

NRL/5320/MR—2022/2

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

GeoLib, a C++ Library for Phased Array Radar
Coordinate Systems

J. B. EVINS

Advanced Radar Systems Branch
Radar Division

June 1, 2022

i

 REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

GeoLib, a C++ Library for Phased Array Radar Coordinate Systems

J. B. Evins

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5320

NRL/5320/MR--2022/2

ONR

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

U U U
25

James B. Evins

(202) 404-1942

 GeoLib is a simple but powerful C++ library for working with geographic and phased array antenna geometries. It includes a Unit-Independent
Types subsystem and a Coordinate Types subsystem. This report documents the capabilities of these two subsystems.

01-06-2022 NRL Memorandum Report

Geodetic coordinates Phased array antenna coordinates
C++ utilities

1E88

Office of Naval Research, Code 312
875 N. Randolph Street
Arlington, VA 22217-1995

10-01-2015 – 09-30-2021

U

This page intentionally left blank.

ii

iii

CONTENTS
Introduction .. 1

Unit-Independent Types Subsystem ... 2

Using the Unit-Independent Types Subsystem ... 2

Initializing Unit-Independent Variables .. 2

Accessing the Values of Unit-Independent Variables ... 2

Supported Unit-Independent Types and Units ... 3

Choosing Units at Runtime ... 3

Operators and Dimensional Analysis Semantics ... 4

Utility Methods ... 8

Constants .. 8

Implementation of Unit-Independent Types and Overhead .. 9

Coordinate Types Subsystem .. 11

Primary Geographic and Antenna Coordinate Systems ... 11

Primary Coordinate System Classes .. 11

Interchangeability of Coordinate System Types ... 13

Coordinate System Projectors .. 14

Additional Capabilities .. 15

Auxiliary Coordinate System Classes .. 15

Operators on Coordinate System Classes ... 16

Future Work .. 16

Conclusion ... 17

References .. 18

Appendix A – EcefEnuProjector Math... 19

ECEF to ENU Coordinates .. 19

ENU to ECEF Coordinates .. 19

Appendix B – EnuRuvProjector Math ... 20

ENU to RUV Coordinates ... 20

RUV to ENU Coordinates ... 20

Appendix C – RuvBuvProjector Math.. 21

BUV to RUV Coordinates ... 21

RUV to BUV Coordinates ... 22

This page intentionally left blank.

iv

1

GeoLib, a C++ Library for Phased Array Radar Coordinate Systems

INTRODUCTION
The Flexible Distributed Array Radar (FlexDAR) is a testbed to demonstrate every-element digital-

beamforming (EEDBF) to support distributed radar operations. Two radar nodes for this testbed have

been developed. Each node is a complete single-face phased array radar composed of a FlexDAR Front-

End (FFE) EEDBF array subsystem developed by Raytheon, and a FlexDAR Back-End (FBE) processing

subsystem developed by NRL.

GeoLib is one of several portable libraries developed as part of the FBE software development effort.

Figure 1 illustrates the dependency relationships of this library to some of the other FBE software

components. GeoLib was designed to be independent of the other components in the FlexDAR software

stack, thus easily separable for use in other software projects. It has no external requirements other

than a C++11 compiler and standard library [1]. The GeoLib library is designed to be built using the

CMake [2] build system (version 3.12 or later).

Figure 1 – Dependency relationship of various FlexDAR software modules.

GeoLib is a simple but powerful C++ library for working with geographic and phased array antenna

geometries. It includes a Unit-Independent Types subsystem and a Coordinate Types subsystem. This

report documents the capabilities of these two subsystems.

Manuscript approved May 31, 2022.

2 J. B. Evins

UNIT-INDEPENDENT TYPES SUBSYSTEM
A common programming mistake is to incorrectly assume the particular units of a variable or other

value. For example, a variable may contain an angle in degrees, but a programmer may assume its value

is in radians. Such mistakes are often difficult to locate and can even cause disastrous results. [3]

One approach to preventing these mistakes is to employ strict naming conventions. For example, the

FlexDAR coding standard [4] states

If a variable represents time, weight, or some other unit, include the unit in the name

so developers can more easily spot problems.

Such a naming convention is used in all message definitions within the FlexDAR system. However, the

FBE software internally uses GeoLib’s Unit-Independent Types subsystem.

The Unit-Independent Types subsystem provides a set of classes that represent different physical

quantities, such as distance, time or angle. Each class is a simple wrapper around a single member of

type double which represents a quantity in some native units. Access to the internal value is through

unit-specific initializer and accessor methods.

Using the Unit-Independent Types Subsystem
To use the Unit-Independent Types subsystem, include its header file as shown in Listing 1. All symbols

provided by the GeoLib library will be in the geo namespace.

 #include "GeoLib/UnitIndependentTypes.h"

Listing 1 – Including the Unit-Independent Types subsystem header file.

