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1.0 SUMMARY

The funded cooperative agreement established a collaborative effort between Air Force Research
Laboratory (AFRL) Space Vehicle Directorate and University of Arizona. Such collaboration
enabled the development of a dedicated cyberinfrastructure named VerSSA which has been
developed to provide the overall Space Domain Awareness community with a platform for data
management and sharing as well as algorithm development and sharing. VerSSA is powered by
CyVerse, and NSF-funded platform that enables large collaborative projects and scalable high-
performance computing between life science research teams. VerSSA has been developed to serve
a similar purpose within the SDA community and it is developed and demonstrated across a set of
projects across the three-year of performance. In year 1, we demonstrated that VerSSA can be
employed to develop collaborative workflows that accounts for physics-based models and data-
driven models within the same framework. Machine learning and physics-based algorithms can be
integrated to process data in and end-to-end fashion to solve SDA problems in a new and effective
fashion. A use-case comprising the simulation of the Sentinel-1A experienced anomaly detection
(solar panel impacted by a small debris) has been considered to showcase the power of VerSSA
and demonstrate that anomalous spacecraft behavior can be detected using ground-based sensor
and dedicated machine learning systems. In year 2 and 3, VerSSA has been further developed to
provide a platform for international collaborative efforts within the FVEYs defense organization.
Algorithms performing a variety of functions including astrometry, photometry, orbit
determination have been contributed by the participation nations and integrated (“‘dockerized”) in
a comprehensive VerSSA workflow and made it available to the FVEYs community for data
storage, processing and sharing. The VerSSA workflow has been employed in two FVEYs
campaigns (Phantom Echoes 1&2) devoted to observational characterization and tracking of the
Northrop Grumman Mission Extension Vehicles 1&2. VerSSA has demonstrated to be an effective
platform for large and scalable collaborative enterprises in SDA efforts.

Finally, VerSSA has been proposed as platform for algorithm development and data sharing for
effective Cislunar SDA (XDA). As part of the cooperative agreement, we have proposed and
started the development of a set of tools and processes that aims at building the first academic
XGEO catalog. The later leverages forty years of experience of UArizona in developing and
deploying planetary defense methods and tools for asteroid tracking and characterization.

2.0 INTRODUCTION

In March 2018, AFRL signed a Cooperative Agreement (CA) with University of Arizona
(UArizona) for a three years contract (2018-2021, ~$3.5M) with University of Texas as
Subcontractors. This Cooperative Agreement grant is intended to fund the development of a
dedicated Cyberinfrastructure for Space Situational Awareness (SSA, now Space Domain
Awareness or SDA). University of Arizona has been leader in developing and managing large-
scale cyberinfrastructure. Indeed, since 2008, UArizona has been home to National Science
Foundation (NSF) BIO’s largest investment in cyberinfrastructures (~ $115M), resulting is the
development and deployment of a cyberinfrastructure named CyVerse (Cyber + Universe).
Currently, CyVerse accounts for more than 70,000 users across multiple life-science disciplines.
Notably, CyVerse has been employed as computation infrastructure to process the Event Horizon
Telescope data which led to the first black hole imaging. The Cooperative Agreement has been
leveraging such ancillary infrastructure to create VerSSA, a cyberinfrastructure capable of
supporting SSA specific analysis and data management. VerSSA is has been conceived as a
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platform for data sharing and algorithms development and deployment on large stream of SSA
collected data. Currently, VerSSA supports national and international efforts with allied nations.
Indeed, the UArizona has been working with the FVEYS Nations to developing and execute a
VerSSA-based coordinated SSA campaigns, leading to the Phantom-Echoes 1&2 coordinated
observational campaign. Additionally, VerSSA has been employed as basis to start the
development of infrastructures for space domain awareness in cislunar space (XDA).

This report is organized as follows. In section 3.0 the development and the features of the
VerSSA system is described, including major features inherited by the NSF CyVerse
cyberinfrastructure. In section 4.0, the research and development program executed in year 1 to
evaluate the power and the flexibility of VerSSA in SSA-specific use-cases is described. Results
and analysis are reported for the Sentinel 1 anomaly detection use-case. Section 5.0 report the
development of the integrated VerSSA workflow/pipeline development to support the FVEY
Phantom Echoes 1 observational campaign. Contribution from the UArizona SSA dedicated
sensors is reported. Section 6.0 shows the completion of the VerSSA system and deployment to
support the FVEY Phantom Echoes 2 campaign. Finally, Section 7.0 reports the initial effort
of the UArizona team to support the development of infrastructures and methodologies for
effective ground-based XDA.

3.0 METHODS, ASSUMPTIONS AND PROCEDURES
3.1 Description of the VERSSA System

The VerSSA system (contraction of CyVerse and SSA) has been proposed as premiere
cyberinfrastructure that can serve as data management system and algorithm integration
sharing platform for SSA users, see Figure 1. It relies on the foundational effort funded by NSF
to develop a dedicated cyberinfrastructure capable of data and algorithms management
and sharing.

3.1.1 Whatis CyVerse.

Funded by the National Science Foundation (NSF) from 2008, with primary mission to
design, deploy, and expand a national cyberinfrastructure for Life Sciences researchers, and
to train scientists in its use. Built with matures and battle tested open sources components and
with over 70,000 registered users, CyVerse provide core computational
infrastructures for multiple disciplines from Astronomy to Earth Sciences as the Cyber
Infrastructure  components are domain agnostic, allowing community of
computational, data and observational scientists to effectively and securely collaborate on
large scale projects.

Approved for public release; distribution unlimited.
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Figure 1. CyVerse System

cyberinfrastructure (also known as CI or computational infrastructure) provides solutions to the
challenges of large-scale computational science. Just as physical infrastructure such as
laboratories makes it possible to collect data, the hardware, software, and people
that comprise cyberinfrastructure make it possible to store, share, and analyze data. Using
cyberinfrastructure, teams of researchers can attempt to answer questions that previously were
unapproachable because the computational requirements were too large or too complex.

3.1.2 CyVerse Philosophy and Summary of Capabilities.

The overall CyVerse development philosophy can be summarized as follows:
» Strive to provide the CI Lego blocks
* Danish 'leg godt' - 'play well’
* Also translates as 'l put together' in Latin

» If desired functionality is not available, the community can craft their own by using and
extending CyVerse CI components (like lego blocks)

* Through these extensible and customized platforms create an ecosystem of interoperable
tools that benefit the broad community (and not few lab groups)

* Provide the tools to allow community to manage their digital assets (cloud, HPC etc.)
* Improve Computational Productivity

Importantly, CyVerse has a set of extensive capabilities that can be readily adapted for the SSA
community (see section 3.2):

* CyVerse manages data and metadata by iRODS (integrated Rule Oriented Data Systems)
* Highly customizable to search and discover via queries, events and policies
* Driven by a set of rules that can be defined based on requirements

* Cyverse Discovery Environment:
* Enables the definition of Apps that can be executed on any platform (either locally

or using CyVerse inherent massive parallel computing capabilities)
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* Apps are powered by the Docker technologies
* Employs portable container for platform independent computing
* Apps can be public or private or shared among collaborators as needed

» Uses the REST API to facilitate the autonomous execution of tasks upon direct
availability of events

* ITAR Control: CyVerse-in-a-Box:

* Access a Cyverse isolated section via VPN

3.2 VerSSA Overview

VerSSA is a contraction of two acronym, i.e. CyVerse & SSA. VerSSA is conceived to
extend CyVerse Cyberi-nfrastructure capabilities to support SSA specific analysis and data
management. VerSSA makes it easy for data generators and algorithms and methods developers
to collaborate by easily sharing tools and datasets. Importantly, VerSSA make it easy for
communities to share best practices in a reliable, reproducible manner. Indeed, it allows tools/
methods developed in different programming languages and technology stacks to exist
and promotes reuse e.g. visualization developed with open source web technologies like
CesiumJS can be securely utilized by any pipeline. Additionally, VerSSA provides access to
contemporary data science tools and platforms such as Apache Spark, computational notebooks
such as Zepplin, Jupyter in a integrated manner to support reproducible and scalable analysis.
For registered users, VerSSA features 1) Data Access & Retrieval; 2) Data Storage; 3) Data
Processing and Algorithm Development. Figure 2 shows a high-level workflow of the
VerSSA system.

— Sy e ]
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\ Cammonicst Acaer 5
— High
ot 5 ke i I*I ST
- — - - Computing —aln=
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Figure 2. Overview of the VerSSA System

3.2.1 VerSSA General Workflow and Data Upload.
VerSSA general approach to data upload and general analysis workflow is described in Figure 3.
The process includes 1) ability to upload raw images from optical SSA sensors, 2) storage in
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dedicated directories, 3) automatic & semi-automatic data processing for astrometry and
photometry, 4) data visualization; and 5) processing of data via dedicated orbit
determination workflows.

5 UA-SSA directory
Telescope images on Data Upload ,lin VerSSA Data Metadata
local hard drive Store Extractor
Analysis| app
Reduce Config
Data files
Visualization ]
1QC 1 x n txt files
1 x n fits files
y Star
: catalog
c?gf:rmination ¢ Shen Aton Measure
ooy data directory "~ TLE gathered
from Reduce

Figure 3. General VerSSA Workflow and Data Analysis

VerSSA data upload can be run manually or automatically after data collection. Uses IRODS tools
to efficiently upload data. Once data are uploaded, meta data is applied and analysis can start.
Generally, extracted meta data is searchable (i.e. NORAD ID, Telescope, Date, etc.). Importantly,
uploaded data can be selectively shared with collaborators or only visible to the uploader.

Although any data can be uploaded and shared on VerSSA, but standardization speeds analysis
and improves discoverability. As such, a specific file naming for FITS files has been conceived
and generally has the following format:

* noradlD yyyymmdd exposureTime binning seriesNumber.fits
Also, the following general directory structure has been adopted:
/iplant/home/shared/
-SSA-Arizona
--Organization or Observatory name (or codes for vetted observatories)
---telescope name
----night (YYYYMMDD..tar.gz) -- one tarred file per night per telescope

More details of the development and progresses of the overall VerSSA workflow are provided in
Section 4.0.

