, in MIM, was to build a new framework along the above direction of minimally 
invasive exploration that strikes an optimal continuum between the needs of the decision 
support applications and privacy. A MIM framework can, thus, be viewed as a progressively 
invasive system that explores data in the context of a monitoring task through a coarse 
filter with a high level of privacy, but explores the data using a finer filter more invasively 
only if it passes through the coarse filter. Such a MIM infrastructure is reminiscent to a 
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degree of the way modern law enforcement has evolved over time wherein one uses a series of 
(explicit/ implicit) filters to determine whether to explore an incident/suspect progressively 
more carefully (in MIM context more invasively, i.e., with less privacy) based on evidence 
collected during the prior steps of the investigation (in MIM context, if object classifies as 
a positive in the previous tests). We can, thus, view MIM as a software system counterpart 
of the age-old practice of law enforcement that has evolved over time. 
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Figure 27: Minimally Invasive Monitoring Architecture 

The architecture for minimally invasive monitoring is depicted in figure 27 where analyst 
interacts with the data through MiM Engine and asks queries over the data set initially 
with a high level of privacy and interactively decreases the level of privacy based on the 
application's accuracy requirements. 

The realization of the MIM approach is not straightforward. We need to revisit the 
very definition of privacy since unlike mechanisms for DP that are characterized by a single 
privacy parameter, in MIM, different data may have associated different privacy parameters 
based on the level of privacy we could afford while meeting utility guarantees. For instance, 
in a progressive MIM implementation, data that was classified as a positive in the previous 
(weaker) test will be investigated more invasively at lower privacy. We therefore need a 
generalized measure of privacy that accounts not just for the loss of privacy of an individual 
( as is often the case when dealing with a differentially private system that output data with 
privacy guarantees), but that of a group of individuals. We devised a new privacy definition 
Predicate-wise Differential Privacy where data associated with a particular predicate Ai can 
be queried with a different privacy budget epsilon Ei- This concept is inspired by similar ideas 
as personalized differential privacy where it is possible for individuals to have personalized 
measure of privacy loss i.e. personalized E. In scenario, where different individuals have 
different ES, there is no unified privacy loss metric that can be used to compare privacy 
loss across different scenarios. Consider the following scenarios where different individuals 
(P1, P2, p3) have different privacy loss ( Ep1 , Ep2 , Ep3): 

Scenario 1: Ep1 = 0.1, Ep2 = 0.5, Ep3 = 1
Scenario 2: Ep1 = 0.2, Ep2 = 0.4, Ep3 = 1
In the above scenarios, it is not obvious that which scenario leads to a lower overall privacy 
loss. Hence, there is a need for unified metric that can capture different levels of privacy loss 
for different individuals. This metric should capture the privacy loss in terms of adversary's 
posterior probability of learning the secret. We devise a new metric to measure the overall 
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privacy loss for Predicate-wise Differential Privacy. It is the lower bound on entropy (i.e., 
uncertainty). The intuition is that, higher uncertainty leads to a lower posterior probability 
in adversary's guess. 

Our goal in MiM is to minimize this entropy based privacy loss metric while satisfying 
accuracy requirement which is specified in terms of bounds on the probability of false neg­
atives for a classification test (/3). We first translate the accuracy requirement into privacy 
metric epsilon ( Emax) which is required to satisfy the accuracy requirement. We then start 
with a much smaller epsilon and use a multi iteration approach to utilize epsilon upto the 
max epsilon, increasing epsilon in the next iteration. In each iteration, since we use a smaller 
epsilon Ei < Emax (higher noise), a more generalized test ( X > c - ai) for the original test 
( X > c) is used to insure false negative are still bounded at the cost of some false positive. 
We eliminate all variables X which do not pass the generalized test at a smaller cost ( Ei) in 
each step. This multi step approach results in eliminating variable X that do not satisfy the 
classification test at a smaller cost. When we classify variables using a weaker test in each 
iteration (X > c - ai) based noisy values of variable, it results in probabilistic guarantee 
/3 on false negative. It additionally provides the same probabilistic guarantee /3 one false 
positive when X < c - 2ai. We call [c - 2ai, c] the region of uncertainty where we do not 
have a guaranty of false positives. This region keeps getting smaller in subsequent iterations. 

Iteration 1: 

Iteration 2: 
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Figure 28: Minimally Invasive Monitoring Architecture 

l! 
The figure 28 illustrates our multi iteration approach that results in smaller E for vari­

ables that get eliminated at an earlier iteration. The figure shows two iterations, where all 
circles correspond to value of variables that we want to classify for the test ( X > c). The 
hollow circles represent variables classified as negatives in an iteration, filled circles represent 
variables classified as positives an crossed circles represent eliminated variables classified as 
negatives in previous iterations and do not need to be further explored with a higher E in 
subsequent iteration. 

This multi iteration algorithm results in different privacy loss depending on the number 
of iteration and Ei chosen for each variable and the data distribution. The privacy loss is 
quantified using the entropy based aggregate metric. We develop several approaches data 
dependent/ data independent that choose number of iterations and parameters for each 
iteration that minimize the privacy loss. 

We further need to study the implication of such an approach on fairness since now 
different subjects may be monitored at different levels of privacy based on the needs of mon­
itoring. The issue of fairness has a counterpart in the law enforcement in the physical world 
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- police investigating potential crime often develop stereotypes, and preconceived notions
leading to unfair and biased treatment of individuals. In the physical world, technological
solutions such as body-worn cameras /dashcams attempt to provide a degree of account­
ability, in MIM we not only need a proper definition of fairness, but also approaches to
implement tamperproof evidence demonstrating the need for more invasive exploration to
implement accountability and achieve checks/balance in the system Above all we need to
create a prototype system and a concrete context to serve as a proof-of-concept that can
help explore the idea of MIM and its potential. We will explore MIM in the context of our
ongoing work on smart space system entitled TIPPERS that we have built over the past 5
years at UCI funded through the DARPA BRANDEIS program on creating a testbed for the
study of privacy technologies in real-world applications. Today, TIPPER is a campus-wide
testbed which uses WiFi connectivity data at the campus level to create location-awareness
both inside and outside buildings. TIPPERS supports a variety of privacy enhancing tech­
nologies - end-to-end policy-based data processing, differential privacy, secure computation
over encrypted data, data randomization, etc. TIPPERS has been used to build a variety
of campus level apps ranging from locating individual/friends in campus (based on policy),
to analytical application for understanding building usage to understanding social networks
within workspaces. More recently, it has been used to implement at the campus-level a vari­
ety of applications to help organizations (such as UCI) to alleviate the spread of COVID-19
at their premises. In this context, TIPPERS supports real-time monitoring of building oc­
cupancy (using Wifi data), and also of potential exposure tracing (over strongly encrypted
domain while ensuring full anonymity of individuals) based on co-occupancy of rooms/in­
ternal spaces in the buildings. TIPPERS is now actively used as part of the UCI campus
reopening in over 20+ buildings and is being transitioned to other campuses including Ball
State University and UC, San Diego. It has been transitioned to the Navy, where it was
a recipient of the Naval Information Warfare Systems Command (NAVWAR) Innovation
Award in 2021. TIPPERS, especially in the context of a campus-level deployment of diverse
monitoring application including monitoring occupancy of regions in buildings at UCI while
guaranteeing individual's privacy, provides a unique opportunity for developing the idea of
minimally invasive monitoring technology. In this context, we hope to define notions of pri­
vacy in the MIM context, develop and implement algorithmic approaches for MIM, formalize
the concept of fairness mentioned above, and generalize the concept to a larger context of
classification and possibly SQL query processing.

3.2.4 Supporting Fine-grained policies in IoT Systems 

Access control policies are a traditional mechanism used in data management to allow users 
to specify their privacy preferences with respect to usage of their data. In the case of IoT 
domain, wherein sensors continuously monitor individuals ( e.g., continuous physiological 
monitoring by wearable devices, location monitoring both inside and outside buildings), 
data management systems need to provide users with mechanisms for finer control over who 
can access their data and for what purpose. Supporting such fine grained policies in data 
management systems raises several research challenges and we focus on addressing two of 
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the important challenges that arise when building such systems for new scenarios such as 
the IoT. 

The first challenge for data management systems is that of efficiently enforcing privacy 
policies and preferences from different users without loss of utility for the services that exist 
in the space. Thus the second challenge is that of scaling enforcement of access control poli­

cies in data management systems. In IoT settings, the set of policies becomes a dominant 
factor /bottleneck in the query processing due to their large numbers. This has been high­
lighted as one of the open challenges for Big Data management systems in recent surveys 
such as [80]. 

The second challenge deals with protecting access control led data from leakages. In many 
scenarios including IoT applications, there might be background knowledge available to an 
adversary who can utilize that as an inference channel to learn more about protected data. 
One such common form of background knowledge is dependencies that capture the various 
type of constraints that exist within the data. In the loT domain, an example of such 
constraint is through an enrichment function which transforms the raw data collected from 
sensors and generates the derived data which is shared with application developers and 
service providers. However, depending upon the properties of this enrichment function it 
might be possible to learn about raw data from the disclosed derived data. Such unwanted 
inferences leads to violations of access control policies even when sensitive data is hidden. 

To address the first challenge of scalability, we present Sieve, a layered approach of 
implementing Fine-Grained Access Control in existing DBMSs, that exploits a variety of 
their features (e.g., UDFs, index usage hints, query explain) to scale to a large number of 
policies. Given a query, Sieve exploits its context to filter the policies that need to be checked. 
It also generates guarded expressions that save on evaluation cost by grouping policies and 
exploit database indices to cut on read cost. Our experimental results demonstrate that 
existing DBMSs can utilize Sieve to significantly reduce query-time policy evaluation cost. 
Using Sieve DBMSs can support real-time access control in applications such as emerging 
smart environments. 

To address the second challenge of preventing leakages, we study the leakages of ac­
cess control protected data in data management systems through two important classes of 
data dependencies: 1) Denial Constraints and 2) Provenance Based Dependencies. Denial 
constraints are a general model of integrity constraints and can express commonly used 
constraints such as functional dependencies, conditional functional dependencies, and key 
constraints. We introduce provenance based dependencies which can capture the relation­
ships between source data and derived data. Considering these dependencies as background 
knowledge to an adversary, we formally define how the information about a sensitive data 
could leak through them and methods to compute the leakage. Furthermore, we describe 
the rules to decide the non-sensitive data that should not be disclosed to prevent leakages of 
the access control protected data. We describe an algorithm which utilizes these rules and 
leakage computation to achieve the required deniability guarantees for all sensitive cells. 
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3.2.4.1 Scaling Policy Enforcement for IoT Data Management 

In modern data management systems, data is dynamically captured from sensors and 
shared with people via queries based on user-specified access control policies. We describe a 
motivating use case of a smart campus which shows that data involved in processing a simple 
analytical query might require checking against hundreds to thousands of access control 
policies. Enforcing that many access control policies in real-time during query execution is 
well beyond database systems today. While our example and motivation is derived from 
the smart space and IoT setting, the need for such query processing with a large number of 
policies also applies to many other domains. This applicability will only increase as emerging 
legislation such as GDPR empowers users to control their data. 

Existing DBMS support Fine-Grained Access Control (FGAC) mechanisms by perform­
ing a query rewrite [81]. This is done by appending policies as predicates to the -WHERE­
clause of the original query. However, they are limited in the complexity of applications they 
can support due to the increased cost of query execution when the rewriting includes a large 
number of policies. Thus, scalable access control-driven query execution presents a novel 
challenge. We evaluated the existing approach of query rewrite on top of a relational DBMS 
(MySQL) with two different queries from a IoT Benchmark called SmartBench [82]. The 
results are shown in Figure 29. The first query ( on the left) is a real time query from Smart 
Bench which retrieves the data belonging to an individual user. We perform this experiment 
for different users and DBMS has to evaluate between 100 to 350 policies depending on the 
user. In the second query (on the right), it is an analytical query where we progressively de­
crease the selectivity of the query and thus increasing the number of policies to be evaluated. 
In both queries, policy evaluation overhead increases linearly with number of policies. 
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Figure 29: Policy Evaluation overhead vs. Number of Policies. 

Sieve incorporates two distinct strategies to reduce overhead: reducing the number of 
tuples that have to be checked against complex policy expressions and reducing the num­
ber of policies that need to be checked against each tuple. First, given a set of policies, 
it uses them to generate a set of guarded expressions that are chosen carefully to exploit 
the best existing database indexes, thus reducing the number of tuples against which the 
complete and complex policy expression must be checked. This strategy is inspired by the 
technique for predicate simplification to exploit indices developed in [83]. Second, Sieve 
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reduces the overhead of dynamically checking policies during query processing by filtering 
policies that must be checked for a given tuple by exploiting the context present in the tuple 
(e.g., user/owner associated with the tuple) and the query metadata (e.g., the person posing 
the query -i.e., querier- or their purpose). We define a policy evaluation operator b. for this 
task and present an implementation as a User Defined Function (UDF). 
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Figure 30: Overview of Sieve. 
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Sieve combines the above two strategies in a single framework to reduce the overhead of 
policy checking during query execution. Thus, Sieve adaptively chooses the best strategy 
possible given the specific query and policies defined for that querier based on a cost model 
estimation. We evaluate the performance of Sieve using a real WiFi connectivity dataset 
captured in our building at UC Irvine, including connectivity patterns of over 40K unique 
devices/individuals. On this real dataset, we generate a synthetic set of policies that such 
individuals could have defined to control access to their data by others. We also test the 
performance of our system on a synthetic dataset based on a smart mall where connectivity 
data of devices are logged inside shops in the mall. Our results highlight the benefit of Sieve­
generated query rewrite when compared to the traditional query rewrite approach for access 
control when processing different queries. Additionally, we perform these experiments on 
two different DBMSs, MySQL and PostgreSQL, showcasing Sieve's abilities as a middleware. 

Case Study 

We consider a motivating application wherein an academic campus supports variety of 
smart data services such as real-time queue size monitoring in different food courts, occu­
pancy analysis to understand building usage (e.g., room occupancy as a function of time 
and events, determining how space organization impacts interactions amongst occupants, 
etc.), or automating class attendance and understanding correlations between attendance 
and grades [84]. While such solutions present interesting benefits, such as improving stu­
dent performance [84] and better space utilization, there are privacy challenges [85] in the 
management of such data. This case study is based on our own experience building a smart 
campus with variety of applications ranging from real-time services to offiine analysis over 
the past 4 years. The deployed system, entitled TIPPERS [86], is in daily use in several 
buildings in our UC Irvine campus. TIPPERS at our campus captures connectivity events 
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(i.e., logs of the connection of devices to WiFi APs) that can be used, among other purposes, 
to analyze the location of individuals to provide them with services. 

We use the UC Irvine campus, with the various entities and relationships as a use case. 
Consider a professor in the campus posing an analytical query to evaluate the correlation be­
tween regular attendance in her class vs. student performance at the end of the semester.Let 
us assume that within the students in the professor's class, there exist different privacy 
profiles (as studied in the mobile world by Lin et al. [87]). Adapting the distribution of 
users by profile to our domain, we assume that 20% of the students might have a common 
default policy ("unconcerned" group), 18% may want to define their own precise policies 
(" advance users"), and the rest will depend on the situation ( for which we consider, conser­
vatively, 2/3 to be "unconcerned" and 1/3 "advance"). Using this distribution of privacy 
profiles and applying it to a class of 200 students, we have 120 unconcerned users who will 
adopt the default policy and 80 advanced users who will define their own set of policies. 
With the conservative assumption that there are two default policies per default user and 
at least 4 specific policies per advanced user, we have a total of 560 policies. Typically, 
advanced users define more policies than this conservative assumption so if we were to add 
two additional policies per group it will increase the number of policies to 880, or 1.2K (with 
three additional policies per group). 

Given these numbers, together with students taking 1-6 classes per semester, the 
above query executed over classes a professor taught over the year (faculty teaches 1-4 
classes per semester) would involve 3.3K (560 policies/class * 2 classes/quarter * 3
quarters/year) to 7.2K (using 1.2K policies/class estimation) policies. We only focused on
a single data type captured in this analysis (i.e., connectivity data) with two conditions
per policy (e.g., time and location) and policies defined by a given user at the group­
level ( and not at the individual-level, which will even further increase the number of policies).

Overview of the Sieve approach 
For a given query Qi , the two main factors that affect the time taken to evaluate the set 

of policies for the set of tuples /Qi required to compute Qi (i.e., eval(£ {P ), tt ) V tt E 7QJ 
are the large number of complex policies and the number of tuples in /Qi. The overhead of 
policy evaluation can thus be reduced by first eliminating tuples using low cost filters before 
checking the relevant ones against complex policies and second by minimizing the length of 
policy expression a tuple tt needs to be checked against before deciding whether it can be 
included in the result of Qi or not. These two fundamental building blocks form the basis 
for Sieve. 

• Reducing Number of Policies. Not all policies in P are relevant to a specific
query Qi. We can first easily filter out those policies that are defined for different
queriers/purposes given the query metadata QMi. For instance, when Prof. Smith
poses a query for grading, only the policies defined for him and the faculty group for
grading purpose are relevant out of all policies defined on campus. Thus, given our
policy model ( that controls access based on querier's identity and purpose), the set
of policies relevant to the query can be filtered using QMi. We denote the subset of
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policies which are relevant given the query metadata QMi by PQMi � P where Pz E PQMi 

iffQM�urpose = qcturpose /\(Q�uerier = qc�uerier V qc�uerier E group(QM�uerier)). In addition, 
for a given tuple tt E /Qi we can further filter policies in PQMi that we must check based 
on the values of attributes in tt. For instance, the owner of the tuple (i.e., 4.owner) 
can be used to filter out policies which do not apply to the tuple (i.e., are not part of 
Ptt 

� PQMi where P
ti 

is such that Pz E Ptt iff 4.owner = oc�wner (i.e., the owner of the 
tuple is the same than the owner/ creator of the policy). 

• Reducing Number of Tuples. Even if the number of policies to check are minimized,
the resulting expression £ (P) might still be computationally complex. To speed up
processing of £ (P) further, we derive low cost filters ( object conditions) from it which
can filter out tuples by exploiting existing indexes I over attributes in the database.
We therefore rewrite the policy expression £ (P) = OC 1 V • • • V oclPI as a guarded policy
expression g (P) which is a disjunction of guarded expressions g (P) = G1 V · · · V Gn.
Each Gi consists of a guard oc� and a policy partition Pai 

where Pai 
� P. Note

that Pai 
partitions the set of policies, i.e., Pai

n Paj 
= 0 V Gi, Gi 

E Q(P). Also, all
policies in P are covered by one of the guarded expressions, i.e., V Pi E P (:3 Gi E
G such that Pi E Pai

). We will represent the guarded expression Gi = oc� /\ Pai 
where

Pa . is the set of policies but for simplicity of expression we will use it as an expression
• 

where there is a disjunction between policies.
The guard term oc� is an object condition that can support efficient filtering by ex­
ploiting an index. In particular, it satisfies the following properties:

- oc� is a simple predicate over an attribute (e.g., ts - time > 9am) and the
attribute in oc� has an index defined on it (i.e., oc�.attr EI).

- The guard oc� is a part of all the policies in the partition and can serve as a filter
for them Pai 

(i.e., V Pz E Pai 
:3 oc; E ocz I oc; ==} oc�).

As an example, consider the policy expression of all the policies defined by students to 
grant the professor access to their data in different situations. Let us consider that many of 
such policies grant access when the student is connected to the WiFi AP of the classroom. 
For instance, in addition to John's policy defined before, let us consider that Mary defines 
the policy-([W.owner = Mary/\/\ W.wifiAP = 1200], [Prof. Smith/\ Attendance Control], 
allow)-. This way, such predicate (i.e., wifiAP=1200) could be used as a guard that will 
group those policies, along with others that share that predicate, to create the following 
expression: -wifiAP=1200 AND ((owner=John AND ts-time between 9 AND 10am OR 
(owner=Mary) OR ... )-. 

Sieve adaptively selects a query execution strategy when a query is posed leveraging the 
above ideas. First, given Qi, Sieve filters out policies based on QW. Then, using the resulting 
set of policies, it replaces any relation rj E Qi by a projection that satisfies policies in PQMi 

that are defined over r
i
. It does so by using the guarded expression g (Pr) constructed as a 

query-SELECT* FROM r
i 

WHERE Q(Pr
j
�. 
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By using g {Pr) and its guards oct, we can efficiently filter out a high number of tuples 
and only evaluate the relevant tuples against the more complex policy partitions Pa .. The 
generation of g {Pr .) might take place offiine if the policy dataset is deemed to underg� small 
number of changes over time. Otherwise, the generation can be done either when a change 
is made in the policy table or at query time for more dynamic scenarios ( our algorithm is 
efficient enough for dynamic scenarios). 

A tuple that satisfies the guard oct is then checked against e {Pc)= OC 1 V • • • V □c l-Pai l . 
This evaluation could be expensive depending upon the number of policies in Pa .. As it is a 
DNF expression, in the worst case (a tuple that does not satisfy any policy) wilihave to be 
evaluated against each □Ci E Pa .• We introduce a policy evaluation operator (D.( Ci, QMi, 4)) 

. . 

which takes a guarded expression Ci, query metadata QM\ and each tuple tt that satisfied 
oct and retrieves a subset of Pai (filtered using QMi and 4). Then, policy evaluation on the 
tuples that satisfy the guard is only performed on this subset of policies instead of Pa .. Sieve 

• 

situationally selects based on each Ci E C whether to use the policy evaluation operator for 
evaluating Pa . to minimize the execution cost . 

Hence, the main challenges are: 1) Selecting appropriate guards and creating the 
guarded expression; 2) Dynamically rewriting query by evaluating different strategies and 
constructing a query that can be executed in an existing DBMS. This generation might take 
place offiine if the policy dataset is deemed to undergo small number of changes over time. 
Otherwise, the generation can be done either when a change is made in the policy table or 
at query time for more dynamic scenarios. We later explain how Sieve can be implemented 
in existing DBMSs and how it selects an appropriate strategy depending on the query and 
the set of policies that apply to the query. 

Experimental evaluation 

We used the TIPPERS dataset [86] consisting of connectivity logs generated by the 64 
WiFi Access Points (APs) at the Computer Science building at UC Irvine for a period of 
three months. We also used a synthetic dataset containing WiFi connectivity events in a 
shopping mall for scalability experiments with even larger number of policies. We refer to 
this dataset as Mall. We generated the Mall dataset using the loT data generation tool 
in [82] to generate synthetic trajectories of people in a space (we used the floorplan of a mall 
extracted from the Web) and sensor data based on those. The dataset contains 1. 7M events 
from 2,651 different devices representing customers.We used a set of query templates based 
on the recent loT SmartBench benchmark [82] which include a mix of analytical and real­
time tasks and target queries about (group of) individuals. We also developed a synthetic 
policy generator which takes into account various real-life privacy requirements to generate 
policies on the two datasets. We compared Sieve approach against three different baselines. 
In the first baseline, Baselinep, we append the policies that apply to the querier to the 
-WHERE- condition of the query. Second, Baseline1, performs an index scan per policy
(forced using index usage hints) and combines the results using the -UNION- operator.
Third, Baselineu is similar to Baselinep but instead of using the policy expression, it uses
a UDF defined on the relation to evaluate the policies.

Approved for Public Release; Distribution Unlimited.

75



1500
e Baserne_l (M) 

ui'1000 
-S 
Q) 

� 500 

f Baseline!_P (P) 

♦ Sieve (7 
r 

• 

0 ---'------''-----_,__-----'--------'----� 

100 150 200 250 300 
Number of Policies

Figure 31: Sieve on MySQL and PostgreSQL. 
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Figure 32: Scalability comparison. 

We first study the performance of the guarded expression generation algorithm (Exper­
iment 1). Then, we validate the design choices in Sieve (Experiment 2) and compare the 
performance of Sieve against the baselines (Experiment 3). The previous experiments are 
performed on the MySQL system. Next, we study the performance of Sieve on PostgreSQL 
which, in contrast to MySQL, does not support index usage hints (Experiment 4). In the 
final experiment, we stress test our approach with a very large number of policies (Experi­
ment 5). The first four experiments use the TIPPERS dataset and the final experiment the 
Mall dataset. In this report,we summarize the findings from the last two experiments. 

Experiment 1: The four strategies tested in this experiment are: the best performing 
baseline for MySQL (Baseliner(M)), the baseline in PostgreSQL (Baselinep(P)), and Sieve 
in both MySQL and PostgreSQL (Sieve (M) and Sieve (P)). The results show that not only 
Sieve outperforms the baseline in PostgreSQL but also the speedup factor w.r.t. the baseline 
is even higher than in MySQL. Additionally, the speedup factor in PostgreSQL is the highest 
at largest number of policies. Based on our analysis of the query plan chosen by PostgreSQL, 
it correctly chooses the guards for performing index scans ( as intended by Sieve) even without 
the index usage hints. In addition, PostgreSQL supports combining multiple index scans by 
preparing a bitmap in memory. It used these bitmaps to OR the results from the guards 
whenever it was possible, and the only resultant table rows are visited and obtained from 
the disk. With a larger number of guards (for larger number of policies), PostgreSQL was 
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also able to more efficiently filter out tuples compared to using the policies. Thus, Sieve 
benefits from reduced number of disk reads ( due to bitmap) as well as a smaller number of 
evaluations against the partition of the guarded expression. 

Experiment 2: The previous experiment shows that the speedup of Sieve w.r.t. the 
baselines increases with an increasing number of policies, especially for PostgreSQL. We 
explore this aspect further on PostgreSQL using the Mall dataset where the generation of 
very large number of policies per querier (in this case the querier is a shop) is more feasible as 
we can simulate more customers. We used the same process than in Experiment 4 to generate 
cumulative set of policies by choosing 5 queriers/shops with at least 1,200 policies defined for 
them. Figure 32 reaffirms how the speedup of Sieve compared against the baseline increases 
linearly starting from a factor of 1.6 for 100 policies to a factor of 5.6 for 1,200 policies. 
We analyzed the query plan selected by the optimizer for the Sieve rewritten queries. We 
observed that with larger number of guards, PostgreSQL is able to utilize the bitmaps in 
memory to gain additional speedups from guarded expressions ( as explained in Experiment 
1). Also, this experiment shows that Sieve outperforms the baseline for a different dataset 
which shows the generality of our approach. 

