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Annual Technical Progress Report 

1. INTRODUCTION:

Interstitial cystitis (IC)/painful bladder syndrome is a debilitating condition that presents itself as a confusing array 
of symptoms. These include bladder pain, urinary urgency, frequent urination, nocturia, and small voided 
volumes. Currently, there are is gold standard for diagnosing IC and it is largely dependent on subjective 
parameters; thereby, leading to extreme difficulties in accurately phenotyping patients. In general, it takes 
approximately 4-5 years from the first office visit to obtain a definitive diagnosis of IC. Thus, differentiating IC 
from other conditions remains to be an important clinical challenge and identifying objective diagnostic markers 
would improve prospects for all patients. In this study, we will assess whether our promising biomarkers can 
segregate IC patients from control subjects, and whether they are potentially involved in bladder pain.  

2. KEYWORDS:

Interstitial cystitis/painful bladder syndrome 
Biomarkers 
Diagnosis and prognosis 
Chronic bladder pain 

3. ACCOMPLISHMENTS:

3.1. What were the major goals of the project? 

The overall goal of this study is to improve the methodology of diagnosis for IC and to develop new insight into 
the underlying mechanisms that trigger this condition. To achieve this goal, this project focuses on identifying 
urinary species and assessing their clinical significance to IC. Our hypothesis is that DNA methylation of CNR2 
and urinary levels of tyramine can segregate IC patients from controls while also risk-stratifying patients with 
severe clinical symptoms. Research plan of this proposal included assembly of the Cedars-Sinai Medical Center 
(CSMC) cohort and the targeted metabolomics analysis, which are completed or almost finalized. In the extended 
funding period, we have the detail plan to complete the planned metabolomics analyses on our candidate targets. 

Approved SOW 

Subtask 1. CONTINUATION OF CSMC IC COHORT 
• CSMC cohort for Aim 1 and 2

(300 cases in total, patients and controls)

Subtask 2. BIOINFORMATICS ANALYSIS 
• Establishing pipeline for computational analysis
• Calculation to test the correlation with clinical symptoms
• Network/pathway analysis

Subtask 3. COMPUTATIONAL ANALYSIS 
• Data preprocessing
• Quality control (QC)
• Normalization
• Generation of models
• Calculation of classifier scores
• Biostatistical analysis to determine the correlation of DNA methylation levels with bladder



dysfunction and associated pain 
 

Subtask 4. PUBLICATION AND PATENT APPLICATION 
• Paper preparation 
• Data report and presentation at scientific meetings  
• Patent application 

 
In our 3rd funding year, we have focused on (1) identification on baseline of urine collection, (2) expansion of 
database for better urine biomarker discovery, (3) technology application to further identify metabolites 
associated with IC, and (4) continuation of CSMC IC cohort construction.  
 

 
3.2. What was accomplished under these goals? 
 

(1) Major activities  
 
o CSMC IC cohort 
 

(2) Specific objectives 
 
o Goal: Construction of CSMC IC cohort 

 
o CSMC cohort for Aim 1 and 2 (301 cases in total, patients and controls)  
 
o We continued recruiting IC patients and collecting specimens through additional urologists at 

CSMC. 
§ Dr. Brian Benway 
§ Dr. Timothy Daskivich 
§ Dr. Stephen Freedland 
§ Dr. Hyung Kim 
§ Dr. Howard Kim  
§ Dr. Amit Gupta  
 

o We opened our study to the public and amended our IRB to promote recruitment. 
 

o Since initiation of the study to today (December 1, 2021), we have collected 301 urine 
specimens from healthy controls and IC patients. 

 
o Milestone Achieved:  Our subject recruitment is being successfully achieved.  

 
o In this funding period, we had the negative impacts on our research activities caused by COVID-

19 pandemic. It influenced the major laboratory-based experiments and clinical research 
activities. Since late March 2020, core facilities stopped accepting samples and data analyses. 
Lab investigators and study coordinators could not access to laboratory and started working 
remotely. In addition, we had issues to ship out samples to other collaborators since their 
facilities were started to stop sample acceptance. However, we will resume shipping samples as 
soon as COVID-19-related issues are resolved.   

 
 

(3) Significant results or key outcomes 
 
o We were able to optimize the DNA methylation assay and gene expression assay, which were 

designed for the high throughput screening (HTS) purpose. 
 

• To perform a quantitative targeted mass spectrometry-based metabolomics analysis 
(Dr. Kim, Dr. Fiehn, Dr. Yang, Dr. Van Eyk) 



• To set up and perform the enzyme-reaction based biochemical assay
(Dr. Kim)

• Primer design and protocol set up
(Dr. Kim, Dr. Weisenberger)

• Pyrosequencing or MethyLight assay optimization
(Dr. Kim, Dr. Liang)

• To construct an IC rat model and to quantify TAAR in IC model rats and sham controls
(Dr. Kim, Dr. Knudsen)

• To measure the association with bladder dysfunction (symptoms and urodynamic profile)
(Dr. Kim, Dr. Lee): Experimental data was submitted for paper publication
(submitted paper was attached in the APPENDICES).

o Since last funding period, we have been focused on the optimization of metabolic profiling.
More updated state-of the art mass spectrometry technologies were applied to identify
additional and previously unknown IC biomarker metabolite candidates. We found several
biologically relevant biomarker candidates from new approaches and these experimental
results were reported in recently published manuscript (Scientific Reports)

o To identify the sex difference in metabolic profiling, we were able to assemble the sub-cohort
for pilot study. This cohort consisted of urine specimens from healthy female (n=60) and
healthy male (n=60).  This project is now being processed at the Dr. Fiehn’s metabolomics
core at UC Davis. We got the initial results in late August 2017. The data analysts are UC
Davis are fine tuning the bioinformatical analysis. We anticipate updating this data in the next
progress report and submitting a full research paper for publication.

o To elucidate the epigenetic modulation in IC, we performed the global proteomics analysis
with and without treatment of decitobine (DNA methyltransferase (DNMT) inhibitor). Although
we are still in the preliminary phase of data analysis, we found two interesting proteins that
were significantly altered by decitobine treatment in normal human bladder cells. In this
funding period, we found that decitabine treatment significantly suppressed the protein
expression of IC-biomarker candidates such as CNR2.

o Given the fact that tyramine is a well-known neuromodulator, we speculate that urinary
tyramine may affect central and peripheral nervous systems. In our second funding period,
we determined expression levels of TAAR1 in normal and IC rat bladder tissue to assess the
function of inhibitory small compound candidates in TAAR1 signaling.

o Our digitalized and quantitative IHC analysis revealed that protein expression of CNR2
increased in the rat IC model. Our DNA methylation assay also showed that the promoter
region of CNR2 was hypo-methylated, compared to the control rat model.

o We optimized metabolic profiling of urine samples. Updated state-of-the-art mass
spectrometry technology was applied to identify additional previously unknown IC biomarker
metabolites. We found several biologically relevant candidates from this new approach and
our experimental results were recently published.

o Using a metabolomics approach to capture odor compounds in urine samples of IC patients
and healthy controls, we found that urinary menthol levels were significantly lower in IC urine.
Further biochemical and functional analyses revealed that urinary menthol may suppress the
inflammatory response of immune cells that have infiltrated the bladder epithelium. These
findings suggest that the decreased levels of urinary menthol may explain the chronic
inflammation in IC bladders.



o Many lipids and lipid metabolites are still not properly annotated nor functionally characterized,
which hinders the diagnostic potential of lipid profiling. Our research team actively worked to
address this discrepancy and has since developed numerous software and databases that
can aid in the lipid structure elucidation process.

o We made significant key scientific outcomes since the previous funding period. Several full
research papers and review articles were published in this funding period. Please refer to
the APPENDICES.

o We were able to optimize the DNA methylation and gene expression assays, which were
designed for high-throughput screening (HTS). Using this optimized assay system, we found
that an IC-specific metabolite marker, alpha-oxoglutarate, regulates DNA methylation and can
turn on an epigenetic switch through ARID1A, a chromatin remodeler in normal bladder
epithelial cells.

• To perform a quantitative targeted mass spectrometry-based metabolomics analysis
(Dr. Kim, Dr. Fiehn, Dr. Yang, Dr. Van Eyk)

• To set up and perform the enzyme-reaction based biochemical assay
(Dr. Kim)

• Primer design and protocol set up
(Dr. Kim, Dr. Berman, Dr. Weisenberger)

• Pyrosequencing or MethyLight assay optimization
(Dr. Kim, Dr. Liang)

o We were able to optimize the DNA methylation and gene expression assays, which were
designed for high-throughput screening (HTS). Using this optimized assay system, we found
that an IC-specific metabolite marker, alpha-oxoglutarate, regulates DNA methylation and
can turn on an epigenetic switch through ARID1A, a chromatin remodeler in normal bladder
epithelial cells.

o We optimized metabolic profiling of urine samples. Updated state-of-the-art mass
spectrometry technology was applied to identify additional previously unknown IC biomarker
metabolites. We found several biologically relevant candidates from this new approach and
our experimental results were recently published.

o Using a metabolomics approach to capture odor compounds in urine samples of IC patients
and healthy controls, we found that urinary menthol levels were significantly lower in IC
urine. Further biochemical and functional analyses revealed that urinary menthol may
suppress the inflammatory response of immune cells that have infiltrated the bladder
epithelium. These findings suggest that the decreased levels of urinary menthol may explain
the chronic inflammation in IC bladders.

o Many lipids and lipid metabolites are still not properly annotated nor functionally
characterized, which hinders the diagnostic potential of lipid profiling. Our research team
actively worked to address this discrepancy and has since developed numerous software
and databases that can aid in the lipid structure elucidation process.

o We established new collaboration with a big metabolomics group at our own institute for
further validation of target candidates. While our preliminary are based on small numbers and
require validation in a large dataset, they nonetheless demonstrate the feasibility of the current
study and provide strong support to the fact that we are likely to identify many clinically and
biological important linkages with IC and the various IC phenotypes within this study. Also,
our concentrated efforts focused on subject recruitment and collection of urine samples.

o Our recent review paper summarized the underlying mechanisms that induce the chronic 
pain associated with IC and vulvodynia and explain why these two conditions often coexist. 



We also developed a statistical model to determine whether the biosignatures to be 
enhanced by additional systemic changes, such as widespread pain or associated clinical 
depression. 

o Our new collaboration with a big metabolomics group at our own institute for further validation
of target candidates has been worked well. We also established an additional pilot
collaboration with a Boston-based metabolomics company. We are thinking to use these
additional resources for expanding our findings using a larger cohort in near future. These
new collaborators will be used for validation of our data as well.

o It is widely believed that ML applications into big healthcare data will lead to extraordinary
revolutions. Our group developed a machine learning (ML)-based method for diagnosing IC
and assess its performance using metabolomics profiles obtained from a prior study.

o Our recent review paper summarized the underlying mechanisms that induce the chronic 
pain associated with IC and vulvodynia and explain why these two conditions often coexist. 
We also developed a statistical model to determine whether the biosignatures to be 
enhanced by additional systemic changes, such as widespread pain or associated clinical 
depression. 

o Since last report, we were able to reach to potential participants to recruit more for this
proposed study. Mainly due to the COVID-19 pandemic and its negative effects on clinical
trials. We have urine specimens from controls and patients (n=301).

In the following sections, we will update our achievements in detail for your reference. 

Optimize the DNA methylation assay and gene expression assay 

(1) We initiated experiments to identify DNA methylome and transcriptome associated with interstitial
cystitis:

• As an approach to seek the molecular biomarker of IC, we previously performed DNA methylation
profiling in urine sediments from IC patients and controls in our pre-existing Inha cohort, which consists
of IC patients and age-matched controls under collaboration with Inha University in South Korea (Inha
IRB# 10-0751). Given this exciting data, we hypothesized that a DNA methylation biomarker panel
segregates IC patients from controls.

• To optimize the experimental conditions, we leavaraged pre-existing collaborations between
investigators, urine sample collections and accompanying clinical data that have been collected for the
Discovery Cohort with approved Institutional Review Board protocol.

(2) We established assay system to identify promoter DNA methylation profiles of the most
hypomethylated genes selected from our preliminary data in IC in urine samples from cases and
controls:

• Using MethyLight technology, we will examine urine specimens collected from cases, including IC
patients and marched healthy subjects, to demonstrate their feasibility as biomarkers of IC in urine.
Experimental results from our study will determine whether epigenetic markers in urine are reliable
targets for IC diagnosis and whether these epigenetic biomarkers show clinical utility.



• We will begin evaluating the top five genes (CNR2, PR2Y14, GRM6, F2R and CHRM3), for which 
MethyLight assays have been designed during this funding period. We will subsequently evaluate the 
DNA methylation levels of the 20 most hypomethylated genes from preliminary work. Given that multiple 
marker combinations will be able to improve the sensitivity and specificity of DNA methylation biomarkers, 
we will perform receiver operater curve (ROC) analysis to determine the sensitivity and specificity of the 
20-gene panel dataset. Bisulfite conversion of DNA and following PCR analysis will be conducted as 
described9. We have designed over 1,000 MethyLight assays to date, and have considerable experience 
performing MethyLight-based assays for DNA methylation measurements. 

 
Table 1. Experimental design for DNA methylation assay 

 
(3) We established collaboration with NanoString to quantify target gene expression in urine samples 

from IC cases and controls:  
 

• In this funding period, we were able to initiate an active collaboration with an industrial partner, NanoString. 
We will utilize NanoString gene expression analysis, a novel digital technology that is based on direct 
multiplexed quantification of nucleic acids and offers high levels of precision and sensitivity, in this 
proposal. NanoString technology employs molecular “barcodes” and single molecule imaging to detect 
and count target gene expression in a single reaction. The NanoString nCounter provides highly 
reproducible digital counting capability over 5 logs of dynamic range and does not require any 
amplification steps that may introduce data bias. We have constructed code probes for the 20 most 
hypomethylated genes in collaboration with the Nanostring research team (see support letter). After RNA 
extraction from urine sediments obtained from patients and matched controls, we will quantify gene 
expression of the panel of 20 most hypomethylated genes using NanoString nCounter analysis in this 
proposal, and will correlate these data to the DNA methylation data set to identify epigenetically-regulated 
gene expression in IC. 

 
 



Table 2. Collaboration with NanoString for further verification of gene expression 

(4) We have constructed IC rat model for mechanistic studies:

• Animals and study design. A total of 13 female Sprague-Dawley rats (Orient Bio Inc., Gyeonggi-do,
South Korea), weighing 200-250 g, were used in the present study. In seven rats, LPS was instilled
intravesically, following the intravesical administration of PS. In six rats, the saline was instilled into the
bladder and served as the sham group. Continuous cystometry was performed in all of the rats under
awake conditions, one month following intravesical instillation of LPS or saline. After cystometry, rats were
sacrificed by cervical dislocation. Following laparotomy, the bladder and urethra were obtained en bloc
from all rats, separated at the level of the bladder neck, and the bladder was weighed. All experimental
animal procedures were conducted in accordance with the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health (Bethesda, MD, USA) and were approved by the INHA
Institutional Animal Care and Use Committee at the Inha University Medical School (Incheon, South
Korea; approval ID: INHA 140731-321-1). The rats were maintained under a 12-h light:dark photoperiod
and normal laboratory conditions, with free access to food pellets and tap water except during the
experiments.

• Surgical procedures. The rats were anesthetized with ketamine (Ketamine; Yuhan Corp., Seoul, Korea;
75 mg kg-1 intraperitoneally) and xylazine (Rompun; Bayer Korea Corp, Seoul, Korea; 15 mg kg-1

intraperitoneally) mixture, during the surgical procedures. Through a lower abdominal midline incision, the
bladder and the proximal urethra were approached.

• Induction of cystitis. Cystitis was induced by the intravesical instillation of LPS following PS, as
described previously8. Briefly, a 31-gauge needle attached to a syringe (Insulin syringe, SUNGSHIM
MEDICAL CO., LTD, Gyeonggi-do, Korea) was inserted into the bladder dome, after the bladder was
exposed. The bladder was then emptied by aspiration of urine, and then an appropriate volume of PS (10
mg ml-1) was instilled into the bladder. Twenty minutes later, the bladder was emptied, washed with
phosphate-buffered saline (PBS) and then filled with the same volume of LPS (750 μg/ml) for another 20
min. The sham group was instilled with normal saline of the same volume.

• Procedures for intra-vesicalcatheter implantation. Three days before cystometry, the catheterization
for intravesical pressure (IVP) recordings was done, as described previously25,26. Briefly, after the bladder
exposed, a polyethylene catheter (PE-50; Becton-Dickinson, Parsippany, NJ, USA) with a cuff was
inserted into the dome of the bladder and held in place with a purse-string suture to record IVP. The



catheter was tunneled through the subcutaneous space, exited through the back of the animals and 
anchored to the skin of the back with a silk ligature. The free end of the catheter was sealed. After surgery, 
the animals were caged individually and maintained in the same manner. 

 
• Functional evaluation. Cystometrograms were performed under unanesthetized, unrestrained 

conditions in metabolic cages. The external portion of the catheter, implanted into the bladder of the rat, 
was connected to a two-way valve that was connected via a T-tube to a pressure transducer (Research 
Grade Blood Pressure Transducer; Harvard Apparatus, Holliston, MA, USA) and a microinjection pump 
(PHD22/2000 pump; Harvard Apparatus). This was used to record the IVP on the condition of continuous 
injection. Room-temperature saline was infused into the bladder by microinjection pump at a rate of 10 ml 
h-1. The micturition volume (MV) was recorded by means of a fluid collector connected to a force 
displacement transducer (Research Grade Isometric Transducer; Harvard Apparatus). IVP and MV were 
continuously recorded using Acq Knowledge 3.8.1 software and an MP150 data acquisition system 
(Biopac Systems, Goleta, CA, USA) at a sampling rate of 50 Hz. The mean values from three reproducible 
micturition cycles were used for evaluation of cystometric parameters.  

 
• Investigation of cystometric parameters. Cystometric parameters consisted of pressure and volume 

parameters of the model, including the lowest bladder pressure during filling phase (BP), bladder pressure 
immediately before micturition (TP), maximum bladder pressure during the micturition phase (MP), MV, 
remaining urine after micturition (RV), MV+RV (BC) and intervals between maximum micturition 
contractions (MI). 

 
Figure 1. A workflow of this study. 

	



 

Table 2. BP, basal pressure; TP, threshold pressure; MP, micturition pressure; BC, bladder capacity; MV, micturi-
tion volume; RV, residual volume; MI, micturition interval; IC, interstitial cystitis; Results are expressed as the 
mean ± standard error. Pressure parameters were expressed by intravesical pressure. *p<0.05 
 
 

• RNA-Sequencing analysis identified the differentially expressed genes, which are specific to 
bladder or urethra. To understand the molecular responses associated with IC, we attempted to perform 
the next generation RNA sequencing analysis and to get the expression profile of the bladder and urethra 
in response to PS and LPS stimulation, and those of sham controls. Comparison of RNA-Sequencing 
status between raw and filtered reads was performed as follows.  

 

 
Figure 2. Identification of differentially expressed genes (DEGs) in bladder or urethra obtained from IC 
rats compared to sham controls. (A) A heatmap showing DEGs (B) Diagrams indicating IC-specific DEGs in 
bladder or urethra (upper), and bladder- or urethra-specific DEGs associated with IC (bottom). 
 
 

Based on raw sequence data, the filtering processes were performed based on the following criteria; (i) 
position 1 to 15 base were removed because of hexamer-primed 2nd strand synthesis, (ii) reads with 
mean base quality ≤ 20 and total base quality (≥ 20) ≤ 80% were removed, and (iii) redundant reads 
(identical sequences) were collapsed into one read. Further calculation of expression level from the finally 
filtered reads was done as follows: based on the finally filtered reads and gene expression levels, which 
were calculated by following procedures; (i) tophat for human genome (hg18), and (ii) cufflinks for human 



reference genes (hg18). We compared FPKM (Fragments Per Kilobase of transcript per Million fragments 
mapped) values across samples based on the merged transcript annotation from human refGene hg18 
&CuffLinks.  

• The differentially expressed genes in bladder and/or urethra in IC model vs. sham control. We
identified differentially expressed genes (DEGs) with a false discovery rate (FDR)<0.05. A heatmap
shown in Figure 2A revealed that approximately three-fold more DEGs were perturbed in urethra in
comparison of the bladder. Forty-four DEGs were significantly perturbed in bladder tissues obtained from
IC rat model, compared to those from control group (Figure 2B). The gene expression of 159 DEGs was
significantly altered in urethras in the IC rat model (Figure 2B). Only five genes were commonly altered
both in the bladder and urethra, suggesting that the gene expression of bladder and urethra were distinct
(Figure 2B).

These five genes include collagen type VII alpha 1 (Col7a1), integrin alpha 7 (Itga7), Serpin Family A
Member 3 (Serpina3n), Solute Carrier Family 25 Member 24 (Slc25a24) and Slit Guidance Ligand 3
(Slit3) (Table 2A). We also found sixty-one IC-specific (Figure 2C) or sixty-two Sham-specific genes
(Figure 2C). Four commonly perturbed genes in bladder - compared to urethra - included Flavin
Containing Monooxygenase 5 (Fmo5), Integrin Subunit Alpha 7 (Itga7), Lymphocyte Cytosolic Protein 1
(Lcp1), and Methyltransferase Like 7B  (Mettl7b) (Figure 2C).

• Enriched cellular processes perturbed in IC model and the differentially enriched cellular
processes in bladder and urethra. We next attempted to understand the biological and mechanistic
meaning of these DEGs by examining the biological pathways over-represented by the genes. The
comparison between bladder and urethra revealed that responses of bladder or urethra induced IC model
by PS and LPS treatment were different. GOBP and KEGG pathway enrichment analysis demonstrated
that the altered genes in bladder tissues of IC model were mainly involved in response to disaccharide
stimulus, response to sucrose stimulus, and regulation of blood pressure (Blue bars, Figure 3A). The
most enriched cellular processes in urethra in IC model included the response to abiotic stimulus,
epithelial cell differentiation, extracellular matrix organization and response to wounding et al. (Orange
bars, Figure 3A). We also found that the cellular processes (e.g., intracellular signaling cascade, cardiac
muscle tissue development, and second-messenger-mediated signaling) were enriched in IC-specific
DEGs (Green bars, Figure 3B).



Figure 3. (A) Enriched cellular processes perturbed in IC rats by PS and LPS treatment. Representative DEGs 
of “response to abiotic stimulus” and “epithelial cell differentiation” were indicated in orange boxes. Blue, bladder 
specific; Orange, urethra-specific DEGs. (B) Differentially enriched cellular processes changed sham or IC 
specifically.  Gray, sham control specific; Green, IC specific DEGs. 

• Differentially expressed genes in IC model suggest the bladder specific or urethra specific DEGs.
This pathway analysis could allow us to focus on the gene list of the greatest interest. We chose five
genes whose expression levels were significantly increased in bladder, but not in urethra, of IC model for
further validation. They were Fras1 (Fraser syndrome 1), Adipoq (adiponectin, C1Q and collagen domain
containing), Tnfaip2 (tumor necrosis factor, alpha-induced protein 2), Ace2 (angiotensin I converting
enzyme 2), and Frem2 (Fras1 related extracellular matrix protein 2). The fold changes of gene expression
in IC model, compared to sham control, were presented in Figure 4A.

Additionally we selected five more genes whose expression was significantly increased only in the urethra
of IC model. They were Ceacam1 (carcinoembryonic antigen-related cell adhesion molecule 1, biliary
glycoprotein), Sox2 (SRY, sex determining region Y)-box 2), Ido1 (indoleamine 2,3-dioxygenase 1),
Ccl21 (chemokine (C-C motif) ligand 21), and Atf3 (activating transcription factor 3) (Figure 4B). Figure
4C shows the fold changes of ten genes’ gene expression levels in bladder or urethra in IC condition (fold
change).

To validate the expression levels and to challenge the importance of these candidates as major
modulators of important cellular processes, we performed qRT-PCR analysis using independent bladder
(n=3) or urethra (n=3) tissues obtained from IC model (n=3) or sham controls (n=3). In total the top ten
genes, which were already selected based on our interest and representativeness of organ that they
were belonged to, were analyzed (Figure 5).

In summary, we have identified the perturbed gene expression associated with the defected 
urodynamics in IC mimic animal model, thereby exhibiting the dysfunction of the urinary bladder. A 
comprehensive analysis based on the next generation RNA-sequencing method combined with a 
bioinformatics analysis was performed. Our experimental results revealed that the perturbed alterations 
in gene expression in bladder and urethra are distinct, along with different structure and anatomy, are 
functionally associated with extracellular matrix organization, wound healing, intracellular signaling 
cascade and second-messenger-mediated signaling. Further study of the effects on lower urinary tract 
function may suggest novel therapeutic strategies.  



Figure 4. (A) Bladder specific DEGs, (B) Urethra specific DEGs, (C) Expression patterns obtained from RNA-
Sequencing data of ten genes.  

Figure 5. Further validation using qRT-PCR analysis. 



15	

(5) We sought to substantially widen coverage and allow confirmation of metabolites detected in our
previous NMR-based study:

To achieve our goals, we performed mass spectrometry (MS)-based metabolomics analysis. Our goal here was 
to identify non-invasive biomarker candidates and to gain new insight into disease mechanisms. Previous global 
metabolomics profiling of urine from IC patients suggests the exciting possibility that a urinary metabolic 
signature for IC can be detected using an additional metabolomics platform, MS. 

• GC-MS analysis of urine specimens from IC patients and controls. We investigated the metabolite
profile of the individual urine samples using GS-MS spectroscopy. Our analysis and data requisition
resulted in a total of 490 metabolites detected.

To center the data, the auto scaling method, division of the mean-centered data by the standard deviation,
was used. The scores plot for partial least squares (PLS) components showed differentiation of the IC
samples from controls with good separation and dispersion (Figure 6A). We assessed the accuracy of
our predictive model using the leave-one-out cross-validation method as well as the randomized
permutation (Figure 6B). The observed statistic of this analysis using MetaboAnalyst 3.0 software1 was
significant (p = 5e-04), suggesting that these signatures may significantly differentiate patients from
healthy controls. A heatmap also showed the distinct expression patterns of metabolites between IC and
controls (Figure 6C). These metabolites are responsible for the significant difference between IC and
controls with fold change either greater than 1.20 or less than 0.83 and p-value less than 0.1.

Figure 6. Differentiation of IC patients and 
healthy control groups using multivariate 
analysis. (A) Partial least square-discriminant 
analysis (PLS-DA) score plot of the IC and control 
groups. PLS-DA plot showed a clear separation of 
metabolites between patients and matched control 
subjects. Red: control samples; Green: IC patient 
samples. The model was established using three 
principal components. (B) For model evaluation, the 
class prediction results based on cross model 
validation predictions of the original labeling 
compared to the permuted data assessed using the 
separation distance. Histogram shows distribution of 
separation distance based on permutated data. Red 
arrow indicates observed statistic (P = 5e-04). (C) A 
heatmap of 52 differentially expressed metabolites 
in IC and control groups. Among 490 detected 
metabolites in total, 52 metabolites, including both 
annotated and unannotated metabolites, were 
significantly altered in IC patients compared to 
controls (FC > 1.20 or FC < 0.83 and P < 0.1).   

