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GeoLib, a C++ Library for Phased Array Radar Coordinate Systems 

INTRODUCTION 
The Flexible Distributed Array Radar (FlexDAR) is a testbed to demonstrate every-element digital-

beamforming (EEDBF) to support distributed radar operations.  Two radar nodes for this testbed have 

been developed.  Each node is a complete single-face phased array radar composed of a FlexDAR Front-

End (FFE) EEDBF array subsystem developed by Raytheon, and a FlexDAR Back-End (FBE) processing 

subsystem developed by NRL. 

GeoLib is one of several portable libraries developed as part of the FBE software development effort.  

Figure 1 illustrates the dependency relationships of this library to some of the other FBE software 

components.  GeoLib was designed to be independent of the other components in the FlexDAR software 

stack, thus easily separable for use in other software projects.  It has no external requirements other 

than a C++11 compiler and standard library [1].  The GeoLib library is designed to be built using the 

CMake [2] build system (version 3.12 or later). 

Figure 1 – Dependency relationship of various FlexDAR software modules. 

GeoLib is a simple but powerful C++ library for working with geographic and phased array antenna 

geometries. It includes a Unit-Independent Types subsystem and a Coordinate Types subsystem.  This 

report documents the capabilities of these two subsystems.

______________
Manuscript approved May 31, 2022.
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UNIT-INDEPENDENT TYPES SUBSYSTEM 
A common programming mistake is to incorrectly assume the particular units of a variable or other 

value.  For example, a variable may contain an angle in degrees, but a programmer may assume its value 

is in radians.  Such mistakes are often difficult to locate and can even cause disastrous results. [3]  

One approach to preventing these mistakes is to employ strict naming conventions.  For example, the 

FlexDAR coding standard [4] states 

If a variable represents time, weight, or some other unit, include the unit in the name 

so developers can more easily spot problems. 

Such a naming convention is used in all message definitions within the FlexDAR system.  However, the 

FBE software internally uses GeoLib’s Unit-Independent Types subsystem. 

The Unit-Independent Types subsystem provides a set of classes that represent different physical 

quantities, such as distance, time or angle.  Each class is a simple wrapper around a single member of 

type double which represents a quantity in some native units.  Access to the internal value is through 

unit-specific initializer and accessor methods. 

Using the Unit-Independent Types Subsystem 
To use the Unit-Independent Types subsystem, include its header file as shown in Listing 1.  All symbols 

provided by the GeoLib library will be in the geo namespace. 

 
 #include "GeoLib/UnitIndependentTypes.h" 

 
Listing 1 – Including the Unit-Independent Types subsystem header file. 

Initializing Unit-Independent Variables 
Each class provides a set of static methods for initializing unit-independent variables from values 

expressed in a variety of supported units.  These methods will convert the supplied values into the 

type’s native units for internal storage.  For example, the native unit for the geo::Distance class is 

meters, so all values are converted to meters for storage as seen in Listing 2. 

  
 auto d1 = geo::Distance::m( 0.25 );   // Internally, d1 = 0.25 
 auto d2 = geo::Distance::nmi( 100 );  // Internally, d2 = 185,200 
 auto d3 = geo::Distance::km( 1.852 ); // Internally, d3 = 1,852 

 
Listing 2 – Example initialization of unit-independent variables.  Conversion to internal native units is automatic. 

Accessing the Values of Unit-Independent Variables 
For each static initializer method, there is a corresponding accessor method with the same name.  These 

accessor methods will convert the internal value from the class’s native units into the desired units for 

use in computations or for output as shown in Listing 3. 
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 // Print values from previous example in various units 
 
 std::cout << d1.ft() << " ft";   // Prints "0.82021 ft" 
 std::cout << d2.m() << " m";     // Prints "185200 m" 
 std::cout << d3.nmi() << " nmi"; // Prints "1 nmi" 

 
Listing 3 – Examples of accessing unit-independent variables in various units.  Conversion to the desired units is automatic. 

Supported Unit-Independent Types and Units 
Table 1 is a list of the current unit-independent types, their supported units, and their corresponding 

initializer and accessor methods. 