3.2.4.2 Preventing Leakages on Access Controlled Protected Data 

Access Control mechanisms enforce policies by either allowing or denying access to a 
sensitive object. This way, they might not be sufficient for protecting sensitive objects since 
an adversary with background knowledge might infer information about the sensitive data 
from non-sensitive data. The problem of learning about sensitive data from non-sensitive 
data combined with metadata is known as the inference problem. 

We now study the inference problem in databases with discretionary access control 
with two classes of data dependencies. The first one consists of commonly used types of 
data constraints (such as functional dependencies, conditional functional dependencies, 
etc.) which are expressed in the form of denial constraints [88]. In modern Database 
Management Systems, raw data is transformed into derived data through various user 
defined functions [89]. Depending upon the property of the enrichment function, it might 
be also possible to reconstruct the raw data when only the derived data is shared. The 
second type of data constraint called provenance-based dependencies (PBD) captures these 
different forms of relationship between raw data and enriched data. These dependencies are 
publicly known and constitute the inference channels available to the adversary. They can 
use this along with the disclosed non-sensitive data to limit the set of possible values that 
the sensitive data can ( or cannot) take or in some cases be able to completely reconstruct 
the sensitive data. 

Example of leakage through Dependencies 

Let us consider the following example, with a simple conditional functional dependency 
(CFD), to illustrate the the inference problem. 

Consider the Employees table, shown in Table 11 where every tuple from the employee 
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table specifies an employee in a department with their employee id (Eid), employee full name 
( EN ame), Zip code (Zip), state residence (State), role in the department (Role), number of 
hours they are allowed to work every week (WorkHrs), and the salary they earn per hour 
(SalPerHr). Consider an access control policy specified by a user to hide their WorkHrs. If 
there exists a conditional functional dependency on the Employee table, "[Role='Staff'] ➔ 
[WorkHrs='30']" the adversary can learn about their weekly work hours by querying roles 
in the department and checking if it is equal to 'Staff'. 

Table 11: Employee details table. 
Emp Eid EName Zip State Role WorkHrs SalPerHr 

e1 34 A. Land 45678 AZ Student 20 40 
e2 56 B. Hill 54231 CA Faculty 40 200 
e3 78 C. Wood 53567 CA Faculty 40 200 
e4 12 D. Boi 54231 CA Staff 30 70 

It could be trivially observed that the inference attack in the above Example can be 
defended by simply hiding the corresponding Role when WorkHrs data is sensitive. In 
a more realistic setting, there could exist a Functional Dependency such as SalPerHr ➔ 
Role or a more complex Denial Constraint such as \/ti , ti E Emp ,(ti [State] = ti[State] 
t\ti [Role] = ti[Role] t\ ti [SalPerHr] > ti[SalPerHr]). Both of these dependencies give 
more knowledge about the sensitive cell to the adversary. In such situations, identifying 
and preventing against potential inferences on sensitive data becomes challenging because 
the leakage can propagate through different dependencies. Furthermore, these dependencies 
can span over a number of tuples in the database and can include conditions on multiple 
attributes. This makes it difficult to determine the non-sensitive data that should be hidden 
to prevent inferences on sensitive data. 
Cell representation 

To simplify notational overhead, we use a cell representation instead of relation-tuple­
attribute representation. We introduce the notation of cells for reason of flexibility and 
simplicity in discussing the fine-grained access control policies and the complex compositions 
among data dependencies. In this representation, a database can be regarded as a set of 
cells, V = { ... ,c

k
, ... }, where we use the notation c

k 
to denote the cell with ID k where 

each c
k 

= ti [Aj
] from the previous representation. A cell can be assigned with a value 

and we use c
k
.val to denote the cell value assigned to the cell c

k
. The domain of c

k 
is 

denoted by Dom( c
k
) which is the domain of the attribute Ai. The size of the domain 

is correspondingly denoted by IDom(c
k
)I, which is equivalent to the size of domain of the 

attribute that the cell is associated with. The cell notation system is equivalent to or 
interchangeable with the relation-tuple-attribute notation system, if considering a function 
(i.e. one-to-one mapping) flatten and its inverse function flatten- 1 that could map ti [Aj ] to 
a cell in the cell representation and vice versa. Therefore, from now on, we will simply use 

the notation for a set of cells tC = { ... , c
k
, ... } to represent a row or a set of rows, a column 

or a set of columns, or a table in tne database, if the context is clear. 
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A given cell c is sensitive to a user u if there exists a deny policy P (policy with Action =
"Deny") such that subject conditions in P denotes the u and object conditions identify the 
c. The set of cells sensitive to the user u is denoted by ci ( or simply cs when the context
is clear). The sensitive set cannot appear in the result of queries by U, which is restricted
by the access control policies. Conversely, the set of non-sensitive cells are denoted by CNS

where CNS
= 1) - cs .

Types of Dependencies 

Data dependencies restrict the possible set of values for a cell based on another set of 
values in the database instance. Thus, through existing dependencies, knowledge about 
sensitive cells restricted by access control policies can leak to queriers. We look at two forms 
of data dependencies in this work: 1) Denial constraints (DCs) and 2) Provenance-based 
dependencies (PBDs). 

Denial Constraints are traditional types of integrity constraints such as keys, foreign 
keys, functional dependencies (FDs), conditional functional dependencies ( CFDs), and check 
constraints. We use the general model of denial constraints as our constraint defintition 
language to represent all forms of constraints, including aforementioned integrity constraints 
Thus, from now on, we use the term data constraint and denial constraint interchangeably 
in this paper. We chose DCs to express the data dependencies as it is capable of modelling 
common kind of dependencies ( such as FDs, CFDs) and also flexible enough to model more 
complex dependencies among cells. We use the general notation of denial constraints ( as 
in [88]) to represent data dependencies at the schema level. Under this representation, a DC 
is a first-order formula of the form V ti, tj , ... E 7J, �k ,(Predi I\ Pre(½ I\ ... I\ PredN) where 
Predi is the ith predicate in the form of tx [Ai]0t

y
[Ak] or tx [Ai]0const with x, y E { i, j, ... }, 

A
j
, Ak ER, canst is a constant, and 0 E { =, >, <, =/:-, �' �}. We skip the universal quantifiers 

for DC if it is clear from the context. A DC is satisfied if at least one of the predicates 
evaluates to False which results in DC evaluating to True. 

Provenance Based dependencies: We present a model for dependencies used to capture 
the relationships between derived data and its inputs. A Provenance Based Dependency 
(P BD) captures this relationship between the derived value and input values based on the 
function. In general, given a function fn with ri, r2, ••• , rn as the input cell and si as the 
derived or output cell, the PBD is represented by fn(r i , r2, ••• , rn) = si . If 8 is a PBD, 
then f n( 8) returns the corresponding function associated with it. Function definitions 
( or schema level PBD) are published as part of the schema (just like FDs, DCs) and is 
considered as background knowledge. 

Security Model 

An assignment to a cell c is a value, x, assigned to it from its state such that x E State( c). 
The assigned world, or simply world, is a set of assigned values, { xi, x2, ••• , Xn}, to cells in an 
instantiated dependency given by J(c

i 
=Xi,�= x2 ... , en

= Xn) where each Xn E State(cn). 
The world is denoted by W(C) E State(C) where State(C) is the set of all possible worlds 
based on states of all cells in C. 

In a Denial Constraint, Preds(8) returns the predicates from an instantiated dependency. 
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For a given cell ci E C and a dependency J, Preds(ci ,b(C)) returns the predicate(s) Pred 
E Preds(b) such that Pred = ci 0 c

j 
or Pred = ci 0 canst where c

i
, ck E C, and canst is a 

constant. The function Preds( c
i
, J) returns¢ if J doesn't contain such a predicate. 

Let CPred denote the cells associated with the Pred such that Vc
i 

E CPred, Pred E 
Preds(ci). We define the evaluation function for a predicate as: eval(Pred, W(CPred)) =

True if the predicate evaluates to True based on the assignment of values to CPred from 
W(CPred)- Similarly, eval(Pred, W(CPred)) = False if the predicate evaluates to False based 
on the assignment of values to CPred from W(CPred)- We also define the evaluation function 
based on State(CPred) as 

eval(Pred, State(CPred)) =

True if\::/ WE State(CPred), eval(Pred, W(CPred)) = True 
False if\::/ WE State(CPred), eval(Pred, W(CPred)) = False 
Unknown if :3 W1, W2 E State(CPred) such that 
eval(Pred, W1(CPred)) = True and eval(Pred, W2(CPred)) = False 

Similarly, the eval function for the instantiated dependency J and an assignment 
W E State(C) returns true (i.e., eval(b, W) = True). We call this W a valid world for 
a dependency if it does not lead to dependency violations (i.e., assignments that do not 
violate the dependency). As our dependencies are expressed in Denial Constraints, W is a 
valid assignment to the J if :3 Pred E Preds(b) such that eval(Pred, W(CPred)) = False. An 
invalid assignment occurs when WE State(C) and eval(b, W) = False. 

A state of ci denoted by State( c) is the set of possible values that can be assigned to it from 
its domain (Dom( c)). The state of a cell c changes based on the knowledge of the adversary. 
When the cell is disclosed, the State( c) = x where x E Dom( c). On the other hand, when 
a cell is sensitive and therefore hidden, State( c) � Dom( c) based on various instantiated 
dependencies ( an instantiated dependency is a schema level dependency instantiated with 
different cells from the database) the cell is part of and adversary's background knowledge. 
State Funct ion (sf) which computes the State( c*) based on an instantiated dependency and 
the state of its cell set (State(C) and c* E C) is given by 

sf(c* I J, State(C)) = {x E State(c*) :3 W E State(C), eval(b, W) = True} (31) 

We first define Statemax(C) as the set of possible values for all cells in (C when the 
adversary has no knowledge about any of the cells ( other than the previously mentioned 
background knowledge). We can compute the set of possible values for c* E C based on an 
instantiated dependency J and Statemax(C) using the previously defined State Function. 

sf(c* I J, Statemax(C)) = {x E State(c*) :3 W E Statemax(C) eval(b, W) = True} 

This returns the set of possible values for a c* from the valid worlds for J and its maximum 
achievable deniability value. Upon sharing some of the cells in C E cNs , partially or 
completely, the adversary learns more about the state of C. We denote this updated state 
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of C as State'(C). The new set of possible values for c* based on adversary's knowledge is 
given by: 

sf(c* I J, State'(C)) = {x E State(c*) :3 W E State'(C) eval{8, W) = '.lrue} 

We compute the full state of a cell based on Statemax(V), State'(V), and the set 
of all dependencies �- We now define two different security models for our problem 
setting: 1) Full Deniability and 2) k-value Deniability. Full deniability occurs when the 
adversary cannot distinguish the actual value of the cell from any of the possible values in 
sf(c* I J, Statemax(C)) (i.e., they learn no new knowledge from the dependencies and disclo­
sure of non-sensitive cells) i.e., For every sensitive cell c* E cs , based on all the dependencies 
J E �, we achieve full deniability when sf(c* I �, Statemax(V)) = sf(c* I �, State'(V)). 
Full deniability is sometimes hard to achieve and in the worst case might require denying 
almost all the cells in the database when a relatively large number of cells are marked as 
sensitive by the access control policies. Therefore, inspired by the well-known k-anonymity 
privacy, we relax our security definition to a novel definition called k-value deniability. For 
every sensitive cell c* E cs , based on all the dependencies J E � and V, we achieve k-value 
deniability when sf( c* I �, Statemax(V)) - sf( c* I �, State'(V)) S k · Dom( c*) 

Leakage Analysis 

When c* is marked as sensitive to u by an access control policy, it is hidden by setting it 
to NULL. This removes the sensitive eel� from the query results for that user u. However, if 
there exist an instantiated dependency 8 which contains the sensitive cell, it is possible for 
the adversary to learn about the hidden sensitive cell. We explain the conditions under which 
it is possible for the adversary to learn about the sensitive cell through denial constraints 
and provenance based dependencies. 

Denial Constraints: Suppose J is a denial constraint and the predicate corresponding 
to the sensitive cell is given by Pred( c*). We first like to note the semantics of a denial 
constraint that at least one predicate in a DC has to be False in a valid and clean database 
(only valid worlds from WE State(C) such that eval(8, W) = '.lrue are considered). When 
the denial constraint is not trivial and contains at least two predicates (I Preds(8) 12: 2), 
after hiding the sensitive cell c*, we have State(c*) � Dom(c*) and thus eval(Pred(c*), C) 
= Unknown. However, when all the other predicates in the dependency evaluate to True 
(i.e., \/Pred

i 
E Preds(8) \Pred(c*) eval(Pred

i
, State(C)) = '.lrue) the adversary can infer that 

eval(Pred( c*), C) = False even if they do not know the exact value of c*. 
Provenance based Dependenc ies: Suppose 8 is a provenance based dependency given by 

fn(r 1, r 2, .... , rn) = Si. In the instantiation of the PBD denoted by J, if the sensitive cell c* is 
the output of the function then disclosing any of the input values leaks knowledge about c*. 
Furthermore, if any of the input values is sensitive (i.e., c*) disclosing the output value leaks 
knowledge about it only if the fn is invertible (if a fn is invertible, given output value(s) 
it is possible to infer about the input). If fn is non-invertible, disclosing output value does 
not leak any knowledge about c*. 

In both of these situations, we have to hide other cells in the cell set of instantiated 

dependency ( c in C) so as to prevent the leakage of the sensitive cell through this dependency. 
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In DCs, our goal is to have one other predicate in the dependency that evaluates to unknown 
and thus making it impossible for the adversary to infer the truth value of Pred( c*). We 
achieve this by hiding a cell c

i 
E C such that Pred(c

i
) E Preds(8)\Pred(c*). This results 

in eval(Pred(c
j
), State(C)) = Unknown. As now two predicates in 8: Pred(c

j
), Pred(c*) 

evaluate to unknown ( and either could evaluate to False to satisfy the DC sema�tics), it 
impossible for adversary to learn anything about the sensitive cell c* through this 8. 

When the condition for leakage is met, the set of non-sensitive cells, from the cell set of 
an instantiated dependency J that can leak knowledge about the sensitive cell, is called a 
cueset. Conversely, denying at least one of the cells in the cueset will make c* secure w.r.t 
that dependency. 
Preventing Leakages 

Given a database 'D which is a collection of cells and a set of data dependencies�, and 
a set of fine-grained access control policies Pu that identify the cells ( cs) that should be 
denied while answering the queries by u. Our goal is to generate 'D', on which the queries 
by u are answered, and which protects the sensitive cells ci E cs while maximizing utility. 
Utility is defined as the number of cells that are shared from 'D - cs while meeting the 
deniability requirement. 

We perform the following steps to prevent data leakages of sensitive cells. All these steps 
are done via pre-processing at compile time as all the necessary information to do so is 
available prior to query time. 

The first step is sensitivity determination, which takes as input the policies applicable to 
a user and produces a set of cells which are marked as sensitive. This is done by adding the 
sensitivity metadata for each tuple and its attribute values similar to the approach by [90]. 
In the next step, for each of the sensitive cell, we instantiate their relevant dependencies 
and detect cuesets for them. We take each schema level dependency 8 and instantiate it 
with the sensitive cell c* and the appropriate selection of the set of other cells C E 'D.
The instantiation of the dependency is hinged on the type of dependency. For a unary 
dependency, instantiation is only based on the tuple the sensitive cell is part of. For a 
binary dependency (most DCs), instantiation is based on the pairwise comparison of tuple 
containing the sensitive cell as well as other tuples in the database. Similarly for a N-ary

dependency, the tuple consisting of the sensitive cell will be compared against the set of 
other N tuples. The number of comparisons required for instantiation depends upon the 
number of predicates in the dependency. 

In the next step, we check for each of the instantiated dependency whether we need 
to generate a cueset based on the condition for leakage presented earlier. We verify the 
condition by assigning values to each Pred

i 
( except for Pred( c*)) for its corresponding C Pred

j 

and verifying if eval(Pred
j
, State(CPred.)) = True. If one of the predicates evaluates to False, 

we generate an empty cueset and mo�e onto the next instantiation. On the other hand, if 
the condition is met, we generate the cueset by iterating through all the predicates Pred

i

( except for Pred( c*)) and adding the cells to the cueset corresponding to that dependency 
instantiation. The exception to this rule is when the instantiated dependency contains only 
a single predicate. We generate a cueset consisting of the non-sensitive cell ( ck) in Pred( c*). 
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After iterating through all the dependency instantiations, we return the cuesets which is a 
set of cuesets. Finally, we select cells to hide from the cueset until the specified deniability 
requirement is met. For a given sensitive cell c*, the algorithm identifies the cuesets based on 
the instantiated dependencies by calling cueset detection function. Then it iterates through 
the set of cuesets and for each cueset, the algorithm selects a cell to hide. Then it identifies 
the cuesets of the hidden cell and these new cuesets are added to list of cuesets. The previous 
cueset is removed after this step or if it already contains a hidden cell. We repeat this process 
until list of cuesets is empty which means every cueset has at least one hidden cell and thus 
we achieve Full deniability for the sensitive cell. 

3.2.5 Supporting Verification of Data Capture Policies via loT Notary 

Smart buildings require end-users to trust data-capturing rules published by the systems. 
There are several reasons why such a trust is misplaced - loT systems may violate the 
rules deliberately or loT devices may transfer user data to a malicious third-party due to 
cyberattacks, leading to the loss of individuals' privacy or service integrity. To address 
such concerns, we propose IoT NOTARY, a framework to ensure trust in IoT systems and 
applications. IoT NOTARY provides secure log sealing on live sensor data to produce a 
verifiable 'proof-of-integrity,' based on which a verifier can attest that captured sensor data 
adheres to the published data-capturing rules. IoT NOTARY is an integral part of TIPPERS. 
IoT NOTARY imposes nominal overheads. The secure logs only take 21% more storage, while 
users can verify their one day's data in less than two seconds even using a resource-limited 
device. 

Advantages of IoT Notary 

IoT NOTARY has the following distinct advantages: 

1. Privacy-preserving system. IoT NOTARY is the first privacy-preserving system for
the enforcement of loT sensor data capturing policies and for the data attestation at
the user to verify the presence/ absence of their data against the data capturing policies.
Moreover, during the policies' enforcement and attestation, any entity involved in IoT
NOTARY cannot learn anything about other other entities.

2. Minimal overhead in proof generation. IoT NOTARY does not incur computa­
tional and space overhead in secure log generation. In particular, IoT NOTARY takes
310ms for creating the secure log over 37K rows and 21 % more space to store the log
in a secure manner as compared to store the log in clear-text.

3. Scalable. IoT NOTARY is a highly scalable system in terms of data verification. In
particular, a resource-constrained user (with a machine of 1-core 1GB RAM) can verify
the presence or absence of their data over the data collected in a single day in most 30
seconds.
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monitored from 9pm to 9am. Such a rule has an associated condition on the time and the 
id of the sensor used to generate the data. Now, consider a rule corresponding to a user 
with a device di opting-out of data capture based on the previously mentioned rule. Such an 
opt-out rule would have conditions on the user-id, as well as, on time and the sensor-id. For 
sensor data for which a default data-capture rule is opt-in, the captured data is forwarded 
to SP, if there do not exist any associated opt-out rules, whose associated conditions are 
satisfied by the sensor data. Likewise, for sensor data where the default is opt-out, the data 
is forwarded to SP only, if there exists an explicit opt-in condition. We refer to the sensor 
data to have a sensor state (si.state denotes the state of the sensor si) of 1 (or active), if 
the data can be forwarded to SP; otherwise, 0 (or passive). In the remaining paper, unless 
explicitly noted, opt-out is considered as the default rule, for simplicity of discussion. 

Whenever SP creates a new data-capture rule, SP must send a notice message to user 
devices about the current usage of sensor data ( this phase is entitled notification phase). SP 
uses Intel Software Guard eXtension (SGX) [91], which works as a trusted agent of IFD, 
for securely storing sensor data corresponding to data-capture rules. SGX keeps all valid 
data-capture rules in the secure memory and only allows to keep such data that qualifies 
pre-notified valid data-capture rules; otherwise, it discards other sensor data. Further, SGX 
creates immutable and verifiable logs of the sensor data ( this phase is entitled log-sealing 
phase). The assumption of secure hardware at a machine is rational with the emerging 
system architectures, e.g., Intel machines are equipped with SGX [92]. However, existing 
SGX architectures suffer from side-channel attacks, e.g., cache-line, branch shadow, page­
fault attacks [93], which are outside the scope of this paper. 

Users. Let d1, d2, ... , dm be m (user) devices carried by u1, u2, ... , Um' users, where m'::; m.

Using these devices, users enjoy services provided by SP. We define a term, entitled user­
associated data. Let (di, Sj, tk) be a sensor reading. Let di be the i th device-id owned by a
user ui. We refer to (di, Sj, tk) as user-associated data with the user ui. Users worry about 
their privacy, since SP may capture user data without informing them, or in violation of 
their preference ( e.g., when the opt-out was a default rule or when a user opted-out from 
an opt-in default). Users may also require SP to prove service integrity by storing all sensor 
data associated with the user (when users have opted-in into services), while minimally being 
involved in the attestation process and storing records at their sides ( this phase is entitled 
attestation phase). 

Auditor. An auditor is a non-mandatory trusted third-party that can (periodically) verify 
entire sensor data against data-capture rules. Note that a user can only verify his/her data, 
not the entire sensor data or sensor data related to other users, since it may reveal the 
privacy of other users. 

Security Properties of IoT Notary 

An adversary wishes to learn the ( entire/partial) data about the user, without notifying 
or by mis-notifying about data-capture rules, such that the user/auditor cannot detect any 
inconsistency between data-capture rules and stored sensor data at SP. Hence, a secure 
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attestation algorithm must make it detectable, if the adversary stores sensor data in violation 
of the data-capture rules notified to the user. To achieve a secure attestation algorithm, we 
satisfy the following properties: 

Authentication. Authentication is required: ( i) between SP and users, during notification 
phase; thus, the user can detect a rogue SP, as well as, SP can detect rogue users, and 
(ii) between SP and the verifier (auditor/user), before sending sensor data to the verifier to
prevent any rogue verifier to obtain sensor data. Thus, authentication prevents threats such
as impersonation and repudiation. Further, a periodic mutual authentication is required
between IFD and SP, thereby discarding rogue sensor data by SP, as well as, preventing any
rogue SP to obtain real sensor data.

Immutability and non-identical outputs. We need to maintain the immutability of 
notice messages, sensor data, and the sealing function. Note that if the adversary can alter 
notice messages after transmission, it can do anything with the sensor data, in which case, 
sensor data may be completely stored or deleted without respecting notice messages. Further, 
if the adversary can alter the sealing function, the adversary can generate a proof-of-integrity, 
as desired, which makes flawless attestation impossible. The output of the sealing function 
should not be identical for each sensor reading to prevent an adversary to forge the sealing 
function ( and to prevent the execution of a frequency-count attack by the user). Thus, 
immutability and non-identical outputs properties prevent threats, e.g., inserting, deleting, 
modifying, and truncating the sensor data, as well as, simulating the sealing function. 

Minimality, non-refutability and privacy-preserving verification. The verification 
method must find any misbehavior of SP, during storing sensor data inconsistent with pre­
notified data-capture rules. However, if the verifiers wish to verify a subset of the sensor 
data, then they should not verify the entire sensor data. Thus, SP should send a minimal 
amount of sensor data to the verifier, enabling them to attest to what they wish to attest. 
Further, the verification method: ( i) cannot be refuted by SP, and ( ii) should not reveal any 
additional information to the user about all the other users during the verification process. 
These properties prevent SP to store only sensor data that is consistent with the data-capture 
rules notified to the user. Further, these properties preserve the privacy of other users during 
attestation and impose minimal work on the verifier. 

IoT Notary: An Overview 

Now, we present an overview of the three phases and dataflow among different entities and 
devices in IoT NOTARY, see Figure 34. 

Notification phase: SP to Users messages. This is the first phase that notifies users 
about data-capture rules for the loT space using notice messages (in a verifiable manner 
for later stages). Such messages can be of two types: (i) notice messages, and (ii) notice­
and-acknowledgment messages. SP establishes ( the default) data-capture rules and informs 
trusted hardware (0). Trusted hardware securely stores data-capture rules (8, 9) and 
informs the trusted notifier (8) that transmits the message to all users (9). Only notice 
messages need a trusted notifier to transmit the message. 
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3.3 System Testbed 

In the following, we explain the results of the project in terms of prototypes and systems 
developed. We divide the section into the following elements: 

• Sensing infrastructure, which explains the deployment of sensors and software devel­
oped to manage those.

• System, which details the software components developed to realize the TIPPERS
system.

• Applications and other software developed to showcase the system and highlight pri­
vacy challenges.

3.3.1 Sensing In rastructure 

We instrumented the DBH building with different sensors incluaing bluetooth beacons, video 
cameras, and microphones in addition to the sensors �Iready present in the building. For 
instance, we set up the necessary firewalls in our server through which we were able to pull 
the HVAC dataset using SkySpark REST APis. There are around 200 VAV boxes in this 
building and each box contains 30 different sensors. We have registered these 6000 sensors 
in our TIPPERS system. The frequency 0£ each of these data points is usually once in every 
15 minutes but for some sensors it is very frequent (onee every minute). The frequency of 
the update depends on the amount of change in meir values and the duration from the last 
update time. At any given instan� there can  be around 6000 sensor readings from these 
sensors based on their frequeney of upaates. 

To communicate with those sensors, �e de:veloped "wrappers", that is, code to provide 
sensors with an interface to TIPEERS. This code can be deployed in a server and provides 
TIPPERS with a set of APIs ta staFtZstop the collection of data from the sensors associated 
with it. For instanae, in the case bf the HVAC sensors above, we developed a wrapper that 
encapsulates the communication with the SkySpark server. We designed such a wrapper in 
order to support the access to specific sensors and sensor types and their observations taken 
during a period of time. We have developed other wrappers to, for example, communicate 
with the microphone in our smart meeting room, and another one to record video from the 
video cameras (previously we were just capturing images from the cameras). 