To further confirm the identified potential metabolic markers, tenfold cross-validation was applied to 
evaluate performance based on the identified potential metabolic markers, while SVM regression was 
used as a classifier. The ROC curve obtained with our significant metabolites 22 annotated metabolites 
among 52 candidates annotated or unannotated. The AUC (0.8968) of the SVM classifier indicates that 
the identified candidate metabolic markers perform well to differentiate IC patients and healthy controls. 
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• Identification of differentially expressed metabolites in urine of IC patients. Given 490 detected 
metabolites, we identified 52 differentially expressed metabolites, including both annotated and 
unannotated metabolites. In the volcano plot (Figure 7A), annotated metabolites are presented as log2 
fold change against the –log10 (p) of the differential expression between IC patients and healthy controls. 
22 annotated differentially expressed metabolites above the threshold (FC > 1.20 or FC < 0.83, and P < 
0.1) are marked and presented. Erythronic acid and histidine, were the most upregulated metabolites in 
the IC patient group compared to that in control, while tartaric acid were the most downregulated as 
shown in Figure 7B. 
 

• Network modeling derived from IC-associated metabolites. We also performed analysis the histidine-
associated differential module (subnetwork) using multilevel local graphical model.  
 

• Collectively, our GC-MS analysis suggested metabolite candidates associated with IC. This new 
classification method may provide novel opportunities for better diagnosis and clinical 
management of IC, particularly in a non-invasive manner. A major clinical challenge remains the 
early diagnosis of IC. Given that these current findings from this study, although it is out of scope 
of this study, however we will aim to test whether abnormal metabolism is a key hallmark of IC as 
a next step. We anticipate that metabolic phenotype. Our multiplex metabolic biomarker panel 
provides the prospect for assisting predictive factor to determine severity of urinary symptoms 
and pain/discomfort of IC patients. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. A volcano plot showing 
differentially expressed metabolites in IC 
patients. (A) 22 annotated metabolites were 
significantly altered in IC patients compared 
to controls (FC > 1.20 or FC < 0.83 and P < 
0.1). The red dots represent metabolites 
above the threshold. The further the 
metabolite’s position away from the (0, 0), the 
more significant the metabolite is.  (B) A 
boxplot showing up-regulated and down-
regulated metabolites that could be used to 
differentiate IC patients from normal subjects. 
The candidate metabolites, erythronic acid 
and histidine, were significantly increased in 
IC patients compared to that in controls, while 
tartaric acid was significantly decreased. All 
metabolites show statistical significance with 
p-value < 0.1.  
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DNA methylome and transcriptome associated with IC 

In an effort to find molecular biomarkers for IC, we previously performed DNA methylation profiling in the urine 
sediments of IC and control patients of our pre-existing Inha cohort, which consisted of IC patients and age-
matched controls (Inha IRB# 10-0751). Given this exciting data, we hypothesized that a DNA methylation 
biomarker panel segregates IC patients from controls.  

In order to optimize experimental conditions, we leveraged pre-existing collaborations among investigators and 
utilized urine sample collections with the accompanying clinical data that was collected for the discovery cohort 
along with approval from the IRB. 

Using MethyLight technology, we examined DNA methylation levels of CNR2 in a pilot set of urine specimens 
collected from cases, including IC patients and matched healthy subjects.  

For our next funding period, we anticipate that the experimental results from our study will determine whether 
epigenetic markers in urine are reliable targets for IC diagnosis and whether they show clinical utility. We will 
also begin designing primers and evaluating DNA methylation levels of for our other four top genes (PR2Y14, 
GRM6, F2R and CHRM3). We will subsequently evaluate the DNA methylation levels of the 20 most 
hypomethylated genes from preliminary work. Given that multiple marker combinations will be able to improve 
the sensitivity and specificity of DNA methylation biomarkers, we will perform receiver operator curve (ROC) 
analysis to determine the sensitivity and specificity of the 20-gene panel dataset. Bisulfite conversion of DNA 
and following PCR analysis will be conducted as described1. Our research team has designed over 1,000 
MethyLight assays to date and have considerable experience performing MethyLight-based assays for DNA 
methylation measurements. 

We constructed and characterized an IC-mimic rat model 

Animals and study design 
A total of 13 female Sprague-Dawley rats (Orient Bio Inc., Gyeonggi-do, South Korea), weighing 200-250 g, were 
used in the present study. In seven rats, PS and LPS were instilled intravesically in order to induce IC-like 
symptoms. The six other rats served as the sham group and were instilled with saline.  Continuous cystometry 
was performed in all of the rats under awake conditions, one month following intravesical instillation of LPS or 
saline. After cystometry, rats were sacrificed by cervical dislocation. Following laparotomy, the bladder and 
urethra were obtained en bloc from all rats, separated at the level of the bladder neck, and the bladder was 
weighed.  

All experimental animal procedures were conducted in accordance with the Guide for the Care and Use of 
Laboratory Animals of the National Institutes of Health (Bethesda, MD, USA) and were approved by the INHA 
Institutional Animal Care and Use Committee at the Inha University Medical School (Incheon, South Korea; 
approval ID: INHA 140731-321-1). The rats were maintained under a 12-h light:dark photoperiod and normal 
laboratory conditions, with free access to food pellets and tap water except during the experiments. 

Surgical procedures 
The rats were anesthetized with a ketamine (Ketamine; Yuhan Corp., Seoul, Korea; 75 mg kg-1 intraperitoneally) 
and xylazine (Rompun; Bayer Korea Corp, Seoul, Korea; 15 mg kg-1 intraperitoneally) mixture during the surgical 
procedures. The bladder and proximal urethra were approached through a lower abdominal midline incision.  

Induction of cystitis 
Cystitis was induced by the intravesical instillation of LPS following PS, as described previously2. This procedure 
involved exposing the bladder and inserting a 31-gauge needle attached to a syringe into the bladder dome. The 
bladder was then emptied by aspiration of urine and an appropriate volume of PS (10 mg ml-1) was instilled into 
the bladder. Twenty minutes later, the bladder was emptied, washed with phosphate-buffered saline (PBS), and 
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then filled with the same volume of LPS (750 μg/ml) for another 20 min. The sham group was instilled with normal 
saline of the same volume. 

Procedures for intra-vesicalcatheter implantation 
Three days before cystometry, the catheterization for intravesical pressure (IVP) recordings was done, as 
described previously3,4. Briefly, after the bladder exposed, a polyethylene catheter (PE-50; Becton-Dickinson, 
Parsippany, NJ, USA) with a cuff was inserted into the dome of the bladder and held in place with a purse-string 
suture to record IVP. The catheter was tunneled through the subcutaneous space, exited through the back of 
the animals, and anchored to the skin of the back with a silk ligature. The free end of the catheter was sealed. 
After surgery, the animals were caged individually and maintained in the same manner. 

Figure 1. A workflow of this study. 

Functional evaluation 
Cystometrograms were performed under unanesthetized, unrestrained conditions in metabolic cages. The 
external portion of the catheter was implanted into the bladder of the rat and connected to a two-way valve that 
was connected via a T-tube to a pressure transducer (Research Grade Blood Pressure Transducer; Harvard 
Apparatus, Holliston, MA, USA) and a microinjection pump (PHD22/2000 pump; Harvard Apparatus). This was 
used to record the IVP on the condition of continuous injection. Room-temperature saline was infused into the 
bladder by microinjection pump at a rate of 10 ml h-1. The micturition volume (MV) was recorded by means of a 
fluid collector connected to a force displacement transducer (Research Grade Isometric Transducer; Harvard 
Apparatus). IVP and MV were continuously recorded using Acq Knowledge 3.8.1 software and an MP150 data 
acquisition system (Biopac Systems, Goleta, CA, USA) at a sampling rate of 50 Hz. The mean values from three 
reproducible micturition cycles were used for evaluation of cystometric parameters.  
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We successfully assessed function of inhibitory small compound candidates in TAAR1 
signaling using IC animal model. Our hypothesis in the proposed study, TAAR1-modulating 
antagonists may be useful for relief the symptoms of IC, was tested. 
  

Rationale  
Our preliminary results show that TAAR1 exists in bladder, whose signaling can be blocked by potential TAAR1 
antagonists. Given the fact that tyramine is a well-known neuromodulator, we speculated that urinary tyramine 
may affect central and peripheral nervous systems. Our goals in Aim 2 include determining the expression levels 
of TAAR1 in the normal bladder tissue of mice, rats, and humans (Aim 2a). 
 
To identify and test TAAR1 inhibitory small molecules 
We obtained preliminary evidence that tyramine levels are greater in the urine of IC patients, suggesting that 
tyramine and TAAR1 may play a role in IC. Based on this information, we hypothesized that tyramine-TAAR1 
signaling is associated with the symptoms of IC. We speculated that TAAR1-modulating antagonists may be 
useful in relieving the symptoms of IC/PBS by blocking signaling.  
We tried to get an idea of TAAR1’s potential inhibitors by quick searching potential small chemical compounds 
similar in structure to tyramine and capable of antagonizing TAAR1. Tyramine analogues would be good 
candidates since drug candidates should bind to TAAR1 with high affinity and competitively inhibit tyramine 
signaling. Our preliminary efforts searching candidates suggested a list of potential inhibitory small compounds.  
 
Investigation of cystometric parameters 
Cystometric parameters consisted of pressure and volume parameters of the model, including the lowest bladder 
pressure during filling phase (BP), bladder pressure immediately before micturition (TP), maximum bladder 
pressure during the micturition phase (MP), MV, remaining urine after micturition (RV), MV+RV (BC) and 
intervals between maximum micturition contractions (MI). Unfortunately, our comprehensive investigation on 
these cytometric parameters of IC animal model with and without TAAR inhibitory compounds did not show 
significant symptom relief. 
 

We found that inhibition of DNA methylation suppressed the IC-associated increase of CNR2 
protein expression 

 
IHC analysis results of four different rat models 
Using IHC analysis of the IC rat model, we investigated protein expression levels of CNR2 between bladder 
epithelial cells obtained from sham controls (Sham) and those of IC-induced (LPS).  
 
The slides were annotated and characterized by the use of Leica Tissue IA 2.0 software (Copyright 2012 by 
SlidePath Ltd.) for quantification of digitalized images. For quality control measures, Hematoxylin and Eosin 
(H&E) stained slides were used during the annotation. The ACSS2 slide was viewed with its corresponding H&E 
slide in order to ensure the annotation was done on the bladder tumor epithelium only. Stromal and structural 
tissues were cut off from annotation.  
 
The minimum number of cells measured per slide was 100,000. Following annotations, the “measure stained 
cells algorithm” option was selected. Color definition preferences were defined and algorithm input parameters 
were optimized by using several stained images of slides. The optimized algorithm was used for the analysis of 
all slides. Haematoxylin was set as the nuclear counter stain, and 3,3’Diaminobenzidine (DAB) was set as the 
nuclear, cytoplasmic, and membrane marker.  
 
Parameters in the software are based on a grayscale. 0 is the minimum intensity (black) and 255 is the maximum 
intensity (white). We set the maximum threshold at 170 and 80 being the threshold for positive and negative 
staining respectively. The max nuclear window size radius was set to default and the nuclear area threshold was 
set to 0 – 500 mm2 (any nuclei or cells out of these range were cut off). The minimum % of stained area in a 
nucleus was set to 20%. The threshold for cytoplasm staining was set higher, 160 – 220 due to the presence of 
antibodies. The minimum % of stained area was set to 75%. After the annotation analysis, data regarding the 
nuclear h-score, % of positive nuclei, % of positive nuclear area, the cellular cytoplasmic h-score, % of positive 
cytoplasmic staining was collected and visualized into box plots. 
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Figure 2. Representative 
IHC images from four 
experimental conditions. 
Sham, sham control model; 
LPS, IC model; LPS+DE, 
treatment of DNA 
methyltransferase (DNMT) 
inhibitors-treated IC model; 
LPS+TA, trace amine-
associated receptor 1 
(TAAR1) inhibitor-treated IC 
model.  

Monitoring the % of positive nuclei showed that CNR2 protein expression increased approximately four fold in 
the IC model compared to sham controls. CNR2 expression in the TA model was two folds greater compared to 
the DE condition (treatment of DNA methyltransferase (DNMT) inhibitors-treated IC model), suggesting efficient 
suppression activity of DNMT inhibitors. However, TAAR1 inhibition could not block CNR2 stimulation in the IC 
model (TA, trace amine-associated receptor 1 (TAAR1) inhibitor-treated IC model).  

The results of the area of positively stained nuclei in the tissue were also consistent with the results discussed 
above (Figure 3). The H-score of IC model was seven times greater than sham controls, indicating a great protein 
expression. The H-score of the DMNT inhibitor treated model was 1/7th of the TA model, indicating significantly 
different CNR2 expression. The H-score for cytoplasmic staining as well as the percentage of positive cytoplasm 
was significantly higher in the TA model compared to the DE model, suggesting the highly efficient inhibiting 
function of drug A in the IC rat model. % positive nuclei (Figure 3).  

Figure 3. IHC 
scores of four 
experimental 
conditions 
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Our global metabolomics analysis using state-of-the art mass spectrometry was able to identify new 
additional metabolite candidates 

Characteristics of the study subjects 
A clinical diagnosis of IC was made by two independent urologists according to NIDDK criteria (e.g. frequency, 
urgency, bladder pain, discomfort and the presence of glomerulations during cystoscopic hydrodistention), 
before any treatment or medication was given. In total, we enrolled 63 female subjects (42 IC patients and 21 
normal subjects) with a mean age of 51. Population-based, age-matched controls were recruited from one clinic 
using the same standard operating procedures (SOPs) during the same research period (2010-2013).  

Subjects and urine specimen collection 
IC patients and healthy control subjects were diagnosed and recruited from an outpatient urology clinic at Inha 
University Hospital. Work-up included symptom assessment, cystoscopic evaluation, physical examination, 
urodynamics, and/or urine culture. Patients with a history of other diseases (such as any types of cancer, 
inflammation, or diabetes, etc.) were excluded. All subjects were of Asian female descent residing in South Korea. 
To avoid possible contamination with vaginal or urethral cells, first morning urine specimens were obtained using 
clean catch methods in a sterile environment. The de-identified specimens were sent to clinical laboratory and 
were centrifuged to remove cell debris. Supernatants were processed into individual aliquots of 1ml/tube, before 
storage at −80◦C until further analysis.  

GC-MS analysis of urine 
Gas-chromatography/mass-spectrometry (GC-MS) analysis was performed5,6. Normally, 10ul of urine are 
dissolved in 1ml -20°C cooled acetonitrile, isopropanol and water (3:3:2 v/v) mixture at pH 7. In this case the 
urine volume was adjusted between 2 and 10ul to externally measured creatinine levels using a linear calibration 
curve. Then the solution was vortexed at 4°C for 5 minutes in 1.5ml Eppendorf tubes. Samples were centrifuged 
for 2min at 14,000 rcf and 500ul were aliquoted. The aliquot was the evaporated in a Labconco Centrivap cold 
trap to complete dryness. The methoximation step was performed with 10ul of a solution of 40 mg/ml O-
methylhydroxylamine hydrochloride (CAS: [593-56-6]; Formula CH5NO.HCl) and 90 minutes shaking at 30°C. 
Then 90ul of N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) was added and shaken at 37°C for 30 min. 
Then a mix of 1ul fatty acid methyl esters (FAME) retention time markers was added. The mixture was transferred 
to amber crimp autosampler vials. Measurements were performed on a Leco Pegasus IV TOF coupled to an 
Agilent 6890GC with Agilent 6890 split/splitless injector. The column was a Restek RTX-5Sil MS (95% dimethyl/5% 
diphenyl polysiloxane) with 30m length, 0.25 mm i.d. and 0.25 um film thickness with 10 m guard column. 
Injection volume was 1ul at 250°C. The GC parameters were set to 1 ml/min constant flow Helium and an oven 
ramp of 50°C (1 min hold) to 330°C at 20°C/min, 5 min hold before cool-down. The transfer line temperature was 
280°C and spectra were recorded in electron ionization mode at 70 eV with a filament temperature of 250°C 
TOF and scan range of 85-500 u. 

Annotation and ID of compounds 
The peak and compounds detection or deconvolution was performed with the Leco ChromaTOF software. 
Spectra were matched against the FiehnLib [3] mass spectral and retention index library. Post-curation and peak 
replacements were performed with the in-house developed BinBase software and the sample matrix with all 
known and unknown compounds exported to a Microsoft EXCEL sheet. A total of 490 compounds were detected. 
200 compounds were annotated as known compounds by retention index and mass spectral matching and 290 
compounds were unknown. 

Data processing. For preprocessing of MS data, the data in urine samples from IC patients and healthy subjects 
were preprocessed as previously described. We excluded one subject from the IC patient group and three 
subjects from controls because their spectra were outliers based on PCA analysis. Fourier transformation and 
phase and baseline correction of time domain data were manually performed. The resulting frequency domain 
data was binned at a 0.002ppm interval. The signals were normalized against total integration values and 0.025% 
TSP. The region corresponding to water (4.6–5.0ppm) was removed from all spectra. Data pre-treatment 
including baseline correction, chromatogram alignment, time-window setting, hierarchical multivariate curve 
resolution, H-MCR, and normalization were performed in MATLAB [version 7.3] using custom scripts. Analysis 
of NMR spectra was performed using a VNMRS500 (Varian Inc.). The metabolites were identified by a data base 
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search, based on spectra using Chenomx (Spectral database; Edmonton, Alberta, Canada) by fitting the 
experimental spectra to those in the database.  
 
Identification of metabolic marker candidates 
In order to identify potential metabolites as marker candidates that can discriminate IC patients from healthy 
subjects, we applied the following steps. First, a Student’s t-test was performed to extract significant metabolites 
from the normalized GC-MS data. The volcano plot shows the fold change and the significance of each annotated 
metabolite. Significant metabolites were selected on the volcano plot if they had a fold change threshold > 1.20 
(or < 0.83) and t-tests p-value threshold < 0.1. Second, the resultant profiles, which contain profiles of 22 
annotated differentially expressed metabolites, were imported into MetaboAnalyst version 3.01. Log 
transformation and mean-centered with auto scaling were performed prior to multivariate statistical analysis. 
Partial least square discriminant analysis (PLS-DA) was performed, and model evaluation with permutation 
strategy was carried out according to a published protocol7. Finally, in order to further confirm the potential 
metabolic markers, a support vector machine (SVM)-based classifier was built to distinguish IC patients from 
controls using the identified significant metabolites in MATLAB (R2014a). Tenfold cross-validation was applied 
to evaluate the performance.    
 
 
GC-MS analysis of urine specimens from IC patients and controls  
We investigated the metabolite profile of the individual urine samples using GS-MS spectroscopy. Our analysis 
and data requisition resulted in a total of 490 metabolites detected.  
 
To center the data, the auto-scaling method, which divides the mean-centered data by the standard deviation, 
was used. The scores plot for partial least squares (PLS) components showed differentiation of the IC samples 
from controls with good separation and dispersion (Figure 4A).  
 

 
Figure 4. Differentiation of IC patients 
and healthy control groups using 
multivariate analysis. (A) Partial least 
square-discriminant analysis (PLS-DA) 
score plot of the IC and control groups. 
PLS-DA plot showed a clear separation 
of metabolites between patients and 
matched control subjects. Red: control 
samples; Green: IC patient samples. The 
model was established using three 
principal components. (B) For model 
evaluation, the class prediction results 
based on cross model validation 
predictions of the original labeling 
compared to the permuted data 
assessed using the separation distance. 
Histogram shows distribution of 
separation distance based on 
permutated data. Red arrow indicates 
observed statistic (P = 5e-04). (C) A 
heatmap of 52 differentially expressed 
metabolites in IC and control groups. 
Among 490 detected metabolites in total, 
52 metabolites, including both annotated 
and unannotated metabolites, were 
significantly altered in IC patients 
compared to controls (FC > 1.20 or FC < 
0.83 and P < 0.1).   

Figure 1 
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We further assessed the accuracy of our predictive model using the leave-one-out cross-validation method as 
well as the randomized permutation (Figure 4B). The observed statistic of this analysis using MetaboAnalyst 
3.0 software1 was significant (p = 5e-04), suggesting that these signatures may significantly differentiate patients 
from healthy controls. A heatmap also showed the distinct expression patterns of metabolites between IC and 
controls (Figure 4C). These metabolites are responsible for the significant difference between IC and controls 
with a fold change either greater than 1.20 or less than 0.83 and p-value less than 0.1. 

To confirm the identified potential metabolic markers, tenfold cross-validation was applied to evaluate
performance based on the identified potential metabolic markers, while SVM regression was used as a classifier. 
Figure 5 shows the ROC curve obtained with our significant metabolites 22 annotated metabolites among 52 
candidates annotated or unannotated. The AUC (0.8968) of the SVM classifier indicates that the identified 
candidate metabolic markers perform well to differentiate IC patients and healthy controls. 

Figure 5. ROC curve of support vector machine (SVM) 
classification with 10 fold cross-validation (AUC: 
0.8968). The ROC curve was obtained with 22 annotated 
differentially expressed metabolites. The performance of 
the SVM classifier indicates the distinguish power of the 
identified metabolic markers. 

Identification of differentially expressed metabolites in urine of IC patients 
Given 490 detected metabolites, we identified 52 differentially expressed metabolites, including both annotated 
and unannotated metabolites. In the volcano plot (Figure 6A), annotated metabolites are presented as log2 fold 
change against the –log10 (p) of the differential expression between IC patients and healthy controls. 22 
annotated differentially expressed metabolites above the threshold (FC > 1.20 or FC < 0.83, and P < 0.1) are 
marked and presented. Erythronic acid and histidine were the most upregulated metabolites in the IC patient 
group compared to that in control. Tartaric acid was the most downregulated as shown in Figure 6B and Table 
1.  

Figure 6. A volcano plot showing differentially expressed metabolites in IC patients. (A) 22 annotated 
metabolites were significantly altered in IC patients compared to controls (FC > 1.20 or FC < 0.83 and P < 0.1). 

Figure 2 
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The red dots represent metabolites above the threshold. The further the metabolite’s position away from the (0, 
0), the more significant the metabolite is.  (B) A boxplot showing up-regulated and down-regulated metabolites 
that could be used to differentiate IC patients from normal subjects. The candidate metabolites, erythronic acid 
and histidine, were significantly increased in IC patients compared to that in controls, while tartaric acid was 
significantly decreased. All metabolites show statistical significance with p-value < 0.1.  
 
 

Table 1. A list of metabolites differentially expressed in IC, compared to controls. Recent advances in next 
generation DNA sequencing (NGS) have revealed that human organs and body surfaces form habitats for an 
enormous web of interacting microbial communities of great diversity and complexity. In comparison with other 
organ sites, the microflora of the lower urinary tract has not been extensively studied. This study looks at the 
composition of fungal communities that reside in the human urine, which was once believed to represent a sterile 
environment, using state-of-the art NGS technology. Our data from catheterized urine samples suggest that the 
human urinary tract harbors a unique cellular mycobiota and contains a rich fungal community, which has a 
richer diversity that may be masked in voided urine abundant with contamination from common skin or GI 
microbes. We also have found that mycoflora in urine is more diverse than those in colon communities. This 
finding is new and could open up a new frontier of study that could now pave the way to gain a deeper 
understanding on urine mycobiome, reflecting the urinary tract mycobiota. 
 
 
Network modeling derived from IC-associated metabolites 

Metabolite) Fold)Change) p0value)

oleic&acid& 0.63& 0.00&
2.deoxytetronic&acid& 1.26& 0.01&
saccharic&acid& 0.80& 0.01&

phosphate& 0.70& 0.02&

trehalose& 1.79& 0.02&

erythronic&acid& 2.25& 0.02&
oxalic&acid& 0.48& 0.02&

sulfuric&acid& 0.31& 0.02&

cystine& 1.47& 0.02&

lyxitol& 1.42& 0.03&
lysine& 1.49& 0.03&

histidine& 1.79& 0.04&

N.carbamylglutamate& 1.43& 0.05&

N.acetyl.D.galactosamine& 1.25& 0.06&
1,2.dihydroxycylohexane&NIST& 1.46& 0.06&

tartaric&acid& 0.04& 0.06&

maltose& 1.67& 0.07&

erythritol& 1.33& 0.08&
valine& 1.25& 0.08&

phosphoethanolamine& 0.69& 0.08&

N.acetylglutamate& 0.68& 0.10&

octanol&NIST& 0.72& 0.10&
 

Table 1 
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We performed analysis on the histidine-associated differential module (subnetwork) using a multilevel local 
graphical model8 (Figure 7). The differential network represents the changes of correlation structure in IC when 
compared to the background network. Levels of two metabolites, valine and histidine (red circle), are increased 
in IC. The interactions (correlations) among metabolites indicate that those metabolites may biologically function 
together. Generally, the variations of interactions among metabolites under different clinical conditions are
associated with IC status. The sparse local graphical model9 is used to construct both the common and 
differential metabolite networks simultaneously. In turn, treating each metabolite as a response variable and the 
remaining annotated metabolites as predictors and running the sparse regression built the network.  

Cytoscape (www.cytoscape.org/) was used for differential network visualization and subnetwork identification. 
The proposed approach identified the IC associated differential network efficiently (Figure 7).  

Figure 7. Network modeling derived from IC-associated metabolites. Histidine associated differential 
module (subnetwork) is shown on Figure 7, where the red nodes indicate upregulated metabolites and light blue 
nodes represents non-differentiated metabolites.   

To further understand our metabolite signature, MetaboAnalyst software was used for functional enrichment 
analysis. Metabolite enrichment analysis allows us to study the corresponding biological pathways of IC with 
metabolites on the differential network. We performed Metabolite Set Enrichment Analysis (MSEA) with the 18 
metabolites, which were derived from data in figure 4. We found that those 18 metabolites are highly enriched 
in Protein Biosynthesis and Ammonia Recycling with the FDR of 0.0000136 and 0.00557, respectively (Figure 
8).  

Figure 4 



	 26	

 
 
 
 
Figure 8. Differential network in IC is 
identified with multilevel local graphical 
model (Liu et al. 2015). The differential network 
represents the changes of correlation structure 
in IC when compared to the background 
network.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Collectively, in this study, we proposed novel biomarker candidates that are detectable in human urine 
specimens for IC diagnosis based on metabolomics analysis using GC-MS.  Metabolites including histidine, 
erythronic acid, and tartaric acid were found to be specific to IC. Although the present report has provided 
evidence that metabolic fingerprints can predict IC patients, it remains to be determined whether these 
metabolites might have biological and mechanistic meanings. The relatively small number of subjects is also a 
limiting factor. These initial findings furthermore require validation with additional cohorts. 
 

An IC-specific urinary metabolite may change DNA methylation in bladder epithelial cells 
 
Although sex disparities are noted in the field of gender medicine, the biological, cellular, and molecular bases 
of these gender biases remain elusive in the context of IC. One theory is that sex hormones are possibly 
associated with noted variations in metabolism. This is evident in numerous other diseases. For example, it has 
been reported that the prevalence of autoimmune disease is three to four times higher among women1-3. Another 
study suggested that male and female multiple sclerosis patients showed distinct gene signatures4. Heart failure 
and cardiovascular disease (CVD) are also associated with sex differences5-9. In females, hypertension is more 
common and is often the cause of heart failure. However, females also have a better prognosis than males with 
heart failure. For CVD, blood pressure and glucose metabolism play more important roles in females, whereas 
male CVD is affected mostly by cholesterol. The average starting age of CVD incidence in males is around the 
mid-30s and gradually increases; while in females, CVD usually occurs much later, around 50 years of age. 
Furthermore, the plasma lipid profiles of younger-aged females are generally better than similarly aged males, 
which may explain why females have a lower risk for CVD. In an effort to examine these sex-biases, mammalian 
animal models have been used to explore how males and females develop diseases differently and identify 
potential therapeutic targets. A study in female and male Sprague–Dawley rat models showed that hearts from 
female rats have better cardioprotection than male rats. Phosphorylation of mitochondrial proteins in female rats 
were altered, leading to less reactive oxygen species generation and oxidative metabolism10. While research 
into sex differences in other diseases has progressed, the same cannot be said for IC. Therefore, there is a need 
for more effort in examining the relationships between sex-specific risk factors, metabolic rewiring, prevalence, 
and symptom severity in IC.  