Initializing Unit-Independent Variables
Each class provides a set of static methods for initializing unit-independent variables from values

expressed in a variety of supported units. These methods will convert the supplied values into the

type’s native units for internal storage. For example, the native unit for the geo::Distance class is

meters, so all values are converted to meters for storage as seen in Listing 2.

 auto d1 = geo::Distance::m(0.25); // Internally, d1 = 0.25
 auto d2 = geo::Distance::nmi(100); // Internally, d2 = 185,200
 auto d3 = geo::Distance::km(1.852); // Internally, d3 = 1,852

Listing 2 – Example initialization of unit-independent variables. Conversion to internal native units is automatic.

Accessing the Values of Unit-Independent Variables
For each static initializer method, there is a corresponding accessor method with the same name. These

accessor methods will convert the internal value from the class’s native units into the desired units for

use in computations or for output as shown in Listing 3.

GeoLib, a C++ Library for Phased Array Radar Coordinate Systems 3

3

 // Print values from previous example in various units

 std::cout << d1.ft() << " ft"; // Prints "0.82021 ft"
 std::cout << d2.m() << " m"; // Prints "185200 m"
 std::cout << d3.nmi() << " nmi"; // Prints "1 nmi"

Listing 3 – Examples of accessing unit-independent variables in various units. Conversion to the desired units is automatic.

Supported Unit-Independent Types and Units
Table 1 is a list of the current unit-independent types, their supported units, and their corresponding

initializer and accessor methods.

Table 1 – Unit-independent types supported by GeoLib

Type/class

Units Supported

C++
Initializer &
Accessor
Methods

Distance meters
feet
kilometers
nautical miles
radar data miles

m
ft
km
nmi
dm

Area square meters
square feet

m2
ft2

Volume cubic meters
cubic feet

m3
ft3

Frequency hertz
Kilohertz
Megahertz
Gigahertz

hz
khz
mhz
ghz

Time seconds
milliseconds
microseconds
nanoseconds

sec
mSec
uSec
nSec

Angle radians
degrees

rad
deg

Velocity meters per second
kilometers per hour
knots
feet per minute

mps
kph
kn
fpm

Acceleration

meters per second2

feet per second2
standard gravity units

mps2
fps2
g

AngularVelocity radians per second
degrees per second

rps
dps

Choosing Units at Runtime
Each class also provides an enumeration of available units, so that units can be selected at runtime. This

is done using the special units() initializer and accessor methods, as illustrated in Listing 4.

4 J. B. Evins

 auto myUnits = geo::Distance::Units::NMI; // One of M, FT, KM, NMI, or DM
 // Note: unit enumerators are all caps,
 // while unit initializers and accessors
 // are all lower case.

 auto d1 = geo::Distance::units(5.0, myUnits);
 std::cout << d1.units(myUnits) << " " << geo::Distance::unitsToString(myUnits);

Listing 4 – Example initialization and access of unit-independent variables in units selected at run-time.

This can be useful in a GUI application where input/output units are user-selectable.

Operators and Dimensional Analysis Semantics
Given just these methods, we can easily avoid using the wrong units simply by being explicit about

which units we want to use at each step of our calculations. The methods will perform any unit

conversions needed as shown in the example in Listing 5.

 auto t1 = geo::Time::uSec(1000);
 auto t2 = geo::Time::mSec(1.02);
 auto deltaT = geo::Time::sec(t2.sec() - t1.sec());
 auto v = geo::Velocity::mps(geo::Distance::m(0.023) / deltaT.sec());

Listing 5 – Explicitly selecting units during calculations.

However, this can be very verbose and cumbersome. It would be much more desirable to not even

worry about units except when initializing variables or outputting results. To accomplish this goal,

GeoLib uses C++ overloaded operators to implement the semantics of dimensional analysis.

Each type provides a basic set of operators between like values and scalar values. For example, Figure 2

shows the operators available for the Distance unit-independent type.

 Distance = Distance + Distance
 Distance = Distance - Distance
 Distance = -Distance
 Distance = scalar * Distance
 Distance = Distance * scalar
 Distance = Distance / scalar
 scalar = Distance / Distance

 Distance += Distance
 Distance -= Distance
 Distance *= scalar
 Distance /= scalar

Figure 2 – Supported operators between Distance values and between Distance and scalar values.

GeoLib also provides many operators between different unit-independent types to provide dimensional

analysis semantics. For example, Figure 3 shows additional operators involving the Distance type and

other unit-independent types.

GeoLib, a C++ Library for Phased Array Radar Coordinate Systems 5

5

 Area = Distance * Distance
 Volume = Distance * Area
 Volume = Area * Distance
 Velocity = Frequency * Distance
 Velocity = Distance * Frequency
 Distance = Velocity * Time
 Distance = Time * Velocity
 Distance = Area / Distance
 Velocity = Distance / Time
 Time = Distance / Velocity
 Distance = Velocity / Frequency
 Distance = Volume / Area
 Area = Volume / Distance

Figure 3 – Operators involving Distance values and other unit-independent types.

