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1. Introduction: Motivation and Overview 

Simulation environments are a rapidly developing field in computation. Enabled by 
virtual reality (VR), augmented reality (AR), artificial intelligence (AI), and 
advanced gaming engines, they promise virtual worlds that may be the next major 
stage of the Internet. Commercially, many tech companies are positioning 
themselves to be leaders in this area, from the processor makers (i.e., NVIDIA, 
AMD, and Intel), to the game engine builders (especially Unreal Engine [UE] and 
Unity), and the large Internet companies (e.g., Facebook, which recently changed 
its name to Meta). From Meta’s “Metaverse” to NVIDIA’s “Omniverse,” 
significant investments are currently being made. For example, multiple Forbes 
contributors have projected recently that NVIDIA’s market value may eclipse that 
of Apple’s within the next 5 years. These projections are based on the strength of 
NVIDIA’s position in developing hardware and software tools for the Metaverse, 
as well as the importance of their hardware and software in AI applications.1,2 

The US Army is currently developing its own VR/AR systems for training and 
development. Analysts have summarized the following “five ways that synthetic 
environments can benefit [military forces]”3: 

1) Enhance collective experimentation, planning, and decision-making. 

2) Transform training. 

3) Strengthen interoperability across Multi-Domain Operations. 

4) Test and investigate new technologies and technical concepts. 

5) Better assess readiness across the force. 

Under the leadership of the Synthetic Training Environment (STE) cross-functional 
team, the US Army is funding several projects. In 2019 and 2021, the Army 
awarded contracts for three related software development projects totaling between 
$300M and $400M: STE, the Common Synthetic Environment (CSE), and One 
World Terrain (OWT), with first deliverables expected in the coming months.4–6 
Collectively, these tools are being developed to assist with training and mission 
planning. For example, OWT will be a high-fidelity mapping tool, similar to 
commercial products, including Google Earth. OWT will generate realistic models 
of terrain and buildings so that Soldiers can become familiar with the physical 
environment prior to performing a mission. 

Assuming the Metaverse, VR, and/or AR become widely adopted, all militaries will 
need to carefully consider how to use these tools to enhance operations and training. 
Technology can either level the competition or present new opportunities for 
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overmatch. One potential area for overmatch will be physical realism, which is only 
as good as the underlying simulation technologies. In some cases (i.e., collision 
detection and rag-doll physics) gaming physics engines are well developed and 
reasonably accurate; however, in many cases the physics is not yet fully understood. 

This technical report presents our efforts to build a simulation environment for 
windy-city UAS modeling. This targets the Army’s fourth motivation objective—
to test and investigate new technologies and technical concepts—but could 
ultimately be extended to the other four points. The city models are based on current 
OpenStreetMap (OSM) models (e.g., Chicago, Oklahoma City). We then employ 
lattice Boltzmann methods (LBMs) for simulation of the wind within the cities7,8 
based on historical conditions. State-of-the-art data methods are used to provide 
localized wind data and visualization within a virtual model of the city in UE, 
demonstrating how the wind affects the flight path of the UAS. 

In Section 2, we describe the software components of our system and include 
frames taken from the simulations to demonstrate the data visualization. We then 
conclude with general observations of our approach and a brief discussion on future 
research. 

2. Components of our Synthetic Environment (SE) 

In this section, we describe the physics and data manipulation methods used within 
our simulation. These begin with base city models, obtained from OSM, and end 
with UAS-wind interactions within our UE-based simulation environment. 

We use Python scripts to manipulate OSM city data for building locations, shapes, 
and heights for our simulation environment. These serve as input geometries of the 
Atmospheric Boundary Layer Environment (ABLE)–LBM to simulate turbulent air 
flows around buildings. These same geometries are reused within the 
simulation/visualization environment. 

The ABLE-LBM is a fine-resolution (spatial: meters; temporal: seconds) 
atmospheric-environment computer model for urban and complex terrain 
applications. It provides fine-scale turbulent wind, temperature, and pollutant 
concentrations within an atmospheric boundary layer. Compared with older 
traditional Navier Stokes models, the ABLE-LBM is more accurate and hundreds 
of times faster for atmospheric variable predictions because it applies the most 
recent advances in atmospheric science and graphics processing unit (GPU) 
computation technology. The real-time prediction goal for a midsize city can be 
achieved using only a laptop computer. The ABLE-LBM model will also be 
versatile in taking atmospheric input data from nontraditional sources (e.g., 
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retrieved from UAS or other remotely sensed data) and surface boundary condition 
data (e.g., cloud point terrain data) to increase agility and accuracy in data-denied 
or quickly changing situations.  

