

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

[Insert Distribution Statement Here]

Automated Data for DevSecOps
William Richard Nichols wrn@sei.cmu.edu412-268-1727

Hasan Yasar hyasar@sei.cmu.edu 412-268-9219

Luiz Antunes, lantunes@sei.cmu.edu 412-268-2395

Christopher L. Miller clmiller@sei.cmu.edu 703-247-1416

Robert McCarthy remccarthy@sei.cmu.edu 412-268-6920

Table of Contents

1 Abstract 3

2 Introduction 3

3 Background 4

3.1 DSO, Pipelines and Automation 4

3.2 Programmatic Needs 5
3.3 Prior Work/State of the Practice 6

3.3.1 Academic Research 6

3.3.2 Government and DevSecOps 6
3.3.3 Industry 7

3.3.4 Metrics 7

4 Our Research 8

4.1 Objectives 8
4.2 Approach 9

4.2.1.1 Identify SME for Consultation and Review 9
4.2.1.2 Select Key Program Management Scenarios 9
4.2.1.3 Construct Prototype Pipeline 9
4.2.1.4 Hypothesize Indicators 9
4.2.1.5 Prototype Pipeline and Data Collection 9
4.2.1.6 Produce Indicators with Synthetic Data 9
4.2.1.7 Validate with SME 10

4.3 Workflow 10

4.3.1 CONOPS 11
4.4 Early Results 13

4.4.1 Indicator Displays 14

4.4.2 Supporting Metrics 16
For the purposes of these simulations, we made simplifying assumptions. At

this stage, our objectives were to validate the displays with the SME and verify

the data collection approach. The simplifications are as follows: 16
metrics supporting these indicators include 16
The measures include 17

4.4.2.1 Tool Sequence and Data Collection 17

5 Discussion, Open Issues, Next Steps 18

5.1 Lessons Learned 18

mailto:hyasar@sei.cmu.edu
mailto:clmiller@sei.cmu.edu
mailto:remccarthy@sei.cmu.edu

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

"[Distribution Statement A] Approved for public release and unlimited distribution

5.1.1 Lessons for Practice 18
5.1.1.1 Capability Based Work Breakdown Structure 18
5.1.1.2 Connecting the Stories to the WBS 18
5.1.1.3 The instrumentation of a pipeline vs a pipeline instance poses another problem.

There exist several arbitrary ways to organize similar DevSecOps tool chains.
Different tools may provide similar functionality but have different interfaces.

Some tools may have different orders of execution. It is necessary that the

instance be described sufficiently so that the actual progress of a story is
known, and that the data can later be used with context. In principle, there

should be ways for a toolchain to self-describe. Nonetheless, an automated tool

chain should be repeatable and stable. For this reason, we characterized a
pipeline instance by activity and by which tool performed or was used in the

performance of that activity. To effectively use automated data collection events

from the example sequence diagram in Tool Sequence and Data Collection 18
5.1.1.4 Data Warehouse vs. Data Lake 19

5.2 Opportunities for further research 19
5.3 Software Factories and Multiple Pipelines 19

5.4 Parametric Cost Modeling Evolution 20

5.5 Quality, Rework and Technical Debt 21
5.6 Cybersecurity 21

6 Summary 21

7 References 23

8 Biographies 25

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

"[Distribution Statement A] Approved for public release and unlimited distribution

1 Abstract

Automation in DevSecOps transforms the practice of building, deploying, and managing software in-

tensive programs. Although automation supports continuous deployment and rapid builds, manual col-

lection of information delays program status metrics and the decision they are intended to inform by

weeks. The emerging DevSecOps metrics such as deployment rates and lead times provide insight to

how the software development is progressing but fall short to in terms of replacing program control

metrics for assessing progress (e.g., burn rates against spend targets, integration capability target

dates, and schedule for the minimum viable capability release. By instrumenting the DevSecOps Pipe-

line and the pipeline’s supporting environment continuous measurement of status, identification of

emerging risks, and probabilistic projections is possible and practical. This paper discusses research

on the information modeling, measurement, metrics, and indicators necessary to establish a continuous

Program control capability which can keep pace with DevSecOps management needs. The importance

of interactive visualization dashboards targeted to addressing program information needs is discussed.

We will also address gaps in the current state of the practice and barriers we have identified. Finally,

we present examples we recommend needed future research based on our initial findings.

2 Introduction

DoD software development is now outpacing the ability of program management to exercise program

oversight. Software acquisition increasingly involves software development using Continuous Integra-

tion/Continuous Delivery (CI/CD) as described in the Software Acquisition Pathway (SAP). The SAP

is available to “facilitate rapid and iterative delivery of software capability to the user” (Defense",

2020) and to empower program managers (Brady & Rice, 2020). However, acquisition program man-

agement professionals struggle to keep pace with continuous delivery because it does not come with

continuous data or continuous estimation models. Continuous Delivery can produce working software

not only at the end of sprints, but daily or even multiple times per day. To make commitments,

changes, or program interventions, the program office needs up-to-date information on capability

readiness, costs, and progress rates. However, relevant data reports can take weeks or months. The ac-

tual progress is constantly ahead of program control.

The challenges are numerous and include increasing complexity of software enabled systems, hard-

ware in the loop, and the presence of COTS and/or open-source components. Within this context, ac-

quisition is adapting with the Software Acquisition Pathway. The DoD policy is clear. IT expects pro-

gram managers to use metrics for planning, control and oversight: “The PM shall identify, collect, and

use management, cost, schedule, and performance metrics to enable effective program execution by

the PM and other stakeholders. Metrics collection should leverage automated tools to the maxi-

mum extent practicable .”{em added}(“Under Secretary of Defense” DoD, 2020).The specific list of

minimum requirements includes process efficiency, software quality, software development progress,

cost, and capability delivery (e.g., value delivered). The inability of program management to apply

lifecycle data analytics to measure program performance, and conduct effective oversight of CI/CD

practices, thus prevents the DoD from consistently and effectively adopting modern practices. Realiz-

ing the desired benefits of CI/CD requires metrics collected from the modern development pipeline

and prediction models derived from that data. This research project examines how we can take ad-

vantage of the automation within the modern DevSecOps environment for the benefit of program

management.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

"[Distribution Statement A] Approved for public release and unlimited distribution

3 Background

Extensive literature review found that peer reviewed literature is devoid of studies of automated data

collection for CI/CD (Prates, Faustino, Silva, & Pereira, 2019). Although non-peer reviewed literature

exists, they either address operational issues rather than PM issues, or limit to a narrow research topic

(Vassallo, Proksch, Gall, & Di Penta, 2019) rather than DoD programmatic needs. Several sources,

PSM, NDIA and INCOSE (Jones, Draper, Golaz, Martin, & Janusz, 2020b), and the DoD (Defense’,

2019) recommend metrics for Agile and CI but none have connected to automated collection nor have

the metrics been rigorously validated. The situation is similar for DevSecOps with regard to the

DORA metrics (Forsgren & Humble, 2015)(Forsgren, Humble, & Kim, 2018). The Defense Innova-

tion Board (DIB) explicitly noted this gap: “In the beginning stages of DoD’s transformation to

DevSecOps methods, the development and operations community will need to work closely with the

cost community to derive new ways of predicting how fast capability can be achieved. For example,

estimating how many teams worth of effort will be needed to invest in a given period of time to get

the functionality needed. ... New parameters are needed, and more will be discovered and evolve over

time”(McQuade et al., 2019).