For example, if you divide a Distance by a Time you will get a Velocity as in Listing 6.

 auto t1 = geo::Time::uSec(1000);
 auto t2 = geo::Time::sec(1.02);

 auto d1 = geo::Distance::m(123.45);
 auto d2 = geo::Distance::km(10);

 auto v = (d2 - d1) / (t2 - t1); // Perform calculation w/o concern for units

 std::cout << "Velocity = " << v.kn() << " kn";

Listing 6 – Example of dimensional analysis semantics. In this example, we divide the difference of two distances by the
difference of two times to get a velocity. This calculation is independent of the units with which we loaded our variables or the

units that we ultimately output.

GeoLib also provides several composite unit-independent types as listed inTable 2. The purpose of

these composite types is to support intermediate results in complex expressions without needing to

drop out of unit-independent types. Since the primary use case for these composite types is to support

intermediate results, they do not provide unit accessors or initializers.

Table 2 – Currently supported GeoLib composite unit-independent types for intermediate results.

Type/class Description Internal Units

Acceleration2 Acceleration * Acceleration (m/s2)2

Angle2 Angle * Angle radians2

Distance4 Area * Area m4
Time2 Time * Time seconds2

Velocity2 Velocity * Velocity (m/s)2

Table 3 and

6 J. B. Evins

Table 4 show which multiplication and division operators are currently implemented. These tables are

currently very sparse. So far, the missing operators have not been needed in FlexDAR. In order to fill in

the missing operators, additional composite types would need to be created for the intermediate

results. These additional types would then expand the table, revealing even more missing operators.

Thus, these tables would grow without bounds. Even if we automatically generated code for the new

operators and composite types, we would need to choose some point to terminate the recursion. The

current plan is to add operators and intermediate types as we encounter them in the “real world.”

Table 3—Supported unit-independent product operators. Product = Multiplicand × Multiplier. To keep the table compact, the
numbers in table cells indicate the Product’s type. (E.g. “11. Time” × “2. Acceleration” = “13. Velocity”). An empty cell indicates

that the corresponding Product is not currently implemented.

 Multiplicand 1

. s
ca

la
r

2
. A

cc
el

er
a

ti
o

n

3
. A

cc
el

er
a

ti
o

n
2

4
. A

n
g

le

5
. A

n
g

le
2

6
. A

n
g

u
la

rV
el

o
ci

ty

7
. A

re
a

8
. D

is
ta

n
ce

9
. D

is
ta

n
ce

4

1
0

. F
re

q
u

en
cy

1
1

. T
im

e

1
2

. T
im

e2

1
3

. V
el

o
ci

ty

1
4

. V
el

o
ci

ty
2

1
5

. V
o

lu
m

e

1. Scalar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2. Acceleration 2 3 13

3. Acceleration2 3

4. Angle 4 5 6

5. Angle2 5

6. AngularVelocity 6 4

7. Area 7 9 15

8. Distance 8 15 7 13 9

9. Distance4 9

10. Frequency 10 6 13 1

11. Time 11 13 4 1 8

12. Time2 12

13. Velocity 13 8 14

14. Velocity2 14

15. Volume 15 9

M
u

lt
ip

lie
r

GeoLib, a C++ Library for Phased Array Radar Coordinate Systems 7

7

Table 4—Supported unit-independent quotient operators. Quotient = Dividend / Divisor. To keep the table compact, the
numbers in table cells indicate the Quotient’s type. (E.g. “8. Distance” / “11. Time” = “13. Velocity”). An empty cell indicates

that the corresponding Quotient is not currently implemented.

 Dividend 1

. s
ca

la
r

2
. A

cc
el

er
a

ti
o

n

3
. A

cc
el

er
a

ti
o

n
2

4
. A

n
g

le

5
. A

n
g

le
2

6
. A

n
g

u
la

rV
el

o
ci

ty

7
. A

re
a

8
. D

is
ta

n
ce

9
. D

is
ta

n
ce

4

1
0

. F
re

q
u

en
cy

1
1

. T
im

e

1
2

. T
im

e2

1
3

. V
el

o
ci

ty

1
4

. V
el

o
ci

ty
2

1
5

. V
o

lu
m

e

1. Scalar 1 11 10

2. Acceleration 2 1

3. Acceleration2 3 2 1

4. Angle 4 1 6

5. Angle2 5 1

6. AngularVelocity 6 1

7. Area 7 1 8

8. Distance 8 1 13 2 11

9. Distance4 9 7 15 1

10. Frequency 10 1

11. Time 11 1

12. Time2 12 1

13. Velocity 13 11 8 2 1

14. Velocity2 14 2 13 1

15. Volume 15 8 7 1

GeoLib also overloads various math functions as seen Figure 4 so that values do not need to be

extracted in specific units to perform these functions. These include trigonometric functions for Angle

types and square root for various types such as Area and intermediate and composite types.