3.2.2 VerSSA-R (Restricted).

VerSSA-R (VerSSA + Restricted access) enable restricted access for customized data controls.
VerSSA-R provides ITAR and NIST 800-171 compliance for public VerSSA capabilities. It is
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housed-in dedicated AWS.gov (Amazon Web Services) infrastructure, with controls provided and
managed by University of Arizona InfoSec compliance office. VerSSA-R inherits the same level
of flexibility and sharing capabilities as public VerSSA. However, VerSSA-R users undergo
additional steps to obtain access to this infrastructure and connect through dedicated VPN client
with MFA (Multi Factor Authentication). Here, approved users can share data and analysis
methods (pipelines) within VerSSA-R user community and projects.

VerSSA-R application catalog for analysis pipelines is identical to public VerSSA, additionally it
includes specific restricted access methods and datasets. VerSSA-R users and applications have
access to shared SSA data housed in public VerSSA. All approved AWS.gov applications
(Machine Learning, [oT etc.) are available to pipelines. VerSSA-R can be used for data curation
and validation to publish content and applications to public VerSSA after review.

4.0 RESULTS AND DISCUSSION
4.1 Project Year 1: VerSSA System Demonstration in Selected Use-Case

The first year was dedicated to the development of the VerSSA system as well as demonstration
of its capabilities. The overall goal was to show how a combination of machine learning and Al
methods with physics-based models, integrated in a modern computing and data management
cyber platform as VerSSA can provide more efficient solution to the problem of spacecraft
anomaly detection and behavior characterization. The following research questions related to
Science & Technology (S&T) as well as Research & Development (R&D) were developed:

— Research Question #1 (S&T): How can data-driven methods rooted in deep learning
enhances the spacecraft anomaly detection and behavior characterization.

— Research Question #2 (S&T): How can deep learning algorithms be effectively trained using
physics-based models to learn patterns that account for the physical interaction of the
spacecraft with the physical environment.

— Research Question #3 (R&D): What is the most effective method for deploying and operating
machine learning approaches in conjunction with physics-based models and visualization
methodologies that can provide effective decision support to human operators.

— Research Question #4 (R&D): How can modern computing infrastructure and data
management systems (e.g. VerSSA) can be employed to effectively deploy machine learning
and physics-based tools for the contemporary and future SSA challenges.

A specific use-case consisting of a simulation of a specific spacecraft anomaly detection has been
considered to provide answers to the research questions above.

4.1.1 Use-Case Spacecraft Anomaly Detection: General Description.

The use-case is specifically conceived to tackle the problem of spacecraft anomaly detection. The
general goal is to show that data analytics (e.g. deep learning) and physics-based models can work
together to effectively provide timely analysis of observations, as well as trigger observations that
can provide actionable intelligence, i.e. detect anomalous spacecraft behavior from telemetry data,
trigger observations, classify specific mode of spacecraft behavior, explain mode of behavior and
visualize content and information in real-time. The goal is to show that such a system is superior
to a physics-based system only and that can provide decision support to a human operator.
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Generally, observations need informed understanding of sensor operations and sensitivity as well
interaction with physics of sensed environment (medium and targets) to provide the most effective
(accuracy, precision, computation, timeliness) solution for prediction, characterization or
attribution. Data storage needs knowledge of how data being used for efficient retrieval and
alleviate improper overwrites as well as formatting for use and visualization. Data processing
requires methods that are space domain relevant and exploit domain knowledge and acquired data
for adapting solution and providing prediction ability to weight cost of
observation/computation/sensing with decision making timelines and goals. Importantly, we will
show that modern computing infrastructures such as VerSSA platform, enable efficient and real-
time processing, computing and visualization of the desired SSA workflow for spacecraft anomaly
detection and behavior characterization.

Described with specifics in the following, all for developing methods to be experimented on for
data collection, sharing, and processing for prediction and attribution. There are S&T (basic) and
R&D (applied) questions for object/environment prediction and understanding, sensing,
visualization, storage, processing, retrieval, testing, and interaction between government-industry-
academia for (re-) train/learn/tool/teach workforce.

4.1.2 Use-case Description: Set-up & Challenge.

The following scenario is considered:

e Take real world example of Sentinal-1A (LEO, ESA bird) where while monitoring
telemetry operators noticed a drastic drop in solar array output and seemed to see some
attitude and orbital effects in the telemetry stream: [1, 2]

1) Resolution: using on-board cameras that looked out the solar arrays, they were able to
determine that a SA was impacted by approx Smm debris (via counting damage cells
in the array)

i1) European Space Agency, "Copernicus Sentinel-1A Satellite Hit by Space Particle," 31
August 2016. [Online]. Available:
http://www.esa.int/Our Activities/Observing the Earth/Copernicus/Sentinel-
1/Copernicus Sentinel-1A satellite hit by space particle

i11) Krag, H. et al, “A 1 cm Space Debris Impact Onto the Sentinel-1A Solar Array”, Acta
Astronautica, Vol 137, August 2017, pp. 434-443.

The following challenges are anticipated:

e Identifying information sources and provide monitoring and prediction
(trajectory/attitude/system telemetry) algorithms and processing appropriate architecture
to provide automated detection and resolution of Sentinel-1A anomaly AS IF the cameras
on the solar array were not available

e Tap multiple information sources without necessarily storing data all in one place
but having access to the data

1) Space Weather feeds
i1) Telemetry Feeds
iii) Amateur/academic observation network feed /data
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e Apply and refine orbit and attitude prediction and models to provide possible causes as
well as identify follow-up observations and/or attitude slews necessary to identify cause

4.1.3 VerSSA Approach to the Use-Case.

The overall goal is to create a VerSSA integrated demo that demonstrates the power of VerSSA
for the proposed use-case Sentinel-1A anomaly detection. UArizona and University of Texas at
Austin (UTA) worked synergistically to provide innovative solutions to the spacecraft anomaly
identification and behavior identification. The integrated demo demonstrates the research approach
and show how combined machine learning & Physics-based methods help solve the problem.
Overall contribution is articulated as follows:

— UA provide VerSSA platform , Machine Learning and Al methodologies, Visualization
methods and Project Leadership

— UTA provides high-fidelity simulations physics-based OD/AD determination algorithms
and astrodynamics expertise

The combined team is synergistic in nature: UTA provides physics-based training points from their
simulations whereas UArizona works on designing, training and validating Deep Networks. All
algorithms are combined in the VerSSA environment to combine both physics-based OD/AD and
they are executed in a demo. The UA/UTA team evaluates performances and reaches conclusions
and define a path forward. We devised the following general approach:

— Create a high-fidelity simulation of Sentinel-1A scenarios for both nominal and off-
nominal behavior

— Simulate trajectory and attitude motion, sensor and actuators (RWs, IMUs, Solar
Panels and Power profile)

— Simulate ground observations,i.e. astrometric and photometric data as collected by
EO sensors

— Define API with VerSSA for astrometric and photometric data, as well as telemetry data

— Flow of data into VerSSA (storage of data and meta data for intelligent search,
email alert)

— Define data processing algorithms
— Define workflow and appropriate algorithms (OD, AD for status of the system)

— Define data analytics (Space Object Bayesian Networks, Deep Networks for
anomaly detection)

— System outputs: Sentinel-1A anomaly detection

4.1.4 Science Rationale.

The overall approach Deep learning methods are integrated with physics models to cover gaps in
understanding S/C behavior. More specifically:
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— Physical methods provide estimation of S/C trajectory and attitude but does not provide
information on S/C behavior. Deep learning methods use data-driven approach to capture S/C
behavior unmodeled by physics (e.g. human-in-the-loop)

— Deep Learning models: We employ Recurrent Networks(Long-Short Term Memory - LSTM)
with Convolutional Networks (CNN) within the framework of Meta-Learning(Learn to Learn)

* Training on a range of physically-based models to classify behavior and adapt to incoming
data (few-shot learning)

*  Meta-Deep Learning based on LSTM-CNN improves upon conventional physics-based
estimation by learning trends in the data and adapt to behavior

— LSTM, CNN, Generative Adversarial Networks (GAN) within conventional learning and
meta-learning are state of the art in ML community — SSA current shortcomings in integrating
of physics models with deep learning that can be addressed by VerSSA

* Enabling research at scale using modern computing techniques, including 1) Dockerization
and deploying of complex algorithms; 2) support curated models; 3)train on new data using
GPUs, 4) publish models curated/validated by community

4.1.5 Use Case Spacecraft Anomaly Detection: Implementation.
4.1.5.1 Concept of Operations

For the operational scenario, a spacecraft is simulated as operating nominally, and at a specific
time, it is impacted by a space debris object. The subsequent behavior analysis is divided into
four phases.

Phase 1. Simulation data posing as spacecraft onboard telemetry are streamed to the VerSSA
environment. The data are then processed by deep networks for anomaly detection to confirm
when/if the spacecraft enters an anomalous state. The results can also be visualized in 3D using

the ISV system. This then triggers further simulated observations which are also streamed
to VerSSA.

Phase II. The simulated observational and telemetry data are processed through several algorithms
to determine the event that occurred. Observations are autonomously reduced in the VerSSA
environment and can trigger OD/AD algorithms, including UKF, MUKEF, and batch least squares.
The results are then processed by another deep network for spacecraft behavior characterization.
Filtered trajectory and attitude as well as telemetry are retrieved and visualized using the ISV 3D
system. A heads-up display (HUD) is implemented to display the behavior results from the
machine learning algorithms, overlaid on the filtered spacecraft motion.

Phase III. The same scenario is run using only physics-based models and visualization. Data is
processed and used for OD/AD algorithms. Spacecraft behavior is analyzed in this phase without
the assistance of deep networks and compared to the behavior determined in Phases I & II.

Phase IV. Document and report findings, conclusions, and recommendations.

A visual representation of the complete CONOPS can be seen in Figure 4.
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4.1.5.2 Simulation Architecture

The simulation was designed to replicate the Sentinel 1A space debris impact event. As a result of
the impact, the spacecraft experienced a power drop and a perturbation from nominal orbit. The
event was discovered after seeing the power drop during preparations for a maintenance maneuver.

The attitude GNC system lost valid star tracker quaternions 1 second after the event, and the
attitude control system recovered about 4 minutes after the event. Therefore, a control system was
implemented to differentiate between internal (such as a GNC anomaly) and external (impact)
events. Simplicity was prioritized over fidelity for this simulation. A simple LVLH attitude hold
was used for guidance, and a simple control logic with no optimality assumption was employed.
Translation GNC was not in use for the spacecraft, so it is only included in the architecture for
completeness and in case of future development. However, no software has been implemented at
this time.