Table 1 – Unit-independent types supported by GeoLib 

 
 
 
Type/class 

 
 
 
Units Supported 

C++ 
Initializer & 
Accessor 
Methods 

Distance meters 
feet 
kilometers 
nautical miles 
radar data miles 

m 
ft 
km 
nmi 
dm 

Area square meters 
square feet 

m2 
ft2 

Volume cubic meters 
cubic feet 

m3 
ft3 

Frequency hertz 
Kilohertz 
Megahertz 
Gigahertz 

hz 
khz 
mhz 
ghz 

Time seconds 
milliseconds 
microseconds 
nanoseconds 

sec 
mSec 
uSec 
nSec 

Angle radians 
degrees 

rad 
deg 

Velocity meters per second 
kilometers per hour 
knots 
feet per minute 

mps 
kph 
kn 
fpm 

Acceleration 
 

meters per second2 

feet per second2 
standard gravity units 

mps2 
fps2 
g 

AngularVelocity radians per second 
degrees per second 

rps 
dps 

 

Choosing Units at Runtime 
Each class also provides an enumeration of available units, so that units can be selected at runtime.  This 

is done using the special units() initializer and accessor methods, as illustrated in Listing 4. 
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       auto myUnits = geo::Distance::Units::NMI;  // One of M, FT, KM, NMI, or DM 
                                                  // Note: unit enumerators are all caps, 
                                                  // while unit initializers and accessors 
                                                  // are all lower case.  
 
       auto d1 = geo::Distance::units( 5.0, myUnits ); 
       std::cout << d1.units( myUnits ) << " " << geo::Distance::unitsToString( myUnits ); 
 

Listing 4 – Example initialization and access of unit-independent variables in units selected at run-time. 

This can be useful in a GUI application where input/output units are user-selectable. 

Operators and Dimensional Analysis Semantics 
Given just these methods, we can easily avoid using the wrong units simply by being explicit about 

which units we want to use at each step of our calculations.  The methods will perform any unit 

conversions needed as shown in the example in Listing 5. 

 
 auto t1 = geo::Time::uSec(1000); 
 auto t2 = geo::Time::mSec(1.02); 
 auto deltaT = geo::Time::sec( t2.sec() - t1.sec() ); 
 auto v = geo::Velocity::mps( geo::Distance::m(0.023) / deltaT.sec() );           

 
Listing 5 – Explicitly selecting units during calculations. 

However, this can be very verbose and cumbersome.  It would be much more desirable to not even 

worry about units except when initializing variables or outputting results.  To accomplish this goal, 

GeoLib uses C++ overloaded operators to implement the semantics of dimensional analysis. 

Each type provides a basic set of operators between like values and scalar values.  For example, Figure 2 

shows the operators available for the Distance unit-independent type. 

  
        Distance = Distance + Distance 
        Distance = Distance - Distance 
        Distance = -Distance 
        Distance = scalar * Distance 
        Distance = Distance * scalar 
        Distance = Distance / scalar 
        scalar = Distance / Distance 
  
        Distance += Distance 
        Distance -= Distance 
        Distance *= scalar 
        Distance /= scalar      
 

Figure 2 – Supported operators between Distance values and between Distance and scalar values. 

GeoLib also provides many operators between different unit-independent types to provide dimensional 

analysis semantics.  For example, Figure 3 shows additional operators involving the Distance type and 

other unit-independent types. 
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        Area = Distance * Distance 
        Volume = Distance * Area 
        Volume = Area * Distance 
        Velocity = Frequency * Distance 
        Velocity = Distance * Frequency 
        Distance = Velocity * Time 
        Distance = Time * Velocity 
        Distance = Area / Distance 
        Velocity = Distance / Time 
        Time = Distance / Velocity 
        Distance = Velocity / Frequency 
        Distance = Volume / Area 
        Area = Volume / Distance 
 

Figure 3 – Operators involving Distance values and other unit-independent types. 

For example, if you divide a Distance by a Time you will get a Velocity as in Listing 6. 

 
 auto t1 = geo::Time::uSec(1000); 
 auto t2 = geo::Time::sec(1.02); 
  
 auto d1 = geo::Distance::m(123.45); 
 auto d2 = geo::Distance::km(10); 
 
 auto v = ( d2 - d1 ) / ( t2 - t1 );  // Perform calculation w/o concern for units 
 
 std::cout << "Velocity = " << v.kn() << " kn"; 
 

Listing 6 – Example of dimensional analysis semantics.  In this example, we divide the difference of two distances by the 
difference of two times to get a velocity.  This calculation is independent of the units with which we loaded our variables or the 

units that we ultimately output. 