By replacing practices that in the past have been labor-intensive and prone to error, DevSecOps ena-

bles Continuous Integration and Continuous Deployment. CI is the automated process by which devel-

opers integrate code then build, test, and validate, and deploy new applications. The automation that

makes these DevSecOps practices possible in turn spawns a large amount of data as a by-product. This

data can be made available to enable stakeholders to assess the health of a project, including its devel-

opment performance, operational performance, whether it is sufficiently secure, and how frequently

upgrades are being delivered.

3.1 DSO, Pipelines and Automation

In order to implement automated continuous estimation of software-intensive systems, it is necessary

to define what is being measured. The specific measurements depend upon the decisions to be made.

For the purposes of this document, we focus on the point of view of Program Managers and the devel-

opment pipeline as the object of measure.

DevSecOps (DSO) is a software engineering culture and practice that aims at unifying software de-

velopment (Dev), security (Sec) and operations (Ops) personnel and their practices. The essential con-

cepts of DevSecOps comprise automating, monitoring, and applying security to all activities of soft-

ware development including , feature planning, bug fixing, feature development, application and

support infrastructure builds ant testing, releasing new software, whether that involves: maintaining

operational software that supports a user-base, monitoring operational systems for performance and

security-related events (CIO (DoD), 2019)

DevSecOps consists of a set of principles and practices which enable better communication and col-

laboration between relevant stakeholders for the purpose of specifying, developing, and operating

software and systems products and services, and continuous improvements in all aspects of the life cy-

cle. (IEEE, 2021)

A pipeline consists of a chain of processing elements arranged so that the output of each element is the

input of the next; the name is by analogy to a physical pipeline. The analogy is a weak connection.

I.e., there is no requirement for ordered processing or tight coupling. In fact, many pipeline elements

use asynchronous messaging and de-coupled processes, such as GitOps. Often the term pipeline is

used to specifically describe the set of processes that tie together and eventually produce a software

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

"[Distribution Statement A] Approved for public release and unlimited distribution

artifact. Sometimes this output is then used as an input into a different, possibly distinct pipeline or

pipeline instance. (CIO (DoD), 2019)(CSO DoD, 2021)

Automation of the DSO pipeline provides an unprecedented opportunity to collect software develop-

ment data from the engineering tool suite without burdening the software development staff to provide

performance metrics in a manner that does not distract effort from development work. By eliminating

manual data collection activities, it not only reduces the effort associated with performing these tasks

it also reduces the opportunity to inject bias into the data. It also provides a continuous data collection

and storage capability that can revolutionize the frequency and fidelity of software estimation.

3.2 Programmatic Needs

Program management is usually defined as managing a group of related projects, using specific man-

agement techniques, knowledge, and skills. The program manager must work with senior leaders and

stakeholders across multiple departments and teams. Decisions are likely to be strategic and connected

to the financial calendar. Responsibilities include coordinating resources and outputs across teams ra-

ther than with teams in isolation.

Program management responsibilities include strategy, finance, and communication. The overarching

purpose is to guide the program to successful outcomes. The program manager responsibilities include

(Zein, 2010)

 Manage the program’s budget

 Establish High-Level Performance Objectives

 Manage strategy and guide investment decisions

 Define the program governance (controls)

 Plan, monitor, and control the overall program

 Manage risks and issues and taking corrective measurements

 Coordinate the projects and their interdependencies

 Manage and utilize resources across projects

 Manage stakeholders’ communication

 Align the deliverables (outputs) to the program’s “outcome” with the aid of the business change

manager; and

 Daily program management throughout the program life cycle

The program manager needs information to provide adequate resources, negotiate commitments, and

otherwise satisfy stakeholder needs. The project status reflects not only the status of its own code, but

also how its dependencies affect it. These needs include, but are not limited to

 Baseline and benchmark performance

 Product completion and cost rates with probabilistic cost/schedule projections

 Master plan, master schedule and lead times,

 When work has begun and completed

 Which queues can be bypassed?

 Resource needs and utilization under nominal and “what-if” scenarios

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

"[Distribution Statement A] Approved for public release and unlimited distribution

3.3 Prior Work/State of the Practice

3.3.1 Academic Research

Prior work has identified numerous candidate measures and opportunities in the DevSecOps pipe-

line(McQuade et al., 2019) (Jones et al., 2020b)(Defense’, 2019) at all stages of development includ-

ing feature request, requirements development, architecture, design, development, test, delivery, and

operations. Automatically collecting data generated by the tools used during these stages can provide

information on product size, effort, defects, rework and durations, often on a feature, story, and/or

component level of granularity. Creating new features, in the machine learning sense, from the raw

data to deduce status and improve predictive power is a key challenge.

To demonstrate the feasibility of automated continuous estimation we will simulate software projects

(Raffo, 2004)(Abdel-Hamid, Tarek and Madnick, 1991) using synthetic data and an instrumented

DevSecOps pipeline. This demonstration will focus on a subset of the DoD PM information needs,

leaving a more comprehensive effort for future work. Our planned focus will be on projections for sat-

isfying the requirements for coordination dates such as the Minimum Viable Product (MVP) or Mini-

mum Viable Capability Release (MVCR). We will review and validate work with quarterly advisory

review panel sessions (QuARPs) involving DoD program managers and other SMEs.

3.3.2 Government and DevSecOps

One defining characteristic in the DoD is the fact that the environments in which systems operate are

highly regulated. Because of this, agencies are not free to simply adopt strategies and frameworks that

are found in industry environments. The SEI has written guidance describing special conditions found

in these environments, difficulties generated by them and possible solutions to make DSO practices

work.