A permanent 280 W power loss was detected due to solar array damage after the impact event.
This was modeled in the output of the “Solar Panels” module. A power module in the spacecraft
was included to add complexity later if needed.

A C&DH module was also included to assemble spacecraft telemetry in the specified format,
fidelity, and frequency.

Figure 5 & Figure 6 provide a visual representation of the simulation architecture below.
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4.1.5.3 OD/AD Tools and Rationale
* Translation State UKF
» Attitude State UKF
» Coupled Translation/Attitude State UKF

These filters were chosen to provide an efficient approach with an improved covariance realism.
Process noise can be easily adjusted to maintain custody and easily identify point of divergence in
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the solution (real-time data integrity/fault monitoring). UT had previously implemented the
translation state UKF, so it is straightforward to extend to attitude estimation.
Additionally, coupled and de-coupled filters help to isolate anomalous events given
differences in their responses.

e Translation State Batch Estimator

This estimator was chosen since the software is readily available and has an interface similar to
the UKF. Depending on the configuration (whether data editing is enabled/disabled), it will react
differently from a sequential estimator for an anomalous event. It is also a first-order filter that will
yield a different solution from the UKF.

* Multiple Model Adaptive Estimator (MMAE)

This provides a bank of filters that each consider different physics-based models. It allows for
flexibility in hypotheses considered at the OD/AD algorithm level. It can also identify a dynamics
model that best describes the spacecraft trajectory given the available data.

4.1.6 Algorithm Design and Dockerization.
4.1.6.1.1 Translational Batch Filter Design

The batch filter attempts to estimate the initial translational state of the spacecraft, as well as its
error covariance, by minimizing the weighted root-mean-square (RMS) of the measurement
residuals over all the measurements. This process is repeated to refine the estimate until
convergence is achieved or the filter diverges. The translational state is defined simply as

x = [rT #T]7, the position and velocity of the vehicle.

4.1.6.1.2 Filter Algorithm

Prediction: An initial augmented state vector is constructed by appending the columns of the
initial state transition matrix (STM) (i.e., identity) to the a priori initial state estimate & 0
and nonlinearly propagated to each measurement epoch by integrating the system of
differential equations:

{ x(t) = f(t,x(t)) (D

e =A(tx@®)d(®)

where f(*,") is the dynamics model, 4(+,) is its Jacobian, x (*) is the estimated reference trajectory,
and ¢(+) is the STM from the initial time.
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Measurement Processing: For each measurement z; received at each measurement epoch,
the predicted measurement based on the propagated reference trajectory is computed by:

Z,- = hi(ti,j(ti)) + bi (2)

where #; is the measurement epoch, %;(:,") is the corresponding sensor’s measurement model, and
bi is its bias, if known. The measurement residual is then given by ¥;=2;i—Z  and
its covariance by:

Si = Ri(t) + H;(t, %(t))p(t)PodT (¢)H] (t;, X(1;)) (3)

where R;(*) is the covariance of the sensor’s measurement uncertainty, H;(-,") is the Jacobian of its
measurement model, and P, is the a priori initial estimate error covariance. After all measurement
residuals and their covariances have been processed, those not satisfying the following condition,

for some constant ¢, are removed:
inTSi_l}’i <& (4

This is done to improve robustness in the presence of outliers, which can seriously degrade filter
performance. Finally, the estimated initial covariance is updated by:

Py =Py + Xilq Hi (t)R; " (t)Hy(t) (5)
And the estimated initial state deviation is given by:

A%,

Xo — X = Po(Py'A% + XL HT (t)R; 1 (t)y:) (6)

where A 7 is the a priori estimated initial deviation, which is zero in the first iteration.

Reinitialization: To initialize the next filtering iteration, the prior estimated initial state
is incremented by the updated estimated deviation while the prior estimated initial deviation
is decremented by the same amount, and the prior covariance is kept at its original value:

fﬂ — fﬂ + ﬂi’n = E“
ATy « Ap — Ay (7
Py « Py
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Exit Conditions: The weighted RMS of the measurement residuals is given by:
-1
RMS = [2X2 (8)

If this value changes by less than some small constant from one iteration to the next, the filter is

considered to have converged and returns the estimated initial state and covariance (x~, and Py) If,
instead, the norm of the state deviation exceeds some large constant, the filter is considered to be

diverging. Finally, if all measurements are rejected by the test in Equation (1), the filter is
considered to have failed to converge.

4.1.6.2 Multiple Model Adaptive Estimation Framework Design

Multiple model estimation techniques facilitate the estimation of model parameters that are not
well-suited to inclusion in the estimated state. Multiple model adaptive estimation (MMAE)
attempts to select the most likely model given a discrete set of system models. To achieve this, a
bank of independent filters is initialized, each assuming a different model. The filters propagate
their state estimates from one measurement epoch to the next and perform their measurement
update. The probability of each model is then updated using its respective filter’s measurement
residuals and residuals covariance. Finally, the individual filters’ estimates are fused to produce a
single estimate of the state PDF, and the next iteration begins.

Model Probability Update: Given the prior model probabilities al) attime t , fora bank of N
filters with model indices i € {1, .., N }, the updated model probabilities are given by:

, (OMO]
wh = s (9)
k1 = SN 00

Where L{ is the model likelihood. p( =, | .

Output Fusion and Attitude Estimation: The state estimate output by the MMAE estimator
at each time step is the average of the state estimates fEL:' produced by each filter, weighted
their respective by model probabilities:

%) = SLam %, (10)
Pi= 2 u) (PO + @ -2 - 2)T) (11)
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This arithmetic averaging breaks down when attitude states are included in the state vector
definition. To account for this, Markley et al.’s method for computing the scalar-weighted average
quaternion can be used for the attitude portion of the state. In this method, the estimated quaternion
is given by the unit eigenvector of the following matrix corresponding to its maximum eigenvalue:

M= 3E ey a)" (12)

The angular rates and other state components can still be averaged as usual. The covariance fusion
in Equation (2) above can then be replaced by:

P,= 3V, ufj)(ﬁﬁ)sxiaxi"”) (13)

Where the error vector 8x}, is defined as:

(14)

Where Eﬁf:) 15 the vector of approximate error angles between the mean quaternion and the
estimate of filter i.

4.1.6.3 Unscented Kalman Filter Design

The unscented Kalman filter (UKF) uses the unscented transform (UT) to sequentially estimate the
state of the spacecraft subject to nonlinear dynamics and measurement models. Initially, the state
will be defined as the translational state of the vehicle, x = [T #7]7, but Section 4.3.3 will discuss
modifications to the UKF to allow estimation of the full 6-DOF state including attitude and
angular rates. This filter uses an a, , K parametrization to determine the sigma point weights for
the UT, with a = 1, B = 2, « = 3 — N, where N is the number of elements in the augmented
state vector.

Prediction: For prediction, an augmented state vector is formed by appending a realization of the
process noise vector wy to the dynamic state, with a block-diagonal augmented covariance with
the prior estimated error covariance Py, in the upper block and the process noise covariance Qx in
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the lower block. This augmented PDF is then propagated through the dynamic model using
the UT:

i = (b x?) +wy (15)

where f{-,") is the dynamics model and:

0) x}j)
Xk = o (16)
Wi

is the i sigma point of the augmented PDF.

Measurement Update: The measurement update is performed similarly, but with the
state augmented by the addition of the measurement noise vector vx, which is assumed to be
zero-mean Gaussian, with covariance Ry:

20 = h(te, %) + by + v (17)
O
i X
=6 (18)
Vi

is the i sigma point of the augmented PDF.

Modifications to Support Attitude Estimation: The UT model is made more complicated when
attitude states are included in the estimated state vector. To account for them, first redefine the
estimated state vector as x = [rT #T qT w”]7, with the attitude and angular rates appended to the
translational state vector. For the purposes of performing the UT and defining the state error
covariance, the error state vector will be used instead, defined as 6x = [ArT Ar¥T 50T Aw™]T,
where 06 is the vector of error angles between the quaternion ¢ and the current estimated
quaternion g (pre-update) or g~ (post-update), while the other sub-vectors are defined as Ar =
r — Iy (pre-update) or Ar = r — r" (post-update). In practice, the error angles are appro ximated
by the error generalized Rodrigues parameters (GRPs), multiplied by a scaling constant. In
practice, the use of the error state only affects the handling of the attitude vector elements.
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In the UT, the sigma points are generated with different realizations of 66, which can be converted
into an approximate error quaternion and used with the estimated quaternion as an input to the
nonlinear transformation. If the output of the transformation contains another attitude quaternion,
the approximate error angles are calculated again, now with respect to the mean sigma point )(g)).
The error state sigma points are used to calculate the transformed mean and covariance, and the
new estimated quaternion can be calculated by converting the mean of the error angles into an
approximate error quaternion and using it to rotate the reference quaternion:

q = 5q(66)q” (19)

4.1.6.4 Recurrent Neural Network for Power Drop Detection

A recurrent neural network was developed in python to predict whether a power drop has occurred
during the simulation. The network was trained using keras, which is a wrapper library for several
different neural network programming backends. In this case, the tensorflow backend was used.
The code outputs a Nx3 array text file to be used for the ISV system, along with precision and
recall scores to evaluate the model performance. Whether or not a drop is detected is also stated,
and where the drop occurs, if at all.

Test Data Format: The test data was formatted the following way as a .pmg?2 file: (Table 1.)

Table 1. Test data format

Byte 1 Char ‘0, 17, °2’; label for following data

Bytes 2-6 Char left zero padded value for number of samples ‘d’
Byte 7 Char ‘x’

Bytes 8-9 Char left zero padded row range of data ‘h’

Byte 10 Char ‘x’

Bytes 11-14 Char left zero padded column range of data ‘w’

Bytes 15-4dw*h Lsb 32-bit float of data

The above then repeats for each class until the end of the file
Data Description & Modification:

Training Data Description: The power history of 20,000 spacecraft was generated using
an independent simulation from that used for evaluating use-case #1 and recorded for 700
seconds in 1 second intervals. The input training data shape for this network is 20,000x700x1.
The labeling input training data shape is 20,000x700x2 defined as:

e If power is nominal at each second, label is: [1,0]

o Ifpower drops at each second, label is: [0,1]
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Only one power drop was simulated for each 700-second spacecraft sequence.