GeoLib also provides several composite unit-independent types as listed inTable 2.  The purpose of 

these composite types is to support intermediate results in complex expressions without needing to 

drop out of unit-independent types.  Since the primary use case for these composite types is to support 

intermediate results, they do not provide unit accessors or initializers. 

Table 2 – Currently supported GeoLib composite unit-independent types for intermediate results. 

Type/class Description Internal Units 

Acceleration2 Acceleration * Acceleration (m/s2)2 

Angle2 Angle * Angle radians2 

Distance4 Area * Area m4 
Time2 Time * Time seconds2 

Velocity2 Velocity * Velocity (m/s)2 

 

Table 3 and   
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Table 4 show which multiplication and division operators are currently implemented.  These tables are 

currently very sparse.  So far, the missing operators have not been needed in FlexDAR.  In order to fill in 

the missing operators, additional composite types would need to be created for the intermediate 

results.  These additional types would then expand the table, revealing even more missing operators.  

Thus, these tables would grow without bounds.  Even if we automatically generated code for the new 

operators and composite types, we would need to choose some point to terminate the recursion.  The 

current plan is to add operators and intermediate types as we encounter them in the “real world.” 

Table 3—Supported unit-independent product operators. Product = Multiplicand × Multiplier.  To keep the table compact, the 
numbers in table cells indicate the Product’s type.  (E.g. “11. Time” × “2. Acceleration” = “13. Velocity”).  An empty cell indicates 

that the corresponding Product is not currently implemented. 
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1. Scalar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2. Acceleration 2 3         13     

3. Acceleration2 3               

4. Angle 4   5      6      

5. Angle2 5               

6. AngularVelocity 6          4     

7. Area 7      9 15        

8. Distance 8      15 7  13     9 

9. Distance4 9               

10. Frequency 10   6    13   1     

11. Time 11 13    4    1   8   

12. Time2 12               

13. Velocity 13          8  14   

14. Velocity2 14               

15. Volume 15       9        
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Table 4—Supported unit-independent quotient operators. Quotient = Dividend / Divisor. To keep the table compact, the 
numbers in table cells indicate the Quotient’s type.  (E.g. “8. Distance” / “11. Time” = “13. Velocity”).  An empty cell indicates 

that the corresponding Quotient is not currently implemented. 
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1. Scalar 1         11 10     

2. Acceleration 2 1              

3. Acceleration2 3 2 1             

4. Angle 4   1       6     

5. Angle2 5    1           

6. AngularVelocity 6     1          

7. Area 7      1 8        

8. Distance 8       1   13 2 11   

9. Distance4 9      7 15 1       

10. Frequency 10         1      

11. Time 11          1     

12. Time2 12           1    

13. Velocity 13       11  8 2  1   

14. Velocity2 14       2     13 1  

15. Volume 15      8 7       1 

 

GeoLib also overloads various math functions as seen Figure 4 so that values do not need to be 

extracted in specific units to perform these functions.  These include trigonometric functions for Angle 

types and square root for various types such as Area and intermediate and composite types. 

D
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        scalar = sin( Angle ) 
        scalar = cos( Angle ) 
        scalar = tan( Angle ) 
        Angle = asin( scalar ) 
        Angle = acos( scalar ) 
        Angle = atan( scalar ) 
        Angle = atan2( scalar, scalar ) 
        Angle = atan2( Distance, Distance ) 
        Angle = atan2( Velocity, Velocity ) 
        Angle = atan2( Velocity2, Velocity2 ) 
        Angle = atan2( Acceleration, Acceleration ) 
        Angle = atan2( Acceleration2, Acceleration2 ) 
 
        Distance = sqrt( Area ) 
        Velocity = sqrt( Velocity2 ) 
        Acceleration = sqrt( Acceleration2 ) 
        Angle = sqrt( Angle2 ) 
        Area = sqrt( Distance4 ) 
 

Figure 4 – Overloaded math functions involving unit-independent types. 