One of the biggest pushes to Agile, DevOps and DevSecOps (DSO) has started since the incorporation

of the Chief Software Officer at the USAF. The DoD has since then seen a huge effort towards the in-

ternal standardization of a platform with artifacts and processes that may be used across the depart-

ment agencies. While not being a one-size-fits-all solution, this initiative has promoted the DSO mind-

set across multiple programs that found now is the right time to implement the DSO practices in those

programs. To support these initiatives, the DoD prepared guidance on how to adopt DSO practices and

issued different documents to provide ideas of teams and personnel organization, cost and level of ef-

fort. Most of the organizations and agencies following guidance from the DoD are currently using

these documents, that are listed and described below:

 DoD Enterprise DevSecOps Playbook (CSO DoD, 2021) : provides detailed coverage of all the

aspects related to the design, development and operation of systems under the DSO lens. Among

the topics covered, one will find guidance about shifting a program culture towards DSO, assem-

bling a software factor (SWF), implementing DSO pipelines in a SWF, basic metrics to capture

and monitor, orchestration frameworks, and finally suggestions on how to secure the system and

its infrastructure.

 DoD Enterprise DevSecOps Reference Design (CIO (DoD), 2019): preceded the two others

mentioned above. This document provides more technical implementation details such as con-

tainers vs. virtual machines, DoD centralized artifact repository, and how to organize a DSO

pipeline and its environment.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

"[Distribution Statement A] Approved for public release and unlimited distribution

One defining characteristic in the DoD is the fact that the environments in which systems operate are

highly regulated. Because of this, agencies are not free to simply adopt strategies and frameworks that

are found in industry environments. The SEI has written guidance describing special conditions found

in these environments, difficulties generated by them and possible solutions to make DSO practices

work (Morales et al., 2020).

3.3.3 Industry

Industry tends to be on the bleeding edge of technology and is always adopting practices that can pro-

vide a competitive advantage to its organizations. Much of the guidance initially taken by the industry

comes from documents published by consortiums of organizations that have a solid track record in im-

plementing DSO and implementing software factories that apply very advanced concepts to be more

competitive and secure (e.g., Netflix Chaos Monkey and Amazon fast-turnaround live-release deploy-

ments).

3.3.4 Metrics

Measurement of DevSecOps draws from both traditional Agile (Kupiainen, Mäntylä, & Itkonen,

2015) and Lean (Staron, Meding, & Palm, 2012) (Poppendieck & Poppendieck, 2013) and

flow(Vacanti, 2015) metrics. Measurement objectives include tracking of project progress, increasing

visibility into complex aspects of development, providing adequate resources, balancing workloads,

understanding and improving quality, ensuring adequate testing, and verifying readiness for release

(Kupiainen et al., 2015). This section includes descriptions of some adaptations of metrics common in

DevSecOps.

Using analysis surveys completed by DevOps subject matter experts (SMEs) the DevOps Research

Association (DORA)(Forsgren et al., 2018) identified four key metrics associated to software develop-

ment and delivery performance. Two of them relate to tempo, two to stability, while another was

added to measure reliability.

Deployment frequency - The frequency of an organization's successful releases is referred to as

deployment frequency. Because different organizations define release differently, deployment

frequency may measure how frequently code is deployed preproduction staging, to production or

to end customers. Higher frequency is considered better.

 Mean lead time from commit to deploy - The Mean lead time for change is the average time

required for a commit to reach production. Short mean lead times enable engineering and man-

agement to determine that post code production process is healthy and could likely support sud-

den increase of requests. This metric, like deployment frequency, is a measure of software deliv-

ery speed.

 Mean time to recover – Also called mean time to restore [MTTR)], is the average duration in

time required to restore service after an unanticipated issue or outage. Shorter outage durations

are better. Short recovery times are enabled by rigorous monitoring, full configuration control,

infrastructure as code and automation that enables a prompt roll back to a stable system. Shorter

times are better.

 Change failure rate - A change failure rate or percentage measures the frequency that changes

to the production system result in a problem, including rollbacks, patches, and failed deploy-

ments. Lower change failure rate is better and indicates the production process is effective.

Higher rates indicate that developer time spent on rework rather than new value.

https://en.wikipedia.org/wiki/Mean_time_to_recovery

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

"[Distribution Statement A] Approved for public release and unlimited distribution

The General Services Administration (GSA) , provides a larger set of metrics to measure success at

implementing DevSecOps https://tech.gsa.gov/guides/dev_sec_ops_guide/ . The GSA’s set of high-

value DevSecOps metrics include Deployment Frequency, Change Lead Time, Change Volume,

Change Failure Rate, Mean Time to Restore, Availability, Customer issue volume, Customer issue

resolution time, Time to value, Time to ATO, Time to Patch vulnerabilities.

The Practical Software Measurement Group (PSM) issued three framework documents for measure-

ment of continuous iterative development (CID). Part 1 of the PSM CID Framework describes the

concepts and definitions(Jones et al., 2020b) . Part 2 addresses Measurement Specifications and Enter-

prise Measurement (Jones, Draper, Golaz, Martin, & Janusz, 2020a) , Part 3 addresses Technical Debt

[Jones 2021c](Jones, Golaz, Draper, & Janusz, 2021)

The research community has only recently begun to study measurement in DevSecOps. A multivocal

tic literature review by Prates (Prates et al., 2019) found limited prior academic research. Moreover,

metrics identified by Prates focused on security and quality (defect burn rate, critical risk profiling,

defect density, top vulnerability types, number of adversaries per application, adversary return rate,

point of risk per device). The summary noted “It was very hard to find information regarding metrics

associated with DevSecOps in academic literature”. The metrics identified were primarily security re-

lated rather than programmatic. Mallouli (Mallouli, Cavalli, & Bagnato, 2020) focused on cybersecu-

rity rather than programmatic issues. A more general contribution from Mallouli included a Metrics-

Driven DevSecOps architecture that includes measuring tools, a core platform, database, and analysis

tools. Their architecture diagram aligns with our vision for general purpose needs for DevSecOps

Measurement

4 Our Research

4.1 Objectives

This research was constrained in budget and limited to a one-year execution. Its long-term goal is to

improve support to program management decision-making. The short-term objective is to explore the

subject for gaps, needs, and research opportunities. A successful project would thus lead to more fo-

cused follow-on work. With all these objectives in mind, the research team posed a number of related

questions to explore the, including:

 What are Information gaps DoD Program Managers have with DevOps related projects?

 What program information is needed for prediction and actionable decisions in this environ-

ment?

 What data supports to answering those questions?

 What data can we gather to support real time reports and analysis?

 How should the data be joined, transformed, and labeled to retain context?

 What algorithms should we use to develop models and indicators?

 How should we present indicators to decision makers?