D
iv

is
o

r

8 J. B. Evins

 scalar = sin(Angle)
 scalar = cos(Angle)
 scalar = tan(Angle)
 Angle = asin(scalar)
 Angle = acos(scalar)
 Angle = atan(scalar)
 Angle = atan2(scalar, scalar)
 Angle = atan2(Distance, Distance)
 Angle = atan2(Velocity, Velocity)
 Angle = atan2(Velocity2, Velocity2)
 Angle = atan2(Acceleration, Acceleration)
 Angle = atan2(Acceleration2, Acceleration2)

 Distance = sqrt(Area)
 Velocity = sqrt(Velocity2)
 Acceleration = sqrt(Acceleration2)
 Angle = sqrt(Angle2)
 Area = sqrt(Distance4)

Figure 4 – Overloaded math functions involving unit-independent types.

Utility Methods
Each unit-independent type also includes various utility methods. For example, Listing 7 illustrates

various methods to format unit-independent values as strings.

 auto d = geo::Distance::nmi(1);

 std::cout << d.stringNmi() << std::endl; // Prints "1 nmi"
 std::cout << d.stringM() << std::endl; // Prints "1852 m"
 std::cout << d.stringFt() << std::endl; // Prints "6076 ft"

 // Define units at runtime
 auto myUnits = geo::Distance::Units::FT;
 std::cout << d.string(myUnits) << std::endl; // Also prints "6076 ft"

 // These methods also take an optional width and precision argument
 std::cout << d.stringFt(9, 3) << std::endl; // Prints " 6076.115 ft"

Listing 7 – Examples of utility methods to convert unit-independent types into std::string.

Constants
GeoLib also provides several unit-independent constants that can be used in place of unit-independent

variables as shown in Listing 8.

 x = geo::Angle::Pi; // Pi radians or 180 degrees
 x = geo::Angle::TwoPi; // 2Pi radians or 360 degrees
 x = geo::Velocity::C; // The speed of light in a vacuum

GeoLib, a C++ Library for Phased Array Radar Coordinate Systems 9

9

Listing 8 – Examples of unit-independent constants provided by GeoLib.

Implementation of Unit-Independent Types and Overhead
These unit-independent types have been implemented as simple classes, each wrapping a single

double value. The core capabilities of these classes are provided by a common template base class.

These classes are simple thin wrappers around the C++ double type. Operators and unit-specific

initializers and accessors are all implemented as "inlines" so there should be little to no overhead to

their use. Being inlined should also provide the compiler opportunities to remove unnecessary function

calls, optimize redundant unit conversions and combine unit conversion factors when possible. Inlining

is not guaranteed, because the compiler will use its own heuristics to evaluate exactly what

optimizations are the most beneficial.

The ultimate goal is to achieve a “zero-cost abstraction.” That is where there is no performance cost to

using unit-independent types instead of manually keeping track of physical units. Figure 5 and Figure 6

use Compiler Explorer [5] to demonstrate two cases when there is no performance cost to using unit-

independent types versus the manual approach.

Figure 5—Simple Compiler Explorer demonstration of "zero cost abstraction” using unit-independent types. In this simple case,
the resulting assembly language for the two approaches is identical.

10 J. B. Evins

Figure 6 – A second demonstration of “zero cost abstraction.” In this more complex case, the resulting assembly language for
the two approaches is nearly identical (there is a slight reordering of instructions).

GeoLib, a C++ Library for Phased Array Radar Coordinate Systems 11

11

COORDINATE TYPES SUBSYSTEM
GeoLib provides multiple two- and three-dimensional coordinate systems, which are built from multiple

unit-independent types.

 #include "GeoLib/CoordinateTypes.h"

Listing 9 – Including Coordinate Types subsystem header file.

Primary Geographic and Antenna Coordinate Systems

Figure 7 – Venn diagram classifying coordinate systems provided by GeoLib. Coordinate systems can be classified as Earth
Centered, Local Tangent Plane, and Boresight Relative. They can also be classified as either 2-dimensional or 3-dimensional.

Furthermore they can be classified as Bistatic or not.

Primary Coordinate System Classes

MapProjection

In GeoLib, Map-projection coordinates are another simple two-dimensional coordinate system. It

simply represents an X distance (Easting) and a Y distance (Northing) on the plane of a map. The

distances will have a non-linear relationship to actual geographic distances, depending on the projection

type used. GeoLib currently only supports Gnomonic [6] projections.

Ecef

The Earth-Centered, Earth-Fixed (ECEF) [7] coordinate system is a Cartesian coordinate system centered

at the earth’s center of mass. Its x-axis extends through the prime meridian at the equator and its z-axis

extends through the geographic North Pole.