Utility Methods 
Each unit-independent type also includes various utility methods.  For example, Listing 7 illustrates 

various methods to format unit-independent values as strings. 

 
 auto d = geo::Distance::nmi(1); 
 
 std::cout << d.stringNmi() << std::endl;  // Prints "1 nmi" 
 std::cout << d.stringM() << std::endl;    // Prints "1852 m" 
 std::cout << d.stringFt() << std::endl;   // Prints "6076 ft" 
 
 // Define units at runtime 
 auto myUnits = geo::Distance::Units::FT; 
 std::cout << d.string( myUnits ) << std::endl; // Also prints "6076 ft" 
 
 // These methods also take an optional width and precision argument 
 std::cout << d.stringFt( 9, 3 ) << std::endl;  // Prints " 6076.115 ft" 

 
Listing 7 – Examples of utility methods to convert unit-independent types into std::string. 

Constants 
GeoLib also provides several unit-independent constants that can be used in place of unit-independent 

variables as shown in Listing 8. 

 
 x = geo::Angle::Pi;    // Pi radians or 180 degrees 
 x = geo::Angle::TwoPi; // 2Pi radians or 360 degrees 
 x = geo::Velocity::C;  // The speed of light in a vacuum 
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Listing 8 – Examples of unit-independent constants provided by GeoLib. 

Implementation of Unit-Independent Types and Overhead 
These unit-independent types have been implemented as simple classes, each wrapping a single 

double value.  The core capabilities of these classes are provided by a common template base class. 

These classes are simple thin wrappers around the C++ double type. Operators and unit-specific 

initializers and accessors are all implemented as "inlines" so there should be little to no overhead to 

their use.  Being inlined should also provide the compiler opportunities to remove unnecessary function 

calls, optimize redundant unit conversions and combine unit conversion factors when possible.  Inlining 

is not guaranteed, because the compiler will use its own heuristics to evaluate exactly what 

optimizations are the most beneficial. 

The ultimate goal is to achieve a “zero-cost abstraction.”  That is where there is no performance cost to 

using unit-independent types instead of manually keeping track of physical units.  Figure 5 and Figure 6 

use Compiler Explorer [5] to demonstrate two cases when there is no performance cost to using unit-

independent types versus the manual approach. 

 

Figure 5—Simple Compiler Explorer demonstration of "zero cost abstraction” using unit-independent types.  In this simple case, 
the resulting assembly language for the two approaches is identical. 

 



10  J. B. Evins 

 

 

Figure 6 – A second demonstration of “zero cost abstraction.”  In this more complex case, the resulting assembly language for 
the two approaches is nearly identical (there is a slight reordering of instructions). 
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COORDINATE TYPES SUBSYSTEM 
GeoLib provides multiple two- and three-dimensional coordinate systems, which are built from multiple 

unit-independent types. 

  
 #include "GeoLib/CoordinateTypes.h" 

 
Listing 9 – Including Coordinate Types subsystem header file. 

Primary Geographic and Antenna Coordinate Systems 
 

 

Figure 7 – Venn diagram classifying coordinate systems provided by GeoLib.  Coordinate systems can be classified as Earth 
Centered, Local Tangent Plane, and Boresight Relative.  They can also be classified as either 2-dimensional or 3-dimensional.  

Furthermore they can be classified as Bistatic or not. 

 

Primary Coordinate System Classes 

MapProjection 

In GeoLib, Map-projection coordinates are another simple two-dimensional coordinate system.  It 

simply represents an X distance (Easting) and a Y distance (Northing) on the plane of a map.  The 

distances will have a non-linear relationship to actual geographic distances, depending on the projection 

type used.  GeoLib currently only supports Gnomonic [6] projections. 

Ecef 

The Earth-Centered, Earth-Fixed (ECEF)  [7] coordinate system is a Cartesian coordinate system centered 

at the earth’s center of mass.  Its x-axis extends through the prime meridian at the equator and its z-axis 

extends through the geographic North Pole. 
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LatLonAlt 

This class is a WGS 84 [7] geodetic coordinate system represented as Latitude, Longitude, and Altitude 

above or below the WGS 84 reference ellipsoid.  This coordinate system is used to represent locations 

above or below the earth’s surface. When constructing a LatLonAlt object from ECEF coordinates, 

GeoLib uses the algorithm described by D. K. Olson [8] to calculate the geodetic latitude.  

LatLon 

This class is a WGS 84 geodetic coordinate system represented as Latitude and Longitude.  This 

coordinate system is used to represent locations on the earth’s surface.  It is similar to LatLonAlt, except 

it does not include an altitude component. 

Enu 

This class is a Cartesian coordinate system which is relative to a position on or near the earth’s surface.  

