(U) One Step No Waste Composition C-4 Production

Project Number: WP-201508

Mr. John Centrella Armaments Center – Picatinny Arsenal

(formerly: Armament Research, Development & Engineering Center ARDEC)

Final Debrief February 28, 2019

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

	TE (DD-MM-YYYY		T TYPE oject Outbrief			3. DATES COVERED (From - To)
28/02/2019		ESTOP FIL	Dject Outbrief			
4. TITLE AND S	SUBTITLE				5a. CC	ONTRACT NUMBER
(U) One Step No	Waste Composition	on C-4 Production	on			
					5b. GI	RANT NUMBER
					5c. PF	OGRAM ELEMENT NUMBER
6. AUTHOR(S) Mr. John Centre	lla (PI), Picatinny A	rsenal			5d. PF WP-201	ROJECT NUMBER 508
Travis Swanson	n, Stevens Institute , Rocky Mountain S chnical Lead, Arma	cientific Labora	tories		5e. TA	SK NUMBER
	n, Office of the Ass		of Defense			
					5f. WC	ORK UNIT NUMBER
Armaments Cen	G ORGANIZATION ter –Picatinny Arse		D ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
RDAR-MEE-W bldg 3022 Picatinny Arsenal, NJ 07806				WP-201508		
Environmental S 4800 Mark Cente	ecurity Technology er Drive, Suite 16F	Certification Pr	(S) AND ADDRESS(ES ogram)		10. SPONSOR/MONITOR'S ACRONYM(S) ESTCP
Alexandria, VA 2	2350-3605					11. SPONSOR/MONITOR'S REPORT NUMBER(S) WP-201508
12. DISTRIBUT	ION/AVAILABILIT	STATEMENT			l	
DISTRIBUTION	STATEMENT A. A _l	proved for publ	ic release: distribution ui	nlimited.		
13. SUPPLEME	NTARY NOTES					
"cake" into M11. production platfo and water. Repl design the TSE	gacy Comp C-4 ten 2 demolition blocks orm. Replace incon ace energetic nitra	at an off-site ex sistent C4 lacqu nine RDX with I cluding an M112	trusion facility. Combine ler coating system with s HMX to enhance energy forming die, for optimal	explosives form silicone oil for eff release and red	ulation and M cient particle uce impact on	minate post-processing of Comp C-4 bulk 112 manufacture processes onto a single wetting without the need to use solvents environment. Use computer modeling to roughput. Demonstrate technology to
15. SUBJECT 1						
No Waste, Com	oosition C-4 Produc	tion, C4, PAX-5	2, M112, Twin Screw Ex	ktrusion		
16. SECURITY	CLASSIFICATION	OF:	17. LIMITATION OF	18. NUMBER		OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF PAGES	John Centre	iia
UNCLASS	UNCLASS	UNCLASS	UNCLASS	44	19b. TELEP 973-724-319	HONE NUMBER (Include area code) 93

(U) Document Distribution Statement

(U) Distribution A: Approved for Public Release; distribution is unlimited.

(U) Project Team

- John Centrella, Principal Investigator, Armaments Center (AC.)
- Dr. Dilhan Kalyon, Stevens Institute of Technology.
- Travis Swanson, Rocky Mountain Scientific Laboratories
- Michael Fair, Technical Lead, Armaments Center (AC.)
- Dr. Kelly Scanlon, Office of the Assistant Secretary of Defense (Sustainment)

Key Words

C4: Composition 4 is the US Army qualified demolition explosive developed in 1950 and currently produced only in bulk powder form.

PAX-52: Picatinny Arsenal Explosive. Hand-moldable explosive produced in block form.

M112: Demolition Charge made of C4 or PAX-52

TSE: Twin Screw Extrusion

ARDEC: Former name of armaments R&D center at Picatinny Arsenal.

Now called: Armaments Center

(U) Technical Objectives

- > (U) Eliminate the legacy Comp C-4 ten-step water slurry process that is time, energy, and labor intensive.
- ➤ (U) Eliminate post-processing of Comp C-4 bulk "cake" into M112 demolition blocks at an off-site extrusion facility.
- (U) <u>Combine</u> explosives formulation and M112 manufacture processes onto a single production platform. Twin-screw Extruder (TSE)
- (U) <u>Replace</u> inconsistent C4 lacquer coating system with silicone oil for efficient particle wetting without the need to use solvents and water.
- ➤ (U) Replace energetic nitramine RDX with HMX to enhance energy release and reduce impact on environment.
- > (U) <u>Use</u> computer modeling to design the TSE mixing protocol, including an M112 forming die, for optimal solids loadings and product throughput.
- > (U) <u>Demonstrate</u> (TSE) technology to compound PAX-52 formulation and extrude M112 demolition blocks.

