
EDGE OF THE ART IN VULNERABILITY RESEARCH VERSION 6

TWO SIX LABS

JUNE 2022

TECHNICAL PAPER

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TP-2022-008

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report was cleared for public release by the Defense Advanced Research Projects Agency
(DARPA) Public Release Center and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TP-2022-008 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
CHAD C. DESTEFANO
Work Unit Manager

JAMES S. PERRETTA
Deputy Chief
Information Warfare Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

Page 1 of 2
PREVIOUS EDITION IS OBSOLETE.

STANDARD FORM 298 (REV. 5/2020)
Prescribed by ANSI Std. Z39.18

REPORT DOCUMENTATION PAGE

1. REPORT DATE

JUNE 2022

2. REPORT TYPE

TECHNICAL PAPER

3. DATES COVERED

START DATE

JULY 2021

END DATE

DECEMBER 2021
4. TITLE AND SUBTITLE

Edge of the Art in Vulnerability Research Version 6

5a. CONTRACT NUMBER

FA8750-19-C-0009

5b. GRANT NUMBER

N/A
5c. PROGRAM ELEMENT NUMBER

62303E

5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER

R2PB
6. AUTHOR(S)

Will Huiras, Irwin Ong, and Jared Ziegler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Two Six Labs
901 N Stuart Street, Suite 1000
Arlington VA 22203

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S
ACRONYM(S)

AFRL/RI

11. SPONSOR/MONITOR'S
REPORT NUMBER(S)

AFRL-RI-RS-TP-2022-008

12. DISTRIBUTION/AVAILABILITY STATEMENT

 Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030
 Date Cleared: Mar 28, 2022

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This Edge of the Art report aggregates the most recent advances in vulnerability research (VR), reverse engineering (RE),
and program analysis tools and techniques that Two Six Labs considers when planning for the next CHESS evaluation event.

15. SUBJECT TERMS

Vulnerability Research, Reverse Engineering, Program Analysis, Cyber, Fuzzing, Software Security

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER OF PAGES

a. REPORT

U
b. ABSTRACT

U
C. THIS PAGE

U
19a. NAME OF RESPONSIBLE PERSON

CHAD DESTEFANO
19b. PHONE NUMBER (Include area
code)

315-330-4286

94

DARPA/I20
75 North Randolph Street
Arlington VA 22203

Contents

1 Introduction 1

1.1 Scope . 1

2 Techniques and Workflows 3

2.1 An Observational Investigation of Reverse Engineers’ Processes 4

3 Static Analysis 6

3.1 Ghidraal . 7

3.2 GhiHorn . 11

3.3 Manticore UI . 16

4 Dynamic Analysis 19

4.1 bcov . 20

4.2 ColdSnap . 28

4.3 Format Fuzzer . 31

4.4 FuzzBuilder . 34

4.5 Fuzzolic . 39

4.6 Go-Fuzz . 44

4.7 Gramatron . 48

4.8 NyxNet . 61

4.9 REVEN . 64

4.10 ZAFL . 70

i
Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.

5 Appendix 73

5.1 Resources . 73

5.2 Tools Criteria . 73

5.3 Techniques Criteria . 74

5.4 Tool and Technique Categories . 74

5.5 Static Analysis Technical Overview . 75

5.5.1 Disassembly . 75

5.5.2 Decompilation . 79

5.5.3 Static Vulnerability Discovery . 79

5.6 Dynamic Analysis Technical Overview . 80

5.6.1 Debuggers . 80

5.6.2 Dynamic Binary Instrumentation (DBI) 81

5.6.3 Dynamic Fuzzing Instrumentation 81

5.6.4 Memory Checking . 81

5.6.5 Dynamic Taint Analysis . 82

5.6.6 Symbolic and Concolic Execution . 82

ii
Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.

Introduction

The DARPA CHESS program seeks to increase the speed and efficiency of software vul-
nerability discovery and remediation by integrating human knowledge into the automated
vulnerability discovery process of current and next generation Cyber Reasoning Systems
(CRS). As with most technological advancements that seek to supplant what was once the
exclusive domain of human expertise, the best and the most convincing way to measure
success is against a human baseline.

Combining Hacker Expertise Can Krush Machine Assisted Target Exploitation (CHECK-
MATE), the CHESS Technical Area 4 (TA4) control team, focuses on providing the CHESS
program with a team of expert hackers with extensive domain experience as a consistent
baseline to measure the TA1 and TA2 performers against.

Vulnerability research is a constantly evolving area of cyber security, making the baseline
for measuring the success of the CHESS program a moving target. The control team
must keep pace with the most recent advancements to remain an effective baseline for
comparison. The CHECKMATE team not only needs to stay on top of the state-of-the-art
research and technology solutions, but also capture key emerging and trending techniques
across all relevant vulnerability classes, tools, and methodologies.

This Edge of the Art report is part of a series that aggregates the most recent advances
in vulnerability research (VR), reverse engineering (RE), and program analysis tools and
techniques that the CHECKMATE team considers when planning for the next CHESS eval-
uation event.

To stay on the Edge of the Art, a new edition of this report will be released every six months
with enhancements in the current state-of-the-art and new tools and techniques emerging
in the cyber security community.

1.1 Scope

The purpose of this Edge of the Art (EotA) report is to document tools and techniques that
have come into existence (or significantly matured) since the last report.

The EotA reports are produced using an “aggregate and filter” approach. The CHECK-

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
1

MATE team constantly monitors many different sources in an attempt to aggregate all
known and emerging tools and techniques. This information is then filtered into what the
CHECKMATE team considers worth reporting. The definition of the “edge” is governed by
the filter criteria, which differ across tools and techniques. It is anticipated that these crite-
ria, and therefore the definition of “edge,” will evolve over the life of the CHESS program.

Naturally, this process is imperfect. Some tools or techniques may be overlooked during
the writing of a particular report (potentially to be added in a later edition). Others that are
included may turn out to be of diminished importance. All views expressed are those of
the authors.

Additional information on the scope, organization, and criteria for the EotA report can be
found in the appendix.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
2

Techniques and Workflows

Much research in vulnerability research focuses on developing new and better tools. While
tools are important, just as important or more is the way an analyst approaches a problem.
This is one reason why expertise is so crucial. In order to meet the world’s software anal-
ysis demands, it is critical to discover ways to make doing VR more efficient. A growing
number of researchers are seeking to develop improved techniques to make individual
analysts more effective or to find workflows for enabling teams of analysts (including ana-
lysts of varied skill levels) to work together effectively. Topics include VR methodologies,
organization, collaboration, human-machine teaming, tool evaluation, and workflows.

In this edition of the Edge of the Art, we focus on a study of the practices used by successful
reverse engineers.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
3

2.1 An Observational Investigation of Reverse Engineers’ Processes

In contrast to the more traditional task of program comprehension, there is limited theo-
retical understanding of the reverse engineering (RE) process itself, which could enable
the creation of better RE tools. To address this shortcoming, a recent paper by Votipka et
al. [1] reports on an observational interview study involving 16 expert reverse engineers
(REs). The authors include a narrative description of the interviews with many short ex-
cerpts from the interviewees. Based on this study, the authors develop two main results:
a three-phase model for the RE process and a set of guidelines for RE tool design (see
the next two sections).

The expert RE subjects of the study were asked to re-enact the process of reverse engi-
neering some program they had past experience with, describe each step, and answer
questions posed by an interviewer. In each case, the goal of RE was either vulnerability
discovery or malware analysis, but subjects with either goal in mind tended to follow the
same process.

This work extends Bryant [2], which developed a sense-making model for reverse engi-
neering, where REs generate hypotheses from prior experience and cyclically attempt to
(in)validate these hypotheses, generating new hypotheses in the process. Also in previous
work, Votipka et al. interviewed white-hat hackers and testers to determine their vulnera-
bility discovery process [3]. That work identified RE as an important part of vulnerability
discovery, leading to the topic of this paper.

The following two sections outline the two main results from the study: a theoretical model
of the RE process and guidelines for RE tool design.

A model for the RE process

The model comprises three phases: (1) overview, (2) sub-component scanning, and (3)
focused experimentation.

In the overview phase, the RE seeks a broad overview of the program’s functionality, per-
haps by reviewing the list of strings, APIs used, or the program metadata. The RE might
run the program and observe its behavior and perhaps use static analysis tools. This
phase is included in the RE process, but is not usually considered part of the more general
program comprehension process. During the normal program comprehension process,
the (non-reverse-)engineer would typically already understand the basic functionality of
the program and have access to resources such as documentation unavailable to the RE.
During this phase, the RE establishes initial hypotheses and questions which focus inves-
tigation on certain sub-components of the program, leading to the second phase of the RE
process.

In the sub-component scanning phase, the RE performs a more-focused review on pro-
gram subcomponents, which produces more refined hypotheses and questions. The RE
continues to scan APIs, strings, and UI elements for any suspicious or notable signs based

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
4

on experience—e.g, a call to the Win32 API function GetProcAddress because it is com-
monly used for obfuscation. The REmight focus on specific data-flow or control-flow paths
and identify specific questions that require concrete information to answer.

In the third phase, focused experimentation, REs attempt to answer questions raised in
the previous phases through execution or in-depth static analysis. These analysis results
are then fed back into the second phase for further investigation, which produces more
questions, leading to more focused experimentation, forming a loop. In this way, questions
and hypotheses are iteratively refined and investigated until the RE achieves her overall
goals. Techniques used during this third phase might include fuzzing, comparison against
a reference (e.g., cryptographic) implementation, line-by-line reading of the source code,
and symbolic execution. Whereas the first two phases tend to focus on static analysis, the
third phase uses more dynamic analysis.

Guidelines for RE tool design

Based on their study, the authors developed several guidelines for designing RE tools:

• Match interaction with analysis phases. Design tools with the analysis phases dis-
cussed above (overview, sub-component scanning, focused experimentation) in mind.

• Present input and output in the context of code. Tightly-couple analysis tools with the
disassembler or decompiler code view. “In almost all cases, the tools REs choose to
use provide a simple method to connect results back to specific lines of code” [1].

• Allow data transfer between static and dynamic contexts. REs regularly switch be-
tween static and dynamic representations, so tools should enable this. E.g., allow
stepping through decompiled code.

• Allow selection of analysis methods. REs choose to use many different analysis meth-
ods based on their experience of the trade-offs, so tools should enable this. E.g., the
HexRays decompiler allows users to toggle between a potentially imprecise, but eas-
ier to read, decompiled program view and the more complex disassembled view [4].

• Support readability improvements. Fundamentally, the purpose of RE is to recover
humanmeaning, so tools should enable that by allowing users to add notes or change
naming to encode semantic information as it is discovered. The main purpose of most
of the tools used by REs was to improve code readability (e.g., decompilers, IDA’s
Lumina server). “Additionally, most REs performed several manual steps specifically
to improve readability, such as renaming variables, taking notes, and reconstructing
data structures” [1].

• Also, RE tool designers should consider the exploratory visual analysis (EVA) liter-
ature. “EVA considers situations where analyses search large datasets visually to
summarize their main characteristics” [5, 6].

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
5

Static Analysis

Static analysis investigates a binary executable without running it. The most common
forms of static analysis in reverse engineering and vulnerability research begin with disas-
sembling and/or decompiling a binary executable. These transformations utilize several
static program analysis techniques, which also underlie many of the other techniques dis-
cussed in this report. One of the most fundamental forms of static analysis is lifting a
program to an intermediate representation (IR). IRs are used in many of the tools and
techniques discussed throughout this report. Static analysis can be used for reverse en-
gineering compiled programs, statically rewriting and instrumenting a binary executable,
performing static vulnerability discovery on either source or binary code, etc.

A general overview of static analysis can be found in the appendix.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
6

3.1 Ghidraal

Reference Link

Target Type Binary

Host Operating System Linux; MacOS; Windows

Target Operating System Linux; MacOS; Windows

Host Architecture GraalVM Java Virtual Machine

Target Architecture Many (any supported by Ghidra)

Initial Release 06/15/2020

License Type Open Source (DFARS 252.227-7013 and
252.227-7014)

Maintenance Maintained by Jason P. Leasure

Overview

Ghidraal [7] is an extension for Ghidra that enables a variety of programming languages to
be used to write scripts in Ghidra. These include: Python 3, Ruby, R, and Javascript. By
default, Ghidra supports only Java and a limited Python 2 implementation through Jython.
By building upon the GraalVM [8] project, Ghidraal unlocks the full power of these addi-
tional languages, making Ghidra scripting potentially much more accessible and capable
than in the past.

Design and Implementation

Ghidraal is built on top of GraalVM. Oracle’s GraalVM project is a Java Development Kit
(JDK) ”designed to accelerate the execution of applications written in Java and other JVM

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
7

languages while also providing runtimes for JavaScript, Ruby, Python, and a number of
other popular languages.” In practice, this means that these languages can run together
in the same application.

Ghidra itself is, of course, written in Java. In order to support GraalVM (and, by exten-
sion, Ghidraal), it is necessary to run Ghidra under the GraalVM runtime. The Ghidraal
README guides the user through this.

The installation was relatively straightforward, though there were a few hiccups. Ghidraal
ships with an environment script, env.sh, that automatically installs GraalVM (if necessary)
and sets up the environment to use GraalVM as the default Java runtime. This works
as advertised, but when we attempted to build the Ghidraal project from Github (which
requires Gradle 5+), we were unsuccessful. Rather than chase these down the errors, we
settled on a release version. The most version available claimed to support Ghidra version
9.2.3, but we proceeded using our installed version, 10.0.1. We executed Ghidra from
within the GraalVM environment, which worked just fine. When we attempted to import the
extension package zip file, we received a wrong version message. However, unzipping
the package, changing the version field in the extension.properties file, re-zipping, and
importing installed the extension with no apparent issues.

Ghidraal includes several simple example scripts in each of the four scripting languages
for getting started. (See figure 3.1.) Each executed successfully. The full Ghidra scripting
API is available for each language. It’s also possible to install packages for the supported
languages. The Python 3 package ”panda” installed successfully using a command from
within the GraalVM environment. That stands in contrast with Ghidra’s Jython implemen-
tation, which does not support external packages.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
8

Figure 3.1: Some simple scripts that come with Ghidraal.

Ghidraal also provides an interactive interpreter window for each of the languages, as
shown in figure 3.2. The interpreters can be run simultaneously and include convenience
features such as auto-completion, allowing for interactive discovery of Ghidra functionality
without having to constantly reference the Ghidra API documentation.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
9

Figure 3.2: Ghidraal includes interactive interpreters for each supported language.

Use Cases and Limitations

Ghidraal is an impressive demonstration of the power of GraalVM and provides an appar-
ently seamless integration of multiple modern scripting languages into Ghidra. The Python
3 support alone makes it worth looking into, since Python 2 has been deprecated at this
point and this enables the use of modern Python libraries from within Ghidra.