The most important sensor used in our deployments is the WiFi Access Point (AP). The 
observations that such a sensor captures (i.e., the MAC address of the device connected 
to it at a certain time instant) can be leveraged to produce localization of individuals and 
occupancy of spaces. We also have created a service, WiFi2Location which converts WiFi AP 
observations ( along with metadata such as the coverage of each WiFi AP and the owner of 
each specific device connected to the AP) into location of users within the space. We defined 
another service, WiFi2Occupancy, which converts WiFi AP observations and metadata into 
occupancy of the spaces covered by such WiFi AP. Along with these two services, we had 
defined V ideo2Occupancy service, which given an image observed by a video camera uses a 
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deep neural network to count the number of people present in it. Then, it assigns such count 
to the space( s) covered by the video camera. 

Localization Virtual Sensor 

The goal of this virtual sensor is to predict the location of a person given WiFi connectivity 
data. The focus was on increasing the accuracy of the prediction. This results in better 
performance of the applications and allows us to understand how different information cap­
tured in the building can be used to obtain precise location of people and study mechanisms 
to protect individuals' from this. Specifically, we designed a mechanism to make predictions 
for people's locations on a given timestamp only based on WiFi in the following three levels: 
building, region, and room. Building-level localization predicts if a user is in the building at 
the given time; region-level solution predicts the WiFi AP to which a user's device would be 
connected if their device is not currently connected to the network; and room-level decides 
the room where the user is in. 

The goal of building and region level localization is t0 fill in  the gaps between user's WiFi 
data observations. When the user is in the building,, his/her device sends signals to nearby 
access points periodically. Each row in the WiFi observation table in TIPPERS represents a 
connection signal received. The building and region level focalization try to predict whether 
a user is inside the building or not and the possible WiFi access point the user's device 
should connect to if the user is inside. The intervals between these signals vary a lot due to 
different device types and different user's fiab1ts using d€xices, which makes the 
prediction difficult. 

Our prediction method uses an unsupervise8 learning model mainly based on the user's 
historical connection entries. For inside and outside classification, the model analyzes each 
minute in a day and calculates the probability that the user is inside the building for each 
minute. The inside and outside decision for each time interval is based on the inside prob­
ability of each minute. For access point prediction, the model calculates the probabilities 
that the user's device can connecf to each access point at each minute and predict the access 
point based on these probabilities 

Room level localization seeks to find the accurate room user is in among several candidate 
rooms only based on WiFi data. The core idea is to draw the affinity between person and 
space and the affinity among people to make predictions based on historical connectivity 
data. For instance, people that are connected at the same time to the same access point 
for different periods of time are considered to have a higher affinity to each other. Based 
on that, our solution includes three parts. First of all, we propose a graph-based algorithm 
to model the observations of users as well as the affinity information and make predictions 
automatically. Second, we present techniques for learning affinity from historical WiFi 
data, and further an incremental offline learning to speed up the overall algorithm greatly. 
Third, considering scalability, we develop an online fashion by maintaining a social graph to 
select the strongest affinity group with queried users to minimize 1/0 time cost. 
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PE-IoT 

PE-loT is our framework that helps IoT data providers to achieve privacy compliance when 
they want to share their data with other service providers. PE-loT takes as input the raw 
sensor data collected from sensors or existing infrastructures, checks the organizational and 
individual data policies, and applies privacy-enhancing technologies to generate privacy­
preserving data. As shown in Figure 35, An in-production instance of PE-IoT is developed 
by the TIPPERS team, and it is owned and hosted by OIT as a long-term service deployed at 
the UCI campus. It de-identifies the WiFi connectivity data coming from WiFi AP, removes 
the link between it and the users, and sends de-identified data to TIPPERS. 

• PE-loT

• TIPPERS System

- Front-end (TPortal)

- Backend (APis, translation, wrappers, virtual sensors)

- TIPPERS Smartphone Client

3.3.2 System Infrastructure 

The main components of the system are: 

Figure 35: The PE-loT system at UCI OIT. PE-loT adds privacy compliance to OIT and generates 

privacy-preserving WiFi connectivity data service providers 

The development of the PE-IoT system is motivated by the privacy-compliance needs of 
our data provider, UCI OIT. Since the WiFi connectivity data from OIT includes personally 
identifiable information, OIT needs to satisfy numerous privacy requirements to share the 
data. For example, individual consents and privacy policies need to be collected and honored, 
and OIT must apply proper privacy-enhancing technologies to ensure the data is privacy­
preserving. To fulfill the requirements, We developed PE-IoT as a middleware that intercepts 
WiFi connectivity data sharing flow in OIT to add privacy compliance. 
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There are still some challenges in designing the system. OIT may need to share the 
data with multiple authorized service providers for heterogeneous services provisioning as a 
data provider for WiFi connectivity data. However, different service providers have various 
requirements for the data, e.g., different data subsets and PETs. The lack of a unified data 
model significantly increases OIT's overhead since OIT will need to instrument independent 
and separate workflow for each service provider. 

To address the challenges, we first design and use a data model in PE-loT for privacy­
preserving data sharing, which is a trade-off between fine-grained control and the overhead 
of privacy interventions. The key concept in the model is Data Product, an abstraction 
for privacy-enhanced data that data controllers can share with service providers. Precisely, 
three components form a data product: (1) Filter is a set of selection conditions on sensor 
data that defines a subset of the sensor data that constitutes a data product. For example, 
a possible filter might select sensor data from the sensors deployed in a specific building 
or room. Policy in a data product consists of two components: a data controller's sharing 
policies that specify conditions under which a service provider can access the data product, 
and the data subject's choices that determine the inclusion of a data subject's data in a data 
product. PET defines the information about the Privacy Enhancing Technology that a data 
controller uses when sharing the data product with service providers. 

To realize the data-sharing model, PE-loT incorporates a modulized design. This system 
consists of a Data Product manager which conducts the flow of intercepted sensor stream 
through PE-loT and coordinates with different resource managers to produce the units of 
privacy-preserving data stream defined by Data Products. The various aspects of the PE-loT 
data model are implemented as independent resource managers(as shown in Figure 36), which 
can be executed separately. The rationale for such a system design is two-fold: 1) decoupling 
functions allows each resource manager to perform its tasks independently, 2) some of the 
resources (e.g., data controller policy, PET) might be stored remotely, and independent 
resource managers allow us to move them closer to the resource. Each resource manager also 
includes interfaces to interact with the Data Product Manager and other resource managers. 

PE-loT 

Data Product 
Manager I Data Product I � 
Worker 
Object 

r------------------ � 

1 Resource Manage-rs _____ � 

Policy 

Mana er 

PIT �g I 
1 

Mana er Mana er Manager 1 
L------------------� 

Figure 36: Components of PE-loT System 

Besides the modules mentioned above, we also developed a web interface for users to 
manage their WiFi connectivity data sharing policy. The interface is publicly accessible 
for the UCI community, and it integrates an existing campus authentication service for 
authentication. After logging in, this web interface utilizes the campus identity management 
service to get the list of users' registered devices in the UCI campus wireless network, as 
shown in Figure 37. The authorized users can then select their devices which they would 
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Figure 37: The web interface for users to specify their policies (opt-out)

The PE-loT system also includes a requested functionality by UCI to log certain informa­
tion to support attestation by the university n£ the proper enforcement of policies. We have 
implemented functionality that logs into a database all the opt-out/in changes. In this way, 
if a person requests to be opted-out from data capture, or opted-in for sharing of data with 
a specific TIPPERS instance, this event is logged along with the timestamp. The 
logging mechanism incorporated into the prototype also logs the events in which 
connectivity data belonging to an opted-out user reached the PE-loT system and was not 
shared. 

TIPPERS System

Figure 38 shows different deployments of the TIPPERS system ( and its components) in our 
server along with the technologies used to develop each of the components. In this 
setup, there are three instantiations of the system (on the right of the figure): Dev, 
Home, UCL TIPPERS-Dev is used for development purposes and to test new 
functionality. TIPPERS­Home is a mocking setup to simulate a smart home. 
TIPPERS-UC! is the deployment that manages data from the UC Irvine campus. In 
each of the deployments there is a backend component developed using Java and a 
frontend (Tportal) which we will explain in the next sections. Also, in each instantiation 
there is one sample application deployed ( Occupancy App) which we will also explain in 
next sections. Finally, in addition to the TIPPERS deployments there are three 
additional components ( on the left of the figure): Auth, Marketplace, and Hub. Auth is 
the server that authenticates users and manages user information across deployments. 
Marketplace is the prototype of a website where others can download the system and 
content (e.g., applications) for it. Finally, the Hub is a repository of all the TIPPERS 
deployments and enables people to access each of them. 

like to give/revoke consent of sharing WiFi connectivity data with TIPPERS. 
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TIPPERS Overview 
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Dev 

Auth 

l? Database 
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Figure 38: Different deployments of the TIPPERS System. 

Figure 39 shows the deployment of the previous systems and components in our server 

along with the configuration of the virtual machines in which each component is installed. 

ICS Net 

Pon 

JCS Nel 

Pon 

1111 TIPPERS Hypervisor Machine 

VMNet 
L ____ .J 

I (t-) VM pool 

QI 

7 

tippers-web 

wideid 
proxy-tippers 

global-tippers ci-tippers( 

Jekins) 

Ii TIPPERS SemloTic Instances 

QI 
test-tippers dev-tippers 

home-tippers uci-tippers 

Figure 39: Server infrastructure. 

Sensorium Database 

Configurations 
wideid: 

4 vCPUs, 16GB RAM, VM net 1 

proxy-tippers: 

8 vCPUs, 8GB RAM, VM net 2 
global-tippers: 

8 vCPUs, 16GB RAM, VM net 2 

uci-tippers; 

8 vCPUs, 64GB RAM, VM net 2 

home-tippers: 

4 vCPUs,16GB RAM, VM net 2 

dev-tippers: 

4 vCPUs, 16GB RAM, VM net 2 
test-tippers: 

4 vCPUs, 16GB RAM, VM net 2 
tippers-web: 

4 vCPUs, 16GB RAM, VM net 2 

ci-tippers: 

2 vCPUs, 16GB RAM, VM net 2 
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Figure 40: TIPPERS authentication GUI. 

The TIPPERS Auth server includes three different authorization flows available to TIP­
PERS developers which want to retrieve data from TIPPERS using its APis. Table 12 
summarizes the flows and their features which can be utilized depending on the application. 
Templates have been developed for each flow and are available for developers. 

TIPPERS HUB. The TIPPERS Hub (see Figure 41) provides users with a centralized 
repository of different TIPPERS deployments. It enabled users to discover TIPPERS de­
ployments around them (see Figure 42) and to manage information about their TIPPERS 
accounts ( which can be used to access TIPPERS deployments and applications). 

TIPPERS TPORTAL. TPortal provides users of a smart space with access to TIPPERS. 

In order to transfer the TIPPERS system, as well as the privacy technologies developed 
by our CRT partners, to others (e.g., the US Navy), TIPPERS includes a mechanism to 
make installation and setup of the system easier. For that, we created a docker image of 
TIPPERS. The docker image can be loaded at any platform (MACOS, Linux, or 
Windows) running docker. The loaded docker image then can be used to create and run 
appropriate containers while setting up the database, configuring and starting up the 
TIPPERS server. 

In the following s ections w e w ill focus on th e fol lowing com ponents: 1) Sup porting in­
frastructure, which includes the A uth, H ub, a nd T Portal; 2 ) TIPPERS backend. 

Supporting Infrastructure 

TIPPERS AUTH. Authentication of users is especially important since the access to 
information collected by TIPPERS is done through APis. Such APis use as a parameter 
the id of the person who is requesting data through an application and the goal of the Auth 
server is to authenticate such information to secure the TIPPERS APls. The Auth server 
is developed using OAuth2.0 through the Python Authlib library at https: //authlib. org. 
It supports Google Sign in as well as TIPPERS sign in (see Figure 40). 
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Authorization 
Code 

Implicit Grant 

Client Credentials 

Table 12: Different authorization flows. 

Gives persistent access to a TIPPER 
user's account. ( Only one login is 
necessary). Provides a refresh_token 

which can be used to retrieve addi­
tional access_token without prompting 
user. Most secure flow. 
Does not require a backend. Directly re­
turns access_token. Very simple to im­
plement. 

User interaction is not required. Used for 
simple backend to TIPPERS API access. 

Requires backend to securely 
store clienLsecret. Most com­
plicated flow. 

Gives only temporary access to a 
TIPPER user's account. (Must 
login every time). Does not pro­
vide a refresh_token. Least se­
cure flow. 
Does not provide any user infor­
mation. Requires backend to se­
curely store clienLsecret. 

Figure 41: Main GUI of the Hub. 

TPortal is a web application which provides an interface to the TIPPERS backend ( see 
Figure 44). It allows users, among others, to: Discover and access the applications available 
at the specific TIPPERS-enabled smart space (see Figure 45a). Define metadata about 
the space such as the sensors deployed or information about the devices they own (see 
Figure 456). Define privacy policies to control data sharing (e.g., to allow TIPPERS to 
share the location of the individual with their friends using the Concierge application) (see 
Figure 45c). 

A special component of TPortal is the tool to facilitate the definition of the geospatial 
element of the smart space (see Figure 46). The TIPPERS model of smart spaces enables 
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Figure 42: Finding TIPPERS portals in the Hub. 

the definition of complex and fine-granularity space/building models. The more detailed the 
description of the building is, the more the potential of the schema that can be exploited 
(e.g., to enable TIPPERS to automatically derive the sensors that can be used to obtain 
high-level information given their placement and coverage). However, manual fine-grained 
annotation can be challenging and prone to errors, especially of locations as there are multi­
ple elements that have to be defined correctly (e.g., coordinate systems, extents, hierarchical 
aspect, relationship between elements, etc.). We developed an annotation support tool to 
facilitate fine-grained annotation/ definition of the spatial/­geographic aspect of the smart 
space. The tool is a web application with a Graphical User Interface (GUI) that enables 
users to draw locations and fill in a form to specify metadata ( see the figure below). 

The tool has three definition components: 1) Metadata (e.g., to annotate the type, 
name, capacity, coordinate system, boundaries of a location); 2) Extent (to draw geometries 
graphically); 3) Hierarchical representation (which displays the hierarchy defined so far and 
enables people to define new elements within it). The form in the metadata panel obtains 
its options from the properties defined in our schema and the possible ranges defined in 
the knowledge base. For instance, if the specific installation of TIPPERS (e.g., TIPPERS 
running at UCI) contains four subclasses of location (e.g., campus, building, floor, room), 
then the form that asks for the type of location being defined will show those. The defini-
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Figure 43: Most visited portals. 

tion panel enables the graphical definition of geometries such as circle, rectangle, polygons, 
etc. Additionally, it can show in the background either a map (in this case OpenStreetMap 
- https: //wvrw. openstreetmap. org), so that the geometry defined is automatically asso­
ciated to its GPS coordinates, or a Cartesian system in which the user can upload their
background image (e.g., the floor plan of a floor of a building).

TIPPERS Backend 

TIPPERS APis. TIPPERS includes a set of endpoints and specifications to facilitate the 
interaction with the system and the development of services for it. Through the endpoints, 
application developers can obtain data from TIPPERS that the system collected from sensors 
and abstracted after applying virtual sensors (including those based on usage of PETs). 
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Figure 44: Screenshot of TPortal showing the apps available for users. 

Figure 47 shows an example of the Swagger13 specification of the TIPPERS APis. 
As an example of the different APis available, the policy definition API enables users 

( directly or through the CMU's Privacy Assistant) define their privacy policies. This includes 
information about what information the user wants to share (e.g., location), with whom (i.e., 
TIPPERS users and groups), through which service (e.g., Concierge), and when (i.e., time 
period). 

Internally, the TIPPERS APis translate the requests into SQL queries that are posed 
against the underlying DBMS. Additionally, one of the APis enables developers to directly 
pose SQL queries to the system which is required to develop more complex app functionali­
ties.

As mentioned above, the TIPPERS APis include an authentication mechanism so that 
the system has a way to authenticate requests/policies posed by applications on behalf of 
users. This is an important aspect for real deployments of the system which can include 
applications developed by third parties and a large user base. To this end, the TIPPERS 
API code includes an authentication layer based on the OAuth 2.0 delegated authorization 
framework for REST/ APis. This is an approach widely used in the industry that assigns 
tokens ( with different validity criteria) to both application developers and users of the system. 
Those tokens are appended to API calls posed to TIPPERS and used to authenticate the 
requestor app/user. 

Other TIPPERS components. The main purpose of the TIPPERS backend is to enable 

13https://swagger.io/
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( c) TPortal: Policy definition.

Figure 45: Screenshots of Tportal. 

developers and end-users to use a semantic domain-relevant view of smart spaces for building 
smart applications. This hides the complexity of having to deal with/understand lower-level 
information generated by specific sensors and actuators. To achieve this, we have designed 
and implemented several components that manage the storage of data, translation of requests 
from the high-level to the sensor level, and policy enforcement, among others. 

In particular the translation component uses a metamodel that is designed to represent 
relationships between the low-level IoT devices' world (i.e., devices, observations) and se­
mantic concepts (i.e., users and spaces and their observable attributes). This model is an 
extension of the popular SOSA/SSN ontology. The request translation mechanism takes 
a high-level user request or policy ( e.g., "what is the occupancy of room 2065?", "do not 
share my location when I'm in my office") and translates it into the set of devices related 
with it given the underlying sensor/ actuator infrastructure. By relying on the above meta­
model, we have introduced a language that enables users to express their action requirements 
(i.e., requests for sensor data, commands for actuators, and privacy preferences) in terms 
of user-friendly high-level concepts. To translate user-defined actions into sensor/actuators 
commands, we rely on an ontology-based algorithmic approach. 

The TIPPERS policy engine includes a mechanism that can rewrite queries posed to 
the system (through the TIPPERS APis) by taking into account the user preferences. The 

(a) TPortal: Applications. (b) TPortal: Sensor Registration.
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Figure 46: Screenshots of TMapper. 
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Figure 47: Sample APls. 

policy engine supports the specification of different kinds of policies required by the users 
of the different apps. These policies are either defined through the TIPPERS front-end or 
captured through the CMU policy assistant. The engine supports user and application-level 
policies. We identified 'Groups' (set of users) as an important requirement based on the 
user demand and added support for specification and enforcement of policies based on user 
groups. 

TIPPERS Smartphone Client. The TIPPERS smartphone client is a software compo­
nent for Android and iOS devices that connects them to a TIPPERS space. The TIPPERS 
smartphone client collects data including data produced by the embedded sensors on the 
device (e.g., accelerometers, gyroscopes) and about devices discovered using bluetooth. Ad­
ditionally, it provides access to a user interface to configure the discovery or data collection 
frequency. After devices/sensor data are discovered/collected our technology handles their 
transmission to the TIPPERS core system in the proper TIPPERS-like data format. The 
smartphone client also performs some virtual sensing on the device. In particular, it is able 
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to detect falls given the accelerometer and gyroscope data captured. 
Finally, the client transmits data from a smartphone to the appropriate TIPPERS space 

taking into account periods with lack of connectivity. We refer to this technology as Data 
Mule. Connectivity between a TIPPERS client and a TIPPERS space is not always guar­
anteed. Smart spaces are, in general, equipped with network access points (e.g., WiFi APs) 
to enable the interaction between users and devices. However, there might be parts of the 
space where connectivity is not available and devices/users cannot interact with each other 
or collect data from sensors found around this space. This is particularly relevant in the 
context of the deployment of TIPPERS in US Navy vessels where large areas of the ship did 
not have connectivity. 

In particular, Data Mule maintains a local database on the device in order to store the 
observations labeled with their status - i.e., pending or sent to TIPPERS. A background 
service checks periodically for WiFi connectivity in order to push pending data to TIPPERS. 

3.3.3 Applications & Other Software 

We developed several smart space applications that cover different types of loT applications 
from real-time to analytics and from user-centric to group-centric systems. 

Concierge 

Concierge is a smart-environment service to help visitors and/or building residents to locate 
entities (rooms, people, events) in the building (see Figure 48). It helps visitors and residents 
in answering questions like "Where is professor Mehrotra?", "Where are the restrooms", 
"Where is the CS seminar taking place?", etc. In addition to these functionalities, Concierge 
also lets users take control over which information would be visible to others. 

Concierge provides users with useful information in the building (see figure below): 

• Real time location of group/users.

• Current events.

• Available meeting rooms/lounge space.

• Office.

• Context aware messages. With Concierge, a user can create a notification when:

- A group of people are present in the building.

- Meeting room becomes available.

- Lounge space becomes available.

By incorporating policy APis in TIPPERS and loTA technology from CMU, users are 
given access to groups/people only if they are given permission. 

Concierge helps identifying privacy challenges and some of them are: 
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Concierge 

Looking for_ 

Availablo meeting room Available lounge space 

EvenlS Office M>il 

Figure 48: Screenshot of the Concierge app showing the different services offered. 

• Who should I share with my location in real time? Can I limit sharing location with 
a certain group of people, not all the users?

• While showing the occupancy of meeting rooms, I don't want to reveal my presence. 
Will my occupancy be captured by Concierge?

• Sending context aware messages by tracking my colleague is okay, but the user does 
not want the server to know that his location is tracked by whom. How can I prevent 
it?

The context-aware messaging feature of Concierge incorporates complex conditions (see 
Figure 49). A user can specify under which conditions a message should be delivered given a 
list of recipients, subject, delivery start and end time, and message body. Along with these 
conditions, a user can specify availability of rooms with desired capacity or multiple users 
with location (building, floor, or region) condition. For example, a user wants to be notified 
when the meeting room 2065 becomes available with minimum capacity 10. Or, she might 
want to be notified whether my friend Alice is in Donald Bren Hall. 

This functionality opens up a set of interesting privacy issues. For example, imagine 
that a user John does not want to share his location with another user David but shares 
the information with a third user Mary. If Mary sets up a context-aware message for David 
in which the condition is that the message should be delivered once John is in a specific 
room 2065 (e.g., "we can all meet now in room 2065"), this could potentially leak John's 
location to David. By receiving such a context-aware message and by knowing the message 
conditions, David could know that John is in room 2065. 
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Figure 49: Screenshot of the Concierge app showing sending a context aware message feature. 

Self-Awareness app 

The Self-Awareness app (SAPP) provides users with a detailed history of their interaction 
within a building (see Figure 50): 

SRPP 
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Figure 50: Screenshot of the Self-Awareness App. 

• The graph shows the % of time a user spent in a specific room.

• The menu on the right shows a list of people that a user interacted with the most.
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• SAPP has a physical activity tracker within the building which keeps count of the steps
walked, floors climbed, and the total time spent within a building

• Users can also view their interaction history by clicking on the History tab and selecting
a certain date range. Based on the selected date, the graph in addition to the other
tabs will be updated accordingly.

The historical component of SAPP enables users to interact with data by either: 

• Selecting a certain date/time range (see Figure 51a). Based on the selected date, the
graph in addition to the other tabs will be updated accordingly.

• Selecting a specific timestamp (see Figure 51b). This option is more fine-grained as
compared to the previous feature.

• Selecting a specific location (see Figure 51c). A user can view when she was last in a
certain room/region.

from:�18700AM� To:@._4112/20189·J2PM 

April20111 View Histroy by: Date-Time Range Timesta,np Location 

1 2 3 4 5 6 7 

8 9 10 11.13 14 09 

15 16 17 18 19 20 21 
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29 10 , 2 Submd 

(a) (b) 
View Hlstroy by- Date-Time Range Time.stamp Location 

When was I last at room 

j 2086 (faculty office) 

Submit 

(c) 

Figure 51: Screenshots of Self-Awareness app. 

SAPP helps identify real privacy challenges and hence introduces some countermeasures 
to circumvent them. Some of these privacy concerns are: 

• Privacy inferences.

• Users might be concerned about the building capturing fine grained information about
their location (how much time they spent in the bathroom, how much time they spent
in a friend's office etc.) and who they spent most of their time with, how active they
are (based on the number of steps walked, floors climbed etc.).
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We plan to extend SAPP by adding more features such as incorporating energy consump­
tion data and adding a social aspect to it. The advantage of adding a social component to 
SAPP is the fact that it introduces competition among users and makes it easier and more 
fun to stay active (imagine having reminders to move, or messages stating that you walked 
or stayed in the building more than x% of the people etc.). On the other hand, the social 
networking aspect will also introduce more privacy challenges. For instance, if Dhrub grants 
Roberto the permission to access his location data, who's the owner of the data in this case? 
Can Roberto share the names of the people that he spent most of his time with in his social 
network? 

Noodle App 

Noodle is a smart meeting room application which is capable of policy based data capturing 
from sensors (e.g., video cameras, microphones) present inside the smart space. This appli­
cation can be very useful for capturing data about important meetings, events, seminars, 
conferences inside a building. It can be very beneficial to all types of users inside a building, 
ranging from residents of the building, visitors, to building administrators, security person­
nel, etc. In our prototype, and through TIPPERS, Noodle connects to all video sensors at 
Donald Bren Hall. Users can create an event (see Figure 52 and Figure 53) and specify 
policies using any cameras installed in the building and the system can capture data from 
these sensors. 
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Figure 52: Noodle: View Event Interface. 

The features of the Noodle Application are as follows: 
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• A meeting organizer can set up a meeting using the web application and specify the
policies of recording during the meeting. The organizer can choose any or all the
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Create New Event 

Event Name 

Start Time: I 12/14/2017 10 38·37 AM 

End Time: 112/14/2017 11:08 37 AM 

Audio Option 

Q Enable Microphone Recording 

Video Option 

D Audience Camera (Left Corner) D Audience Camera (Right Corner) D Presentation Camera 

MIME 

Figure 53: Noodle: Create Event Interface. 

sensors present in the room for the purpose of data capturing. 

• During a meeting, if any participant wants to pause the data capture for some time,
then it can be done through the web interface. This functionality can be very useful if
any part of the meeting is strictly confidential.