(U) Performance Objectives 1/5

Performance Objective	Data Requirements	Success Criteria	Success?
Quantitative Performance	Objectives		
PAX-52 shall be produced continuously by a steady state process for at least three hours.	Time record. Temperature and pressure records.	Recorded production run exceeding three hours. Recorded feedback data within three standard deviations for pressure, temperature, and torque.	Partial Success
PAX-52 consists of only two ingredients. Taggant not accounted for in the formulation.	Composition Analysis using High Performance Liquid Chromatography (HPLC)	Detection of HMX at 85 percent by weight.	Success
Demolition charge cross- section	MIL-DTL-50523B, drawing 9204248.	Measurement of 2"x1" with side concavity allowance.	Success
M112 Physical properties - Plasticity	Penetrometer MIL-DTL- 50523B 3.2.1.1	Force resistance of not less than 2.0 pounds and not greater than 8.0 pounds	No Test

(U) Performance Objectives 2/5

Performance Objective	Data Requirements	Success Criteria	Success?				
Quantitative Performance	Quantitative Performance Objectives						
M112 Specific Gravity	Archimedes' water method MIL-DTL-50523B 4.4.2	Specific gravity greater than 1.50	Success				
Energy Output	Plate-cutting test MIL-DTL- 50523B 4.4.3	Cut a steel witness plate completely into two separate sections.	Success				
Physical Sensitivity	ESD (AOP-7201.03.001) BAM Friction (AOP-7 201.02.006) ERL Impact (AOP-7 201.01.001)	ESD: No Go < 0.25 Joules BAM Friction: 10 No Go greater than 200 Newtons ERL Impact: 50% reaction height greater than 75 cm	Success				
Shock sensitivity	Cap Sensitivity (TB700-2 Para 5.6a). IHE Gap Test (AOP 201.04.005)	Sustained Detonation Response Attenuation Gap between 161-171 cards.	Success				

(U) Performance Objectives 3/5

Performance Objective	Data Requirements	Success Criteria	Success?
Quantitative Performance	e Objectives		
Detonation velocity Energetic performance	Detonation velocity test Plate dent test	Velocity greater than 7.5 km/sec At 99% TMD Pressure greater than 25.0 GPa at 99% TMD	Success
Product response to ignition	1. VCCT (AOP-7 202.01.002) 2. Small Scale Burning Test (TB700-2 Para. 5.4a)	Pass: No detonation response Pass: No detonation response	Success
PAX-52 chemically stable	1. Vacuum Thermal Stability (40 h @ 100 °C - AOP-7; US/202.01.022) 2. Thermal Stability (48 h @ 75 °C - AOP-7; US/202.01.013). 3. Aging Study	 Pass: no significant decomposition or off-gassing. Pass: no exothermic reactions. No accumulated exudation of oil. 	Success

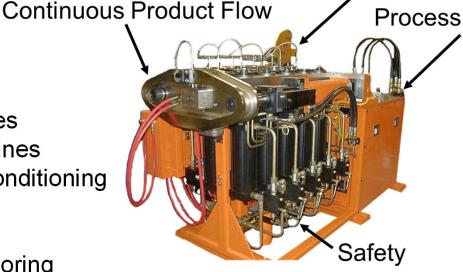
(U) Performance Objectives 4/5

Performance Objective	Data Requirements	Success Criteria	Success?	
Quantitative Performance Objectives				
Homogeneity	Composition analysis	Mixedness index greater than 0.99	Success	
Environmental impact	Deposition rate test	Less than 1% by weight of RDX accumulation.	Success	
HMX workplace exposure	1. ACGIH 2016 Threshold Limit Values & Biological Exposure Indices	1. (ACGIH-TLV) for HMX is 0.5 mg/m3	Success	

(U) Performance Objectives 4/5

Performance Objective			Success?	
Qualitative Performance Objectives				
Packaging	Contractor Inspection Report	MIL-DTL-50523A, drawing 9204248.	Success	
User evaluation	Color Manual Moldability Tackiness Surface oil transfer.	No noticeable change in the quality of the product during any field demonstration conditions.	Success	

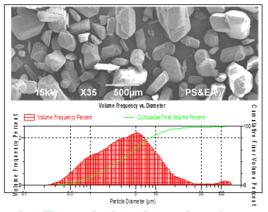
(U) Site Description

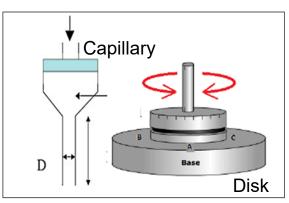

(U) Universal Twin Screw Extrusion Facility Armaments Center (AC), Picatinny Arsenal, NJ