Modification: In order to modify the data in a usable way, it was split into 20 second
intervals, each with a 19 second overlap as follows:

e Sequence 1 = [time step 1, time step 2, ..., time step 20]
e Sequence 2 = [time step 2, time step 3, ..., time step 21]
e The rest follow similarly
Each sequence was a 3D array with dimensions:
e Dimension 1 — length of 20,000 x 681 sequences of spacecraft time envelopes
e Dimension 2 — length of 20, each representing 1 second
e Dimension 3 — length of 1 for features and 2 for labeling
Power was also normalized to a value between 0 and 1 for training.

Test and Validation Data: To generate testing data, the power histories of 5,201 spacecraft
were simulated and recorded for 700 seconds in 1 second intervals. The data were modified in
the same manner as the training data.

4.1.6.5 RNN Design & Performance
Design: The RNN consists of the following layers and activations:
e 2 long-short-term memory layers with 20 neurons each
e 2 dropout layers where 20% of the previous layer’s weights are dropped
e 2 standard feedforward layers with 20 neurons each
e Activation of the first used relu (rectified linear unit)
e Activation of the last was softmax

e Activation is not needed after the LSTM layers since the default is tanh
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A design summary of the RNN can be seen below in Table 2.

Table 2. RNN Architecture

Layer (Type) Output Shape Parameter Number
Istm 1 (LSTM) (None, 20, 20) 1,760

dropout 1  (Dropout) (None, 20, 20) 0

dense 1 (Dense) (None, 20, 20) 420

activation_1 (Activation) (None, 20, 20) 0

Istm 2 (LSTM) (None, 20, 20) 3,280

dropout 2 (Dropout) (None, 20, 20) 0

dense 2 (Dense) (None, 20, 2) 42

activation 2  (Activation) (None, 20, 2) 0

Performance: Final epoch training statistics:
e Loss: 0.05

e Accuracy: 99.9%
Overall performance:

e Close to 100% of power data at any time step identified as nominal or drop were correct
e Close to 100% of power data identified as nominal were correct
e About 95% of the power data identified as a drop were correct

The network confusion matrix is also shown in Figure 7.
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Figure 7. Confusion Matrix
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4.1.6.6 Quaternion Anomaly Detection with Machine Learning

Training/testing data for 100,000 spacecraft simulated for 700 seconds in 1 second intervals
was generated for this network. Each spacecraft will belong to one of the following spacecraft

attitude behaviors:

o Nominal Case: Spacecraft is nadir tracking
o Perturbed Case: Spacecraft experiences a random, instantaneous change in attitude
o Slew Case: Spacecraft slews to a different attitude

e Tumble Case: Spacecraft gradually begins to tumble

The number of satellites belonging to each category can be found below:
¢ Nominal: 24,861
e Perturbed: 25,202
o Slew: 25,148
e Tumble: 24,789

Test and Validation Data: The data was then split into 20,000 training satellites per category, a
total of 80,000. The remaining 20,000 satellites were used for testing. The number of satellites that

belong to each category in the testing set are below:
¢ Nominal: 4,861
e Perturbed: 5,202
o Slew: 5,148
e Tumble: 4,789

CNN Design: The following is considered:
o Each training sample was a 4 x 700 “image” of quaternion time history
e 4x 2D convolution layers
e One densely connected layer
e One readout layer
o Three separate dropouts from 0.2-0.5 keep probability
e One max pooling layer

e Adam optimizer with softmax cross entropy loss

CNN Performance Evaluation: Model accuracy, loss, and confusion matrix are shown in
Figure 8, Figure 9 and Figure 10 for performance evaluation.
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Figure 10. CNN Confusion Matrix

Testing statistics:
e 20,000 satellites classified with > 99% accuracy in < 30 seconds

4.1.6.7 Behavior Anomaly Detection

Training/testing data for 100,000 spacecraft simulated for 700 seconds in 1 second intervals was
generated for this network. An 11 element spacecraft sate vector (r,v,q,b) was used for the training
of each spacecraft.

e Spacecraft can belong to three of eight classes simultaneously:
e Two classes for the translation state
e Four classes for the attitude state
e Two classes for the power state
e Each spacecraft belongs to one of the following attitude classes:
e Nominal Case: Spacecraft is nadir tracking
e Perturbed Case: Spacecraft experiences a random, instantaneous change in attitude
e Slew Case: Spacecraft slews to a different attitude
o Tumble Case: Spacecraft gradually begins to tumble
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e Each spacecraft belongs to one of the following spacecraft power classes:

e No change: Spacecraft does not experience any abnormal drop in power

o Change: Spacecraft experiences a random, instantaneous change in power
o Each spacecraft belongs to one of the following translation classes:

e Nominal: Spacecraft is translating “normally”

e Maneuver: Spacecraft performs a translation maneuver

Test and Validation Data: The data was then split into 20,000 training satellites per category, a
total of 80,000. The remaining 20,000 satellites were used for testing. The number of satellites that
belong to each category in the testing set are below:

e Nominal: 4,861
e Perturbed: 5,202
o Slew: 5,148

e Tumble: 4,789

CNN Performance Evaluation: This network converged quickly and tested at > 99.7% prediction
accuracy (Figure 11).
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Figure 11. CNN Quaternions Confusion matrix
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Note: There were no spacecraft’s in the “Maneuver” class

4.1.6.8 Dockerization in the Discovery Environment

The below instructions provide a guide for creating an app in the CyVerse Discovery

Environment (DE):

1.

Create CyVerse account at https://user.cyverse.org/register

2. Identify the necessary software (e.g. dependencies, source code, etc.)

3. Test and build software in Docker

a) Docker installation instructions are found here:
1. Mac: https://docs.docker.com/docker-for-mac/install/
ii.  Windows: https://docs.docker.com/docker-for-windows/install/
iii.  Ubuntu or similar: https://docs.docker.com/install/linux/docker-ce/
ubuntu/
b) Create dockerfiles and push to dockerhub
c) Identify test data and instructions to test the docker image

4. Push docker images to dockerhub

S.

Define a “DE Tool” in the VerSSA Discovery Environment and input the requested
information - Click “Apps->Manage Tools->Tools->Add tool...” (Figure 12).

== CyVerse Discovery Environment
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Figure 12. Discovery Environment Tool: Input requested information

6. Define a “DE App” in VerSSA Discovery Environment and input requested information -

Click “Apps->Apps->Create new...” (Figure 13).
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7 Figure 13. Discovery Environment App: Input requested information

7. Search for newly created app in the search bar.
8. The following link provides additional documentation regarding dockerization:
https://docs.docker.com/get-started/

4.1.7 Interfaces and Automation.

4.1.7.1 VerSSA Automation Process

The automation process has been articulated according to the following steps:

1. The simulation generates spacecraft telemetry and observational data to be used by the filters
and deep networks.

2. Data are then uploaded via Python script VerSSA for analysis

3. A daemon process scans for new data periodically, and initializes the appropriate apps to process
the data (e.g. quaternion classifier, behavior network, etc.)

e The current method of automation requires that each app to be run takes a unique file type
as input. This is adhoc to our process, but can easily be adapted to suit any general app in
VerSSA.

e We have also set up a process lock file and processing log file so that the daemon does not
run into itself and knows what data is already processed.

4. Once the filter output data is available, the daemon will reformat it and feed it to the behavior
classification network.

5. Outputs from the filters and all deep networks are then available for the ISV system to ingest.
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4.1.8 Results and Analysis.
4.1.8.1 ConOps Execution

An independent UA spacecraft simulation was used to generate training data for the neural
networks. As described above, 100,000 satellites were simulated for 700 seconds in 1 second
intervals to use for training, testing, and validation of the quaternion, power, and behavior neural
networks. Once the networks were fully trained, with performance described above, the UT
simulation of the Sentinel-1A impact event was run. Position, velocity, attitude, and power were
all recorded over a 3,500 second interval in 700 second batches. The impact event occurred at
2,000 seconds where the spacecraft experienced a sudden sharp drop in power and an attitude shift.

The data from the UT simulation were uploaded to VerSSA for processing by the quaternion and
power state classifiers. Once these completed their analyses, the behavior neural network was
triggered by any anomalous event. Additionally, all outputs were available to be processed by the
ISV-SSA system to show a 3D virtual reality representation of the simulation and network outputs.
The user can go forward or backward in time and move around freely in the ISV environment to
confirm the spacecraft behavior.

4.1.8.2 Spacecraft Behavior Analysis

The results for the Sentinel-1A impact use-case are shown below in five different 700-second
batches. We discovered after the test was performed, that there was a fundamental difference
between how the attitude information was stored between the simulated test data what the networks
expected. There are two conventions for expressing quaternions in the literature, and during our
analysis of our test results, we discovered that we each used different conventions. This is likely
the reason that the attitude classification network insists that the spacecraft is “slewing” when it is
simulated as nadir tracking and does not detect the minute attitude shift when the impact occurs.
It is also important to note that the spacecraft states that are plotted (bottom right plot of each
quartet) is the filtered state output. This is not the same as the attitude estimates that the attitude
classification network sees which will, in general, be coarser and less smooth than the filtered
states. This is also likely a contributing factor to the misidentification by the attitude network.

0-700 seconds: For the first 700 seconds of the simulation, the spacecraft is supposed to be
orbiting normally while nadir tracking. As can be seen by the power state information in the last
plot in the bottom right corner, the spacecraft emerges from the umbra of the Earth at around the
550 second mark (Figure 14).
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Figure 14. 0-700 sec Prediction Results

700 — 1400 seconds: During the next 700 seconds, we see that the power networks still strongly

think the spacecraft is behaving normally, which it is, but we see some high frequency shifts in the
classification probability. This is due to a training artifact where the power consumption data used

to train the network was much smoother do to being battery discharge state and not direct power

in minus power out. The data used to train the network had the benefit of being integrated and
did not illustrate some of the staccato nature of direct power monitoring (Figure 15).
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Figure 15. 700-1400 sec Prediction Results

1400 — 2100 seconds: It was during this time window that the impact event occurred. As we can
see, the power network very clearly detects the drop in power and informs the user of the
anomalous event (Figure 16).
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Figure 16. 1400-2100 sec Prediction Results

2100 — 2800 seconds: As the spacecraft returns to normal operation, we can see that the networks
agree that the event is over, and the behavior classification network in the bottom left identifies
that while the power state has returned to normal, it is damaged (Figure 17).
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Figure 17. 2100-2800 sec Prediction Results

2800 — 3500 seconds: We can again see that the networks correctly identify the spacecraft as
behaving normally, with slight damage to the power system. The same training artifact is
apparent in the power system network, and this is easily remedied in future versions (Figure 18).
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Figure 18. 2800-3500 sec Prediction Results

4.1.9 Conclusions.

Through the use of modern cyber infrastructures such as VerSSA and physics-based deep learning
models, we were able to successfully show that we can indeed offer near real time anomalous
spacecraft behavior detection and characterization. There are a few minor artifacts that we
discovered while testing, but all are easily remedied with additional training of the neural
networks. It is also apparent that absent the power system information (which is only available
through telemetry) it would be almost impossible to detect any anomalous event occurred using
only the physics-based filtered data. The neural networks, however, are able to recognize
anomalies in the spacecraft telemetry much easier and then use this information to create a higher
level classification of behavior.