12 J. B. Evins

LatLonAlt

This class is a WGS 84 [7] geodetic coordinate system represented as Latitude, Longitude, and Altitude

above or below the WGS 84 reference ellipsoid. This coordinate system is used to represent locations

above or below the earth’s surface. When constructing a LatLonAlt object from ECEF coordinates,

GeoLib uses the algorithm described by D. K. Olson [8] to calculate the geodetic latitude.

LatLon

This class is a WGS 84 geodetic coordinate system represented as Latitude and Longitude. This

coordinate system is used to represent locations on the earth’s surface. It is similar to LatLonAlt, except

it does not include an altitude component.

Enu

This class is a Cartesian coordinate system which is relative to a position on or near the earth’s surface.

It is represented by three axes: east, north and up. The east-north plane is parallel to a plane which is

tangential to the earth’s surface. The up axis is normal to WGS 84 reference ellipsoid.

Ned

This class is similar to the Enu class, except it is represented by north, east and down components.

AzElR

This class is a relative coordinate system represented as azimuth, elevation and range. Azimuth is a

clockwise angle between the point of interest and true north on a horizontal plane. Elevation is the

angle of the point of interest above the horizontal plane. Range is the distance to the point of interest.

RAz

This class is a 2-dimensional relative coordinate system represented as range and azimuth. The

component are defined exactly as in the AzElR class.

AzEl

This class is a 2-dimensional relative coordinate system represented by an azimuth and elevation angle.

The components are defined exactly as in the AzElR class.

Uv

UV coordinates are the projection of a unit vector onto the plane of an antenna. U is along the

horizontal axis and V is along the vertical axis. A third component, W, along the antenna normal,

completes the unit vector. W is often ignored, but is sometimes used to determine if a vector points

forwards or backwards. UV coordinates are used to represent the direction to a point of interest

relative to the plane of an antenna.

In GeoLib, UVW is a left-handed coordinate system, where U, V, and W point right, up, and forward,

respectively. Care must be taken if GeoLib is used in a situation where the convention is for UVW to be

right-handed, which is quite common. Theta-Phi is also based on the same left-handed coordinate

system.

ThetaPhi

Like Uv, this class also represents the direction to a point of interest from the plane of an antenna.

Theta is the angle between the antenna normal and the point of interest. Phi is the angle between the

GeoLib, a C++ Library for Phased Array Radar Coordinate Systems 13

13

antenna’s vertical axis (V) and the plane defined by the antenna normal and the direction to the point of

interest.

Ruv

Ruv is a subclass of the Uv class. It adds a range component to fully describe the relative position of a

point of interest.

Buv

Buv is similar to the Ruv class, except it adds a bistatic-range (B) component. The bistatic range is

equivalent to the monostatic range plus the distance to some other point in space (usually a radar

transmitter). In the monostatic case, the bistatic range is twice the monostatic range.

Interchangeability of Coordinate System Types
Using C++’s implicit type conversion feature, many of these coordinate system types can be used

interchangeably. This is accomplished either through conversion constructors or through direct

inheritance when one type is a subclass of another. The following diagram illustrates which coordinate

system types can be used interchangeably.

Figure 8 – Interchangeability of different coordinate systems. The arrows indicate the direction of interchangeability. Generally
3D coordinate systems can be collapsed into one or more 2D coordinate systems, but not the other way around.

A double-ended arrow indicates that the relationship is bidirectional. A single-ended arrow indicates a

one-directional relationship. For example, you can use a LatLonAlt object for a LatLon object, but not

the other way around, because there would be missing information. These relationships are also

transitive. For example, you can use a Ned object for an AzElR object, because you can use a Ned object

for an Enu object, which can be used for an AzElR object.

14 J. B. Evins

Coordinate System Projectors
GeoLib provides a set of “Projector” classes. These are used to project coordinates from one coordinate

system to another. These projectors, along with the property of interchangeable coordinate systems

allows coordinates to be translated between many of the supported coordinate systems.

In the following diagram, “Projectors” have been added to the previous diagram as large double-ended

arrows.

Figure 9 – Coordinate system projectors. Given an appropriate set of anchors (origins and/or orientations), a projector can
“project” from one coordinate system into another.

A projector must be initialized with origin information so that it knows how one coordinate system is

tied to the other.

 using namespace geo;

 // Initialize an EcefEnuProjector for my current location
 LatLonAlt myLocation(Angle::degs(39.4523), Angle::degs(-77.5634), Distance::m(30));
 EcefEnuProjector myProj(myLocation);

 // Location of target in LatLonAlt, which can be used in place of Ecef
 LatLonAlt t(Angle::degs(39.5628), Angle::degs(-77.5467), Distance::m(9997));

 // Use projector to "project" target into my ENU coordinate system
 auto tEnu = myProj.toEnu(t);

GeoLib, a C++ Library for Phased Array Radar Coordinate Systems 15

15

Listing 10 – Example of using an EcefEnuProjector to “project” a LatLonAlt point (t) into an Enu coordinate system defined by my
current location. Although the toEnu() method expects Ecef coordinate, we can see in Figure 8 we can see that LatLonAlt is

interchangeable with Ecef.