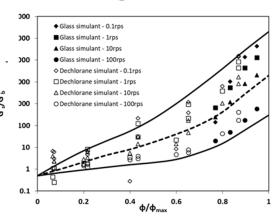
(U) UNCLASSIFIED

Variable Feed Inputs

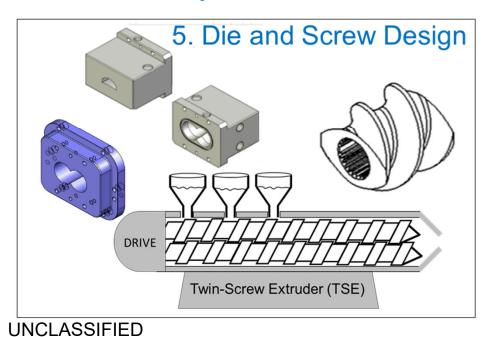
Process Control

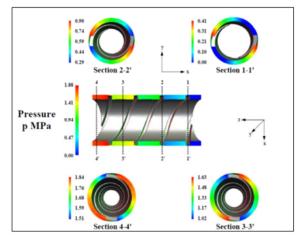

- Access and Security
- **On-site Emergency Services**
- **Energetics Storage Magazines**
- Powder Processing and Conditioning
- Rheology Lab
- On-site Waste Incinerator
- PLC Remote Control Monitoring
- **Engineering and Technical Staff**




- Federal, State and Local Regulated
- **Environmental Safety Plan**
- Industrial and Academia Partners
- Collaboration with AC Programs
- Large Portfolio of Successful Projects

(U) Test Design - Computer Modeling UNCLASSIFIED

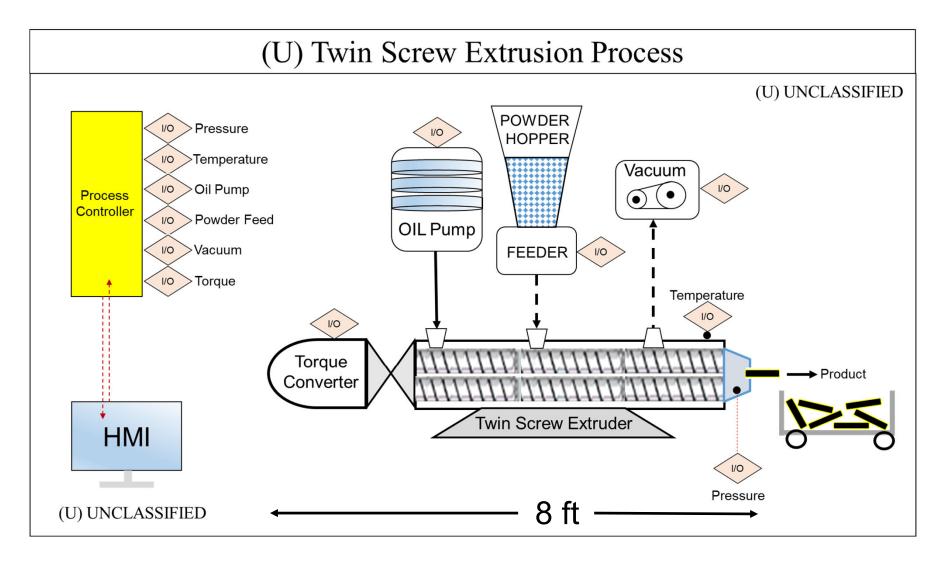




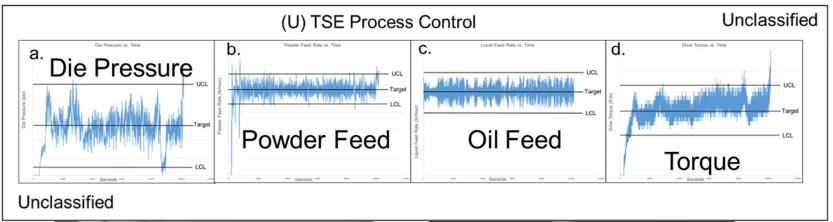
1. Particle Analysis

2. Rheology

3. Data Analysis



4. Finite Element Modeling


(U) Test Design - Twin Screw Extruder

(U) Test Design – Continuous Process and Product

- (U) Steady State Control: pressure, temperature and torque.
- (U) Measured by three standard deviations from target.
- (U) During three hours of continuous processing.