4.2 Project Year 2: FVEYS Phantom Echoes 1

Phantom Echoesl is a cooperative 5-eyes experiment to quantify benefits derived from a federated
SSA capability to enhance decision making. The goal is to exploit both simulation and real-
world events to test tools within operationally relevant scenarios (see Figure 19). More
specifically: 1) focusing on GEO protection; and 2) Real-World tracking and characterization via
the observation via optical assets distributed across the world of the Northrop-Grumman
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Mission Extension Vehicle (MEV-1) rendezvous. VerSSA plays a major role by providing a
platform for ingesting, processing and sharing data and algorithms across the FVEY's organizations.

* Current SSA paradigm:

« Phantom Echoes construct:

*EVEYS =019

Figure 19. FVEYS Phantom Echoes 1 Paradigm

4.2.1 Mission Extension Vehicle 1 (MEV-1) Experiment Overview.

The goal of this FVEYs experiment is to jointly characterize a commercial satellite servicing
mission called Mission Extension Vehicle 1 (MEV-1), On-Orbit-Servicing (OOS) and captivation
of the Intelsat-901 geosynchronous satellite. SSA experimenters from the United Kingdom (Dstl),
United States (AFRL, University of Arizona), Canada (DRDC), New Zealand (DTA) and Australia
(DSTG) all contribute observational and computing resources to characterize a challenging space
situational awareness experiment. Each nation collected a variety of observations on both the
MEV-1 during its orbit raising, proximity flight and docking using ground and space-based
telescopes. The experimenters were able to collect photometric and astrometric measurements on
the vehicle pair and detected brightnesses for both targets spanned M, 4 — 16 for Intelsat 901 and
M, 8-16 for MEV-1. Photometric and spectrometric observations were collected showing some
identifying glint and wavelength resolved features in the pre and post docking characterization of
the vehicles. National data and processing software were aggregated within a cloud-based storage
and processing architecture referred to as VERSSA which enables individual national processing
capabilities to be individually actioned within a collectively accessible IT architecture.

4.2.2 VerSSA Workflow and Data Management for Phantom Echoes 1.

A workflow with apps and algorithms provided by the FVEYs nations have been developed,
implemented and tested in VerSSA to ensure cooperative and coordinated data management and
processing for effective tracking and characterization of MEV-1. Figure 20 shows the workflow
containing all the dockerized algorithms in development for manual, semi-automatic and
automatic data processing (from raw images to orbit determination) developed for the
Phantom Echoes campaigns. The original workflow was designed to ensure that every nation
contributed a dedicated astrometric pipeline for their available sensors. Initial and Special
Perturbation Orbit Determination algorithms together with analysis and threat assessment
processes were included to provide end-to-end solutions to the coordinated observational
campaign. Native algorithms (i.e. before dockerization, including, astrometry and photometry
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pipelines, initial and special perturbation orbit determination) have been provided by the
contributing five nations. Importantly, the workflow included the development of dedicated
external interfaces/API with Unified Data Library (UDL) and CUBRC Inc. for seamless automatic
and semi-automatic data exchange and processing.

w Upload ubL VerSSA
Database and Database and
SVST (AFRL) UDL App Data Store Data Store

Astrometry Analysis Simulations

Initial Orbit
SQUID (CAN) Rhapsody (UK) Determination

AUS Pipeline Initigl Orbit
UA 10D Estimate

Simulations

UA Pipeline :
RA/DEC/Time

StarView (NZ) _ CAR-MHF (AFRL)

Special Peturbation Analysis and Threat
Orbit Determination ' Assessment V Tr—
Precise OD
Mission Planner ¢\A Detection
SITA (AFRL)
- Combat ID

Figure 20. Phantom Echoes Workflow in VerSSA

Within the provided workflow, VerSSA has a set of algorithms implemented in sharable
dockerized containers (“Apps”) that can run in stand-alone and/or automatic fashion to process
data end-to-end. Such algorithm include:

o Astrometry Apps specifically designed to ingest and process optical sensors images coming
from multiple FVEYS countries to get the Right Ascension (RA) and Declination (DEC)
of the Space Object. The set of pipelines include: 1) UArizone pipeline (USA), SQuid
(CAN), StarView (New Zealand), AUS Pipeline (AUS), UK Pipeline (UK)

e Photometry App, developed by UArizona, processes optical sensors images to obtain
light-curves

o Orbit/Attitude Determination Apps have been developed to obtain spacecraft trajectories
from astrometry data, as well as to obtain attitude profile from on-board measurements.
The apps include the following algorithms: 1) CAR-MHF (AFRL), 2) Initial Orbit
Determination (UArizona), 3) Mission Planner (UK), 4) Extended Kalman Filter (US), and
5) Unscented Kalman Filters (US)

The UArizona VerSSA team has developed a set of external interfaces to upload and download
data, including, FVEY's optical sensors distributed across the world (UArizona, CAN, AUS, NZ),
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Unified Data Library (UDL - BlueStaq), and Situation Identification and Threat Assessment (SITA

— AFRL/CUBRC).

Figure 21 shows

the

Phantom Echoes

1

directory structure

in VerSSA. The

phantom_echoes MEV1 folder contains one folder for each app plus an additional folder for all
raw images. Importantly, raw images are organized by telescope. Under each app output folder,
there is one folder for telescope.

4 | phantom_echoes_MEV1

(] AustralianPipeline-output

(] CAR-MHF-output
(| GEOF-raw-FITS

Q,J Mission-Planner-ouput

(] UAPipeline-output

4 _| phantom_echoes_MEV1

4 | AustralianPipeline-output

(] GBO-Ottawa-AustralianPipeline-output
(| GEOF-AustralianPipeline-output

(| NEOSSat-AustralianPipeline-output
(| RASA11-AustralianPipeline-output

4 | raw-FITS-images
(] GBO-Ottawa-raw-FITS
Q] GEOF-raw-FITS
(| NEOSSat-raw-FITS
(] RASA11-raw-FITS
(] RAVEN-ABQO1-raw-FITS
(] iTelescope-T14-raw-FITS
(] test

(| RAVEN-ABQO1-AustralianPipeline-output
(| iTelescope-T14-AustralianPipeline-output

4 || CAR-MHF-output

(] GBO-Ottawa-CAR-MHF-output
Q] GEOF-CAR-MHF-output

(| NEOSSat-CAR-MHF-output

(] RASA11-CAR-MHF-output

]
‘| RAVEN-ABQO1-CAR-MHF-output
1

C
(| validation_failed (] iTelescope-T14-CAR-MHF-output

Figure 21. Phantom Echoes 1 directory Structure in VerSSA

Phantom Echoes 1 raw images undergo a Flexible Image Transport System (FITS) format data
standardization. Table 3 shows the FITS keyword required to be processed by the workflow.

Table 3. Required FITS Keywords

Keyword | Type | Description _________[format ________|

DATE-OBS  String  Date and time of exposure start  YYYY-MM-DDThh:mm:ss.sss
EXPTIME Float  Exposure time (s)

OBJCTRA String  Center RA hh mm ss

OBICTDEC  String  Center DEC dd mm ss

SITELAT String  Telescope latitude dd mm ss

SITELONG  String Telescope longitude dd mm ss

SITEELEV String  Telescope elevation (m)

TELESCOP  String  Telescope name

COUNTRY  String  Three letter country name

Importantly, VerSSA can autonomously run workflows end-to-end, i.e. from sensor data to precise
orbit determination. This is accomplished by special apps developed to link the individual
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pipelines in single automatic end-to-end processing system. Automation for the data processing is
organized as follows:

e All image folders within Phantom Echoes MEV1/RawFitsImages/<Tel 1>/. will have
meta data tag associated with them that specifies whether or not they have been processed

e The Auto script will periodically check each Tel folder for new image folders without this
meta data tag

e When new images are detected desired workflows are started automatically on the
new images

o Workflows correspond to the apps that are run sequentially:

o Workflow] (preconstructed) — UA Pipeline, CAR-MHF, and Mission Planner
e Workflow2 (preconstructed) — UA Pipeline, UA 10D, and Mission Planner

e SemiAuto workflow (flexible) — can run any sequence of Apps as specified by
the user

VerSSA wiki with workflow description is currently available on-line at versa.atlassian.net
(Figure 22).

[ VerSSA apps. | Indiedual Apps o 4

©  Space Settings MissionPlanner

Description

SemiAuto FVEY
®

Description

Vars: uses DSTL
pplication uses the SP Orbit Determination component of DSTL's code to.
estimation of an observed object.

The Semiuto FVEY appiication on VerSSA is an executable that calls other individual sppications to run
an entire pipeline.

detes

Versions

* 1.0 - Initiadrallout Versions

* 11~ Updated the * 10~ invialrollout

a newer version (ddmagt ¥1 0) and added a pathid:

Inputs.

Thare are numerous iAputs for each section of the pioaline

o A Pigeling inputs
s See B UsPipeline

Figure 22. VerSSA Wiki for the Phantom Echoes workflow

4.2.3 UArizona Observational Contribution to Phantom Eachoes 1.
4.2.3.1 UArizona Observational Assets

The following observational assets are made available by University of Arizona for the project,
i.e. A) LEO20; 2) RAPTORS (0.6m); 3) NASA IRTF; and 4) Large Binocular Telescope (LBT).
Figures UA2 and UA3 report the telescopes characteristics (Figure 23, Figure 24).