The biggest limitation is the need to runGhidra fromwithinGraalVM. Pinning to theGraalVM
JDK, which is not commonly installed, means that Ghidraal won’t be useful in all environ-
ments. Moreover, scripts written in these languages will not be portable to vanilla Ghidra
users. Also, the library of Python scripts that ship with Ghidra won’t work with Ghidraal’s
Python 3 (and vice versa.) That said, for individual users and teams, Ghidraal opens the
door to more rapid, more powerful Ghidra script development and a choice of scripting
languages.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
10

3.2 GhiHorn

Reference Link https://github.com/CERTCC/kaiju

Target Type Binary

Host Operating System Linux; MacOS; Windows

Target Operating System N/A

Host Architecture x86, x86_64

Target Architecture Ghidra P-Code compatible code

Initial Release 07/12/2021

License Type Open Source (BSD)

Maintenance Maintained by CERTCC

Overview

GhiHorn is a Ghidra extension maintained by CERTCC that supports SMT solver integra-
tion [9]. For this report, we’ll be focusing on the path analysis aspect of GhiHorn. GhiHorn’s
path analyser aims to determine whether a path is ”feasible” between two virtual addresses
(i.e. there is a valid set of states that would lead code execution down down said path).
This type of path analysis fills a void left in modern binary path analysis by fuzzers, whose
coverage data (which is used to determine path feasibility) is often dictated by pseudo-
random input mutations. While GhiHorn looks promising, it still appears to be in a very
experimental state, and is not likely to be useful for analysing real-world binaries without
further development work.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
11

Design and Implementation

GhiHorn works by converting Ghidra’s P-Code and Varnode representations into Horn
clauses, structured to meet the SMT-LIB specification. By conforming to this specification,
the tool’s statements may then be solved by third-party solvers such as Z3.

GhiHorn operates on Ghidra code at the basic-block level. For each basic block, state
transitions within each block are encoded into Z3 statements. These statements are then
merged together into a single Z3 statement, representing all state changes that occur
within the basic block. The resultant collection of Z3 statements are then merged into a
set, using the control flow graph provided by Ghidra as a linkage map. The antecedent of
each Z3 statement is set to the statement(s) corresponding to the basic block(s) that feed
into the basic block from which the initial Z3 statement was derived. A similar procedure
is followed to assign consequents, except using the basic blocks into which the subject
basic blocks feed. The result is a set of Z3 statements that are linked in a way that mimics
the linkage described in the program’s control flow graph.

Installation of GhiHorn is fairly straightforward. Z3 and its Java bindings must be installed
on your host and in a location that Ghidra can access. Otherwise, GhiHorn itself is avail-
able as a Ghidra extension and can be installed like any other Ghidra extension.

Using the tool through Ghidra’s UI is simple: enable the extension and open the GhiHorn
window. Using the tool, however, was not so simple. The Windows calculator application
was our first target for GhiHorn’s path analyzer. However, every path query we attempted
ended up causing the GhiHorn extension to hang. The final query was left to run over 24
hours, but the task assigned to that query failed to complete in that time (figure 3.3).

Figure 3.3: GhiHorn hanging on calc.exe from a Windows 7 host.

The next attempt at using GhiHorn involved compiling a simple C program with Clang and
analyzing the resultant binary on the same Linux host that Ghidra was running. However,
attempting to use GhiHorn against that binary resulted in an error (figure 3.4). Around the
time of writing this report, others were reporting similar issues.

To bypass this issue, we compiled the same program but compiled with Clang on an OSX

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
12

host. When attempting to use GhiHorn to analyze this binary, GhiHorn threw an error
after attempting to analyze the P-Code for a function from an external library (printf() in
this case). However, after further reviewing of some GhiHorn reference material, handling
external functions may be the responsibility of the user.

Figure 3.4: GhiHorn failing to analyze a binary file that calls external functions.

Finally, we compiled a version of the same code but with all external function calls removed.
With all of the external function calls removed, GhiHorn was able to successfully execute
our desired path queries. For this binary„ GhiHorn was able to identify feasible paths (or
lack thereof) between two virtual addresses, as well as provide concrete values that direct
code execution down those paths (figure 3.5).

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
13

Figure 3.5: Running a successful GhiHorn query that determines there is no feasible path between two
virtual addresses (even though there is a path between both addresses in Ghidra’s CFG).

Use Cases and Limitations

Determining reachability is an important aspect of vulnerability research. Unreachable
bugs are much less valuable than those that can be reached by an attacker. Determining
reachability is one of the major strengths of fuzzing. The fact that a fuzzer is able to trigger
a vulnerability in a way to produce a measurable side effect (e.g. a program crash) almost
certainly means that the vulnerability is reachable. Additionally, if a fuzzer is configured
to emit coverage data as well, then the coverage map created by aggregating all of the
coverage data will show what code paths the fuzzer explored. If a vulnerability exists in
one of those code paths, then it’s reasonable to suspect that the vulnerability is reachable.
However, fuzzers do have some limitations when it comes to calculating reachability. The
fact that a fuzzer can’t reach a particular code path doesn’t mean that said code path is
unreachable.

GhiHorn’s usefulness can be found in situations in which a vulnerability has been iden-
tified in compiled code, but it is unknown how to reach that vulnerability. A vulnerability

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
14

researcher could use GhiHorn to query whether there is a reachable path from an iden-
tified program entry point to a virtual address corresponding to a vulnerability (e.g. the
address of a function, a particular basic block, a function call, etc). Whereas much of this
process is typically done manually, GhiHorn provides the option of using an SMT solver
(Z3 in this case) to perform most of the heavy lifting in calculating values that meet the
constraints of the identified code path.

The largest limitation with GhiHorn, in its current state, is its usability. Of the experiments
done for this review, the only successful application of the Ghidra extension was on highly
contrived sample code that was written with GhiHorn specifically in mind. While this level
of usability may be sufficient for the purposes of testing and further developing the tool, it
is not sufficient for using the tool against production code. Additionally, the requirement
that users provide their own simulations of code not statically compiled into the target
binary significantly increases the level of effort required to use GhiHorn against binaries
that utilize external libraries for functionality.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
15

3.3 Manticore UI

Reference Link https://github.com/trailofbits/MUI

Target Type Binary

Host Operating System MacOS, Linux

Target Operating System Linux, EVM

Host Architecture N/A

Target Architecture x86, x86_64, aarch64, ARMv7, EVM

Initial Release 7 July 2021

License Type Open Source (No license specified)

Maintenance Trail of Bits, last commit 15 Sep 2021

Overview

Manticore User Interface (MUI) is a Binary Ninja plugin that gives users an intuitive, visual
interface for working with symbolic execution[10][11]. The plugin supports basic symbolic
execution workflows for both Linux and Ethereum Virtual Machine (EVM) targets.

Design and Implementation

MUI offers a context menu and extra actions for interacting with the Manticore backend,
as well as UI widgets for displaying state information. The common symbolic execution
workflow of “try to reach this address while avoiding these addresses” is enabled via MUI
actions reachable either by right-click or control palette. In addition, actions can be set to
hotkeys (Binary Ninja allows keybindings to be registered for any registered plugin). The

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
16

“solve with Manticore” action opens a dialog that gives users supplementary options such
as specifying symbolic input sources.

Figure 3.6: Specifying a custom length and other options via the “Solve with Manticore” dialog

Once solving starts, two additional MUI widgets become useful: ”state list” and ”state graph
explorer”. The state list is fairly self explanatory, but the State Graph Explorer leverages
Binary Ninja’s FlowGraph API to present a graphical representation of information relating
to symbolic execution states. This gives users a more intuitive understanding of where
states were forked, and how particular states are reached. While this may seem like visual
gravy, this sort of display is useful for teaching new users how Manticore works and basic
troubleshooting. Integrating tools into reverse engineering frameworks, while not a new
concept[12], provides a powerful way to contextualize analysis and enhance usability.

MUI also allows hooking particular locations, which gives users more control over their
analyses. This gives the user greater control over Manticore’s internal functionality. This
feature behaves as as advertised on the basic examples provided.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
17

Figure 3.7: Exploring provenance of a successful end state for a simple crackme

MUI also offers a novel feature- it can leverage Manticore support for EVM smart contract
analysis with a second plugin, Ethersplay. Ethersplay allows smart contract disassembly
to be displayed in Binary Ninja, and MUI provides an interface for exploration and symbolic
execution. Manticore already supports reasoning over smart contracts, so MUI primarily
helps with understanding state flows and makes certain options more discoverable. This
support is experimental, and in our testing Ethersplay was easier to set up and use than
the Manticore integration for smart contracts.

Use Cases and Limitations

The primary use case for integration of a tool like Manticore with Binary Ninja is to stream-
line exploration of a target providing the user with an intuitive interface to Manticore from
within their existing reverse engineering framework. MUI performs this function well for
basic manual workflows, but it is not without quirks. When things go wrong, it can be dif-
ficult for a new user to determine the cause of the problem. While working through the
Binary Ninja UI is helpful for small adjustments, it is easier to troubleshoot more complex
Manticore problems with a standalone Python script. Another challenge is that, in some
cases, Manticore may fail when it encounters an instruction that it does not support. That
said, the State List and Graph Explorer are helpful when things go as planned. Just like
many symbolic execution tools, there are a number of factors that can cause issues, but
when it works the results can feel like magic.

Overall, MUI is a functional integration that can enable powerful interactive workflows, but
the learning curve is still steep.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
18

Dynamic Analysis

Whereas static analysis examines a binary without running it, dynamic analysis observes a
binary as it executes. Dynamic analysis allows the inspection of actual runtime information
about program state, including register and memory values. However, it cannot provide
code coverage guarantees. Both approaches provide valuable insights into a program.
Dynamic analysis techniques range from empirical observations of program execution to
crafted instrumentation approaches that support a wide range of analyses.

A general overview of dynamic analysis can be found in the appendix.

21
Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.

19

4.1 bcov

Reference Link https://github.com/abenkhadra/bcov

Target Type Binary

Host Operating System Linux

Target Operating System Linux

Host Architecture N/A

Target Architecture x86_64

Initial Release 29 April 2020

License Type Open Source (MIT)

Maintenance @abenkhadra, last commit 25 Jan 2021

Overview

bcov is a static instrumentation tool for x86_64 block coverage collection[13][14]. The
primary aim of bcov is to improve the efficiency of instrumentation and to accurately scale
to real-world applications.

Design and Implementation

Bcov works directly on x86_64 ELF binaries without compiler support. It implements a
trampoline-base approach to insert probes in specific locations to trace basic block cov-
erage. Some specific solutions are: probe placement and pruning based on superblock
(SB) dominator graph (DG) analysis, efficient transparent detour placement, and precise
control flow graph (CFG) analysis via sliced microexecution.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
20

The instrumentation workflow includes three phases: module and function-level analysis,
probe location identification and code and data sizes requirement estimation based on
instrumentation policy, and the patching phase that introduces the new code and data to
the target binary.

One of the major focus areas of bcov is efficient instrumentation, which includes both min-
imizing the number and overhead of probes. To minimize the number of probes, bcov first
performs superblock dominator graph (SB-DG) analysis. The SB-DG analysis describes
a function’s CFG in such a way that a single probe can reflect the coverage of multiple
blocks by using dominance frontiers, where the requirements for probes vary depending
on the policy chosen. This is used to implement two different coverage policies which
serve two common use cases of coverage information:

• In the “leaf-node” policy, the goal is to be able to reflect 100% block coverage with the
minimal number of probes.

• The “any-node” policy reflects the standard notion of being able to describe whether
any given basic block was covered or not in a given execution. See the figure below
(fig. 4.1) from the authors’ paper for an illustration.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
21

Figure 4.1: The authors’ example description of the SB-DG and two policies

This probe selection process is supplemented by bcov’s detour placement strategy, which
minimizes overhead by selecting where to place instrumentation based on the basic blocks
within a given SB. The authors developed a series of heuristics to rank instruction types
based on the amount of overhead caused by inserting a detour. For example, a long call
instruction of 5 bytes is more easily patched than a 2-byte jump instruction. The use of
trampolines combined with this flexibility to choose instructions within a given superblock
reduce the amount of changes required to statically add coverage instrumentation. Figures
[4.2, 4.3, 4.4, 4.5, 4.6, and 4.7] show three different instrumentation placements based on
bcov’s strategies.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
22

Figure 4.2: Before probe placement via function hooking (no overhead)

Figure 4.3: After probe placement via function hooking (no overhead)

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
23

Figure 4.4: Before probe placement by replacing jump table destinations (no overhead)

Figure 4.5: After probe placement by replacing jump table destinations (no overhead)

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
24

Figure 4.6: Before inline detours (more intrusive)

Figure 4.7: After inline detours (more intrusive)

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
25

During the patching process, bcov adds both a code segment for trampolines and a data
section containing space for the coverage data. Each probe location is represented by
a single byte in memory; if the associated block is covered during execution, the value
is set to 1 (in the figures above: the added code and data addresses begin with 0x008
instead of the normal 0x004). While this approach allows easy compression and merging
of coverage information, it requires using a library that can either be linked against or
injected at runtime via LD_PRELOAD.

For general CFG reconstruction, the recovery of indirect control transfer targets is gener-
ally undecidable. However, bcov offers an approach that approximates the problem for
jump tables with reasonable performance and accuracy. The proposed solution of “sliced
microexecution” includes backwards slicing to identify the index variable followed by em-
ulation of the given program slice. The implementation first attempts to test hypotheses
that determine whether the approach is applicable, such as identifying a constant base
address and if the jump table is constrained by bound conditions: either with direct index
checks or arithmetic operations that constrain the index values. If the slice can be reduced
to a code fragment where the index is the only changing variable, then the fragment can be
emulated with different index values to determine jump targets as well as verify the bound
condition.

The authors evaluated their implementation for speed, transparency, and accuracy against
8 different open source programs/libraries, using two different versions of clang and gcc
and multiple compiler optimization and build settings. The resulting dataset included 95
binaries with some having sizes >20MB, and they report finishing instrumenting the largest
binary in about 30 seconds, suggesting that the approach scales reasonably for real-world
targets. For runtime performance they compared their implementation to the dynamic bi-
nary instrumentation (DBI) frameworks DynamoRIO and Pin, finding their implementation
to be many times faster (14% overhead vs 7x and 29x), which is to be expected given
the optimization of bcov as compared to the broader capabilities of a DBI framework. To
test transparency, the authors ran the full test suites for each of the instrumented targets
and found no regressions. Finally the authors tested the coverage accuracy against Dy-
namoRIO and found very similar results, with bcov showing precision and recall of 99.97%
and 99.95% respectively.

Use Cases and Limitations

Bcov’s design is explicitly focused on enabling the collection of basic block coverage infor-
mation on binaries without requiring recompilation. The obvious use cases are for exam-
ining coverage of existing tests and to enable feedback for coverage-guided fuzzers. For
these purposes, bcov performs well but does have some limitations.

First, bcov requires “well-formed” targets in order to perform function and CFG recovery.
The authors mention that linker symbols and call-frame information can be a source of well-
formed function definitions, but these are not guaranteed to be present. Further, they use
a definition of “well-formed functions” that could be violated by obfuscated or malicious
code. These limitations are at least easily identified early in the process, as bcov will
fail to produce an instrumented binary, though the user feedback in such a case is not

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
26

descriptive.

In addition, bcov uses a runtime library to dump coverage information injected via LD_PRELOAD
in the static rewriting case, which offers some advantages as well as limitations. The run-
time library is designed to allow dumping of coverage upon receipt of a user signal, which
enables “online” coverage collection. However, since the runtime library is injected into
the target process, it must execute before the process exits. This means that crashes due
to a SIGSEGV or other exceptional conditions, the runtime library must be able to wrest
back execution or else no coverage will be recorded. So currently bcov cannot record
coverage information during crashing behavior. Because crashes are a part of the fuzzing
process, this could be a limitation.