(U) Visual Monitoring

(U) Three-finger Rheology

(U) Test Design – Quantitative Test and Evaluate

(U) Laboratory Tests:

- Composition Analysis HPLC
- Sensitivity: ESD, Impact and Friction
- Specific Gravity, Plasticity
- Homogeneity
- Thermal and Chemical Stability
- Small Scale Burning

(U) Field Tests:

- Detonation Velocity and Pressure
- Cap Sensitivity
- Steel Plate Cutting Test
- IHE Card Gap Test
- Variable Closed Confinement Test
- RDX/HMX Deposition Study
- Workplace Exposure

(U) Test Design – Qualitative Test and Evaluate

(U) Packaging Evaluation

- Formability
- Strength
- Weight

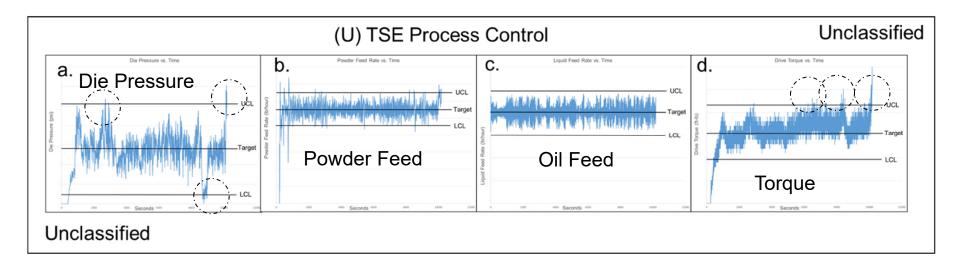
(U) User Evaluation

- Combat Engineers
- Bomb Sniffing Dogs
- Explosive Ordnance Disposal

(U) Test Design – Test and Evaluate

Cold Weather Deposition Rate Test

UNCLASSIFIED

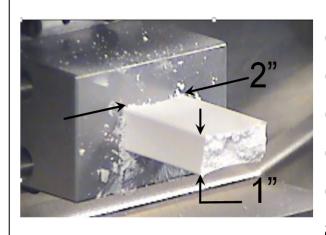


- (U) Defence Research and Development Canada (DRDC)
- (U) Tested PAX-52 in pristine snowpack.
- (U) Analyzed multiple samples drawn from an array.
- (U) Detected RDX in small amounts.

(U) Performance Assessment – Continuous Process and Product

- (U) Steady State Control: pressure, temperature and torque.
- (U) Measured by three standard deviations (6 σ) from target.
- (U) During three hours of continuous processing.

- (U) Missing data requirements for Temperature. T-axis error.
- (U) Slight loss of process control for <u>Die Pressure</u>.
- (U) Missed Time requirement. Ran low on powder feed stock.
- (U) Partially successful in meeting objective.


(U) Performance Assessment – Physical Properties

(U) UNCLASSIFIED

(U) PAX-52: Compositional Analysis by HPLC							
LOT Number	HM	ИX	Silicone				
LOT Number	wt %	s.d. (wt %)	wt %	s.d. (wt %)			
RDD17B046-001	Achieved	0.3	Achieved	0.3			

- (U) Objective: Demonstration product >85 wt % HMX.
- (U) Successful in meeting objective.

(U) UNCLASSIFIED

- (U) Objective: Dimensions 2"x 1"
- (U) Allowance for concavity.
- (U) Successful in meeting objective.
- (U) Plasticity Objective: 2-8 lb_{force}
- (U) No Test. Penetrometer not available for test.

(U) Performance Assessment – Physical Properties

(U) PAX-52 Density

Density, g/cm³ Std. Dev., g/cm³

1.688 0.0004

(U) Product Density Objective >1.50 g/cc

(U) Successful in meeting objective.

(U) UNCLASSIFIED

(U) PAX-52 Physical Sensitivity (U) UNCLASSIFIED					
Test	PAX-52	Remark			
BOE Impact	4/10 Reactions	Not Impact Sensitive			
ERL Impact Sensitivity	4/10 @100 cm	Not Impact Sensitive			
BAM Friction Sensitivity	0/10 @ 324 N	Not Friction Sensitive			
ESD Static Sensitivity	0/20 GO @ 0.051 J	Not ESD Sensitive			

(U) Objectives in accordance with AOP-7 NATO standards


(U) Successful in meeting sensitivity objectives.

(U) Performance Assessment – Energy Output

(U) UNCLASSIFIED

(U) Plate Cutting Test Set-up and Results

(U) Objective: Cut 1" steel plate in two pieces.

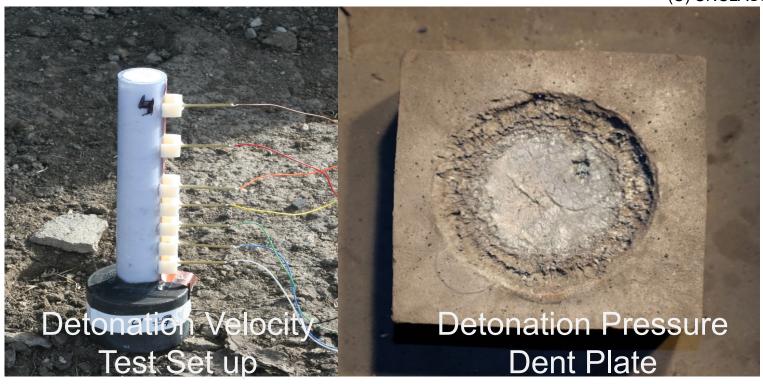
(U) Successful in meeting objective.