It is represented by three axes: east, north and up.  The east-north plane is parallel to a plane which is 

tangential to the earth’s surface.  The up axis is normal to WGS 84 reference ellipsoid. 

Ned 

This class is similar to the Enu class, except it is represented by north, east and down components. 

AzElR 

This class is a relative coordinate system represented as azimuth, elevation and range.  Azimuth is a 

clockwise angle between the point of interest and true north on a horizontal plane.  Elevation is the 

angle of the point of interest above the horizontal plane.  Range is the distance to the point of interest. 

RAz 

This class is a 2-dimensional relative coordinate system represented as range and azimuth.  The 

component are defined exactly as in the AzElR class. 

AzEl 

This class is a 2-dimensional relative coordinate system represented by an azimuth and elevation angle.  

The components are defined exactly as in the AzElR class. 

Uv 

UV coordinates are the projection of a unit vector onto the plane of an antenna.  U is along the 

horizontal axis and V is along the vertical axis.  A third component, W, along the antenna normal, 

completes the unit vector.  W is often ignored, but is sometimes used to determine if a vector points 

forwards or backwards.  UV coordinates are used to represent the direction to a point of interest 

relative to the plane of an antenna. 

In GeoLib, UVW is a left-handed coordinate system, where U, V, and W point right, up, and forward, 

respectively.  Care must be taken if GeoLib is used in a situation where the convention is for UVW to be 

right-handed, which is quite common.  Theta-Phi is also based on the same left-handed coordinate 

system. 

ThetaPhi 

Like Uv, this class also represents the direction to a point of interest from the plane of an antenna.  

Theta is the angle between the antenna normal and the point of interest.  Phi is the angle between the 
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antenna’s vertical axis (V) and the plane defined by the antenna normal and the direction to the point of 

interest. 

Ruv 

Ruv is a subclass of the Uv class.  It adds a range component to fully describe the relative position of a 

point of interest. 

Buv 

Buv is similar to the Ruv class, except it adds a bistatic-range (B) component.  The bistatic range is 

equivalent to the monostatic range plus the distance to some other point in space (usually a radar 

transmitter).  In the monostatic case, the bistatic range is twice the monostatic range. 

Interchangeability of Coordinate System Types 
Using C++’s implicit type conversion feature, many of these coordinate system types can be used 

interchangeably.  This is accomplished either through conversion constructors or through direct 

inheritance when one type is a subclass of another.  The following diagram illustrates which coordinate 

system types can be used interchangeably. 

 

Figure 8 – Interchangeability of different coordinate systems.  The arrows indicate the direction of interchangeability.  Generally 
3D coordinate systems can be collapsed into one or more 2D coordinate systems, but not the other way around.   

 

A double-ended arrow indicates that the relationship is bidirectional.  A single-ended arrow indicates a 

one-directional relationship.  For example, you can use a LatLonAlt object for a LatLon object, but not 

the other way around, because there would be missing information.  These relationships are also 

transitive.  For example, you can use a Ned object for an AzElR object, because you can use a Ned object 

for an Enu object, which can be used for an AzElR object. 
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Coordinate System Projectors 
GeoLib provides a set of “Projector” classes.  These are used to project coordinates from one coordinate 

system to another.  These projectors, along with the property of interchangeable coordinate systems 

allows coordinates to be translated between many of the supported coordinate systems. 

In the following diagram, “Projectors” have been added to the previous diagram as large double-ended 

arrows. 

  

 

Figure 9 – Coordinate system projectors.  Given an appropriate set of anchors (origins and/or orientations), a projector can 
“project” from one coordinate system into another.   

 

A projector must be initialized with origin information so that it knows how one coordinate system is 

tied to the other. 

 
 using namespace geo; 
 
 // Initialize an EcefEnuProjector for my current location 
 LatLonAlt myLocation( Angle::degs(39.4523), Angle::degs(-77.5634), Distance::m(30) ); 
 EcefEnuProjector myProj( myLocation ); 
 
 // Location of target in LatLonAlt, which can be used in place of Ecef 
 LatLonAlt t( Angle::degs(39.5628), Angle::degs(-77.5467), Distance::m(9997) ); 
  
 // Use projector to "project" target into my ENU coordinate system 
 auto tEnu = myProj.toEnu( t ); 
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Listing 10 – Example of using an EcefEnuProjector to “project” a LatLonAlt point (t) into an Enu coordinate system defined by my 
current location.  Although the toEnu() method expects Ecef coordinate, we can see in Figure 8 we can see that LatLonAlt is 

interchangeable with Ecef. 