Overall, the approach is sound, and it appears effective for its intended use case of block
coverage collection. While it does not provide hit-counted edge coverage that many mod-
ern fuzzers use, block coverage analysis is still a useful tool and bcov is optimized for this
use case.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
27

4.2 ColdSnap

Reference Link https://github.com/defparam/Coldsnap

Target Type Linux Application Binaries

Host Operating System Linux, MacOS

Target Operating System Linux, MacOS

Host Architecture x86 (32, 64), ARM, PPC, MIPS

Target Architecture x86 (32, 64), ARM, PPC, MIPS

Initial Release 12/20

License Type Open Source (MIT)

Maintenance Last Commit, December 2020

Overview

Coldsnap is a lightweight, simple, snapshot fuzzing test harness that’s implemented in
Python. Coldsnap uses ptrace to:

• Gain introspection into the target ”artifact under test” (AUT)

• Enable snapshot creation and management

• Generate code coverage information

Snapshot fuzzing is a technique used by test harnesses to optimize fuzz testing perfor-
mance. On the back end, this test harness can be integrated with different mutational
fuzzers to generate a large corpus of test data allied with code coverage information.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
28

First researchers identify “snapshot save” and “snapshot restore” execution points in the
target artifact under test (AUT) via static analysis/reverse engineering. These two execu-
tion points define the specific area of interest in the target AUT. The test harness is then
configured with this information and AUT test execution begins. When the “snapshot save”
point is reached, the test harness takes a snapshot of the process state of the AUT and
saves it off. The AUT is then allowed to continue execution and process the fuzzed data.
Once the target AUT has reached the “snapshot restore” point, the results of the computa-
tion are saved. This includes meta-data related to code coverage, memory taint analysis,
fuzzed input corpus, and crash dumps. The test harness then restores the saved AUT
process snapshot, mutates the input data further and starts the test again. By defining
the area of interest in an AUT and re-executing those instructions repeatedly, significant
efficiency gains are obtained.

Design and Implementation

The GitHub repo for ColdSnap includes two source code files: target.c and coldsnap.py.

The ‘C’ source file, “target.c” is a sample software (AUT) that has two intentionally crafted
defects. The AUT parses command line input and, if the input matches a certain sequence
or characters, the AUT crashes with a segmentation fault. The main execution loop has
a function “startf()”, that marks the snapshot_save point. The snapshot_restore point is
represented by a “endf()” function at the end of the execution loop. Between the two
functions, is a call to “process()”– this is where the AUT does its processing. This source
file is compiled to “target”, which is loaded and fuzzed by ColdSnap. When source code
is unavailable, the snapshot save and restore points and code/symbol locations of interest
have to be identified using reverse engineering.

coldsnap.py is a python-based implementation of the snapshot fuzzer. It has been devel-
oped as a proof of concept to demonstrate the use of a lightweight, ptrace-based frame-
work. Because Coldsnap is only intended as a proof of concept, this article will focus on
the core functionality rather than implementation details.

When ColdSnap is run with the name of the AUT, it creates a child process for the AUT, us-
ing python.ptrace(), and attaches to it. The ptrace module is used to set/delete breakpoints
and read/write registers and memory in the process space. Once the AUT is loaded by
the fuzzer, it enumerates the various memory segments that have been mapped into the
AUT process space, by reading the /proc/<pid>/maps directory. The text/code segment is
identified, and the Unix ”nm” utility locates the symbol addresses of “startf()” and “endf()”.
Next, the data segment is identified along with the payload’s address. Breakpoints are
created at these locations using ptrace so that when execution breaks, we can save the
initial snapshot and subsequently restore this saved snapshot. Execution is then started
until the breakpoint at “startf()” is hit. Additional breakpoints are created for deriving code
coverage data. In the example AUT, these breakpoints are created at every instruction
– however, when fuzzing complex applications with many code paths, the code coverage
breakpoints are created at the beginning of basic blocks of interest, as identified during
the RE process. At this point, a snapshot of the process is created and stored away.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
29

After setup, ColdSnap is ready to mutate the payload and feed it into the AUT. The tool first
creates a corpus of fuzzing seeds guided by code coverage. Initially, this corpus is empty
and the initial payloads are mutated based on whatever has been defined in the AUT. If
a certain payload mutation encounters a coverage breakpoint, it’s added to the corpus of
fuzzer seeds. Each fuzzing run involves picking a random fuzzing seed from the corpus,
mutating it further and feeding it to the AUT. The AUT is run until:

• A crash occurs and is trapped by ptrace. When this happens, the responsible fuzzer
seed is noted and added to the corpus, along with crash location information.

• A coverage breakpoint is encountered. In this case, the fuzzer seed is added to
the corpus along with code location data, the breakpoint is deleted, and execution
continues.

• Execution reaches the ”snapshot restore” breakpoint. If there are remaining code
paths, (i.e., we still have some coverage breakpoints that haven’t been encountered)
restore the snapshot and restart the fuzzing loop. Otherwise, the AUT terminates.

Use Cases and Limitations

As mentioned previously, Coldsnap uses ptrace to introspect and control execution of the
target AUT. In turn, it can only be used on Unix-like platforms to fuzz application-layer
target artifacts. Coldsnap is best viewed as a prototype used to demonstrate the viability
of lightweight and bespoke test harnesses.

Generally, code-coverage guided snapshot fuzzers have high performance. Coldsnap is
written in Python, which makes it slower than a purely native implementation.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
30

4.3 Format Fuzzer

Reference Link https://github.com/uds-se/FormatFuzzer

Target Type Binary

Host Operating System Linux; MacOS

Target Operating System Linux; MacOS; BSD; etc.

Host Architecture N/A

Target Architecture N/A

Initial Release 10/2021

License Type Open Source (MIT)

Maintenance Maintained by UDS-SE (Saarland University,
Germany)

Overview

Fuzzers generate large amounts of invalid inputs that lead to uninteresting results. This is
particularly true when fuzzing a program that expects highly structured input, such as an
image binary or network packet. This wastes time and computer resources. FormatFuzzer
uses templating to mitigate this program and create high-performance fuzzers targeted at
specific formats.

Design and Implementation

FormatFuzzer carries out structured fuzzing through the use of binary template files. Given
a template specifying a data format, it will generate an executable generator. These gener-
ators create fuzzer inputs that can perform much better, for format-specific binaries, than

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
31

format-agnostic/mutation-based fuzzers. While FormatFuzzer can operate independently
from the binary being tested, it can also integrate with AFL++ to add format awareness
and potentially increase coverage during fuzzing.

FormatFuzzer has two other functions: a standalone parser, and a generator/mutator pair
for specific binary formats.

The parser can be used to mutate inputs or test template accuracy. It is possible to save
the choices the parser makes into a decision file. These decision files can then bemodified
to further increase mutation during binary format generation. For example, parsing a gif
into a decision file, then using that decision file to generate a gif, will result in creating a
copy of the original gif binary. By simply mutating that decision file, you can generate new
files in valid gif format. This can increase efficiency compared to a fuzzer that mutates
the entire binary structure, which can lead to inputs that are too malformed to lead to new
coverage.

Templates allow even quicker fuzzing/parsing for specific formats. FormatFuzzer’s binary
templates are generated from the 010 editor [15]. FormatFuzzer will parse files into a
hierarchical structure. Users may also create templates manually if the file format doesn’t
exist. These templates are in the format of C structures. Below is an example excerpt of
a PNG binary template.

Figure 4.8: PNG binary template (extract)

Use Cases and Limitations

The computing cost to generate formatted binaries during fuzzing is very low and can
decrease the total time needed to fuzz while increasing code coverage. [16] Unfortunately,
not all the 010 Editor’s formats are included with the FormatFuzzer release. From the
github’s readme: “Out of the box, FormatFuzzer produces formats such as AVI, BMP, GIF,
JPG, MIDI, MP3, MP4, PCAP, PNG, WAV, and ZIP; and we keep on extending this list
every week[17] .” Another limitation is that while the existing binary templates work well
for parsing, the binary generation requires further refinement. While generally easy to do,
this increases overhead. From the article, novice engineers took a few days to update
most formats, but some complex formats took over a week [16]. Because of this, this
tool is more effective when used for fuzzing a system that accepts a limited number of
formatted binary inputs.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
32

Another possible drawback of using format-aware fuzzers is that, by taking away the free-
dom to mutate certain parts of a binary, some bugs could be missed that might have been
found by a format-agnostic fuzzer. The increased performance likely outweighs the risk.
It can be further mitigated by careful design of the templates or by carrying out a separate
format-agnostic fuzzing run in parallel, ideally with shared seeds.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
33

4.4 FuzzBuilder

Reference Link https://github.com/hksecurity/FuzzBuilder

Target Type 32-Bit C/C++ Linux Libraries

Host Operating System Linux

Target Operating System Linux

Host Architecture x86 (64)

Target Architecture x86 (32)

Initial Release 12/2019

License Type Open-Source (No licence specified)

Maintenance Not currently maintained - last updated 2020

Overview

FuzzBuilder is a greybox fuzzing tool for 32-bit Linux C/C++ libraries. It will generate entry-
point executables and input seeds for many well-known fuzzers using pre-existing unit
tests.

Design and Implementation

FuzzBuilder’s approach can be broken down into two main steps. First, the tool instru-
ments unit tests to capture the data passing through API function parameters. This allows
FuzzBuilder to generate high coverage seeds. The second step is to analyze these unit
test functions to create high coverage API function sequences for executable generation.
To accomplish this, FuzzBuilder employs LLVM-6.0 to create IR bitcode, which it will then
operate on and build as necessary.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
34

While most of this is automated, the base library API functions must be first specified
in a configuration file. The configuration file includes a base function that demonstrates
sequence patterns that are used by FuzzBuilder to generate a fuzzing executable. Users
can also indicate function parameters and buffer sizes as well as specify the files that
contain the unit tests along with an identifier prefix for the unit test functions (fig. 4.9). This
matching string may contain the ‘*’ wildcard if a postfix is needed depending on the naming
conventions of the library [18].

Figure 4.9: XML_Parse.conf, a simple configuration file specifying a single base function and unit test func-
tion prefix [19].

Depending on the testing framework, this can be simple for software that has easy-to-
consume naming conventions. If this isn’t the case, then each test function will need to
be specified explicitly. The user will then compile LLVM bitcode for the target and run
FuzzBuilder’s seed command to analyze and instrument the targeted unit tests (figures
4.10 and 4.11).

Figure 4.10: Emitting the LLVM IR for xmlparse.c and using FuzzBuilder’s seed command to analyze emitted
bitcode for seed generation.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
35

Figure 4.11: Instrumenting and building unit test bitcode for seed collection.

Once the unit tests are instrumented, they must be run again to collect input data, which
will then be used as fuzzing seeds (figures 4.12 and 4.13).

Figure 4.12: Rerunning instrumented unit tests to collect seed data.

Figure 4.13: Collecting the seeds from the output of unit test instrumentation.

Finally, the executables can be generated. First, FuzzBuilder will extract entry and test
functions from the LLVM bitcode. It will then insert an interface for loading fuzzing input into

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
36

memory, along with the necessary instructions to support that interface. Next, it will iterate
across all the test functions and check to see if they are necessary. If so, FuzzBuilder will
modify them to accept the loaded fuzzing input; otherwise it will remove them (figures 4.14
and 4.15). [18]

Figure 4.14: The process FuzzBuilder uses to generate an executable from unit tests [18].

Figure 4.15: Generating executables for library functions based on unit tests.

Finally, the generated executables may be run with most fuzzers. AFL is used in the
example below (fig. 4.16).

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
37

Figure 4.16: Fuzzing the generated executables.

Use Cases and Limitations

FuzzBuilder has a large number of shortcomings. First, the environment is difficult to set
up, so users may have better luck using the provided Docker container. Second, the target
source must provide unit tests for the target library. These unit tests should preferably use
a popular testing framework like Google test with conventional function names. Otherwise,
these test functions must be specified in a configuration file, which can be cumbersome
considering the size of real-world libraries. In some cases, the base function for a unit test
may not even match the format necessary for FuzzBuilder to analyze it. This is the case
with libpng, where data is provided to the unit test via a file opened within the test func-
tion [20]. Third, additional configuration files are also necessary for providing information
about target function prototypes (that is, function names and parameters.) Last, and most
limiting, is that FuzzBuilder will only generate executables for 32-bit libraries.

The README for the project only supplies enough information to reproduce the experi-
mental environment presented in the paper [19]. Specifics on necessary details, such as
afl-clang compilation flags, are not provided. Although the concept for this tool is very
interesting, the current version is too limited to be of broad use.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
38

4.5 Fuzzolic

Reference Link https://github.com/season-lab/fuzzolic

Target Type Binary

Host Operating System Linux

Target Operating System Linux

Host Architecture x86_64

Target Architecture x86_64

Initial Release 27 Dec 2019

License Type Open Source (GPL-2.0)

Maintenance 2 contributors (Sapienza University of Rome),
last commit 4 Nov 2021

Overview

Fuzzolic is a concolic framework designed to support coverage-guided fuzzing [21][22]. It
is built on top of QEMU. A component of Fuzzolic is an approximate solver named Fuzzy-
SAT that provides an alternative to traditional SMT solvers. The work is comparable to
QSYM and SymQEMU in that it:

1. Uses concolic execution under emulation or dynamic binary instrumentation.

2. Provides new improvements in optimizing symbolic execution.

3. Is designed for use in conjunction with a fuzzer such as AFL++.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
39

Design and Implementation

Fuzzolic includes several main components: a QEMU-based tracer, a solver frontend, and
a solver backend (which can be Z3 or the authors’ mutation-based solver, Fuzzy-SAT). The
framework is designed to trace an input as the target program executes, and produce new
inputs by tracking symbolic state. The components are designed such that they may be
run standalone: Fuzzy-SAT can be invoked to solve SMT queries; Fuzzolic can be used to
produce new inputs from a single seed and target; or the system can be run as a worker
node in a hybrid fuzzing configuration alongside AFL++ (figure 4.17).

Figure 4.17: Fuzzolic’s architecture as documented in the Fuzzolic paper [21]

Fuzzolic’s QEMU-based component is responsible for emulating the target and recording
symbolic state. This approach does not require source code, nor is it tied to a particu-
lar architecture. The authors also leverage JIT compilation and basic blocks caching to
increase the efficiency of their tracer. This is further augmented by implementing three
different analysis modes (figure 4.18) depending on the state of execution and symbolic
input. This allows Fuzzolic to cache blocks in either a concrete or symbolic cache. Fuz-
zolic can also skip the production of branch queries within standard library functions, such
as malloc.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
40

Figure 4.18: Fuzzolic’s three different analysis modes

The tracing and solving components are run in separate processes. The tracer generates
symbolic expressions and queries during execution of the target program, and the solving
component focuses on receiving, optimizing, and solving the queries. The solving compo-
nent is designed to be able to swap backends, and the authors enable the use of both Z3
and their own solver, Fuzzy-SAT.

Fuzzy-SAT is designed to mirror the interface of an SMT solver while functioning in a
completely different manner. Fuzzy-SAT uses an analysis process to observe how the
input is used and generate intelligent mutations in an attempt to solve the query at hand.
The analysis phase observes the execution and collected expressions to determine groups
of input bytes and attempts to develop knowledge of how the bytes are used. Based on
the input groups identified, the reasoning phase attempts to exploit these relationships to
generate intelligent mutations. For example, if an expression limits an input group to a
given range, Fuzzy-SAT can attempt to brute-force values within that range interval.