Figure 5 
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Urine analysis for IC diagnosis. Urine is a critical biological fluid that is filtered through the kidneys and stored 
in the bladder. It contains the expression of many metabolic properties. It was only recently that urine has been 
recognized as a potential biological source of disease-associated biomarkers. Prior to this, urine was just 
considered a voided bodily waste product. While the composition of urine may be less complex than that of 
serum or tissue, it can nevertheless contain a multitude of biomarkers for medical disorders and state30-33. 
Considering that bodily fluids most proximal to a disease site provides a wealth of informative biomarkers34-36, 
urine analysis could prove to be tremendously beneficial for bladder diseases37. In addition, assays of urine 
components are noninvasive and can easily be repeated, even by the patients themselves.  
Finding IC urinary biomarkers via unbiased metabolomics profiling. Metabolic profiling can provide global 
chemical fingerprints regarding the physiology and metabolism of cells. Additionally, nuclear magnetic resonance 
(NMR) spectroscopy can supply information concerning the physiological and pathological states of biological 
samples38-39. To search for soluble metabolites 
that can diagnostically segregate female IC 
patients, we constructed the Inha cohort under a 
collaboration with Dr. Tack Lee (IRB #10-0751) at 
Inha University Hospital (Incheon, South Korea). 
Using a metabolomics approach on urine samples, 
we identified a list of candidate urinary biomarkers. 
Further analysis with NMR and lipid 
chromatography-mass spectrometry (LC-MS) 
showed substantial differences in the metabolic 
profiles of urine between female IC patients and 
healthy controls40 (Fig. 1A/B). Notably, α-
oxoglutarate (α-OG, also known as α-
ketoglutarate), a key Krebs cycle intermediate and 
regulator of cellular redox states11, was one of the 
key IC-associated urine metabolites. 

α-OG perturbs the epigenetic architecture and 
biology of bladder epithelial cells. α-OG has 
been reported to function in epigenetic regulation, indirectly contributing to metabolic reprogramming and 
macrophage activation11,12. Based on this, we tested our hypothesis that the global DNA methylome of normal 
human bladder epithelial cells is altered in response to α-OG12. To assess whether the DNA methylome is 
changed by α-OG, an EPIC array was performed (Fig. 2). Our analysis and data requisition identified a list of 
differentially methylated genes (DMGs) in response to α-OG. Following the QC steps within minfi, methylation 
data for 836,329 CpGs were analyzed. The volcano plots show the differentially methylated probes present 
between the α-OG treatment and control conditions. Significantly hypermethylated probes are shown in orange, 
while hypomethylated probes are shown in blue (Fig. 2).  

Figure 1. Urinary levels of α-OG were significantly increased in female
IC patients compared to that in controls. (A) Significantly increased levels 
of two NMR peaks, 3.0157 and 3.0212 ppm indicating α-OG. *FDR < 0.05 (B)
LC−MS analysis showing an increased α-OG levels in urine from female IC
patients compared with those from healthy female controls. Statistical analysis 
was performed using student’s t-test, and the resulting p-values are indicated. 
Error bars represent standard error.  
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Next, in order to explore the contribution of DNA methylation signatures in IC, we performed functional 
enrichment analysis and network modeling on the DMGs. Enriched cellular processes and biological 
pathways perturbed by α-OG treatment were identified using the DAVID software13. Hypomethylated 
genes were found to be enriched for cell-cell adhesion, cell projection organization, neuron projection 
development, cell-cycle processes, chromatin remodeling, and regulation of Rho protein signal 
transduction. Hypermethylated genes were found to be enriched for cellular responses to stress, Ras 
GTPase activity, and transport of NADH to uniquitinone in the mitochondrial electron transport chain 
(Fig. 3A). To further understand the mechanistic connection of perturbed DMGs due to α-OG treatment, 
a network model was constructed using protein-protein interaction information from the STRING 
database45. This network model consisted of B-CATENIN (CTNNB1), PKD1 (polycystin 1), CDH18 
(cadherin 18), SMARCAs (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, 
subfamily A, member 4), HDAC4 (histone deacetylase 4), ARID1A (AT-rich interactive domain 1A), 
PBRM1 (Polybromo-1, a component of the PBAF (Polybromo-associated-BRG1- or BRM-associated 
factors), chromatin remodeling complex et al. (Fig. 3B).  

α-OG suppresses cell proliferation in human bladder epithelial cells. In light of our previous global 
metabolomics data linking α-OG to cell cycle arrest and proliferation suppression14, we further investigated the 
effects of α-OG in bladder epithelial cells. Cell cycle transition and proliferation were measured in TRT-HU1 
human bladder cells treated with or without 10 mM of α-OG. We found that levels of key cell cycle and 
proliferation regulators, such as p53 and p21, significantly increased, and the cell proliferation rate was 
significantly suppressed in response to α-OG (Fig. 4).  

Figure 2. Reprogrammed DNA methylation architecture due to α-OG treatment. 
Experimental scheme describing EPIC DNA methylation profiling and the following 
bioinformatics analysis. Volcano plot highlighting differentially methylated probes.  
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Collectively, in this preliminary study, we examined the biological impact of increased levels of urinary α-OG on 
the bladder epithelium. Given that our previous global 
metabolomics profiling of female IC urine suggested the 
possibility of finding non-invasive metabolic signatures, this 
study focused on gaining new insight into the mechanism of IC 
by investigating the biological meaning of upregulated α-OG. In 
addition, our Infinium Methylation EPIC profiling revealed that 
the bladder DNA methylome is responsive to α-OG. Our 
findings provide evidence suggesting that α-OG may change 
the physiology of bladder epithelial cells at the epigenetic 
and metabolic levels.  
 
Sex-associated differences in baseline urinary metabolites 
of healthy adults. In our preliminary work, we hypothesized 
that the products of metabolism in healthy females and males 
are distinct. To determine the base levels of urinary metabolites 
in healthy controls, we attempted to compare urinary 
metabolomic profiles using state-of-the art untargeted global gas chromatography time-of-flight mass 
spectrometry (GC-TOF MS) profiling combined with comprehensive bioinformatics analysis. In total, we enrolled 
60 females and 60 males for this study. All participants were >2 months free of treatment and/or medication. In 
order to compare the metabolite profiles of urine samples from healthy females and males, individual urine 
samples were analyzed using GC-TOF MS. We found that 77% of all compounds yielded a non-normality 
distribution. Hence, a nonparametric univariate method, the Mann-Whitney U test, was performed to measure 
and discover significantly changed metabolites. Additionally, we adopted the Benjamini-Hochberg false 
discovery rate (FDR) correction procedure to deal with the multiple comparison problem and ensure the 

Figure 3. Enriched biology perturbed by α-OG. (A and B) Enriched cellular processes (A) 
and KEGG pathways (B). Bar plot represents scores of enrichments by hyper- and hypo-
methylated genes. (C) Network model describes cell-cell adhesion and chromatin remodeling 
genes that were hypo-methylated by α-OG treatment. 

	

Figure 4. Anti-proliferative effects of α-OG on bladder 
epithelial cells. (A) Representative western blot showed the 
reduced levels of p53 and p21 expression in TRT-HU1 normal 
bladder epithelial cells treated with 10mM of α-OG for 72 hrs. 
b-actin was used for protein normalization. (B) Proliferation 
assay was performed. *P<0.05 (two-sided Student’s t-test) 
compared with the control group.  
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reproducibility of our significant metabolites detection. Metabolites responsible for differences in multivariate 
metabolic phenotypes between male and female urine were obtained based on variable importance in projection 
(VIP) from a 10-fold cross-validated partial least-square discriminant analysis (PLS-DA) model. The PLS-DA 
model achieved a 48.5% rate of discrimination for Q2 and 89.1% for R2. In addition, the model was further 
validated with a permutation test on prediction accuracy and had a significant result (p < 0.05), indicating that 
the model was robust and results were not obtained by chance. Significantly altered metabolites distinguishing 
male and female urine were acquired based on conditions of p < 0.05, fold-change < 0.8 or > 1.2, and VIP >1 
(Fig. 5A).  
 
Hierarchical clustering analysis (Euclidean distance and complete method) and constructed heatmaps of the 
significant metabolites (corrected FDR p < 0.05) depicted the relatively disturbed and unbalanced metabolism 
states between male and female samples (Fig. 5B). Next, we performed the Mann-Whitney U test and Benjamini-
Hochberg FDR correction on each compound to compare them between males and females. There were 25 
significantly different compounds after FDR correction and 94 without FDR correction. The volcano plot shows 
the fold change and significance of each annotated metabolite. Significant metabolites in the volcano plot had a 
fold-change threshold > 1.20 or < 0.83 with a t-test p-value < 0.05 (Fig. 5C). The differentially expressed 
metabolites (DEMs) were identified based on their p-values, FDR p-values, fold-changes of male vs. female, and 
PLS-DA VIP values. Of note, levels of α-OG (male/female fold-change, 2.29) were found to be higher in 
healthy males compared to females. In contrast, levels of succinic acid, malic acid, or glycine greatly 
decreased in males compared to females.  
 

 
Summary:  
 
(1) In an effort to understand the molecular mechanism of sex-associated biochemical correlates of IC, our 
preliminary systematic examination focused on and found distinct urinary metabolite signatures between healthy 
females and males. Our urinary metabolomics data clearly suggests that sex differences should be 
considered in future laboratory and clinical studies.  
 
(2) Our preliminary data revealed that a-OG, which was abundantly detected in the urine of female IC patients, 
regulates gene expression epigenetically and contributes to slowed proliferation in bladder epithelial cells. This 
experimental data provides clues regarding the underlying biology of IC and suggests potential diagnostic and 
therapeutic targets. 
 

Figure 5. Distinctive urinary metabolic profiles between healthy males and females. (A) Partial least squares-discriminant analysis (PLS-DA) 
scores plot. It depicted obvious differences between male and female urine samples, with PC1 (11.3%) and PC2 (7%). (B) Heat map showed the 
distribution of DEMs, which were significantly different (FDR adjusted p value < 0.05) between male and female urine samples. (C) In volcano plot, a 
total of 50 peaks were significantly changed (Mann-Whitney U test p value < 0.01) in urine samples. Red dots represent 25 significant peaks with FDR 
adjusted p value < 0.05. Red arrow represents α-OG.  
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Complete compound annotation of all mass spectra from untargeted urine metabolomics 

To this date, metabolomics is considered to be one of the major “omics” tools, with the great potential for 
application in personalized medicine and health15. Over the last decade, metabolomics has become an integral 
part of clinical laboratories worldwide for targeted analysis. However, untargeted metabolomics is still widely 
used as it provides comprehensive insights into complex metabolomes and allows for biomarker discovery. While 
untargeted metabolomics can be powerful, its main challenge is its low identification rates16,17. Since there is no 
single platform capable of capturing the entire metabolome of urine, we have employed two platforms most 
suited for untargeted urine analysis: (1) hydrophilic interaction chromatography (HILIC), for polar metabolite 
profiling, and (2) charged surface hybrid (CSH) technology, for lipidomics profiling. Through this integration of 
lipidomics and intensive systems biology, our experimental results provided a comprehensive list of lipid species 
and biogenic amines in human urine. Lipidomics, a lipid-targeting subarea of metabolomics, involves studying 
the unique structure and functional roles of cellular lipids in biological systems. Recent technological 
advancements in high-resolution MS have made comprehensive lipid metabolic profiling of clinical specimens 
and biofluids, including urine, possible. As important structural components of cellular membranes, lipids play 
key biological roles in various diseases. However, clinical application of lipidomics profiling still remains a 
challenge due to the limited databases available for data interpretation. Many lipids and lipid metabolites are still 
not properly annotated nor functionally characterized. Our group is actively working to address this issue by 
developing software and databases that can aid in lipid identification. The biologically active metabolites in urine 
can be identified through global metabolomics profiling and can provide an unbiased chemical fingerprint of the 
metabolism in the human body. The urinary metabolome in particular is associated with urological diseases, 
including bladder dysfunctions such as IC18-20. IC is characterized by chronic bladder and/or pelvic pain, as well 
as nocturia and an increase in urinary frequency and urgency.21,22 For our work, we sought to derive urinary 
metabolomic signatures from IC patients using newly developed comprehensive annotation tools23 on all five 
levels of annotation, as defined by the Metabolomics Standards Initiative (MSI). The objective of this work is to 
provide insight into increasing compound annotation levels in the clinical setting by utilizing a variety of freely 
available software tools and databases.  

EXTRACTION 
Subjects, urine specimen collection, and clinical and pathological features of subjects were described in a 
previous paper from our team. De-identified urine samples were stored at −80°C until further analysis. Urinary 
lipids were extracted with methanol and methyl tert-butyl ether containing a cocktail of lipid standards. Water 
was subsequently added for phase separation.   This extraction protocol extracts all main lipid classes in urine 
with high recoveries, specifically phosphatidylcholines (PC), sphingomyelins (SM), phosphatidylethanolamines 
(PE), lysophosphatidylcholines (LPC), ceramides (Cer), cholesteryl esters (CholE), and triacylglycerols (TG).24 
Lipid standards were purchased from Avanti Polar lipids (Alabaster, USA). Polar metabolite extraction was done 
by taking the polar phase of the lipid extraction procedure. Samples were dried in a centrivap prior to a clean-up 
step of 50% acetonitrile and dried again. Samples were then reconstituted in 80:20 acetonitrile and water solution 
containing internal standards from Sigma and CDN Isotopes. 

INSTRUMENTATION 
For lipids, all measurements were carried out on a Thermo Q Exactive Hybrid Quadrupole-Orbitrap Mass 
Spectrometer. Briefly, 1 μL of diluted samples were separated on a Waters Acquity Ultra-Peformance LC (ULPC) 
CSH C18 column (100 × 2.1 mm; 1.7 μm) coupled to an Acquity UPLC CSH C18 VanGuard Precolumn (5 × 2.1 
mm; 1.7 μm). The column was maintained at 65°C with a flow rate of 0.6 mL/min. The positive ionization mobile 
phases consisted of (A) acetonitrile:water (60:40, v/v) with ammonium formate (10 mM) and formic acid (0.1%) 
and (B) 2-propanol:acetonitrile (90:10, v/v) with ammonium formate (10 mM) and formic acid (0.1%).  The 
negative ionization mobile phases consisted of (A) acetonitrile:water (60:40, v/v) with ammonium formate (10 
mM) and (B) 2-propanol:acetonitrile (90:10, v/v) with ammonium formate (10 mM).  The separation was 
conducted under the following gradient: 0 min 15% B; 0−2 min 30% B; 2−2.5 min 48% B; 2.5−11 min 82% B; 
11−11.5 min 99% B; 11.5−12 min 99% B; 12−12.1 min 15% B; 12.1−15 min 15% B. The Thermo Q Exactive 
Hybrid Quadrupole-Orbitap Mass Spectrometer was operated using electrospray ionization (ESI CSH) in positive 
mode used the following parameters: mass range, 120-1200 m/z; sheath gas flow rate, 60; aux gas flow rate, 
25; sweep gas flow rate, 2; spray voltage (kV) 3.6; capillary temp, 300°C; S-lens radio frequency level, 50; aux 
gas heater temp, 370°C. The full MS parameters were set as follows: resolution, 60,000; automatic gain control 
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(AGC) target, 1e6; maximum IT, 100ms; spectrum data type, centroid. Data dependent tandem MS parameters: 
resolution, 15,000; AGC target 1e5; maximum IT, 50 ms; loop count, 4; TopN, 4; isolation window, 1.0 m/z; fixed 
first mass, 70.0 m/z; (N)CE / stepped (N)CE, 20, 30, 40; spectrum data type, centroid. For HILIC, all 
measurements were carried out on the same Thermo Q Exactive Mass Spectrometer. Briefly, 1 μL of diluted 
samples were separated on an Waters Acquity UPLC Ethylene Bridged Hybrid (BEH) Amide Column (150 × 2.1 
mm; 1.7 μm) coupled to an Acquity UPLC BEH Amide VanGuard Precolumn (5 × 2.1 mm; 1.7 μm). The column 
was maintained at 45°C with a flow rate of 0.4 mL/min. The mobile phases consisted of (A) water with ammonium 
formate (10 mM) and formic acid (0.125%) and (B) acetonitrile:water (95:5, v/v) with ammonium formate (10 mM) 
and formic acid (0.125%). The separation was conducted under the following gradient: 0 min 100% B; 0−2 min 
100% B; 2−7.7 min 70% B; 7.7−9.5 min 40% B; 9.5−10.25 min 30% B; 10.25−12.75 min 100% B; 12.75−17 min 
100% B. The Thermo Q Exactive MS instrument was operated using ESI HILIC in positive mode with the 
following parameters: mass range, 60-900 m/z; sheath gas flow rate, 60; aux gas flow rate, 25; sweep gas flow 
rate, 2; spray voltage (kV) 3.6; capillary temp, 300°C; S-lens RF level, 50; aux gas heater temp, 370°C.  Full MS 
parameters: microscans, 1; resolution, 60,000; AGC target, 1e6; maximum IT, 100ms; number of scans, 1; 
spectrum data type, centroid. Data dependent MS2 parameters: microscans, 1; resolution, 15,000; AGC target, 
1e5; maximum IT, 50 ms; loop count, 4; multiplexing (MSX) count, 1; TopN, 4; isolation window, 1.0 m/z; isolation 
offset 0.0 m/z; (N)CE / stepped (N)CE, 20, 30, 40; spectrum data type, centroid.  

DATA PROCESSING AND IDENTIFICATION 
The LC-MS/MS data was analyzed using MS-DIAL software.25 Detailed parameter settings are listed in 
Supplemental Tables 1 and 2 (HILIC and lipidomics data processing settings).  Accurate masses, retention times, 
and peak heights were then exported, and further analysis 
was performed in R Studio and our in-house developed 
software for statistical analysis, Metabox.26 Automated 
annotation of metabolites was performed separately for 
polar metabolites and lipids. Table 1 lists libraries, methods, 
and software used for each platform. Metabolite annotations 
were done with the help of our in-house developed library 
containing >600 authentic lipid standards of different 
classes and >800 standards of polar metabolites. Next, 
MS/MS database matching was performed with freely 
available MS/MS spectra obtained from Mass Bank of North 
America (MoNA), National Institute of Standard and 
Technology (NIST) 17, LipidBlast, and the NIST Hybrid 
Library.27-29 Workflow summarizing all the tools, software 
and databases are shown in Figure 5. 

RESULTS AND DISCUSSION 

m/z-RT and MS/MS databases 
Untargeted lipidomics analysis in the positive ionization mode resulted in 112 identified lipids encompassing 
several lipid classes. The same sample set was also analyzed using HILIC chromatography. Using the 
established in-house library, we identified 117 metabolites, which consisted of amino acids, biogenic amines, 
and derivatives. These annotations are level 1 according to MSI, meaning that the experimental data was 
compared to authentic standards measured under the same instrumental conditions. Chemical standards (n= 
874) were analyzed on two instrument types: quad time-of-flight (QToF) and orbitrap in positive ionization mode.
These standards provide several orthogonal parameters: accurate mass (m/z), retention time (RT), and MS/MS.
This level of annotation is laboratory/chromatography specific and is clearly a limitation if used exclusively. It
takes both time and money to develop and establish such a chromatography. In our own experience, two skilled
researchers require two years of work to create and validate a chromatographic run with 1000 metabolites
measured on it robustly. It is a common practice in metabolomics research to use MS/MS libraries and perform
mass spectral similarity searches in order to increase the annotation rate, as fragmentations are not
chromatography specific. Those libraries contain mass spectra of authentic standards from a variety of
instrumentation and chromatography (this metadata is available in .msp/.mgf formats), and this level of
compound ID is described as level 2. Users can use freely available databases, such as MoNA, or can opt for

Figure 5. Workflow summarizing tools, software, 
and databases used for completing annotation of 
urine metabolome. 



	 33	

commercially available MS/MS databases such as NIST17. We combined two mass spectral databases, MoNA 
and NIST17, and used the merged .msp within MS-DIAL software for mass spectral similarity matching. Meta-
data such as dot product, reverse dot product scores, number of matching ions, and MS-DIAL calculated MS2 
similarity have been taken into account.  
	
Table 1.  

Chromatography and 
databases 

Type of matching MSI level of 
annotation 

Number of annotations 
accomplished 

HILIC  m/z, RT and MS/MS 1 117 
Lipidomics m/z, RT, MS/MS,  

in silico MS/MS 
1 72 

Lipidomics: CarniBlast m/z , in silico MS/MS 2 18 
HILIC: MoNA+NIST14 m/z and MS/MS  2 440 
HILIC: CarniBlast m/z and in silico 

MS/MS 
2 107 

Lipidomics: mzRT lookup m/z 3 96 
Hybrid search MS/MS (hybrid) 3 Sample depending: 4000-

8000 
In silico fragmentation software: 
CSI:FingerID 

MS1 and in silico 
MS/MS 

3 Sample depending: 
4000-8000 

 

M/Z Lookup Table in LipidBlast 
This essentially stand-alone tool can be used in addition to LipidBlast. It provides an automated approach for 
lipid annotations based on their accurate masses and/or chromatographic RT. Additional structure information of 
the lipids and their side chains (sn1, sn2, sn3) cannot be made using accurate mass alone. For comprehensive 
structure elucidation, another orthogonal parameter like MS/MS is needed. We extracted m/z precursor 
information from the MS-DIAL output in positive ionization mode and used the M/Z Lookup Macro to assign 
additional lipid annotations. Mass tolerance for lipid assignments was calculated based on the mass accuracy of 
the Thermo Q Exactive instrument and the internal standards, 0.005 Da. This way, an additional 96 lipid 
annotations were obtained from the lipidomics data set in positive ionization mode. 

CarniBlast 
The process of lipid degradation (β-oxidation) in human cells occurs in the mitochondria. This allows for the direct 
coupling of fatty acid degradation to energy generation via the citric acid cycle and respiratory electron transport 
chain localized in the inner mitochondrial membrane. For the corresponding import process, fatty acids of 
different chain lengths and saturation are esterified to L-carnitine with the formation of acylcarnitines.30 L-carnitine 
can be de novo synthesized from N-trimethyl-lysine with butyrobetaine as an intermediate in a multi-step 
pathway. However, most carnitine comes from dietary intake. Fatty acids destined for degradation are first 
activated via thioesterification into coenzyme A (CoA). Then, three types of carnitine acyltransferases with 
different chain-length specificities (short, medium, long) transfer fatty acids via transesterification to carnitine with 
the release of CoA. These are carnitine acyltransferase, carnitine octanoyltransferase, and carnitine 
palmitoyltransferase. Next, a transport system consisting of carnitine palmitoyltransferase I (outer membrane), 
carnitine-acylcarnitine translocase, and carnitine palmitoyltransferase II (both inner membrane) transfer the 
acylcarnitines into the lumen of the mitochondria, where transesterification with CoA regenerates the acyl-CoAs 
and carnitine.31,32 Carnitine then leaves the mitochondria via the above outlined transport complex. During β-
oxidation, the fatty acids are cleaved between C2 and C3 with the release of a C2-unit of acetyl-CoA. A trans-2 
double bond is formed between C2 and C3, hydrated, oxidized, and finally cleaved by the action of four enzymes. 
Odd chain and unsaturated fatty acids require additional enzymes.33 The described overall process is an 
essential part of the lipid homeostasis which covers all fatty acids of different lengths and saturation. 
Consequently, diseases that disturb this described lipid homeostasis ultimately increase acylcarnitines in the 
blood and the urine. Therefore, acylcarnitines can be biomarkers for diseases, including heart failure34, obesity 
and diabetes35, chronic kidney disease36, chronic psychiatric illness37, migranes38, and endometrial cancer.39 
Acylcarnitines in urine serve as biomarkers for bladder cancer40, diabetic nephropathy41, obesity42 and human 
kidney cancer.43 It is well documented that carnitine and its esters can be found in almost every bodily fluid, yet 
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the chemical standards are severely limited and/or nonexistent. To overcome this obstacle, we used an in-house 
developed in silico database of acylcarnitines as they, like many lipid species, fragment in a predictable manner. 
We exported the .msp files from both polar and lipidomics profiling and matched them against an in silico 
database of acylcarnitines. Some of the acylcarnitines were already present in our m/z-RT libraries, so using 
CarniBlast for the lipidomics .msp resulted in only three additional annotations. However, when HILIC .msp was 
used for the CarniBlast search, it resulted in an additional 793 annotations of acylcarnitines. This number 
suggests that there are far more carnitines present in urine than previous reports suggest.44 This increase in 
annotation rates of acylcarnitines is important due to their role in lipid metabolism and various metabolic 
diseases. Interestingly, a majority of acylcarnitines couldn’t be annotated with any other software or database. 

In silico fragmentation software 
For the compounds that are not present in our m/z-RT library and have collected MS/MS spectra that cannot be 
matched in mass spectral libraries, software tools, like MS-FINDER, Sirius, and CFM-ID, are of great value.45-47 
We used the latest Sirius software with CSI:FingerID Interface (Sirius 4.0 built 19) to assign molecular identities 
to acquired MS/MS spectra.48 We selected Sirius with CSI:FingerID because it has consistently scored very high 
during the latest Critical Assessment of Small Molecule Identification (CASMI) challenges. Furthermore, the 
current version has been improved in accuracy and speed. The MS/MS spectra were exported as a Mascot 
Generic Format (MGF) file from each raw file using the MSConvert. The MGF file largest in size contained the 
most MS/MS data and was therefore used for further analysis. A standard MGF file with 6482 MS/MS spectra 
was imported and 6447 features were available in the software. Formula assignment in positive ionization mode 
was performed with 10 ppm while retaining the 10 best formula candidates. Processing time was 2 minutes on 
a 16 CPU machine and the software was capable to assign formulas to a total of 6184 features. Fingerprint 
matching with CSI:FingerID via a webservice was subsequently performed to annotate isomer structures. 
Through this, 728 MS/MS peaks could be assigned when searching bio-databases and 1557 features could be 
assigned when querying the much larger PubChem database. The search time was around 5 minutes.  The 
results, isomer structures, and their scores are presented in the Graphical User Interface (GUI) software. 
Additionally, results can be exported to CSV files. For the biodatabase search, up to 130 results were obtained 
per MS/MS scan, while the PubChem fingerprint research resulted in up to 10,000 candidates per MS/MS 
spectrum searched. Here individual and time-consuming investigations have to be performed to investigate the 
correctness of the found structures. In order to show the accuracy of CSI:FingerID we also performed a search 
on compounds that were annotated by our in-house database. Sirius 4.0 and CSI:FingerID with 5ppm mass 
accuracy and search in bio-databases correctly identified 41 compounds as a top hit. Approximately 52% of the 

Figure 6. Head-to-tail comparison of an MS/MS spectra of an amino acid shows distinct shift in the spectrum: 
methylated vs. non-methylated. 
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known compounds were correctly assigned within the top 3.  The median rank for all 103 compounds was one 
and the average rank ten. Considering its excellent search speed and accuracy, CSI:FingerID should be 
considered a useful annotation tool for the identification of unknown compounds. The associated results can be 
found in the supplement. In our previous work, we have shown that it is possible to combine the outputs (results) 
of multiple software to create a new ranking system based on the accuracy of each software and rank the correct 
structure as the top hit in 93% of the cases.49 However, this approach is not easily applicable as it requires both 
compound database boosting as well as thorough software comparison for the defined sample set.  
 