The implementation of the EcefEnuProjector is described in described in Appendix A – EcefEnuProjector 

Math.  The EnuRuvProjector is described in Appendix B – EnuRuvProjector Math and the 

RuvBuvProjector is described in Appendix C – RuvBuvProjector Math. 

Additional Capabilities 

Auxiliary Coordinate System Classes 

Xy 

XY is a simple two dimensional Cartesian coordinate system.  In FlexDAR, this coordinate system is used 

primarily to locate elements of the phased-array antenna as if looking through the array from its rear. 

EcefVelocity, EcefAcceleration, EnuVelocity and EnuAcceleration 

In addition to the positional coordinate systems, GeoLib also provides velocity and acceleration classes 

for both ECEF and ENU coordinate systems.  While these coordinate systems represent position-free 

vectors, they use the same basis vectors as their corresponding positional coordinate system (ECEF or 

ENU). The EcefEnuProjector class provides methods to convert between velocities and accelerations in 

these coordinate systems as in the following example: 

 
 using namespace geo; 
 
 // Ecef state vector 
 class EcefState 
 { 
  Ecef             p; 
  EcefVelocity     v; 
  EcefAcceleration a; 
 }; 
  
 // Enu state vector 
 class EnuState 
 { 
  Enu             p; 
  EnuVelocity     v; 
  EnuAcceleration a; 
 }; 
 
 EcefState sEcef = { Ecef( x, y, z ), 
                     EcefVelocity( xDot, yDot, zDot ), 
                     EcefAcceleration( xDotDot, yDotDot, zDotDot ) }; 
 EnuState sEnu; 
 
 sEnu.p = myProj.toEnu( sEcef.p ); 
 sEnu.v = myProj.toEnu( sEcef.v ); 
 sEnu.a = myProj.toEnu( sEcef.a ); 

 
Listing 11 – Examples of “projecting” a position, velocity and acceleration from ECEF coordinates into ENU coordinates. 
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Operators on Coordinate System Classes 
GeoLib also provides several operators on its Cartesian (ECEF and ENU) coordinate system types to 

provide dimensional analysis semantics while doing simple vector arithmetic.  For example, Figure 10 

lists the operators involving the ECEF coordinate system types. 

 
        Ecef = Scalar * Ecef 
        Ecef = Ecef * Scalar 
        Ecef = Ecef / Scalar 
        Ecef = Ecef + Ecef 
        Ecef = Ecef – Ecef 
 
        EcefVelocity = Scalar * EcefVelocity 
        EcefVelocity = EcefVelocity * Scalar 
        EcefVelocity = EcefVelocity / Scalar 
        EcefVelocity = EcefVelocity + EcefVelocity 
        EcefVelocity = EcefVelocity – EcefVelocity 
 
        EcefAcceleration = Scalar * EcefAcceleration 
        EcefAcceleration = EcefAcceleration * Scalar 
        EcefAcceleration = EcefAcceleration / Scalar 
        EcefAcceleration = EcefAcceleration + EcefAcceleration 
        EcefAcceleration = EcefAcceleration - EcefAcceleration 
 
        EcefVelocity = Ecef / Time 
        Ecef = EcefVelocity * Time 
        Ecef = Time * EcefVelocity 
 
        EcefAcceleration = EcefVelocity / Time 
        EcefVelocity = EcefAcceleration * Time 
        EcefVelocity = Time * EcefAcceleration 
 

Figure 10 – Operators on ECEF coordinate system types. 

FUTURE WORK 
The current Unit-Independent Types subsystem meets the current FlexDAR needs.  However, it can 

easily be extended if needed: 

 Add additional units support to existing classes. E.g. we currently don’t support statute miles; 

 Add additional unit-independent types.  E.g. Temperature, Mass, etc.; 

 Add missing operators and intermediate types to extend dimensional analysis semantics to 

support more complex formulas.  Ideally, one could perform something as complex as the radar 

range equation using entirely unit-independent types; 

 Add additional coordinate systems, such as earth-centered-inertial (ECI) [9] to aid in tracking 

satellites. 