By leveraging the identification of input groups and multiple mutation strategies, Fuzzy-
SAT analyzes both what bytes are used and how they are used. This approach has similar
characteristics to the research projects Angora, Eclipser, and JFS, but its integration into
a framework like Fuzzolic is unique. In practice this yields a solver that behaves like Z3
but with very different performance characteristics.

In practice, Fuzzolic is an effective VR tool. Experimental results in the authors’ original
paper, as well as independent metrics from Google’s FuzzBench demonstrate high per-
formance. The paper’s evaluation tested four different fuzzers (Fuzzolic with Fuzzy-SAT,
AFL++, Eclipse, and QSYM) across 8 benchmark targets, and showed that Fuzzolic gener-
ated more code coverage in 6 out of 8 targets. Google’s FuzzBench compares the results
of multiple fuzzers across different target benchmarks. Fuzzolic showed comparable per-
formance or significant improvement over other fuzzers for a number of targets. This is
illustrated in figures 4.19 and 4.20.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
41

Figure 4.19: Mann-Whitney U test results
for libjpeg_turbo

Figure 4.20: Mann-Whitney U test results
for openssl_x509

Use Cases and Limitations

Fuzzolic is distributed both as a docker container and source and provides an example
script for common use cases. While some users might want to test Fuzzy-SAT on it’s own,
the most common use case is in combination with a fuzzer. The primary wrapper script
provides an “AFL mode” for this, which launches two AFL++ instances to generate inputs
via fuzzing (figure 4.21. The Fuzzolic script reads from the input queue of the one instance,
generates new inputs, and writes those new inputs into the queue of the other instance.
This ensures these new inputs will eventually imported by AFL++ for mutation.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
42

Figure 4.21: Invoking Fuzzolic wrapper in AFL mode.

The authors of Fuzzolic have put some effort into the usability of the tool. A Dockerhub
container distribution and the wrapper script make it relatively easy to get started. The
most recent version of the code on GitHub handles both targets that take input from stdin
and from a file and works as advertised on uninstrumented targets. While the error mes-
sages are sometimes challenging to understand, the debugging flags were sufficient to
troubleshoot basic problems.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
43

4.6 Go-Fuzz

Reference Link https://go.googlesource.com/proposal/+/
master/design/draft-fuzzing.md
https://github.com/golang/go

Target Type Binary

Host Operating System Linux, Windows, MacOS

Target Operating System AIX, Android, DragonFly BSD, FreeBSD, Il-
lumos, Linux, macOS/iOS (Darwin), NetBSD,
OpenBSD, Plan 9, Solaris, and Windows

Host Architecture x86_64

Target Architecture x86_64, i386, ARM, ARM64, mips64,
mips64le, mips, mipsle, ppc64, ppc64le,
riscv64, s390x, wasm

Initial Release Forthcoming stable release Q1 2022; beta re-
lease evaluated

License Type Open Source (LGPL-3.0)

Maintenance Regular commits and releases with a large de-
veloper community (approximately 1,700 con-
tributors).

Overview

Golang (Go), is a procedural programming language initially developed at Google for writ-
ing microservices and released publicly in 2009 [23]. Due to its execution speed, cross-
compilation support, and feature-rich standard library it has become a popular choice for
software developers targeting other applications, including security researchers. The Go

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
44

development community recognized the importance of fuzzing to the early identification of
bugs and security of systems written in the language, and several independent projects
emerged to add source code fuzzing capabilities [24] [25]. However, these projects add
additional friction to the workflow for writing and running fuzz test cases, lack some criti-
cal features (e.g., code that uses Go C language bindings) and require project-dependent
packages to use, so usage and quality varies from system to system. The Go develop-
ment team has sought to address this by bringing first-class support for fuzz testing into
the standard library and tool chain [26].

Design and Implementation

Go already provides built-in support for writing unit test cases that can be automated with
no extra tooling or dependencies. [27]. In order to make fuzzing as convenient to use as
possible, all fuzzing data types and methods are included as part of this standard library
package and therefore can be included as new methods in existing unit test cases. The
build toolchain supports the “go test” CLI command that will, in addition to building all the
code in the project, build and run all files ending in “_test.go”. By the language specification,
unit tests are included in these files and should be a one-to-on mapping of program code
to test code (e.g. foo.go, foo_test.go), as appropriate for the project. When built using the
“-fuzz” flag, the target executable contains fuzzing coverage instrumentation that is used
by the engine to inject mutated inputs.

Fuzz tests rely on a seed corpus of inputs used by the coverage-guided fuzzing engine.
The corpus is optional, but the engine will more efficiently find errors when seed inputs
are provided to guide coverage [27]. Next, the mutator will use the seed corpus to begin
randomly modifying input bytes, converting the result into language types required by the
test. The generated corpus is created and maintained by the fuzzing engine and will grow
as new inputs are found.

Figure 1 shows a partial listing of a test for the parsing of a new standard library function for
an IP data type [28]. For the developer, the test is simple to write and no prior knowledge
of fuzzing concepts is required. In this example the corpus is contained in the source code
of the test, however it it’s possible to define it in a directory on disk that will be searched
by the fuzzing engine at run time.

The function f.Fuzz(t *testing.T, s string) is the actual test that will be invoked by
the fuzzing engine (Go defines the type testing.f for use in creating and running fuzz
tests, and it’s only valid for use inside *_test.go source). The type of arguments passed
to f.Add() are identical to the argument(s) passed to f.Fuzz(). After defining the set
of initial inputs in the corpus variable, the FuzzParse() function adds each to the seed
corpus for the fuzzing engine (at f.Add()). The fuzzing engine will start by using each
of the provided inputs in the corpus. Then, it will begin mutating those inputs and pass
each mutated string as an argument to the ParseAddr() function. Inputs that result in a
crash will be reported to the developer and automatically added to the file corpus on disk
for inclusion in future test runs.

var corpus = [] s t r i n g {

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
45

/ / Basic zero IPv4 address .
” 0 . 0 . 0 . 0 ” ,
/ / Basic non−zero IPv4 address .
” 192.168.140.255 ” ,
/ / IPv4 address in windows− s t y l e ” p r i n t a l l the d i g i t s ” form .
” 010.000.015.001 ” ,
/ / IPv4 address w i th a s i l l y amount o f lead ing zeros .
” 000001.00000002.00000003.000000004 ” ,
/ / 4− in −6 wi th oc te t w i th lead ing zero
” : : f f f f : 1 . 2 . 03 . 4 ” ,
/ / Basic zero IPv6 address .
” : : ” ,
/ / Localhost IPv6 .
” : : 1 ” ,
/ / Fu l l y expanded IPv6 address .
” fd7a :115c : a1e0 : ab12 :4843: cd96 :626b:430b ” ,
/ / IPv6 wi th e l i ded f i e l d s in the middle .
” fd7a :115c : :626b:430b ” ,
< . . . more t e s t i npu ts . . . >

}

func FuzzParse (f ∗ t e s t i n g . F) {
for _ , seed := range corpus {

f . Add (seed)
}

f . Fuzz (func (t ∗ t e s t i n g . T , s s t r i n g) {
ip , _ := ParseAddr (s)
checkStr ingParseRoundTrip (t , ip , ParseAddr)
checkEncoding (t , i p)

/ / Check t ha t we match the net ’ s IP parser , modulo zones .
i f ! s t r i n g s . Contains (s , ”%”) {

s t d i p := net . ParseIP (s)
i f ! i p . I sVa l i d () != (s t d i p == n i l) {

t . Logf (” i p=%q s t d i p=%q ” , ip , s t d i p)
t . Fa ta l (” ParseAddr zero != net . ParseIP n i l ”)

}
< . . . >
}

Listing 4.1: Partial listing of fuzz test for netip.ParseAddr() function in the Go standard library [28]

The test is invoked via the Go toolchain:

go test -fuzz <regex matching the name of test(s)>

At the time of this evaluation, all code for the feature was fully merged into the development
branch [29]. The next release of Go is 1.18, due in early 2022, will be the first stable release

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
46

to include support. In order to use the fuzzing framework, we used the latest stable version
of Go (1.17.5) to build the development branch on a Debian 11 VM as follows:
c u r l −L h t t ps : / / go . dev / d l / go1 . 1 7 . 5 . l i nux −amd64 . t a r . gz −O
t a r −C / usr / l o c a l −xv f go1 . 1 7 . 5 . l i nux −amd64 . t a r . gz
go i n s t a l l golang . org / d l / go t ip@la tes t
go t i p download
<bu i l d i ng >
go t i p vers ion
go vers ion devel go1.18−766 f89b F r i Dec 10 19:26:50 2021 +0000 l i n u x / amd64

Listing 4.2: Building the development branch

Use Cases and Limitations

The envisioned use case for this feature is for all systems written in Go to begin including
fuzzing tests as part of the development workflow of the project. Similar to the use case
for including unit test scaffolding in the Go toolchain, by including fuzzing capabilities the
community expects to see a significant uptake in fuzz testing performed by developers,
thereby increasing security and reliability of all Go applications. This is particularly im-
portant in Go packages that are imported by a large number of other projects. The Go
development team will track the usage of the fuzzing capabilities in public repositories to
measure adoption rates.

The mutation engine currently does not support “struct” types. The constituent field types
in a struct must have corpus data and fuzzing code written for them individually [24]. A
future release will add support for dynamically marshalling data into types in a struct. This
version also does not support writing custom generators for the mutator, which is another
feature identified for future inclusion.

Another challenge is that corpus data can grow very large, and therefore is not desirable
to include in the git repository with the source code. Current recommendations are to only
keep the corpus data locally on a developer or build machine, or to create a separate repos-
itory exclusively for corpus data for a given project in order to share among development
team members.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
47

4.7 Gramatron

Reference Link https://github.com/hexhive/gramatron

Target Type Source (C/C++/Objective C) QEMU Mode: Bi-
nary

Host Operating System Linux; BSD With Constraints: macOS, Solaris
(Any OS supported by AFL++)

Target Operating System (Any OS supported by AFL++) Linux; BSD
With Constraints: macOS, Solaris

Host Architecture (Any architecture supported by AFL++) Pri-
mary: x86 (32, 64); With Modification: ARM
(32, 64); PPC (32, 64); MIPS (32, 64); etc.
Linux; MacOS

Target Architecture x86(32, 64) QEMU Mode: QEMU Supported
Architectures

Initial Release 07/2021

License Type Open Source (Apache 2.0)

Maintenance Maintained by Prashast Srivastava (Purdue
University) and Mathias Payer (EPFL)

Overview

Gramatron is a grammar-based coverage-aware fuzzer built on top of AFL++. It was pre-
sented in ”Gramatron: Effective Grammar-Aware Fuzzing” at ISSTA 21 in July 2021 [30].
The tool uses grammar automata instead of parse trees to traverse the input space; the
authors of the paper claim that this allows Gramatron to more aggressively mutate exist-
ing inputs, reduce biases in the generated inputs, and reduce the input representation size

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
48

compared to other grammar-aware fuzzers. The results showed improvements over two
variants of Nautilus [31], a similar tool. In the paper, the tool was used on three popular
interpreters for a 10-day fuzzing campaign where it helped uncover 10 new vulnerabilities,
including one named CVE [32]. The Gramatron source code is available on Github [33].
A pre-built Docker image is also available. Gramatron has also been incorporated into the
current ”3.15a” development branch of AFL++ [34].

Design and Implementation

Gramatron works in two stages. In the first ”preprocessing” stage, Gramatron converts
the input grammar (a context-free grammar) into a grammar automaton. In the second
”fuzzing” stage, the grammar automaton is used to explore the input space for the fuzzing
target. Mutation operations together with coverage-based feedback are used to modify a
random automaton walk.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
49

Figure 4.22: Overview of Gramatron

The grammar automaton is generated in two steps. First, the input grammar is converted
into Greibach normal form (GNF). A context-free grammar is in GNF if its production rules
have the form:

A -> t A_1 ... A_k (*)

where t is a terminal symbol and the A’s are non-terminals; every context-free grammar
can be converted into GNF [35].

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
50

Figure 4.23: Subset of PHP grammar [30] Figure 4.24: Same grammar in GNF [30]

Next, the GNF grammar is converted to a finite state automaton (FSA). This is done by
constructing the pushdown automaton corresponding to the grammar while using a stack
limit so that there are only a finite number of states. The states correspond to stacks of
non-terminal symbols (up to a configurable maximum depth), and each transition corre-
sponds to popping the top element A on the stack and replacing it with A_1, ..., A_k
while emitting t, using a production rule (*) corresponding to the top element A.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
51

Figure 4.25: FSA for grammar in figure 4.24 [30]

In the fuzzing stage, Gramatron generates 100 seed inputs by performing random walks
over the grammar automaton. It then repeatedly performs fuzz iterations, each of which
consists of four steps:

1. Choose a seed from the queue.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
52

2. Pass the seed through each of a set of mutation operators.

3. Test generated mutants on fuzz target.

4. Select candidates for further testing based on coverage feedback.

To avoid getting stuck, Gramatron generates a new candidate for each iteration. Grama-
tron uses three types of mutation operators:

• Splicing – ”combining two inputs while preserving syntax.” This is done by taking two
automaton walks W1 and W2, picking a particular state S in W1, and replacing after
S by a fitting subwalk from W2 that starts at the same state S.

• Random mutation – ”pick a random non-leaf non-terminal node and create a new
subtree.” This is done by taking an automaton walk, stopping at an intermediate state
S, and then performing a random walk starting from that point until a final state is
reached.

• Random recursive – ”find recursive production rules and unroll up to n times.” This
is done by taking an automaton walk W, traversing it once to log recursive features,
and then replicating those features (subwalks)[30].