 
 
NIST Hybrid search coupled with ClassyFire 
Epimetabolites are defined as regulatory metabolites that have been removed from their classical functions by 
modification (for example, methylation or acetylation) but often remain chemically similar to their canonical 
counterparts.50 NIST recently introduced a fantastic mass spectral library-based method to annotate MS/MS 
spectra that contain the aforementioned modifications. It is described as a “hybrid” method because it combines 
matching fragments but not the m/z of the precursor (to allow for modification calculations that are then 
reflected).51 Such a tool is of great assistance in structure elucidation of unknown metabolites, as it mimics the 
knowledge and experience of a well-trained chemist.52 The hybrid search comparison is shown in Figure 2, where 
the head-to-tail comparison of an amino acid shows a distinct shift in the spectrum, methylated versus non-
methylated. We exported the .msp files from MS-DIAL to the NIST pepSearch GUI, activated the hybrid search 
function, and ran it against the MS/MS hybrid libraries. As a result of the hybrid search, every MS/MS spectra 
are now associated with an annotation and a variety of scores. Results of the hybrid search for both HILIC and 
CSH data are presented in Supplemental Table 5. The advantage of using NIST Hybrid search is that it supports 
batch processing, offers restrictions in terms of which MS/MS spectra should be included or excluded, and allows 
users to quickly get a snapshot of the metabolome they are measuring. The result list contains a lot of meta-
data, such as chemical name, International Chemical Identifier (InChI) key, simplified molecular-input line-entry 
system (SMILES), probability score, etc. Those annotations should be treated with caution as they do not 
represent an identification but rather a “nearest known neighbor” to the unknown molecule. Next, the result list 
of NIST hybrid search was coupled with a fully automated, comprehensive chemical classification tool that 
utilizes a well-defined chemical hierarchy system - ClassyFire. ClassyFire successfully annotated and classified 

Figure 7.  Structural classification of metabolites present in the urine of 12 patients diagnosed with IC  
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thousands of molecules from various libraries, including DrugBank, LIPID MAPS, HMDB, ChEBI, and 
PubChem.53 We used ClassyFire Batch by Fiehn Lab (http://cfb.fiehnlab.ucdavis.edu/), a user-friendly web 
application capable of batch classifications directly from InChIKeys.  

Figure 7 shows complexity of urine metabolome based on the superclass and subclass classifications as defined 
by Classyfire. Results of classifications are organized into Kingdom, Superclass, Class, Subclass, and two parent 
levels. Subsets of those results is shown in Supplemental Table 6. We can imagine that such combinatorial 
approach becomes of importance in personalized medicine or health research in general, since it is evident from 
Supplemental Tables that the metabolic profile of urine varies from patient to patient. While biomarker discovery 
focuses on the shared metabolites between patients, it is also important to recognize and investigate differences 
due to diet, exposure, genetics, and other factors. 

Summary 

Metabolomics reports and data should be annotated with confidence levels for clarity and reproducibility 
purposes. Sharing the MS/MS data with the community will directly improve not only other researchers’ work but 
will also help the development of tools that aid structure elucidation process. Hopefully this work provides a 
comprehensive overview of some of the best freely available tools and databases for metabolomics research 
and will be of use to analysts when annotating unknown metabolites. 

Caffeine-perturbed proteomic profiles in normal bladder epithelial cells 

It is estimated that by the end of 2018, 2.3 billion individuals will be affected by at least one lower urinary tract 
symptom (LUTS)54. These symptoms include urinary storage problems, such as urgency, frequency, nocturia, 
or voiding problems. LUTS also weighs heavily on overall quality of life; patients report significantly higher mental 
health issues, lower work productivity, and diminished general health status55. The current standard treatment 
for LUTS involves α-blockers, 5α-reductase inhibitors, and antimuscarinics56. However, these are mainly 
palliative and require consistent maintenance.  Consequently, there is a substantial economic burden associated 
with LUTS57.  

Previous reports have demonstrated that diet and stress play important factors in the development and 
progression of LUTS58. In particular, caffeine, a naturally occurring compound, has been reported to be a 
potential dietary risk factor in developing LUTS59. Caffeine is ubiquitously found in many plants, including cocoa 
beans, tea leaves, and coffee beans. It is a stimulatory drug that is widely used to prevent sleepiness and can 
be found in over-the-counter medications, such as some pain remedies. It has also been observed that caffeine 
may aggravate or worsen urinary symptoms in patients who already have some form of LUTS60. In recent years, 
caffeinated drinks have become a staple of the average diet; more than 85% of adults in the U.S. regularly 
consume caffeine61. A longitudinal study of caffeine intake in young healthy volunteers found that subjects who 
regularly drank coffee had significant increases in urinary urgency and frequency62. Additionally, a separate study 
observed that greater coffee intake raised the odds of LUTS progression in men and women more than 
carbonated or citrus beverages63. The effects of caffeine have also been studied in the context of bladder cancer 
(BC); however, rather than finding a negative risk, there have been reported benefits. A case-control study of 
BC patients in Italy found no causal relationship between caffeine and BC64. A separate study found that caffeine 
may actually benefit BC patients by making cells more susceptible to chemotherapy and apoptosis65. 
Mechanistically, this has been reported to be mediated through caffeine’s effects on the tumor suppressor protein, 
p5366.  

Despite the potential link between caffeine and LUTS, research into causative mechanisms and functions is 
lacking. One prior study suggested that caffeine may be facilitating bladder instability and frequent urination by 
enhancing the activation of neuronal micturition centers through increased expression of transcription factor c-
Fos and nerve growth factor67. While informative, this study focused primarily on the bladder muscles with little 
attention on the bladder epithelium, which is more anatomically exposed to urine and its biological/chemical 
contents. A separate study using a mouse model found that oral caffeine administration resulted in detrusor 
overactivity and increased bladder sensory signaling68. Further studies found similar effects on the detrusor 
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muscle in humans69. However, the direct effects of caffeine, its delivery into cells, and its mechanisms remain 
unestablished.  
 
Our present study sought to examine the cellular effects of caffeine on the bladder epithelium without any 
pathological conditions. Quantitative and global proteomics analysis found that caffeine can perturb the whole 
proteome, possibly through the regulation of chromatin assembly in normal bladder epithelial cells. 
 
Quantitative proteomic analysis of normal bladder epithelial cells  
 
Due to the lack of knowledge regarding the effects of caffeine on 
biological and proteomic perturbations in the normal bladder epithelium, 
this study aimed to examine the whole proteome alterations caused by 
caffeine consumption. To gain insight on the underlying mechanism of 
caffeine on the bladder epithelium, we treated normal bladder epithelial 
cells with caffeine and performed tandem mass tag (TMT)-based 
quantitative proteomic analysis, as outlined in Figure 8.  
 
Based on previous literature, we opted to use caffeine concentrations 
within normal physiological consumption65,70. Whole-cell lysates in 
biological duplicates were digested with trypsin. Using LC-MS/MS 
followed by bioinformatic analyses, we identified 44,597 peptides 
corresponding to 5,832 proteins with more than 2 peptides in more than 
two sets of pooled lysates from at least three biological samples per 
condition. The caffeine-treated group had 5,821 identified proteins with 
high expression, while the control group had 5,808. We then performed 
functional categorization of the proteins to check whether our quantitative 
proteomic analysis was biased by any cellular compartments or biological 
process-related proteins using Panther software71. All the identified 
proteins can be categorized into 14 cellular processes, including cellular 
process, metabolic process, cellular component organization of 
biogenesis, localization, biological regulation, response to stimulus, 
developmental process, multicellular organismal process, biological 
adhesion, immune system process, locomotion, reproduction, growth, 
and cell killing, indicating that this proteome reveals major biological 
functions of bladder epithelial cells in normal physiology. In addition to 
this, we examined the cellular localization of the detected proteins, which 
showed the significant enrichment of 8 cellular compartments, including 
cell part, organelle, macromolecular complex, membrane, extracellular 
region, cell junction, synapse, and extracellular matrix. Collectively, our 
quantitative proteomic analysis identified a comprehensive list of proteins 
in all cellular components and illustrated the cellular functions of highly expressed proteins in normal bladder 
epithelial cells. 
 
Table 2. List of upregulated proteins in bladder epithelial cells perturbed by caffeine treatment.  
 

Symbol Full name Fold change (log2) P-value 

S100A8 S100 calcium binding protein A8 4.17759 0.000112 
ST13 ST13, Hsp70 interacting protein 3.918705 0.000224 
SERPINB3 serpin family B member 3 3.553147 0.000559 
SERPINB4 serpin family B member 4 3.553147 0.000559 
WASH3P WAS protein family homolog 3 pseudogene 2.327444 0.001342 
POTEKP POTE ankyrin domain family member K, pseudogene 2.210099 0.001565 
RBMS1 RNA binding motif single stranded interacting protein 1 2.032904 0.001789 
KPRP keratinocyte proline rich protein 1.526693 0.002124 
S100A7 S100 calcium binding protein A7 1.4274 0.002236 

Figure 8. Unbiased proteomics 
analysis identified proteins in TRT-
HU1 cells. Experimental scheme 
describing unbiased global 
proteomics profiling and 
bioinformatics analysis.  
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TGM1 transglutaminase 1 1.214751 0.002572 
MYH7B myosin heavy chain 7B 0.970592 0.003131 
MYH3 myosin heavy chain 3 0.970592 0.003131 
MYH1 myosin heavy chain 1 0.970592 0.003131 
MYH7 myosin heavy chain 7 0.970592 0.003131 
MYH8 myosin heavy chain 8 0.970592 0.003131 
MYH2 myosin heavy chain 2 0.970592 0.003131 
MYH13 myosin heavy chain 13 0.970592 0.003131 
MYH4 myosin heavy chain 4 0.970592 0.003131 
MYH7B myosin heavy chain 7B 0.970537 0.004025 
MYH3 myosin heavy chain 3 0.970537 0.004025 
MYH1 myosin heavy chain 1 0.970537 0.004025 
MYH7 myosin heavy chain 7 0.970537 0.004025 
MYH8 myosin heavy chain 8 0.970537 0.004025 
MYH2 myosin heavy chain 2 0.970537 0.004025 
MYH13 myosin heavy chain 13 0.970537 0.004025 
MYH4 myosin heavy chain 4 0.970537 0.004025 
H2BFS H2B histone family member S 0.895712 0.005255 
S100A9 S100 calcium binding protein A9 0.871394 0.005367 
UVRAG UV radiation resistance associated 0.738812 0.00559 
SULT1A4 sulfotransferase family 1A member 4 0.665067 0.005814 
SULT1A1 sulfotransferase family 1A member 1 0.665067 0.005814 
UCHL1 ubiquitin C-terminal hydrolase L1 0.622981 0.006261 

MAGI3 membrane associated guanylate kinase, WW and PDZ domain 
containing 3 0.615023 0.006373 

KRT74 keratin 74 0.598941 0.006485 
KRT73 keratin 73 0.598941 0.006485 
ACTA2 actin, alpha 2, smooth muscle, aorta 0.598824 0.006708 
LRRC8E leucine rich repeat containing 8 VRAC subunit E 0.594574 0.00682 
KRT74 keratin 74 0.594473 0.006932 
KRT73 keratin 73 0.594473 0.006932 
KRT74 keratin 74 0.594472 0.007156 
KRT73 keratin 73 0.594472 0.007156 
FLCN folliculin 0.592834 0.007379 
KRT74 keratin 74 0.589943 0.007491 
KRT73 keratin 73 0.589943 0.007491 
CPNE6 copine 6 0.587267 0.007715 
CPNE4 copine 4 0.587267 0.007715 
 
Whole proteome in bladder epithelial cells perturbed by caffeine treatment. We determined which proteins 
were differentially expressed after caffeine treatment. Differentially expressed proteins (DEPs) were selected for 
if they had an absolute log2 fold-change greater than 0.58 and p-value less than 0.05. In total, we identified 32 
upregulated and 25 downregulated proteins between the control vs. caffeine groups (Table 2). As shown in the 
volcano plot, some DEPs, including PSMC6 (proteasome 26S subunit ATPase 6), RUFY1 (RUN and FYVE 
domain containing 1), IARS (isoleucyl-tRNA synthetase), MCU (mitochondrial calcium uniporter), NAV1 (neuron 
navigator 1), RARG (retinoic acid receptor, gamma), and etc, significantly increased with caffeine treatment, 
while ST13P4 (ST13, Hsp70 interacting protein pseudogene 4), EIF5AL1 (eukaryotic translation initiation factor 
5A-like 1), WASH2P (WAS protein family homolog 2 pseudogene), RBMS3 (RNA binding motif single stranded 
interacting protein 3),  and etc. decreased.  
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Next, to understand the function of 
the perturbed proteins, we performed 
gene set enrichment analysis 
(GSEA) using the hallmark gene sets 
from the Molecular Signature 
Database (MSigDB)72. As a result, 
we found that the “glycolysis” and 
“PI3K/AKT/MTOR” signaling gene 
sets were significantly enriched for 
DEGs due to caffeine treatment 
(Figure 9). We also checked the 
enrichment of Kyoto Encyclopedia of 
Genes and Genomes (KEGG) 
pathways in the same context and 
found that the “neurotrophin 
signaling pathway” and “purine 
metabolism” were significantly 
enriched for in the caffeine-treated 
condition (Figure 9). These results 
suggest that caffeine may be 
stimulating the bladder epithelium by 
altering the activation of the 
PI3K/AKT/MTOR pathway, 
neurotrophin signaling, and purine 
metabolism. 
 
For this, we conducted separate 
functional enrichment analyses on 
each of the 32 up- and 25 
downregulated proteins using 
DAVID13. The results suggest that 
upregulated DEPs were significantly 
enriched for “actin-myosin filament 
sliding”, “muscle contraction”, “purine 
nucleotide metabolic process”, “ATP 
metabolic process”, “autophagy”, “response to external biotic stimulus”, and “response to other organism”. 
Downregulated DEPs were significantly enriched for “chromatin assembly”, “DNA packaging”, and “cellular 
macromolecular complex assembly” (Figure 10A). We extracted a list of the significantly upregulated DEPs 
belonging to “purine nucleotide metabolic process”, “autophagy”, “muscle contraction”, “response to external 
biotic stimulus”, and “chromatin assembly”. For the downregulated DEPs, we extracted those belonging to 
“chromatin assembly” (Figure 10B and 10C).  
 
Summary  
 
The aim of this study was to evaluate if caffeine consumption is associated with changes to protein expression 
in the normal bladder using semi-quantitative proteomic analysis. Although there are some reports about anti-
lipid accumulation via gene expression suppression of proliferator activated receptor (PPAR) ɣ and 
CCAAT/enhancer binding protein (C/EBP) α in 3T3-L1 adipocytes 73, or apoptosis induction in various cell lines, 
the direct effects of caffeine on the bladder remains elusive. Although the amount of caffeine in a cup of coffee 
varies, it is typically 300-600 mg. Using caffeine levels equivalent to 1-2 cups of coffee, we treated bladder 
epithelial cells and performed unbiased proteomic analysis using LC-MS/MS. Through this, we identified 32 
upregulated and 25 downregulated DEPs (log2 fold-change>0.58; p-value <0.05). These DEPs were enriched 
for functions such as actin-myosin filament sliding, muscle contraction, and chromatin assembly. Alterations to 
the cytoskeleton and the proteins that interact with it have been linked to a wide range of diseases74. Caffeine 

Figure 9. Differentially expressed proteins (DEPs) perturbed by caffeine 
treatment. (A) Pie chart showing the DEPs in presence of caffeine. (B) A 
volcano plot showing the up- or downregulated DEPs due to caffeine in bladder 
epithelial cells. Up- or down-regulated DEPs are marked as red or blue dot. (C) 
Enriched biological processes and cellular compartment of the DEPs. (D) Bar 
plot depicts enrichment of KEGG pathways by DEPs. 
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has similar actions with AMP-activated protein kinase (AMPK), an enzyme whose roles include contraction 
during energy deprivation in skeletal muscles75. Among the proteins involved in the enriched cellular functions, 
ACTG2, also known as alpha smooth muscle actin, is associated with multiple functions in cell motility, structure, 
integrity, and intercellular signaling76. However, caffeine did not change any of the muscle associated stabilizing 
proteins which regulate the number, or the length, of microtubules77. This suggests that increased expression of 
ACTG2 by caffeine in the bladder may enhance the contractility of bladder and may also be associated with 
urinary symptoms. Our experimental data suggested that these proteins, such as ACTG2 and HIST1H2BM, 
become more redundant in bladder epithelial cells upon exposure to caffeine. Although the function of 
HIST1H2BM as a regulator of caffeine and its effects has not been studied thoroughly, it is originally known to 
be associated with epigenetic regulation in response to DNA methylation78. 
 

 
 
 
Table 3. List of downregulated proteins in bladder epithelial cells treated with caffeine.  
 

Symbol Full name Fold-change (log2) P-value 

ST13P4 ST13, Hsp70 interacting protein pseudogene 4 -4.06184 0.000224 
EIF5AL1 eukaryotic translation initiation factor 5A-like 1 -3.14456 0.000559 
LOC102723897 - -2.27955 0.001453 

Figure 10. Differential enrichment of cellular processes by up- and downregulated 
proteins perturbed by caffeine. (A) Bar plot showing enriched cellular processes in up- or 
downregulated DEPs. (B) List of proteins involved in the enriched cellular processed by 
upregulated DEPs. Proteins reported with cancer are in bold. (C) List of proteins involved 
in the enriched cellular processed by downregulated DEPs.  
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WASH2P WAS protein family homolog 2 pseudogene -2.27955 0.001453 
RBMS3 RNA binding motif single stranded interacting protein 3 -2.22487 0.001565 
POTEI POTE ankyrin domain family member I -1.25276 0.004137 
POTEJ POTE ankyrin domain family member J -1.25276 0.004137 
HIST1H2BM histone cluster 1 H2B family member m -1.07852 0.00436 
DES desmin -0.97497 0.004584 
TENM1 teneurin transmembrane protein 1 -0.87939 0.004919 
ACTG2 actin, gamma 2, smooth muscle, enteric -0.82627 0.005255 
HIST1H2BD histone cluster 1 H2B family member d -0.78302 0.006708 
HIST1H2BC histone cluster 1 H2B family member c -0.78302 0.006708 
HIST2H2BF histone cluster 2 H2B family member f -0.78302 0.006708 
HIST1H2BH histone cluster 1 H2B family member h -0.78302 0.006708 
HIST1H2BN histone cluster 1 H2B family member n -0.78302 0.006708 
RPL29 ribosomal protein L29 -0.73583 0.007044 
RNF175 ring finger protein 175 -0.71108 0.007267 
TFAP2B transcription factor AP-2 beta -0.65122 0.007715 
DLG2 discs large MAGUK scaffold protein 2 -0.64864 0.007826 
RAB3A RAB3A, member RAS oncogene family -0.62645 0.00805 
ZDHHC13 zinc finger DHHC-type containing 13 -0.60304 0.009951 
EPHA6 EPH receptor A6 -0.60218 0.010063 
PRC1 protein regulator of cytokinesis 1 -0.59503 0.010174 
MRPL34 mitochondrial ribosomal protein L34 -0.5944 0.010286 
 
 

 
Urinary menthol suppresses chronic inflammation in the bladder 

 
Urine has long been one of the most uninvestigated biomarker sources for IC. Previous studies of urine have 
mainly focused on its chemical composition, as opposed to its metabolic properties, as indicative sources for 
medical disorders 79. Urine is an extremely important biological fluid that is secreted from the kidneys. Urination 
is the primary route through which the body eliminates water-soluble waste products. The resulting urine 
contains the expression of many metabolites, such as urea (from amino acid metabolism), inorganic salts 
(chloride, sodium, and potassium), creatinine, ammonia, organic acids, various water-soluble toxins, and 
pigmented products of hemoglobin breakdown, including urobilin – which gives urine its characteristic color. 
Collection of urine is also simpler and provides a relatively larger volume of sample compared to other biological 
fluids. Although the complexity of sources within metabolites creates many obstacles in urine analysis, progress 
in the field has been promising and this may ultimately prove to be tremendously beneficial.  
	
Odor consists of various volatile organic chemical compounds (VOCs), which can be identified through mass 
spectrometry. VOCs generally have a relatively lower molecular weight and higher vapor pressure. For cancer 
detection, there have been several studies on using gas chromatography mass spectrometry (GC-MS) for 
detecting odor in skin, tissue, breath, feces, and bodily fluids, such as urine and sweat 80. Several previous 
studies showed that well-trained dogs are capable of detecting specific VOCs and were able to classify cancer 
patients from healthy controls 81-83.  For instance, VOCs from urine can be used to assist in the diagnosis of lung 
cancer 84. Electronic noses capable of detecting odor signatures have been developed and successfully applied 
in discriminating prostate cancer patients from normal control 83,85. In general, urinary symptoms, such as 
incontinence and urgency, have a negative impact on women’s sexual life. This is mainly due to urinary odor 
and leakage 86. A significantly common issue among IC patients is a foul urine odor. Given our previous findings 
that IC patients may have a distinct metabolism 87,88, we hypothesized that the urine from IC patients may contain 
a distinguishing VOC profile and volatile odor signature reflective of disease condition.    
 
In our present volatolomic study, we tested the hypothesis that urinary volatiles differ between IC patients and 
healthy controls. We analyzed VOCs obtained from the urine headspace and extracted them via solid-phase 
micro-extraction (SPME). GC-MS analysis was employed to profile samples of patients with IC symptoms from 
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those who did not have any urinary pain symptoms. The aim of this study was to identify IC-associated VOCs 
and further analyze their biological meaning in the bladder epithelium. Using comprehensive and unbiased 
metabolomics analysis, we found menthol as a novel compound involved in IC inflammation. Our analysis found 
that urinary menthol is decreased in the urine specimens of IC patients and that these reduced levels are 
potentially linked to chronic inflammation, a symptom that is commonly observed in IC.  
 
Subjects and Urine Specimen Collection.  
Patients and healthy control subjects were recruited 
from an outpatient urology clinic at Inha University 
Hospital. All subjects were Asian females. Subjects 
were instructed to avoid tobacco, nicotine, chemical 
compounds, alcohol, herbal foods, caffeine, and 
medication 24 hrs before their urine collection. 
Recruitment was conducted following the National 
Institute of Diabetes and Digestive and Kidney Diseases 
(NIDDK) guidelines. Workup included symptom 
assessment, cystoscopic evaluation, physical 
examination, urodynamics, and/or urine culture. 
Patients with a history of other diseases, including cancer, chronic inflammation, diabetes, et al., were excluded.  
 
To minimize possible contamination with vaginal, rectal, or urethral cells, first morning urine specimens were 
obtained using clean catch methods in a sterile environment. The de-identified specimens were sent to laboratory 
and were centrifuged for 10 minutes to remove cell debris. Urine supernatants were then processed into 
individual aliquots, and stored in 15 ml tubes at −80◦C until further analysis.  
 
Volatile metabolomics profile reveals menthol levels are significantly reduced in urine specimens 
derived from interstitial cystitis patients compared to healthy controls. We sought to determine the volatile 
urinary odor composition by performing volatile metabolite profiling through SPME-GC-TOF-MS using healthy 
and IC urine samples. We used fatty acid methyl esters (FAMEs) as internal standards for quality control 
(including injections) and for retention index corrections. The procedure used for untargeted profiling of urine 
headspace volatiles was based on the method developed by Robinson 89. From the raw data, automatic peak 
detection and deconvolution were conducted using ChromaTOF software.  
 
After data cleaning and pre-processing, a total of 113 peaks were identified and quality assessment of 
quantification result was done after quantile normalization92 (Supplementary Figure 1). Peak intensities were 
summed for all identified metabolites (mTIC). Each peak was then normalized to the sample's total volatile 
metabolome.  
 
We then investigated association of these peaks with known metabolic pathways. For this, we first selected 47 
peaks annotated with a CAS registry number and then identified 26 peaks that can be mapped to at least one 
KEGG Compound ID. Using DAVID software13, we found that 26 metabolites are associated with 26 pathways 
as shown in Figure 11. We next performed differential analysis to identify significantly altered metabolites 
between IC patients and healthy controls. 76 peaks with quantification of more than half of the samples in each 
condition were included for this hypothesis testing, resulting in 12 peaks identified with a FDR<0.1. FDR was 
calculated using the integrated hypothesis testing method90. Among them, menthol (CAS RN: 89-78-1) was 
identified as significantly different between healthy control and IC urine samples with a FDR=0.024 and log2 
fold-change=-1.467. We only observed authentic volatile compounds, not chemicals or metabolites that could 
come from degradation processes. 
 
Given the lower menthol levels in IC urine and prior knowledge from literature, we speculated that reduced levels 
of menthol may influence bladder health. Our hypothesis was that the urine of IC patients contains reduced 
levels of anti-inflammatory metabolites, particularly menthol, which leads to increased IC-associated cytokines.  
To test this hypothesis, we sought to evaluate whether the anti-inflammatory effect of menthol can suppress 
lipopolysaccharide (LPS)-induced inflammation events in immune cells. In order to determine the biological 

Figure 11. Analysis workflow of ID conversion and 
pathway mapping of volatile metabolome. 
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effects of menthol on inflammation, we decided to use two independent approaches: (i) mesoscale cytokine 
profiling, and (ii) gene expression microarray analysis.  
 
In order to characterize the effect of menthol on macrophages, comprehensive microarray analysis was 
conducted on mouse RAW 264.7 macrophage cells. Cells were treated with menthol or control vehicle for 1 hr. 
The macrophages were stimulated with LPS treatment (100ng/ml) for the following 6 hrs. Three groups of gene 
expression profiles were defined: control vs menthol (C vs M), control vs LPS (C vs LPS) and menthol vs LPS 
(M vs LPS).  
 
Cytokine profiling revealed that menthol down-regulated the LPS-induced production of inflammatory 
cytokines in RAW 264.7 cells 

 
An inflammatory cytokine array was used to identify the specific cytokines that were produced and secreted into 
the conditioned surrounding medium by the RAW 264.7 macrophage cells. To determine whether the presence 
of menthol inhibits the production and release of inflammatory cytokines, RAW 264.7 cells were treated with LPS 
(100 ng/mL) with or without menthol (500 μmol/mL) for 6 hrs. Cells were pretreated with menthol or control 
(vehicle only) for 1 hr and by induced with LPS (100ng/ml) for 6 hrs after. The expression of each inflammatory 
cytokine was subsequently measured. The cytokine profiler data showed that a series of cytokines, including C-
C motif chemokine ligand 3 (CCL3), C-X-C motif chemokine ligand 10 (CXCL10), and tumor necrosis factor 
alpha (TNF-α), were induced by LPS treatment (Figure 12A, LPS condition). The addition of menthol significantly 
downregulated the production of CCL3, CXCL10, and TNF-α, compared to just LPS alone (Figure 12A, LPS +M 
compared to LPS). In figure 12B, ImageJ analysis software was used to measure values from scan dots 
according to the intensity of the cytokine array panel. This data suggests that menthol is involved in 
downregulating the LPS-induced production of inflammatory cytokines in macrophages.  
 

Figure 12. Reduced production of LPS-induced inflammatory cytokines by menthol 
in RAW 264.7 cells (cell lysates) (A) Inflammatory cytokine array analysis of CCL3, 
CXCL10 and TNF-α. The expression of these inflammatory cytokines is highly induced by 
LPS, but down-regulated by menthol. (B) Quantification of array band intensity of CCL3, 
CXCL10 and TNF-α with image-analysis software.  
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Signaling pathways involved in anti-inflammatory effect of menthol 
We next speculated that the specific signaling pathways involved in LPS-stimulated cytokine perturbation are 
modulated by menthol treatment. To determine the signaling pathways associated with the production and 
secretion of inflammatory cytokines, we screened the activation of key signaling pathways, which include nuclear 
factor-κB (NF-κB), Akt, and other 
main MAPK pathways. The 
presence of LPS induced 
phosphorylation of NF-κB and Akt in 
RAW 264.7 macrophages. The 
phosphorylation levels of NF-κB and 
Akt, but not those of Erk1/2 (data 
were not shown), were significantly 
attenuated by menthol pretreatment 
(LPS+M compared to LPS) (Figure 
13A). LPS-induced phosphorylation 
of NF-κB and Akt was significantly 
reduced by menthol treatment in a 
dose-dependent manner (Figure 
13B). This data suggests that 
menthol inhibits LPS-induced 
inflammatory cytokines via the Akt-
NF-kB signaling pathway. 
 