In FlexDAR, we are currently only considering land-based fixed sites.  To support moving sea-based 

platforms, an additional set of coordinate systems would be needed.  These coordinate systems would 
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locate and orient one or more antennas relative to the platform.  There would need to be an 

intermediate projection step between Enu and Ruv coordinate systems. 

The UV coordinate system in GeoLib is left-handed (the positive direction of U is to the right) when 

treated as UVW, which is a local preference.  This convention is far from universal, and may actually be 

the minority convention.  A possible enhancement would be to support both left-handed and right-

handed conventions.  Potentially multiple conventions in various parts of the library could also be 

supported, such as the roll-pitch-yaw order of rotation in the EnuRuvProjector class. 

The FlexDAR backend software is currently standardized on the ISO C++11 standard.  If in the future, we 

updated our toolchain we could choose to update this requirement to C++14, C++17, or even the 

forthcoming C++20 standard.  The C++ standard has been undergoing a major transformation over the 

past decade.  One capability that these newer standards would enable is fewer restrictions on the 

constexpr attribute.  Use of this attribute in our constructors, methods and operators could allow for 

additional optimization of code by allowing the compiler to pre-evaluate any code that depends solely 

on constants at build time, thus coming closer to a “zero-cost abstraction.” 

The author has recently become aware of a proposal to add Physical Units support to the C++ Standard 

Library [10].  If this capability becomes part of the C++ standard, the Unit-Independent Types subsystem 

could become obsolete and potentially be replaced by the standard implementation. 

CONCLUSION 
NRL developed the GeoLib library as part of the NRL FlexDAR back-end software.  It is a simple but 

powerful C++ library for working with geographic and phased array antenna geometries.  This library 

includes a Unit-Independent Types subsystem to simplify the task of working with various physical units.  

It also includes a Coordinate Types subsystem which provides various coordinate system types in 

support of all aspects of radar processing and projector classes for converting between them. 

GeoLib was designed to be independent of the other components in the FlexDAR software stack, thus it 

is easily separable for use in other software projects.  It has no external requirements other than a 

C++11 compiler and standard library. 
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APPENDIX A – EcefEnuProjector Math 
 

 

Figure 11 – Relationship between Earth-Centered Earth-Fixed (ECEF) coordinate system and a local tangential plane, East North 
Up (ENU) coordinate system. 

Prior to conversion, we must know both the ECEF coordinates and the latitude (𝐿𝑎𝑡0) and longitude 

(𝐿𝑜𝑛0) of the reference point (𝑃0).  In order for the Up vector to be normal to WGS84 ellipsoid, latitude 

must be geodetic rather than geocentric.  To obtain the geodetic latitude, GeoLib currently uses the 

algorithm described by D. K. Olson [8].  This calculation is done in the LatLonAlt( const Ecef& ) 

constructor which is not described here. 

ECEF to ENU Coordinates 

 

[
𝐸
𝑁
𝑈
]  =  [

− sin(𝐿𝑜𝑛 0) cos(𝐿𝑜𝑛0) 0

− sin(𝐿𝑎𝑡0) cos(𝐿𝑜𝑛0) − sin(𝐿𝑎𝑡0) sin(𝐿𝑜𝑛0) cos(𝐿𝑎𝑡0)
cos(𝐿𝑎𝑡

0
) cos(𝐿𝑜𝑛0) cos(𝐿𝑎𝑡0) sin(𝐿𝑜𝑛0) sin(𝐿𝑎𝑡0)

] [

𝑋 − 𝑋0

𝑌 − 𝑌0

𝑍 − 𝑍0

] 

ENU to ECEF Coordinates 

 

[
𝑋
𝑌
𝑍
]  =  [

− sin(𝐿𝑜𝑛 0) − sin(𝐿𝑎𝑡0) cos(𝐿𝑜𝑛0) cos(𝐿𝑎𝑡0) cos(𝐿𝑜𝑛0)
cos(𝐿𝑜𝑛0) − sin(𝐿𝑎𝑡0) sin(𝐿𝑜𝑛0) cos(𝐿𝑎𝑡0) sin(𝐿𝑜𝑛0)

0 cos(𝐿𝑎𝑡0) sin(𝐿𝑎𝑡0)
] [

𝐸
𝑁
𝑈

] + [
𝑋0

𝑌0

𝑍0

] 
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APPENDIX B – EnuRuvProjector Math 
 

 

Figure 12 – Relationship between local East North Up (ENU) and sine space (UV) coordinate systems. 