Implementation The grammar preprocessor, which converts the grammar production
rules into a grammar automaton, is implemented in Python. The input generator and mu-
tator are implemented in C as a custom mutator for a modified version of AFL++. Our
experience with using the Docker container is documented below. The docker container
was run on a x86-64 Dell laptop host running Ubuntu 18.04.6 LTS. Some tweaks were
necessary but overall it was easy to run the tool. Specifically, we started by running the
sample test fuzzing run described in the accompanying README file. That involved build-
ing the target from source. Afterwards, we modified the procedure to verify that Gramatron
still worked against a pre-compiled binary target by using AFL’s QEMU mode.
docker p u l l prashast94 / gramatron : l a t e s t
/ / image hash : bfb280a0cef7711e5b901bfaaa50afe8c381fccb05510d93e7ffe9bf15839ff2
docker run −−secu r i t y −opt seccomp=unconf ined − i t prashast94 / gramatron : l a t e s t / b in / bash

Next we prepare the target. For the sample campaign, we run ”create sample script,” which
downloads the target source code and compiles it using afl-clang-fast. At this point we also
need to generate an automaton from an input grammar. For this run we used the pre-built
automaton that comes with the Docker container. The input grammar file source.json
(1195 lines, 25853 bytes) starts like this:

root@83472e836918 : ~ / gramatron_src / gramfuzz−mutator# head ~/grammars / ruby / source . json
{

”ARGS” : [
”VAR” ,
”VAR ’ , ’ ARGS” ,
” ’ ’ ”

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
53

] ,
” IDENTIFIER ” : [

” ’ abcdef0123456789ABCDEF ’ ” ,
” ’ abcdefghi jk lmnopqrstuvwxyz ’ ” ,
” ’ abort ’ ” ,

while the automaton file (69263 bytes) is a packed JSON file which when pretty-printed
starts off like this:
{

” f i n a l _ s t a t e ” : ” 6 ” ,
” pda ” : {

” 15 ” : [
[

” 15_1 ” ,
” 1 ” ,
” a ”

] ,
[

” 15_2 ” ,
” 1 ” ,
” b ”

] ,

Fuzzing the target We run the ”run_campaign.sh” script to start the fuzzing run:
. / run_campaign . sh ~/ grammars / ruby / source_automata . json tes t_ou tpu t ” / tmp / mruby / b in /

mruby @@”=

This simple script first prepares an AFL++ input directory with 100 dummy ”a” seeds. It then
runs afl-fuzz, using the AFL_CUSTOM_MUTATOR_ONLY and AFL_CUSTOM_MUTATOR_LIBRARY to
mutate inputs using the Gramatron custom mutator gramfuzz-mutator.so. At this point,
afl-fuzz crashed with the following error:

[−] Hmm, your system i s conf igured to send core dump n o t i f i c a t i o n s to an
ex te rna l u t i l i t y . This w i l l cause issues : there w i l l be an extended delay
between stumbl ing upon a crash and having t h i s i n f o rma t i on re layed to the
fuzzer v ia the standard wa i t p i d () API .
I f you ’ re j u s t t es t i ng , se t ’AFL_I_DONT_CARE_ABOUT_MISSING_CRASHES=1 ’ .

To avoid having crashes m is i n te rp re ted as t imeouts , please log i n as roo t
and tempo ra r i l y modify / proc / sys / ke rne l / core_pat tern , l i k e so :

echo core >/ proc / sys / ke rne l / core_pat te rn

[−] PROGRAM ABORT : Pipe at the beginning o f ’ core_pat te rn ’
Locat ion : check_crash_handl ing () , s rc / a f l −fuzz − i n i t . c :1701

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
54

I t was necessary to change t h i s kerne l s e t t i n g on the host :
user@ubu0731 :~$ cat / proc / sys / ke rne l / core_pat te rn
| / usr / share / appor t / appor t %p %s %c %d %P %E
user@ubu0731 :~$ sudo echo core >/ proc / sys / ke rne l / core_pat te rn
user@ubu0731 :~$ cat / proc / sys / ke rne l / core_pat te rn
core
user@ubu0731 :~$

Trying again, we encountered another error:

[−] Whoops , your system uses on−demand CPU frequency sca l ing , ad justed
between 781 and 4003 MHz. Unfo r tuna te ly , the sca l i ng a lgo r i t hm in the
kerne l i s imper fec t and can miss the shor t − l i v e d processes spawned by
a f l − fuzz . To keep th ings moving , run these commands as roo t :

cd / sys / devices / system / cpu
echo performance | tee cpu ∗ / cpufreq / sca l ing_governor

You can l a t e r go back to the o r i g i n a l s t a t e by rep lac ing ’ performance ’
w i th ’ ondemand ’ or ’ powersave ’ . I f you don ’ t want to change the se t t i ngs ,
se t AFL_SKIP_CPUFREQ to make a f l − fuzz sk ip t h i s check − but expect some
performance drop .

[−] PROGRAM ABORT : Suboptimal CPU sca l i ng governor
Locat ion : check_cpu_governor () , s rc / a f l −fuzz − i n i t . c :1810

Indeed we need to select a different CPU scaling governor:

user@ubu0731 :~$ cat / sys / devices / system / cpu / cpu ∗ / cpufreq / sca l ing_governor | uniq
powersave
user@ubu0731 :~$ sudo bash −c ’ f o r x i n ‘ l s / sys / devices / system / cpu / cpu ∗ / cpufreq /

scal ing_governor ‘ ; do cat $x ; done ’
user@ubu0731 :~$

Moving on, we tried running the ”run_campaign.sh” script and ran into a third and final
error:

Read leng th : 621 [∗] Spinning up the f o r k server . . .
[+] A l l r i g h t − f o r k server i s up .
[∗] Target map s ize : 15680

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
55

. / run_campaign . sh : l i n e 34: 1549 I l l e g a l i n s t r u c t i o n (core dumped)
root@83472e836918 : ~ / gramatron_src / gramfuzz−mutator#

It turned out that the afl-fuzz binary in the Docker container was compiled for a processor
that supports an AVX512 extension missing from our host processor. Fortunately we were
able to recompile afl-fuzz inside the container:

cd / r oo t / gramatron_src / a f l −g f
make clean
make

This time we the ”run_campaign.sh” script ran successfully:

Figure 4.26: Successful AFL GUI

Meanwhile, the seed files in the input directory (/tmp/inputs) have been replaced with in-
puts generated with from the grammar:

root@83472e836918 : / tmp / i npu ts# cat 002
a= fa lse . ob jec t (d , c)
break d
a=a . mrb_random_srand (c , a , b)
d=by t e s l i c e .NODE_ZSUPER(b)
root@83472e836918 : / tmp / i npu ts#

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
56

We killed this job after letting it run for several minutes without finding a crash.

Fuzzing a pre-compiled target Next we used Gramatron to fuzz a pre-compiled binary target
by running afl-fuzz in QEMU mode. First we recompiled the mruby target with plain GCC:

cd / tmp / mruby
make clean
make

Next we installed some required libraries and ran a ”build_qemu_support.sh” script to add
QEMU mode support to afl-fuzz:
cd ~/ gramatron_src / a f l −g f / qemu_mode
apt i n s t a l l −y f l e x l i b t o o l −b in l i b g l i b 2 .0−dev l ibpixman −1−dev
. / bui ld_qemu_support . sh

In order for the ”build_qemu_support.sh” script to work in the Docker container, it was nec-
essary to add the ”–no-check-certificate” flag in the following line of the script:

wget --no-check-certificate -c -O "$ARCHIVE" -- "$QEMU_URL" && OK=1

We then added the -Q flag to the afl-fuzz invocation in ”run_campaign.sh”:

$FUZZ_MAIN -m none -Q -a $AUTOMATON -i $INPUT_DIR -o $OUTPUT_DIR -- $RUNCMD

Now, running ”run_campaign.sh” (with the same arguments as before) works:

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
57

Figure 4.27: Successful fuzzing of a pre-compiled target

This time we left it attended over a few days in which time the fuzzer found 114 unique
crashes. The first crash occurred 1.6 hours into the fuzzing run:
root@83472e836918 : ~ / gramatron_src / gramfuzz−mutator / t es t_ou tpu t / crashes# cat i d :000000 ,

s ig :06 , s rc :001305 , t ime :5764477 ,op : custom , pos :0
b=0
c=0. step ()
a= true
b=[0 , n i l]
d=0
a=b . z ip (c)
a=c . z ip (c)
a=c . z ip (c)
a=c . z ip (c)
a=c . z ip (c)
a=c . z ip (c)
a=c . z ip (c)
a=c . top_stmt (a)
root@83472e836918 : ~ / gramatron_src / gramfuzz−mutator / t es t_ou tpu t / crashes#

Checking that this is indeed a crashing input:
root@83472e836918 : ~ / gramatron_src / gramfuzz−mutator / t es t_ou tpu t / crashes# / tmp / mruby / b in

/ mruby i d :000000 , s ig :06 , s rc :001305 , t ime :5764477 ,op : custom , pos :0
mruby : / tmp / mruby / src / gc . c :724 : mrb_gc_mark : Asser t ion ‘ (ob j) −> t t != MRB_TT_FREE ’

f a i l e d .
Aborted (core dumped)
root@83472e836918 : ~ / gramatron_src / gramfuzz−mutator / t es t_ou tpu t / crashes#
Bu i l d i ng an automaton from the grammar

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
58

Running the f o l l ow i ng recrea tes the source_automaton . json automaton f i l e from the
source . json grammar f i l e

root@83472e836918 : ~ / gramatron_src / gramfuzz−mutator / preprocess# . / prep_automaton . sh ~/
grammars / ruby / source . json PROGRAM

F i l e : source . json
Name: source
python3 construct_automata . py −−gf source . json
0
[X] Actua l Number o f s ta tes : 19
[X] No unexpanded ru les , abso lu te FSA formed
Copying source_automata . json to / roo t / grammars / ruby

Whenwe did this with the provided JavaScript (sub)grammar file ~/grammars/js/source.json,
the script hung with no explanation:
root@83472e836918 : ~ / gramatron_src / gramfuzz−mutator / preprocess# . / prep_automaton . sh ~/

grammars / j s / source . json PROGRAM
F i l e : source . j son
Name: source
python3 construct_automata . py −−gf source . j son
I t turned out t ha t we had to spec i f y a stack l i m i t .
root@83472e836918 : ~ / gramatron_src / gramfuzz−mutator / preprocess# t ime . / prep_automaton .

sh ~/ grammars / j s / source . json PROGRAM 5
F i l e : source . j son
Name: source
python construct_automata . py −−gf source . j son −− l i m i t 5
[X] Operat ing in bounded stack mode
0
(’ [X] Actua l Number o f s ta tes : ’ , 72)
(’ [X] Number o f t r a n s i t i o n s : ’ , 53620)
(’ [X] O r i g i n a l Number o f s ta tes : ’ , 82)
[X] Cer ta in ru l es were not expanded due to stack s ize l i m i t . Inexac t approx imat ion has

been created and the d isa l lowed ru l es have been put in source_disa l lowed . json
(’ [X] Number o f unexpanded ru l es : ’ , 2529)
Copying source_automata . json to / roo t / grammars / j s

r ea l 0m0.930s
user 0m0.906s
sys 0m0.023s
root@83472e836918 : ~ / gramatron_src / gramfuzz−mutator / preprocess#

Lastly, we started with the recommended value of 5 and gradually increased it to see the
effect on automaton size and generation time:

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
59

Figure 4.28: Automation size and generation time.

Use Cases and Limitations

As with all grammar-based fuzzers, Gramatron will only produce fuzzing inputs following
the grammar. In turn, bugs that require inputs not produced by the grammar will not be
triggered.

In the case of self-embedding grammars, the stack depth limit means that the grammar
automaton generated by Gramatron will only generate a subset of the grammar. (A context-
free grammar is self-embedding if it contains a derivation of the form S ->* u S v where
S is a non-terminal symbol and u and v are non-empty strings of terminals.) Non-self-
embedding grammars do not have this limitation. The user can generate more of the
grammar by increasing the limit, at the cost of significantly increasing the size of the au-
tomaton as we have seen.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
60

4.8 NyxNet

Reference Link https://github.com/RUB-SysSec/nyx-net

Target Type Binary

Host Operating System Linux

Target Operating System AIX, Android, DragonFly BSD, FreeBSD, Il-
lumos, Linux, macOS/iOS (Darwin), NetBSD,
OpenBSD, Plan 9, Solaris, and Windows

Host Architecture x86_64

Target Architecture x86_64, others as supported by the modified
QEMU

Initial Release Nov 14, 2021

License Type Open Source (AGPL license)

Maintenance The Nyx-Net repo is intended to capture the
state described in the white paper. The original
Nyx project receives regular updates.

Overview

Nyx-Net, a coverage guided fuzzer, is based on the fuzzer Nyx, which uses virtualization
and snapshots to enhance the binary fuzzing experience. The -Net variation is focused
on interrogating network services. Nyx-Net claims to improve “test throughput by up to
300x and coverage found by up to 70%.” The fuzzer has found previously unknown bugs
in software such as Lighttpd, MySQL clients, and Firefox’s IPC mechanisms. According
to the GitHub page, Nyx-Net is built upon some already existing technologies including
kAFL, Red-queen, and it’s own predecessor, Nyx [36].

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
61

Design and Implementation

Nyx-Net has taken a different approach to advancing the state of the art. Other fuzzing so-
lutions have focused on improvements to the fuzzing algorithms. Thewhite paper suggests
that even with algorithmic improvements the likelihood of finding bugs remains roughly the
same on a first run. The Nyx-Net team is attempting to simply make target applications
and systems more feasible to fuzz in the first place.

Nyx-Net uses a generative approach only allowing specification of input formats as se-
quences of typed function calls (or opcodes), forgoing the option of providing a seed. Nyx-
Net’s language allows for the definition of “opcodes” and “nodes” that are defined and
chained together by the system. See figure 4.29 for an example. The example shows the
construction of a data type named d_bytes and a definition for the type of data it should
be, in this case unsigned 8 bit integers (unsigned char). The n_con variable is defined
as a node that will create a new connection and return the handle e_con. Finally n_pkt is
defined as an actual opcode that uses the node n_con to pass the data d_bytes.

Figure 4.29: Exploring provenance of a successful end state for a simple crackme

Nyx-Net utilizes snapshots of network services to jump-start the process of fuzzing a given
location and circumvents the time sink of ensuring that the targeted application is in a
known good state before fuzzing continues. Not doing this could cause misleading results
as the test case that does crash the system may have been caused by a state from a previ-
ous test case leading to potential difficulties in crash triage. Nyx-Net claims to circumvent
both of these problems with snapshots. “[…] by obtaining a snapshot of the system’s state
directly before executing the test case, we can reset the system to a deterministic state
after each test” [37]. On its website, the originating project (Nyx) also expounds on how
the use of snapshots and running everything with a KVM can help with fuzzing difficult ap-
plications such as shells [38]. It points out that shells have a tendency to be hard to fuzz
because of other issues such as wiping file systems, running out of memory, fork-bombs
(intentional or otherwise) and killing the parent process. All of these hinder the fuzzing of
the target application with complications that can be more easily dealt with by running the
target applications inside of a KVM.

Nyx-Net is controlled by amodified version of QEMU and executed by amodified version of
KVM. Inside the QEMU Nyx runs what it calls an agent. The modified version of KVM uses
modern CPU virtualization mechanisms to run the guest OS natively inside of the QEMU
VM. This level of control over the VM allows for Nyx to quickly revert to previous snapshots

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
62

and interaction with the agent inside of the VM lets the underlying fuzzing system know
exactly when the target is ready to be fuzzed again. This shaves time off of other fuzzers by
eliminating the strict delays or the network connection start up time. This communication
with the agents across VM boundaries is achieved by something called a hypercall. These
hypercalls are similar to syscalls, but for VMs.

Nyx-Net claims some significant increases in efficiency in network based fuzzing appli-
cations which have been notoriously time consuming to fuzz in the past. Nyx-Net does
this by emulating “significant fractions of the relevant functionality” [37]. Nyx-Net achieves
this by hooking a multiple libc functions associated with network connectivity. Two meth-
ods to achieve this are provided: compiling the hooks directly into the target; or by using
LD_PRELOAD. The file descriptors are are tracked in an effort to maintain continuity of
network connection paths upon snapshot resets. The system will also track file descriptors
being passed to child processes from fork(). The read() / recv() functions are hooked and
receive their data directly from the Nyx byte code generated test case.

Figure 4.30: Using incremental snapshots to run mutated tests while skipping the common prefix consisting
of packets one to three” [37]

Nyx-Net will also keep track of where the snapshots are in relation to the test case process.
Figure 4.30 shows an example of how Nyx-Net keeps track of where to pick up the next
test case and its relation to previous snapshots [37].