Approved for public release; distribution unlimited.
35



Location: Tucson, Arizona, USA Location: Tucson, Arizona, USA

Aperture: 0.5-meter Aperture: 0.6-meter

Focal Ratio: F/2.8 Focal Ratio: F/4

Field of View: 1.4 x 1.4 deg Field of View: 16 x 16 arc min
Pixel Scale (1x bin): 1.22” /pixel Pixel Scale (1x bin): 0.93”/pixel
Focus: Multi-color photometry Focus: Visible Spectroscopy

Figure 23. A) LEO20 and B) RAPTORS class telescopes

Location: Mauna Kea, Hawaii, USA Location: Mt Graham, Arizona, USA
Aperture: 3.2-meter Aperture: 8.4-meter

Focal Ratio: F/38 Focal Ratio: F/15

Field of View: 60 x 60 arc secs Field of View: 30 x 30 arc sec
Wavelength Range: 0.65-2.55 pm Instrument: LUCI-1 and IRTC (zJHK)
Spectral Resolution: R~100 Spatial Resolution:

Focus: Near-IR Spectroscopy 60 mas at K band (~10 meters at GEQO)

Figure 24. C) NASA IRFT and D) Large Binocular Telescope (LBT)

4.2.3.2 Phantom Echoes 1 UArizona Observational Campaign
Table 4 through Table 7 report the set of collected observations during the MEV-1 campaign.
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Table 4. LEO and RAPTORS Observations campaign (Phase 1)

Sensors/Location Wavelength Type of UTC Dates of | Target/Reduction

Range/Resolution | Observation Observation Status

Jan-14-2020 Intelsat-901
Jan-24-2020 MEV-1

Jan-26-2020 Intelsat-901

Leo20 Sloang’,r’,I’, | Jan-27-2020 Intelsat-901
0.5m F/2.8 0.41-1.0 um 2’ four color | Jan-28-2020 MEV-1
Tucson, Arizona photometry | Jan-29-2020 MEV-1

Jan-30-2020 Intelsat-901
Feb-01-2020 | MIEV-1 & |sat-901
Feb-04-2020 | MEV-1 & lsat-901

Jan-26-2020 Intelsat-901
Jan-27-2020 Intelsat-901

SA;:C;?E 0.4-1.0 um res;c;m-ion Jan-28-2020 MEV-1
) . Resolution: R~¥30 | . . Jan-29-2020 MEV-1
Tucson, Arizona visible spectra

Jan-30-2020 Intelsat-901
Feb-01-2020 Intelsat-901

Reduced  Reduction ongoing

Table 5. NASA IRTF and LBT Observations Campaign (Phase 1)

Sensors/Location Wavelength Type of UTC Dates of | Target/Reduction
Range/Resolution | Observation | Observation Status
Low-
NAS;;Y:RTF 0.65-2.55 pm resolution Jan-24-2020 Failed to find
.. | Resolution: R~100 | near-infrared | Feb-01-2020 Intelsat-901
Mauna Kea, Hawaii
spectra
LBT Z’, JHK
2x8m 0.85-2.55 um resolved Jan-27-2020 Intelsat-901
Mt. Graham, Arizona imaging
Reduced Reduction ongoing

Table 6. LEO20 Observations Campaign (Phase 2)

Wavelength Type of UTC Dates of | Target/Reduction

nsors/L ion R . X
Sensors/Locatio Range/Resolution | Observation Observation Status

Jan-14-2020 Intelsat-901
Jan-24-2020 MEV-1

Jan-26-2020 Intelsat-901
Jan-27-2020 Intelsat-901

Jan-28-2020 MEV-1
Leo20 Sloang’, r’,I’, | Jan-29-2020 MEV-1
0.5m F/2.8 0.41-1.0 um 7’ four color | Jan-30-2020 Intelsat-901
Tucson, Arizona photometry | Feb-01-2020 | MEV-1 & Isat-901

Feb-05-2020 | MEV-1 & Isat-901
Feb-06-2020 | MEV-1 & Isat-901
Feb-07-2020 | MEV-1 & Isat-901
Feb-08-2020 | MEV-1 & Isat-901
Feb-09-2020 | MEV-1 & Isat-901

Reduced Reduction ongoing
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Table 7. RAPTORS and LBT Observations Campaign (Phase 2)

Sensors/Location Wavelength Type of UTC Dates of | Target/Reduction
Range/Resolution | Observation Observation Status
Jan-26-2020 Intelsat-901
Jan-27-2020 Intelsat-901
gA;:c;?j 0.4-1.0 um rest::‘;’ion Jan-28-2020 MEV-1
Tucsc'm Arizona Resolution: R~30 visible spectra Jan-29-2020 MEV-1
g P Jan-30-2020 | Intelsat-901
Feb-01-2020 Intelsat-901
2')'(21“ 0.85-2.55 um r:s:cjlcz d Jan-27-2020 Intelsat-901
. Rl eSO Feb-08-2020 | Anik F1R; F1
Mt. Graham, Arizona imaging

Reduced Reduction ongoing

4.2.3.3 Pre-Docking Characterization of Intelsat 901 (Winter 2019)

During the pre-docking phase, we employed LEO20, RAPTORS and LBT to support Intelsat 901
characterization. More specifically:

e LEO20 provides a multi-color characterization in the four sloan filters g’,r’,1’,z> (four-
color photometry

e« RAPTORS provides low-resolution visible spectra

e LBT provides resolved imaging of Intelsat 901

LEQO20 four-color photometry: Figure 25, Figure 26 and Figure 27 show the collected four-
color apparent magnitude as function of the phase angle. From the graphs, an interesting glint in
Intelsat-901 data in g’ filter (401-550 nm). One key question to answer would be the following:
What is the cause of this feature? Additionally, the glint is slightly apparent in the 1’ filter.

26824 Intelsat 901
[ Jan-14-2020 UTC ]

=
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Apparent Magnitude
=
-
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—-40 =20 0 20 40 60

Longitudinal Phase Angle (deg)

Figure 25. Four-color, phase-angle behavior of Intelsat 901 on January 14, 2020
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26824 Intelsat 901
[ Jan-26-2020 UTC ]
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Figure 26. Four-color, phase-angle behavior of Intelsat 901 on January 26, 2020

26824 Intelsat 901
[ Jan-30-2020 UTC ]
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Figure 27. Four-color, phase-angle behavior of Intelsat 901 on January 30, 2020

LBT Resolving Imaging Campaign: GEO satellites are ideal targets for measuring adaptive
optics performance of large ground-based telescopes such as the LBT. On the truth data, we have
better constraints on the shape and dimensions of GEO satellites. Additionally, consistent
observing conditions (airmass/elevation) and always available (all night/year). Importantly, cross
calibration between AO observatories is possible. Table 8 shows the characteristics of the two
instruments comprising the LBT system.
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Table 8. LBT Instruments Set

Wavelengt h Type of Spatial
Instrument Range/pixel . . Targets
Observation Resolution
scale/FOV
LUCI (LBT Utility 0.8-2.5 pm Diffraction | ~60 mas in K
. s Limited Sloan | ~45 masin H
Camera in the 0.015”/pixel , . Intelsat 901
R z’ and JHK ~30masin)
Infrared) 30”x30 L L,
imaging ~25masinz
0.8-2.5 um Diffraction 45 mas/pixel
IRTC (Infrared Test K i as/p Anik FIR
0.010"/pixel Limited JH inH .
Camera) e . . Anik F1
30”x30 imaging

Figure 28 shows the LBT observational process.

Tem e . 1 N
TLE 2| LEO 0.5-meter [ ’I Pointing Offset |

/‘I LUCI-2 acquisition (4'x4’ FOV) |

LUCI-1 AO (30"x30” FOV) |

v
| Fine Pointing/Rates | LBT Pointing

1

| Close AO Loop |—>| Science/PSF Data Collect |—>| Quick Reduction/Validation |

A

| Deconvolution |

*Simultaneous GRIZ photometry and visible spectroscopy data were collected

Figure 28. LBT Observations

Figure 29(A) shows the set of collected images in the K-/H-/J-/Z-Bands before applying
deconvolution Figure 29(B). The employed LBT deconvolution technique was the
Multiframe Blind Deconvolution (MFBD). Observing conditions prevented observing
PSF calibration star. Importantly, a Gaussian PSF was used for the initial estimate. Artifacts
observed to both sides of the satellite are the first-order diffraction (Airy) rings.
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Figure 29. Intelsat 901. A) Images before deconvolution; B) Images after convolution

As evident from Figure 29, we successfully resolved Intelsat-901 using diffraction limited imager
at LBT. The advantage of having two 8.4 meter mirrors is that one can be used as finder and the
other for science. We achieved a spatial resolution ~30 mas (~5 meters at GEO) for Intelsat-901.
Key components (Solar panels, Bus, Antenna?) can be directly identified.

4.2.3.4 Orbit Raising Period (October 2019 — January 2020)

During the orbit raising period, we employed LEO20 and RAPTORS to support MEV-1
characterization. More specifically:

b

1. LEO20 provides a multi-color characterization in the four sloan filters g’,r’,1’,z
color) photometry

(four-

2. RAPTORS provides low-resolution visible spectra

LEO20 four-color photometry: Figure 30, Figure 31, Figure 32 and Figure 33 show the collected
four-color apparent magnitude as function of the phase angle for three different
observational periods.
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Apparent Magnitude

Figure 30. Four-color, phase-angle behavior of MEV-1 on January 24, 2020

Apparent Magnitude

Figure 31. Four-color, phase-angle behavior of MEV-1 on January 28, 2020

10

11

12

14

-60

11

13

14

-60

44625 MEV 1

[ Jan-24-2020 UTC ]

1 !

- 1Q

N

i i
-20 0 20 40
Longitudinal Phase Angle (deg)

i
—40

44625 MEV 1

80 100

[ Jan-28-2020 UTC ]
T T

Sy I LT

=20 0 20

—-40
Longitudinal Phase Angle (deg)

40

80

Approved for public release; distribution unlimited.