 
 

Sexual Pain and IC/BPS in Women 
 
Female sexual dysfunction (FSD) and interstitial cystitis/bladder pain syndrome (IC/BPS) are important factors 
affecting women’s health. A study conducted on the association between sexual and general well-being found 
that women reported better quality of life (QoL) with higher sexual satisfaction, regardless of age and/or 
menopausal status.1 Both FSD and IC/BPS significantly impairs women’s abilities to pursue and enjoy sexual 
relations. Approximately 40-50% of women experience FSD and 0.5-12% experience IC/BPS. Considering these 
incidence rates in the general population, both these diseases become serious challenges for patients and 
clinicians.2-6 

 

Chronic pain deteriorates not only personal health and wellness, but also quality of life. Chronic pain can induce 
sexual dysfunction, such as arousal disorder and relationship problems.7 Furthermore, studies have shown that 
significantly more women with chronic pelvic pain (CPP) showed FSD compared to those without CPP. Women 
with CPP and FSD had various types of FSD, such as hypoactive sexual desire disorder, sexual arousal disorder, 
orgasmic disorder, and sexual pain disorder.8  
 
The symptoms of IC/BPS, such as urinary frequency, urgency, and pelvic pain, have a negative impact on sexual 
activity and life quality.9 Women with overactive bladder (OAB) frequently have a risk for sexual dysfunction.10 In 
the postmenopausal group, women with scores indicating severe OAB had worse sexual function, mainly in the 
arousal, lubrication, orgasm, pain, and total domains.11 Despite the known association of sexual dysfunction with 
bladder diseases, contributing risk factors have yet to be explored. Evaluating the impact of duration, severity, 
pain localization, sexual trauma history, anxiety, and depression on sexual dysfunction may help elucidate risk 
factors. Increasing our knowledge about sexual dysfunction as it relates to bladder diseases may aid in clinical 
diagnoses and play a major role in treatment strategies and overall symptom improvement in this patient 
population. This review will provide an overview of studies that address FSD in women with IC/BPS. 
 
PAIN IN FSD 
 

Figure 13. Anti-inflammatory effects of menthol are mediated via 
the Akt-NF-κB pathway. (A) Phosphorylation levels of NF-κB and Akt 
were reduced by menthol treatment. (B) Phosphorylation of NF-κB and 
Akt were suppressed by menthol treatment in dose-dependent manner. 
b-actin was used as the loading control in western blot analysis. 
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FSD is classified as hypoactive sexual desire dysfunction, female sexual arousal dysfunction, female orgasmic 
dysfunction, female-genital-pelvic pain dysfunction, persistent genital arousal disorder, postcoital syndrome, 
hypohedonic orgasm, or painful orgasm through consensus by the 4th International Consultation on Sexual 
Medicine (ICSM).2, 12 Guidelines from the 4th ICSM defines pain-associated FSD as female-genital-pelvic pain 
dysfunction and includes all conditions that inhibit sexual intercourse and induce negative effects on sexual 
functions. Female-genital-pelvic pain dysfunction is different from the previous classification noted pain 
associated with FSD as sexual pain disorder including dyspareunia and vaginismus.13 In the 4th ICSM, female-
genital-pelvic pain dysfunction includes persistent or recurrent difficulties with at least one of the following: (1) 
vaginal penetration during intercourse, (2) marked vulvovaginal or pelvic pain during genital contact, (3) marked 
fear or anxiety about vulvovaginal or pelvic pain in anticipation of, during, or as a result of genital contact, or (4) 
marked hypertonicity or overactivity of pelvic floor muscles with or without genital contact.14 Painful orgasm is 
also considered and means the occurrence of genital and/or pelvic pain during or shortly after orgasm.2 These 
recent new definitions reflect the evolving concept behind pain-associated FSD as it also now includes pain in 
the vulvovaginal and pelvic area and pelvic floor hypertonicity. The new categorization of female-genital-pelvic 
pain dysfunction has broadened the view on pain-associated FSD and has differentiated it from its previous 
classification that confined symptoms to each organ or single disease. This recent change in classification by 
the ICSM considers pain-associated FDS as a complex condition influenced by psychological and physical 
factors and supports the general thought that FSD is multifactorial.  
 
Previously, vulvodynia had been generalized under chronic vulvar pain and there was no precise discrimination 
for it. However, recent consensus has redefined chronic vulvar pain as vulvar pain associated with specific 
diseases, such as inflammation, neoplasm, and/or injury. This was conducted at a conference with the 
International Society for the Study of Vulvovaginal Disease, the International Society for the Study of Women’s 
Sexual Health, and the International Pelvic Pain Society.15 Vulvodynia is reported with diverse pain 
characteristics; therefore, pain-based classification helps in identification, diagnosis, and treatment. Vulvodynia 
can be characterized as either general (entire vulva) or localized (parts of the vulva) according to the location of 
pain. Additionally, based on the situation of the pain, vulvodynia can be classified as either provoked (triggered 
by physical contact) or unprovoked (spontaneous occurrence without specific triggers).16 Women of all ages can 
experience vulvodynia and provoked vulvodynia is the most commonly diagnosed.17,18 Provoked vulvodynia is 
thought to be more widely diagnosed than unprovoked because its symptoms can be better recognized by 
doctors. Therefore, there is an important need to better identify these patients.  
 
SEXUAL PAIN AND IC/BPS 
 
IC/BPS is a disorder that induces chronic pain or discomfort in the bladder and surrounding pelvic organs.19,20 At 
present, IC/BPS is not a disease confined to just the bladder and pelvic area; it is a complex disease that includes 
outside the genitourinary tract. There is a study that reflects these pain characteristics. Tripp et al.21 investigated 
the pain characteristics of IC/BPS using whole-body diagram pain locators. They found that women with IC/BPS 
reported significantly more pain all over their body, compared to healthy women without. Fifty two of the 193 
IC/BPS diagnosed women (27%) presented pain restricted to the bladder and pelvic area. Moreover, various 
comorbidities are found in IC/BPS patients. Diseases such as irritable bowel syndrome, fibromyalgia, vulvodynia, 
chronic pelvic pain, endometriosis, OAB, allergies and chronic fatigue syndrome often coexist in IC/BPS 
patients.22-28  
 
In addition, there are several reports that IC/BPS can increase the risk for or worsen other diseases, including 
FSD. A population based study found higher prevalence of FSD in women with IC/BPS.29 Moreover, FSD 
increased depending on the severity of IC/BPS symptoms, suggesting that FSD is a factor worsening IC/BPS. 
In regards to the pain associated with FSD, vulvodynia may be contributing to flare-ups of IC/BPS symptoms 
and could be the reason why IC/BPS patients avoid sexual activity.9,30  
 
FSD AND IC/BPS: BE GENERALIZED AS ONE DISEASE?  
 
Diseases with lower urinary tract symptoms (LUTS) in female such as incontinence and OAB are known to have 
negative impact on female sexual function over all domains-arousal, orgasm, pain, and satisfaction. Symptoms 
of IC/BPS also deteriorate patient’s sexual activities and life quality. Significant numbers of IC/BPS patients avoid 
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sexual activity because of pain. In addition, FSD and IC/BPS share similar clinical characteristics and 
comorbidities, making it difficult to discriminate between the two.31-33 As mentioned previously, there are many 
clinical reports presenting the association between IC/BPS and vulvodynia, particularly from various conditions 
of FSD.  

Although the mechanisms of these correlations are unclear, visceral nerve cross-talking and the anatomic 
relationship between genital organs and the bladder offer a simple proximity explanation for the relationship 
between IC/BPS and vulvodynia. Another possible mechanism to explain the association between IC/BPS and 
vulvodynia is abnormal pain hypersensitivity induced by peripheral and central sensitization. The abnormal pain 
response frequently observed in vulvodynia patients is caused by central or peripheral maladaptive pain 
processing due to local insult, injury, or trauma (Figure 1). 

Role of Peripheral Sensitization in the Pain Hypersensitivity of Vulvodynia and IC/BPS 

Exposure of nociceptors to repetitive pain stimulation reduces the pain threshold and amplifies the 
responsiveness of nociceptors. Therefore, peripheral transduction of sensitivity can abnormally increase and 
peripheral pain hypersensitivity can develop.34-36 The potential underlying mechanism of peripheral pain 
hypersensitivity noted in both vulvodynia and IC/BPS could be sensory nerve upregulation. Previous studies 
have shown that sensory nerve density is significantly increased in vulva vestibule and bladder. Compared to 
the normal population, patients with vulvodynia were found to have increased nociceptors in their vulvar 
vestibule.37-40 Consequentially, this increased density of peripheral nociceptors results in increased sensitivity. It 
was also found that transient receptor potential V1 (TRPV1) exists in these nociceptive nerve endings and 
enhances pain signaling.37,41,42 Pukall CF et al.43 and Giesecke J et al.44 reported increased peripheral tactile, 
pressure, and pain sensitivity in the patients with vulvodynia and confirmed histologic and molecular changes of 
peripheral nociceptors is associated with clinical manifestations. Similarily with vulvodynia, upregulation of 
sensory innervation and TRPV1 in the bladder is reported in patients with IC/BPS.45-47  

Role of Central Sensitization in the Pain Hypersensitivity of Vulvodynia and IC/BPS 
Central sensitization is an important mechanism underlying various conditions associated with chronic pain and 
induces pain hypersensitivity through pathologically enhanced pathways that are not normally associated with 
nociception; for example, the low-threshold Aδ fiber that is mostly used for temperature and pressure signaling. 
Chronic pain induced by central sensitization is persistent even after the initiating and peripheral cause has 
gone.48 Studies have shown that the pain characteristics of central sensitization can be found in patients with 
vulvodynia. Foster DC et al.49 observed that vulvar vestibulitis syndrome patients experienced hyperalgesia and 
allodynia more often than normal controls after intradermal foot and forearm capsaicin injections. In addition, 
pelvic organ crosstalk has an important role in central sensitization because pelvic organs, such as, the bladder, 
colon and vulva, are controlled by same neural pathway.50 Thus, afferent signals from other pelvic organs 
provoked pain through neural crosstalk even though initiating and peripheral causes of vulvodynia and IC/BPS 
disappeared. Therefore, central sensitization plays an important role in the chronic pain observed in vulvodynia 
and IC/BPS. Clinically, similar manifestation of vulvodynia and IC/BPS has also existed. Moreover, recently, 
there has been an attempt to categorize various pain associated conditions due to central sensitization as central 
sensitivity syndrome (CSS). Vulvodynia and IC/BPS are considered subgroups of CSS.51 Previous studies on 
clinical findings support the notion that the same mechanism associated with central sensitization is involved in 
the pain behind vulvodynia and IC/BPS.52-54  

Recently, evidence supporting central sensitization using functional and structural brain imaging were reported 
in vulvodynia and IC/BPS. Previously, Pukall et al.55 showed that increased perception and activation of pain-
related brain regions were observed in women with vulvar vestivulitis syndrome, compared to normal women, 
after tacticle stimulation of the vulvar vestibule. Other studies have reported that patients with vulvodynia showed 
increased grey matter density in pain-modulating and stress-related regions of the brain as well as alterations in 
the intrinsic connectivity of regions comprising the sensorimotor, salience, and default mode resting state 
networks.56,57 Similarly, women with IC/BPS showed alterations of oscillation frequency and functional 
connectivity of brain regions previously reported in other chronic pain conditions58 and various white matter (right 
anterior thalamic radiation, left forceps major, and right longitudinal fasciculus, right superior and bilateral inferior 
longitudinal fasciculi) abnormalities that correlated with severity of pain, urinary symptoms, and impaired quality 
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of life.59 Figure 2 shows common therapeutic approaches and points of divergence among the these IC, 
IC+vulvodynia, and vulvodynia patient groups. 
 
APPROACH AND MANAGEMENT FO VULVODYNIA AND IC/BPS PATIENTS 
 
Clinically, vulvodynia and IC/BPS often coexists and differentiation between the two is not easy, especially when 
the patient reports of LUTS combined with pain. A majority of patients also seek medical care after relatively 
longer periods of initially feeling pain, leading to central sensitization that has is firmly established. Furthermore, 
clinical manifestations of chronic pain found in various other comorbidities can mask vulvodynia and IC/BPS, 
making it confusing and difficult to officially diagnose.   
 
Many previous studies have revealed the close correlation between LUTS and impaired sexual function; IC/BPS 
is not an exception. Besides, it is not uncommon to have trouble differentiating sexual pain and IC-BPS-related 
genital pain in women. Unfortunately, there is a lack of comprehensive studies regarding sexual dysfunction and 
IC/BPS despite the growing population of affected individuals (Table 1). Clinicians should take more concern 
regarding sexual dysfunction and pain in IC/BPS patients and more randomized controlled studies should be 
conducted to better understand correlations and diagnostic differentiations. 
 
CONCLUSION  
Both vulvodynia and IC/BPS are common and irritable conditions that disrupt normal life and reduce QoL in 
women. Vulvodynia also manifests itself along with IC/BPS and there are several reports supporting the 
association between the two diseases. Unfortunately, knowledge concerning vulvodynia and IC/BPS is 
inadequate when considering the clinical impact and importance of these two conditions. Therefore, there is an 
essential need for further studies that delve into discovering the features of vulvodynia and IC/BPS. 
 

Complete compound annotation of all mass spectra from untargeted urine metabolomics 
 

To this date, metabolomics is considered to be one of the major “omics” tools, with the great potential for 
application in personalized medicine and health1. Over the last decade, metabolomics has become an integral 
part of clinical laboratories worldwide for targeted analysis. However, untargeted metabolomics is still widely 
used as it provides comprehensive insights into complex metabolomes and allows for biomarker discovery. While 
untargeted metabolomics can be powerful, its main challenge is its low identification rates2,3. Since there is no 
single platform capable of capturing the entire metabolome of urine, we have employed two platforms most 
suited for untargeted urine analysis: (1) hydrophilic interaction chromatography (HILIC), for polar metabolite 
profiling, and (2) charged surface hybrid (CSH) technology, for lipidomics profiling. Through this integration of 
lipidomics and intensive systems biology, our experimental results provided a comprehensive list of lipid species 
and biogenic amines in human urine. Lipidomics, a lipid-targeting subarea of metabolomics, involves studying 
the unique structure and functional roles of cellular lipids in biological systems. Recent technological 
advancements in high-resolution MS have made comprehensive lipid metabolic profiling of clinical specimens 
and biofluids, including urine, possible. As important structural components of cellular membranes, lipids play 
key biological roles in various diseases. However, clinical application of lipidomics profiling still remains a 
challenge due to the limited databases available for data interpretation. Many lipids and lipid metabolites are still 
not properly annotated nor functionally characterized. Our group is actively working to address this issue by 
developing software and databases that can aid in lipid identification. The biologically active metabolites in urine 
can be identified through global metabolomics profiling and can provide an unbiased chemical fingerprint of the 
metabolism in the human body. The urinary metabolome in particular is associated with urological diseases, 
including bladder dysfunctions such as IC4-6. IC is characterized by chronic bladder and/or pelvic pain, as well 
as nocturia and an increase in urinary frequency and urgency.7,8 For our work, we sought to derive urinary 
metabolomic signatures from IC patients using newly developed comprehensive annotation tools9 on all five 
levels of annotation, as defined by the Metabolomics Standards Initiative (MSI). The objective of this work is to 
provide insight into increasing compound annotation levels in the clinical setting by utilizing a variety of freely 
available software tools and databases.  
 
EXTRACTION 
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Subjects, urine specimen collection, and clinical and pathological features of subjects were described in a 
previous paper from our team. De-identified urine samples were stored at −80°C until further analysis. Urinary 
lipids were extracted with methanol and methyl tert-butyl ether containing a cocktail of lipid standards. Water 
was subsequently added for phase separation.   This extraction protocol extracts all main lipid classes in urine 
with high recoveries, specifically phosphatidylcholines (PC), sphingomyelins (SM), phosphatidylethanolamines 
(PE), lysophosphatidylcholines (LPC), ceramides (Cer), cholesteryl esters (CholE), and triacylglycerols (TG).10 
Lipid standards were purchased from Avanti Polar lipids (Alabaster, USA). Polar metabolite extraction was done 
by taking the polar phase of the lipid extraction procedure. Samples were dried in a centrivap prior to a clean-up 
step of 50% acetonitrile and dried again. Samples were then reconstituted in 80:20 acetonitrile and water solution 
containing internal standards from Sigma and CDN Isotopes. 
	
INSTRUMENTATION 
For lipids, all measurements were carried out on a Thermo Q Exactive Hybrid Quadrupole-Orbitrap Mass 
Spectrometer. Briefly, 1 μL of diluted samples were separated on a Waters Acquity Ultra-Peformance LC (ULPC) 
CSH C18 column (100 × 2.1 mm; 1.7 μm) coupled to an Acquity UPLC CSH C18 VanGuard Precolumn (5 × 2.1 
mm; 1.7 μm). The column was maintained at 65°C with a flow rate of 0.6 mL/min. The positive ionization mobile 
phases consisted of (A) acetonitrile:water (60:40, v/v) with ammonium formate (10 mM) and formic acid (0.1%) 
and (B) 2-propanol:acetonitrile (90:10, v/v) with ammonium formate (10 mM) and formic acid (0.1%).  The 
negative ionization mobile phases consisted of (A) acetonitrile:water (60:40, v/v) with ammonium formate (10 
mM) and (B) 2-propanol:acetonitrile (90:10, v/v) with ammonium formate (10 mM).  The separation was 
conducted under the following gradient: 0 min 15% B; 0−2 min 30% B; 2−2.5 min 48% B; 2.5−11 min 82% B; 
11−11.5 min 99% B; 11.5−12 min 99% B; 12−12.1 min 15% B; 12.1−15 min 15% B. The Thermo Q Exactive 
Hybrid Quadrupole-Orbitap Mass Spectrometer was operated using electrospray ionization (ESI CSH) in positive 
mode used the following parameters: mass range, 120-1200 m/z; sheath gas flow rate, 60; aux gas flow rate, 
25; sweep gas flow rate, 2; spray voltage (kV) 3.6; capillary temp, 300°C; S-lens radio frequency level, 50; aux 
gas heater temp, 370°C. The full MS parameters were set as follows: resolution, 60,000; automatic gain control 
(AGC) target, 1e6; maximum IT, 100ms; spectrum data type, centroid. Data dependent tandem MS parameters: 
resolution, 15,000; AGC target 1e5; maximum IT, 50 ms; loop count, 4; TopN, 4; isolation window, 1.0 m/z; fixed 
first mass, 70.0 m/z; (N)CE / stepped (N)CE, 20, 30, 40; spectrum data type, centroid. For HILIC, all 
measurements were carried out on the same Thermo Q Exactive Mass Spectrometer. Briefly, 1 μL of diluted 
samples were separated on an Waters Acquity UPLC Ethylene Bridged Hybrid (BEH) Amide Column (150 × 2.1 
mm; 1.7 μm) coupled to an Acquity UPLC BEH Amide VanGuard Precolumn (5 × 2.1 mm; 1.7 μm). The column 
was maintained at 45°C with a flow rate of 0.4 mL/min. The mobile phases consisted of (A) water with ammonium 
formate (10 mM) and formic acid (0.125%) and (B) acetonitrile:water (95:5, v/v) with ammonium formate (10 mM) 
and formic acid (0.125%). The separation was conducted under the following gradient: 0 min 100% B; 0−2 min 
100% B; 2−7.7 min 70% B; 7.7−9.5 min 40% B; 9.5−10.25 min 30% B; 10.25−12.75 min 100% B; 12.75−17 min 
100% B. The Thermo Q Exactive MS instrument was operated using ESI HILIC in positive mode with the 
following parameters: mass range, 60-900 m/z; sheath gas flow rate, 60; aux gas flow rate, 25; sweep gas flow 
rate, 2; spray voltage (kV) 3.6; capillary temp, 300°C; S-lens RF level, 50; aux gas heater temp, 370°C.  Full MS 
parameters: microscans, 1; resolution, 60,000; AGC target, 1e6; maximum IT, 100ms; number of scans, 1; 
spectrum data type, centroid. Data dependent MS2 parameters: microscans, 1; resolution, 15,000; AGC target, 
1e5; maximum IT, 50 ms; loop count, 4; multiplexing (MSX) count, 1; TopN, 4; isolation window, 1.0 m/z; isolation 
offset 0.0 m/z; (N)CE / stepped (N)CE, 20, 30, 40; spectrum data type, centroid.  
	
DATA PROCESSING AND IDENTIFICATION  
The LC-MS/MS data was analyzed using MS-DIAL software.11 Detailed parameter settings are listed in 
Supplemental Tables 1 and 2 (HILIC and lipidomics data processing settings).  Accurate masses, retention times, 
and peak heights were then exported, and further analysis was performed in R Studio and our in-house 
developed software for statistical analysis, Metabox.12 Automated annotation of metabolites was performed 
separately for polar metabolites and lipids. Table 1 lists libraries, methods, and software used for each platform. 
Metabolite annotations were done with the help of our in-house developed library containing >600 authentic lipid 
standards of different classes and >800 standards of polar metabolites. Next, MS/MS database matching was 
performed with freely available MS/MS spectra obtained from Mass Bank of North America (MoNA), National 
Institute of Standard and Technology (NIST) 17, LipidBlast, and the NIST Hybrid Library.13-15 Workflow 
summarizing all the tools, software and databases are shown in Figure 5. 
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RESULTS AND DISCUSSION 

m/z-RT and MS/MS databases 
Untargeted lipidomics analysis in the 
positive ionization mode resulted in 112 
identified lipids encompassing several 
lipid classes. The same sample set was 
also analyzed using HILIC 
chromatography. Using the established 
in-house library, we identified 117 
metabolites, which consisted of amino 
acids, biogenic amines, and derivatives. 
These annotations are level 1 according 
to MSI, meaning that the experimental 
data was compared to authentic 
standards measured under the same 
instrumental conditions. Chemical 
standards (n= 874) were analyzed on two 
instrument types: quad time-of-flight 
(QToF) and orbitrap in positive ionization 
mode. These standards provide several orthogonal parameters: accurate mass (m/z), retention time (RT), and 
MS/MS. This level of annotation is laboratory/chromatography specific and is clearly a limitation if used 
exclusively. It takes both time and money to develop and establish such a chromatography. In our own 
experience, two skilled researchers require two years of work to create and validate a chromatographic run with 
1000 metabolites measured on it robustly. It is a common practice in metabolomics research to use MS/MS 
libraries and perform mass spectral similarity searches in order to increase the annotation rate, as fragmentations 
are not chromatography specific. Those libraries contain mass spectra of authentic standards from a variety of 
instrumentation and chromatography (this metadata is available in .msp/.mgf formats), and this level of 
compound ID is described as level 2. Users can use freely available databases, such as MoNA, or can opt for 
commercially available MS/MS databases such as NIST17. We combined two mass spectral databases, MoNA 
and NIST17, and used the merged .msp within MS-DIAL software for mass spectral similarity matching. Meta-
data such as dot product, reverse dot product scores, number of matching ions, and MS-DIAL calculated MS2 
similarity have been taken into account.  
	
Table 1.  

Chromatography and 
databases 

Type of matching MSI level of 
annotation 

Number of annotations 
accomplished 

HILIC  m/z, RT and MS/MS 1 117 
Lipidomics m/z, RT, MS/MS,  

in silico MS/MS 
1 72 

Lipidomics: CarniBlast m/z , in silico MS/MS 2 18 
HILIC: MoNA+NIST14 m/z and MS/MS  2 440 
HILIC: CarniBlast m/z and in silico 

MS/MS 
2 107 

Lipidomics: mzRT lookup m/z 3 96 
Hybrid search MS/MS (hybrid) 3 Sample depending: 4000-

8000 
In silico fragmentation software: 
CSI:FingerID 

MS1 and in silico 
MS/MS 

3 Sample depending: 
4000-8000 

 

M/Z Lookup Table in LipidBlast 
This essentially stand-alone tool can be used in addition to LipidBlast. It provides an automated approach for 
lipid annotations based on their accurate masses and/or chromatographic RT. Additional structure information of 

Figure 5. Workflow summarizing tools, software, and databases 
used for completing annotation of urine metabolome. 
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the lipids and their side chains (sn1, sn2, sn3) cannot be made using accurate mass alone. For comprehensive 
structure elucidation, another orthogonal parameter like MS/MS is needed. We extracted m/z precursor 
information from the MS-DIAL output in positive ionization mode and used the M/Z Lookup Macro to assign 
additional lipid annotations. Mass tolerance for lipid assignments was calculated based on the mass accuracy of 
the Thermo Q Exactive instrument and the internal standards, 0.005 Da. This way, an additional 96 lipid 
annotations were obtained from the lipidomics data set in positive ionization mode. 