Use Cases and Limitations

Nyx-Net is best suited to fuzz networked applications that have time-consuming code paths.
It ensures that individual input cases lead to specific crashes and that those crashes are
not reliant on previous input.

Nyx-Net attempts to overcome the diminishing returns of algorithmic enhancements by
taking direct control of the environment in which the target is run. Nyx-Net applies this
approach to network services with the goal of increasing the reliability and reproducibility
of the fuzzing and triage processes.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
63

4.9 REVEN

Reference Link https://www.tetrane.com/index.html#technology

Target Type Windows x86 and x64 OS and binaries Linux
x86 and x64 OS and binaries

Host Operating System Debian 10 Linux

Target Operating System Windows 7, 10, 11 Linux up to kernel version
4.19

Host Architecture x86 (32 and 64)

Target Architecture x86 (32 and 64)

Initial Release Earliest mention is a 2014 blog. Free edition
launched December 1, 2021.

License Type Proprietary with free and paid versions

Maintenance Maintained by Tetrane

Overview

REVEN is a timeless debugging and analysis platform[39]. It records full system execution
traces that include CPU instructions, memory accesses, hardware events, fault handlers,
I/O, and more. REVEN then creates a replayable session from these events that allows the
user to transparently explore the trace across operating system boundaries such as user
space, kernel space, and process isolation. The analyst interacts with REVEN through a
web browser, but the tool includes a scriptable python API for automation.

While REVEN is a commercial tool, Tetrane recently released a free version. The free
version was evaluated as part of the research for this article.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
64

Design and Implementation

The REVEN toolkit captures and analyzes snapshots of virtual machines that are running
the target OS or application. As such, the tool is divided into dedicated components: virtual
machine manager and analysis engine. The virtual machine and project manager orches-
trates the analyst’s session: the virtual machine lifecycle, snapshots, and setup necessary
for analysis. An analyst must first register a virtual machine with REVEN and generate a
snapshot to act as the basis of collection. As of writing, the free edition supports only
the Debian 9 virtual machine provided by Tetrane. The process of uploading the virtual
machine and generating a snapshot is straightforward and there is ample documentation.

Figure 4.31: Uploading the Tetrane Debian 9 VM

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
65

Figure 4.32: Generating an Initial Snapshot for Analysis

The analyst must then create a new scenario - a recording of the actions to be analyzed.
This recording can then be replayed and analyzed as many times as necessary to explore
the various CPU instructions, memory, traces, timelines, and more.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
66

Figure 4.33: Generating an initial Scenario for record and replay

Figure 4.34: Recording actions within the VM

Once the scenario is generated it can be analyzed. This analysis window includes a variety
of widgets with various purposes.

The REVEN GUI is the main method by which an analyst explores a scenario. There are
a variety of widgets available to expedite analysis.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
67

Figure 4.35: REVEN GUI for Exploring Scenarios

The Central Widget (red) contains the trace of CPU instructions executed by the VM while
recording the scenario. It “includes kernel or user code while executing the binary and will
indiscriminately jump from function to another, binary to another, and userland to kernel
and back. Each instruction displayed is called a transition and represents a moment in
time when the CPU did something.”

The CPU widget (blue) “contains content of registers before and after the selected tran-
sition is executed”. The Backtrace widget (black) “contains the current backtrace of calls
leading to the active transition in the trace widget.” The backtrace will update based on
the current active transition, as each transition may represent a different execution context.
The Framebuffer Widget “displays frame buffer image at the active transition in the trace
widget.”

The Timeline widget (green) “represents a linear time view of the execution trace. It is
interactable and will update the other widgets. The trace is searchable and can find ex-
ecution of symbols, binaries, or addresses. A specific binary name can be found with a
specific symbol.”

An analyst can also explore thememory of the system via a hex dump viamemory operands.
On inspection of a memory operand the HexDump widget displays the “content of the re-
quested memory range at the active transition” as well as an “access history view that

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
68

displays list of accesses to the area.” If the memory is not directly accessed it instead dis-
plays the next closest access. Exploring these memory accesses automatically adjusts
the active transition.

The Taint widget (orange) “follows the data flow tracking backwards and forwards. The
taint results correspond to a list of transitions when new data gets tainted or tainted data
get untainted. Transitions where data is modified but not moved around are not presented
in the taint results.”

Use Cases and Limitations

REVEN allows for full OS and application analysis. Its ability to provide a transparent view
into user space applications through the kernel and back allows for deep introspection into
system state. This is particularly useful for finding kernel exploits triggered through user
space. Its replay system includes IO, greatly expediting analysis of complex applications
such as web browsers for heap bugs. Additionally, REVEN integrates with IDA, WinDbg,
Volatility, and Wireshark as well as providing a python API for automated analysis. There
are also a variety of interactive tutorials that detail using REVEN to find modern CVEs.

REVEN runs on Debian 10 if installed directly, though it may run on other Linux operating
systems via a Docker container. It can only target Windows and Linux systems on x86/x64
architectures, and the Linux kernel must be version 4.19 or earlier. The free edition can
only record and replay a custom Debian 9 virtual machine. The professional version can
target Windows 7, 10, 11, and a variety of Linux systems at or below 4.19. The license
for the professional version at time of writing is 3,900 USD per year. Both the free and
professional licenses only allow a single workflow - one recording and one replay. Finally,
the management of virtual machines and their snapshots is storage intensive.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
69

4.10 ZAFL

Reference Link https://www.usenix.org/system/files/sec21-
nagy.pdf https://git.zephyr-
software.com/opensrc/zafl

Target Type Binary

Host Operating System Linux

Target Operating System Linux (primary), Windows

Host Architecture Linux

Target Architecture x64 only

Initial Release 02/2021

License Type Open Source (BSD 3-Clause)

Maintenance Actively Maintained - Last updated 10/2021

Overview

ZAFL is a coverage-guided grey-box fuzzer [40]. ZAFL lifts a target binary into an interme-
diate representation and then applies static rewriting transformations to insert instrumen-
tation.

The ZAFL authors note four main categories of transformations that coverage-guided
fuzzers apply to improve performance. These are the same four areas to which ZAFL
applies similar transformations:

• Instrumentation pruning, for instance AFL’s instrumenting a percentage of basic
blocks, or INSTRIM targeting only backwards/looping edges

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
70

• Instrumentation downgrading, such as CollAFL merging single-predecessor basic
blocks

• Sub-instruction profiling, which multiple tools use to split up hard-to-bypass mulit-
byte checks like checksums into individual byte comparisons that enable the fuzzer
to more easily detect progress

• Extra-coverage behavior tracking, prototyped in some LLVM implementations us-
ing additional context-sensitive information to distinguish traversal order among blocks.

ZAFL’s goal, which they believe they have accomplished, is to apply these transformations
consistently in real-world binaries, maintaining execution speed, and finding as many, or
more crashes, as competing fuzzers.

Design and Implementation

The ZAFL authors note four primary pillars/requirements of their design and implementa-
tion:

• Criterion 1: Instrumentation added via static rewriting.. not emulation.. emulation is
slow.

• Criterion 2: Instrumentation is invoked via inlining, not trampolining.. trampolining
adds significant overhead with instruction control transfers out and back to the basic
block.

• Criterion 3: Must facilitate register liveness tracking.. saving and restoring registers
that weren’t even touched is slow.

• Criterion 4: Support common binary formats and platforms including stripped binaries,
C++, and Windows.

Figure 4.36: Comparison of current tools across the previously defined criteria and transform approaches
[40]

Note that ZAFL requires a binary lifter to an intermediate representation. They do not
implement their own lifter from scratch to implement static rewriting. They evaluated the

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
71

popular LLVM lifter McSema but did not choose it due to performance issues. They instead
leveraged a GCC Intermediate Representation (IR)-based lifter (Zipr).

ZAFL lifts the binary, then runs ZAX (the component of ZAFL where all the new instrumen-
tation logic resides), then writes the intermediate representation of the binary back out for
fuzzing. ZAX applies multiple transforms to the IR including:

• Performance Transformation

• Single Successor-based Pruning

• Dominator-based Pruning (if all paths to block B go through A then A dominates B)

• Instrumentation Downgrading

• Feedback Transformation

• Sub-instruction Profiling (which is also done in CmpCov)

• Context-sensitive Coverage (function-level annotations)

Also of note, when ZAX inserts instrumentation, it performs analysis to determine where
that analysis is cheapest (such as avoiding areas that would require costly saving of
EFLAGS).

ZAFL is focused on Linux targets, but also supports Windows.

Use Cases and Limitations

The primary use case for ZAFL is closed-source binaries where one would otherwise use
DynInst or QEMUmode of AFL. “ZAFL enables fuzzers to average 26–131%more unique
crashes, 48–203% more test cases, achieve 60–229% less overhead, and find crashes in
instances where competing instrumenters find none.” [40]

ZAFL’s primary limitation is that it is not guaranteed to be able to apply its transforms on
all targets, particularly heavily obfuscated binaries. As the ZAFL paper notes, ZAFL fails
for obfuscated binaries such as Dropbox, Skype or Spotify.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
72

Appendix

This appendix provides additional background information on the Edge of the Art project as
well as more in-depth discussion of vulnerability research technologies. This information
gives context to the rest of the document, can provide useful information to those new to
the field, and should remain largely the same from one EotA edition to the next.

5.1 Resources

Staying current with the ongoing advancements of such a fast-moving field requires con-
stant engagement with the cyber security community. The contents of this report are drawn
from four specific areas of engagement:

• Social Media - Participating in social media platforms, including online forums and
chat applications, to identify key influencers, build relationships, and identify new re-
search directions.

• Online Code Repositories - Monitoring code repositories for new tools and deciding
when a tool has reached a baseline level of maturity for our team to evaluate and
include in our toolset.

• Top Security Conferences - Attending a selected set of top cyber security confer-
ences that focus on VR, RE, and program analysis to provide a formal venue for
learning and exchanging new techniques.

• Academic Literature - Surveying academic literature frequently to ensure complete
coverage of novel algorithms and approaches driven by academic research.

5.2 Tools Criteria

The following criteria govern which tools are included in this report:

• Year Released – “Cutting edge” has an obvious temporal component, but it is less
obvious where the cut-off should lie. Every tool in this report has been introduced

75
Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.

73

within the last five years (i.e., first released in 2016 or later). Those released earlier
are included either because they have significantly matured since their initial release
and now contain notable features or have otherwise recently become of increased
interest to the community.

• Capability – New tool capabilities, and how they compare to the current state-of-the-
art, are a primary consideration for inclusion in this report. The novel aspect of a new
tool capability is dependent on the category of tool, and each section of this report
starts with an introduction that lays out its specific considerations.

• Theory and Approach – Tools which offer novel ideas, approaches, or new research
are important even when the tools have poor implementations or do not necessarily
outperform the current state-of-the-art.

• Usability – In contrast with Theory and Approach, Usability considers tools which
may not represent groundbreaking research, but enable the user to harness existing
capabilities more effectively.

• Current State-of-the-Art – The line between edge-of-the-art and state-of-the-art is
hazy. There is rarely a single moment where a tool or technique definitively transitions
from one category to another. In some cases, including a tool that one might consider
state-of-the-art is necessary to compare to the edge-of-the-art. In other cases, the
tool has new capabilities which keep it on the edge-of-the-art.

5.3 Techniques Criteria

Most techniques are implemented by at least one tool and are documented in that tool’s
description.

Workflows – One area of techniques that is complementary to (rather than implemented
by) tools is that of workflows. This includes techniques that define effective strategies to
better leverage existing tools or improve the performance of teams of analysts.

5.4 Tool and Technique Categories

There are many ways to categorize the tooling and techniques used for vulnerability dis-
covery and exploitation. Cyber Reasoning Systems (CRS) tend to view the problem as
a combination of analytical techniques, such as dynamic analysis, static analysis, and
fuzzing. These analytical techniques are a bit too broad to use as tool categories because
each technique summarizes a set of actions that are performed by different tools. Some
tools may utilize multiple analytical techniques and thus fall in multiple categories. Alterna-
tively, existing tool categorizations, like the Black Hat Arsenal tool repository, are both too
specific (e.g., “ics_scada”), or include categories that are irrelevant to VR, RE, and exploit
development (e.g., “phishing”).

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
74

The CHECKMATE team has adopted a tool categorization that encompasses the VR and
exploit development process followed by most researchers. Broadly, this process involves
three overarching steps: 1) find points of interest (PoI) that may contain a vulnerability; 2)
verify the existence of a vulnerability at each PoI; and 3) build an input that triggers the
vulnerability to generate a specific effect (e.g., crash, info leak, code execution, etc.). As
part of this process, the researcher will typically engage in six types of activities: Compre-
hension, Translation, Instrumentation, Analysis, Fuzzing, and Exploitation. These activity
classes form the basis for the tool categorization used in this report.

5.5 Static Analysis Technical Overview

5.5.1 Disassembly

An assembler converts a program from assembly language to machine code, and a dis-
assembler performs the reverse: it converts machine code to assembly language. Since
there is often a one-to-one correspondence between machine instructions and assembly
instructions, this translation is much less complicated than decompilation. However, dis-
assembly can pose challenges, especially with architectures like x86 which have variable
length instructions. When overlapping sequences of bytes could themselves be valid in-
structions, one cannot just disassemble an instruction at random. Several approaches to
disassembly address this challenge, including linear sweep (which disassembles instruc-
tions in the order they appear starting from the first instruction) and recursive descent
(which disassembles instructions in the order of their control flow) [41]. Many popular
disassemblers including IDA Pro [42] and Binary Ninja [43] use the latter technique.

Disassembling machine code is often the first step in binary analysis. There are currently
a variety of disassemblers available, ranging from simple command line utilities to pro-
prietary platforms with capabilities far beyond basic disassembly. A simple example is
objdump [44], a standard tool on Linux operating systems, which given a target binary, will
output its disassembly. Tools like debuggers often rely on more sophisticated disassembly
frameworks like Capstone [45] which has features complementary to its core disassembler
and is designed to be used via an API. The disassembly framework Miasm [46], which is
a tool included in the second version of this report, can be used similarly to Capstone.

In contrast to frameworks, disassembly platforms are designed primarily for humans to
analyze disassembled code through a graphical user interface (GUI). These are often so-
phisticated user applications which offer a significant range of features beyond disassem-
bling code. For example, many of these applications have built-in APIs that can be used
as frameworks for custom, automated analyses. Several of these tools were discussed in
the first version of this report: IDA Pro [42], Ghidra [47] and Binary Ninja [43].

Reassembleable Disassembly The disassembly techniques discussed until this point are
only concerned with moving from machine code to assembly, however reassembly (au-
tomatically reassembling disassembled code) has recently become an area of academic
interest, in part to support static instrumentation. A 2015 paper, Reassembleable Dissas-

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
75

sembling [48], claims that at the time “no existing tool is able to disassemble executable
binaries into assembly code that can be correctly assembled back in a fully automated
manner, even for simple programs. Actually, in many cases, the resulting disassembled
code is far from a state that an assembler accepts, which is hard to fix even by manual ef-
fort. This has become a severe obstacle [48, p. 1].” The paper presented a tool that could
disassemble a binary using a set of rules that made the resulting disassembly relocatable,
which they assert is the “key” to reassembling [48, p. 1]. Since 2015, this technique has
been improved, notably by the creators of angr who built a reassembling tool called Ram-
blr [49]. More recently, the tool DDisasm [50] was introduced. (DDisasm was discussed
in the first version of this report.)