42



44625 MEV 1
[ Jan-29-2020 UTC ]
T T

Apparent Magnitude
[ —
- (=]
T T

=
[\S]
T

18 Loesomaumstug

-100 -80 —-60 —-40 -20 0 20 40
Longitudinal Phase Angle (deg)

Figure 32. Four-color, phase-angle behavior of MEV-1 on January 29, 2020
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Figure 33. Four-color, phase-angle comparison, MEV-1 vs. Intelsat 901

Figure 34 shows a side-by-side comparison of MEV-1 versus Intelsat 901 in the sloan g’ filter as
function of the phase angle. From a photometric point of view, the following conclusions can be
drawn. First, both objects can be clearly distinguished from their phase curves as they have
different morphology and glints. Additionally, changing geometry leads to changes in phase
curves. Hence phase curves cannot be used to distinguish two objects that are maneuvering.

RAPTORS low-resolution spectra: Figure 34 shows the collected spectral reflectance for both
MEV-1 (collected Jan 18, 2020) and Intelsat 901 (collected Feb 1, 2020). We have observed
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Intelsat-901 and MEV-1 on multiple nights to characterize the spectral phase effects. Initial
analysis suggests visible wavelength spectroscopy would be a helpful tool to uniquely identify
RSOs if systematics can be worked out.

MEV-1 and Intelsat901 Spectra Comparison
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Figure 34. Spectral reflectance for MEV-1 and Intelsat 901

4.2.3.5 Proximity, Docking and Captivation

An observational characterization using the LBT system for the Anik Flcluster (proximity
operations). Figure 35 shows the image data before (A) and after (B) deconvolution. The image
data are obtained from the IRTC camera in H-band. There were 9 data sets each comprising of 50
frames. The image scale show in Figure 35 is 0.010”per pixel. The measured H-band Point Source
Function (PSF) was saturated but a separate H-band. PSF was obtained from an earlier observation
during the night and this was used for the initial PSF estimate. Deconvolution was applied to the
9 separate data sets yielding the 9 images shown here. The 9 images are very self-consistent: there
are two distinct point-like reflections on the left of the image and the one on the right appears to
be more elongated. Importantly, the apparent angular size of the satellite
is ~ 0.20” x 0.015” (~33mx3m).
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Figure 35. Anik F1, Band H, February 8, 2020. A) Images before deconvolution; B) Images
after convolution

4.3 Project Year 3: FVEYS Phantom Echoes 2

A second FVEY campaign to track and characterize the Northrop Grumman Mission Extension
Vehicle 2 (MEV-2) was conducted in year 2020. The Phantom Echoes 2 campaign was a natural
project continuation where the workflow put together in VerSSA would be exercised to show
live collaboration during real-time tracking and custody of MEV-1 across the FVEY network.

4.3.1 EPOR Tracking Campaign: Goal and Objectives.

The MEV-2 EPOR campaign was conceived to answer the following question: “Can the Phantom
Echoes FVEY community observe and maintain custody of MEV-2 during EPOR, without
using Space-Track.org?”. The goal is to test the cycle Observe-Orient-Decide-Act (OODA) loop
(Figure 36) and verify the ability to maintain custody of MEV-2 during the raising phase orbit.
The overall idea is to use Two-Line Elements (TLE) to generate indigenous orbit cues to re-
acquire, update orbit state and maintain custody during ~2-week period. During this phase, all data
processing conducted within VerSSA. The latter include 1) image reduction, 2) initial orbit
determination, 3) special perturbation orbit determination to yield the state vector output to TLE.
If all sensors cannot acquire using supplied cue, revert to NG predictions or SpaceTrack.org TLE.
The following objectives have been identified:

* Successfully execute a distributed collection experiment on MEV-2 comprising FVEY's
sensors and VerSSA

* Trial FVEYs S&T capability to observe challenging targets and process data to cue
other sensors

* Assess gaps / limitations in custody maintenance of EP-enabled vehicles

Approved for public release; distribution unlimited.
45



e Collect unclassified, shareable data on MEV-2 for submission into the international
science community

» Evaluate utility of VerSSA-like architectures for future FVEY national applications

* Inform development of Concept of Operations (CONOPs) to tackle
constantly-manoeuvring targets

Day 0 Days 1-5:

Retrieve

Initial
“Cue”

Retrieve MEV-2 predicted
position from NGC B
Generate initial TLE cue;
Dstl (?) distribute initial
acquisition to all nations
[via VerSSA]

Figure 36. FVEY Phantom Echoes 2 Campaign

Two notional campaigns have been devised:
*  De-risk trial: 297 - 31* July
— Prepare CONOPs for full campaign
« Campaign window: 28" September to 11" October* tbc
— Week 1: 28t to 2" October (+ Hotwash review)
—  Week 2: 5" October to 9" October, with the following goals
* Observe MEV-2 in anger; exercise OODA loop

* Generate sovereign UK/allied TLE cues: use to generate indigenous orbit
cues to re-acquire, update and maintain custody during 1-week “sprints”

* Apply a “Follow-the-Sun” approach to observation, processing & cueing
across nations

4.3.2 Phantom Echoes 2 CONOPS.

A notional CONOPS for the MEV-2 observational campaign has been devised. The nominal per-
sensor process is illustrated in Figure 37.
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Generate TOES / Correction ~ EEEEEEEEETELE " corection information
to assist next sensor

Provide initial TOES /
correction information
to assist next sensor

: Generate TLE “Cue”
Retrieve Observed Collect .FITS Update on VerSSA

Latest Cue Images

Pull from VerSSA or
SpTk (as relevant)

Not
Observed

Upload t Perform Orbit Use “latest” sets of
pload to PR observation data to
Document VerSSA Determination generate cue for

Non-Observed next sensor(s)

Attempt to Re-Acquire

Attempt
search / Apply Process Images with Reduced Observation Data

Backup Cue Relevant Pipeline (within VerSSA)

Report
“No-Show”

Analyse Cause, Could be Processed
i automatically by
Re-Calibrate Cue Verssa upon upload?

Figure 37. Nominal Per-Sensor Process for the Phantom Echoes 2 Campaign

The ideal solution is iterative in nature and includes the following steps:

— Collect observations of sensor

— Near real time upload to VerSSA/UDL

— Data reduction using VerSSA workflows

— Orbit update using CARMHEF/Mission planner with ability to estimate AV
— Use estimated AV to refine propagation

— Behavior analysis to predict burn pattern/times

— Schedule sensor coverage

— Generate accurate cues for next sensor

4.3.3 VerSSA set up to support Phantom Echoes 2 MEV-2 tracking campaign.

The overall VerSSA workflow (see Figure 20) has been updated to supporting the MEV-2 real-time
tracking with semi-automatic and automatic workflow. Additionally, VerSSA has been connected to
a Slack channel to ensure real-time communication and update to the FVEY Phantom
Echoes community.

4.3.3.1 VerSSA Directory Set-up & Data Format for automated processing

The VerSSA discovery environment has been connected to a new directory structure support real-
time upload and data processing & analysis. Uploading can include both raw optical data (images)
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and astrometric solutions. This option has been provided to avoid lags in uploading and transferring
a large number of raw images. The uploading of astrometry includes the following steps:

- Within a telescope directory, one creates a new directory for each astrometry
solution uploaded

- The directory needs to be named exactly: Pipeline Name-#

- ‘Pipeline Name’ is one of: “AUS Pipeline”, “UA Pipeline”, “SQUID”,
“StarView”, “LEO_Pipeline”

- ‘# is any unique identifier one desires to place. VerSSA team suggested
YYYMMDD of observations

- Importantly, do not use spaces anywhere in directory or file names

- A possible example: UA Pipeline-20201104

An example of directory structure in the VerSSA discovery environment (illustrated for telescope
LEO-20) is shown in Figure 38.

- Data: Leo-20 &~ Data: AutoRuns
Upoad - Fle+ Edt- Download~ Share+ Metadata+ 3 Refresh =
Upload ~ File~ Edit~ Download v~ Share~ Metadata~ ' Refresh
Navigation * Leo-20
4 phantom_echoes Viewing: hoes/EPOR_C 3 igati
g et et S R S
| phantom_echoes S .
« wxr:m-g ) UA_Pipeline-20201008 T : 4w e = Viewing: /iplant/home/shared/phantom_echoes/AutoRuns
(] AutoRuns 1
e ’ Name Last Modified Size
“ (| AppTesting T
4 (] EPOR_Campaign ) Leo-20_UA_Pipeline-20201008_16049... 2020 Nov 9 10:40:19
() phase_1 4 (| AutoRuns >
o2 4 ] Leo-20_UA_Pipeline-Z
phase 3
4 & astrometry_ scliions () Mission_Planner-2
e (] UA_TOD-2020-11-
JosT1
- (] UA_Pipeline
(1 GB0-Otoma (Jcan
] GeoF "
] Leo20 (] EPOR_Campaign
(] UA_Pipefne-202010( (INz
] NEOSSat (] SemiAutoRuns
(] RAPTORS -1
(I Rasal (] TLE_Sharing
(] RAVEN-ABQOL (IUA
| Telescope-T08
(] Telescope-T10 Ik
(] Telescope-T11 (lusa
] elescope-T12
| elescope-T14 L Vel
(] Melescope-T20 (| WorkflowSetup
Titlescepe 126 (] phantom_echoes_MEV1 ' Displaying 1 - 1 of 1 0 item(s)

(] Telescope T30 Displaying 1-10f 1 0item(s)

Figure 38. VerSSA directory structure for Phantom Echoes 2

The automated process currently supports the natively exported formats from each of the
astrometry pipelines listed above. Importantly, the format of the astrometry should
match the directory name, regardless of telescope used. A couple of examples are provided:

-  E.x: UA Pipeline-20201104/somefilename.uao
- E.x. AUS Pipeline-20201030/filename.obs
Uploading other formats is possible, but the VerSSA team recommended the .uao format for

ground-based sensors. The later is a 8 columns, whitespace delimited: SATID JD Exp Xloc Yloc
RA DEC Mag.

4.3.3.2 VerSSA Automated Workflow

The automated and semi-automated process has been developed to enable end-to-end processing of
raw images and/or astrometric data. The development included the development of dedicated
parsers that enabled the correct interfaces between the various apps and new scripts to generate
workflow directory structure for users employing the automated process. Two pre-made auto-app
sequences have been made available to the Phantom Echoes community to generate precise orbit
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determination: 1) Workflowl, which processes raw images and executes the sequence UA
pipeline-CARMHF-Mission Planner and 2) Workflow 2, which processes raw images and executes
UA pipeline-IOD-Mission Planner. A specialized app has been created to support the generation
of customized automated pipelines. The automated process has been tuned to  check for new data
in phase 3 directory every 5 mins. Initial OD is executed using the UA IOD app, and the OD with
MissionPlanner App in SGP4 mode (Figure 39). Results, comprising notification of completion
and calculated TLE if available, is posted to the data processing Slack channel. Importantly, New
directories will be made automatically for each “run” of the automatic app. The name for the
output state vector is: Telescope Pipeline-# timestring (‘timestring’) is integer POSIX time of run
start. The results from the automated processing results in the most rapid results, but not
necessarily the most accurate. The solutions are posted in Slack Channel as they are, and they are

not queued.