The implementation of the EcefEnuProjector is described in described in Appendix A – EcefEnuProjector

Math. The EnuRuvProjector is described in Appendix B – EnuRuvProjector Math and the

RuvBuvProjector is described in Appendix C – RuvBuvProjector Math.

Additional Capabilities

Auxiliary Coordinate System Classes

Xy

XY is a simple two dimensional Cartesian coordinate system. In FlexDAR, this coordinate system is used

primarily to locate elements of the phased-array antenna as if looking through the array from its rear.

EcefVelocity, EcefAcceleration, EnuVelocity and EnuAcceleration

In addition to the positional coordinate systems, GeoLib also provides velocity and acceleration classes

for both ECEF and ENU coordinate systems. While these coordinate systems represent position-free

vectors, they use the same basis vectors as their corresponding positional coordinate system (ECEF or

ENU). The EcefEnuProjector class provides methods to convert between velocities and accelerations in

these coordinate systems as in the following example:

 using namespace geo;

 // Ecef state vector
 class EcefState
 {
 Ecef p;
 EcefVelocity v;
 EcefAcceleration a;
 };

 // Enu state vector
 class EnuState
 {
 Enu p;
 EnuVelocity v;
 EnuAcceleration a;
 };

 EcefState sEcef = { Ecef(x, y, z),
 EcefVelocity(xDot, yDot, zDot),
 EcefAcceleration(xDotDot, yDotDot, zDotDot) };
 EnuState sEnu;

 sEnu.p = myProj.toEnu(sEcef.p);
 sEnu.v = myProj.toEnu(sEcef.v);
 sEnu.a = myProj.toEnu(sEcef.a);

Listing 11 – Examples of “projecting” a position, velocity and acceleration from ECEF coordinates into ENU coordinates.

16 J. B. Evins

Operators on Coordinate System Classes
GeoLib also provides several operators on its Cartesian (ECEF and ENU) coordinate system types to

provide dimensional analysis semantics while doing simple vector arithmetic. For example, Figure 10

lists the operators involving the ECEF coordinate system types.

 Ecef = Scalar * Ecef
 Ecef = Ecef * Scalar
 Ecef = Ecef / Scalar
 Ecef = Ecef + Ecef
 Ecef = Ecef – Ecef

 EcefVelocity = Scalar * EcefVelocity
 EcefVelocity = EcefVelocity * Scalar
 EcefVelocity = EcefVelocity / Scalar
 EcefVelocity = EcefVelocity + EcefVelocity
 EcefVelocity = EcefVelocity – EcefVelocity

 EcefAcceleration = Scalar * EcefAcceleration
 EcefAcceleration = EcefAcceleration * Scalar
 EcefAcceleration = EcefAcceleration / Scalar
 EcefAcceleration = EcefAcceleration + EcefAcceleration
 EcefAcceleration = EcefAcceleration - EcefAcceleration

 EcefVelocity = Ecef / Time
 Ecef = EcefVelocity * Time
 Ecef = Time * EcefVelocity

 EcefAcceleration = EcefVelocity / Time
 EcefVelocity = EcefAcceleration * Time
 EcefVelocity = Time * EcefAcceleration

Figure 10 – Operators on ECEF coordinate system types.

FUTURE WORK
The current Unit-Independent Types subsystem meets the current FlexDAR needs. However, it can

easily be extended if needed:

 Add additional units support to existing classes. E.g. we currently don’t support statute miles;

 Add additional unit-independent types. E.g. Temperature, Mass, etc.;

 Add missing operators and intermediate types to extend dimensional analysis semantics to

support more complex formulas. Ideally, one could perform something as complex as the radar

range equation using entirely unit-independent types;

 Add additional coordinate systems, such as earth-centered-inertial (ECI) [9] to aid in tracking

satellites.

In FlexDAR, we are currently only considering land-based fixed sites. To support moving sea-based

platforms, an additional set of coordinate systems would be needed. These coordinate systems would

GeoLib, a C++ Library for Phased Array Radar Coordinate Systems 17

17

locate and orient one or more antennas relative to the platform. There would need to be an

intermediate projection step between Enu and Ruv coordinate systems.

The UV coordinate system in GeoLib is left-handed (the positive direction of U is to the right) when

treated as UVW, which is a local preference. This convention is far from universal, and may actually be

the minority convention. A possible enhancement would be to support both left-handed and right-

handed conventions. Potentially multiple conventions in various parts of the library could also be

supported, such as the roll-pitch-yaw order of rotation in the EnuRuvProjector class.