To simplify the conversion between RUV and ENU, the RUV coordinates are expressed as a set of right-

handed Cartesian coordinates: 

[
𝑟𝑈
𝑟𝑊
𝑟𝑉

] 

 
These coordinates would coincide with ENU coordinates if the arrays boresight were pointing true north 

with no other rotations.  These coordinates can then be rotated according to the array’s actual boresight 

orientation. 

ENU to RUV Coordinates 

[
𝑟𝑈
𝑟𝑊
𝑟𝑉

]  =  [

1 0 0
0 cos(𝑃 + 𝑇) sin(𝑃 + 𝑇)
0 − sin(𝑃 + 𝑇) cos(𝑃 + 𝑇)

] [
cos(𝑅) 0 − sin(𝑅)

0 1 0
sin(𝑅) 0 cos(𝑅)

] [
cos(𝑁𝑡) − sin(𝑁𝑡) 0
sin(𝑁𝑡) cos(𝑁𝑡) 0

0 0 1

] [
𝐸
𝑁
𝑈
] 

 

RUV to ENU Coordinates 

[
𝐸
𝑁
𝑈

]  = [
cos(𝑁𝑡) sin(𝑁𝑡) 0
−sin(𝑁𝑡) cos(𝑁𝑡) 0

0 0 1

] [
cos(𝑅) 0 sin(𝑅)

0 1 0
−sin(𝑅) 0 cos(𝑅)

] [

1 0 0
0 cos(𝑃 + 𝑇) − sin(𝑃 + 𝑇)
0 sin(𝑃 + 𝑇) cos(𝑃 + 𝑇)

] [
𝑟𝑈
𝑟𝑊
𝑟𝑉

] 
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APPENDIX C – RuvBuvProjector Math 

 

Figure 13 – Bistatic measurements. 

Prior to conversion, the location of the Transmit and Receive locations must be known.  The baseline 

vector (�⃗� ) is simply the location of the transmit site in the receive site’s ENU reference frame.  This is 

obtained using the EcefEnuProjector as described in Appendix A – EcefEnuProjector Math.  The unit 

vector (�⃗� ) is obtained by rotating the original UV vector using the rotations described in Appendix B – 

EnuRuvProjector Math.  The actual conversion between bistatic range (‖𝑅𝐵
⃗⃗⃗⃗  ⃗‖) and monostatic range 

(‖𝑅𝑅𝑥
⃗⃗ ⃗⃗ ⃗⃗  ⃗‖) is through the application of the law of cosines.  The original UV vector carries through 

unchanged in either conversion. 

BUV to RUV Coordinates 
From the law of cosines: 

(‖𝑅𝐵
⃗⃗⃗⃗  ⃗‖ − ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗  ⃗‖)
2
 =   ‖�⃗� ‖

2
+ ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
2
− 2 ‖�⃗� ‖ ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ cos𝜃 

or 

‖𝑅𝑅𝑥
⃗⃗ ⃗⃗ ⃗⃗  ⃗‖  =   

‖𝑅𝐵
⃗⃗⃗⃗  ⃗‖

2
− ‖�⃗� ‖

2

2(‖𝑅𝐵
⃗⃗⃗⃗  ⃗‖ − ‖�⃗� ‖ cos 𝜃)
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cos 𝜃  =  
�⃗� ∙ �⃗� 

‖𝑢‖ ‖𝐿‖
 

 

‖𝑅𝑅𝑥
⃗⃗ ⃗⃗ ⃗⃗  ⃗‖  =  

‖𝑅𝐵
⃗⃗⃗⃗  ⃗‖

2
− ‖�⃗� ‖

2

2(‖𝑅𝐵
⃗⃗⃗⃗  ⃗‖  −  (�⃗� ∙ �⃗� ))

 

RUV to BUV Coordinates 
 

‖𝑅𝑇𝑥
⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

2
 =   ‖�⃗� ‖

2
+ ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
2
− 2 ‖�⃗� ‖ ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ cos𝜃 

 

cos 𝜃  =  
�⃗� ∙ �⃗� 

‖𝑢‖ ‖𝐿‖
 

 

‖𝑅𝐵
⃗⃗⃗⃗  ⃗‖  =  ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗  ⃗‖  +   √‖�⃗� ‖
2
+ ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
2
− 2 ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ (�⃗� ∙ �⃗� )  

 

 

 