• We have added a functionality in which a participant will be able to delete the last
n-minute of recording. The system will be deleting the appropriate segments of the
recorded data and store it along with the meeting information. During a meeting, a
participant might want to erase the data captured during the last n-minutes due to
several reasons. The reason for deleting data of last n-minutes can be the occurrence
of some confidential discussion during that time or there might be some breaks during
that time and the organizer forgot to pause the recording etc. For this scenario, After
the meeting is over, all the participants will be able to view the recorded data through
the same web interface.

The Noodle app provides users with a GUI to book our smart meeting room and set 
up information about the meeting (such as participants, topic, duration) and about what 
information should be recorded (which cameras should be on and if audio should be recorded). 
Then, the app generates requests for data capture and sends them to TIPPERS through the 
Open APL TIPPERS schedules the requests and carry them out when the time comes. Then, 
the Noodle app queries TIPPERS (again through the Open API) to obtain the recordings 
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of the different meetings which are finally available to the creator of the event and the 
participants. 

Building Analytics 

The Building Analytics App (see Figure 54 ) provides analytics about data gathered from 
multiple sensors in the building ( e.g. occupancy, temperature, energy and sensor health, 
etc.) . 
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Figure 54: Screenshot of the Building Analytics app. 

r""""""" 

I.SO ..... """""" 

This application can be used for managing efficient space utilization, devising emergency 
exit plans, monitoring energy usage, discovering defective sensors etc by the building ad­
ministrators. At Donald Bren Hall, and through TIPPERS, Building Analytics provides 
analytics about occupancy data that is gathered from Wifi Access Points and HVAC data. 
The user can analyze the occupancy data over any specified time and space granularity. The 
potential users for this Building Analytics App are building managers. The occupancy data 
can help building managers to do the following: 

• Patterns of building usage by occupants for different regions of the building could lead
to customized HVAC settings that save energy without inconveniencing occupants.

• Occupancy data can also be used to determine if there are regions in the building
that are under/ over utilized and such information can lead to plans for better space
management (e.g., understanding class rooms that are overflowing or underflowing or
determining which lounge spaces are popular).
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• Occupancy information in the building can also help devise better emergency exit
plans. It can also help notify the building manager about fire code violations i.e. room
occupancy is more than the room's capacity. 

Although building analytics provide analytics over aggregate data, it can still leak sen­
sitive information about individuals e.g. time spent in the building by individuals, energy 
consumption by an occupant of an office etc. Building Analytics also retrieves private occu­
pancy data from TIPPERS through the PeGaSus System developed by the DP team. 

COVID-19 Monitoring Applications 

We also developed several applications focused on helping the community to monitor ad­
herence to COVID-19 regulations. In particular, we developed and deployed at UCI the 
following applications: 

• Occupancy adherence: which assesses if the community is indeed implementing occu­
pancy and social distancing advisories suggested by the campus administration. As
shown in the figure below (Figure 55 shows the spaces that do not adhere to the social
distance criteria in red), it has the ability to monitor when regions such as classrooms,
meeting spaces, and shared offices exceed desired occupancy levels, identify locations
within the organization where there has been a high rate of people passing by, and
hotspots where groups of individuals tend to congregate. Such monitoring allows or­
ganizations to conduct an in-depth analysis to reveal potential exposure hotspots,
inject interventions ( dispatching supervisors who can nudge individuals to relocate)
or make remedial operational changes such as scheduling more-frequent sanitization
where needed. TIPPERS includes data cleaning algorithms to account for multiple
devices carried by individuals (that would result in over-counting), as well as, sporadic
and noisy nature of the WiFi connectivity data in computing occupancy.

• Exposure Tracing: which enables individuals to share information (without revealing
their identity) to empower TIPPERS to determine location (and time) when those
individuals were in the region. Exposure tracing helps identify regions at the organi­
zation's premises where exposure by others to those infected could have occurred. It
also includes a mechanism for individuals to check (again, without revealing identity)
if they were overlapped with an infected individual in a region. Exposure tracing is
extremely useful to help focus and target contact tracing efforts that are often time­
consuming, by rapidly and accurately determining those who potentially may have
come in contact with an infected individual.

US Navy Applications 

Through our collaboration with SPAWAR, we developed several applications to demonstrate 
the TIPPERS technology in the context of the US Navy. 
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Figure 55: Occupancy adherence app. 

First, we developed in collaboration with SPAWAR an application to showcase the tech­
nologies in the context of privacy-aware surveillance. The application includes the following 
main functionalities: 

• Ability to show occupancy of different spaces (e.g., buildings) as a heatmap. This 
data is extracted from TIPPERS using different APis ( depending on the privacy level 
required - from differential private data with epsilon 0.1 to real count from the Pulsar 
engine).

• Ability to check whether visitors are inside of any classified room and if so, obtain 
information about their hosts and their location. This functionality uses the Jana and 
Pulsar technologies from Galois and Stealth.

• Ability to display information about the privacy vs. utility trade off of the noisy data. 
The app shows a set of graphs displaying the privacy metric (number of people for
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which their location can be guessed at different granularities) and the utility metric 
(number of color changes in the heatmap given the real occupancy data and the noisy 
one). 

Additionally, we extended our COVID-19 monitoring applications to take into account 
specific requirements from the US Navy. In particular, the applications developed to demon­
strate the potential of the technology to the US Navy are the following: 

• Social Distancing: The social distancing application (see Figure 56) deployed at UCI
was modified to show how much social distancing the sailors are observing on a navy
pier.

• Contact Awareness: A new application was developed to show all the contacts of a
particular person (see Figure 57). The contacts can be filtered based on the duration
and distance of the contact. The application also shows the locations the person has
visited at different times of the day.

• Exposure Alert: This particular application (see Figure 58) is an extension of the
contact awareness application and shows the locations visited ( along with the time of
visit) by infected persons. The visits can be filtered based on the duration of stay.

• Infection Propagation: In order to show how the infection might have spread we devel­
oped an application that shows multiple levels of contacts of an infected person (see
Figure 59).

• Alerts Dashboard: This application (see Figure 60) was developed to support a scenario
where some parts of the pier are designated as quarantined locations and remaining as
safe locations. Infected persons are restricted to move from quarantined locations to
safe locations and non-infected persons are restricted to move from safe locations to
quarantined locations. Alerts Dashboard displays all such restricted movements.

Simulator of people trajectories 

Given the limitation in the number of sensors that we can deploy in the ships used in 
the context of the Trident Warrior exercise, as well as the number of spaces available, we 
developed a simulator to generate synthetic trajectories of people within the ship. This 
simulator tool is also essential to evaluate the TIPPERS system along with the different 
technologies included (such as secure storage or differential privacy) prior to the deployment 
of TIPPERS in the ship. The simulator tool, given a description of a scenario, generates 
as output the trajectories of people as well as the connectivity events that WiFi APs would 
capture in the scenario. The description of a scenario that the simulator takes as input 
consists of the following: 
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Figure 56: Social distancing app. 

 Figure 57: Contact awareness app. 

• Space definition: which includes the names and types of the different rooms in the space
(e.g., a ship) along with a directed graph where the vertices of the graph represent
spaces in a scenario, and the edges represent adjacency between spaces.

• Event definition: which describes the events (e.g., cooking service hours) that occur in
a space and that are used as drivers of the simulation as people move in the space with
the goal of attending events. Notice that some events are labeled periodic, meaning
that they will occur on a periodic basis (e.g., every Monday).

• People definition: which includes the template of the different person profiles (e.g.,
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Figure 58: Exposure alert app. 

From: 2020-05-01 00:00:00 To: 2020-05-02 00:00:00 Level· 4 

Figure 59: Infection propagation app. 

sailors) in the scenario including the events that each profile is likely to attend. 

To generate the trajectories of these people, the simulator tool uses the profiles input 
to randomly generate n people of varying profiles. Then, for each person, it assigns events 
that they can attend with some probability p. For the events labeled periodic, we have the 
person attending an event when appropriate; this periodicity allows the simulator to project 
the patterns that arise in the person's day. To add additional noise into the simulation, the 
simulator allows people to take leisure breaks when they are not assigned to attend some 
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Figure 60: Alerts dashboard app. 

event, and take restroom breaks throughout the day. 
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3.4 Evaluation and Analysis of PETs 

In this section, we describe the evaluation of the TIPPERS system and the integrated privay 
technologies. We showcase the evaluation performed in three different settings. First, we 
explain the evaluation of differential privacy techniques in the context of the UC Irvine 
deployment. Then, we show an analysis of the privacy challenges that arise in workplaces 
performed in the context of a deployment at Honeywell. Finally, we explain the evaluation of 
the system and its PETs in the context of the deployment done in a US Navy vessel during 
the Trident Warrior 2019 exercise. 

3.4.1 Evaluation at UC Irvine 

In this section, we first describe the development of a tool to analyze the trade-off privacy­
utility of the DP technology developed by the UMass/Colgate/Duke team in the context of 
real analytical IoT tasks. This tool, that we collaboratively developed with the DP team, 
resulted into a demo paper publication in ACM SIG MOD 18. The goal of the demonstration 
is to assess the usefulness of private streaming data in a real-world loT application setting 
and to explore privacy-utility trade offs of differentially privacy algorithm called PeGaSus 
which is specifically designed for streaming data to be released under the formal guarantee 
of differential privacy. Second, we present a study which evaluates the practical implications 
to individual's privacy, defined as the certainty at which the location of an individual's loca­
tion at a given point, of publishing a continuous occupancy map generated from streaming 
sensor data. The study considers an experimental evaluation of diverse privacy enhancing 
technologies (PETs) to publish occupancy data derived from continuous sensor streams in 
emerging smart buildings. In particular, we study the performance of techniques that are 
derivative of differential privacy vs. the de-linking technique used when sharing connectivity 
data in our deployment. 

3.4.1.1 Testing Differential Privacy in Window Analytical Tasks 

Emerging Internet of Things (IoT) technologies [94, 95] promise to revolutionize domains 
like health, transportation, smart buildings, smart infrastructure, and emergency response. 
IoT has the potential to connect a large number of commodity devices ( e.g., sensors, actua­
tors, controllers) into an integrated network that can empower systems with new capabilities 
and bring transformational improvements to existing systems [95, 96]. In loT systems, sen­
sors are used for fine-grained monitoring of the evolving state of the infrastructure and 
the environment. Our interest is in user-centric loT spaces ( as per the IEEE P2413 stan­
dard [97]) wherein sensors of diverse types ( e.g., cameras, cell phones, WiFi access points 
(APs), beacons) are used to create awareness about subjects/end-users, their interactions 
with one another, and with the space. 

While fine-grained continuous monitoring offers numerous benefits, it raises several pri­
vacy concerns [98, 99, 100]. To appreciate such concerns, consider smart buildings, such as 
smart office spaces and/or smart retail spaces, that track individuals' location and activity 
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to provide customized experience based on user's context. Such services could include cus­
tomized HVAC control based on user's preference, help locating nearby resources, and/or 
customized coupons/incentives in a retail setting. Fine-grained monitoring, besides enabling 
customized services, also raises significant concerns about the data collector being able to use 
the data captured to infer properties such as religious beliefs, gender, personal habits of indi­
viduals (e.g., smoker/non-smoker), among others, which individuals may not be comfortable 
sharing without explicit consent. Our own experience in developing TIPPERS shows that 
low-level sensor data captured by WiFi APs, motion/light sensors can allow for inferences 
about individuals, their locations, and their work habits. 

We assume that the IoT infrastructure is trusted but that privacy violations for monitored 
individuals may result from the release of collected data through the many applications 
envisioned for IoT. The privacy literature has shown that serious disclosures can result even 
when data is anonymized or the released data consists of aggregate statistics about groups of 
individuals. We use differential privacy [101], with appropriate privacy parameters, to offer 
protection to individuals whenever data is released beyond �he trust boundary of the IoT 
system. 

Our goal in developing this tool is to explore privacy-utility traae offs offered by methods 
such as PeGaSus [102] (which provides differentia:] privac:½ guarantees over streaming data) 
in supporting real-world applications for everydaJ use in a real IoT testbed. TIPPERS uses 
diverse sensor data to generate a dynamic state of tlie llfailding and its occupants-in partic­
ular, sensors such as WiFI APs, video cameras, and bluefooth beacons are used to determine 
the location of individuals in the 6-story Computer Science building as a function of time. 
Such location data is used, in turn, to create ai wariety of applications ( described briefly later) 
used by building occupants and N"isitors PeGaSus, and other privacy mechanisms which in­
troduce noise into released aggregates; a:r.e currently being integrated into TIPPERS to offer 
rigorous privacy protections. 

We focus on the Building Analytics application built into the TIPPERS testbed. The 
application offers end-users an ability �o monitor occupancy levels at various granularities 
(e.g., room, floor, region) and types (e.g., faculty offices, student spaces, conference rooms, 
meeting rooms, lounge SP.aces). Historical data can be analyzed at various temporal gran­
ularities (minutes, hours; days). Motivated by the tasks for which the Building Analytics 

application is typically used, we have created a game, IoT-DETECTIVE, in which a player is 
asked to perform one ( or more) interactive analytics tasks using a visual analytics tool based 
on private streams. These include identifying high-occupancy regions, finding unresponsive 
sensors, or counting the number of times occupancy exceeded a threshold. As part of the 
game, users are offered differential private views of the data and are rewarded for both their 
accuracy and timeliness in finishing the task. 

The IoT-DETECTIVE Game 

The game involves a player who is challenged to identify a real world event or pattern using 
tools provided by TIPPERS on the differentially private data, much like a building manager 
might in a real-world deployment. The purpose of the game is two-fold: 1) To illustrate 
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the privacy-utility tradeoffs in the differentially private data generated by PeGaSus in a way 
that engages SIGMOD attendees; 2) User-test this tool for a future study of whether users 
can use differentially private data for loT analytics. 

To play the game, the demo participant interacts with the IoT-DETECTIVE game (see 
Figure 61), which is very similar to the Building Analytics app, but has some additional 
game-specific features, such as a timer, leader board, etc. The game is played in rounds 
and a player can play as many rounds as possible in the allotted time. In each round, the 
player is given a specific task which requires answering a factual question about types of 
events during certain time periods (e.g., to identify the most likely time a weekly meeting 
occurs). The player can then use the app to navigate through the data to identify the 
relevant ( differentially private) data streams and temporal windows and derive an estimate 
for the answer. The accuracy of the answer is measured in terms of the difference between 
the player's estimate and the correct answer on the true (non-differentially private) data. 
Players will be rewarded with points after accurately accomplishing each task. The amount 
of points will depend on a combination of the accuracy of their estimate, the time taken to 
complete the task, and the number of tasks they have completed ( to incentivize participants 
to play more than one round). The demo will track player points and maintain a leader 
board to encourage friendly competition. 
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Figure 61: Screenshot of the IoT-DETECTIVE game interface. 

The accuracy of a player's answer depends on two primary factors. First, it depends on 
the player's ability to successfully navigate the user interface-thus, the demo is serving as a 
valuable user test to see if the tool is intuitive and effective for these analytics tasks. Second, 
it depends on the amount of noise injected into the data stream by PeGaSus. By varying the 
privacy parameters across users and rounds, we can gather some preliminary data on how 
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much noise is tolerable for varying tasks-thus exploring the practical viability of differential 
privacy in streaming data settings. 

Example Tasks 

The Building Analytics Game app will be initialized with a differentially private dataset that 
reports occupancy information at 5 minute intervals for each room in the building. 

An example of a task might be: "On [specific date], count the number of time units (5 
minute intervals) in which the occupancy of the [main conference room] exceeds [60]." The 
parts in brackets can be varied to generate different versions of this task. The motivation for 
this task is that building managers may wish to detect when a room exceeds its maximum 
permitted occupancy under fire code regulations, or identify rooms/times in which space 
is heavily-utilized. Players will be asked to perform a variety of tasks. The following are 
additional illustrative examples: 

• High occupancy regions. The rooms can be naturally organized into a fixed set of regions
e.g., Facilities Offices, Department of Informatics, etc. This task is to identify which
region is the most occupied at night (6pm to 6am) on [a particular day]. Most occupied
could mean average number of people are highest during night time. The motivation
for this task is better HVAC control at late hours when there are fewer occupants in
the building. The accuracy measure can be the difference in rank between the user's
choice and the true answer.

• "Broken" sensors. We presume here that when a sensor breaks, it no longer senses
its environment and continuously reports a constant value, such as zero. Thus, we
formulate the task as follows: identify the earliest point in time in which [a particular
sensor] starts continuously reporting zero. This is motivated by the practical challenges
that building managers face with equipment maintenance. The accuracy measure is
distance to the actual time the sensor breaks ( we will artificially modify the dataset to
make a sensor appear broken).

• Occupancy at routine events. The task is to identify the start time of a regularly
occurring event in a particular room e.g. start time of a lecture in a classroom. The
motivation is to facilitate better scheduling or detecting events that deviate from a
schedule. The accuracy measure is the distance between the player's estimate and the
actual start time of the event.

Post-game empirical evaluation 

IoT-DETECTIVE records traces of the games of all participants. In addition to providing 
immediate feedback to users on their success, we intend to analyze the complete trace to 
better understand the impact of the privacy mechanism on the usefulness of visually displayed 
stream data. The trace of game play will allow us to answer questions such as: For what 

setting of the privacy loss parameter {E) is task success negligibly impacted? For what 

settings 

Approved for Public Release; Distribution Unlimited.

118



of E does task success break down? To what extent does task success vary across the user 
population (e.g. due to differences in skill or attention)? How do the above vary across 
different tasks? (e.g. are some tasks more tolerant of distortion in the data or of poorly 
skilled players?) Is there systematic bias in task answers that results from the perturbed 
data? Each one of these factors is crucial to a successful integration of PeGaSuS in a real 
IoT system, and will provide insight into feasible privacy settings and improvements to 
privacy mechanisms. 

3.4.1.2 Privacy vs Utility Analysis of Connectivity Data 

In this study, we are targeting systems where location of individuals is collected, but 
only occupancy data is available through the queries. For this class of systems, we want to 
evaluate the privacy implications of a given technique following the methodology summarized 
in Figure 62. Notice that the methodology is general and can be used in other contexts too. 
Therefore, along with the explanation of each component we explain how they have been 
instantiated in our scenario. 
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Figure 62: Methodology defined. 

We define a database D that contains all the data captured by the smart building. The 
data, as well as its schema, is fixed. We define T to be the set of Privacy Enhancing 
Techniques utilized for answering the adversary's allowed queries. Thus, we consider that a 
technique TE T answers the query QT as AT in a privacy preserving manner after consulting 
D. 

Adversarial Model. As an adversary, we consider a tuple of algorithms whose goal is to 
retrieve/guess information about individuals in the dataset. We consider that such informa­
tion cannot be directly accessed by the adversary by posing queries on the dataset. Also, 
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we consider that the adversary can pose some queries on the dataset. More formally, we 
define such tuple of algorithms for: 1) Creating the prior P by asking questions QP, that the 
adversary can pose on D, in addition to his/her background knowledge, for prior creation. 2) 
Computing the guess AG' to the question he/she wants to retrieve/guess from D by posing 
questions QT to the technique and using answer to QT (i.e., AT) and the prior P. The 
goal AG that the adversary wants to retrieve/guess from D that can be retrieved by posing 
questions QG may be specified as a set of SQL queries against the database D. Notice that 
QG cannot be posed on D by adversary. 

In the context of our study, we consider that the adversarial prior P is created by observ­
ing past occupancy as well as presence data QP. Also, the adversary aims at guessing (AG) 
the location of individuals at a time t. The adversary may have access to some background 
knowledge about some users location at time t. The adversary is allowed to pose queries 
( QT) to obtain occupancy counts (AT) through technique T at the given time t.
Privacy Metric. As the goal is to determine the practical privacy implications of technique 
T, we define a measure based on privacy loss. This is defined as the number of people for 
which the adversary can guess the correct location at time t with a specific confidence class 
(in our experiments we defined six levels of confidence classes). First, we compute the 
adversary's guess based on prior P. This measure indicates how good is the adversary's 
guess of AG based on just the prior. Then, we computed the adversary's guess AD based 
on answers to QT without using any technique. This measure indicates how good is the 
adversary's guess of AG if the adversary was allowed to run query QT over database D 

without any privacy preserving mechanism T. Finally, we compute the adversary's guess 
AG' based on prior P and answers to QT using technique T. This measure indicates how 
good is the adversary's guess of Ac based on the prior (P) and answers to queries QT using 
privacy preserving mechanism T. 

Next, we present our method to compute posterior for an adversary with and without 
privacy mechanisms. 

Posterior without Privacy Techniques 

Let U be the set of users, £, the set of locations, and T the set of observed timepoints. For 
all u E U, l E £, t E T, let p�

z 
denote the prior probability of the user u being in the location 

l at the timepoint t. Now fix a particular timepoint t. Assume that, for each location l,

the attacker has obtained the total count cf of users that are in location l at time t. We
want to see how the probability P�

z 
changes after the attacker observes the counts (cD£E.C·

Let Cj be the random variable corresponding to occupancy of room I!, at time t. Define an
event C := /\£E.C (Cj = cD. Let the notation "u E l@t" denote the event "the user u was in 
location l at time t". Using Bayesian inference, we get 

1 
Pr[u E l@t I C] =

I:i,=tE.C Pr[uE£@ti\C] (32) 
l + Pr[uEl@ti\C] 

To compute (32), we need to estimate Pr[u E l@t I\ C] for all l E £. This can be done 
as follows. The user u is assigned the location l. The remaining IUI - 1 users need to be 
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distributed to locations in such a way that the resulting occupancies would satisfy C. That 
is, the users are partitioned into 1£1 disjoint sets SR. (£ E £), where ISzl = cf-1, and IS£1 = c} 
for £=/:- l. The quantity Pr[u E l@t I\ C] can be computed by summing up the probabilities 
of all possible partitionings of users to such sets, which gives us 

Pr[u E l@t I\ C] = P�z · 
(IBtl=cj)£,=!•ISz l=cf-1 £EC vESt 

Vk,f.:SknS1=©,VR.:uff.St 

We could directly compute the sum over all possible partitionings, but it would be com­
putationally too expensive. We need to make some additional assumptions to simplify the 
computation. 

Non-individualized Distributions 

Let us assume that we have P�
z 
= Pt

z 
for all users u, v E U, i.e., the distribution of locations 

does not depend on the individuality of a particular user. This is reasonable in the case 
where the potential attacker only knows how an average user behaves in general, but does not 
distinguish between them, e.g., the attacker learned this by a prior observation of occupancy 
counts for a certain period of time. Let n� be the total number of users recorded at time 
t. The rooms are occupied according to multinomial distribution: if we order the users and
assume that the first cf go to 81, the next ct got to 82, etc, there are (n� -1)! possibilities to
rearrange the users, and since the ordering inside Si does not matter, we get c{!--•ic!�--;_�?.' .. chz' 

possible partitionings for nz = 1£1 rooms. We get 

(33) 

which gives us the posterior probability 

(34) 

This is quite an intuitive result, since if all users are treated equally, then any user will 
most likely be located in the most popular place, even if the prior probability of being there 
is very small. In fact, the posterior probability does not depend on the prior probability at 
all, but only on the counts, as the prior probability only defines the distribution of room 
occupancy, which is overridden by actual counts. 

Increasing Attacker's Knowledge 

If the attacker only knows the counts, his/her probability of guessing will be quite low even 
if no privacy mechanism is used. In reality, it is unlikely that the attacker has no other 
information at all. It is quite possible that he/she already knows the location of some people 
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at the time of the attack. For example, some locations may be observed by the attacker 
directly ( e.g., if the attacker is physically located in the space, he/she could observe who 
is around him/her) or through security cameras (e.g., for an attacker with access to the 
security camera system). We will refer to those areas for which the attacker has information 
about who is located inside of it at the time of the attack as open regions. Considering such 
open regions reduces the total number of locations where the victim could potentially be, so 
the posterior probability increases. The prior probability will also change, and will be scaled 
according to the number of open regions. 

Posterior with a Privacy Technique 

Let X be the random variable representing attacker's opinion about the input x, and C 
about the true output c ( without noise). Let Y be the random variable representing the 
noisy output y, and fy (·) its probability density function. We let x denote the part of the 
input, guessing which is the attacker's goal, i.e., the location of the victim. Let X be the 
total space of possible values of x, i.e., all possible locations. The particular timepoint that 
we consider is implicit, and we do not use it in the notation. 

In Sec. 3.4.1.2, we have shown how to compute Pr[u El I C = c] for a count histogram 
c = (cD£E.C· In this case, X = x iff u E l, so we can use the results of Sec. 3.4.1.2 to compute 
Pr[X = xlC = c]. We can use these results also to compute Pr[X = xlC = c, A] where A is 
the additional knowledge that comes from opening some regions to the attacker. We want 
to estimate Pr[X = xlY = y, A]. 

A Worst Case Bound for Laplace Mechanism 

First of all, let us discuss a known upper bound on posterior probability for Laplace mech­
anism, taken from [103]. Assume that the attacker already knows the location of all other 
users except the victim. Let X be the set of possible choices for the attacker, i.e., lo­
cations of the victim. Laplace mechanism parametrized by E gives us an upper bound 
fy (y IX= x) � eE·lx-x'IJy (y I X= x') for all x,x' E X. Using Bayesian inference, for 
all y E Y, we can write 

Pr[xlY = y] 
fy (y IX= x)Pr[x] 

fy (y)
1 

1 
Lx'EX\{x} fy(y I X=x')Pr[x'] 

+ fy(y I X=x)Pr[x] 

1 

1 + e-ELx'EX\{:z:} Pr[x'] ' 

Pr[x] 

(35) 

(36) 

(37) 

so, in our case study an upper bound on posterior guessing probability is 1/(1 + e-E • (1 -
p�1)/p�1), where p�1 is the prior probability of user u being in location l at time t.
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One disadvantage of the obtained upper bound is that we assumed a very strong attacker 
who already knows locations of all other users. We could try to increase the number of 
unknown users, which changes the definition of X. This would decrease the prior, but at the 
same time we would get e-Ek instead of e-E, where k is the number of unknown users. The 
exponent grows too fast with k. Hence, we cannot experiment with adversarial knowledge 
parameter A to get smaller levels of posterior probability. 