The FlexDAR backend software is currently standardized on the ISO C++11 standard. If in the future, we

updated our toolchain we could choose to update this requirement to C++14, C++17, or even the

forthcoming C++20 standard. The C++ standard has been undergoing a major transformation over the

past decade. One capability that these newer standards would enable is fewer restrictions on the

constexpr attribute. Use of this attribute in our constructors, methods and operators could allow for

additional optimization of code by allowing the compiler to pre-evaluate any code that depends solely

on constants at build time, thus coming closer to a “zero-cost abstraction.”

The author has recently become aware of a proposal to add Physical Units support to the C++ Standard

Library [10]. If this capability becomes part of the C++ standard, the Unit-Independent Types subsystem

could become obsolete and potentially be replaced by the standard implementation.

CONCLUSION
NRL developed the GeoLib library as part of the NRL FlexDAR back-end software. It is a simple but

powerful C++ library for working with geographic and phased array antenna geometries. This library

includes a Unit-Independent Types subsystem to simplify the task of working with various physical units.

It also includes a Coordinate Types subsystem which provides various coordinate system types in

support of all aspects of radar processing and projector classes for converting between them.

GeoLib was designed to be independent of the other components in the FlexDAR software stack, thus it

is easily separable for use in other software projects. It has no external requirements other than a

C++11 compiler and standard library.

18 J. B. Evins

REFERENCES

[1] cppreference.com, "C++ Compiler Support," [Online]. Available:

https://en.cppreference.com/w/cpp/compiler_support. [Accessed 9 August 2021].

[2] Kitware, "CMake," [Online]. Available: https://cmake.org. [Accessed 14 July 2021].

[3] Mars Climate Orbiter Mishap Investigation Board, "Phase I Report," NASA, November 10, 1999.

[4] J. B. Evins, "NRL Radar Division C++ Coding Standard," NRL Memorandum Report, NRL/MR/5329--

16-9656, Naval Research Laboratory, Washington, DC, December 6, 2016.

[5] M. Godbolt, "Compiler Explorer," [Online]. Available: https://github.com/compiler-

explorer/compiler-explorer. [Accessed 22 06 2021].

[6] J. P. Snyder, "Gnomonic Projection," in Map Projections - A Working Manual, Washington, DC, U.S.

Government Printing Office, 1987, pp. 164-168.

[7] NGA Standardization Document NGA.STND.0036_1.0.0_WGS84, Department of Defense World

Geodetic System 1984, Its Definition and Relationships with Local Geodetic Systems, 2014.

[8] D. K. Olson, "Converting Earth-Centered, Earth-Fixed Coordinates to Geodetic Coordinates," IEEE

Transactions on Aerospace and Electronic Systems, vol. 32, no. 1, pp. 473-476, 1996.

[9] N. Ashby, "The Sagnac Effect in the Global Positioning System," in Relativity in Rotating Frames,

Norwell, MA: Kluwer Academic Publishers, 2004, p. 11.

[10] M. Pusz, "P1935R2 A C++ Approach to Physical Units," 13 January 2020. [Online]. Available:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1935r2.html.

GeoLib, a C++ Library for Phased Array Radar Coordinate Systems 19

19

APPENDIX A – EcefEnuProjector Math

Figure 11 – Relationship between Earth-Centered Earth-Fixed (ECEF) coordinate system and a local tangential plane, East North
Up (ENU) coordinate system.

Prior to conversion, we must know both the ECEF coordinates and the latitude (𝐿𝑎𝑡0) and longitude

(𝐿𝑜𝑛0) of the reference point (𝑃0). In order for the Up vector to be normal to WGS84 ellipsoid, latitude

must be geodetic rather than geocentric. To obtain the geodetic latitude, GeoLib currently uses the

algorithm described by D. K. Olson [8]. This calculation is done in the LatLonAlt(const Ecef&)

constructor which is not described here.

ECEF to ENU Coordinates

[
𝐸
𝑁
𝑈
] = [

− sin(𝐿𝑜𝑛 0) cos(𝐿𝑜𝑛0) 0

− sin(𝐿𝑎𝑡0) cos(𝐿𝑜𝑛0) − sin(𝐿𝑎𝑡0) sin(𝐿𝑜𝑛0) cos(𝐿𝑎𝑡0)
cos(𝐿𝑎𝑡

0
) cos(𝐿𝑜𝑛0) cos(𝐿𝑎𝑡0) sin(𝐿𝑜𝑛0) sin(𝐿𝑎𝑡0)

] [

𝑋 − 𝑋0

𝑌 − 𝑌0

𝑍 − 𝑍0

]

ENU to ECEF Coordinates

[
𝑋
𝑌
𝑍
] = [

− sin(𝐿𝑜𝑛 0) − sin(𝐿𝑎𝑡0) cos(𝐿𝑜𝑛0) cos(𝐿𝑎𝑡0) cos(𝐿𝑜𝑛0)
cos(𝐿𝑜𝑛0) − sin(𝐿𝑎𝑡0) sin(𝐿𝑜𝑛0) cos(𝐿𝑎𝑡0) sin(𝐿𝑜𝑛0)

0 cos(𝐿𝑎𝑡0) sin(𝐿𝑎𝑡0)
] [

𝐸
𝑁
𝑈

] + [
𝑋0

𝑌0

𝑍0

]

20 J. B. Evins

APPENDIX B – EnuRuvProjector Math

Figure 12 – Relationship between local East North Up (ENU) and sine space (UV) coordinate systems.