(U) Performance Assessment – Shock Sensitivity

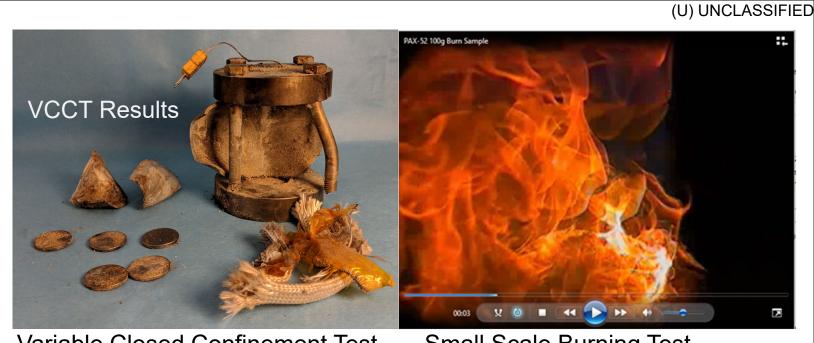
Detonator
Detonator Holder
Pentolite Booster

PMMA Attenuator
Test Explosive
~ 12 g HE
Holder of IHE Body
Steel Witness Block
IHE Schematic

Dent Plate


- (U) Insensitive High Explosives (IHE) Test
- (U) Objective: Attenuation Gap 161-171 cards.
- (U) Card gap measured (50% threshold) 159.7 cards.
- (U) Performed slightly better than expected.
- (U) Successful in meeting objective.

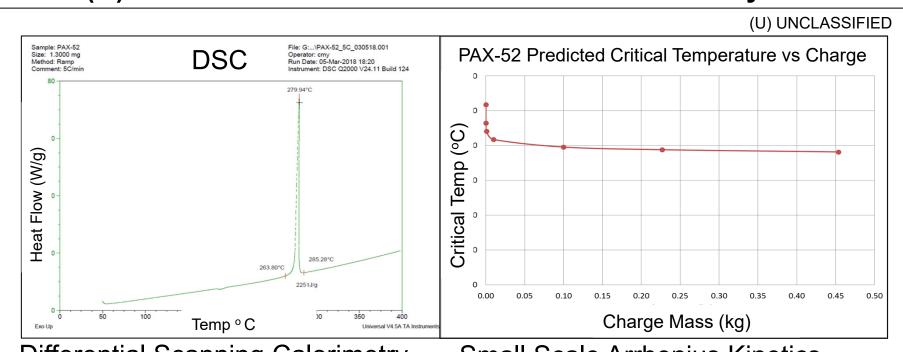
(U) Performance Assessment – Detonation Velocity and Pressure



- (U) Objective: VoD of 7.5 km/sec.
- (U) Objective: Detonation Pressure of 25 Gpa.
- (U) Successful in meeting both objectives.
- (U) Packing density influences results.

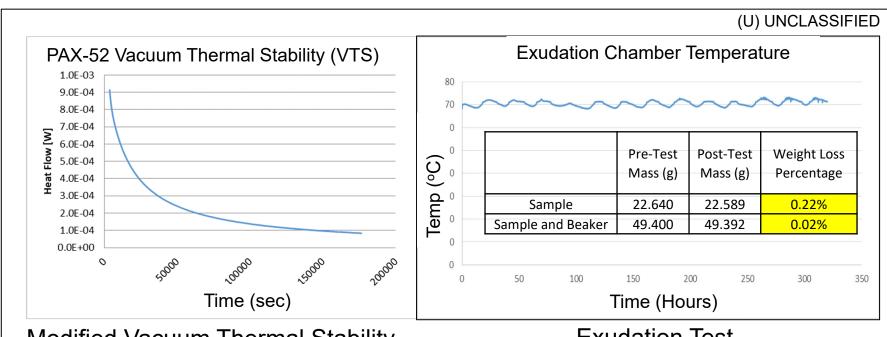
(U) Performance Assessment – Response to Ignition

Variable Closed Confinement Test


Small Scale Burning Test

- (U) VCCT Objective: No transition to detonation.
- (U) Maximum wall thickness (0.120") tested first.
- (U) Burning Objective: No violent reaction.
- (U) Successful in meeting both objectives.

(U) Performance Assessment – Thermal Stability


Differential Scanning Calorimetry

Small Scale Arrhenius Kinetics

- (U) DSC Objective: HMX critical decomposition temperature.
- (U) Stable thermal kinetics.
- (U) Successful in meeting objective.

(U) Performance Assessment – Chemical Stability

Modified Vacuum Thermal Stability

Exudation Test

- (U) VTS Objective: No significant decomposition or off-gasing.
- (U) Exudation Objective: No separation or loss of silicone oil.
- (U) Successful in meeting both objectives.