Another problem is that the obtained upper bound is very generic and does not depend 
on the true query output q(x), so it approaches 1 as noise approaches 0, and we cannot use it 
to evaluate a particular query output. Intuitively, if the privacy mechanism releases q(x) + rJ 
for some randomly sampled 'T/, then the attacker cannot get more advantage in guessing x 
than from observing q(x). Hence, we are looking for other approaches that would give us an 
upper bound Pr[x I q(x)] on posterior guessing advantage. 

Posterior for a Particular Noisy Output Instance 
Let us try to evaluate the quantity Pr[xly, A] = Pr[xlY = y, A] directly. Let C be the set of 
all possible true outputs (e.g., count histograms). Using chain rule, we can write it out as 

Pr[xly, A] = L Pr[xly, C = z, A] · Pr[zly, A] . (38) 
zEC 

This equality can be viewed as an attacker making a guess z about the real output q(x) 
and checking how likely this z could be obtained from the noisy output y. After the attacker 
has selected z according toy, it makes it guess purely from z and the additional knowledge 
A, so Pr[xly, C = z, A] = Pr[xlC = z, A]. To estimate Pr[zly, A], the attacker takes into 
account the likelihood of the noise that would turn z into y, as well as the probability of 
z itself. It can be done using Bayesian inference Pr[zly, A] = fy(ylC1:c:�-�)[z I A]. Since A 
only contains knowledge about the data, and not the distribution, we have fy(ylC = z, A) =
fy(ylC = z), which can be computed from the noise distribution. The quantity Pr[z IA] can 
be computed from prior probabilities, taking into account the additional knowledge. From 
these two quantities, we can in turn compute fy(y IA) = E

zEC 
fy(ylC = z)Pr[z IA]. We 

get 
[ I ] _ E

zEC 
Pr[xlC = z, A]

·
fy(ylz)Pr[z I A]Pr x Y, A - E

zEC 
fy(ylz)Pr[z I A] (39) 

Intuitively, we want that our estimated posterior probability would stay between the 
prior Pr[x IA] and the probability Pr[x le, A] of guessing from the true count c. 

Posterior for a Particular True Output Instance 
Fixing a particular y E Y can make the attacker seem too successful or too unlucky, depend­
ing on they E Y that we have got. Knowing a particular distribution on Y, we may estimate 
how much the attacker may guess in average for a particular output c := q(x) EC. First of 
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all, we could directly compute the average posterior probability for all possible outcomes y 

as 

Pr[xlA] = [ Pr[xly, A]· fy(ylc) dy (40) 

This approach is good if the resulting integral has closed form, or at least can be approx­
imated efficiently. However, in practice it may be computationally hard to compute the 
integral precisely. Alternatively, we can empirically compute the posterior probability on 
many instances of randomly generated noise. 

Experiments 

The experiments are performed on presence and occupancy records for 3 months (February, 
March, April, 2018), which comprises N = 89 days. We use the first N - 1 days of presence 
data for constructing prior probabilities. We then use the last N-th day of the occupancy 
table to compute posterior probabilities, showing how attacker's guesses improve compared 
to guessing from prior. Our analysis consists of the following steps. 

1. We split a day into 10-min spans. This gives us T = 144 time units per day.

2. For each 10-min span t of a day, for each location land each user u, we compute prior
probabilities Pprior(u,t,l) from the first N - 1 days.

3. Based on the prior probabilities Pprior(u,t,l) and the noisy occupancy counts generated
by a particular privacy mechanism M on the N-th day, we compute the posterior
probabilities P�syOcc(u,t,l)· Among other mechanisms, we estimate M(x) = x (guessing
from true occupancy counts) and M(x) = l_ (guessing just from prior).

4. Let Ptrue(u,t,l) E {O, 1} be the actual user locations, i.e., Ptrue(u,t,l) = 1 iff u was in 
location l at time t. Compute the following for each user u and time t:

P:Uess(u,t) = L p�syOcc(u,t,l) 
· 

Ptrue(u,t,l)
lE.C 

(41) 

5. Plot aggregate privacy metric: how many people have been localized correctly from
P:Uess(u,t) with a probability within certain range, excluding those who have been lo­
calized with similar confidence purely from prior.

Prior Distribution 

For a fixed timepoint t, the attacker receives a prior distribution of location of an "average 
user", expressed as pf E [0 .. 1] for all l E £, where L

lE
.cPf = 1. The values pf are computed 

from the training period using counting. That is, for each time of day t, we count the total 
number of users mf recorded in region j at time t, and define pf = mf/ L

lE
.C mf. Hence, the 

prior defines an expected distribution over region counts for different times of the day. Here 
we use the meta-knowledge that similar pattern repeats periodically. The priors would be 
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more precise if we generated, for instance, a separate prior for each weekday, or found some 
more interesting meta-data like exceptional holidays which should be discarded as outliers. 
The problem is that, the more we partition the prior, the less data we have to estimate it. 
Also, too strong prior may nullify guessing advantage, as the attacker would learn too much 
already from the prior. 

Posterior Distribution 

The attacker receives noisy occupancy counts (yf)zE.C, of all regions at timepoint t. Depending 
on the attacker type, certain regions in the buildings are opened. If the opening does not 

t 

reveal the location of u immediately, it modifies the priors as p�1 = 

L 
Pui 

t for l E £closed, iECc1osed Put 
where £closed is the set of regions that remained closed. 

For true outputs, the victim's location depends solely on the counts of the current time­
point. This is however different for privacy enhancing mechanisms, where sequential time­
points may leak information about each other's randomness. For example, if the attacker 
knows that the counts most likely do not change during a 1.5 hour span ( e.g., if the region 
is a classroom and it is a lecture time), then the noise will be essentially applied to exactly 
the same counts, and multiple outputs help in undoing it. Hence, let us only estimate how 
much the attacker learns from the output of single timepoint. That is, while we still report 
results for all timepoints t, we assume a separate attacker for each reported timepoint. 

Let m be the total number of objects, and p := p} be the probability of each object 
being in region l. The question is now how to efficiently compute Eq. 39. Since z is not a 
single count, but a vector of region occupancies, summing up all combinations z1, ... , Zn is 
infeasible. Hence, let us estimate how much the attacker learns from observing the occupancy 
of one region without taking into account the others. For guessing from true counts, we only 
need to know z1 and m, so similarly to the issue with different timepoints, taking into account 
more zrs can only help in undoing the noise, e.g., if the attacker knows that some regions 
are occupied simultaneously. 

While these two constraints are fine for guessing for true counts, they give us only a lower 
bound for general privacy mechanisms, showing how much an attacker can learn at least. 
Similarly to composition theorems of differential privacy, we can extend our results to several 
outputs as described in App. ?? , but it may give us too rough upper bounds. As a result, 
we are comparing different privacy mechanisms based on observing a single output. It may 
be that some mechanism scales better with the number of observed outputs than another, 
which remains out of scope of this paper. 

We are now ready to estimate the posterior probability. Using Eq. 39, we get 

(42) 

where y is the occupancy of one particular region, and the probabilities are instantiated as 
follows. 

• Pr[xlC = z] = ¾,.
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• fy(ylz) depends on the particular analyzed privacy mechanism.

The quantity fy(ylz) is either given in advance (for a known noise distribution like 
Laplace), or approximated from (y, z) points of training data using kernel density estimation 
(KDE). This is a quite standard density approximation technique, which can be viewed as 
assigning to each sample point a bell-shaped curve centered at that point, and then summing 
all curves up, scaling the result to get a probability distribution. We use Gaussian kernel of 
Python scipy library. By default, the Gaussian KDE bandwidth parameter in scipy library 
is n-

1/(d+4), where n the number of data points and d the number of dimensions. In our
case, n comes from the training data (88 days), and since we are computing a separate kernel 
for each true count z (the approximated probability density is conditional), we have d = 1. 
We note that attacker's success may depend on the bandwidth parameter, and choosing one 
that approximates the noise distribution most precisely is out of scope of this work. 

In general, we do not know which parameters we should take into account in training. 
E.g., even if we include all occupancies of all regions to predict occupancy of a single region,
some meta-knowledge like day of the week or time of the day can actually affect the noise
distribution. For DP, we actually know that the noisy output depends only on the random­
ness and the true output, but in general we do not know all dependencies in advance. To 
simplify the training process, in our experiments we compute the noise distribution for a
single location at a single timepoint, as if the randomness was sampled independently.

The posterior confidence of the attacker may be erroneous due to improperly computed 
noise distribution, or improperly computed priors. The latter may happen even if we use a 
well-defined DP mechanism. Hence, we add an important condition to our privacy metric. 
We model a particular attacker who actually makes a particular guess about victim's loca­
tion. We then check whether that guess has been correct or not, and nullify the estimated 
advantage if the guess was incorrect. 

Results 

The results of our experiments are presented as plots (a sample plot is given in Figure 63). For 
each of the T timepoints, we count the total number of people whom the attacker managed 
to localize correctly with certain confidence, defined as the posterior probability of being in 
the room where the user has actually been according to the presence table. On each plot, the 
x-axis denotes the timepoint, and the y-axis is the number of localized people. The colors,
ranging from light blue to dark red, correspond to localization confidence p, where light
blue is the lowest confidence class (0.0 < p S 0.1), and dark red is the largest confidence
class (0.9 < p S 1). Notice that the plot shows for each time point the total amount of
people localized in the building broken into different confidence classes. This means that,
for instance, out of the 123 people located in the building at 11 :40am of the particular day
in Figure 63, 22 are localized with the lowest confidence 0.0 < p S 0.1, 55 with confidence
0.1 < p S 0.25, 26 with confidence 0.25 < p S 0.5, and 20 with confidence 0.5 < p S 0.75.
There are no red and dark red areas for 11 :40am, so there have been no people localized
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with confidence p > 0.75. The plot format will be the same for all plots in this paper, so we 
will avoid repeating labels and legends on further plots to conserve space. 

(0.00,0.10) 

■ (0.10,0.25] 

■ (0.25,0.50] 

(0.50.0.75] 

■ (0. 75,0.90] 

■ (0.90,1.00) 

Figure 63: A sample plot: x-axis is the timepoint, y-axis the total number of people localized within 

each confidence class. 

Exact vs Predicted Noise Distribution 

First of all, we need to estimate how well predicting fy(ylz) using kernel density estimation 
from training data works compared to true noise distribution. We do it on the example of 
Laplace noise, for which we already know the true distribution of noise fy(ylz) = ½ • e€·1y-zl_ 

The plots of prior probabilities are given in Figure 64. The three columns correspond 
to the initial knowledge of the attacker, where he knows 8 E {0%, 50%, 90%} of people 
locations. In this experiment, the regions have been opened randomly. We compute the 
posterior probability for each user on the condition that their location has not been revealed 
to the attacker directly, so formally for each potential victim we consider a separate attacker 
who knows 8 of the other users. This is why we do not observe that 8 of the graph is dark 
red. 

For posteriors we will only show those probabilities that have been improved compared

to the prior, thus demonstrating the advantage. The results are given in Figure 65. The 
rows of the plot matrices correspond to EE {0.1, 1.0, 5.0, oo }, where oo is guessing from true 
outputs. We can see how confidence increases with E. We see that E 2: 5.0 already gives 
us a plot very similar to guessing from true outputs, so it does not make sense to consider 
larger epsilons. For smaller epsilons, we indeed get smaller confidence, which converges to 0 
as E -t 0. While the posterior probability always increases with 8, we see that the advantage

may sometimes be larger for smaller 8, which means that the attacker guesses so poorly from 
prior that even a very noisy answer gives some benefits. 

We compare obtained results with the worst-case upper bound estimate considered in 
Sec. 3.4.1.2, which does not depend neither on 8 nor the particular counts, and holds for any 
E-DP mechanism. The results are given in Figure 66 for E E {0.1, 1.0, 5.0}. We see that, for
larger E, the upper bound gets larger than the probabilities of guessing from true counts, so
the upper bound is too rough for our type of attacker. These bounds nevertheless seem to
be good for small E.

Table 13 shows the times of computing the posterior probabilities. The first row corre­
sponds to computation of the worst case bound of Sec. 3.4.1.2. The second row corresponds 
to precise computation of posterior (Eq. 39). In general, the precise computation of posterior 
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is 0( n) times slower for n rooms since we are evaluating a sum over n terms. In our example, 
it is ca 9 times slower for n = 64 rooms. The preprocessing time is spent on the bookkeeping 
related to loading data from the database. We do not count the time spent on generating 
the occupancy tables. 

Figure 64: Prior guessing probabilities for 8 = 0% (left), 8 = 50% (middle), 8 = 90% (right) 

,J.__ 

Figure 65: Posterior guesses from noisy Laplace counts for 8 = 0% (left), 8 = 50% (middle), 
8 = 90% (right), EE {0.1, 1.0, 5.0, oo} (top to bottom) 

Since the trained noise distribution does not depend on <5 anyway, let us only consider 
<5 = 0.9. 
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Figure 66: Posterior guesses for worst-case DP, 8 = 90%, EE {0.1, 1.0, 5.0} (left to right) 

First of all, we repeat the experiment with known DP noise distributions, filtering out 
the guesses that have actually been correct ( top row of Figure 67). We then repeat a 
similar experiment with noise distribution learned from prior data, using Gaussian kernel 
with default parameters (bottom row of Figure 67). The plots are shown for EE {0.1, 1.0, 5.0} 
(left to right). We see that the guesses based on trained distribution perform similarly to 
the true distribution of Laplace noise. 

Table 13: Running times (in seconds) of computing posterior probabilities for Laplace noise. 

worst-case DP bound 
Pr[xly] for known fy(ylz) 

Pr[xly] for unknown fy(ylz) 

Preprocess 
4 

4 

4 

Training Posterior evaluation 
0 0.6 

0 5.4 

6.9 7.3 

The third row of Table 13 shows the times for the trained distribution experiment. We 
see that the testing time is a bit higher, which is due to computing fy (ylz) from kernel. In 
addition, there is now also some time spent on one training to compute the kernel itself. We 
note that for DP experiments, we need a separate training for each E.

Figure 67: Successful guesses from noisy Laplace counts with 8 = 90% using true distribution (top) 
and scaled kernel density estimation (bottom), EE {0.1, 1.0, 5.0} (left to right) 
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Comparing Different Privacy Techniques 
We now compare the techniques w.r.t. the attacker's success in breaking user privacy for 

the same level of utility. The noise density functions of all methods is approximated from 
training data using Gaussian kernel with scaling 0.1. The parameter 0.1 has been chosen 
empirically as the one for which the attacker was more successful. We note that a different 
scaling parameter can be preferred for different mechanisms, and that the goodness scaling 
in turn depends on the size of training data sample: the more datapoints we have, the more 
we want to narrow the kernels to get a more precise estimate. 

TTL changes the unique identifiers of the objects every k seconds for a fixed parameter k. 

However, counting does not depend on the identifiers anyway. The only way in which TTL 
can affect released counts is that the same user may be recorded multiple times if his identity 
has been updated within the 10-minute span for which the count is computed. If the attacker 
knows the value k, it can just divide all counts by the expected number of repetitions to get 
the true counts back. We see that there are no provable security guarantees at all. However, 
in practice the number of repetitions turns out to less predictable, as the identities are not 
being updated "for all users at once", but depend on the time when the user has connected 
to the system. While there is no randomness, the non-determinism of user movement can 
be viewed as a random variable whose distribution is difficult to estimate theoretically. 

To fairly compare privacy loss across diverse PETs, their utility should be similar as 
there is an inherent privacy vs. utility tradeoff. We have developed a tool which, given a 
specific task, obtains the configuration parameters per PET (i.e., epsilon and TTL) that will 
satisfy a given utility requirement. The tool takes as input the WiFi connectivity data, the 
PET to apply, a function that computes utility, and a requirement for the utility. Then, 
it tries different values for the privacy parameter until it finds one that satisfies the utility 
requirement. In our set up, we define the task to be that of generating a heatmap given 
the occupancy data (real data or data generated through a PET). Our utility metric is 
computed as a percentage difference between the heatmap color assigned to the occupancy 
value generated by the PET and the heatmap color assigned to the real occupancy value 
(100% utility means real data and data generated by the PET are assigned same color). 
Then, we average this utility across time and space to get the utility value for a given 
dataset. 

We computed parameters for PeGaSus, Laplace, and TTL that give us the utility 75% 
and 90%. These parameters are summarized in Table 14. We compute these parameters over 
5 runs for non-deterministic techniques (i.e., Laplace, PeGaSus). The utility in each run lies 
within 75 ± 0.2% and 90 ± 0.2% for the given parameters. Since the privacy parameters for 
the same utility are very different for day and night time, we also extract privacy parameters 
for day and night times and perform different experiments. Since TTL tends to map empty 
rooms to empty in most cases, for TTL we get high utility at night when the most true 
counts are 0, which allows us to introduce more noise, i.e., refresh the user identities more 
frequently. To get 90% utility for PeGaSus for day time, E turns out to be very high i.e. 15. 
For high values of utility, we see a very small increase ( only 2%) in utility from E = 2 to 
E = 15 which is possible due to error introduced by grouping/smoothing of contiguous similar 
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occupancy counts. Since the utility is averaged over time and space, we also show average 
variance in utility over time and space au (which turns out to be similar across techniques). 

Table 14: Parameters achieving the same utility for different privacy mechanisms. 

utility Laplace PeGaSus TTL 

au E au E au T 

day 75% 23.7 0.1 24.1 0.04 20.4 1sec 

90% 14.5 0.66 16.9 15 14.9 2min 

night 75% 26.6 0.18 26.6 0.00001 19.5 1sec 

90% 19.3 1.675 19.5 4 19.5 1sec 

Instead of opening regions to the attacker randomly as in Sec. 3.4.1.2, we consider in 
the following certain types of realistic attackers in the context of the dataset. There are 64 
regions in the building, each having typically granting access to different profiles of people 
(e.g., students, professors, staff). We will consider two types of attackers based on such 
information. 

1. An external attacker who is not present in the building and thus, does not have access
to any region (i.e., 0 open regions).

2. A building administrator who has access to the security camera system and thus has
access to all the regions covered by cameras (i.e., 39 open regions). This set of spaces
includes public areas as well as corridors near offices.

Figures 68-69 compare different privacy techniques in different settings for the previous 
attackers. The columns correspond to the four types of experiments (day/night, 75%/90%­
utility), and the rows to different privacy mechanisms, including guessing from true counts 
(the last row). In each graph, the X-axis is time (7am-7pm for day and 7pm-7am for night 
in intervals of 10 minutes) and the Y-axis is the number of people correctly localized at 
each confidence level14

. As the noise added by DP techniques will be different in different 
executions, each experiment has been repeated n=30 times, and for each posterior probability 
class we took the average number of people that has been guessed with that probability. 
Finally, we consider that in the case of these realistic adversaries an open region implies 
that the adversary knows exactly who is inside of it. Thus, in the following we consider 
such information to be prior and in the plots we focus on how the different PETS affect the 
guessability of those individuals in closed rooms. Let us now discuss the results for different 
attackers. 

14Note that the scaling of Y-axis for day and night time are different, as the total number of people in the

building is very different for them. 
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External attacker. In Figure 68, we see the results for an external attacker who has a 
weaker prior as he/ she does not have access to real location information for any user at the 
time of the attack. Given the true counts, the external attacker can localize some users 
from, albeit with confidence p::; 50%. In particular, during the day time and early morning, 
when the occupancy of the building reaches its peak, the external attacker can perform the 
most successful attack by correctly guessing the localization of 50 people with a confidence of 
0.25 ::; p ::; 50%. Notice that during the night, the number of people in the building is small 
and the most successful attack occurs in the early morning with 10 individuals localized with 
low confidence. Using privacy mechanisms eliminates most of these localizations. Indeed, 
with parameters satisfying 75% utility, which increase the privacy protection, the localization 
possible when publishing real counts is completely eliminated. Notice that when a higher 
utility is required (90%), the mechanisms might publish data closer to the real occupancy 
and therefore there is some leakage. Notice that the results are averages from different runs 
which means that mechanisms based on differential privacy, which are not deterministic, 
might perform better or worse in specific situations. We explore this aspect further in 
App. ?? . From the plots, we cannot determine whether one mechanism is better than the 
other one, as the number of localizations is small for all of them. 

Day 
75% utility 90% utility 

Laplace, E = 0.1 Laplace, E = 0.66 

I 
PeGaSus, E = 0.04 PeGaSus, E = 15 

TTL, 1 sec TTL, 120 sec 

I 
True counts True counts 

l ii h II l ii h II

Night 
75% utility 

Laplace, E = 0.18 

PeGaSus, E = 0.00001 

TTL, 1 sec 

;, 

True counts 

90% utility 
Laplace, E = 1.675 

PeGaSus, E = 4 

TTL, 1 sec 

;, 

True counts 

Figure 68: Comparison of different mechanisms for the external visitor attacker. 
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Administrator attacker. An administrator is given access to 39 of the 64 regions. This 
situation is similar to the previous but the set of open regions is different including those 
that contain offices. The results are also similar to those of the student attacker, although 
in general there is more privacy loss across techniques and for the true counts. This occurs 
because this adversary has access to real location of more people as the open regions cover 
a higher amount of the building's population. As in the case of student attacker, both the 
techniques based on differential privacy perform slightly better than the TTL technique. 
Similarly, the Laplace technique performs slightly better than PeGaSus. When comparing 
TTL and PeGaSus for the daytime and 90% utility we notice how both perform very similarly 
in the afternoon when the building is less occupied. Also, when focusing on the nighttime, 
at 90% utility all the techniques perform very similarly. 

Day 
75% utility 90% utility 

Laplace, E = 0.1 Laplace, E = 0.66 

PeGaSus, E = 0.04 PeGaSus, E = 15 

Ii I j ,iii 
TTL, 1 sec TTL, 120 sec 

!iii j uli l11j1lU Ji
True counts True counts 

Night 
75% utility 90% utility 

Laplace, E = 0.18 Laplace, E = 1.675 

PeGaSus, E = 0.00001 PeGaSus, E = 4 

TTL, 1 sec TTL, 1 sec 

True counts True counts 

Figure 69: Comparison of different mechanisms for the administrator attacker. 

Summary 

Differential privacy in general consider very strong attackers that have access to almost 
unlimited information. In our set up with more realistic adversaries, we have seen that when 
the adversary is weaker (e.g., our external attacker). The practical privacy offered by Laplace 
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and PeGaSus is almost the same than the one offered by TTL. Even when the practical 
privacy for Laplace and PeGaSus is similar, for higher utility values the formal privacy 
guarantee for PeGaSus is less than Laplace during the daytime and nighttime, whereas for 
lower utility values it is the opposite. When the adversaries become stronger ( e.g., the 
student or administrator attacker), Laplace and PeGaSus offer more practical privacy than 
TTL, as it is expected. However, in some specific situations (e.g., in the afternoon when the 
building is less occupied) all the techniques behave similarly. Additionally, with stronger 
attackers the privacy loss due to the prior and adversarial knowledge at the time of the 
attack is high already. This means that effectively, in such situations the privacy of most 
of the individuals would be already compromised. Therefore, the difference between the 
differential privacy based techniques and TTL in terms of number of people being localized 
is small. 

We would like to highlight that even when in terms of practical privacy the techniques 
behave similarly, TTL lacks of formal privacy guarantees which means that stronger attack­
ers using more sophisticated attack methods could potentially result in higher privacy loss. 
Additionally, the results for Laplace and PeGaSus, which are the average over 30 counts, 
could potentially be worse depending on the noisy count generated in a single run at pub­
lishing time. However, comparing the distributions of attacker's success for different privacy 
mechanisms remains out of scope of this work. 

3.4.2 Evaluation at Honeywell 

Smart buildings are becoming increasingly prevalent as an integral part of society. Equipped 
with various sensors and actuators, smart buildings enable automated building controls in­
cluding light, Heating, Ventilation, and Air Conditioning (HVAC), and space optimization 
[104]. This results in personalized comfort controls for the building occupants as well as eco­
nomic savings for the owners of buildings. However, as more fine-grained data at individual 
levels are collected for building automation, dangers of potential privacy breach also increase 
[105]. In collaboration with Honeywell, we studied privacy implications of occupancy sensors 
in smart buildings. We were interested in a setting where each individual is given a primary 
location where the person is expected to be throughout the day, such as cubicles or offices. 

Occupancy sensors detect presence of an individual which enables dynamic control of light 
and HVAC systems based on the detected occupancy information. Use of occupancy sensors 
for various building applications has been a subject of active research for both academia and 
industry [106, 86, 107, 108, 85]. Occupancy-driven building applications include both energy 
[106] as well as space optimization [108]. As occupancy data is being widely implemented,
identifying privacy leakage and developing potential mitigation strategies against the poten­
tial privacy breaches have been gaining increasing attention [107, 109]. In particular, the
collected occupancy data could potentially be used for inference of individual's occupancy
patterns and tracking of individuals [109].

In many cases, the automation control is indifferent to the identities of building occupants. 
For example, detection of a presence is sufficient to trigger the light to be turned on at the 
sensed location. The automated building control does not require the knowledge of who
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is triggering the occupancy sensor, but only requires the information that a presence is 
detected at a particular location. For this reason, the database containing user-identifying 
information is typically kept separately from the database storing occupancy information, 
and there is no communication between those databases. Because of this separation, it is 
easy to believe that unless the adversary compromises both databases, it is difficult to infer 
the mapping between the set of sensors and the identities of individuals. The findings of this 
paper demonstrate that maintaining separate databases is insufficient for mitigating privacy 
leakage from occupancy sensors. 

Individuals Sensors Sensitive Attributes 

.-- ------ -... 1

� 
John ', 

:'><: 
Emily ., " ',, e/ "'jO--"---_...,-

•- ------- .. 

Figure 70: Figure illustrating the privacy implications of the presence data. 