To simplify the conversion between RUV and ENU, the RUV coordinates are expressed as a set of right-

handed Cartesian coordinates:

[
𝑟𝑈
𝑟𝑊
𝑟𝑉

]

These coordinates would coincide with ENU coordinates if the arrays boresight were pointing true north

with no other rotations. These coordinates can then be rotated according to the array’s actual boresight

orientation.

ENU to RUV Coordinates

[
𝑟𝑈
𝑟𝑊
𝑟𝑉

] = [

1 0 0
0 cos(𝑃 + 𝑇) sin(𝑃 + 𝑇)
0 − sin(𝑃 + 𝑇) cos(𝑃 + 𝑇)

] [
cos(𝑅) 0 − sin(𝑅)

0 1 0
sin(𝑅) 0 cos(𝑅)

] [
cos(𝑁𝑡) − sin(𝑁𝑡) 0
sin(𝑁𝑡) cos(𝑁𝑡) 0

0 0 1

] [
𝐸
𝑁
𝑈
]

RUV to ENU Coordinates

[
𝐸
𝑁
𝑈

] = [
cos(𝑁𝑡) sin(𝑁𝑡) 0
−sin(𝑁𝑡) cos(𝑁𝑡) 0

0 0 1

] [
cos(𝑅) 0 sin(𝑅)

0 1 0
−sin(𝑅) 0 cos(𝑅)

] [

1 0 0
0 cos(𝑃 + 𝑇) − sin(𝑃 + 𝑇)
0 sin(𝑃 + 𝑇) cos(𝑃 + 𝑇)

] [
𝑟𝑈
𝑟𝑊
𝑟𝑉

]

GeoLib, a C++ Library for Phased Array Radar Coordinate Systems 21

21

APPENDIX C – RuvBuvProjector Math

Figure 13 – Bistatic measurements.

Prior to conversion, the location of the Transmit and Receive locations must be known. The baseline

vector (�⃗�) is simply the location of the transmit site in the receive site’s ENU reference frame. This is

obtained using the EcefEnuProjector as described in Appendix A – EcefEnuProjector Math. The unit

vector (�⃗�) is obtained by rotating the original UV vector using the rotations described in Appendix B –

EnuRuvProjector Math. The actual conversion between bistatic range (‖𝑅𝐵
⃗⃗⃗⃗ ⃗‖) and monostatic range

(‖𝑅𝑅𝑥
⃗⃗ ⃗⃗ ⃗⃗ ⃗‖) is through the application of the law of cosines. The original UV vector carries through

unchanged in either conversion.

BUV to RUV Coordinates
From the law of cosines:

(‖𝑅𝐵
⃗⃗⃗⃗ ⃗‖ − ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗ ⃗‖)
2
 = ‖�⃗� ‖

2
+ ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗ ⃗‖
2
− 2 ‖�⃗� ‖ ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ cos𝜃

or

‖𝑅𝑅𝑥
⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ =

‖𝑅𝐵
⃗⃗⃗⃗ ⃗‖

2
− ‖�⃗� ‖

2

2(‖𝑅𝐵
⃗⃗⃗⃗ ⃗‖ − ‖�⃗� ‖ cos 𝜃)

22 J. B. Evins

cos 𝜃 =
�⃗� ∙ �⃗�

‖𝑢‖ ‖𝐿‖

‖𝑅𝑅𝑥
⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ =

‖𝑅𝐵
⃗⃗⃗⃗ ⃗‖

2
− ‖�⃗� ‖

2

2(‖𝑅𝐵
⃗⃗⃗⃗ ⃗‖ − (�⃗� ∙ �⃗�))

RUV to BUV Coordinates

‖𝑅𝑇𝑥
⃗⃗ ⃗⃗ ⃗⃗ ⃗‖

2
 = ‖�⃗� ‖

2
+ ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗ ⃗‖
2
− 2 ‖�⃗� ‖ ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ cos𝜃

cos 𝜃 =
�⃗� ∙ �⃗�

‖𝑢‖ ‖𝐿‖

‖𝑅𝐵
⃗⃗⃗⃗ ⃗‖ = ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ + √‖�⃗� ‖
2
+ ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗ ⃗‖
2
− 2 ‖𝑅𝑅𝑥

⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ (�⃗� ∙ �⃗�)