The Climate Data Operators (CDOs) command line utilities were used to convert 
the simulated wind field FORTRAN binary data format to Network Common Data 
Form (NetCDF) format. The NetCDF format can be read by many tools (i.e., 
ParaView, VTK, and Python xarray). ParaView was used to calculate and generate 
the wind-shear areas and wind streamlines that were converted into 3-D polygons 
format, which were then imported to UE. 

The drone wind visual simulation is built on Epic’s UE version 4, an open real-time 
3-D creation tool. We have also incorporated Microsoft’s AirSim plug-in9 to 
simulate the drone flight physics. See Fig. 1.  

 

Fig. 1 Wind server components 

The UE is started and connected via drone controller to provide the drone a flight 
path in the virtual environment. The drone spatial and/or temporal information is 
sent to the wind server and then to the return wind vectors. Next, the wind vectors 
are sent to the AirSim plug-in, which modifies the drone’s physics behavior. The 
network commutation is handled by Remote Procedure Calls (RPCs) with Message 
Pack (a binary serialization method). We have also done this test with Real Time 
Publish Subscribe (RTPS) in the Robot Operating System (ROS2). The urban 
virtual environment 3-D models are generated from OSM data. An Unreal C++ 
Component was developed to allow Unreal Actors to communicate with the wind 
server without requiring the AirSim plug-in. 

The wind server is built around a Python xarray10 package that loads and manages 
the multidimensional array’s wind vector field data. The data is stored in NetCDF11 
file format using the Climate and Forecast (CF) Metadata conventions. The server’s 
design is intentionally modular and distributive to handle large data sets. The wind 
data grid size (at 3-m resolution) can get very large. A grid at 521 × 311 × 121 
points with 100-time steps is around 22 GB. Currently, we use static wind fields 
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based on averages over a set number of time steps or individual time steps. 
Distributed arrays could potentially be used to support this. A Python xarray can be 
distributed across many systems using Dask Arrays’ spread-out memory 
requirements. Figures 2 and 3 show samples of the visualization output from the 
current state of this SE. 

 

Fig. 2 Realistic wind in SE based on a section of Chicago, Illinois. Glassy stream tubes show 
wind field streamlines. Red volumetric fog represents regions of high turbulence, as identified 
by large z-values in the wind fields. UAS response to wind demonstrated by changes in flight 
path when UAS-wind interactions are toggled on and off. 

 

Fig. 3 Visualization wind streamlines and turbulence areas 
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3. Conclusions and Future Plans 

We have demonstrated the use of open-source data and open-source and/or open-
access computer tools to create a simulation for UAS-environment interactions in 
urban settings. Our test system has the capacity to be used in training, planning, and 
decision-making for UAS operations—balancing safety, area coverage, power 
usage, location avoidance, and total operational time.  

There are several ways in which this system can be improved. Improved UAS-wind 
interaction models allow for UAS suitability testing of specific locations and 
conditions. We are currently investigating the integration of temporal 3-D wind 
fields data into UE as data inputs and graphical animations. Looking into the future, 
integration with other environments, such as NVIDIA’s Omniverse, will require 
simplifying the connectors used to import data. Finally, multiple methods may be 
used to train for urban navigation in windy conditions, such as reinforcement 
learning and improved control methods. 
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UAS  unmanned aircraft system 

UE  Unreal Engine  

VR  virtual reality   

  



 

8 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 1 DEVCOM ARL 
 (PDF) FCDD RLD DCI 
   TECH LIB 
 
 3 DEVCOM ARL 
 (PDF) FCDD RLC ED 
   K KIRK 
   B KRACZEK 
  FCDD RLC EM 
   Y WANG 


	List of Figures
	1. Introduction: Motivation and Overview
	2. Components of our Synthetic Environment (SE)
	3. Conclusions and Future Plans
	4. References
	List of Symbols, Abbreviations, and Acronyms