(U) Performance Assessment: HMX Workplace Exposure

UNCLASSIFIED Twin Screw Extruder, HMX Air Sampling Results

Bldg 1403, Twin Screw Extruder, HMX (Octogen) Air Sampling Results							
Twin Screw Extruder (TSE)	Sample Time (min)	TWA Results for Sampling Period (mg/m3)	8-hr TLV-TWA (mg/m3)	Exceeds ACGIH-TLV?			
	211	0.011	0.005	No			

UNCLASSIFIED

(U) American Conference of Governmental Industrial Hygienists- Threshold Limit Values (ACGIH-TLV): 0.5 mg/m³

(U) HMX Exposure Objective: Does not exceed ACGIH-TLV.

(U) Successful in meeting objective.

(U) Performance Assessment: Homogeneity

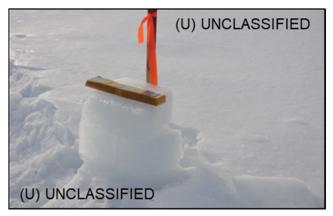
(U) UNCLASSIFIED

Mixing Index Calculations

$$\overline{c} = \frac{1}{N} \sum_{i=0}^{N} c_i$$
 Eq (1)

$$s^2 = \frac{1}{(N-1)} \sum_{i=1}^{N} (c_i - \overline{c})^2$$
 Eq (2)

$$s_0^2 = \overline{c}(1 - \overline{c})$$
 Eq (3)


$$MI = 1 - \frac{S}{S_0}$$
 Eq (4)

- (U) Homogeneity Objective: >.99
- (U) 10 random samples analyzed for HMX content by HPLC.
- (U) Calculated mixing index to be 0.995
- (U) Successful in meeting objective.

(U) Performance Assessment: Environmental Impact

PAX-52 Deposition Rate Test

		UNCLASSIFIED
Mass of	Residual RDX a	and HMX
Plastic Explosive	Mass of RDX Deposited (mg)	Mass of HMX Deposited (mg)
C-4	65	1
PAX-52	0.08	47
UNCLASSIFIED		

Test Results

- (U) Environmental Objective: < 1wt % RDX
- (U) 2.91 orders of magnitude less than C4
- (U) $\log (64/0.08) = 2.91$
- (U) Successful in meeting objective.

(U) Performance Assessment: Packaging and User Evaluations

(U) UNCLASSIFIED

(U) PAX-52 Packaging Process

(U) Users and Mission

- (U) Packaging Objective: Meet M112 specifications
- (U) Successful in meeting objective

- (U) User Evaluation Objective: Consistent Quality
- (U) Performance not measured
- (U) Successful in meeting objective.

(U) Cost Assessment: C4/M112 Cost Basis

(U) UNCLASSIFIED

Eight-y	Eight-year Average of Bulk C4 and M112 Unit Costs in Todays Dollars								
		M112			Bulk C4				
Financial Year	Total Units	Unit Cost (\$/Unit)	Present Value (\$/Unit)	Total Pounds	Unit Cost (\$/lb)	Present Value (\$/Unit)			
2010	487815	6.69	6.78	643915	13.68	13.87			
2011	112159	10.35	10.47	148050	22.34	22.61			
2012	1027889	4.19	4.23	1356803	15.64	15.80			
2013	280058	9.59	9.67	369776	23.92	24.11			
2014	320277	10.11	10.17	422716	21.93	22.06			
2015	162947	6.46	6.49	216090	14.49	14.55			
2016	116160	10.46	10.48	153318	23.05	23.10			
2017	180101	7.3	7.30	237733	18.31	18.31			
Average	335926	8.14	8.20	443550	19.17	19.30			

\$35/unit

(U) UNCLASSIFIED

DEMO CHG BLK M112 1-1/4 LB COMP C-4 W/TAGGANT (013893854)

POM Unit Price Budget Values (POM17)

Service	2014	2015	2016	2017	2018	2019	2020	2021
ARMY	\$0.00	\$33.05	\$43.80	\$0.00	\$45.68	\$46.93	\$50.87	\$51.75
NSOF	\$0.00	\$27.07	\$0.00	\$0.00	\$41.11	\$0.00	\$0.00	\$0.00
USAF	\$0.00	\$26.57	\$53.46	\$44.96	\$41.11	\$42.23	\$45.79	\$46.58
USNS	\$0.00	\$0.00	\$0.00	\$44.96	\$0.00	\$42.23	\$0.00	\$0.00