CarniBlast 
The process of lipid degradation (β-oxidation) in human cells occurs in the mitochondria. This allows for the direct 
coupling of fatty acid degradation to energy generation via the citric acid cycle and respiratory electron transport 
chain localized in the inner mitochondrial membrane. For the corresponding import process, fatty acids of 
different chain lengths and saturation are esterified to L-carnitine with the formation of acylcarnitines.16 L-carnitine 
can be de novo synthesized from N-trimethyl-lysine with butyrobetaine as an intermediate in a multi-step 
pathway. However, most carnitine comes from dietary intake. Fatty acids destined for degradation are first 
activated via thioesterification into coenzyme A (CoA). Then, three types of carnitine acyltransferases with 
different chain-length specificities (short, medium, long) transfer fatty acids via transesterification to carnitine with 
the release of CoA. These are carnitine acyltransferase, carnitine octanoyltransferase, and carnitine 
palmitoyltransferase. Next, a transport system consisting of carnitine palmitoyltransferase I (outer membrane), 
carnitine-acylcarnitine translocase, and carnitine palmitoyltransferase II (both inner membrane) transfer the 
acylcarnitines into the lumen of the mitochondria, where transesterification with CoA regenerates the acyl-CoAs 
and carnitine.17,18 Carnitine then leaves the mitochondria via the above outlined transport complex. During β-
oxidation, the fatty acids are cleaved between C2 and C3 with the release of a C2-unit of acetyl-CoA. A trans-2 
double bond is formed between C2 and C3, hydrated, oxidized, and finally cleaved by the action of four enzymes. 
Odd chain and unsaturated fatty acids require additional enzymes.19 The described overall process is an 
essential part of the lipid homeostasis which covers all fatty acids of different lengths and saturation. 
Consequently, diseases that disturb this described lipid homeostasis ultimately increase acylcarnitines in the 
blood and the urine. Therefore, acylcarnitines can be biomarkers for diseases, including heart failure20, obesity 
and diabetes21, chronic kidney disease22, chronic psychiatric illness23, migranes24, and endometrial cancer.25 
Acylcarnitines in urine serve as biomarkers for bladder cancer26, diabetic nephropathy27, obesity28 and human 
kidney cancer.29 It is well documented that carnitine and its esters can be found in almost every bodily fluid, yet 
the chemical standards are severely limited and/or nonexistent. To overcome this obstacle, we used an in-house 
developed in silico database of acylcarnitines as they, like many lipid species, fragment in a predictable manner. 
We exported the .msp files from both polar and lipidomics profiling and matched them against an in silico 
database of acylcarnitines. Some of the acylcarnitines were already present in our m/z-RT libraries, so using 
CarniBlast for the lipidomics .msp resulted in only three additional annotations. However, when HILIC .msp was 
used for the CarniBlast search, it resulted in an additional 793 annotations of acylcarnitines. This number 
suggests that there are far more carnitines present in urine than previous reports suggest.30 This increase in 
annotation rates of acylcarnitines is important due to their role in lipid metabolism and various metabolic 
diseases. Interestingly, a majority of acylcarnitines couldn’t be annotated with any other software or database. 
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In silico fragmentation software 
For the compounds that are not present in our m/z-RT library and have collected MS/MS spectra that cannot be 
matched in mass spectral libraries, software tools, like MS-FINDER, Sirius, and CFM-ID, are of great value.31-33 
We used the latest Sirius software with CSI:FingerID Interface (Sirius 4.0 built 19) to assign molecular identities 
to acquired MS/MS spectra.34 We selected Sirius with CSI:FingerID because it has consistently scored very high 
during the latest Critical Assessment of Small Molecule Identification (CASMI) challenges. Furthermore, the 
current version has been improved in accuracy and speed. The MS/MS spectra were exported as a Mascot 
Generic Format (MGF) file from each raw file using the MSConvert. The MGF file largest in size contained the 
most MS/MS data and was therefore used for further analysis. A standard MGF file with 6482 MS/MS spectra 
was imported and 6447 features were available in the software. Formula assignment in positive ionization mode 
was performed with 10 ppm while retaining the 10 best formula candidates. Processing time was 2 minutes on 
a 16 CPU machine and the software was capable to assign formulas to a total of 6184 features. Fingerprint 
matching with CSI:FingerID via a webservice was subsequently performed to annotate isomer structures. 
Through this, 728 MS/MS peaks could be assigned when searching bio-databases and 1557 features could be 
assigned when querying the much larger PubChem database. The search time was around 5 minutes.  The 
results, isomer structures, and their scores are presented in the Graphical User Interface (GUI) software. 
Additionally, results can be exported to CSV files. For the biodatabase search, up to 130 results were obtained 
per MS/MS scan, while the PubChem fingerprint research resulted in up to 10,000 candidates per MS/MS 
spectrum searched. Here individual and time-consuming investigations must be performed to investigate the 
correctness of the found structures. In order to show the accuracy of CSI:FingerID we also performed a search 
on compounds that were annotated by our in-house database. Sirius 4.0 and CSI:FingerID with 5ppm mass 
accuracy and search in bio-databases correctly identified 41 compounds as a top hit. Approximately 52% of the 
known compounds were correctly assigned within the top 3.  The median rank for all 103 compounds was one 
and the average rank ten. Considering its excellent search speed and accuracy, CSI:FingerID should be 
considered a useful annotation tool for the identification of unknown compounds. The associated results can be 
found in the supplement. In our previous work, we have shown that it is possible to combine the outputs (results) 
of multiple software to create a new ranking system based on the accuracy of each software and rank the correct 
structure as the top hit in 93% of the cases.35 However, this approach is not easily applicable as it requires both 
compound database boosting as well as thorough software comparison for the defined sample set.  

Figure 6. Head-to-tail comparison of an MS/MS spectra of an amino acid shows distinct shift in the spectrum: 
methylated vs. non-methylated. 
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NIST Hybrid search coupled with ClassyFire 
Epimetabolites are defined as regulatory metabolites that have been removed from their classical functions by 
modification (for example, methylation or acetylation) but often remain chemically similar to their canonical 
counterparts.36 NIST recently introduced a fantastic mass spectral library-based method to annotate MS/MS 
spectra that contain the aforementioned modifications. It is described as a “hybrid” method because it combines 
matching fragments but not the m/z of the precursor (to allow for modification calculations that are then 
reflected).37 Such a tool is of great assistance in structure elucidation of unknown metabolites, as it mimics the 
knowledge and experience of a well-trained chemist.38 The hybrid search comparison is shown in Figure 2, where 
the head-to-tail comparison of an amino acid shows a distinct shift in the spectrum, methylated versus non-
methylated. We exported the .msp files from MS-DIAL to the NIST pepSearch GUI, activated the hybrid search 
function, and ran it against the MS/MS hybrid libraries. As a result of the hybrid search, every MS/MS spectra 
are now associated with an annotation and a variety of scores. Results of the hybrid search for both HILIC and 
CSH data are presented in Supplemental Table 5. The advantage of using NIST Hybrid search is that it supports 
batch processing, offers restrictions in terms of which MS/MS spectra should be included or excluded, and allows 
users to quickly get a snapshot of the metabolome they are measuring. The result list contains a lot of meta-
data, such as chemical name, International Chemical Identifier (InChI) key, simplified molecular-input line-entry 
system (SMILES), probability score, etc. Those annotations should be treated with caution as they do not 
represent an identification but rather a “nearest known neighbor” to the unknown molecule. Next, the result list 
of NIST hybrid search was coupled with a fully automated, comprehensive chemical classification tool that 
utilizes a well-defined chemical hierarchy system - ClassyFire. ClassyFire successfully annotated and classified 
thousands of molecules from various libraries, including DrugBank, LIPID MAPS, HMDB, ChEBI, and 
PubChem.39 We used ClassyFire Batch by Fiehn Lab (http://cfb.fiehnlab.ucdavis.edu/), a user-friendly web 
application capable of batch classifications directly from InChIKeys.  
 
Figure 7 shows complexity of urine metabolome based on the superclass and subclass classifications as defined 
by Classyfire. Results of classifications are organized into Kingdom, Superclass, Class, Subclass, and two parent 
levels. Subsets of those results is shown in Supplemental Table 6. We can imagine that such combinatorial 

Figure 7.  Structural classification of metabolites present in the urine of 12 patients diagnosed with IC  
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approach becomes of importance in personalized medicine or health research in general, since it is evident from 
Supplemental Tables that the metabolic profile of urine varies from patient to patient. While biomarker discovery 
focuses on the shared metabolites between patients, it is also important to recognize and investigate differences 
due to diet, exposure, genetics, and other factors. 

Summary 

Metabolomics reports and data should be annotated with confidence levels for clarity and reproducibility 
purposes. Sharing the MS/MS data with the community will directly improve not only other researchers’ work but 
will also help the development of tools that aid structure elucidation process. Hopefully this work provides a 
comprehensive overview of some of the best freely available tools and databases for metabolomics research 
and will be of use to analysts when annotating unknown metabolites. 

Pioglitazone Alters the Proteomes of Normal Bladder Endothelial Cells 
but Shows No Tumorigenic Effects 

Thiazolidinediones (TZDs), such as pioglitazone and rosiglitazone, are currently the only oral drugs with a 
confirmed antihyperglycemic impact in type 2 diabetes mellitus (T2DM) patients. As agonists of peroxisome 
proliferator-activated receptor γ (PPARγ), TZDs are known to positively influence insulin sensitivity and β-cell 
function and potentially alter lipid profiles. Pioglitazone is a synthetic ligand of PPARγ and is used as a 
therapeutic treatment for patients with T2DM. PPARγ, a ligand-activated transcription factor, is expressed in 
white and brown adipose tissues as well as in the urinary bladder 40. Pioglitazone has also been shown to reduce 
macrophage infiltration through the activation of PPARγ and induction of apoptotic cell death 41, which can lead 
to decreased numbers of macrophages in adipose tissues 42. To examine the impact of PPARγ on bladder cell 
function, several studies analyzed the expression of PPARγ in normal bladder and bladder cancer (BC) mucosal 
samples. They observed different rates of cell migration and invasion in various BC cell lines that express PPARγ. 
In addition, prior studies have shown that vascular endothelial growth factor A (VEGF-A), a primary 
proangiogenic factor, is positively regulated by PPARγ 43. PPARγ can also exert its functions via the activation 
of signaling pathways, interaction with Wnt/β-catenin, and induction of signaling pathways involved in 
proliferation and survival, such as IGF-I/PI3K/AKT/mTOR and MAPK 44. Furthermore, PPARγ can regulate the 
inflammatory response of macrophages through TLR4/NF-κB signaling 45. 

There have been contradictory reports on the potential association between diabetes mellitus (DM) and elevated 
risk of BC 46,47. Studies have demonstrated that pioglitazone can have adverse effects that exaggerate the risk 
of BC. DM patients, particularly males, on long-term, high doses of pioglitazone, are at a higher risk of developing 
BC 48,49. The Kaiser Permanente Northern California (KPNC) study determined that inflated dose and length of 
pioglitazone treatment correlated to increased rates of BC 43. Currently, the U.S. Food and Drug Administration 
(FDA) allows the use of pioglitazone in patients with special caution to those with a prior history or active BC 50. 
A potential reason for this observation could be that PPARγ signaling in BC cells may provide a tumor 
microenvironment that allows for de novo lipogenesis of lipids that can be utilized in increasing tumor mass and 
energy usage 51. However, other studies have shown that TZDs posed no risk on survival in BC patients who 
underwent radical cystectomy 52. A recent meta-analysis found no difference in BC incidence among users of 
pioglitazone and nonusers 53. These inconsistencies between studies have led to questions in the legitimacy of 
studies and the actual dangers of continued pioglitazone use. Due to the inherent difficulty of accurately 
assessing the link between TZDs and BC, the association between the two is still in controversy.54 

The goal of our study was to determine whether TZDs have any negative or positive effects on the healthy 
bladder epithelium. Since pathophysiological changes require the actions of a series of key proteins, global 
proteomic analysis of protein alterations using state-of-the-art mass spectrometry is ideal for acquiring unbiased 
biological information regarding molecular mechanisms. Using such a method, this study aimed to understand 
the mechanistic meanings of proteome perturbations in the normal bladder due to TZD treatment. We sought to 
examine the effects of pioglitazone specifically, being that is the most widely used TZD. Our global quantitative 
proteomic analyses found that pioglitazone alters the proteome and biological networks in normal human bladder 
cells without tumorigenic effects.  
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MATERIALS AND METHODS  
 
Cell culture. Immortalized normal human bladder epithelial cells, TRT-HU1, were established and characterized 
as described previously 55..Cell lines that were initially established, frozen, and under a passage number of 10 
were used in this study. Culture media was changed after one day of subculturing and cells were passed again 
when there was 70-80% confluence. All cells were negative for mycoplasma contamination, and this was tested 
for monthly via PCR. Cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 
10% fetal bovine serum (FBS) (Invitrogen), 1% penicillin/streptomycin, and 1% L-glutamine (Sigma-Aldrich 
Corp., St. Louis, MO, USA) under a humidified atmosphere of 5% CO2 at 37 °C.  
 
Antibodies and reagents. Antibodies against various proteins were obtained from the following sources: 
ACTG2 (ab189385), MYH3 (ab124205), OXPHOS (ab110413) from Abcam; phospho-NF-κB (3033), phospho-
HER2/ErbB2 (2247), phospho-PAK1 (2601), phospho-GSK-3β (9336), Snail (3879), N-cadherin (13116), 
Slug (9585), β-catenin (8480), E-cadherin (14472), Tight Junction Antibody Kit (8683) from Cell Signaling 
Technology, and β-actin (A1978) from Sigma. Commercially available horseradish peroxidase (HRP)-conjugated 
secondary antibodies (7074, 7076) were obtained from Cell Signaling Technologies. All other chemical reagents 
were procured from Sigma Chemical Corp.   
 
Quantitative proteomics. For quantitative proteomics, the tandem mass tagging (TMT)-based method was 
performed, as previously described 56,57. In brief, cellular proteins from 25 μM pioglitazone-treated and control 
TRT-HU1 cells were extracted using a 4% SDS-containing buffer. The protein concentration was then 
determined from each sample using the Pierce 660nm Assay Kit (Thermo Fisher Scientific). The kit was carried 
out using 60 µg of protein from each sample, which was digested with trypsin via filter-aided sample preparation 
(FASP) and labeled with TMT6plex reagents in parallel.  
 

After TMT-labeling, the peptides were reconstituted and desalted via C18 spin columns (Thermo Scientific) and 
separated by high-pH reversed-phase liquid chromatography (RPLC) using an Ultimate 3000 XRS System 
(Thermo Scientific). For high-pH RPLC, 50 μg of TMT-labeled peptides were injected onto a 100-mm Hypersil 
GOLD C18 column (2.1 mm inner diameter, 3 μm particle size, 175 Å pore size) (Thermo Scientific) and eluted 
for 3 min with a flow rate of solvent A, which consisted of 10 mM ammonium formate at pH10. Peptides were 
then separated with a 7 min linear gradient of 0-40% solvent B, which consisted of 10 mM ammonium formate 
and 95% acetonitrile at pH10. The labeled peptides were then separated into 24 fractions, concentrated into 12 
fractions, and dried down through a SpeedVac (Thermo Scientific). Peptides in each fraction were rehydrated 
with 0.2% formic acid, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was 
performed using an EASY-nLC 1000 connected to an LTQ Orbitrap Elite Mass Spectrometer (Thermo Scientific). 
Briefly, peptides were loaded onto a 2-cm trap column (PepMap 100 C18, 75 μm inner diameter, 3 μm particles, 
100 Å pore size) and separation was done using a 50-cm EASY-Spray column (PepMap RSLC C18, 75 μm inner 
diameter, 2 μm particles, 100 Å pore size) heated up to 55°C. To separate low-pH peptides, RPLC was employed 
using a mobile phase that consisted of either 0.1% formic acid in water (phase A) or acetonitrile (phase B). The 
LC gradient was 4-24% B over 200 min, 24-50% B over 20 min, and 50-100% B over 5 min at a flow rate of 150 
nL/min, which was then followed by 100% B over 15 min at a flow rate of 300 nL/min.  
 
Mass spectra were acquired in a data-dependent manner, selecting up to the 15 most abundant precursor ions 
for higher-energy collisional dissociation. No further data processing, such as smoothing, de-isotoping, and/or 
filtering, was carried out. The mass resolution for precursor and fragment ions were set to 120,000 and 30,000, 
respectively. The isolation width was set to 1.5 and the normalized collision energy was set to 40. Database 
searching and protein quantification was performed by Proteome Discoverer (v2.1) using the SEQUEST 
algorithm. The acquired raw data were searched against the human Uniprot Protein Sequence Database 
(released on 01/22/2016, containing 20,985 protein sequences). Several parameters were set as follows: trypsin, 
up to two missed tryptic cleavages were allowed; precursor ion tolerance of 10 ppm, fragment ion tolerance of 
0.02 Da; followed by numerous modifications: carbamidomethylation of cysteines and TMT6plex alteration of 
lysines. The N-terminal of peptides was set as fixed variations; while the acetylation of protein N-term, oxidation 
of methionine, and deamination of asparagines and glutamines were variable modifications. To identify peptides 
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identifications and proteins, a standard false discovery rate (FDR) of 1% was applied to filter peptide-spectrum 
matches (PSMs).  
 
To quantify proteins, peptides with >30% precursor ion interference were excluded to minimize inaccurate 
quantifications caused by precursor ion interference. PSM level information was extracted using Proteome 
Discoverer 58. After quantifying each PSM intensity, the peptide intensities were summarized, as previously 
described 59. In brief, this was done in 4 steps: 1) the normalized log2 intensity of the PSMs matched to each 
peptide by the substrate mean PSM from each reporter intensity was centered, 2) outliers were detected using 
Dixon’s Q-test and generalized electrostatic discharge (ESD) test, 3) the mean intensity without outliers was 
taken, and 4) the grand mean intensities of the three highest abundant PSMs were added before being mean-
centered. Bipartite graphs of peptides and protein groups were generated according to the information of the 
aligned peptides. Among the protein group, we defined the representative protein that had the largest number of 
peptides or unique peptide 60. When there was more than one protein with the same number of peptides in the 
same protein group, we selected the protein that had the highest sequence coverage. We then computed the 
relative intensity of the protein group using a linear-programming formulation, as previously described 61. 
 
Identification of differentially expressed proteins (DEPs). To identify DEPs, we first selected proteins that 
have more than two non-redundant peptides in each sample. We then performed a one sample t-test using the 
log2 fold-changes to compute the significance. For hypothesis testing, an empirical null distribution, which means 
that a protein is not differentially expressed, was estimated through the following steps: 1) we applied 100,000 
random permutations of the samples, 2) we computed t-values using log2 fold-changes of randomly permuted 
samples, and 3) we applied the Gaussian kernel density estimation method to t statistics. FDRs of each protein 
for the one sample t-test were then calculated using Storey’s correction method62. Proteins were identified as 
DEPs if they had FDR<0.05 and absolute log2 fold-change ≥0.58 (1.5 fold). Functional enrichment analysis of 
DEPs was performed using DAVID (Ver. 6.8) 63. Significantly enriched cellular processes were selected for if 
they had an enrichment p-value<0.05. Functional classification analysis was performed using PANTHER (Ver. 
11) 64.  
 
Master regulator analysis (MRA). To identify master regulators, we discerned each DEP and counted their 
individual partners. The protein-protein interaction information was obtained from six interactome databases: the 
Biological General Repository for Interaction Datasets (BioGRID)65, the Database of Interacting Proteins (DIP)66, 
High confidence protein-protein interactions (HitPredict)67, the IntAct molecular interaction database (IntAct)68, 
the Molecular INTeraction database (MINT)69, and the STRING database 70. We then computed the enrichment 
p-values using Fisher’s exact test. Finally, we selected proteins with p-values lower than 0.01 and prioritized the 
DEPs based on the number of interaction partners. 
 
Western blot analysis. Whole-cell lysates were prepared as previously described 71. Briefly, cells were seeded 
onto 10 cm plates and exposed to 25 μM concentrations of pioglitazone for 72 h. Control and treated cells were 
then collected, lysed with RIPA buffer (20 mM Tris, 150 mM NaCl, 1% Nonidet, P-40, 0.1 mM EDTA) (Pierce, 
ThermoFisher) supplemented with a phosphatase inhibitor cocktail (ThermoFisher), homogenized, and 
centrifuged at 13,000 g and 4°C for 20 min to obtain whole-cell lysates. Using 25 μg of extracted protein, we 
separated the proteins using a 4-15% SDS-PAGE gel and transferred them onto a polyvinylidene fluoride (PVDF) 
membrane. The membranes were then blocked with either 5% bovine serum albumin (BSA) or 5% nonfat milk 
in Tris-buffered saline with 0.1% Tween 20 (TBST [2.42 g/L Tris–HCl, 8 g/L NaCl, and 1 mL/L Tween 20 (pH 
7.6)]) for 1 h at room temperature. All primary antibodies incubations were done at 4°C overnight followed by 3 
X 10 min washes with TBST. HRP-conjugated secondary antibody incubations were done at room temperature 
for 1 h and followed by 3 X 10 min washes with TBST. β-actin was used as an internal control. All western blot 
experiments were run in at least triplicates for each antibody and analyzed from different lysates using standard 
procedures. 
 
Measurement of Reactive Oxygen Species (ROS). Intracellular ROS levels were measured with 2’,7’-
dichlorofluorescin diacetate (DCF-DA) using fluorescence-activated cell sorting (FACS) analysis as previously 
described 72. Cells were loaded with 20 μM of DCF-DA and fluorescence was measured with a flow cytometer 
(FACSCalibur, Becton-Dickinson, Franklin Lakes, NJ). The mean DCF fluorescence intensity was measured with 
maximum excitation and emission spectra of 495 nm and 529 nm, respectively. 
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Cell proliferation assay. To determine cell growth during exposure to pioglitazone, TRT-HU1 cells were seeded 
at a density of 5 x 104 cells/well in six-well plates. Cells were then incubated with standard growth medium and 
treated with varying doses of pioglitazone (0, 25, 50, or 100 μM) (E6910, Sigma-Aldrich Corp.) or vehicle. Cell 
numbers were evaluated after 24, 48, and 72 h by removing the medium, incubating cells with trypsin/EDTA for 
5 min, adding trypan blue, and counting the suspended live cells using a hemocytometer. The formula averages 
of each count were used as the total density of the well after each time point. For crystal violet staining, the 
medium was removed and replaced by 200 µl of a 0.05% solution of crystal violet. After incubation at room 
temperature for 15 min, the dye was removed, and the wells were washed thoroughly with phosphate buffered 
saline (PBS). Later, the cells were fixed with 4% paraformaldehyde at room temperature for 5 min. The cells 
were then washed with tap water and dried out on filter paper. For quantitative analysis, the stained cells were 

dissolved in 10% acetic acid and subjected to absorbance measurements at 570-590 nm 73. Each assay 
condition was run in triplicates, and the data are representative of three independent trials.  
 
Statistical analysis. Student’s t-tests were performed to evaluate differential expression of the proteins between 
two groups. Variables with normal distribution were expressed as mean ± standard deviation (SD). All reported 
p-values are two-tailed, with p <0.05 being considered as statistically significant. 
 
RESULTS 
 
Pioglitazone perturbs the whole proteome in bladder epithelial cells. Labeled LC-MS/MS proteomic 
analysis was conducted to identify the global proteomes TRT-HU1 bladder cells treated with or without 25 μM of 
pioglitazone. We found that pioglitazone treatment increased PPARγ protein expression (Figure 1A). Our 
proteomics analysis workflow is summarized in Figure 1B.  

Figure 1. Overview of global proteomics workflow for data generation and 
analysis. (A) Western blot analysis shows the effects of pioglitazone treatment on 
PPARγ expression. (B) Proteomics analysis workflow for this study. 
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We detected 5,769 proteins in total, 
including proteins from the cell part 
(n=2,375), organelle (n=1,663), 
macromolecular complex (n=1,060), 
membrane (n=643), extracellular 
region (n=88), cell junction (n=61), 
synapse (n=43), and extracellular 
matrix (n=29) (Figure 2A). To identify 
DEPs between the control vs. 
pioglitazone groups, we performed a 
statistical hypothesis test using an 
empirical null model (see Methods). 
Among the 5,769 proteins, 124 DEPs 
(including 95 upregulated and 29 
downregulated proteins) were found 
to have absolute log2 fold-changes 
≥0.58 and p-values <0.05. 
Approximately 70% of the DEPs 
(n=95) showed increased expression 
due to pioglitazone treatment (Figure 
2B).  
 
Volcano plot displays DEPs between 
control and pioglitazone groups. The 
top 5 most significantly up- or 
downregulated proteins were 
highlighted with their official symbol 
(Figure 2C). HIST1H2BK (histone 
cluster 1 H2B family member K), 
ST13P5 (ST13, Hsp70 interacting 
protein pseudogene 5), and 
WASH2P (WAS Protein Family 
Homolog 2 Pseudogene) were the 
most significantly downregulated by pioglitazone treatment. ATPAF1 (ATP Synthase Mitochondrial F1 Complex 
Assembly Factor 1), SNX17 (Sorting Nexin 17), LZTS2 (Leucine Zipper Tumor Suppressor 2), and UTP14C 
(UTP14C, Small Subunit Processome Component) were the most upregulated in response to pioglitazone. 
Supplementary Table S1 shows the list of DEPs that were altered in response to pioglitazone along with the 
transcriptional targets of PPARγ and test statistics. This data suggest that pioglitazone may induce transcriptional 
programming through PPARγ, which contributes to increased protein expression.  
 
 
 
Functional enrichment analysis reveals that pioglitazone modulates key biological processes. To check 
the function of proteins perturbed by pioglitazone, we performed functional enrichment and classification using 
DAVID and PANTHER, respectively 63,64. Muscle filament sliding, actin-mediated cell contraction, cellular oxidant 
detoxification, cell adhesion, purine nucleoside monophosphate metabolic process, ATP metabolic process, and 
cytoskeleton organization were enriched by upregulated DEPs. However, chromatin silencing, gene silencing, 
and regulation of gene expression were enriched by downregulated DEPs (Figure 3A). We listed the DEPs 
belonging to actin-mediated cell contraction, cellular oxidant detoxification, cell adhesion, purine nucleoside 
monophosphate metabolic process, and chromatin silencing (Table 1).  

Figure 2. Total proteins and differentially expressed proteins (DEPs) 
perturbed by pioglitazone treatment. (A) Pie chart depicts the cellular 
location of the detected DEPs. (B) Pie chart shows proportion of up- and 
downregulated DEPs in cells treated with pioglitazone. (C) Volcano plot 
showing the up- or downregulated DEPs in bladder epithelial cells treated with 
pioglitazone. Up- and downregulated DEPs are marked as red or blue, 
respectively. Protein symbol of the top 5 up- or downregulated proteins are 
presented in the volcano plot.  
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Interestingly, the classified molecular functions of the DEPs include binding, catalytic activity, structural molecule 
activity, antioxidant activity, translation regulator activity, transporter activity, receptor activity, and signal 
transducer activity (Figure 3B). Binding function was the largest portion of both the upregulated and 
downregulated DEPs. Catalytic, antioxidant, translation regulator, and transporter activity were the major 
molecular functions in the upregulated DEPs. However, receptor and signal transducer activity were the major 
functions in downregulated DEPs. The classified cellular compartments of the DEPs were cell part, membrane, 
organelle, cell junction, macromolecular complex, and extracellular region (Figure 3C). Membrane, cell junction, 
and extracellular region were the major cellular compartments in upregulated DEPs. Organelle and 
macromolecular complex are major cellular compartments in the outer circle. 
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Identification of protein interaction networks regulated by pioglitazone treatment. Our present study 
revealed a large set of proteins (n=5,769) with relevant levels of abundance in normal bladder epithelial cells. 
These proteins actively participate in various cellular processes, including actin regulation and chromatin 
remodeling (Figure 3A). Pioglitazone perturbs and modulates these cellular processes by affecting protein-
protein interactions. We therefore performed MRA using all the proteins detected in our global proteomic analysis 
to identify key proteins that can be major nodes in the protein-protein interaction networks. To select key proteins, 
we first identified proteins with a large number of interactions from those detected. We then determined the top 
5 proteins with the largest number of interactions and the most significant p-values (Figure 4A and 
Supplementary Table S2).  

 
To reconstruct the network model, top 3 proteins were then used. Of note, B lymphoma Mo-MLV insertion region 
1 homolog (BMI1), HIST1H4A, and superoxide dismutase 1 (SOD1) were found to be the top 3 regulators, with 
p-values <0.01 and large target counts. The network model describes the interactions among the top 3 regulators 
and their interactors with significant differential expression when treated with pioglitazone. Pioglitazone treatment 
downregulated expression of BMI1, which was found to interact mainly with histone proteins, such as 
HIST2AH2AA3, HIST2H2AC, HIST1H4A (Figure 4B). Expression of SOD1 increased with pioglitazone 
treatment and it was found to interact with two other upregulated proteins, PARK7 (parkinsonism associated 
deglycase) and CCS (copper chaperone for superoxide dismutase). Interestingly, downregulation of BMI1 and 
its interacting histone proteins in the network model suggests potential epigenetic regulation by pioglitazone, 
which is consistent with functional enrichment data indicating “chromatin silencing” (Figure 3A). 

Figure 3. Functional enrichment and classification of the DEPs. (A) Bar plot shows biological 
processes enriched by the up- and downregulated DEPs. (B) Top molecular functions of upregulated 
(inner circle) and downregulated (outer circle) proteins. (C) Top cellular compartments of upregulated 
(inner circle) and downregulated (outer circle) proteins.  
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Biological effects of pioglitazone on immortalized normal bladder epithelial cells. To further validate the 
DEPs between the control vs. pioglitazone groups, proteins were selected for based on functional enrichment 
analyses. Additional western blot analysis demonstrated that expression of MYH3 (myosin heavy chain 3) was 
upregulated, while expression of ACTG2 (actin gamma 2) was downregulated in cells treated with 25 μM of 
pioglitazone (Figure 5A). Consistent with morphological changes in pioglitazone-treated cells, we found that 
protein expression of mesenchymal cell markers, including N-cadherin, Snail, Slug, and β-catenin, were 
significantly reduced in pioglitazone-treated cells, compared to control cells (Figure 5B). In addition, tight junction 
proteins, including zonula occludens (ZO) 1 and 2 and CD2AP (CD2-associated protein), that are involved in 
cell-cell contact regions 74 were greatly reduced in pioglitazone-treated cells (Figure 5C).  