The above questions can be binned in three categories:

 What one needs to know

 How progress against the goals can be measured

https://tech.gsa.gov/guides/dev_sec_ops_guide/
https://tech.gsa.gov/guides/dev_sec_ops_guide/
https://tech.gsa.gov/guides/dev_sec_ops_guide/

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

"[Distribution Statement A] Approved for public release and unlimited distribution

 How the information should be presented

These three questions guide the output of this research.

4.2 Approach

4.2.1.1 Identify SME for Consultation and Review

Our subject matter experts were not randomly selected. Instead, we identified individuals with signifi-

cant responsibilities in DoD defense industrial base Program Management, DevSecOps consulting,

and government policy. Although selection risks introducing bias, the benefit was a small group with

whom we could engage in deeper discussions.

4.2.1.2 Select Key Program Management Scenarios

Although we entered this research with prior beliefs, our SME group was invaluable for elaborating

on their use cases and work arounds. Our SME group guided us to focus on percent complete, predic-

tions of capability delivery dates with status quo, and predication of capability delivery dates with pro-

gram interventions.

4.2.1.3 Construct Prototype Pipeline

We next constructed a demonstration DevSecOps pipeline with instrumentation points to prototype

data collection and storage. This pipeline was reviewed with our SME to verify that it was sufficiently

representative to address their concerns.

4.2.1.4 Hypothesize Indicators

To make decisions requires that the decision maker have information on the scenarios. We borrowed

indicators typical of Earned value (Department of Defense Earned Value Management Interpretation

Guide, 2018) and Earned Schedule (Lipke, 2003)management and validated these with the SME.

These indicators then helped analyze the information needed to create them.

4.2.1.5 Prototype Pipeline and Data Collection

Based on the information needs, we explored the prototype pipeline and other data sources. This

helped us to identify data sources and reason about how to collect the data with sufficient context to

construct the indicators.

4.2.1.6 Produce Indicators with Synthetic Data

Actual data was impractical because of the limited time in which to complete our work. Instead, we

generated synthetic data, which was suitable for our purposes and provided additional benefits. The

purpose of the simulation was to demonstrate that our data could be stored and that our data storage

models would be suitable for producing the desired indicate. We began with an exemplar project one

of us had worked on previously. We separated the work items into capabilities, features, and stories to

develop a reference roadmap and work breakdown structure. Next, we added an artificial estimate for

direct effort to each story. We approximated duration as proportional to effort and parameterized the

variation in the actual effort required. We used a nominal team load and effort calendar to map the be-

ginning of and end of development for each component to an initial estimated plan schedule and an

actual (simulated) schedule. We then simulated the flow of stories through our pipeline to model data

collection and migrate the data into a data base. We then extracted data from the database to build the

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

"[Distribution Statement A] Approved for public release and unlimited distribution

indicators. We computed the percent complete based on estimated costs and estimated costs of work

complete. The results were displayed as an Earned Schedule. We computed projected scenarios using

the a priori effort variation and Monte Carlo to estimate a range of completion dates.

4.2.1.7 Validate with SME

To conclude, we demonstrated the simulations and resulting indicators to our SME for their review.

4.3 Workflow

The collection of data throughout the design, development and operation of a system provides people

involved in these processes with situational awareness and actionable information.

Information from processes and tooling can be captured from the early stages of planning, throughout

the execution of the system, and finally from the environment in which the system operates, in a post-

deployment scenario. Figure 1 displays the different phases of the system lifecycle and suggests types

of data that could be collected along the way.

Figure 1: DevSecOps Pipeline and Data Storage

From the planning stages of the system, recorded requirements can be monitored through the develop-

ment phases to ensure that features are implemented according to the original plan. Because specifica-

tions may change along the way, changes to these requirements can and should be incorporated to tell

a complete story and indicate the reasons why modifications in the implementation are necessary.

As we head into the design and architecture phases, these requirements take shape and—based on ar-

chitectural principles—turn into a skeleton that will guide the feature generation at a higher-level.

Code is then generated to implement the features proposed by the architecture and refined by epics

and stories. At this moment, artifacts enter a version control system and start flowing through a con-

tinuous integration (CI) framework that allows us to capture data such as code style, quality and secu-

rity, which can be inspected and discovered by linting and a static analysis process. Still in the CI

framework, the system will be built and tested by a dynamic analysis process that will even evaluate

the quality and security of both the built system and its dependencies, as detected in the build process.

The data coming from this phase is extremely valuable to the teams involved in the implementation, as

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

"[Distribution Statement A] Approved for public release and unlimited distribution

it will guide them through a path to fix issues and minimize risk. It is also useful for teams managing

resources and following the cost and schedule, as this will inform them about the efficacy of the de-

velopment team during implementation and help forecast estimated dates and overall cost for comple-

tion.

As development teams release system versions and take them to staging environments—and finally

production—all the data about post-deployment issues and utilization of the system can also be cap-

tured to inform operation teams about resource utilization and system growth.

With all this data available, it is easy for anyone who monitors it to feel overwhelmed by the amount

and coverage of the information. That is the reason why introducing mechanisms that reduce the load

of mental analysis, make good use of human cognitive capabilities and allow people to have faster in-

sights is adequate here. By understanding the needs of stakeholders to receive information that allows

them to get answers to their questions about system planning, development and operation, we are cre-

ating conditions for better sustainment, faster problem solving and increased security.

In this study, our teams analyzed data captured in many of the different phases described above, for

both real and simulated projects. A team of analysts attempted to answer questions that may have a

large impact in the development and operation of the system, and chose metrics based on their analy-

sis. Once these metrics were defined, developers introduced means to capture and store the data re-

lated to them and then proceeded to generate visualizations that could make the data easier to under-

stand. Based on the stakeholders needs these visualizations have been aggregated into dashboards that

now provide full transparency into the development and operation of the system.

The fact that we are paying attention not to one pipeline, but to an association of pipelines, introduces

more complexity for both capturing and organizing data while understanding their origin and process

sequencing, and also classifying and separating information at presentation time. Such amount of in-

formation can be overwhelming and become extremely misleading if the design of the dashboards

does not provide enough situational awareness to the information consumers.

4.3.1 CONOPS

The idea for the Automated Continuous Estimation in a pipeline-of-pipelines (PoPs) context is

roughly an amplification of the same process implemented for a single pipeline. The overall goal is to

be able to understand the behavior of the processes in the SDLC by capturing measurements that will

provide situational awareness of the efficiency of the different parts of the framework and system.

However, the complexity introduced by the interactions across multiple frameworks and pipelines can

add a substantial load to how the different parts of the environment are monitored. Teams must be

careful when introducing instrumentation, so an accurate view of different paths is provided and con-

siders the right timing for measuring signals.