\$46/unit

(U) UNCLASSIFIED

(U) Cost Assessment: PAX-52 Engineering Model Fixed Costs

(U) UNCLASSIFIED

PAX-52 Production Fixed Cos	ts
Universal Twin Screw Extrusion System:	
Machine base, hydrostatic drive, housing assembly	
Barrel shell assembly, manifold assembly,	
Fully intermeshing co-rotating twin screw module	
Agitator shafts, agitator components, liners	
Figure 8 to "O" adopter, Feed portsa dn vent port	
Gear Box, 6 heating and cooling units,	
Feeder platform for up to four feeders	
Sub-Total	\$839,960
Rectangular Slit Die	\$35,000
Power, Controls and Data Acquisition System	\$175,835
Delivery and Installation of the Universal Extrusion System	\$221,375
Feeding Equipment:	
Feeder #1: Loss in weight feeder for HMX	\$43,920
Feeder #2: Loss in weight feeder for HMX	\$43,920
Feeder #3: Loss in weight for additives	\$45,506
Feeder #4: Loss in weight for purge compound	\$44,208
Feeder #5: Loss in weight feeder for silicone oil binder	\$39,719
Enclosure and feeder controls	\$24,194
Sub-Total	\$241,467
Overhead Water Deluge System	\$250,000
Squeeze Flow Rheometer	\$65,000
Xray Diffraction Unit	\$200,000
Ancillary Subsystems	\$275,558
Production Facility Construction	\$750,000
Total Fixed Costs	\$3,054,195

(U) Assumptions made from market research and practical experience.

(U) PAX-52 Fixed Costs

(U) Cost Assessment: PAX-52 Engineering Model Variable Costs

PAX-52 Annual Variable Costs				
Line Item	Description	Cost	Quantity	Total
Production of PAX-52	Gross Production		80000	80000
	Production Engineers	\$90,000	2	\$180,000
	Fringe Benefits (30%)	\$27,000	2	\$54,000
Labor	Technicians	\$65,000	2	\$130,000
Labor	Fringe Benefits (30%)	\$19,500	2	\$39,000
	Consultants	\$600	5	\$3,000
	Sub-Tota			\$406,000
Utilities	Electricity (per pound)	\$5.04	80000	\$403,200
	Water (per pound)	\$0.03	80000	\$2,400
	Sub-Total \$405,600			
	Inert gases			\$1,500
	Safety supplies			\$2,000
			Sub-Tota	\$3,500
Raw Materials	HMX		80000	\$2,542,520
	PDMS		80000	\$94,518
	DMDNB		80000	\$17,802
	,		Sub-Tota	\$2,654,840
Total Annual Variable Costs			\$3,469,940	

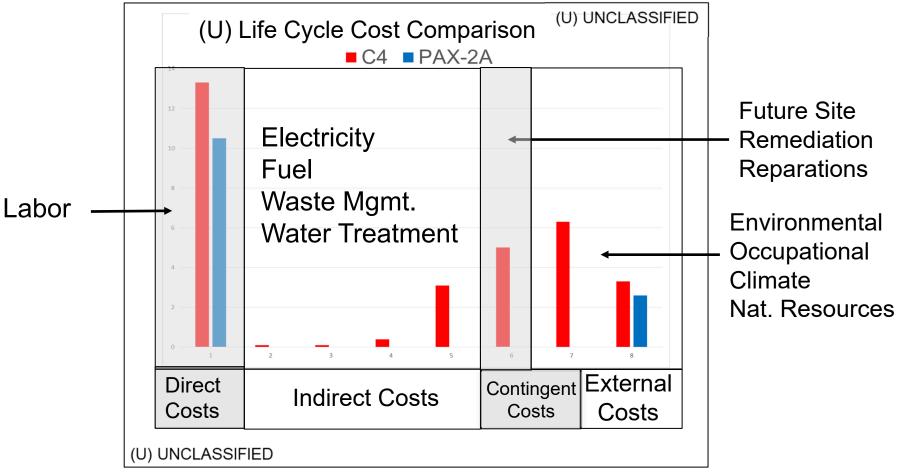
- (U) Electricity is over-estimated in model.
- (U) HMX is the real cost driver. Almost three-quarters of annual costs
- (U) UNCLASSIFIED

(U) Cost Assessment: PAX-52 Engineering Model Amortization of Fixed Costs

(U) UNCLASSIFIED

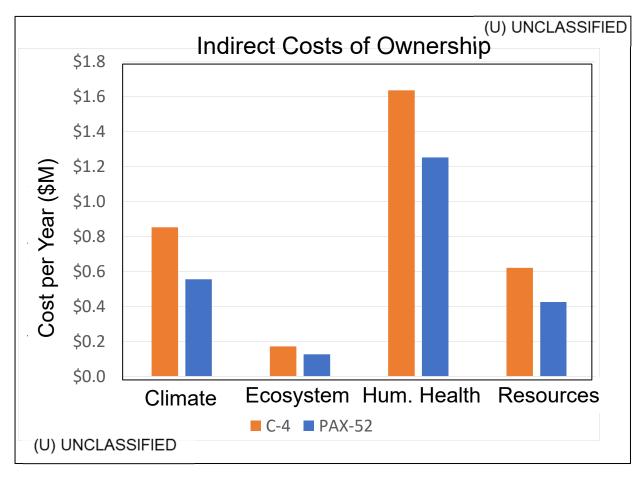
Amortization of Fixed Costs				
Amortization Rate of Fixed Costs				
Buildings	39 Years			
Equipment	5 Years			
Fixed Building Costs		\$750,000		
Building Amortization		\$19	9,231	
Fixed Equipment Cost		\$2,304,195		
Equipment Amortization		\$460	0,839	
Annual Amortized Fixed Costs		\$480,070		