3.4.2.1 Model and Preliminaries 

In this section, we present the adversary and building models. 
Building Model. We consider a building that is divided into multiple locations where 

each location is equipped with a presence sensor. We assume that a presence sensor is capable 
of inferring whether or not the location is currently occupied, but is not capable of inferring 
which specific individual is triggering the occupancy. An example of such a sensor would 
be a motion detector which uses ultrasonic or microwave technologies. Each individual is 
given a primary location where the individual will be spending most of the time when the 
individual is in the building. For example, a primary location might be a designated office, 
a particular room, or a particular cubicle. 

The set of presence sensors are denoted as S. Each sensor periodically detects presence 
in its neighborhood. The occupancy pattern of sensor Sj E S at time t is denoted as o; and 
is defined as 

0
t_ = { 1, if sensor Sj detects presence at time t
J 0, else. 

Similarly, we define o;to,ti] = 1 if occupancy is continuously detected during the time interval 
[to, t 1] and o;to,tJ] = 0 otherwise. 

Adversary Model. Any application that consumes the occupancy data could poten­
tially use the data other than its intended purposes. The goal of the adversary is to infer 
the sensor ID that is installed at the primary location of the targeted individual i denoted 
as si . It is assumed that the adversary can query any sensor ID to observe the presence 
information at any given time t.
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The adversary also has a set of auxiliary information of the individual i, which is denoted 
as A. Auxiliary information is defined as occupancy-pattern information that the adversary 
has about the individual. An example of a piece of auxiliary information is a travel schedule of 
the individual from which the adversary can infer that the individual was not in the building 
for a given time interval. Such information is often public information that can easily be 
obtained from social network sites including Linkedin15

, where postings may include an 
individual receiving an award or giving a presentation at a conference. Such information 
would indicate that the individual was not present in the building on the days when this was 
posted. 

For each auxiliary information a�
t

o,
t

J] E A, we denote a�
t

o,
t

J] = 1 if the individual i was 
known to be in the building during the time interval [to, t1] and a�

t

o,
t

J] = 0 if the individual 
i was known to be absent from the building during the time interval [to, t1]. 

3.4.2.2 Proposed Attack 

In this section, we propose an attack in which the adversary infers the sensor ID of the 
targeted individual i with high probability by combining the auxiliary information with the 
queried occupancy patterns. The main idea of the attack is to exploit the fact that the sensor 
si has to satisfy all the conditions presented by the auxiliary information A. An illustration 
of the proposed attack is shown in Figure 71. 
Without loss of generality, we index the set A as 

(43) 

A represents the set of auxiliary information obtained by the adversary for individual i. For 
each item of auxiliary information aitm-i,tm] E Ai, define the set s:n CS as 

(44) 

In other words, the set s:n is the set of sensors such that the corresponding occupancy 
patterns are consistent with the auxiliary information aitm-i,tm]. Given n auxiliary informa­
tion, the adversary can construct n such sets, and the sensor si has to be in all of the sets 
SL ... , S�. Assuming the adversary does not have any a priori information regarding si , the 
probability of correctly guessing si given A is written as 

(45) 

where si is the adversary's estimate of si , 
15https://www.linkedin.com/
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Figure 71: Figure illustrating the proposed attack. 

3.4.2.3 Experimental Study 

We conducted an experimental study using real-world occupancy sensor data from an 
office building. We selected one zone of the office building for the experimental study which 
contained 1663 motion detectors. Each motion detector records a binary value of 1 if it senses 
presence via motion and 0 otherwise. The presence value is recorded every 5 seconds and 
transmitted to a centralized database. The auxiliary information we considered was daily 
travel schedules of individuals. The travel schedules used for this study were obtained either 
with user consent or through public data from Linkedin. The set of auxiliary information 
was gathered within the period of 5 months. 

For each day, we assumed that an individual was present in the building if person stayed 
in his or her primary location for more than an hour, which is equivalent to having more than 
720 number of 1 's in the presence data for one day. The assumption was made to account 
for triggering of the motion detector by bypassing people or patrolling security guards at 
night time. If the presence data for a sensor contained less than 720 number of 1 's for one 
day, then we assume that the area covered by the sensor was unoccupied for that day. We 
conducted our experiment on four employees. For the first case, we used three pieces of 
auxiliary information. 

1. The person traveled for two days during weekdays and therefore was not present in the
building during the travel.

2. The person has not worked during the weekends for a particular month.

3. The person returned to work after two days of travel and was present in the building
on the third day.

Without any additional information, the probability of correctly guessing the sensor ID that
is located at the person's primary location is 1 6

1
63• After identifying the set S 1 that satisfied

the first auxiliary information 1), the cardinality of the set was reduced to 14 from 1663. 
In addition, after obtaining the intersection S 1 n S2 n S3, where S2 and S3 are the sets that
satisfied the auxiliary information 2) and 3) respectively, the cardinality of the new set was 
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reduced to 9 from 1663. We have verified that the person's primary location (an office space) 
was indeed one of the nine candidate locations that we identified. 

Figure 72 shows how probabilities of correctly identifying primary locations (Equation 
( 45)) change with auxiliary information for all four cases. The horizontal axis is the relative 
time of the year when the auxiliary information was gathered within the period of five 
months. For cases 2,3, and 4, the off label shown in Figure 72 indicates that the person 
was not present in the building during weekdays and the on label indicates that the person 
was present in the building. In all four cases, we observed that with two to three pieces of 
auxiliary information, the cardinalities of candidate sets will reduce to approximately 10, 
resulting in significant increase of probabilities of correctly identifying the primary locations 
for all four individuals to approximately 0.1 from 

1l63 . 
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Figure 72: Figure illustrating the increase of probability of correctly identifying the primary loca­
tions given auxiliary information. 

In all four cases, it was observed that a person's absence in the building during weekdays 
significantly reduces the size of the candidate set initially. This is due to two reasons. First, 
identifying the candidate set of locations that are occupied during weekdays will eliminate 
almost all sensors that are located in hallways, which are usually occupied during weekdays. 
Second, since the building chosen for this study does not allow working from home, being 
absent during weekdays is a rare event. 

3.4.2.4 Mitigation Strategy 

In this section, we propose a set of potential mitigation strategies against the proposed 
attack. 

Principle of Least Privilege for Privacy. Principle of least privilege has been widely 
accepted as one of the governing principles in designing mitigation strategies in security. The 
principle of least privilege states that the minimum amount of information and resources 
should be given to a subject in order for the subject to perform required duties. The same 
principle can be used for privacy enhancement as stated in [110]. 

For building applications, we need to ensure that only the minimum, necessary level of 
occupancy information is disclosed. For example, for occupancy-driven HVAC control, the 
controller only requires occupancy information at the zone level, but does not require the 
information at the individual sensor level [111]. 
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The adversary could still potentially perform the attack using the zone level 
occupancy information to at least identify which zone includes the targeted individual's 
primary loca­tion. On the days when the individual is not present in the building, the

adversary would expect to observe a decrease in the number of occupants in the zone. 
However, unlike the attack performed on the individual sensor level, the behaviors of other 
occupants in the zone would affect the accuracy of the identified sets in ( 45). It is possible 
that the decrease in the number of occupants could be due to other individuals not present in 
the building when the targeted individual is present. Similarly, even when the targeted 
individual is not present in the building, other individuals that were not previously in the 
zone could be present, re­sulting in no change or even an increase in the number of occupants 
in the zone. Moreover, even if the adversary were able to correctly identify the zone where 
the targeted individual resides in, k-anonymity [112] will be provided where k is the number of 
sensors in the zone. 
Differential P rivacy. When the occupancy information at the zone level is released, it is

possible to implement additional privacy enhancing mechanisms that will provide differential 
privacy. In this setting, probabilistic noise is added to the released occupancy information to 
ensure that answers to queries regarding the occupancy level in a zone would be statistically 
similar even when a single individual is present or not present in the zone [113]. 
We have implemented PeGaSus [114] on the collected occupancy data to examine how the

utility of the occupancy data would change as we vary the parameter E. However, initial 
results suggest that even for a relatively large value of E, the utility of the gathered 
occupancy data decreases significantly. Finding the optimal trade-off between the utility and 
privacy for the differential privacy based mitigation would be part of future work. 
Deletion of Past Information. The proposed attack does not rely on the particular times

when the presence data are collected. Whether the presence data was collected in the past or 
present, any data that matches the auxiliary information would be equally valuable in 
narrowing down the set of candidate sensor IDs of the targeted individual.

While the past data could be valuable in many applications that rely on predicting future 
occupancy levels as well as energy consumption through machine learning techniques, 
keeping a large amount of past data will provide additional opportunities for the adversary. 
Setting an expiration time on the gathered occupancy data and either deleting or encrypting 
it automatically at the time of expiration will provide additional privacy against the 
proposed attack by eliminating the occupancy data that correspond to auxiliary information 
in the past. 

3.4.3 Evaluation at US Navy

3.4.3.1 Trident Warrior 2019 TIPPERS Technology Evaluation 

An essential part of this project was technology evaluation efforts. In this section, details on
the PET evaluation efforts performed by the researchers and the USNavy will be discussed.

The Trident Warrior exercises was a collaborative effort between privacy and security 
researchers at nine different institutions along with researchers at the Naval Information

Warfare Center to deploy, test, and demonstrate privacy-preserving technologies in creating
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sensor-based awareness using the Internet of Things (IoT) aboard naval vessels in the context 
of the US Navy's Trident Warrior 2019 exercise. Privacy Enhancing Technologies (PETs), 
including differential privacy, computation on encrypted data, and fine-grained policies were 
evaluated and analyzed in the context of TIPPERS and its use in creating a smart ship that 
offers IoT-enabled services such as occupancy analysis, fall detection, detection of unautho­
rized access to spaces, and other situational awareness scenarios. The analysis describes the 
privacy implications of creating loT spaces that collect data that might include individuals' 
data (e.g., location) and analyze the tradeoff between privacy and utility of the supported 
PETs in this context. 

Over the course of this project, this research team has worked toward transforming 
TIPPERS to be deployed in tactical naval settings. In particular, TIPPERS was deployed 
on a Navy ship as part of the annual Trident Warrior exercise in 2019. Trident Warrior is 
an annual large-scale, at-sea field experiment where the Navy selects potential initiatives 
that address capability gaps and provide inventive solutions in an operational environment. 
Below we describe several PETs that were part of the TIPPERS system deployed in the US 
Navy ship. 

PULSAR 

PULSAR is a novel secure data management system based on function secret sharing 
(FSS)and MPC to support real-time privacy preserving data aggregation and retrieval that 
has been applied to sensors and mobile devices in TIPPERS. A standard secret-sharing 
scheme allows a dealer to randomly split a secret into two or more shares, such that certain 
subsets of the shares can be used to reconstruct the secret and others reveal nothing about 
it. Secret sharing is additively homomorphic, that is, if many secrets are shared, the two 
parties can individually compute shares of the sum of the secrets by locally adding their 
shares, without any communication. 

The notion of FSS can be viewed as a natural generalization of additive secret sharing 
to functions. A special case of interest is the class of point functions f, which have a nonzero 
output on at most one input. A FSS for this class is called a distributed point function 
(DPF). One exemplary application for such a special case is secure distributed histograms, 
or "distograms," that allow for the ability to privately aggregate information into histogram 
buckets. Stealth (the makers of PULSAR) incorporates these distograms into the PULSAR 
solution as a means of real-time privacy-preserving data aggregation and retrieval. 

Jana 

Jana technology implements the paradigm of Private Data as a Service (PDaaS). Using a 
combination of advanced cryptographic techniques and a commercially reliable database, 
such technology provides a full-featured, robust, relational database management system 
(RDBMS). The RDBMS cryptographically secures data from before it leaves the platform 
of a data contributor, until after it reaches the platform of an analyst authorized to see the 
query results. Data does not need to be decrypted during query processing in Jana. Results 
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of queries are additionally protected using DP mechanisms (where appropriate) to prevent 
rediscovery of sensitive data from those results. 

Jana is also intended as an operational environment to study the trade-space between 
security and performance scalability for real-world data and queries. In contrast, typical 
cryptographic research platforms fix a level of security, argue on standard assumptions, and 
offer no trade space in which to conduct such research. In addition, Jana allows for the 
study of implications on performance of full, end-to-end security, while typical cryptography 
research fails to address the security of all steps in the information flow from data provider to 
query result. The data within Jana remains encrypted at all times, unless explicitly chosen 
by the database administrator (DBA) (and agreed to by data contributors) for storage in 
plaintext form. Ephemeral public key encryption protects data in transit from contributors' 
platforms into each Jana instance, as well as results in transit from the Jana instance to 
analyst platforms. Depending on choices made by the DBA, public key encryptions or order 
revealing encryptions are used to protect data at rest in Jana's relational data store ( deter­
ministic encryption is also supported as a research capability, although it is not recommended 
for the obvious security concerns). 

PeGaSus 

PeGaSus (PGS) is a specific algorithm for analyzing streaming data under DP.14 The tech­
nology of DP is appropriate in contexts where data about individuals has been curated for 
the purpose of analysis. The goal is to release the outcome of the analysis while disclosing 
as little information as possible about individual records in the data. The conventional tech­
nologies for this problem fall under the broad category of disclosure limitation and include 
approaches such as data de-identification and suppression. Unfortunately, these techniques 
are known to be brittle. For instance, so-called "anonymous" records can often be reidenti­
fied. 

In contrast, DP offers a rigorous mathematical guarantee: to an individual whose data 
has been collected, whatever can be learned about the individual when her data is included 
is essentially no greater than what can be learned where her data is omitted from the col­
lection. DP is distinct from adjacent technologies, such as secure multi-party computation 
(SMC). With SMC, the goal is to compute the exact answer to a function where each party 
contributes one private input, with the goal that during the execution of the computation, 
no party is able to extract information about the inputs supplied by other parties. DP, on 
the other hand, aims to prevent the output of the function from leaking information. For 
instance, if the function computed a vote tally and it was unanimous, then the output of 
SMC would reveal individual votes; in contrast, with DP, one would learn only that the vote 
was approximately unanimous. 

DP is a mathematical definition that can be applied to a variety of data types and for 
a variety of analyses. In considering its use in a particular application, it is essential to 
consider what is sensitive and private information, as well as what kinds of analyses should 
be supported. PGS is applicable in contexts where individuals are continually observed by 
a collection of sensors. Each sensor produces a stream of data, and the goal is to analyze 
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these streams in real time without disclosing sensitive personal information about specific 
individuals. With PGS, the privacy guarantee is on individual events, such as a person 
being observed by a particular sensor, but extends naturally to small windows of events 
(observations of a particular individual within the last hour). 

3.4.3.2 Integration of PETs in TIPPERS 

TIPPERS supports two ways of integrating PETs into sensor data management, as men­
tioned before. Firstly, virtual sensor technology supported by TIPPERS can be leveraged to 
modify /perturb the sensor data stream that is shared with applications. Such modifications 
could include scrubbing of sensitive data (e.g., removing faces from images or identifiers from 
sensor data), adding noise, de-linking data, etc. A good example of the use of virtual sensors 
is the integration of PGS to make occupancy data streams differentially private. Secondly, 
TIPPERS supports mediation between the system and the underlying storage mechanism. 
For instance, TIPPERS mediates with FSS and MPC technologies supported by PULSAR, 
as well as deterministic encryption, order-preserving encryption, and secret-sharing based 
technologies supported by Jana. This way, TIPPERS can be configured to store low-level 
sensor data (such as WiFi connectivity) in PULSAR such that insertions can be fast and 
aggregations (e.g., occupancy levels) can be determined quickly. This is crucial for real-time 
policy enforcement when policies depend on who is in a particular space or how many peo­
ple are inside it. In contrast, data that may require more complex operations (such as, for 
instance, Structured Query Language (SQL) joins operations to combine sensor data with 
metadata) can be stored in Jana, which supports different techniques for encryption and 
supports more complete complex SQL operations. 

3.4.3.3 Evaluation of TIPPERS in Preparation of Trident Warrior 

As part of the preparation for TW 2019, the TIPPERS system was deployed first at the 
Naval Information Warfare Center (NIWC) Pacific. The objective was to enable a demon­
stration of the capability of TIPPERS, including its integrated PETs, to operational Navy 
personnel to explore opportunities wherein systems such as TIPPERS can be used within 
the Navy. TIPPERS was deployed in the NIWC Mobility Center of Excellence (MCoE), 
which is a lab dedicated to developing, testing, and evaluating mobile technologies. The 
deployment required developing an application specific to NIWC, referred to as the Security 
Surveillance application. 

The Security Surveillance application provides a bird's eye view of the evolving state of 
the NIWC facility based on the sensor data that is captured and translated into occupancy 
levels of each space. The sensor data is securely encrypted in the underlying secure data 
storage TIPPERS technology. To enforce the need to know concept, the application provides 
two views of the data. The first shows only differentially private occupancy counts ( obtained 
using the PGS virtual sensor) with no identifying information to preserve the privacy of 
individuals involved in the data. From this view, a user of the application should not be able 
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to make any inferences about individuals, their locations, or their habits. The second view 
shows the actual occupancy counts after decryption ( as this data is stored in the PULSAR 
secure database). The latter can be used in situations where there is a requirement to access 
more granular information (e.g., an emergency situation). The access to data regardless of 
the level of granularity is internally logged by TIPPERS so that attestation can be performed 
at any point. 

In order to simulate a building within the NIWC Pacific campus with multiple rooms, 
the MCoE was divided into five areas: meeting space, visitor area, offices, machines, and 
kitchen. Each of these areas was represented as a zone. This zoning enables the definition 
of granular policies for different spaces (e.g., notify the administrator when a visitor moves 
to an area that is not a visitor or meeting space). The graphical user interface (GUI) of 
the Security Surveillance application includes a heatmap showing the occupancy data. The 
current implementation includes the bird's eye view of NIWC Pacific topside, with simulated 
data to show the estimated occupancy of each building. 

Figure 73: Mobility Center of Excellence room design. 

3.4.3.4 PET Evaluation Results from Trident Warrior 

In Trident Warrior, we evaluated potential benefits of the loT technologies for naval use 
cases. There were a number of concerns related to privacy that emerged,from the enlisted 
sailors as well as the entire chain of command. Concerns over usage of the system (e.g., 
monitoring a sailors whereabouts in their off-duty time) as well as data retention emerged. 

Our results indicate that war fighters that are outfitted with these often-invasive tech­
nologies tend to experience a lack of privacy. Such infringement can result in adverse effects 
on morale, quality of life, and personnel retention. However, these same technologies bring 
efficiencies to command and control efforts, enhance situational awareness, and make 
warfighters more safe and secure. 

3.4.3.5 Trident Warrior 2019 Privacy Study 
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An important part of the data collection during the exercise was the collection of data 
to infer the location of individuals. This data can be used to further compute various aggre­
gated statistics (e.g., occupancy of spaces along time, average time spent by an individual 
in a particular location, average number of people an individual interacted with, etc.). Since 
the underlying data is private (i.e., location of individuals along time), the idea of an ag­
gregated statistics leak of information about individual records is a precautionary concern. 
Well-known mechanisms can be applied like Differential Privacy (DP) to protect individual 
records, but knowledge on how to choose the appropriate privacy parameters is required. In 
this section, the different values of E for a DP mechanism are estimated. 

Assume a data table is displayed with user-location-time-table consisting of categories 
such as: user, day, location, daytime, and time spent. The categories are used to describe 
the amount of time the user has spent in each area per day. Let us consider, for instance, a 
commanding officer that observes aggregated averages on the time spent for each recorded 
location+daytime combination, stated as the following query: 

SELECT day, location, daytime, AVG(timespent) FROM user-location-time-table 
GROUP BY day, location, daytime; 

The goal is to estimate how much a commander ( treated here as an adversary), can learn 
about the particular time spent by a specific user. A quite strong attacker that may already 
have knowledge regarding the exact amount of time spent by other people who have been 
together with the victim at the same time in the same location can be assumed. This idea 
is motivated by the definition of differential privacy, which is aimed to protect against such 
attackers. 

In our experiment, the attacker first fixes a single victim out of n users. He/She computes 
the prior assumption of the victim's data based on the data of the other n-1 users (or only 
a certain fraction of these users). He/She tries to guess the victim's spent times based on 
the prior he/she has already learned, and on the aggregated statistics that depend on the 
victim's data. The researchers assume that the attacker wins even if he/she does not guess 
the spent time precisely, but with some precision. For example, if the attacker says that a 
user has been in a room for 17 minutes, but it actually was 17.5 minutes, the guess is still 
considered sufficiently correct. 

There are n users that participate in the experiment. For each location+daytime+day 
combination, each user ui has spent times distributed according to normal distribution 
N(µi,ai)- The attacker predicts µi and ai based on the data of the other n-1 users. 

Fixing some posterior probability t, (e.g., t = 0.9), the researchers want to compute the 
precision r within which the attacker's guess stays with probability t. For example, if the 
actual time is x0, then with probability t the attacker's guess will be x E [x0 - r, x0 + r].

It can be assumed that an E-differential privacy mechanism is applied to the released 
average. In particular, the sensitivity of AVG query w.r.t. attribute timespent is 1/n, so 
e.g., Laplace mechanism Lap(A) where A = 1/(nt) can be used.

Using existing results on relating differential privacy to guessing advantage ( e.g. [8,9]),
if Pi is the prior guessing probability, then the posterior p� is bounded by: 

p�(l + eRt(l - Pi)/Pi) - 1 
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where R = max x,x' E X d(x,x') is in this case the largest possible spent time. While 
normal distribution is unbounded, it shows as Pr[x - µ�a]= erf(a / (J2 · A)), where erf is 
the error function, so e.g., for a = 3J2 · A shown as Pr[x - µ � a] = erf (3) � 0.9998, which 
essentially covers the set of possible inputs. A smaller value of a can be taken to reduce the 
size of the exponent, but it also reduces the attacker's search space, so this parameter can 
be optimized to improve the upper bound on guessing probability. 

The team computes: 
Then p� is computed from Pi and E as described above. The experiments are performed 

for r E {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} and EE {0.1, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0}, computing the 
posterior p� . For each E, it is found that the smallest r for which p� � t.

Since the actual data of the users' movement on the ship collected during the exercise 
cannot be shared even for the privacy study, the researchers simulated the behavior of 150 
users, such that the replicated data has the same statistical moments (means and standard 
deviations) as the actual data. This imitated data serves as the "real" data for the privacy 
study. Therefore, E-differential privacy is applied to this dataset and the adversary's success 
is computed. 

The posterior guessing probabilities for 5 data samples had been estimated. The results 
are depicted in Figure 7 4. The number of spent times guessed is plotted with probability � 
90% for different precisions, where the precisions are represented with different colors. The 
dark green color represents the roughest guess (± 5 minutes), and the dark red color the 
most precise guess (± 0.5 minutes). For E = 0.1, only few people are depicted in the bar, 
and this means that for the others the guessing precision was more than ± 5 minutes. 

While the datasets are different, similar trends in these five plots are noticed. If E � 3 is 
taken, then very little privacy guarantees are obtained, and each user's spent time may be 
guessed within one minute of precision. On the other hand, for E � 0.5, the guessing precision 
ranges between 4 and 5 minutes, which is much better, considering that the actual spent 
times are on average 8-9 minutes in the given datasets. There are always several people for 
whom the guessing probability is large even for small E, as their behavior is more predictable, 
but there are not too many such people. Since smaller E means more noise in aggregated 
statistics, data utility also needs to be taken into account, which would be a separate study 
and depends on how the statistics are actually going to be applied. Alternatively, weaker 
attackers could be taken, who do not know "everyone except the victim", but only some of 
the other users. In that case, it could be possible to get better privacy for larger values of E.

Modeling a particular attacker would require knowledge about the context, who the attacker 
is and what he already knows. This remains out of scope of this privacy study. 
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Figure 7 4: Results privacy study on Trident Warrior data. 

3.5 Transition Efforts 
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In this section the outreach, technology transfer and technology transition efforts are ad­
dressed. There are two points of focus for these efforts: US Navy and COVID-19 mitigation 
efforts. For the US Navy, the TIPPERS system was deployed in two US Navy Trident War­
rior Exercises: Trident Warrior 2019 and Trident Warrior 2020. Also, the system was tested 
by the Navy in their efforts to combat COVID-19. 

The TIPPERS research team worked quite closely with the Naval Information Warfare 
Center Pacific (NIWC Pacific-formerly SPAWAR). This partnership spanned the years of 
the project and is ongoing today. The combined team performed a large number of testing 
and development projects and developed an excellent academic/military partnership. 
This partnership was instrumental in the efforts to transition the TIPPERS technologies 
to the US Navy. 

In other COVID-19 mitigation efforts, the TIPPERS system was deployed at several 

146

Approved for Public Release; Distribution Unlimited.



sites. At UC, Irvine, the TIPPERS system was deployed for the Henry Samueli School of 
Engineering, the Donald Bren School of Information and Computer Sciences, as well as the 
California Institute for Telecommunications and Information Technology. Additionally, the 
TIPPERS system is being deployed at Ball State University to assist with their COVID-19 
efforts. 

While the TIPPERS system is a large-scale information technology and information 
system, it is robust and deployable. The researchers on this project were able to deploy 
the TIPPERS system to ships in Trident Warrior 2019 as well as in Trident Warrior 2020. 
In both of those cases, the system was up , running and collecting data in one day and 
was stable for the entire exercise. Furthermore, the system is robust in that it is providing 
COVID-19 mitigation assistance to a number of schools, institutes, and other universities. 

3.5.1 US Navy's Trident Warrior Exercises 

3.5.1.1 Trident Warrior 2019 

In the first week (08/12/19-08/16/19), the instrumentation of the four spaces assigned 
to the TIPPERS team was completed. The four spaces were: The ship's library, the weight 
room, the mess deck, and the ship's store. The TIPPERS system was deployed and running 
in one day with the remaining days of week one spent testing and verifying the system. As 
part of the deployment of TIPPERS in the assigned ship, the first step was to instrument the 
space with different loT sensors. This required both the physical installation of the sensors, 
and the deployment of a network infrastructure. With respect to sensors, the following list 
itemizes all of the equipment deployed on the Navy ship during TW 19: 

• Wi-Fi access points (2)

• Bluetooth Beacons (32)

• Power outlet meters (6)

• Raspberry Pi (4)

• Smart Card Reader (1)

• Smartphones ( 30)

Each sailor participating in the testing of TIPPERS during Trident Warrior 2019 was 
issued a smartphone. WiFi APs, Bluetooth beacons, and smart card readers were used 
to passively locate people in the ship ( through their assigned smartphones). Additionally, 
smartphones are used to capture information about their integrated sensors (e.g., accelerom­
eters and gyroscopes). Power outlet meters are used to capture information about energy 
utilization in the ship. 