Workflow 1: Workflow 2:
StarView-10D-MissionPlanner StarView-CARMHF-MissionPlanner
* - Astromelry > - Astron}etry
@ 2t  |inal QD @ 2t m— i) D
= =
g1 g1
[ a
ol ‘ o ol .
260 270 280 260 270 280
RA {deg) RA (deg)
BB g E—
(5} () . . .
<02 - = 02 S
£ 02" £ 02|
g ) =~ I
=04 o = 04 - _
08:10:32 09:04:24 09:46:00 08:10:32 09:04:24 09:46:00
uTcC UTC
= 0.27 = 02
2 : = '
T 0- T 00—
g '02 . . : r . g '02 . ‘ ) v .
08:10:32 09:04:24 09:46:00 08:10:32 09:04:24 09:46:00
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Figure 39. Automated Workflow for TRDS-10 Orbit Determination
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As a demonstration, we report an example where we processed images coming from the New
Zealand telescope tracking the TRDS-10 satellite and automatically processed the associated
optical images within the VerSSA through StarView and UaPipeline workflows:

o /iplant/home/shared/phantom_echoes/NZ/calibration_images/TDRS 10

All outputs and results are located here on VerSSA:
o /iplant/home/shared/phantom_echoes/UA/TDRS Analysis

The plots in Figure 39 are reported directly from the residuals.txt output of Mission Planner and
show how well Mission Planner converges on an orbit in the end-to-end automated workflows.

4.3.4 VerSSA processing and Phantom Echoes Slack Channel.

VerSSA has been connected to dedicated FVEY's slack channels with automated posting of updates
during the MEV-2 EPOR campaign (Figure 40). More specifically:

o Verssa-fvey-discuss: real-time discussion between Phantom Echoes-2 international teams

e Verssa-fvey-dataprocessing: fvey bot alerts team members in real-time when new data for
MEV-2 in VerSSA are available for further data processing and/or data analysis

Figure 40. FVEY Slack Channel in VerSSA

4.4 Preliminary Analysis and Approach to XDA Problem

As humans plan to return to the Moon’s surface as early as 2024, many nations are already
deploying an increasing number of space objects in the Cis-lunar space. Defined as the volume
comprised within the Moon’s orbit, general awareness of cis-lunar space is critical to support
unconstrained access and operations including both surface and orbital domains. However, legacy
Space Domain Awareness (SDA) systems were not designed to detect, track and catalog space
objects transiting in such environments. This has given rise to a new discipline named X-Geo
Space Domain Awareness (XDA) that covers the cis-lunar space. XDA’s fundamental goal is to
build and maintain a catalog of space objects transiting and residing in the cis-lunar space using a
combination of ground-based and dedicated space-based platforms. XDA is extremely important
for many reasons. Currently, most activities in cis-lunar space are going unmonitored and only
self-reported. Continuous detection, tracking, and monitoring of such space objects is highly
desired to 1) avoid strategic surprises; 2) maintain strategic and tactical high ground; 3) support
US allies and partners; and 4) protect humans in space by ensuring safe access to the lunar surface.
Effective XDA is nevertheless challenging. Indeed, comprehensive coverage from ground-based
optical telescopes is limited by the moon’s brightness. This difficulty of imaging space objects
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within ~15 deg from the Moon's center defines the so-called "Cone of Shame." Conversely, active
radar systems may require a prohibitive amount of power to illuminate space objects at lunar
distances. A combination of dedicated space-based and ground-based sensors and dedicated set of
innovative algorithms for data processing capable of being deployed in modern cyberinfrastructures
will be required for XDA catalog building and maintenance.

4.4.1 UArizona team initial approach to the XDA problem.

The initial UArizona team approach to the XDA problem is to leverage UArizona’s 40
year experience in planetary defense from both Earth (Spacewatch, Catalina Sky Survey) and
space-based assets NEOWISE and NEO Surveillance Mission). We propose the
development of a VerSSA-powered dual-track which aims at 1) developing and validating a
prototype Cis-lunar catalog based on existing planetary defense data and new collected
observation (UArizona in-house assets); and 2) Mature and integrate basic research (new
tools) into the VerSSA framework for rapid deployment (Figure 41).

University- Prototype

SoA e :
Academic led Cis Cis-Lunar XGEO

0D Tools Ty Follow-up Catalog

Minor Planet
Center
Data
Maintenance

P o o o o o o e o o e o o e o
I Cyberinfrastructure for I
I Space Situational Awareness I
| Detectiop Measurement a o)) Sensor |
e Uncertainty ':Issoqmtlon » Algorithms Management
| Algorithms Quant. gorithms |
I I
! Basic Research Track I

Figure 41. Proposed XDA Approach

4.4.2 XDA Problem: Overall Plan.

The initial goal is to build and maintain a prototype Space Object Catalog in XGEO via the
VerSSA cyber infrastructure. The overall approach is to use observations of XGEO objects sent to
the Minor Planet Center (MPC) by planetary defense surveys to construct a basic catalog.
Importantly, this gives us an opportunity to test and validate existing tools for robust Cis-Lunar
catalog maintenance, i.e. execute a full evaluation of planetary exiting planetary defense orbit
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determination tools. As second step the objective is to identify objects that need follow-
up observations to maintain the catalog and deploy UARIZONA assets to collect these
observations. A notional workflow of the proposed approach is shown in Figure 42.

Univergity— Prototype

Minor Planet
Center
Data

I

I

led Cis- Cis-Lunar XGEO I
Follow-up Catalog |

- Maintenance |

I
I

Figure 42. UArizona Academic XDA Notional Development Approach
The development of tools for academic demonstration may include the following:
e Cis-lunar XDA Survey planning tool
e Projection of cislunar space into the sky

e Project different orbital regimes (e.g. Halo orbits, Manifolds,
HEO/XGEO)

e Object characteristics (albedo, size)
e Planning approach with Sensors
o (Given an observation cadence, determine what the sensor sees
e Given an object in a specific regime, determine the optimal cadence
e Leverage tools currently developed for NASA NEO Surveyor Mission
e Cis-Lunar Follow-up tool

e Develop a tool for follow-up and tracking of critical objects that can’t be
maintained using just planetary defense data

e Al system currently developed for NASA NEO Surveyor Mission
o Deployment of all R&D tools (existing/modified/new)

o All tools developed by academic entities will be dockerized and deployed
on VerSSA for demo in operational environment

e Leverage FVEYs Phantom Echoes experience for the
collaborative environment

5.0 CONCLUSIONS

The Cooperative Agreement between AFRL Space Vehicle Directorate and UArizona has shown
that synergy between the two research organization is critical to develop new methods, approaches,
algorithms and tools for SDA and XDA. Over the past three-year, the UArizona team made a
focused effort to develop and deploy the VerSSA cyber infrastructure as a platform for data
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management and algorithm development and sharing in the SDA community. VerSSA has been
successfully deployed and tested on real-world campaigns such as FVEY Phantom Echoes 1&2
and demonstrated to be an ideal system for large and scalable collaborative SDA efforts. VerSSA
has also been proposed and initially tested as a platform for the first XGEO academic catalog.
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LIST OF ACRONYMS & GLOSSARY

AD - Attitude Determination

AFFEL - Aw Force Fesearch Laboratory
Al - Arhficial Intelligence

API - Application Protocol Interface
AWS — Amazron Web Service

CA - Cooperative Agreement

CAR-MHF - Constrained Admissible Regmions, Multiple Hypothesis Filter
C&DH — Command and Data Handling
I - Computational Infrastructure

CHN — Conveolutional Mewral Metwork
COMNOPS - Concept of Operatons
CvWVerse — Cyber Universe

DE - Dhscovery Environment

DEC - Declmation

E5A — European Space Agency

FITS - Flexible Image Transport Systemis
FVEY - Frve-Eves defense organizations
FAN — Generative Adversanal Network
ZEQ - Geostationary Earth Cobat

ZHC — Gumdance Control & Navigaton
&PU - Graphic Processmg Unat

ZEP — Generalized Fodnguez Parameters
HEO — High Earth Orbat

MU - Inertial Measuwrement TTnit

10D - Imutial Orbat Determination

IoT - Internet of Things

1IRODS — mntegrated Fule Onented Data Systems
ITAF — International Traffic Army Fegulatons
LBT - Large Binocular Telescope

LEO - Low Earth Orbat

L5TM - Lonz-Short Term Memory
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LIST OF ACRONYMS & GLOSSARY (continued)

LVLH - Local Vertical Local Horizontal
MEYV — Mission Extension Vehicle

MFA — Multi Factor Authentication

MFBD — Multi-Frame Blind Deconvolution
ML — Machine Learning

MMAE — Multiple Models Adaptive Estimator
MPC — Minor Planet Center

MUKEF — Multiple Unscented Kalman Filter
NASA — National Aeronautics and Space Administration
NEO — Near Earth Object

NG — Nortrop Grumman

NSF — National Science Foundation

OD — Orbit Determination

PDF — Probability Density Function

RA — Right Ascension

R&D — Research & Development

RMS — Root Mean Square

RNN — Recurrent Neural Network

RW — Reaction Wheels

S/C - Spacecraft

SDA — Space Domain Awareness

S&T — Science and Technology

SSA — Space Situational Awareness

STM — State Transition Matrix

TLE — Two-Line Elements

UArizona — University of Arizona

UDL — Unified Data Library

UKF — Unscented Kalman Filter

UT - Unscented Transform

UTA — University of Texas at Austin
VerSSA - CyVerse + SSA

VerSSA-R — VerSSA Restricted
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LIST OF ACRONYMS & GLOSSARY (continued)

VPN — Virtual Private Network
XDA — Cislunar Space Domain Awareness
XGEO — X-time Geostationary Earth Orbit
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