 Figure 2 illustrates the different phases of the whole process, including planning, implementation and

operation. All of them provide valuable information for monitoring and creating an accurate situa-

tional awareness model for stakeholders.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

"[Distribution Statement A] Approved for public release and unlimited distribution

Figure 2: Concept of Operations

Before teams implement the mechanisms described in section 3.3, it is fundamental to understand

what expectations the organization sponsoring the development of the system has, and what plan has

been generated for this process. The initial plan contains estimates of complexity for different system

modules, as well as forecasts for schedule and costs involved in each phase. Part of the reporting will

be generated by comparing this plan with its actual execution. Because the SDLC is using Agile meth-

odologies, changes to the original requirements are always welcome, and will need to feedback into

the original estimates at the end of each iteration, making this whole process more dynamic.

As we head into the production of the system, a DSO pipeline—or group of pipelines—will provide

access to a large amount of information that can be captured directly from the tooling used in the pipe-

lines. At every interaction with the framework, information for monitoring becomes available, such

as: Code Style and quality, Secure coding practices, Results of unit tests, Static code analysis, Dy-

namic application analysis, Functional testing results, Container security testing results, Staging / Pro-

duction environment analysis result.

All this information should be properly captured and made available to stakeholders, through visuali-

zations and dashboards, or alerts and alarms—for critical and more urgent events. By doing this, it

will be possible to introduce adjustments to the initial system construction and operation estimates and

also corrective actions that will generate a positive impact in the time for developing or correcting is-

sues in the system.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

"[Distribution Statement A] Approved for public release and unlimited distribution

4.4 Early Results

We presented scenarios and questions for which program managers might need measurement to sup-

port evaluations or decisions. The intent was to prioritize programmatic needs for immediate focus ra-

ther than to identify all programmatic needs. We recorded the results from these discussions, catego-

rize the questions as “Status and Projections”, and “What if” and summarize the results in Table 1:

Program Scenarios.

Table 1: Program Scenarios

Scenario 1: Status and Projections Scenario 2: “What if?”

Will we make the schedule commitment? Can we accept a change?

Where are we now? What if we reduce scope?

What is our completion rate? What if we add resources?

• How much actual effort was applied? • What is the required effort?

• Which items are complete? • How will our completion rate change?

• Which items remain for a capability? • How are capability commitments affected?

• % Complete overall/capability?

When will we finish current work? If we add effort, how long will it take?

• Projection to complete (schedule/cost) • New projection to complete

• Projection to complete capability (schedule/cost) • New projections for capability complete

• Confidence range of estimates • Confidence range

• Completion rates and estimation bias

• Rework rates

The primary scenario considered current status. Status requires understanding the overall body of

work, the specific work complete, the planned and actual cost and schedule for that work. Of specific

interest in a CI/CD development was a percentage complete overall and for specific capabilities. In

addition to status, the panel also wanted projections for schedule and cost at complete for capability

and sets of capability. In addition, credible ranges of cost and schedule were requested. These were

considered important for making commitments and planning resources.

The second scenario involved decisions for program interventions. Typical interventions include

changing priorities, adding or removing scope, and shifting resources. For each of these interventions,

the panel wanted a credible range of estimates before and after the intervention.

Although these are typical concerns of program management, having timely information had been

problematic because

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

"[Distribution Statement A] Approved for public release and unlimited distribution

1) information was scattered across different systems,

2) information across the systems, even if available, was not easily joined

3) the measurements were seldom at an atomic level to answer the necessary questions.

For example, if stories recorded during a sprint represented traced to different capabilities,

 external mappings would be needed to determine capability completion

 effort variances could not be distinguished among capabilities or types of work,

 variation information would be limited to the sprint rather than the story level.

 projections require detailed knowledge of planned work order

 capability work could be spread across different teams.

Continuous measurement of start and completion times for each story help to resolve some of these

problems, but still rely upon joining information from the work breakdown structure, the master plan,

and master schedule. Successful program managers described resolving some of these issues using

pivot tables. This is provided a manual solution to the data join problem but did not fully address the

unit of measure or analysis problems.

4.4.1 Indicator Displays

Prototype indicators are provided for status in Figure 3 and what if planning in Figure 4.

These indicators use data from a simulated project. A representative project was structured into capa-

bilities, features, and stories. Work was estimated and sequenced for execution. Work package dura-

tion was parameterized with log normal distrubtion for actual duration uncertainty and a small under-

estimation bias was introduced. The planned line represents the rate of progress sequential execution

of the work packages assuming the nominal effort was required. The Actual represents a Monte Carlo

simulation for 10% of the estimated effort. The Projection measures the estimation bias and variation,

then applies the empirical bias and variation to the remainder of the work packages. A number of

Monte Carlo simulations then show a range of probable dates, from which a 90% likelihood can be

estimated.

The percentage complete serves effectively as an earned value. A horizontal line from the work com-

plete to the plan provides a visual representation of schedule days ahead or schedule slip. This serves a

similar purpose to earned schedule [Lipke 2003]

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

"[Distribution Statement A] Approved for public release and unlimited distribution

Figure 3: Planned, Actual, and Projected Completion

We next presented the SME with Figure 4, showing the effects moving half the work to a second team

and rebalancing work as needed. This represents one of many possible Program Interventions. Alt-

hough we recognize that this is an oversimplification, the presentation was adequate for the purpose of

obtaining SME validation for the requirement. The SME agreed that a similar graphic to compare the

current likely outcomes with a probabilistic range of completion dates after an intervention is the

need.

Other interventions not included in this paper were to add or remove capabilities, shift commitment

dates. It is a straight forward matter to indicate the completion of specific capabilities along the time

line.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

"[Distribution Statement A] Approved for public release and unlimited distribution

Figure 4: "What if" scenario for completion

4.4.2 Supporting Metrics

For the purposes of these simulations, we made simplifying assumptions. At this stage, our objectives were

to validate the displays with the SME and verify the data collection approach. The simplifications are as

follows:

 Estimation bias from completed items continues, that is the average completion rates will con-

tinue to follow the historic trend

 The estimation error will distribute lognormally

 Applied effort (cost) is accurately recorded and projected

 Effort in labor days has been entered for each capability and feature

 Relative size of stories has been converted into effort days.