(U) Cost Assessment: PAX-52 Engineering Model Amortization of Fixed Costs


(U) UNCLASSIFIED

Annual Variable and Fixed Cost per Pound		
Annual variable costs: \$3,469,940		
Annual Amortized Fixed Costs	\$480,070	
Production rate, pounds/year	80000	
Cost per Pound	\$49.38	

- (U) PAX-52 M112 = \$62/block
- (U) 10% reduction in HMX cost yields 7% reduction in price of product. Significant influence on price.


(U) Cost Assessment: Life Cycle Analysis DoD Total Cost of Ownership

- (U) Office of the Assistant Secretary of Defense Sustainment
- (U) Direct, Indirect, Contingent and External costs.

(U) Cost Assessment: Life Cycle Analysis External Cost Comparison

(U) Scale-up Issues: Advantages and Constraints

- (U) Formulation will not change with increased mass flow.
- 2. (U) TSE mixing protocol may need to be modeled for safety and quality.
- 3. (U) Silicone binder is widely available in the United States.
- 4. (U) M112 packaging unit can be attached to TSE directly for greatest production efficiency.
- 5. (U) HMX powder will have to be conditioned before processing: drying or pre-coated. Can be processed wet (not studied here.)
- 6. (U) Production costs move inversely to production quantity.

(U) Technology Transfer

- 1. PAX-52 development is considered a success at Armaments Center.
- 2. Endorsement from Program Executive Office (PEO) Chief Scientist.
- 3. Endorsement from Joint Insensitive Munitions Technology Program.
- 4. Direct contact with PM C4 Product Manager.
- 5. Relationships and communications with C4 working group members.
- 6. Presentations to Combat Engineering (82nd Airborne) and Explosive Ordnance Disposal (EOD) demolitions groups:
 - Special Ops and ARDEC Institute for Special Warfare
 - Counter Explosives Hazard Center
 - Cold Regions Test Center
- 7. Office of Secretary of Defense-Sustainment: Life Cycle Analysis
- 8. Armaments Center Science and Technology Networking Day. 3-years.
- 9. 6 Gigabytes of compiled data for information sharing and presenting
- 10. Weekly Activity Report staffed to AMC Headquarters; Gen Gustave Perna.
- 11. Canadian Defense interested in PAX-52 as C4 replacement.

(U) Key Points

- 1. (U) Do not trade down to RDX for cost savings.
 - Lost environmental benefits
 - Lost energy
- 2. (U) Qualify PAX-52 as a C4 alternate, not direct replacement.
- 3. (U) Formulation can be adapted for varied applications.
 - Warheads, CXM, extrusion loading.
- 4. (U) Utilize commercial modeling ANSYS Polyflow fluid dynamics software.
- 5. (U) Take advantage of cold-weather moldability for regional missions.

(U) Backup Slides

(U) Publications

(U) Journal of Rheology 2019

(U) UNCLASSIFIED

Shear viscosity and wall slip behavior of dense suspensions of polydisperse particles

Jing He^{1,2}, Stephanie S. Lee², and Dilhan M. Kalyon^{1,2,3,b)}

Journal of Rheology 2019 63:1, 19-32

(U) 201508: One Step No Waste Composition C-4 Production

(U) Performers:

- ARDEC: PI, Formulations, technology demonstration and testing
- Stevens Institute of Technology: Computer modeling and TSE design.
- Rocky Mountain Laboratory: Qualification testing.

(U) Technology Focus:

- Compound and extrude on a single production platform. Demonstrate a powder-to-product continuous process.
- ➤ Replace RDX nitramine with HMX for environmental benefits and to enhance performance. Use a silicone binder system.

(U) Demonstration Site:

Universal Twin Screw Extrusion Facility, Picatinny Arsenal, NJ.

(U) Demonstration Objectives:


- Compound HMX and Silicone: Continuous process.
- Performance: Sensitivity, stability and energy output tests.
- Environmental Impact: HMX vs RDX.

(U) Project Progress and Results

- 3D Modeling and simulation of TSE.
- Technology demonstration completed. Testing complete.

(U) Project Implementation Outlook

- Target completion date: Sept 2018
- Seeking end-user transfer agreements and qualification funding.