Static Binary Rewriting and Static Instrumentation Binary rewritingmodifies a binary executable
without needing to change the source code and recompile. One use case is for binary in-
strumentation, which is often thought of as a dynamic technique. While many dynamic
binary instrumentation (DBI) techniques exist, there are also methods for statically instru-
menting binaries. Many of these rely on reassembling or relinking the binary. Retrowrite
[41], a tool designed to statically instrument binaries for dynamic analysis like fuzzing and
memory checking, also uses a reassembleable disassembly technique that builds on pre-
vious research. The tool LIEF [51], discussed in the first version of this report, allows the
user to statically hook into a binary, or statically modify it in a variety of ways.

Intermediate Representation (IR) An intermediate representation is a form of the program
that is in-between both its source language and target architecture representations. IRs
may be expressed using a variety of formats. However, most often they take the form of
a parseable Intermediate Language (IL), defined by a formal grammar. IRs are designed
to enable analyses and operations that would be more difficult to perform on the original
representation by converting it to a common form that is architecture agnostic. Different
IRs have different attributes and features, depending on their intended use. For example,
some transform machine code to make it human readable, others layer on additional op-
erations making the resulting representation less readable but amenable to analyses and
optimizations.

Intermediate Representations are commonly used in compilers; a familiar example be-
ing LLVM [52], the IR used in the Clang compiler [53]. LLVM is helpful as an example
not just because it is well known, but because it demonstrates the range of features a
well-designed IR can offer. The instruction set and type system for LLVM is language in-
dependent, which means there are no high-level types and attributes. This allows LLVM to
be ported to many architectures. Although the type system is low-level, by providing type
information, LLVM enables a target program to be optimized through various analyses [54].
Unlike machine code however, LLVM is designed to be human readable [54].

LLVM uses a technique called Single Static Assignment (SSA), a form common in compi-
lation and decompilation in which each variable is only assigned a value once. SSA form
enables analysis such as variable recovery but by its nature maps one instruction to many
and generates output not intended for human consumption.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
76

These traits are not specific to LLVM but are attributes of many IRs discussed in this re-
port. Clang’s compiler works by translating source code languages to LLVM, perform-
ing optimizations in this form, and then translating the LLVM bitcode to many possible
architectures[55]. The Ghidra decompiler does something similar but in reverse: a binary
program is first lifted (converted to a higher-level representation) to an IR called P-Code
[56], on which Ghidra can perform analyses and then decompile by converting the program
to pseudo source code. Therefore, Ghidra can decompile anything it can lift to P-Code, be-
cause decompilation is performed on a language agnostic IR and not the original machine
language [57].

Ghidra uses SSA form in its decompilation. However, unlike LLVM, P-Code is not in SSA
form by default [57]. Other IRs also have an SSA and non-SSA form, for instance, Binary
Ninja’s IRs offer the ability to toggle between non-SSA and SSA form [43].

SSA demonstrates one of the trade-offs that inform IR design. The developers of Binary
Ninja created the charts in Figure 24 and Figure 25 to show the tension between different
features of IRs.

Figure 5.1: Tradeoffs of IRs, Pt. 1 [58, p. 29] The double arrows imply that emphasizing one makes the
other more difficult.

Intermediate Representations, each with their own mix of features, are used extensively
throughout the tools in this report. Decompilers such as IDA Pro, Ghidra and Binary Ninja
(which has developed a decompiler that is not yet released) each have their own IRs.
These are used not just for decompilation, but also exposed via APIs that allow the user to

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
77

Figure 5.2: Tradeoffs of IRs, Pt. 2 [58, p. 30] The double arrows imply that emphasizing one makes the
other more difficult.

utilize it for their own analyses. IDA Pro only recently documented their API [59], whereas
the public release of Ghidra’s P-Code included an API. However, out of these three plat-
forms, Binary Ninja’s IRs are designed with the greatest degree of user capability. They
offer three levels of IRs each with an optional SSA-form and a feature-heavy API [60].
Their third level serves as a decompilation level.

Other IR frameworks discussed in the second version of this report can be used in the
samemanner, but each offer their own set of features. Binary Analysis Platform (BAP) [61]
is a framework designed for program analysis which is built around the BAP Intermediate
Language (BIL), which has a formally defined grammar [61]. Miasm has an expression-
based IR that facilitates tracking memory and registry values. Miasm also has a JIT engine
for emulation and has built in support for symbolic execution [46].

Certain IRs are tailored for specific use cases. For example, Fuzzilli, a fuzzer which tar-
gets Javascript JIT engines, uses a custom IR called FuzzIL. Seeds are constructed and
mutated in FuzzIL then translated into Javascript before being fed into the engine [62].
This approach has the benefit of being able to theoretically explore all possible patterns
given enough computing power, unlike a JIT fuzzer working from hardcoded Javascript
samples.

In contrast some tools in this report use existing IRs rather than creating their own. The
symbolic execution tool angr uses Vex, which is the IR implemented by the memory debug-
ger Valgrind [63]. WinAFL, a version of the AFL fuzzer for the Windows operating system,
uses DynamoRIO, a dynamic binary instrumentation engine with its own IR [64].

The variety of IRs discussed thus far show the versatility of IRs and their applications. They
can be used for decompilation, semantic analysis, emulation, symbolic execution, fuzzing
seed generation, andmore. The abundance of intermediate representations offers a range

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
78

of choices and satisfies differing use cases, but also results in compatibility issues. GTIRB
[65], which is discussed in the previous version of this report, is an IR designed to convert
between different IRs. It is also the IR used in DDisasm.

5.5.2 Decompilation

A disassembler translates a program’s machine code into assembly language instructions,
whereas a decompiler converts a program’s machine code into pseudo-code resembling
a high-level language, such as C or C++. The goal of both is to transform a compiled
program into a more human readable form, but the output of a decompiler is far closer to
the original source code. It is significantly more difficult to create a semantically faithful
representation of the underlying binary instructions in high-level pseudo-code.

Whereas compiler theory has been a popular area of computer science for decades, its
reverse has received far less attention. In 1994 Christina Ciafuentes published her PhD
thesis on the subject, Reverse Compilation Techniques [66]. This work went on to inform
the development of multiple decompilers, including Hex-Rays, the decompiler of choice for
over a decade. This tool is part of IDA Pro, a disassembler which has been commercially
available since 1996, however Hex-Rays was not released until 2005 [67]. Until recently,
it was one of the few decompilers available, and the most technically sophisticated.

As of 2019, the United States National Security Agency (NSA) released Ghidra, a disas-
sembler and decompiler with comparable performance to IDA Pro [68]. In March 2020,
Vector35 released a decompiler for their tool, Binary Ninja. Binary Ninja not only exposes
its IRs to the user, but makes them a fundamental part of its design, with this new de-
compilation acting as a third layer in their three-tiered IR system. Their decompilation is
available in both SSA and non SSA form.

5.5.3 Static Vulnerability Discovery

There are a number of tools and techniques intended to statically discover vulnerabilities.
Many are designed for source code, including tools such as Coverity [69], CodeSonar
[70], and CodeQL [71]. These use a number of static analysis algorithms to find possible
vulnerabilities and common vulnerability patterns in a code base. Additionally, there are
program analysis techniques designed to statically identify vulnerabilities in binary code,
such as graph-based vulnerability discovery and value-set analysis (VSA) [63, p. 5].

Static Program Analysis Disassembly and decompilation, as well as static vulnerability dis-
covery methods, are predicated on several program analysis techniques. One of the most
basic forms of static analysis is pattern matching, simply scanning through code to find
known vulnerabilities (e.g., using the C library function gets()). However, many of these
techniques rely on far more sophisticated forms of program analysis, some of which are
as follows:

Control Flow Recovery: A binary program can be broken into basic blocks separated by

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
79

branches: a basic block is a sequence of instructions that contains no jumps, except at
the entry and exit. A control flow graph (CFG) models a program as a graph in which the
basic blocks of the program are represented as nodes, and the jumps, or branches, are
represented as edges. A CFG is instrumental to many forms of static program analysis
and vulnerability discovery. Recovering one is done by disassembling the program and
identifying the basic blocks and the jumps between them (both direct and indirect) [63, p.
4].

Variable and Type Information Recovery: Variable and type information is used by the
compiler but is not present in final binary executable form (unless the binary is compiled to
explicitly include this information for debugging purposes). Therefore, it is often necessary
to recover this information when analyzing a binary [41]. One attribute of many IRs is that
their lifters will recover variable and type information and include it in the IR form. This is
also necessary for decomplication.

• Function Identification: Function information is also often left out of the final binary
form of a computer program, and it is also necessary in various forms of analysis.
Methods have been developed to identify distinct functions within a binary [41].

• Value Set Analysis (VSA): VSA is a form of static analysis which attempts to track
values and references throughout a binary [63]. This analysis has a variety of uses,
including identifying indirect jumps or find vulnerabilities such as out of bound ac-
cesses.

• Graph-based vulnerability discovery: This form applies graph analysis to a CFG
to identify vulnerabilities [63].

• Symbolic Execution: Symbolic execution replaces program inputs with symbolic
values, and then symbolically executes over the program. Symbolic execution be
done either entirely statically or in conjunction with dynamic analysis. See page in
the dynamic analysis section for a more in-depth discussion.

• Abstract Interpretation, data-flow analysis, etc.: There are many types of formal
static analysis which apply mathematical approaches to program analysis. These in-
clude abstract interpretation and data-flow analysis. The tools BAP has implemented
support these forms of analysis [72].

5.6 Dynamic Analysis Technical Overview

5.6.1 Debuggers

Among other uses, interactive debuggers can pause a program during execution and step
through one instruction at a time, to inspect the current state of registers and memory at
a specific point and see the upcoming instructions. Debuggers can be used to reverse
engineering a program to determine how it operates, to inspect a crash found by a fuzzer,
or to debug an exploit. Like many dynamic analysis tools, debuggers utilize both static

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
80

and dynamic techniques (e.g., the popular debugger GDB uses a disassembler and the
tracing utility ptrace [73]) to implement its functionality.

Recordable, replayable debugging is one of the most powerful additions to modern debug-
ging. This allows a user to record a program execution and then replay while debugging
the process. In addition to forward debugger actions like step and continue, replayable
debugging allows the user to step backwards and continue backwards, etc. TTD, a tool
discussed in a previous edition, allows for replayable debugging from within the Windows
debugger Windbg [74]. The tool rr [75], which was discussed in the first version of this
report, enables recordable replayable debugging on Linux.

5.6.2 Dynamic Binary Instrumentation (DBI)

DBI, which underlies many dynamic binary analysis techniques, entails modifying the bi-
nary, either before or during execution, often by hooking into the binary at specific points
and injecting code. DBI frameworks implement custom instrumentation which the user
can access through an API to perform dynamic analysis. These include Intel Pin [76] and
DynamoRIO [77], which underlie many of the tools discussed in these reports. Both can be
used to drive the Windows fuzzer WinAFL [64], and the dynamic binary analysis tool Triton
is built around Intel Pin [78]. DBI frameworks are implemented in a variety of ways. Intel
Pin works by intercepting instructions before they are executed and recompiling them into
a similar, but Intel Pin-controlled instruction, which is then executed [76]. It is analogous
to Just-In-Time (JIT) compilers. DynamoRIO operates similarly in that it sits in between
the application and the kernel, like a “process virtual machine,” to observe and manipulate
each instruction prior to execution [77]. Other DBI options are less granular and intrusive
and rely on hooking into the program through dynamically loaded libraries (e.g., this is how
the tool Frida [79] operates).

5.6.3 Dynamic Fuzzing Instrumentation

Although fuzzing is discussed at length in the next section, fuzzing often requires dynamic
binary instrumentation to enable input to easily and quickly be fed to the program. This
can be done with various tools (Frida, Qiling, etc.) that allow the user to hook into the
binary at the point of input and redirect it. The binary may also calculate checksums, or
other functionality that can inhibit fuzzing; these tools can hook into the binary and redirect
execution around the problematic code. The fuzzer Frizzer, reviewed in a previous edition
of this report, uses Frida to instrument it.

5.6.4 Memory Checking

Memory checking, whether to find memory bugs or analyze them is a valuable form of
dynamic analysis in vulnerability research. To do this, a program is instrumented such
that if a memory error is triggered during runtime (e.g., an out of bounds access, null
dereference, or segmentation fault) it will be recorded, along with additional contextual

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
81

information. Several tools exist to do this, such as Valgrind [80], Dr. Memory (a part of
the DynamoRIO framework) and LLVM’s Sanitizer Suite which includes Address Sanitizer
(ASAN) [52].

5.6.5 Dynamic Taint Analysis

Dynamic taint analysis is a form of dynamic binary analysis in which data within a program
(often some kind of input) are “tainted” such that their flow throughout the program can be
traced. This can be done on the byte or bit-level with a tradeoff between the fidelity of the
analysis and the time andmemory resources required. Dynamic taint analysis is often built
on top of dynamic binary instrumentation to hook into data transfer instructions to check
whether the source memory or register value is tainted and then taint the subsequent
destination (or conversely, remove a taint from a destination if the source lacks a taint).
Dynamic taint analysis is not only useful for tracking values throughout a program, but
also identifying instructions not affected by user input, which can be used for concolic
execution. Triton is one tool that implements dynamic taint analysis.

5.6.6 Symbolic and Concolic Execution

Symbolic analysis is a method of program analysis which abstracts a program’s inputs
to be symbolic values. A symbolic execution engine “executes” the program with these
symbolic values, and records the constraints placed on them for each possible path they
could take. Subsequently, a constraint solver takes these constraints for a specific path
and attempts to find a value which satisfies them. Consider a program which takes an
input as an integer and exits if it is less than 10. That input would be assigned a symbolic
value, a, and then the symbolic execution engine would record a constraint of a < 10 for
the path that reached that exit call. Then a constraint solver would find a value for a that
satisfied the path constraints, a < 10.

Symbolic execution can be performed “dynamically,” and this is called dynamic symbolic
execution, or DSE. However, throughout literature on symbolic execution there are gener-
ally two competing definitions of DSE. The first kind of DSE refers to any form of symbolic
execution which “explores programs and generates formulas on a per-path basis [81]”.
This does not mean that only one path is followed, just that a distinct formula is generated
for each path. When a branch condition is reached, and both branches are feasible, exe-
cution will “fork” and follow both possible paths [81, p. 3]. In the paper (State of) The Art
of War: Offensive Techniques in Binary Analysis [63], Shoshitaishvili et al. describe this
kind of DSE:

“Dynamic symbolic execution, a subset of symbolic execution, is a dynamic technique in
the sense that it executes a program in an emulated environment. However, this exe-
cution occurs in the abstract domain of symbolic variables. … “Unlike fuzzing, dynamic
symbolic execution has an extremely high semantic insight into the target application: such
techniques can reason about how to trigger specific desired program states by using the
accumulated path constraints to retroactively produce a proper input to the application

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
82

when one of the paths being executed has triggered a condition in which the analysis is
interested. This makes it an extremely powerful tool in identifying bugs in software and,
as a result, dynamic symbolic execution is a very active area of research. [63, p. 6]”

Symbolic execution can be combined with concrete execution in a variety of ways and this
is often referred to by the portmanteau “concolic” execution. “Concolic” is another term
with competing definitions but is often used as a synonym for DSE. Concolic execution can
refer to the kind of DSE described in the previous excerpt, in which symbolic (not concrete)
inputs are used, and all possible paths are explored, but the program execution will switch
between concrete and symbolic emulation, depending on whether the instruction handles
symbolic values [63].