To determine whether pioglitazone regulates mitochondrial quantity or metabolic respiration-associated proteins, 
a series of mitochondrial oxidative phosphorylation (OXPHOS) proteins 75 were measured via western blot 
analysis. The expression levels of OXPHOS subunits, such as C I subunit (NDUFB8), C II subunit [SDHB 
(succinate dehydrogenase)], C III core protein 2 [UQCRC2 (ubiquinol- cytochrome C reductase core protein 2)], 
C IV subunit [MTCO1 (Mitochondrially Encoded Cytochrome C Oxidase I)], and C V alpha subunit [ATP5A (ATP 
synthase subunit alpha)], did not change by pioglitazone treatment (Figure 5D). To profile the phosphorylation 
events in normal bladder cells, human TRT-HU1 cells were treated with or without pioglitazone. We performed 
a series of western blot analyses between the control and pioglitazone-treated groups and found that several 
phosphorylation events of specific signaling pathways were regulated by pioglitazone. The phosphorylation 
levels of NF-κB, Erk/MAPK, ERBB2 and p21 activated kinase 1 (PAK1) decreased. On the contrary, only the 
phosphorylation levels of GSK3β increased. Additionally, studies have shown that the activation of PPARγ 
through agonists reduces diabetic myocardial fibrosis via regulation of the TGF-β/ERK pathway and EMT 76, 
which were both found to be upregulated in pioglitazone-treated cells compared to controls (Figure 5E).  

To further elucidate on the role of pioglitazone on oxidative stress, cells were treated with pioglitazone for 72 h, 
and the resulting ROS levels were measured and analyzed. Levels of ROS were unchanged between the control 
and pioglitazone groups (Figure 5F). In addition to our proteomic analysis, we assessed whether pioglitazone 
affects cell proliferation. After incubating TRT-HU1 cells in varying concentrations of pioglitazone (25, 50, or 100 
μM) for 24 and 48 h, we found that the cell proliferation rates of cells treated for 48 h were significantly 
suppressed, compared to controls (Figure 5G-H).  

Figure 4. Potential master regulators suggested by master regulator analysis (MRA). (A) Scatter plot 
displays distribution of detected proteins by number of interactions and level of significance driven by MRA. 
(B) Network model describing the interactions of the top 3 master regulators and their interacting DEP
partners. Red font denotes the top 3 master regulators.
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Figure 5. Effects of pioglitazone treatment on THT-HU1 cells. Cells were incubated in DMEM supplemented 
with 25 μM of pioglitazone for 72 h before cell lysates were immunoblotted with various antibodies as indicated. 
(A) Immunoblot analyses were performed to validate the expression levels of identified DEPs. The protein 
expression levels of MYH3 and ACTG2 significantly decreased with pioglitazone treatment (PIO), compared to 
controls (Ctrl). (B) Several EMT markers, including Slug, Snail, N-cadherin, β-catenin, and E-cadherin, were 
measured by immunoblot analysis. (C) Cell junction markers (ZO-1, ZO-2, and CD2AP) were also measured by 
immunoblot analysis. β-actin was used as the loading control. (D) Levels of mitochondrial oxidative 
phosphorylation (OXPHOS) markers were compared between Ctrl and PIO groups. No significant changes were 
observed in response to pioglitazone treatment. (E) Western blot analysis of key signal transduction proteins, 
including phospho-NF-κB, phospho-Erk/MAPK, phospho-HER2/ErbB2, phospho-PAK1 and phospho-GSK-3β. β-
actin was used as an internal control. (F) ROS production levels were compared between Ctrl and PIO groups. 
NS, nonsignificant. (G) Cell proliferation rate was measured by counting with trypan blue staining. *, P < 0.01; **, 
P < 0.005; NS, nonsignificant. (H) Dose- and time-dependent cell growth rates were measured in an independent 
set of experiments. *, P < 0.01; **, P < 0.005; NS, nonsignificant. 
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DISCUSSION 

There are many discrepancies surrounding the link between TZD usage and side effects on bladder function. 
Diabetic bladders can have several dysfunctions, ranging from bladder overactivity to impaired contractility, 
which represent a wide spectrum of clinical symptoms. The widespread pathophysiology of bladder dysfunction 
in diabetic patients is associated with multiple factors, including neuronal dysfunction, smooth muscle 
dysfunction, and urothelial impairment 77. In patients, diabetes has been shown to be a significant predictor of 
death from cancer, including BC 78. Evidence from a meta-analysis study has linked the use of pioglitazone to 
increased BC risk as well 53 .The tumorigenic effect of pioglitazone is thought to be due to signaling modifications 
in the PPAR pathway 79. However, it is still unclear whether the long-term use of pioglitazone increases the 
chances of developing bladder dysfunctions or disease.  

PPARγ is part of the PPAR subfamily that consists of two other subunits, alpha and beta/delta. As the most 
extensively studied subunit, the functions of PPARγ have been linked to several crucial biological processes, 
including glucose metabolism, lipid biosynthesis, and anti-inflammatory response 80. The association of PPARγ 
to diabetes is based on the its role in lipid and glucose metabolism 81. It has been shown that patients with 
dominant negative mutations of PPARγ have severe hypoglycemia, insulin resistance, and DM 82. This means 
that there is a significant genetic link between both PPARγ and DM. Treatment with TZDs has proven to 
substantially decrease insulin resistance in diabetes and possibly induces transcription of adipose cell 
differentiation, which generates smaller insulin-sensitive adipocytes 83. However, despite their beneficial effects 
in patients with diabetes, TZDs are known to have adverse effects. This includes weight gain, fluid retention, 
bone mineral density reduction, and excess myocardial infarction 84. The fluid retention induced by TZDs has 
also been proven to significantly increase urine volume and excretion of sodium 85.  Because of this, there is 
some controversy surrounding the safety of long-term TZD usage to treat diabetes.  

In addition to the documented roles of PPARγ in lipid metabolism and DM, there has been growing research on 
its functions in both BC and interstitial cystitis (IC). Approximately 20-25% of human BC is driven by hyperactive 
PPAR signaling that is due to either PPARγ gene amplification or RXRA hot-spot mutations 86. Furthermore, it 
was found that the PPARγ transcription pathway can be a tumor-intrinsic mechanism for immune evasion in 
muscle-invasive BC 87. Along with this immune escape, it has been proposed that PPARγ cooperates with the 
FOXA1 (forkhead box protein A1) and GATA3 (GATA binding protein 3) networks to drive transdifferentiation of 
basal BC cells into luminal types 88. PPARγ has also been identified to be associated with IC. Mahal A et al. 
found that treating their IC rat model with PPARγ agonists improved bladder function and urinary health 89. Based 
on the complex relationship of PPARγ with diabetes and urological malignancies, it would be compelling to better 
understand how patients who routinely take TZDs are affected.  

This study revealed that BMI1 is a master node in pioglitazone-regulated networks. A recent study showed that 
overexpression of BMI1 repressed transcripts of PPARγ in mesenchymal stem cells (MSCs)90. Our proteomic 
profiling of BMI1 exhibited significant downregulation in normal bladder epithelial cells treated with pioglitazone, 
suggesting a potential inverse relationship between PPARγ and BMI1. One possible hypothesis for our future 
study is that PPARγ signaling induced by pioglitazone may cause loss of BMI1 expression in bladder cells. 
Expression of telomere maintenance proteins including HIST1H4A, HIST2H2AA3 and HIST2H2AC, which 
interact with BMI1, are downregulated as well. The presence of an upregulated telomere maintenance 
mechanism is a hallmark of cancer, and it is interesting to note that HIST2H2AA3 and HIST2H2AC were 
identified as genes upregulated, differentially expressed in BC 91. This may signify a stage shift, by pioglitazone 
treatment, from developing cancer. PPARγ agonism has also been shown to increase the antitumor effects of 
histone deacetylase inhibitors in multiple myeloma cells.85  

Most notably, in our study, we found a series of contractile and cytoskeleton proteins, such as myosin light 
polypeptides, myosin heavy polypeptides, keratins, and ACTG2, as being significantly up- or downregulated in 
TRT-HU1 bladder epithelial cells treated with pioglitazone. Myosin is a particularly important structural 
component of muscles that interacts with actin filaments and plays a vital role in actin filament contraction, 
bundling, motor action, and binding. Furthermore, our network modeling revealed that these actin-binding 
proteins comprise the central hub. These results suggest the potential pathophysiological mechanisms of 
pioglitazone’s effects.  
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Our data demonstrated that the activation of PPARγ signaling pathways inhibits the proliferation of bladder 
epithelial cells. Interestingly, these findings are consistent with clinical observations that the IC bladder has 
thinner epithelial layers 92 and that IC bladder cells exhibit reduced proliferation due to cell cycle arrest 93. Our 
epigenetic remodeling study supports this mechanistic link between IC and defective cell proliferation.94 
Furthermore, previous reports suggest that the anti-proliferative role of PPARγ is through the upregulation of 
PTEN expression in various cancers, which leads to decreased PI-3K activity 95. It is currently known that PPARγ 
agonists promote cell cycle arrest by downregulating cyclin D1 in several tumor lines; thereby, inhibiting cyclin 
D1/CDK-mediated retinoblastoma (pRb) phosphorylation and maintaining its active form to prevent the G1 to S 
phase transition 96. Activation of PPARγ via agonists in normal human urothelial cells has been shown to induce 
expression of gene/protein markers associated with late/terminal urothelial differentiation, including uroplakins, 
cytokeratins, and tight junction constituents 97,98.  

In summary, although pioglitazone is widely used among T2DM patients, its effects on the bladder are still in 
controversy. While there have been studies examining the effects of pioglitazone on healthy bladder cells, there 
is no conclusive evidence. Through unbiased quantitative proteomic profiling, our report comprehensively 
characterized the proteome of normal bladder epithelial cells treated with pioglitazone. We observed suppressed 
cell proliferation, which may be explained by the decreased expression of tight junction proteins. Taken together, 
our study provides no experimental evidence to support a tumorigenic effect of pioglitazone on the bladder. This 
proteomic approach will be useful for examining any potential side effects of the one of the most commonly used 
drugs.  

Advances in Urinary Biomarker Discovery in Urological Research 

Why we care about bladder cancer and other benign bladder diseases? 

The bladder is a hollow, soft muscular organ located in the lower abdomen, which stores urine until it is ready to 
excrete. In urological diseases, the incidence of bladder diseases is quite high. The common bladder diseases 
include bladder cancer, bladder dysfunction (cystitis, urinary incontinence, overactive bladder, etc.) and other 
bladder problems. Bladder cancer (BC) is the sixth most common cancer in the United States, accounting for 
4.7% of cancer cases 1. About 45,000 men and 17,000 women in the United States are diagnosed as BC every 
year. 

Interstitial cystitis (IC) is the most common disease in bladder dysfunction. According to the International 
Continence Society, the definition of IC is "the complaint of suprapubic pain related to bladder filling, 
accompanied by other symptoms such as increased daytime and nighttime frequency, in the absence of proven 
urinary infection or other obvious pathology."2. The morbidity of IC in the general population is 0.26-12.6% 3,4. 
The estimated morbidity of IC in women is 45/100.000, which is 4-5 times than that in men, with the morbidity of 
8/100.000 5. In the United States, 3.3 million women are diagnosed as IC every year 6. At present, one of the 
most important methods to diagnose bladder diseases is cystoscopy, but this technique is invasive and may lead 
to urinary tract infection. Compared to cystoscopy, urine testing is easier to perform in clinical practice. Urine can 
be obtained non-invasively and shows increased stability over serum or blood, which allows for easy multiple 
sampling. With the direct contact between urine and bladder diseases, the use of urinary biomarkers detection 
in bladder diseases becomes more and more important. 

Will it be useful the urine-based diagnostic biomarkers to detect and monitor the bladder diseases? 

Urinary biomarkers are particularly attractive due to the direct contact of the urine with the urothelial tumor cells 
and the ease of sample collection. Urine-based diagnostic biomarkers are reviewed in our paper from the 
following aspects: gene mutations and gene expression-based biomarkers, proteomic biomarkers (Table 1), 
metabolomic biomarkers (Table 2), and DNA methylation biomarkers (Table 3).  
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Gene mutations associated with BC 
 
The exact cause of BC is still unclear. There are several risk factors related to BC, including environment, 
smoking, toxic industrial chemicals and gases, bladder inflammation, and gene mutations. As a noninvasive 
method, detecting mutant genes in urine plays an important role in the diagnosis of BC.  
 
A study of Zhu et al. 7 indicated 14 important mutation genes related to BC by searching the COSMIC database. 
The mutation genes included P53, Fibroblast Growth Factor Receptor 3 (FGFR3), TSC Complex Subunit 1 
(TSC1), Stromal Antigen 2 (STAG2), HRas Proto-Oncogene (HRAS), Phosphatidylinositol-4,5-Bisphosphate 3-
Kinase Catalytic Subunit Alpha (PIK3CA), Erb-B2 Receptor Tyrosine Kinase 3 (ERBB3), Neurofibromatosis type 
1 (NF1), Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2), Fibroblast Growth Factor Receptor 1 (FGFR1), cyclin-
dependent kinase Inhibitor 2A (CDKN2A), AT-Rich Interaction Domain 1A (ARID1A), Histone-lysine N-
methyltransferase 2D (KTM2D), and CREB Binding Protein (CREBBP). Several studies showed that the 
development of BC is associated with the mutations of P53 gene 8-11. Sidransky etc. 12 first described the 
mutations of P53 gene in the urine of BC patients in 1991. They found that alterations in P53 gene were 
associated with poor differentiation, advanced urothelial cell carcinoma and poor prognosis 8,9. Traczyk-
Borszynska et al. 13 showed that the mutations of P53 gene were more common in clinically and histologically 
advanced carcinoma, and were the negative prognostic factor in BC. FGFR3 mutations also participated in the 
development of BC. A study showed that mutations of the FGFR3 gene were surrogate markers for the detection 
of genome stable bladder tumors 14. Another study indicated that FGFR3 mutations were the feature of well-
differentiated BC but not the prognostic marker in BC 13. In other studies, Van Rhijn et al. 15 showed that the 
combination of FGFR3 with MIB-1 (Ki67) had a more accurate prediction of the progression and survival in BC. 
Ploussard et al. 16 found that the progression and recurrence of FGFR3 mutations in disease depended on allele 
loss of 9p22. Also, Rebouissou et al. 17 found that the progression of FGFR3 mutations in non-muscle-invasive 
disease depended on the homozygous deletion of 9p21. HRAS is a proto-oncogene, which may promote 
tumorigenesis in several organs including the bladder. HRAS gene mutations in bladder cells were associated 
with BC, but the mutation rate was low. A study showed that the mutation rate of HRAS gene varies greatly in 
BC (0-30%) 18. Beukers et al. 19 indicated that HRAS gene mutations were more likely to occur in young BC 
patients (<20 years) compared with older patients. It suggested that mosaicism of oncogenic HRAS mutations 
may increase the risk of developing BC at a young age.  
 
Several studies showed that TSC1 had inactive point mutations on 9q34 in10-15% of BC patients, resulting in 
complete loss of function of TSC1 20-22. Also, the deletion of a single TSC1 allele may promote the growth of 
bladder epithelial cells and therefore promote the development of BC23. Stromal Antigen 2 (STAG2) mutations 
were recently identified in BC patients. However, the significance of STAG2 mutations remains controversial. 
Solomon et al. 24 showed that loss of STAG2 promoted the lymph node metastases in BC and increased the risk 
of recurrence and mortality. However, different subtypes of BC may exhibit different mutations 25. In several 
studies, loss of STAG2 was reported to be associated with BC in low stage and low grade 26-28.  
 
Alana et al. 29 found that STAG2 mutations were much more common in non-muscle invasive BC (32%) than in 
muscle invasion BC (12%). These studies suggested that STAG2 could be a potentially useful biomarker for 
predicting recurrence and progression in non-muscle invasive BC. BRCA1 Associated Protein 1 (BAP1) is a 
nuclear ubiquitin carboxy-terminal hydrolase or deubiquitinating enzyme which can regulate several cellular 
functions, including cell cycle, differentiation, proliferation, and DNA damage response 30. The recent research 
indicated that BAP1 mutations were related to BRCA pathway alterations in bladder cancer. Lin et al. 31 indicated 
that patients carrying BAP1 genetic variant alleles of rs12163565 had an increased risk of developing BC, 
although the increased risk was not statistically significant (OR=1.17, P=0.070). There were studies showed that 
PIK3CA gene alterations, including mutations, copy gains or amplifications, were associated with non-muscle 
invasive BC 32,33.  
 
Duenas et al 33 showed that PIK3CA gene alterations were frequent and associated with low recurrence and low 
progression in non-muscle invasive BC, which indicated that PIK3CA may be a potential biomarker for predicting 
recurrence and progression in non-muscle invasive BC. Collectively, many genes mutations have been found in 
BC patients. Further studies are required to discover more gene mutations and new biomarkers in BC before 
they can be used in clinical practice.   
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Gene expression-based BC biomarkers 
 
Gene expression-based urinary biomarkers have good sensitivity and specificity in the detection of BC. They are 
less likely to be affected by inflammatory and other benign conditions. Several important genetic changes in BC 
have been identified in the past two decades. Based on the technology of rapid nucleic acid extraction and the 
proven stability of DNA and RNA in urine, gene expression-based biomarkers play an important role in the 
detection of BC. 

 
A study from Beukers et al. showed that FGFR3, Telomerase Reverse Transcriptase (TERT), and Orthodenticle 
Homeobox 1 (OTX1) were significant in the diagnosis of BC 34. They acted as a urinary biomarker combination 
with a sensitivity of 57% in low grade primary BC patients and 83% in pT1 or muscle invasive BC. In a study of 
Holyoake et al.35, the researchers used microarray data from BC patients and healthy controls to generate a 
panel of genes that were differentially expressed in various stages and grades of BC patients and normal controls. 
They tested the markers in voided-urine samples to generate an mRNA panel, including Cyclin-dependent 
kinase-1 (CDK1; also known as CDC2), Midkine (MDK), Insulin Like Growth Factor Binding Protein 5 (IGFBP5), 
and Homeobox A3 (HOXA3), which could predict the presence of BC with a sensitivity of 48%-100% and a 
specificity of 85%. Park et al. 36 examined Aurora kinase A (AURKA) gene amplification in exfoliated cells in urine 
samples. They concluded that AURKA could be a biomarker for the detection of BC with a specificity of 96.6% 
and a sensitivity of 87%, and the degree of gene amplification was also associated with high grade BC. Urquidi 
et al. 37 used Affymetrix arrays of 92 patients (52 BC and 40 controls) and derived a 14 gene panel that could 
predict the presence of BC, with high sensitivity and specificity (90% and 100%, respectively) and AUC (area 
under the receiver operating curve) of 0.98. The 14 genes were: carbonic anhydrase 9 (CA9), Transmembrane 
Protein 45A (TMEM45A), C-C Motif Chemokine Ligand 18 (CCL18), Matrix Remodeling Associated 8 (MXRA8), 
Matrix metallopeptidase 9 (MMP9), Semaphorin 3D (SEMA3D), erb-b2 receptor tyrosine kinase 2 (ERBB2), 
Vascular Endothelial Growth Factor A (VEGFA), desmocollin 2 (DSC2), Ras-related protein Rab-1A (RAB1A), 
angiotensinogen (AGT), Synaptogyrin 1 (SYNGR1), Deleted in malignant brain tumors 1 (DMBT1), Angiogenin 
(ANG). The first seven genes were upregulated and the last seven genes were down-regulated in the urines of 
BC patients. Bongiovanni et al. 38 found that the expression levels of Septin 4 (SEPT4) were up-regulated in the 
urine of BC patients, with a sensitivity of 93%, a specificity of 65%, and AUC of 0.798. All these studies have 
shown promise in the diagnosis of BC. However, the majority of them remain in the discovery phase.  
 
MicroRNAs (miRNAs) are a class of small, endogenous, noncoding RNA. They regulate gene expression by 
affecting mRNA translation and stability or by modulating promoter activity of their target genes. In oncology, 
miRNAs are considered as promising biomarkers for early diagnosis, prognosis evaluation and therapeutic 
response prediction of the tumor. A large number of studies showed that miRNAs acted as diagnostic biomarkers 
in urine samples of BC patients 36,39-42. Some miRNAs were down-regulated such as miR-125b, miR-140-5p, 
miR-141, miR-200a, miR-200c, and others were up-regulated such as miR-18a, miR-92a, miR-96. Other studies 
indicated that miR126, miR152, miR222, and miR452 were up-regulated in BC43-45. However, miR-200 family, 
miR-155, miR-192, miR-205, and miR-143 were found to be down-regulated in studies44,46. Eissa et al. 47 found 
that the levels of miR-324-5p, miR4738-3p, and FOSB mRNA were up-regulated in the urine of BC patients, 
whereas lncRNA miR497-HG and RCAN1 mRNA were down-regulated in BC patients, compared with patients 
with benign lesions and healthy controls. The sensitivities and accuracies of the RNAs were significantly higher 
than those of cytology. In the urinary ceRNA: lncRNA-miRNA-mRNA network, 2 mRNAs (FOS B and RCAN1) 
displayed the highest accuracy for the diagnosis of BC. A study of Chen et al. 48 showed that MiR-101 was 
decreased in BC patients, and was negatively associated with aggressive clinical characteristics, with a 
sensitivity of 82.0% and a specificity of 80.9% in BC. 
 
Most of the studies on miRNAs were different in methodology, with little overlap, and no results were fully 
validated. At present, there are no valid conclusions about urinary miRNAs in the detection of BC patients. 
Multicenter prospective validation studies in large clinical settings are needed in the future. 
 
Proteomics profiling revealed urinary biomarkers for BC  
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The urinary proteome enriched in proteins reflects the development and invasion of the tumor through direct 
contact with BC. The study of urinary proteomic biomarkers has been mainly used to help diagnose primary and 
recurrent BC and to assess the aggressiveness of the disease. 
 
Nuclear matrix protein 22 (NMP22) is one urinary biomarker approved by the U.S. Food and Drug Administration 
(FDA) using ELISA test and BladderChek point-of-care (POC) test49,50. However, in a meta-analysis of 19 studies 
for the detection of BC, the sensitivity of NMP22 was 52-59% and the specificity was 87-89%, with an AUC of 
0.8351. Another biomarker approved by FDA is the bladder tumor antigen (BTA), also known as human 
complement factor H related protein (hCFHrp). In a meta-analysis of 13 studies using BTA STAT test, the 
sensitivity of BTA was 64-69% and the specificity was 73-77% 52. In a meta-analysis of 5 studies using BTA 
STAT test, the sensitivity of BTA was 62-71% and the specificity was 45-81% 53. Both of the two markers above 
were not good in sensitivities and specificities.  
 
An ideal protein biomarker should be the one with high sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and AUC values 54. Several studies showed that Apo-A1, BLCA-4, and 
hyaluronidase in urine were independently validated in BC with high sensitivities and specificities 55-60. Apo-A1 
is the primary protein component of high-density lipoprotein, which may improve tumor angiogenesis through 
kinase activation 61,62. But the association between lipoproteins and BC progression is still not very clear. Studies 
showed that Apo-A1 was independently validated in BC with the sensitivity of 89-95% and the specificity of 85-
92%55-57. BLCA-4 is a nuclear transcription factor found in the early stages of BC. Cai et al. 58 found that BLCA-
4 was independently validated with the sensitivity of 93% and the specificity of 97% through an analysis of nine 
studies. Hyaluronidase could improve cellular proliferation and motility through hyaluronic acid [63]. Studies of 
Eissa et al.59 and Pham et al.60 showed the sensitivity and specificity of Hyaluronidase ranged from 87-100% 
and 89-98% respectively. Besides the three proteins, there were several additional urine proteins that exhibited 
with high sensitivities and specificities, but they have not yet been independently validated, including angiogenin 
(ANG), apolipoprotein E (APOE), carbonic anhydrase 9 (CA-9), interleukin-8 (IL-8), matrix metalloproteinase-9 
(MMP- 9), matrix metalloproteinase-10 (MMP-10), plasminogen activator inhibitor 1 (PAI-1), vascular endothelial 
growth factor (VEGF)63,64. Goodison et al. 63 found that the eight-biomarker panel above achieved a sensitivity 
of 92% and a specificity of 97%, while the BTA TRAK ELISA test achieved a sensitivity of 78% and a specificity 
of 83% in the same cohort for BC detection. Another study of Urquidi et al.65 showed that urine CCL18 achieved 
a sensitivity of 88% and a specificity of 86%, while BTA TRAK ELISA achieved a sensitivity of 80% and a 
specificity of 84% in the same cohort for BC detection. All of the biomarkers above had better sensitivities and 
specificities than BTA. These head-to-head studies compared the biomarkers with the FDA-approved test in the 
same patient cohort, increasing the validity of the studies. 
 
Proteomics profiling revealed urinary biomarkers for IC 
 
IC/BPS is the most common disease in bladder dysfunction. At present, the etiology of IC/BPS is still not fully 
understood. There are several possible mechanisms, including infection, inflammation, toxic substances 
absorption, mucus layer with deficient glycosaminoglycan, hypoxia, and genetics. So far there are no gold 
standards in the diagnosis of IC/BPS. Some invasive testing including biopsy, urodynamic, and cystoscopy are 
applied to help diagnose the disease. However, there is still a lack of tools to facilitate accurate diagnosis and 
objective follow-up. Therefore, it is significant to investigate urinary biomarkers that can be used in clinical 
practice.  
 
A study by Thais et al. 66 reviewed the urinary biomarkers associated with IC/BPS. They found potential 
biomarkers investigated in urine specimens included macrophage inhibitory factor (MIF), nerve growth factor 
(NGF), methylhistamine, histamine, interleukin-6 (IL-6), APF, epithelial growth factor (EGF), HB-EGF, 
glycoprotein G5P1, and a chemokine profile. Tonyali et al.67 detected urinary NGF and nerve density in the 
bladder mucosa. They found that urinary NGF/Cr was significantly increased in IC/BPS patients comparing to 
control groups, which was similar to nerve density. Corcoran et al. 68 assessed both urine samples and bladder 
biopsy samples to determine the profile of 23 chemokines in 10 IC/BPS patients and 10 controls. The results 
indicated that univariate analysis showed no significant differences in any of the urinary proteins assessed, but 
multivariate analysis showed that VCAM-1 and ICAM-1 in urine were significantly different between IC/BPS and 
controls. A study of Vera et al. 69 studied urinary MIF concentrations in subgroups of BPS with and without 
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Hunner lesions and control groups. They verified that urinary MIF was significantly higher in BPS patients with 
Hunner lesion compared with patients without Hunner and with controls, with a sensitivity of 74.4%, a specificity 
of 71.8%, and AUC 0.718. For the urinary MIF/Cr ratio, the sensitivity was 47%, the specificity was 91% and 
AUC was 0.730 in identifying patients with IC/BPS and Hunner lesions. Lamale et al. 70 investigated urinary 
histamine, IL-6, and methylhistamine in IC/BPS patients and controls. They found that urinary concentrations of 
histamine and IL-6 were increased in IC/BPS patients. However, methylhistamine levels had no significant 
differences between IC/BPS patients and controls. Further logistic regression analysis demonstrated that the 
best predictor for IC/BPS was a combined model with IL-6 and methylhistamine, with an AUC of 0.788. 
Furthermore, Keay et al.71 found that APF was increased in IC/BPS patients compared to controls, but HB-EGF 
concentrations were decreased in IC/BPS patients. Byrne et al. 72 demonstrated that glycoprotein G5P1 
concentration in urine was lower in IC/BPS patients than that in controls.  