In the second week (08/19/19-08/23/19), the team executed ten different experiments 
that were planned. Each experiment was performed multiple times. The TIPPERS system 
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Figure 75: TIPPERS team with sailors.

performed flawlessly in the ten experiments that were designed by the Navy and NIWC to 
test the system.  The experiments were:

Experiment 1: Privacy preserving activity monitoring. This scenario was used 
to understand sailor activity and movement within the ship and specifically focused 
on the mess deck. Reference points for time spent in line, time spent eating and time 
moving in space were collected. Data for space utilization by the individual was 
collected as well. Additionally, data on movement through the ship (e.g., ship's store, 
mess deck, gym, and library) was collected for simulation purposes.

Experiment 2: Command support.  This scenario involved tasking sailors to carry 
out orders (e.g., movement from location to location) and provide command level feedback on 
progress.  This scenario also provided hands-on exposure to the commanders and sailors of 
the TIPPERS technologies.

Experiment 3: Fall detection.  This scenario was used to test the fall detection 
capabilities of the TIPPERS mobile client application (Figure 77) as well as the 
fall verification and alerting capabilities of the larger TIPPERS system.  While 
this scenario started as a Man Overboard scenario, it soon evolved into a 
more generalized Fall Detection use case based on feedback (e.g., stairwell dangers, 
shaft alley) from Navy personnel.

Experiment 4: Physical security. In this scenario, the TIPPERS team tests physical 
security applications and see whether the CAC reader triggers the expected alerts.  This 
scenario was tested in the ship's library.

Experiment 5: Space aggregation. Tests the ability of TIPPERS to provide aggregation 
and counts of sailors on the mess  decks.  The  results  show  how  many  people  use  the  mess
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deck, when they use it, where they sit, and their trajectories during usage. 
Experiment 6: Device management. Tests the ability of TIPPERS to capture specific 

characteristics of the supplied phones, both registered and non-registered. All phones used 
in this scenario are TIPPERS-supplied smartphones. Selected phones are unregistered and 
categorized as "rogue" cell phones.

Experiment 7: Energy management. Monitors energy consumption of TIPPERS equip­
ment via the power outlet meter devices. Such devices, deployed in the ship's library, feed the 
TIPPERS system with data regarding energy consumption on individual electrical circuits. 

Experiment 8: Messaging and meeting scheduling. This scenario tests the TIPPERS 
secure messaging capability to the ship's company. The point to point (sailor to sailor) and 
the point to multipoint (intercom) features were tested (see Figure 10). 

Experiment 9: Activity self-awareness. This scenario has sailors carrying the TIPPERS 
mobile client while onboard. Then, sailors can use the CB application to monitor how many 
times they visited a specific area and/or how much time the:w spent there (e.g., how many 
hours did they spend in the gym in the last month). 

Experiment 10: SysAdmin and privacy. In this scenario, the TIPPERS team walks 
through privacy leakage evaluation with Radio/IT personnel. Tne team solicits feedback on 
privacy as it relates to systems administration of TIPPERS. 

These detailed experiments were designed and implemented to cater to shipboard ac­
tivities, test new technologies in a military environment and facilitate a privacy study in 
tactical settings. There are a number of challenges in worRing with ship networks to execute 
loT-based applications in a secure and privacy-aware manner. PETs technologies studied 
included policy aware data release, differential privacy and encrypted query processing. A 
privacy analysis on data collected during the exercise shows that differential privacy 
technologies applied with the appropriate privacy parameter E (i.e., E-differential privacy 
mechanisms) can be used to hide the precise time a sailor stays in a particular space 
while still offering some value for the analyst.

Lessons learned as a result of the technical deployment of the TIPPERS system in the 
TW2019 setting highlighted the important role of reliable real-time communications, privacy 
technologies and tools for �rojeet management. Experiences gained from Trident 
Warrior 2019 were used to design an enhanced deployment of TIPPERS that was deployed in 
Trident Warrior 2020. 

3.5.1.2 Trident Warrior 2020 

In the first week (10/13/20-10/16/20), the instrumentation of the four spaces assigned 
to the TIPPERS team was completed. The four spaces on the ship were: The ship's library, 
the rec room, the mess deck, and the training office. The TIPPERS system was deployed 
and running in one day with the remaining days of week one spent testing and verifying 
the system. In the second week (10/19/20-10/23/20), the team executed seven different 
demonstration/tests as part of four scenarios that were planned. Each scenario was per-
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formed multiple times. The TIPPERS system performed flawlessly in the four scenarios 
that were designed by the Navy and NIWC to test the system. The scenarios were: 

1. Emergency Response: Fall Detection (Man Overboard), Fire/Flood/Damage Control
(F2DC).

2. Mustering: General Quarters (GQ), Onboarding (OB) for Visitor Control

3. Situational Awareness: Watchstanding (WS)

4. Sailor Messaging and Management (SMM)

Figure 76: Sailors using TIPPERS mobile devices. 

Demonstration Script 1 Scenario 1: Fall Detection Description: This scenario 
demonstrates the detection of sailors' fall within the ship and alerting supervisors and sailors 
nearby without violating their privacy. 

Users: 1 Operator, 2 Dashboard Observers, 2 Experiment Observers, 4 Participants, 2 
Designated Response Personnel, 4 Nearby Personnel, 2 Damage Control Central, 2 Bridge 

Locations: TIPPERS Observation - Library: Zone Ll Experiment - Crew Rec Room: 
Zones Cl, C2, C3, C4 Designated Response Personnel- Library: Zone L4 Nearby Personnel 

150

Approved for Public Release; Distribution Unlimited.



- Crew Rec Room: Zone C5, C6, Training Room Zone: Zone Tl, T2 Damage Control
Central - Mess Decks: Zone 1 Bridge: - Mess Decks: Zone 10

Log: Emergency Response Log 
Demonstration Script: 
Experiment 

• At time tl, all participants and observers go to their assigned zones.

• At time t2, the 2 Experiment Observers record the locations of the 4 Participants in
the Log.

• At time t3, the 4 participants start the experiment. They let their devices fall down
on the cover as directed.

• The 4 participants pick up their devices and show the 2 Experiment Observers.

• The 2 Experiment Observers record the following into the Log: [Participant ID, Time,
Location, Fall Detected or Fall Not Detected].

• After the 2 Designated Response Personnel arrive at the location of the fall, the 2
Experiment Observers record the following from the 2 devices: [Designated Response
Personnel, Time, Location].

TIPPERS Dashboard 

• At time tl, the 2 Dashboard Observers at the TIPPERS Dashboard start their obser­
vations.

• At time t2, the 2 Dashboard Observers record the locations of all participants as seeing
on the Map in the Dashboard.

• Whenever an alert comes in, they record the following data points: Participant ID,
Time, Location, Fall Detected or Fall Not Detected.

• They also check if th�lert was forwarded to all parties: Alert Forwarded: YES or
NO, Time, Recipients].

Alerting Others 

• At time tl, the following participants go to their designated locations: 2 Designated
Response Personnel, 4 Nearby Personnel, 2 Damage Control Central, 2 Bridge.

• At time t2, they start their observations.

• Whenever an alert comes in, they record the following data points: Alert Type: Fall
Alert, Participant ID, Time, Location].
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Figure 77: TIPPERS Mobile Fall Detection application deployed on ship 

• The two Designated Response Personnel move to the location of the fall and the fol­
lowing alert: Designated Response Personnel, Time, Location].

Demonstration Script 2 Scenario 2: Fire/Flood/Damage Control (F2DC) De­
scription: This scenario demonstrates the mechanisms for tracking sailors when they are in 
a fire, flood, or damage control emergency situation while preserving their privacy. 

Users: 1 Operator, 2 Dashboard Observers, 4 Experiment Observers, 2 Participants, 2 
Designated Response Personnel, 10 Near by Personnel, 5 Damage Control Central, 1 Bridge 

Locations: TIPPERS Observation Library: Zone 11 Experiment Crew Rec Room: Zones 
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Cl Designated Response Personnel Library: Zone L4 Nearby Personnel Crew Rec Room: 
Zone C5, C6, Training Room Zone: Zone Tl, T2 Damage Control Central Mess Decks: Zone 
1 Bridge: Mess Decks: Zone 8 

Log: Emergency Response Log 
Demonstration Script: Experiment 

• At time tl, all participants and observers go to their assigned zones.

• At time t2, the 2 Experiment Observers record the participants locations in the Log.

• At time t3, the 2 Participants send Fire Alert to the TIPPERS system.

• The 2 Experiment Observers record the following from the Participants devices: Alert
Type: Fire Alert, Time, Location.

TIPPERS Dashboard 

• At time tl, the 2 Dashboard Observers start their observations.

• At time t2, the 2 Dashboard Observers record the locations of all participants as seeing
on the Map in the Dashboard.

• Whenever an alert comes in, the 2 Dashboard Observers record the following data
points: [Participant ID, Fire Alert, Time, Location].

• They also record from the Dashboard if the alert was forwarded to all parties including
the Nearby Personnel: [Alert Forwarded: YES or NO, Time, Recipients].

Damage Control Central 

• At time t4, they start their observations.

• If they receive a Fire Alert, they record the following data points: [Participant ID, Fire
Alert, Time, Location].

• At time t5, the 2 Designated Response Personnel send the following message to TIP­
PERS: [Message Type: Designated Response Personnel responding, Time, Location]

• Then, they record the following from their devices: [Message Type: Designated Re­
sponse Personnel responding, Time, Location]

• At time t6, they leave.

Bridge 

• At time t2, the Experiment Observer at the Bridge starts the observation.

• Whenever an alert comes in, the Experiment Observer at the Bridge records the fol­
lowing data points: [Participant ID, Fire Alert, Time, Location].
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Nearby Personnel 

• Whenever the Nearby Personnel receive a fire alert, they send the following message
to TIPPERS: [Participant ID, Fire Alert Received, Time, Location].

• The 2 Experiment Observers record the following: [Participant ID, Fire Alert Received,
Time, Location].

Experiment: Containing the Fire 

• After arriving at the fire location, the 2 Designated Response Personnel send the fol­
lowing message to TIPPERS: [Message Type: Designated Response Personnel arrived,
Time, Location].

• After arriving at the fire location, the 2 Designated Response Personnel send the fol­
lowing message to TIPPERS: [Fire Contained, Time, Location].

Demonstration Script 3 Scenario 2: General Quarter (GQ) 
Description: This scenario demonstrates the automation of general quarters monitoring 

while preserving the privacy of the sailors. 
Users: 1 Operator, 2 Dashboard Observers, 3 Experiment Observers, 15 Participants, 1 

GQ Station Team Leader, 1 Damage Control Central, 1 Bridge 
Locations: TIPPERS Observation - Library: Zone Ll Experiment - 4 Compartments 

GQ Station Team Leader - Library: Zone L4 Damage Control Central - Crew Rec Room: 
Zone 1 Bridge - Training Room: Zone 1 

Assignments Group A (5 participants): Start Station: Mess Decks, Start Time: xx:xx­
- End Station: Library, End Time: xx:xx Group B (5 participants): Start Station: Training 
Room, Start Time: xx:xx - End Station: Library, End Time: xx:xx Group C (5 partici­
pants): Start Station: Crew Rec Room, Start Time: xx:xx - End Station: Library, End 
Time: xx:xx 
Demonstration Script: Experiment 

• At time tl, all participants and observers go to their assigned zones.

• In each starting location, the Experiment Observer records the following: [Participant
ID, Location, Time]

• At time t3, after GQ Station Team Leader announces GQ, all participants start moving.

• The Experiment Observer recording the following: [Start Time]

• When participants arrive at destination, send the following message to TIPPERS.
Message: [Participant ID, Reporting GQ, Time]

TIPPERS Dashboard 

• At time tl, the 2 Dashboard Observers start their observations.
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• At time t2, the 2 Dashboard Observers record the locations of all participants as seeing
on the Map in the Dashboard.

GQ Station 

• At time t2, GQ Station Team Leader announces GQ by broadcasting a message to
everyone: [GQ start at time: xx:xx]

• The Experiment Observer records the data point from the GQ Station Team Leader
device: [Alert: GQ, Time: xx:xx, Location]

• When participants arrive at their destinations and send the Reporting GQ message, the
Experiments Observer records the confirmation message: [GQ Notification Received,
Time: xx:xx, Location]

Demonstration Script 4 Scenario 2: Onboarding (OB) for Visitor Control 
Description: This scenario demonstrates the automation of onboarding and offboarding 

of visitors on the ship. 
Users: 1 Operator, 2 Dashboard Observers, 4 Experiment Observers, 15 Participants 

(Visitors), 1 GQ Station Team Leader, 1 Damage Control Central, 1 Bridge 
Visitor Info: Visitor Name, Organization, Security Clearance Level, Authorized Ship­

board Destination(s), Expected Completion Time Violators: 11, Visitor Violators: 4 
Locations: TIPPERS Observation - Library: Zone Ll Experiment - 4 Compartments 

Restricted Areas to Visitors: Training Room Zone 6, Crew Rec Room Zone 2 
GQ Station Team Leader - Library: Zone L4 Damage Control Central - Crew Rec 

Room: Zone 1 Bridge: - Training Room: Zone 1 
Demonstration Script: Experiment 

• At time tl, participants (Visitors) start checking into the simulated entrance of the
ship (Library). Each Visitor will have a phone or watch.

• The Experiment Observer at the Library records the following data points: [Visitor
ID, Time Check-in, Location, Time to Check-out].

• After checking-in, the Visitors go to the other locations as directed.

• The Violators go to the restricted areas.

• TIPPERS system detects the violations and sends the following alert to each violator:
[Visitor ID, Time, Location, Accessing Restricted Area]

• At time t2 ( end visit time), visitors start checking out.

• Whenever a Visitor checks-out, the Experiment Observer records the following data
points from the message displayed on the Dashboard: [Visitor ID, Time Check-out,
Location, Time Check-out].
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TIPPERS Dashboard 

• At time tl, the 2 Dashboard Observers start their observations.

• Whenever a Visitor checks-in, they record the following data points from the message
displayed on the Dashboard: [Visitor ID, Time Check-in, Location, Time Check-out].

• Whenever a Visitor Violation Alert is received, the 2 Dashboard Observers record the
following: [Alert Type: Visitor Violation Alert, Location, Time]

• At time t2 ( end visit time), visitors start checking out.

• Whenever a Visitor checks-out, the 2 Dashboard Observers record the following data
points from the message displayed on the Dashboard: [Visitor ID, Time Check-out,
Location, Time Check-out].

Demonstration Script 5 Scenario 4: Inventory Management (IM) 
Description: This scenario demonstrates the management of tools and parts used for the 

maintenance of the ship. 
Users: 1 Operator, 2 Dashboard Observers, 4 Experiment Observers, 15 Participants 

(Visitors), 1 Inventory Manager 
Tools Users: Name, ID, Workcenter Tools: Inventory ID, Type, Number in Inventory, 

Number Available 
Locations: TIPPERS Observation - Library: Zone Ll Experiment - Library, Crew 

Rec Room Workcenter - Crew Rec Room Zones Tool User 1 - Rl, Tool User 2 - R2, 
Tool User 3 - R3, Tool User 4 - R4, Tool User 5 - R5, Tool User 6 - R6 
Demonstration Script: Experiment 

• At time tl, participants (Tool Users) go to their assigned workcenters.

• The Experiment Observers enter the following data into the Log: [Participant ID,
Location, Time]

• At time t2, each Tool User goes to the Storage to check out the approved tools.

• At time t2, all Tool Users return their tools on time except the 2 Tool Violators.

• After the time expired, TIPPERS sends an Tool Missing Alert to the Inventory Man­
ager.

• The Inventory Manager records the following: [Last User ID, Tool ID, Last Time, Last
Location]

TIPPERS Dashboard 

• At time tl, the 2 Dashboard Observers start their observations.
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• The 2 Dashboard Observers conform the locations of all Tool Users and Tools from
the map.

• After TIPPERS sends an Tool Missing Alert to the Inventory Manager, the 2 Dash­
board Observers record the following from Dashboard: [Last User ID, Tool ID, Last
Time, Last Location]

Demonstration Script 6 Scenario 3: Watchstanding (WS) 
Description: This scenario demonstrates how the watchstanding activities can be moni­

tored automatically. 
Users: 1 Operator, 2 Dashboard Observers, 4 Experiment Observers, 2 Participants, 1 

Watch Supervisor 
Locations: TIPPERS Observation Library: Zone Ll Experiment 4 Compartments 
Watchstanding Route: Library Zone L2 - Mesh Desks Zone M2, M4, M8 - Training 

room Zone Tl, T3, T6 - Crew Rec Room Zones Rl, R3, R6 - Library Zone L4 
Log: Situational Awareness Log 

Demonstration Script: Experiment 

• At time tl, Watchstanding sends the first check point message to TIPPERS and records
in the Log, the notification message displayed: [Watchstanding ID, Check Point Loca­
tion, Time]

• At time t2, Watchstanding start moving.

• Whenever the Watchstanding riches a check point, she or he sends a check point mes­
sage to TIPPERS and records in the Log the notification message displayed: [Watch­
standing ID, Check Point Location, Time]

TIPPERS Dashboard 

• At time tl, the Operator shows the Watchstanding Route on the map.

• The 2 Dashboard Observers record the following: [Route, List Check Points, List
Times]

• Whenever the Watchstanding riches a Check Point, through the route, the 2 Dashboard
Observers record the followings: [Check Point, Time]

• The 2 Dashboard Observers records how often the Dashboard updates the watchstander
track updated (sec). [Track Update Frequency]

• The 2 Dashboard Observers check and record if TIPPERS is registering the Watch­
standing at each checkpoint. [Watchstanding registration at check points]

• If the Watchstanding is too late or too early to a checkpoint, TIPPERS sends a Watch­
standing Violation Alert to Watch Supervisor. [Watchstanding ID, Check Point Loca­
tion, Time Difference]
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• The 2 Dashboard Observers record in Log: [Watchstanding ID, Check Point Location,
Time Difference]

Watch Supervisor 

• Whenever the Watch Supervisor receives Watchstanding Alert, she or he records the
following: [Watchstanding ID, Watchstanding Alert, Time]

Demonstration Script 7 Scenario 4: Sailor Messaging and Management
(SMM) 

Description: This scenario demonstrates how the Messaging App is used by the sailors 
to communicate as well as the management on the ship. 

Users: 1 Operator, 2 Dashboard Observers, 4 Experiment Observers, 10 Participants, 2 
Division Supervisors 

Locations: TIPPERS Observation - Library: Zone Ll Experiment - 4 Compart­
ments 

Division 1: 5 Participants, 1 Experiment Observer - Training Room Division 2: 5 Par­
ticipants, 1 Experiment Observer - Crew Rec Room 2 Division Supervisors, 1 Experiment 
Observer - Library 
Demonstration Script: Supervisor Communication Experiment 

• The participants send back receipt acknowledgements.

• The Experiment Observers record the following: [Division 1, Time, Location]

• After completing the tasks, the participants send a message to Division 1 Supervisor.
: [Participant ID, Time, Message]

• Repeat these steps for Division 2.

TIPPERS Dashboard 

• At time tl, the 2 Dashboard Observers start their observations.

• Division 1 Supervisor sends a message to his or her 5 sailors to go to M8 to perform a
task.

• The Experiment Observer records the following: [Division 1 Supervisor, Time, Loca­
tion, Message]

• Division 1 Supervisor observes the participants in the location where they are perform­
ing the tasks.

• Repeat these steps for Division 2.

Sailor-to-Sailor Communication 

• Participant 1 in Division sends a text message to Participant 6 in Division 2.
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• The Experiment Observer in Division 1 records the following from Participant 1 device:
[sender, receiver, location sender, time]

• If message received, the Experiment Observer in Division 2 record the following from
Participant 2 device: [sender, receiver, location receiver, time]

The ship's leadership was supportive of the demonstrations. The TIPPERS team was 
assigned 10 to 20 sailors daily to help execute the scenarios. While the team was not able 
to have a VIP demonstration due to COVID-19, a number of ship leaders participated or 
observed the demonstrations and filled out the survey. The TW20 management was also 
very supportive of the TIPPERS system and the demonstrations. 

3.5.2 COVID-19 Mitigation 

US Navy Deployment (COVID-19). As a direct result of the success of TIPPERS in 
the Trident Warrior Exercise, US Navy leadership selected the system to be tested for their 
COVID-19 mitigation strategies. The testing and demonstration of the TIPPERS system 
was conducted in two parts: June 27, 2020 and July 6, 2020. The testing and demonstrations 
were performed at Pier in Naval Base, San-Diego. The following scenarios were tested: 

1. Contact Tracing

2. Hotspot Exploration

3. Social Distancing

4. Quarantine and Restricted Access to Infected Areas App

The following is the testing scenarios designed by the Navy. All web apps will be devel­
oped for desktops, laptops, or large tablets. Users 

• Data Generators - Sailors (iphone apps or watches)

• Data Consumers - Medical Personnel (laptop or tablet)

1- Contact Tracing User: Medical Personnel Scenario 1: Tracing an infected
person

• Select the Name of the Infected person from a drop-down.

• Select the date of the test.

• Select the infection date window.

• Submit the request.

• A list of contacted people with their info within the time window.
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Figure 78: Sailors testing Covid-19 mitigation with TIPPERS. 

• From the list, click on the name of the person to get more information.

• Details Window displays

- A list (Location, Time, Duration)

- A map visualizing this info.

Scenario 2: Display Trajectory of a Infected Person 

• Enter the name of infected person to select the name from the drop-down.

• Select the date of the test.

• Select the infection window.

• Submit.

• Map appears with the trajectory of the infected person throughout the spaces within
the time window.

2- Hotspot Exploration Scenario 1: Display a heatmap of all contaminated

areas within a specified time window. 
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• Open tab/app.

• Show map of space with heatmap overlaid.

• User zooms into a specific space to see the heatmap for that space.

• Mouse hover shows popup menu with info.

3- Social Distancing Same scenario and UI as Contact Tracing application, but includes
a dropdown with degrees of separation of contact from person who tested positive. 

4- Quarantine and Restricted Access to Infected Areas App Live notification to
sailor and admin when the sailor tries to enter a restricted space. 

On June 27, 2020, the TIPPERS team was able to successfully complete 3 out of 4 
demonstration scripts (10 scenarios) in the plan (Bubble Transfer, Access Restriction to 
Quarantine/Contaminated Areas, and Contaminated Areas Tracing). There were some dif­
ficulties performing the last demonstration script (COVID-19 Contact Tracing - less than 
6 feet for 2 minutes). To complete the demonstration,the team agreed with the Trident 
Warrior team to perform this remaining demonstration script on July, 6 2020. At that time, 
TIPPERS performed with 100 percent success. 

UCI Computer Science Deployment (COVID-19). The Bren School of ICS is 
the first non-military deployment of TIPPERS for COVID-19 mitigation. A dashboard was 
created that shows the occupancy counts of the buildings within the school. Additionally, 
a user can drill down into the floor or any area of interest. In addition to occupancy, social 
distancing adherence and crowd flow can be displayed. All is done in a privacy preserving, 
non-invasive fashion. 

UCI Engineering Deployment (COVID-19). The Samueli school was the next 
adopter. Similar functionality was provided for this school. 

UCI CalIT2 Deployment (COVID-19). The CalIT2 institute also adopted TIP­
PERS technology for COVID-19 mitigation. Similar functionality was provided for the 
institute. 

BSU Deployment (COVID-19). As of the time of writing this report, TIPPERS is 
approximately 75 percent implemented at Ball State University. The TIPPERS system is 
receiving data from BSU's library with their Rec Center on the list as well. These are two 
important areas of interest for the University that receive high traffic and occupancy. Similar 
functionality ( dashboard, etc.) will be provided to them. 

4 Results and Discussion 

The key results of the TIPPERS project are summarized below. 
TIPPERS introduced a new layered approach to represent information in sensor-driven 

smart spaces that allows data to be modeled at the raw sensor level, as well as, at the 
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semantically enriched level by dynamically interpreting sensor data as it arrives. Seman­

tic representation makes both the task of specification and reasoning with privacy policies, 

as well as, application development easier. The semantic model led to the creation of a 
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Figure 81: CalIT2 COVID-19 Dashboard. 

novel data management technology that embodies "privacy-by-design" principle by creat­
ing a policy-based approach to data management wherein all aspects of data flow - from 
creation, ingestion, processing, sharing, storage, and retention are controlled by potentially 
fine-grained policies. The database system implemented supports plug-n-play mechanisms to 
integrate a variety of privacy technologies including differential privacy and secure storage. 
Furthermore it supported a policy based PE-IoT framework that allows data streams to be 
intercepted and for diverse privacy technologies ( differential privacy, encryption, anonymiza­
tion, randomization, etc.) to be applied to data flows in the context of sharing. 

This work on data management initiated in TIPPERS has led to several new projects 
funded by National Science Foundation (NSF) including a project entitled EnrichDB where 
the project's goal is to develop a new type of data management technology that allows data 
enrichment to be seamlessly integrated into query processing an data analysis. It also helped 
create additional new projects entitled SWADE and CAREDEX funded by NSF and SparX 
by University of California that uses the underlying sensor data management technology 
of EnrichDB to build systems to allow real-time analysis of water systems, senior living 
facilities, and monitoring prescribed fires respectively. 

Another key result of TIPPERS was the development of an end-to-end testbed at UCI 
that instrumented part of the campus - over 30 buildings - with sensors and sensor processing 
mechanisms to create a digital representation of activities in the buildings. Such activities 
include people in the building, their location, ongoing events, attendance by people in the 
events, etc. In addition, the testbed included a diverse set of end-user application such 
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as finding colleagues, analysing building usage, analyzing individual's interaction with the 
building and/or other users, support for contextualised messages etc. 