The other common definition of DSE and concolic execution refers solely to symbolic ex-
ecution which is “driven by a specific concrete execution [82, p. 6].” A program will be
executed both concretely and symbolically using a chosen concrete input, and the sym-
bolic execution will only follow the specific path taken by the concrete input [83], [82, p.
5-6]. After doing this, additional paths can be explored by negating one (or more) of the
collected branch conditions for the path of the concrete input, and then solve for the new
path with these negated conditions using an SMT solver in order to generate a new in-
put [82, p. 6]. This kind of DSE or concolic execution is often used in symbolic assisted
fuzzing, also known as hybrid fuzzing, which use symbolic techniques to gain semantic
insight while fuzzing a program. QSYM [84] (a fuzzer discussed in the first version of this
report) is an example of hybrid fuzzing.

There aremany tools for symbolic execution, including Triton andMiasm. The tool angr [63]
(discussed in the first version of this report) is one of the most popular, publicly available
tools, and uses emulation to perform symbolic execution.

While symbolic execution does provide powerful insights into program semantics, it is
greatly limited by space and time complexity issues. Path explosion is one of the chal-
lenges in symbolic execution: unbounded loops might result in exponentially many new
paths. Symbolic execution is also hindered by the memory needed to store a growing
number of path constraints. It is also difficult to apply to real world systems, because
system calls and library calls can be hard to manage with symbolic values, among other
environmental concerns [82]. Additionally, constraint solving is often a difficult and time-
consuming task. As such, symbolic execution is in many cases not a feasible option or
must be constrained to a small area of the program.

Constraint Solving Symbolic execution relies on the ability to solve for the collected path
constraints, which is a challenging problem. These constraints can be modeled by satis-
fiability modulo theories (SMT) which generalize the Boolean satisfiability problem (SAT).
SAT is an NP-complete problem which looks for a set of values which will satisfy the given
Boolean formula. An SMT formula models a SAT problem with more complex logic that in-
volves constructs like inequalities or arrays, whereas a SAT formula is limited to the realm
of Boolean logic. While SAT solvers perform well on some problems, because SAT is
NP-complete, some problem instances remain out of reach, limiting their scalability.

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
83

Bibliography

[1] D. Votipka, S. M. Rabin, K. Micinski, J. S. Foster, and
M. M. Mazurek, “An observational investigation of reverse engi-
neers’ processes,” in USENIX Security Symposium, 2020. [Online].
Available: https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-
observational

[2] A. R. Bryant, “Understanding how reverse engineers make sense of programs from
assembly language representations,” Ph.D. dissertation, Air Force Institute of Tech-
nology, 2012.

[3] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M. Mazurek, “Hackers vs. testers:
A comparison of software vulnerability discovery processes,” in IEEE Symposium on
Security and Privacy (SP), 2018.

[4] T. Szabó, S. Erdweg, and M. Voelter, “Inca: A dsl for the definition of incremental
program analyses,” in ACM Automated Software Engineering (ASE), 2016.

[5] L. Battle and J. Heer, “Characterizing exploratory visual analysis: A literature review
and evaluation of analytic provenance in tableau,” Computer Graphics Forum (Proc.
EuroVis), 2019. [Online]. Available: http://idl.cs.washington.edu/papers/exploratory-
visual-analysis

[6] B. Shneiderman, “The eyes have it: a task by data type taxonomy for information
visualizations,” in IEEE Symposium on Visual Languages, 1996.

[7] J. P. Leasure. (2021) Ghidraal. [Online]. Available: https://github.com/jpleasu/ghidraal

[8] Oracle. (2021) Get started with graalvm. [Online]. Available:
https://www.graalvm.org/22.0/docs/getting-started/

[9] CERTCC. (2021) Fuzzolic. [Online]. Available: https://github.com/CERTCC/kaiju

[10] T. of Bits. (2021) Mui. [Online]. Available: https://github.com/trailofbits/MUI

[11] ——. (2021) Manticore. [Online]. Available: https://github.com/trailofbits/manticore

[12] V. 35. (2018) angr_plugin.py. [Online]. Avail-
able: https://github.com/Vector35/binaryninja-
api/blob/dev/python/examples/angr_plugin.py

[13] M. A. Ben Khadra, D. Stoffel, andW. Kunz, “Efficient Binary-Level Coverage Analysis,”
in ACM Joint European Software Engineering Conference and Symposium on the

86
Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.

84

Foundations of Software Engineering - ESEC/FSE’20. Virtual Event, USA: ACM
Press, nov 2020, pp. 1153–1164.

[14] B. Khadra. (2021) bcov. [Online]. Available: https://github.com/abenkhadra/bcov

[15] S. Software. (2021) 010 editor. [Online]. Available:
https://www.sweetscape.com/010editor/

[16] R. Dutra, R. Gopinath, and A. Zeller, “Formatfuzzer: Effective fuzzing of
binary file formats,” CoRR, vol. abs/2109.11277, 2021. [Online]. Available:
https://arxiv.org/abs/2109.11277

[17] usd se. (2021) Formatfuzzer. [Online]. Available: https://github.com/uds-
se/FormatFuzzer

[18] J. Jang and H. K. Kim, “Fuzzbuilder: Automated building greybox fuzzing
environment for c/c++ library,” in Proceedings of the 35th Annual Computer
Security Applications Conference, ser. ACSAC ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 627–637. [Online]. Available:
https://doi.org/10.1145/3359789.3359846

[19] hksecurity. (2020) Fuzzbuilder. [Online]. Available:
https://github.com/hksecurity/FuzzBuilder

[20] glennrp. (2021) libpng. [Online]. Available: https://github.com/glennrp/libpng

[21] Season-Lab. (2021) Fuzzolic. [Online]. Available: https://github.com/season-
lab/fuzzolic

[22] L. Borzacchiello, E. Coppa, and C. Demetrescu, “FUZZOLIC: mixing fuzzing and con-
colic execution,” Computers & Security, 2021.

[23] Google. (2020) Using go at google. [Online]. Available:
https://go.dev/solutions/google/

[24] dvyukov. (2021) go-fuzz: randomized tsting for go. [Online]. Available:
https://github.com/dvyukov/go-fuzz

[25] Google. (2021) Fuzz testing for go. [Online]. Available:
https://github.com/google/gofuzz

[26] K. Hockman. (2021) Design draft: First class fuzzing. [Online]. Available:
https://go.googlesource.com/proposal/+/master/design/draft-fuzzing.md

[27] golang.org. (2021) Testing package documentation. [Online]. Available:
https://pkg.go.dev/testing@master#hdr-Fuzzing

[28] capnspacehook. (2021) Pull request #50108. [Online]. Available:
https://github.com/golang/go/pull/50108/commits/6f94f3fc2ef31ab5ccf231038879c4af976cd1f0

[29] K. Hockman. (2021) Proposal #44551. [Online]. Available:
https://github.com/golang/go/issues/44551

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
85

[30] P. Srivastava and M. Payer, “Gramatron: Effective grammar-aware fuzzing,”
in Proceedings of the 30th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ser. ISSTA 2021. New York, NY, USA: As-
sociation for Computing Machinery, 2021, p. 244–256. [Online]. Available:
https://doi.org/10.1145/3460319.3464814

[31] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and D. Teuchert,
“Nautilus: Fishing for deep bugs with grammars,” Proceedings 2019 Network and
Distributed System Security Symposium, 2019.

[32] MITRE. (2020) Cve-2020-15866. [Online]. Available: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2020-15866

[33] AFLplusplus. (2021) Gramatron. [Online]. Available:
https://github.com/hexhive/gramatron

[34] HexHive. (2021) Afl, change log for version 3.15a-dev. [Online]. Available:
https://aflplus.plus/docs/changelog/#version-315a-dev

[35] (2021) Greibach normal form. [Online]. Available:
https://en.wikipedia.org/wiki/Greibach_normal_form

[36] RUB-SysSec. (2021) Nyx-net: Network fuzzing with incremental snapshots. [Online].
Available: https://github.com/RUB-SysSec/nyx-net

[37] S. Schumilo, C. Aschermann, A. Jemmett, A. Abbasi, and T. Holz, “Nyx-net: Network
fuzzing with incremental snapshots,” CoRR, vol. abs/2111.03013, 2021. [Online].
Available: https://arxiv.org/abs/2111.03013

[38] S. Schumilo and C. Aschermann. (2021) To boldly fuzz what no other tool can fuzz.
[Online]. Available: https://nyx-fuzz.com/

[39] TETRANE. (2021) Reven free edition 2.10.2 user documentation. [Online]. Available:
https://doc.tetrane.com/free/latest/Index.html

[40] S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson, and M. Hicks,
“Breaking through binaries: Compiler-quality instrumentation for better binary-
only fuzzing,” in 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, Aug. 2021, pp. 1683–1700. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/nagy

[41] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite: Statically
instrumenting cots binaries for fuzzing and sanitization,” in 2020 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2020, pp. 1497–1511. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00009

[42] Hex-Rays. (2021) Ida pro. [Online]. Available: https://hex-rays.com/ida-pro/

[43] V. 35. (2019) Binary ninja. [Online]. Available: https://binary.ninja/

[44] I. Free Software Foundation. (2019) Gnu binutils. [Online]. Available:
https://www.gnu.org/software/binutils/

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
86

[45] N. A. Quynh. (2013) Capstone engine. [Online]. Available: https://www.capstone-
engine.org/

[46] C. I. Security. (2019) Miasm. [Online]. Available: https://github.com/cea-sec/miasm
[47] N. S. Agency. (2021) Ghidra. [Online]. Available: https://ghidra-sre.org/
[48] S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling,” in Proceedings of

the 24th USENIX Conference on Security Symposium, ser. SEC’15. USA: USENIX
Association, 2015, p. 627–642.

[49] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen,
C. Kruegel, and G. Vigna, “Ramblr: Making reassembly great again,” in 24th
Annual Network and Distributed System Security Symposium, NDSS 2017, San
Diego, California, USA, February 26 - March 1, 2017. The Internet Society,
2017. [Online]. Available: https://www.ndss-symposium.org/ndss2017/ndss-2017-
programme/ramblr-making-reassembly-great-again/

[50] A. Flores-Montoya and E. Schulte, “Datalog disassembly,” in
29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 1075–1092. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/flores-montoya

[51] Quarkslab. LIEF. [Online]. Available: https://lief.quarkslab.com/
[52] LLVM Foundation. The llvm compiler infrastructure. [Online]. Available:

https://llvm.org/
[53] ——. Clang: a C language family frontend for llvm. [Online]. Available:

https://clang.llvm.org/
[54] ——. Llvm language reference manual. [Online]. Available:

https://llvm.org/docs/LangRef.html
[55] ——. “clang” CFE internals manual. [Online]. Available:

https://clang.llvm.org/docs/InternalsManual.html
[56] National Security Agency. Ghidra software reverse engineering framework. [Online].

Available: https://github.com/NationalSecurityAgency/ghidra
[57] A. Bulazel. (2019) Working with ghidra’s p-code to identify vulnerable function calls.

[Online]. Available: https://www.riverloopsecurity.com/blog/2019/05/pcode/
[58] P. LaFosse and J. Weins, “Modern binary analysis with il’s,” presented at the BlueHat

Seattle, 2019.
[59] R. Rolles. (2018) Hex-rays microcode api vs. obfuscating compiler. [Online]. Available:

https://hex-rays.com/blog/hex-rays-microcode-api-vs-obfuscating-compiler/
[60] V. 35. Binary ninja intermediate language series, part 1: Low level il. [Online].

Available: https://docs.binary.ninja/dev/bnil-llil.html
[61] CMU Cylab. (2015) Carnegie mellon university bi-

nary analysis platform (cmu bap). [Online]. Available:
https://github.com/BinaryAnalysisPlatform/bil/releases/download/v0.1/bil.pdf

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
87

[62] S. Groß, “Fuzzil: Coverage guided fuzzing for javascript engines,” Master’s thesis,
KIT, Karlsruhe, 2018.

[63] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, andG. Vigna, “Sok: (state of) the art of war: Offensive
techniques in binary analysis,” in 2016 IEEESymposium onSecurity and Privacy (SP),
2016, pp. 138–157.

[64] Google Project Zero. (2019) WinAFL. [Online]. Available:
https://github.com/googleprojectzero/winafl

[65] GrammaTech. (2020) GTIRB. [Online]. Available:
https://github.com/GrammaTech/gtirb

[66] C. Cifuentes, “Reverse compilation techniques,” Ph.D. dissertation, QUT, Brisbane,
1994.

[67] I. Guilfanov, “Keynote: The story of IDA Pro,” presented at, CODE BLUE, Tokyo, Dec
2014.

[68] L. H. Newman. (2019) The NSA makes ghidra, a powerful cybersecurity tool, open
source. [Online]. Available: https://www.wired.com/story/nsa-ghidra-open-source-
tool/

[69] Synopsys. Coverity scan static analysis. [Online]. Available:
https://scan.coverity.com/

[70] GrammaTech. Codesonar. [Online]. Available:
https://www.grammatech.com/codesonar-cc

[71] Semmle. CodeQL. [Online]. Available: https://semmle.com/codeql

[72] I. Gotovchits. (2019) [ANN] BAP 2.0 Release. [Online]. Available:
https://discuss.ocaml.org/t/ann-bap-2-0-release/4719

[73] Free Software Foundation, Inc. GDB: The GNU project debugger. [Online]. Available:
https://www.gnu.org/software/gdb/

[74] Microsoft. (2020) Debugging using windbg preview. [Online]. Available:
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-
using-windbg-preview

[75] Mozilla. rr. [Online]. Available: https://rr-project.org/

[76] Intel. (2021) Pin - a dynamic binary instrumentation tool. [Online]. Avail-
able: https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-
binary-instrumentation-tool.html

[77] D. Bruening. DynamoRIO. [Online]. Available: https://dynamorio.org/

[78] Quarkslab. Triton - a DBA framework. [Online]. Available: https://triton.quarkslab.com/

[79] O. A. V. Ravnås. Frida. [Online]. Available: https://frida.re/

[80] T. V. Developers. Valgrind. [Online]. Available: https://valgrind.org/

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
88

[81] V. Sharma, M. W. Whalen, S. McCamant, and W. Visser, “Veritesting challenges in
symbolic execution of java,” SIGSOFT Softw. Eng. Notes, vol. 42, no. 4, p. 1–5, Jan.
2018. [Online]. Available: https://doi.org/10.1145/3149485.3149491

[82] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey of
symbolic execution techniques,” ACM Comput. Surv., vol. 51, no. 3, May 2018.
[Online]. Available: https://doi.org/10.1145/3182657

[83] CEA IT Security. (2017) Playing with dynamic symbolic execution. [Online]. Available:
https://miasm.re/blog/2017/10/05/playing_with_dynamic_symbolic_execution.html

[84] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM : A practical concolic execution
engine tailored for hybrid fuzzing,” in 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, Aug. 2018, pp. 745–761. [Online].
Available: https://www.usenix.org/conference/usenixsecurity18/presentation/yun

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36030 Date Cleared: Mar 28, 2022.
89