 Story effort equals the development duration in labor days

 A story is worked by only a single developer

 The stories are worked sequentially in a batch size that does not exceed number of developers

 metrics supporting these indicators include

 Percent Complete – (the estimated cost of all capabilities)/(estimated cost of capabilities com-

plete)

 Completion Rates

 Schedule Projections – Monte Carlo projected completion date for each sequenced story

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

"[Distribution Statement A] Approved for public release and unlimited distribution

The measures include

 capability, feature, and story estimates in labor days

 story start date

 story completion date from deployment

 story effort equals the development duration in labor days

4.4.2.1 Tool Sequence and Data Collection

Figure 5: Example sequence diagram between commit and deploy

Collection endpoints are offered by almost all significant CI/CD tools. These endpoints offer struc-

tured data in pre-defined formats which allow for the collection of metrics regarding builds, health,

load and frequency of use among others.

While clients are responsible for generating their own metric endpoints for an aggregator to consume.

However, the format in which the tools output their data must be standardized. OpenMetrics offers a

standard format to display this data for aggregation engines to consume. This format ensures that met-

rics are newline-separated, with their key:value space-separated. This simple format also provides for

tagging metrics with any number of labels, adding context to each metric where appropriate.

One such data aggregation engine like Prometheus can be configured to point to these endpoints for

data collection, and even itself to collect data about its metric outputs. Prometheus servers can also be

distributed to have a central collection point in the context of several pipelines which require aggre-

gated statistics as described in PoPs.

Prometheus can be installed either as a standalone server or within a Kubernetes cluster via Helm or as

an Operator.

DoD customers and the government may leverage techniques such as Federation in order to re-

trieve and manage aggregate statistics about various vendor pipelines as development efforts
take place. Federation | Prometheus

https://prometheus.io/docs/prometheus/latest/federation/

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

"[Distribution Statement A] Approved for public release and unlimited distribution

Once data is flowing into a metric aggregation engine such as Prometheus, further visualization of that

data can be done using tools like Kibana or Grafana. These visualization tools allow for the creation of

custom dashboards which can be used to keep operators informed in real-time about changes in pipe-

lines across a number of DoD projects.

5 Discussion, Open Issues, Next Steps

5.1 Lessons Learned

5.1.1 Lessons for Practice

During this prototyping we identified several issues that must be overcome to achieve the desired abil-

ity to measure schedule and cost progress.

5.1.1.1 Capability Based Work Breakdown Structure

The first issue is to state the obvious, that the product roadmap needs to be sufficiently developed to

estimate the entire scope of work contained in the capability. We are aware that scope will often

change, but a nominal scoping and initial estimate are a minimum requirement. We further found that

successful practitioners tracked work using a work breakdown structure that included capabilities fur-

ther subdivided into features (or epics) and stories. It is critical that traceability of the work package

(story or feature) to the capability be maintained throughout. It is not required that all stories related to

a capability be done to the exclusion of other work or that they be done in a specific order. Nonethe-

less, the sequencing of features and stories defines the up-to-date master plan which determines the

master schedule. Capability complete occurs when the last story associated with a capability has been

released. Although this seems straight forward, rework complicates it’s use in practice.

Reworking stories or adding defect fix stories confounds this approach. We recommend that stories

not be counted as complete until they have been thoroughly tested and released. Defect fixes should be

included as separate stories that do not count toward the earned schedule, but that do consume re-

sources. This can be accomplished by adding defect fixes to WBS elements that do not contribute to

the Earned Schedule but that do require flow through the system. This has the effect of adding cost

and schedule, but not adding to percent complete.

5.1.1.2 Connecting the Stories to the WBS

The traceability of stories to the work breakdown structure is not directly supported by existing tools.

Although workflow is often managed by Jira, some instances use GitLab or other tools. Typically,

these workflow management tools to not link directly to the roadmap, or work breakdown structure.

The mapping can be overcome with careful use of labels. However, labeling requires consistency and

is error prone. An alternative is to maintain a separate mapping between the work breakdown elements

and their representation in the workflow tool. As long as the mapping is maintained, the story flow can

be traced through the DevSecOps tool chain.

5.1.1.3 The instrumentation of a pipeline vs a pipeline instance poses another problem. There exist

several arbitrary ways to organize similar DevSecOps tool chains. Different tools may provide

similar functionality but have different interfaces. Some tools may have different orders of

execution. It is necessary that the instance be described sufficiently so that the actual progress of

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

"[Distribution Statement A] Approved for public release and unlimited distribution

a story is known, and that the data can later be used with context. In principle, there should be

ways for a toolchain to self-describe. Nonetheless, an automated tool chain should be repeatable

and stable. For this reason, we characterized a pipeline instance by activity and by which tool

performed or was used in the performance of that activity. To effectively use automated data

collection events from the example sequence diagram in Tool Sequence and Data Collection

Figure 5 for capability or analysis requires tracing the work package to the speciric capability and fea-

ture.

The biggest gap in data collection is the start of work. Once the story achieves code complete, the au-

tomation accurately tracks progress, including rework. However, designating the start of work can be

problematic. Currently, we rely on an entry to the workflow management tool for start, and the DSO

deployment tool for completion.

5.1.1.4 Data Warehouse vs. Data Lake

We considered using both a Data Lake, and a Data Warehouse in our design. The primary difference

is that the Data Lake follows an Extract, Load, Transform model, while the Warehouse follows an Ex-

tract, Transform, Load one. This means that both begin by extracting data from the system. While the

Data Lake loads the data into storage, the Warehouse transforms the data by performing logical joins

and adding related contextual information prior loading into the storage. Data can then be retrieved

and instantly used to build indicators. This is efficient because the transformation is applied only once,

and structure can be tuned to support the desired indicators. The drawback is that support of other in-

dicators or uses can be inefficient and cumbersome.

The Data Lake, on the other hand, delays transformation until the data is used. This is inefficient be-

cause the transformation must be applied every time the data is used but leaves the flexibility to use

data for other purposes. Nonetheless, designing the warehouse requires forethought into the required

context that will be needed. If this context was not stored or is not accessible, the indicator may not be

possible to build. In practice, a workable approach is to stage the data in a data lake and immediately

transform into a separate warehouse. This is inefficient for storage, but supports both the needs for re-

peated use with

5.2 Opportunities for further research

In this research we have identified a number of gaps in which the state of practice does not fully sup-

port the needs of defense acquisition. Although some of the gaps are predominantly DoD needs, their

solution has more general application.

5.3 Software Factories and Multiple Pipelines

A software factory contains multiple continuous integration / continuous delivery (CI/CD) pipelines,

each producing unique artifacts. It is designed for multi-tenancy and automate software production for

multiple products.