Through the plug-n-play interface, diverse privacy technologies were integrated into the 
testbed incuding Pegasus differential privacy technology ito hide information about individ­
ual's short term and longer term behavior, Stealth's Pulsar System and Galois's Jana system 
for secure data storage and processing, and the privacy assistant and privacy registry 
technologies developed by CMU for policy notification and preference selection. 
Integration of these technologies allowed for a detailed privacy analysis of different privacy 
technologies in supporting location privacy using the UCI testbed. 

In addition to serving as a testbed for studying efficacy of privacy technologies, one of 
the key outcomes of TIPPERS was the identification of limitations of existing privacy /
secure computing technologies when it comes to at-scale deployments. It also allowed the 
team to explore novel directions to overcome such limitations. In particular, we developed 
SEMIOTIC framework to support semantic abstraction of data in databases in order to 
specify privacy policies for sensor data that can be automatically translated and enforced 
by the system. Formalization of a challenge of preventing data leakage through inferences 
when policies are specified at the semantic level of abstraction and techniques to prevent 
such leakage were developed. 

Several new techniques to scale performance of secure data management were developed 

including development of PANDA framework to support partitioned computation over sensi­
tive and non-sensitive data in order to scale secure data management solutions to very large 

data sets, development of OBSCURE and PRISM frameworks to support efficient evaluation 
of verifiable aggregation queries and private set operations (intersection and union) using se-

cret sharing, development of CONCEALER and CRYSTAL frameworks to outsource dynamic 
sensor data and compute both aggregation and SQL queries, and development of SIEVE in­
frastructure to scale database policy enforcement to large number (millions) of fine-grained 
policies prevalent in large scale smart space applications. 

New techniques to scale differential privacy to be applied to smartspace settings were 
also developed. These included a new model for one-sided differential privacy (OSDP) that 
exploits partial sensitivity of data to support increased utility (by allowing more data to be 
shared) while ensuring strict privacy properties on sensitive data, and extension of differential 
privacy framework to support minimally invasive monitoring that allows analyst to explore 
data at different levels of invasiveness based on the needs. 

New compliance technologies to build trust amongst subjects in the sensor-based smart 

spaces were developed. In particular, IoT NOTARY framework was designed and imple­
mented to verify compliance to organizational data capture policies, IoT EXPUNGE protocol 
was developed to verify the data deletion against the user's data retention policies, and 

CANOPY algorithm was developed for preventing user privacy in a smart home by exploiting 
round-robin style dataflow algorithms. 

A key outcome of TIPPERS was transition and deployment of the technologies to the US 
Navy and to other organizations (where it was a recipient of the NAVWAR 2021 Innovation 
Award)) and to other schools such as BSU and to Honeywell Labs. 
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5 Conclusion

The goal of the TIPPERS project was to create an loT smart space testbed with a plug­n-

play architecture to infuse privacy enhancing technologies in order to explore their ef­
fectiveness in protecting users' privacy while still supporting a diverse set of smart space 
applications. Privacy technologies included specification and enforcement of privacy poli­
cies, use of differential privacy in both collecting and sharing data, and secure computation 
using cryptographic approaches including multi-party computation and secret sharing. 
As part of the project, we created a novel data management technology that supported 

integration of privacy technologies, and used the system to create a testbed and a set of 
applications of everyday use that allowed us to explore use of smart space technologies 
at UCL The modular and portable design of the system enabled us to deploy the system 

at other organizations including transition it to the US Navy and to participate 
working alongside researchers at NIWC in several naval exercises. 
Our research, development, and deployment efforts led to several observations about the 

existing state of the privacy technologies, identification of gaps in existing technologies and 
new directions of exploration of technologies (some of which are discussed in the following 
section as part of suggested future research directions). In deploying TIPPERS system 
at scale, among the first observations we made was that continuous monitoring of human 
in­teractions with each other and with the environment in smart spaces can lead to 
significant leakage of data that might be deemed as sensitive, even when the sensors used 
to monitor activities do not directly monitor personally identifying information about 
individuals. Such leakage includes detailed fine-grained location of people which can lead 
to inferences about their habits, health, as well as work ethics and performance. 
While continuous monitoring can lead to novel applications of significant benefit 
to individuals and organizations, the aforementioned privacy risks pose a significant 
challenge to technology adoption. 
Our second important observation was that deploying privacy enhancing technologies to 

real-life testbed opens several important challenges related to deployment and scale. As an 
example, while significant progress has been made over the past two decades of design 
of homomorphic techniques that allow computation to be supported on the 
encrypted domain, both encryption and secret sharing techniques ( that offer 
information theoretic security) do not scale to large data sets, support limited 
operations, and making such systems to work at scale require a delicate balance between 
security and performance. The same is also true for privacy technologies such as 
differential privacy. Such techniques that offer provable privacy guarantees do so by 
limiting the utility of the data. Making such methods useful to real world applications 
requires systems to support mechanisms to explore the tradeoffs between privacy and 
utility. In the area of loT and smart spaces, where monitoring and situational 
awareness are key components of system design, such a challenge becomes even more 
complex since such systems depend upon automated detection of events using sensor 
data and data misclassification as a result of noise added to ensure privacy can prevent 
the system from meeting its goals. Adopting differential privacy in such setting, thus, 
requires rethinking how it should be integrated into the system. The approach to 
minimally invasive monitoring we developed as part of the TIPPERS project is an 

attempt in such a direction. 
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Another key outcome of the TIPPERS project was identification of challenges that arise 
due to the heterogeneity of sensor technologies deployed in building smart spaces. The 
diversity and multiplicity of sensor devices that are deployed and implicit inferences and 
correlations amongst the data collected from these devices make reasoning about privacy 
complex. TIPPERS pioneered ways to express privacy policies and requirements in smart 
spaces at a semantic level which can then be translated to device level policies. Such an 
approach enables privacy reasoning to be decoupled from the specific analysis of device 
data. As the implicit inferences and correlations hidden in sensor data is unravelled, the 
system can automatically adjust to new (possibly more conservative) policies and techniques 
to ensure privacy. 

The key achievement of TIPPERS was its successful transition to US Navy through 
joint participation in naval exercises and also in the demonstration of a TIPPERS based 
system for COVID monitoring. This achievement was recognized through the NAVWAR 
Innovation award in 2021. TIPPERS has also been ported and made available to campuses 
other than University of California, Irvine. Discussions are ongoing to deploy TIPPERS 
based smart space applications in several other universities and organizations in the near 
future. 

6 Suggested Further Research 

Our work on TIPPERS opened several new directions of research in both system design 
and privacy and security technologies which we believe should be fertile grounds of further 
exploration. We list several of them below. 

6.1 Policy Compliance in Big Data Ecosystems 

TIPPERS project has clearly established that smart space and IoT applications applications 
collect users' access and mobility information, the processing and sharing of which may 
violate the users' rights for privacy and consumers' protections. Such data is subject to 
policies such as General Data Protection Regulation (GDPR) in the European Union and 
similar regulations and laws in other parts of the world, such as the California Consumer 
Privacy Act (CCPA). Such regulations include various aspects that influence how data is 
collected, processed, stored, analyzed and shared. For example, one requirement is to support 
"the right to be forgotten", which enables users to delete all data that corresponds to them. 
This requires building functionality that would allow access to all data that corresponds to a 
user either directly or indirectly which entails additional meta-data and indexing structures. 
Building systems that are compliant with policies such as GDPR from scratch is not practical 
for many existing systems. An alternate is to extend existing data management ecosystems 
to make them GDPR-compliant.The PE-loT architecture (that intercepts flow of data from 
sensors to enforce organizational and subject policies ) coupled with the secure logging service 
( that we built as part of the IoT notary mechanism ) which can serve as a building block for 
policy compliance provide an interesting opportunity to build systems in which compliance 
to regulations such as GDPR can be retrofitted. 
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6.2 Understanding the Implications of Data Leakage 

In building TIPPERS using state-of-the-art secure data management solutions, it was clear 
that given orders of magnitude overhead of cryptographic techniques that provide guaranteed 
security, such systems choose to support several cryptographic primitives that offer varied 
levels of security thereby offering users a choice between performance and security. In par­
ticular, several systems have explored weaker encryption techniques that may leak certain 
information such as output size, properties such as ordering in data, access patterns, etc. 
While individually researchers have explored what different techniques leak, the implication 
of choosing cross cryptographic approaches to represent data and to use such techniques in 
computing results to the query have not been systematically understood. While there exists 
a series of papers that highlight dangers of mixing cryptographic solutions, techniques to 
safely compose cross cryptographic solutions leasing to a theoretical framework to reason 
about their security,and mechanisms to systematically explore security guarantees and per­
formance in a system that exploits multiple cryptographic primitives has nort been explored. 
The work on secure normal form in TIPPERS provides a starting point for such an explo­
ration but advancing the existing research to the level that it can become the basis of system 
design with provable security guarantees requires significant further research. 

6.3 Scaling Cryptographic & Secret Sharing based Approaches 

One of the key insights that allowed TIPPERS to scale secure data processing was the 
observation that in a large number of application domains, such as smart spaces, not all data 
collected is sensitive. In fact, often sensitive data comprises of only a fraction of data that 
may be collected. TIPPERS explored novel ideas of partitioned computing wherein data and 
computation is split into sensitive ( that exploits cryptographic techniques) and non-sensitive 
( that stores and executes in plaintext). A notion of partitioned security that prevents such 
a partitioned computation to leak data was designed and our experimental results show 
orders of magnitude improvements as a result of exploiting such an approach. Nonetheless, 
the approach, to realize its full potential has several unanswered questions - e.g., automated 
ways to identify sensitivity of the data, expanding the approach to several levels of sensitivity, 
exploiting secure hardware, etc. Most importantly, it opens an opportunity to design and 
develop a practical new data management technology based on the theoretical underpinnings 
of exploiting partial sensitivity of data developed in the context of TIPPERS. Likewise, 
TIPPERS explored novel ways to exploiting secret sharing based ways to support certain 
database operations that provide an opportunity to explore a cloud-based data management 
service based on secret sharing. 

6.4 Embedding Data Enrichment in Databases 

A key factor in the success of TIPPERS project was the early realization by the team 
that a successful creation of a system and a testbed that serves as a integrator of privacy 
technologies in the domain of smart spaces required a new approach to data management 
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that abstracts sensor data into semantically meaningful observations. Such an approach 
could lead to understanding and reasoning about privacy policies and setting up privacy re­
quirements from individual's perspective which can then be translated to lower level sensor 
policies. While our objective behind such an abstraction was initially dictated by our desire 
to reason about privacy, it became self evident that such an abstraction leads to a much 
more semantically enriched representation of data making the task of application program­
ming significantly simpler. In TIPPERS, a developer can program new functionalities and 
applications purely dealing with semantic concepts without having to explicitly program and 
reason with sensors (which is hidden by the underlying system). Such high level programs 
are then automatically translated into sensor level code to realize the functionality. While 
TIPPERS has clearly established the power of such an abstraction both from the perspective 
of software development and reasoning about privacy, it has opened a need and opportunity 
for a new type of data management system that seamlessly integrates such data abstraction 
achieved through interpreting/ enriching lower level sensor data to create higher level obser­
vations. This work is the genesis of EnrichDB now funded in part by NSF and exploration 
of the data management technology in domains ranging from smart spaces to IoT and cyber 
physical systems for smart water management, prescribed fire, ana for smart elderly shared 
living facilities.

6.5 Minimally Invasive Monitoring 

Our work on applying differential privacy in decision support applications led us to a radically 
new concept of minimally invasive monitoring FMIM). As discussed earlier in this report, 
traditionally, privacy-preserving data snaring has been designed for situations where data is 
collected and shared in aggregate form, either as a synthetic dataset generated based on the 
original data, or in the form of queq� answers. Differential privacy based approaches focus on 
providing formal privacy guarantees (in the form of a privacy parameter) but do not provide 
guarantees on the quality of data outputted. Such approaches are not suitable for decision 
support (DS) tasks that require guarantees on the quality of the output, specially, for false 
negatives, which may prevent, for instance, timely actions/interventions. The MIM approach 
builds a new framework that strikes an optimal continuum between the needs of the decision 
support applications and privacy. A MIM framework can, thus, be viewed as a progressively 
invasive system that explores data in the context of a monitoring task through a coarse 
filter with a high level of privacy, but explores the data using a finer filter more invasively 
only if it passes through the coarse filter. Such a MIM infrastructure is reminiscent to a 
degree of the way modern law enforcement has evolved over time wherein one uses a series of 
(explicit/ implicit) filters to determine whether to explore an incident/suspect progressively 
more carefully (in MIM context more invasively, i.e., with less privacy) based on evidence 
collected during the prior steps of the investigation (in MIM context, if object classifies as 
a positive in the previous tests). We can, thus, view MIM as a software system counterpart 
of the age-old practice of law enforcement that has evolved over time. Our work on MIM 
in the context of TIPPERS has established the viabiltity of the idea which provides enough 
evidence for a full scale exploration of the idea in building decision support systems that 
respect the privacy requirements of individuals. 
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7.0  Human Research Protection Official  (HRPO) Review

In accordance with AF Human Research Protection Official (HRPO) review requirements 
per DoDI3216.02_AFI40-402 "Protection of Human Subjects and Adherence to Ethical 
Standards in Air Force supported Research", the Institutional Review Board's (IRB) and 
HRPO has reviewed and concured with a Category 2 Exempt Determination for the 
Protocol Titled, Privacy Cognizant IoT Environment with Protocol Number 
FWR20150161X for work performed under this program.
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and Applications (IEEE NCA), 2019, Best Paper Award.
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• Sameera Ghayyur, Dhrubajyoti Ghosh, Xi He, and Sharad Mehrotra. Towards Accu­
racy A ware Minimally Invasive Monitoring, Theory, and practice of Differential Pri­
vacy. ACM Cloud Computing Security Workshop.

• Nisha Panwar, Shantanu Sharma, Guoxi Wang, Sharad Mehrotra, and Nalini Venkata­
subramanian. Verifiable Round-Robin Scheme for Smart Homes. Proceedings of the
Ninth ACM Conference on Data and Application Security and Privacy, CODASPY
2019, Richardson, TX, USA, March 25-27, 2019.

• Sharad Mehrotra, Shantanu Sharma, and Jeffrey D. Ullman Scaling Cryptographic
Techniques by Exploiting Data Sensitivity at a Public Cloud. Proceedings of the
Ninth ACM Conference on Data and Application Security and Privacy, CODASPY
2019, Richardson, TX, USA, March 25-27, 2019. Distinguished Poster Award.

• Eun-Jeong Shin, Dhrubajyoti Ghosh, Sharad Mehrotra, and Nalini Venkatasubrama­
nian. SCARF: a scalable data management framework for context-aware applications
in smart environments. MobiQuitous 2019, Proceedings of the 16th EAi International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services,
Houston, Texas, USA, November 12-14, 2019.

• Sameera Ghayyur, Dhrubajyoti Ghosh, Xi He, and Sharad Mehrotra. Towards Accu­
racy Aware Minimally Invasive Monitoring (MiM). ACM CCS (TPDP workshop).

• Roberto Yus, Georgios Bouloukakis, Sharad Mehrotra, and Nalini Venkatasubrama­
nian. Abstracting Interactions with IoT Devices Towards a Semantic Vision of Smart
Spaces. 6th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, BuildSys 2019, New York, NY, USA, November 13-14,
2019.

• Sumaya Almanee, Georgios Bouloukakis, Daokun Jiang, Sameera Ghayyur, Dhruba­
jyoti Ghosh, Peeyush Gupta, Yiming Lin, Sharad Mehrotra, Primal Pappachan, Eun­
Jeong Shin, Nalini Venkatasubramanian, Guoxi Wang, and Roberto Yus. SemloTic:
Bridging the Semantic Gap in loT Spaces. 6th ACM International Conference on Sys­
tems for Energy-Efficient Buildings, Cities, and Transportation, BuildSys 2019, New
York, NY, USA, November 13-14, 2019.

• Anton Burtsev, Sharad Mehrotra, and Shantanu Sharma. Secure and Privacy­
Preserving Big-Data Processing. IEEE Big-Data, Los Angeles, CA, USA, Dec 09-12,
2019.

2018 

• Mamadou H. Diallo, Nisha Panwar, Sharad Mehrotra, and Ardalan Amiri Sani. Trust­
worthy Sensing in an Untrusted IoT Environment. 2018 IEEE International Conference
on Pervasive Computing and Communications Workshops, PerCom Workshops 2018,
Athens, Greece, March 19-23, 2018.
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• Mamadou H. Diallo, Nisha Panwar, Roberto Yus, and Sharad Mehrotra. Trustworthy
Privacy Policy Translation in Untrusted loT Environments. 3rd International Confer­
ence on Internet of Things, Big Data and Security, loTBDS 2018, Funchal, Madeira,
Portugal, March 19-21, 2018.

• Sameera Ghayyur, Yan Chen, Roberto Yus, Ashwin Machanavajjhala, Michael Hay,
Gerome Miklau, and Sharad Mehrotra. loT-Detective: Analyzing loT Data Under
Differential Privacy. 2018 International Conference on Management of Data, SIG MOD
Conference 2018, Houston, TX, USA, June 10-15, 2018.

• Sharad Mehrotra, Kerim Yasin Oktay, and Shantanu Sharma. [Book Chapter] Exploit­
ing Data Sensitivity on Partitioned Data. From Database to Cyber Security - Essays
Dedicated to Sushil J ajodia on the Occasion of His 70th Birthday, 2018.

2017 

• Kerim Yasin Oktay, Murat Kantarcioglu, and Sharad Mehrotra. Secure and Efficient
Query Processing over Hybrid Clouds. 33th IEEE International Conference on Data
Engineering (IEEE ICDE), 2017.

• Abdulrahman Alsaudi, Mehdi Sadri, Yasser Altowim, Sharad Mehrotra. Adaptive
Topic Follow-up on Twitter. 33rd IEEE International Conference on Data Engineering
(IEEE ICDE), 2017

• Primal Pappachan, Martin Degeling, Roberto Yus, Anupam Das, Sruti Bhagavatula,
William Melicher, Pardis Emami Naeini, Shikun Zhang, Lujo Bauer, Alfred Kobsa,
Sharad Mehrotra, Norman M. Sadeh, and Nalini Venkatasubramanian. Towards
Privacy-Aware Smart Buildings: Capturing, Communicating, and Enforcing Privacy
Policies and Preferences. 37th IEEE International Conference on Distributed Com­
puting Systems Workshops, ICDCS Workshops 2017, Atlanta, GA, USA, June 5-8,
2017.

• Saeed Mirzamohammadi, Justin A. Chen, Ardalan Amiri Sani, Sharad Mehrotra, and
Gene Tsudik. Ditio: Trustworthy Auditing of Sensor Activities in Mobile & loT De­
vices. Proceedings of the 15th ACM Conference on Embedded Network Sensor Sys­
tems, SenSys 2017, Delft, Netherlands, November 06-08, 2017.

• Eun-Jeong Shin, Roberto Yus, Sharad Mehrotra, and Nalini Venkatasubramanian.

2016 

Exploring fairness in participatory thermal comfort control in smart buildings. 4th
ACM International Conference on Systems for Energy-Efficient Built Environments,
BuildSys 2017, Delft, The Netherlands, November 08-09, 2017.

• Sharad Mehrotra, Alfred Kobsa, Nalini Venkatasubramanian, and Siva Raj Ra­
jagopalan. TIPPERS: A privacy cognizant IoT environment. 2016 IEEE International
Conference on Pervasive Computing and Communication Workshops, PerCom Work­
shops 2016, Sydney, Australia, March 14-18, 2016.
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2015 

• Primal Pappachan, Roberto Yus, Prajit Kumar Das, Sharad Mehrotra, Tim Finin,
and Anupam Joshi. Building a Mobile Applications Knowledge Base for the Linked
Data Cloud. Proceedings of the 1st International Workshop on Mobile Deployment of
Semantic Technologies (MoDeST 2015) co-located with 14th International Semantic
Web Conference (ISWC 2015), Bethlehem, Pennsylvania, USA, October 11th, 2015.

• Primal Pappachan, Roberto Yus, Prajit Kumar Das, Sharad Mehrotra, Tim Finin,
and Anupam Joshi. Mobipedia: Mobile Applications Linked Data. Proceedings of the
ISWC 2015 Posters & Demonstrations Track co-located with the 14th International
Semantic Web Conference (ISWC-2015), Bethlehem, PA, USA, October 11, 2015.

• Kerim Yasin Oktay, Sharad Mehrotra, Vaibhav Khadilkar, and Murat Kantarcioglu.
SEMROD: Secure and Efficient MapReduce Over HybriD Clouds. SIGMOD Confer­
ence 2015.

Appendix B - Unpublished Papers 

• Roberto Yus, Georgios Bouloukakis, Sharad Mehrotra, and Nalini Venkatasubrama­
nian. The SemloTic Ecosystem: A Semantic Bridge between IoT Devices and Smart
Spaces.

• Roberto Yus, Nada Lahjouji, Georgios Bouloukakis, Daokun Jiang, and Sharad Mehro­
tra. Modeling Inhabited Smart Spaces to Support Interoperable Sensor-Based Appli­
cations.

• Andrew Chio, Peeyush Gupta, Daokun Jiang, Roberto Yus, Georgios Bouloukakis,
Nalini Venkatasubramanian, and Sharad Mehrotra. SmartSPEC: Customizable Smart
Space Datasets via Event-driven Simulations.

• Sameera Ghayyur, Peeter Laud, Alisa Pankova, Sharad Mehrotra, and Roberto Yus.
Empirical Evaluation of Diverse PETs to Publish Smart Space Occupancy Data.

• Peeyush Gupta, Shanshan Han, Pramod Khargonekar, Sharad Mehrotra, Nisha Pan­
war, Nalini Venkatasubramanian, and Guoxi Wang. SODA: Secure and Privacy­
Preserving Outsourcing of Organization Sensor Data.

• Dhrubajyoti Ghosh, Peeyush Gupta, Sharad Mehrotra, and Shantanu Sharma. A Case
for Enrichment in Data Management Systems.

• Dhrubajyoti Ghosh, Peeyush Gupta, Sharad Mehrotra, and Shantanu Sharma. Imple­
menting Scalable Query Time Data Enrichment.
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Appendix C - In-progress Papers 

• Primal Pappachan, Shufan Zhang, Xi He, and Sharad Mehrotra. Don't be a tattle

tale: Preventing leakages through data dependencies on access control protected data.

• Dhrubajyoti Ghosh, Roberto Yus, Yasser Altowim, and Sharad Mehrotra. Optimizing

Enrichment with Progressive Query Processing.

• Sameera Ghayyur, Dhrubajyoti Ghosh, Xi He, Sharad Mehrotra. Accuracy Aware

Minimally Invasive Event Detection Using Differential Privacy
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List of Symbols, Abbreviations, and Acronyms 

• ACM →󠇋 Association for Computing Machinery

• API →󠇋 Application Program Interface

• AWS →󠇋 Amazon Web Services

• BMS →󠇋 Building Management System

• BSU →󠇋 Ball State University

• CMU →󠇋 Carnegie Mellon University

• CoAP →󠇋 Constrained Application Protocol

• DARPA →󠇋 Defense Advanced Research Projects Agency

• DB →󠇋 Database

• DBH →󠇋 Donald Bren Hall building at UCI

• DBMS →󠇋 Database Management System

• DP →󠇋 Differential Privacy

• DS →󠇋 Decision support

• DSSE →󠇋 Distributed Searchable Symmetric Encryption

• EU →󠇋 European Union

• RFID →󠇋 Radio Frequency Identification

• FGAC →󠇋 Fine-Grained Access Control

• GCC →󠇋 Group Comfort Control

• GDPR →󠇋 General Data Protection Regulation

• GPS →󠇋 Global Positioning System

• HTTP →󠇋 Hypertext Transfer Protocol

• HVAC →󠇋 Heating, ventilation, and air conditioning

• IEEE →󠇋 Institute of Electrical & Electronics Engineers

• IFD →󠇋 Infrastructure Deployer

• IoT →󠇋 Internet of Things

• IoTA →󠇋 Internet of Things Assistant

• IRB →󠇋 Institutional Review Board
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• IRR →󠇋 IoT Resource Registry

• IT →󠇋 Information Technology

• JSON →󠇋 JavaScript Object Notation

• LoC →󠇋 Lines of Code

• MAC →󠇋 Media Access Control

• MiM →󠇋 Minimally Invasive Monitoring

• MQTT →󠇋 MQ Telemetry Transport

• NIWC →󠇋 Naval Information Warfare Center

• OIT →󠇋 Office of Information Technology

• ORAM →󠇋 Oblivious Random Access Memory

• OSDP →󠇋 One-Sided Differential Privacy

• OT →󠇋 Oblivious Transfers

• PC →󠇋 Personal Computer

• PE-loT →󠇋 Privacy Enhancing Internet of Things

• PET →󠇋 Privacy Enhancing Technologies

• PIR →󠇋 Private Information Retrieval

• PPT →󠇋 Probabilistic Polynomial Time

• QB →󠇋 Query Binning

• QoS →󠇋 Quality of Service

• RAM →󠇋 Random Access Memory

• RDBMS →󠇋 Relational Database Manage System

• RESTful →󠇋 Representational state transfer

• SGX →󠇋 Secure Guard eXtension

• SOSA →󠇋 Sensor, Observation, Sample, and Actuator Ontology

• SP →󠇋 Service Providers

• SPAWAR →󠇋 Space and Naval Warfare Systems Command

• SSN →󠇋 Semantic Sensor Networks

• TIPPERS →󠇋 Testbed for loT-based Privacy preserving PERvasive Spaces

• TQL →󠇋 TIPPERS Query Language
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• TTL →󠇋 Time to Live

• TW →󠇋 Trident Warrior

• UCI →󠇋 University of California, Irvine

• UDF →󠇋 User Defined Function

• URI →󠇋 Uniform Resource Identifiers

• US →󠇋 United States

• VIP →󠇋 Very Important Person

• VM →󠇋 Virtual Machine

• WiFi AP →󠇋 WiFi Access Point

• XMPP →󠇋 Extensible Messaging and Presence Protocol
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