As illustrated in Figure 6, this software factory contains multiple pipelines, which are equipped with a

set of tools, process workflows, scripts, and environments, to produce a set of software deployable ar-

tifacts with minimal human intervention. It automates the activities in the develop, build, test, release,

and deliver phases. A DoD organization may need multiple pipelines for different types of software

systems, such as web applications or embedded systems.(CIO (DoD), 2019)

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

"[Distribution Statement A] Approved for public release and unlimited distribution

Figure 6:DevSecOps Software Factory (CIO (DoD), 2019)

5.4 Parametric Cost Modeling Evolution

In our ACE research we focused on automating the collection of size data given it is essential to esti-

mating effort and schedule. By tracking size growth and changes in size at greater frequency than ever

before, we were to demonstrate the value of continuous estimation. Our research did not venture into

estimating the cost drivers and effort multipliers. These parameters often involve subjective assess-

ments of people (e.g., team cohesion), process (e.g., process maturity), project (e.g., development flex-

ibility) and product characteristics (e.g., platform volatility). These parameters pose a future challenge

as research efforts turn their focus to fine tuning an automated software estimation capability. The his-

torically labor-intensive Likert scale subjective assessments will need to be replaced by identifying

and quantifying objective evidence that can be collected automatically. For example, the ‘team cohe-

sion’ may be able to be replaced by tracking the number and frequency of developer communications.

And process maturity may be updated continuously based in a combination of measures associated

with process monitoring and defect containment. As digital engineering continues the drive more and

more automation, the historically subjective parameters will be able to be replaced with objec tive data

collected more frequently which will increase the value and fidelity of continuous estimation.

 As engineering data becomes more transparent and available as software development projects rely

more and more on comprehensive tools suites, there effort tracking remains a hurdle for organizations

seeking to improve their cost estimate. At its most basic core, a cost model correlated the estimated

software size of the final product to estimate effort. Since effort to create software is the largest cost

element associated with producing software, effort is used to estimate cost. As we showed in ACE, we

are able to increase the precision and frequency of collecting size data directly from the software de-

velopment tools suite. Unfortunately, the technology advances enabling the greater precision on size

data collection haven not transpired in the collection effort. Across defense industry, people are re-

sponsible for tracking their own effort. They submit their effort daily, weekly, or even monthly based

on their organizations policies and customer contractual requirements. The effort is generally allocated

to defined labor categories associated with the project and type of work performed. The effort is used

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

"[Distribution Statement A] Approved for public release and unlimited distribution

by the organization’s finance department to invoice the DoD customer per contractual roles and regu-

lations. This paradigm creates a limitation to improving cost estimates. As long as cost accounts and

their associated cost strings are used to collect effort data there will be a lower limit on the granularity

of effort data.

Additionally, program managers in the pursuit of managing their project move money from one cost

string to another to cover unforeseen cost overruns or underruns. This happens most often when cost

accounts are very granular. The manager needs to freedom the reallocate resources to be successful.

There a several ways a manager or employee can do this but if the reallocation of effort isn’t reflected

in the employee’s effort data submission, improving the fidelity of the effort and therefore the cost of

specific engineering activities will not be possible.

5.5 Quality, Rework and Technical Debt

Members of our review panel noted that they currently have limited insight into issues of quality or

rework. Practices carried over from traditional agile development were not satisfying the enterprise or

program needs for several reasons. First, they usually failed to isolate rework, conflating rework with

new work and confounding measures of completion. Second, interpreting defect counts requires con-

sistency in when an issue is counted. This may vary between teams, even with teams. Third, contex-

tual data such as in which component an issue was found, which activity injected the defect, even

which iteration injected the defect, the size of the component or of the overall code may not be rec-

orded.

5.6 Cybersecurity

A recent DoD Memorandum (DoD 2021a)_ that addressed Continuous Authority to Operate

(cATO)(DoD CIO, 2021) states:

 “Service Providers, will continuously monitor and assess all of the security controls within the

information system’s security baseline, including common controls.

 Automated monitoring should be as near real time as feasible.

 For cATO, all security controls will need to be fed into a system level dashboard view, provid-

ing a real time and robust mechanism for AOs to view the environment

This memo assumes a heterogeneous environment, expects automation where practicable, and expects

dashboards to be available in real time for the decision authority. Because cybersecurity is a risk man-

agement activity, the tradeoffs between risk a known weakness may be traded off against the risk of a

capability becoming unavailable. We suggest that the cybersecurity risk assessment include an analy-

sis of the capability delivered.

6 Summary

 In our review of DevSecOps metrics practice we found limited integration of DevSecOps measure-

ment into program management decisions. Identifying measures, validating measures, and providing

the supporting infrastructure remain largely unexplored.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

"[Distribution Statement A] Approved for public release and unlimited distribution

This research is focused on improving program management decision-making by improving the fidel-

ity and frequency of program performance metrics and indicators, including information needs, what

to measure, and how to display the information

Subject matter experts provided the research team with key program management scenarios to focus

the research. A prototype pipeline was created to provide a frame of reference for generating candi-

date indicators of program performance. Using synthetic data, we simulated a software development

activity. We used the data to build indicators to validate with the subject matter experts. The overall

workflow that was created and captured provides a unique conceptual view of how data can be ex-

tracted, stored and reported from an agile and DSO pipeline.

A year into this research project there are several lessons worth sharing. One lesson is to adopt a capa-

bility based work breakdown structure. The most fundamental information an organization’s leader-

ship wants to know is, ‘when will it be done’. In a DevSecOps environment, done is measured by de-

livered capabilities. Therefore, aligning a WBS to capabilities is an essential first step. A second

lesson learned is the need to connect engineering artifacts (e.g., stories) to the work breakdown struc-

ture and associated work packages. When performance indicators reveal failure to meet plan, their

next question will be ‘why not?’. In order to drill down into the data and identify the source of the dis-

crepancy, the cost and schedule targets will need to align to engineering activities, subsystems, or

even individual components. A third lesson is that in conjunction with establishing a robust analysis

capability is the need to create and maintain a data storage system sufficient for the needs. The types

of analyses and robustness of reporting will create data storage requirements. Planning what data will

be collected and stored will drive data infrastructure design considerations. The information needs of

the organization will drive data warehousing and data lake designs options.

As this research continues, it will focus on refining and improving the data collection, storage and re-

porting of project performance data that is front and foremost needed by DoD Leadership. There some

very important areas that our research has deemed identified but not included in the scope of this re-

search but pose great challenges. These are: parametric cost estimation modeling, collection tooling

and APIs, quality, rework, and technical debt, and cybersecurity. While each of these are significant in

their own way, this research is going to tackle the challenges associated with integrating software fac-

tories and multiple pipelines in the upcoming year.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

"[Distribution Statement A] Approved for public release and unlimited distribution

7 Acknowledgements

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.

FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Insti-

tute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be

construed as an official Government pos ition, policy, or decision, unless designated by other documenta-

tion.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS

TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF

THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF

ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-

tribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for

internal use is granted, provided the copyright and “No Warranty” statements are included with all repro-

ductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed

in written or electronic form without requesting formal permission. Permission is required for any other ex-

ternal and/or commercial use. Requests for permission should be directed to the Software Engineering In-

stitute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM22-0184

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

"[Distribution Statement A] Approved for public release and unlimited distribution

8 References

Abdel-Hamid, Tarek and Madnick, S. E. (1991). Software Project Dynamics: An Integrated Approach .

River, NJ United States: Prentice-Hall, Inc.

Brady, S., & Rice, C. (2020). Software Acquisition Pathway Interim Policy and Procedures Training .

Retrieved from https://www.dau.edu/Lists/Events/Attachments/193/SW Acq Policy

Training_3.17.20.pdf

CIO (DoD). (2019). DoD Enterprise DevSecOps Reference Design .

CSO DoD. (2021). DoD Enterprise DevSecOps Fundamentals Playbook . Retrieved from

https://software.af.mil/wp-content/uploads/2021/05/DoD-Enterprise-DevSecOps-2.0-Playbook.pdf

Defense’, ’Department of. (2019). DEPARTMENT OF DEFENSE Agile Metrics Guide .

Defense", "Office of the Undersecretary of. (2020). DoD Instruction 5000.02 Operation of the Adaptive

Acquisition Framework .

DoD, Office of the Secretary of Defense "Memorandum for Senior Pentagon Leadership: Continuous Au-

thorization to Operate (cATO)", 2021, url=https://dodcio.defense.gov/Portals/0/Documents/Li-

brary/20220204-cATO-memo.PDF

Department of Defense Earned Value Management Interpretation Guide. (2018). Retrieved from

https://acqnotes.com/wp-content/uploads/2014/09/DoD-Earned-Value-Management-Interpretation-

Guide-Jan-2018.pdf

DoD CIO. (2021). DoD Enterprise DevSecOps Strategy Guide. Department of Defense, Office of the CIO.

Retrieved from https://software.af.mil/wp-content/uploads/2021/05/DoD-Enterprise-DevSecOps-2.0-

Strategy-Guide.pdf

Forsgren, N., & Humble, J. (2015). DevOps: Profiles in ITSM Performance and Contributing Factors.

SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2681906

Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate. IT Revolution.

IEEE. (2021). IEEE Standard for DevOps:Building Reliable and Secure Systems Including Application

Build, Package, and Deployment. IEEE Std 2675-2021. https://doi.org/doi:

10.1109/IEEESTD.2021.9415476

Jones, C. L., Draper, G., Golaz, B., Martin, L., & Janusz, P. (2020a). Practical Software and Systems

Measurement Continuous Iterative Development Measurement Framework Part 3: Software

Assurance and Technical Debt.

Jones, C. L., Draper, G., Golaz, B., Martin, L., & Janusz, P. (2020b). Practical Software and Systems

Measurement Continuous Iterative Development Measurement Framework PSM Continuous Iterative

Development Measurement Framework . Washington, D.C.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

"[Distribution Statement A] Approved for public release and unlimited distribution

Jones, C. L., Golaz, B., Draper, G., & Janusz, P. (2021). Practical Software and Systems Measurement

Continuous Iterative Development Measurement Framework Part 2 : Measurement Specifications

and Enterprise Measures.

Kupiainen, E., Mäntylä, M. V., & Itkonen, J. (2015). Using metrics in Agile and Lean software

development - A systematic literature review of industrial studies. Information and Software

Technology, 62(1), 143–163. https://doi.org/10.1016/j.infsof.2015.02.005

Lipke, W. H. (2003). Schedule is Different. The Measurable News, 2, 31–34. Retrieved from

http://www.pmi-cpm.org/members/library/Schedule Is Different.lipke.pdf

Mallouli, W., Cavalli, A. R., & Bagnato, A. (2020). Metrics -driven DevSecOps, (Icsoft), 228–233.

https://doi.org/10.5220/0009889602280233

McQuade, J. M., Murray, R. M., Louie, G., Medin, M., Pahlka, J., & Stephens, T. ’. (2019). Software Is

Never Done: Refactoring the Acquisition Code for Competitive Advantage (supporting information).

Morales, J., Turner, R., Miller, S., Place, P., & Shepard, D. J. (2020). Guide to Implementing DevSecOps

for a System of Systems in Highly Regulated Environments (No. CMU/SEI-2020-TR-002).

Poppendieck, M., & Poppendieck, T. (2013). Lean SOftware Development: an Agile Toolkit. Boston:

Addison-Wesley.

Prates, L., Faustino, J., Silva, M., & Pereira, R. (2019). DevSecOps metrics. Lecture Notes in Business

Information Processing, 359, 77–90. https://doi.org/10.1007/978-3-030-29608-7_7

Raffo, D. M. (2004). Using software process simulation to assess the impact of IV&V activities. In ICSE

2004 (pp. 197–205). https://doi.org/10.1049/ic:20040459

Staron, M., Meding, W., & Palm, K. (2012). Release Readiness Indicator for Mature Agile and Lean

Software Development Projects. Lecture Notes in Business Information Processing , 111 LNBIP, 93–

107. https://doi.org/10.1007/978-3-642-30350-0_7

“Under Secretary of Defense” DoD. (2020). Software Acquisition Pathway Interim Policy and Procedures.

US DoD USA002825-19.

Vacanti, D. S. (2015). Actionable Agile Metrics for Predictability: An Introduction . ActionableAgile Press.

Retrieved from https://leanpub.com/actionableagilemetrics

Vassallo, C., Proksch, S., Gall, H. C., & Di Penta, M. (2019). Automated Reporting of Anti-Patterns and

Decay in Continuous Integration. Proceedings - International Conference on Software Engineering ,

2019-May, 105–115. https://doi.org/10.1109/ICSE.2019.00028

Zein, O. (2010). Roles, responsibilities, and skills in program management. In 2010 PMI Global Congress

Proceedings – EMEA. Retrieved from http://www.pmi.org/learning/library/roles -responsibilities-

skills-program-management-6799

9 Biographies

William Nichols is a senior researcher at SEI

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

"[Distribution Statement A] Approved for public release and unlimited distribution

Hasan Yassar is a director at SEI

Chris Miller is a senior engineer at SEI

Luiz Antunes is a senior engineer at SEI

Robert McCarthy is an engineer at SEI