In general, urine proteomic biomarkers of bladder diseases have great promise, but the best biomarkers with the 
highest clinical utility remain to be discovered. There is still a need for more comprehensive screening of urine 
proteomic markers through extensive multi-institution validation. Table 1 shows the urinary biomarkers 
suggested for BC and IC diagnosis. 

Table 1. Proteomics-based Urinary Biomarkers 

Metabolomic biomarkers for BC 

At present, urinary metabolomic biomarker studies are primarily conducted either by NMR-based or mass 
spectrometry (MS)-based identification. Three metabolites (2,5-furandicarboxylic acid, ribitol, and ribonic acid) 
were found to be lower in the urine of BC patients than in healthy controls 73-75. Taurine is the metabolite known 
as a free-radical scavenger that can prevent cell damage. Studies showed that taurine was elevated in the urine 
of BC patients than in healthy controls 75,76. Several studies showed that urinary citrate, succinate, and hippurate 
were reduced in BC patients compared with control groups, which suggested that citrate changes were related 
to an altered tricarboxylic acid (TCA) cycle in BC metabolism 73-77. On the study of glycolysis-related metabolites, 

Bladder 
Diseases Biomarkers Study Sample size Method Sensitivity Specificity AUC Notes
BC NMP22 Wang 2017 [50] 5291 patients total (Meta-

analysis of 19 studies)
NMP22 
BladderChek, ELISA 

52%-59% 87%-89% 0.83 FDA-approved 

BTA Guo 2014 [51] 3462 patients total (Meta-
analysis of 13 studies)

BTA stat test 64%-69% 73%-77% 0.75 FDA-approved 

BTA Glas 2003 [52] 829 patients total (Meta-analysis 
of 5 studies)

BTA TRAK test 62%-71% 45%-81% NO FDA-approved 

Apo-A1 Li 2011 [54] 107 BC and 49 OUC ELISA 83.7%-91.6% 85.7%-89.7% 0.875-0.928
Li 2014 [55] 223 BC and 153 controls ELISA 89% 85% 0.948
Chen 2010 [56] 126 specimens ELISA 95% 92% 0.982

BLCA-4 Cai 2015 [57] 1119 subjects total (Meta-
analysis of 9 studies)

ELISA (8 studies) 
qPCR (1 study) 

93% 97% 0.9607

Hyaluronidase Eissa 2015 [58] 94 BC, 60 OUC, and 56 HC Zymography 89% 91% 0.948 PPV = 89% 
Pham 1997 [59] 22 G1 BC, 9 G2 BC, 40 G3 BC, 48 

OUC, and 20 HC 
ELISA-like assay 100% 89% NO

ANG, APOE, CA-9, IL-
8, MMP- 9, MMP-
10, PAI-1, VEGF

Goodison 2012 [62] 64 BC and 62 HC ELISA 92% 97% NO

CCL18 Urquidi 2012 [64] 64 BC and  63 controls ELISA 88% 86% 0.919 PPV = 86%, NPV = 87% 

IC/BPS NGF Tonyali 2018 [66] 15 women with BPS, 18 male 
and female controls

ELISA NO NO NO NGF/Cr was increased (p < 0.001)

VCAM-1, ICAM-1 
and MCP-3

Corcoran 2013 [67] 10 men and women with BPS, 10 
male and female controls 

Immuno-assay NO NO NO VCAM-1 and ICAM-1was increased; 
MCP-3 was decreased (p < 0.05)

MIF Vera 2018 [68] 55 women with BPS without 
Hunner lesions, 43 women with 
BPS with Hunner lesions, and 
100 female controls 

ELISA MIF 74.4%, 
MIF/Cr 47%

MIF 71.8%, 
MIF/Cr 91%

MIF 0.718, 
MIF/Cr  0.730

MIF, MIF/Cr was increased in BPS 
with Hunner lesion

Histamine, IL-6, and 
Methyl-histamine

Lamale 2006 [69] 40 women with BPS, and 29 
female controls 

RIA, ELISA 70.00% 72.40% 0.788 Histamine and IL-6 was increased  (p 
< 0.05). Best preditor: combined 
model with IL-6 and 
methylhistamine

APF and  HB-EGF Keay 2004 [70] 24 men with BPS 36 male 
controls 

3H-thimidine 
incorporation in cell 
cultures, ELISA

94% 95% NO APF was increased, HB-EGF was 
decreased (P <0.00001)

G5P1 Byrne 1999 [71] 36 patients with BPS and 23 
controls 

ELISA NO NO NO G5P1/Cr was decreased (p < 0.0001)

OUC= controls with other urinary conditions; HC= healthy controls. ELISA= enzyme-linked immunosorbent assay    ; AUC= area under the receiver operating curve; PPV= positive predictive value; NPV= negative 
predictive value; FDA= U.S. Food and Drug Adminstration; NO= not reported.
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decreased fructose levels and increased lactate levels were showed in BC patients 73,75. Urinary acetylcarnitine 
and adipate in BC patients were elevated, which were the results of disturbed fatty acid transportation, altered 
mitochondrial TCA cycle, and energy metabolism processes or an excess of acetyl- CoA production 74,75,77.  
 
Wittmann et al. 75 identified between 178 and 233 discriminating metabolites (depending on the respective 
comparison) in a retrospective MS study. They compared current BC patients with three different control groups: 
patients with haematuria, controls with BC in the past but without the current disease, and a mixed group of 
patients with haematuria, those with BC in the past and some healthy subjects. They found that 3-
hydroxybutyrate and gluconate were the most highly increased in BC patients, while anserine, 3-
hydroxyphenylacetate and pyridoxate showed the lowest values in BC patients. In another high-resolution LC-
MS study, glycolysis and acylcarnitines were increased in BC than a combined control group (patients with 
haematuria and healthy controls) 78. Besides, amino acid metabolism and fatty acid oxidation were also important 
factors in BC pathology. A study showed that the acylcarnitines, decanoylcarnitine, decenoylcarnitine, 
hydroxynonanoylcarnitine and hydroxybutyrylcarnitine were all increased in BC patients 79. These urinary 
metabolomic biomarkers may have potential significance in the diagnosis of BC. 
 
Metabolomic biomarkers for IC 
 
In the research of IC/BPS, Parker et al. 80 used liquid chromatography-MS in urine samples of 40 women with 
IC/BPS and 40 controls to determine metabolomic profiles. They found six metabolites were closely associated 
with IC/BPS. One of them was etiocholan-3alpha-ol-17-one (Etio-S). The elevated Etio-S was a good predictor 
of IC/BPS, with a sensitivity of 91.2%, a specificity of 87.4%, and AUC of 0.92. Longitudinal analysis of women 
in this cohort showed that the differences in Etio-S persisted, indicating that these changes could last long. 
 
The results from these early studies on metabolomic biomarkers suggest that urine may act as a potential tool 
on screening or monitoring bladder diseases in the clinical field, but it is still in the discovery phase. More large 
multicenter studies with independent validation cohorts are needed to advance the field. Table 2 shows the 
urinary biomarkers suggested for IC diagnosis. 
 
Table 2. Metabolomics Urinary Biomarkers  

 
 
 

Bladder 
Diseases

Biomarkers Study Sample size Method Sensitivity Specificity AUC Notes

BC 2,5-furandicarboxylic 
aci�Ribitol� and Ribonic 
acid

Pasikanti 2013 [72] 38 BC and 61 controls GC×GC–TOFMS 71% 100% NO Decreased 

Pasikanti 2010 [73] 24 BC and 51 controls GC–TOFMS 100% NO 0.9 Decreased 

Taurine Wittmann 2014 [74] 95 BC and 345 controls UHPLC-MS/MS and GC-MS NO NO NO Increased

Srivastava 2010 [75] 33 BC and 37 healthy 1H NMR spectroscopy NO NO NO Increased

Citrate Pasikanti 2013 [72] 38 BC and 61 controls GC×GC–TOFMS 71% 100% NO Decreased 

Pasikanti 2010 [73] 24 BC and 51 controls GC–TOFMS 100% NO 0.9 Decreased 

Succinate and Hippurate Pasikanti 2010 [73] 24 BC and 51 controls GC–TOFMS 100% NO 0.9 Decreased 

Huang 2011 [76] 27 BC and 32 controls LC-MS 92.60% 68.80% 0.867(Hippurate) Decreased 

Fructose and Lactate Pasikanti 2013 [72] 38 BC and 61 controls GC×GC–TOFMS 71% 100% NO Fructose Decreased and Lactate 
Increased

Acetylcarnitine and Adipate Pasikanti 2010 [73] 24 BC and 51 controls GC–TOFMS 100% NO 0.9 Increased

Huang 2011 [76] 27 BC and 32 controls LC-MS NO NO 0.598(acetylcarni
tine)

Increased

Component I and Carnitine 
C9:1

Huang 2011 [76] 27 BC and 32 controls LC-MS 90.50% 96.90% 0.9 and 0.88, 
respectively

Increased

3-hydroxybutyrate and 
Gluconate

Wittmann 2014 [74] 95 BC and 345 controls UHPLC-MS/MS and GC-MS NO NO NO Increased

Anserine, 3-
hydroxyphenylacetate and 
Pyridoxate

Wittmann 2014 [74] 95 BC and 345 controls UHPLC-MS/MS and GC-MS NO NO NO Decreased 

Glycolysis and Acylcarnitines Jin 2014 [77] 138 BC, 52 haematuria, 
and 69 healthy

high-resolution LC–MS 85%-91.3% 85%-92.5% 0.937 Increased

Acylcarnitines, 
Decanoylcarnitine, 
Decenoylcarnitine, 
Hydroxynonanoylcarnitine and 
Hydroxybutyrylcarnitine

Liu 2018 [78] 53 BC, 6 benign lesions, 
and 203 healthy controls

high-resolution LC–MS NO NO 0.8 Increased

IC/BPS Etio-S Parker 2016 [79] 40 women with BPS and 
40 controls

liquid chromatography-MS 91.20% 87.40% 0.92 Increased

GC×GC–TOFMS= two-dimensional gas chromatography time-of-flight mass spectrometry; UHPLC-MS/MS=Ultrahigh-performance liquid chromatography/tandem mass spectrometry; GC-MS= gas 
chromatography- mass spectrometry; LC-MS= liquid chromatography-mass spectrometry; NO= not reported.
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DNA methylation biomarkers for BC 
 
DNA methylation has been recognized to be important in developmental biology and cancer etiology 81. Aberrant 
DNA methylation is a major characteristic of BC and it plays an important role in tumor occurrence and 
progression 82-84. Compared to RNA or protein, DNA is inherently stable, so it is more powerful in cancer detection. 
Chan et al. 85 examined the DNA methylation of seven genes (The retinoid acid receptor-β (RARβ), Death 
Associated Protein Kinase 1 (DAPK), E-cadherin, cyclin-dependent kinase inhibitor 2A (p16), p15INK4b (p15), 
Glutathione S-Transferase Pi 1 (GSTP1), and O-6-Methylguanine-DNA Methyltransferase (MGMT ) in voided 
urine of BC patients and age- and sex-matched controls. Four biomarkers (Death-associated protein kinase 1 
(DAPK), The retinoid acid receptor-β (RARβ), E-cadherin, and p16) achieved a sensitivity of 91% and a 
specificity of 76% for detecting BC. And cytology achieved a sensitivity of 46% and a specificity of 100% by 
comparison. Friedrich et al. 86 examined DNA methylation of apoptosis-associated genes (Death Associated 
Protein Kinase 1 (DAPK), Telomerase Reverse Transcriptase (TERT), and Apoptosis Regulator (BCL2)) in the 
urine of BC patients. They found that combined methylation analyses achieved both high sensitivity and 
specificity (78% and 100%, respectively) for detecting BC. In another study, Hoque et al. 87 examined the DNA 
methylation of nine genes (Adenomatous polyposis coli (APC), ARF tumor suppressor (p14ARF), Cadherin-
1 (CDH1), GSTP1, O-6-Methylguanine-DNA Methyltransferase (MGMT), cyclin dependent kinase inhibitor 2A 
(CDKN2A), Retinoic Acid Receptor Beta (RARb2), ras association domain family member 1 (RASSF1A), and 
TIMP Metallopeptidase Inhibitor 3 (TIMP3)). They found that combined methylation analysis based on four genes 
(CDKN2A, p14ARF, MGMT, and GSTP1) achieved a sensitivity of 69% and a specificity of 100%. Recently there 
were some studies on Twist Family BHLH Transcription Factor 1 (TWIST1) and Nidogen 2 (NID2) genes. Renard 
et al. 88 reported that TWIST1 and NID2 genes were frequently methylated in BC patients in a total of 496 urine 
samples collected from three urology clinical sites. The sensitivity of this 2-gene panel was significantly better 
than that of cytology (90% and 48%, respectively), with the specificity of 93% and 96%, respectively. The positive 
predictive value and negative predictive value of the 2-gene panel was 86% and 95%, respectively. Yegin et al. 
39 also found the high sensitivity of TWIST1 and NID2 genes for detecting BC (87.5% and 95.8%, respectively). 
However, the sensitivities of these two genes were poor in the studies of Abern et al. 89 and Fantony et al. 90. In 
other studies, Reinert et al. 91 found a 4-marker panel (zinc finger protein 154 (ZNF154), Homeobox protein Hox-
A9 (HOXA9), POU Class 4 Homeobox 2 (POU4F2), and eomesodermin (EOMES) achieved a sensitivity of 84% 
and a specificity of 96% for detecting BC in urine samples from 119 BC patients and 59 controls. Another study 
of Reinert et al. 92 found a 6-marker panel (EOMES, HOXA9, POU4F2, TWIST1, Vimentin (VIM), and Zinc Finger 
Protein 154 (ZNF154)) had a sensitivity of 82%–89% and a specificity of 94%–100% for detecting BC in urine 
samples from 184 BC patients and 35 controls.  
 
In a study of 368 urine samples collected from 90 non-muscle invasive BC patients, Su et al. 93 reported that a 
panel of 3 markers (SRY-box transcription factor 1 (SOX1), Interleukin 1 Receptor Associated Kinase 3 (IRAK3), 
and L1-MET) discriminated between patients with recurrence and with no recurrence, with a sensitivity of 86% 
and a specificity of 89% of patients with recurrence, compared with the sensitivity of 80% and specificity of 97% 
of patients with no recurrence in validation sets. The results demonstrated that the combination of SOX1, IRAK3, 
and L1-MET could detect disease recurrence with high sensitivity and specificity. Another study selected seven 
DNA methylation biomarkers (CDH13, Cystic fibrosis transmembrane conductance regulator (CFTR), Nidogen 
2 (NID2), spalt like transcription factor 3 (SALL3), Transmembrane Protein With EGF Like And Two Follistatin 
Like Domains 2 (TMEFF2), TWIST1, and VIM2) from four recently published BC studies 81,94-96. They found that 
the best possible combination to discriminate against BC from controls was the combination CFTR, SALL3, and 
TWIST1 97. The three-gene methylation classifier achieved an AUC of 0.874, with a sensitivity of 85% and a 
specificity of 68%. The discovery of highly sensitive methylation biomarkers may allow us to lower the number 
of follow-up cystoscopies in patients with BC, which can improve the life quality of the patients.  
 
DNA methylation biomarkers for IC 
 
In the research of IC/BPS, Thais et al. 66 concluded that DNA methylation in urine samples was associated with 
IC/BPS. Bradley et al. 98 determined DNA methylation profiles in IC/BPS and controls. After Bonferroni correction, 
there was no genome-scale significantly different methylation in CpG sites. Among the methylated CpG sites, 
the most prominent enrichment pathway was the mitogen-activated protein kinase (MAPK) pathway. This 
pathway had 86% of sites with hypomethylation in IC/BPS patients compared to the controls. 
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There is evidence that DNA methylation biomarkers are more sensitive than cytology although there were 
biomarkers tested on cohorts that varied between studies. and some markers showed specificity comparable 
with that of cytology. A highly selective panel of methylation biomarkers may increase the sensitivity and 
specificity of urine analysis in the clinical studies 99. Standardized assays and cutoff values should be used in a 
large and well-designed cohort in future studies. Table 3 summarizes urine epigenetics-based biomarkers for 
BC and IC.   
 
Table 3. Epigenetic Urinary Biomarkers 

 
 
 
Application of potential urinary biomarkers in clinical setting? 
In conclusion, many studies have shown that urinary-based biomarkers have high sensitivity and specificity in 
the diagnosis of bladder diseases (such as BC and IC), which confirms the feasibility of using urinary exfoliated 
epithelium as an analyzer to diagnose bladder diseases. As shown in Table 4, commercially available biomarker 
kits for diagnosis of bladder disease such as BC have been introduced in market. If this method is accurate and 
reliable enough, it can be used not only for the diagnosis of bladder diseases but also for the screening of 
diseases in the population. However, further researches are needed to apply urinary biomarkers to clinical 
practice. More efforts should be made to improve and validate the biomarker panel and promote the progress of 
urine-based biomarker analysis, which will be applied to clinical work as soon as possible. 
 

Bladder 
Diseases

Biomarkers Study Sample size Method Sensitivity Specificity AUC Notes

BC A combination of FGFR3, 
TERT, and OTX1

Beukers  2017 [34] 977 BC RT-PCR 57%-83% 59% NO

A combination of CDC2, MDK, 
IGFBP5, and HOXA3

Holyoake 2008 [35] 75 BC and 77controls RT-PCR 48%-100% 85% NO

AURKA Park 2008 [36] 23 BC and 7 controls FISH 87% 96.60% 0.939 
A 14 gene panel: CA9, 
TMEM45A, CCL18, MXRA8, 
MMP9, SEMA3D, ERBB2, 
VEGFA, DSC2, RAB1A, AGT, 
SYNGR1, DMBT1, ANG

Urquidi 2012 [37] 52 BC and 40 
controls

Affymetrix arrays 90% 100% 0.98 The first 7 genes were 
upregulated and the 
last 7 genes were 
downregulated

SEPT4 Bongiovanni 2012 [38] 41 BC and 17 
controls

RT-PCR 93% 65% 0.798 upregulated

miR126 and  miR152 Hanke 2010 [43] 18 BC and 18 
controls

RT-qPCR 72%(the RNA ratio of miR-
126:miR-152)

82%(the RNA ratio of miR-
126:miR-152)

0.768(the RNA ratio of 
miR-126:miR-152)

upregulated

 miR222 and miR452 Puerta-Gil 2012 [44] 37 BC and 57 
controls

RT-qPCR 0.718 and 0.848 upregulated

 miR96 and miR183 Yamada 2011 [45] 100 BC and498 
controls

RT-qPCR 71% and 74% 89.2% and 77.3% 0,831 and 0.817 upregulated

miR-200 family, miR-155, 
miR-192, miR-205

Wang 2012 [46] 51 BC and 24 
controls

RT-qPCR NO NO NO downregulated

miR-324-5p, miR4738-3p, and 
FOSB mRNA

Eissa 2019 [47] 98 BC, 48 benign 
diseases, and 50 
controls

RT-qPCR 87.7%, 84.7%, and 99% 86.7%, 80.6%, and 98.9% NO upregulated

lncRNA miR497-HG and 
RCAN1 mRNA

Eissa 2019 [47] 98 BC, 48 benign 
diseases, and 50 
controls

RT-qPCR 90.5% and 99% 83% and 98.9% NO downregulated

DAPK, RARβ, E-cadherin, and 
p16

Chan 2002 [84] 22 BC and 17 
controls

MSP 91% 76% NO

DAPK, TERT, and BCL2 Friedrich 2004 [85] 37 BC and 20 
controls

MSP 78% 100% NO

CDKN2A, p14ARF, MGMT, and 
GSTP1

Hoque 2006 [86] 160 BC and 94 
controls

qMSP 69% 100% NO

TWIST1 and NID2 Renard 2010 [87] 496 urine samples qMSP 90% and 48%, 
respectively

93% and 96%, respectively NO

Abern 2014 [88] 111 patients qMSP 79% (a combination) 63% (a combination)
Fantony 2015 [89] 209 patients qMSP 67% (a combination) 69% (a combination) NO

A 4-marker panel (ZNF154, 
HOXA9, POU4F2, and EOMES)

Reinert 2011 [90] 119 BC  and 59 
controls

MSP 84% 96% NO

A 6-marker panel (EOMES, 
HOXA9, POU4F2, TWIST1, 
VIM, and ZNF154)

Reinert 2012 [91] 184 BC  and 35 
controls

MS-HRM 82%–89% 94%–100% NO

A 3-marker panel(SOX1, 
IRAK3, and L1-MET)

Su 2014 [92] 90 non-muscle 
invasive BC 

MSP 86% in BC with recurrence 
and 80% in  BC with no 
recurrence

89% in BC with recurrence 
and 97% in  BC with no 
recurrence

NO

A combination of CFTR, 
SALL3, and TWIST1

van der Heijden 2018 
[96]

111 BC and 57 
controls

MSP 85% 68% 0.874

IC/BPS CpG-sites, MCP-3, G5P1, and 
HB-EGF 

Magalhaes 2019 [65] 478 records total A systematic review NO NO NO hypomethylation

CpG sites Bradley 2018 [97] 19 IC BPS and 17 
controls

Illumina Infinium 
MethylationEPIC 
BeadChip

NO NO NO 86% of MARK pathway 
sites with 
hypomethylation

FISH=  fluorescence in situ hybridization; RT-PCR=  reverse transcriptase-polymerase chain reaction; RT-qPCR= quantitative reverse transcriptase-polymerase chain reaction; MSP= methylation-specific polymerase chain 
reaction; qMSP = specific high-resolution melting; MS-MLPA = methylation-specific multiplex ligation-dependent probe amplification; MS-HRM= methylation-specific high-resolution melting; NO= not reported.

DNA methylation biomarkers
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Table 4. Commercially Available Biomarker Kits for BC Diagnosis 
 

 
 
Summary 
A disease-specific biomarker	(or	biomarkers) is a characteristic reflecting a pathological condition in human body, 
which can be used as a diagnostic or prognostic tool for the clinical management. A urine-based biomarker(s) 
may provide a clinical value as attractive tools for clinicians to utilize in the clinical setting in particular to bladder 
diseases including bladder cancer and other bladder benign dysfunctions. Urine can be easily obtained by 
patients with no preparation or painful procedures required from patients’ side. Currently advanced omics 
technologies and computational power identified potential omics-based novel biomarkers. An unbiased profiling 
based on transcriptomics, proteomics, epigenetics, metabolomics approaches et al. found that expression at 
RNA, protein, and metabolite levels are linked with specific bladder diseases and outcomes. In this chapter, we 
will discuss about the urine-based biomarkers reported by many investigators including us and how these 
biomarkers can be applied as a diagnostic and prognostic tool in clinical trials and patient care to promote bladder 
health. Furthermore, we will discuss how these promising biomarkers can be developed into a smart medical 
device and what we should be cautious about toward being used in real clinical setting. 
 
 

Classification of the Urinary Metabolome Using Machine Learning and Potential Applications to 
Diagnose Interstitial Cystitis 

 
Summary 
 
With the advent of artificial intelligence (AI) in biostatistical analysis and modeling, machine learning can 
potentially be applied into developing diagnostic models for interstitial cystitis (IC). In the current clinical setting, 
urologists are dependent on cystoscopy and questionnaire-based decisions to diagnose IC. This is a result of a 
lack of objective diagnostic molecular biomarkers. The purpose of this study was to develop a machine learning-
based method for diagnosing IC and assess its performance using metabolomics profiles obtained from a prior 
study. To develop the machine learning algorithm, two classification methods, support vector machine (SVM) 
and logistic regression (LR), set at various parameters, were applied to 43 IC patients and 16 healthy controls. 
There were 3 measures used in this study: accuracy, precision (positive predictive value), and recall (sensitivity). 
Individual precision and recall (PR) curves were drafted. Since the sample size was relatively small, complicated 
deep learning could not be done. We achieved a 76-86% accuracy with cross validation depending on the 
method and parameters set. The highest accuracy achieved was 86.4% using SVM with a polynomial kernel 
degree set to 5, but a larger area under the curve (AUC) from the PR curve was achieved using LR with a 𝑙!-
norm regularizer. The AUC was greater than 0.9 in its ability to discriminate IC patients from controls, suggesting 
that the algorithm works well in identifying IC, even when there is a class distribution imbalance between the IC 
and control samples. This finding provides further insight into utilizing previously identified urinary metabolic 
biomarkers in developing machine learning algorithms that can be applied in the clinical setting.  
 
Interstitial cystitis (IC), also known as painful bladder syndrome or bladder pain syndrome, is a chronic visceral 
pain syndrome of unknown etiology that presents itself as a constellation of symptoms, including bladder pain, 
urinary frequency, urgency, and small voided volumes, in the absence of other identifiable diseases(1-3). Urine 
is in direct contact with the bladder epithelial cells that could be giving rise to IC; as a result, metabolites released 
from bladder cells may be enriched in urine(4).  
 

Biomarker Kits Study Sensitivity Specificity Notes
Cytology Liou 2006 [99] 16-89% 81-100% FDA-approved 

Hematuria dipstick Liou 2006 [99] 40-93% 51-97% FDA-approved 
NMP22  Wang 2017 [50] 52-59% 87-89% FDA-approved 
BTA stat test Guo 2014 [51] 64-69% 73-77% FDA-approved 
BTA TRAK test Glas 2003 [52] 62-71% 45-81% FDA-approved 
Immuno Cyt Liou 2006 [99] 39-100% 73-84% approved only for BC surveillance 
FGFR3 Beukers 2017 [34] 57-83% 59-82.7% FDA-approved 
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The urinary metabolome was previously investigated by our group for potential IC diagnostic biomarkers (5-7). 
We attempted to identify IC-associated metabolites from urine specimens obtained from IC patients and controls 
using nuclear magnetic resonance (NMR). Our findings provided preliminary evidence that metabolomics 
analysis of urine can potentially segregate IC patients from controls. We sought to capture the most differentially 
detected NMR peaks and discern if there was a significant difference in the peak distribution between IC and 
control specimens. Based on multivariate statistical analysis, principal component analysis (PCA) suggested that 
the urinary metabolome of IC patients and controls were clearly different; 140 NMR peaks were significantly 
altered in IC patients (FDR < 0.05) compared to controls (5).  

Machine learning (ML), originally described as a program that learns to perform a task or make decisions based 
on data, is a valuable and increasingly necessary tool for modern healthcare (8). However, this definition is broad 
and could cover nearly any form of data-driven needs. ML is not a magical approach that can turn data in 
immediate benefits, even though many news outlets imply that it can. Rather, it is natural extension to traditional 
statistical approaches. In our present study, we utilized ML and automated performance metrics to evaluate the 
clinical value of our 140 identified NMR peaks. We used ML algorithms examine the relationship between 
metabolic expression and disease. We applied logistic regression (LR) (9) and support vector machine (SVM) 
(10, 11), which are traditionally known to work well even with small sample sizes, to our metabolomics signatures 
and used this data together with patient clinicopathological features to diagnose IC. We used our dataset of 59 
cases to train, test, and validate the model. The results showed that our ML-based algorithms were able to 
successfully identify IC patients from healthy subjects.  

This study aimed to address the question of, “Does utilizing metabolic data in ML play a role in diagnosing IC?”. 
ML is a form of artificial intelligence (AI) and learns from past data in order to predict the future. Our NMR-based 
ML algorithm was able to collectively distinguish the IC patient urinary profile from that of controls.  

MATERIALS AND METHODS 
Ethics Statement 
For this paper, we used the deposited dataset derived from the published data. This study used the publicly 
deposited data, which does not need IRB approval. 

Dataset 
There are 59 samples in total in the IC dataset. In order to acquire IC-associated metabolites, urine samples 
were collected from 43 IC patient group and 16 healthy control group. Each urine specimen was analyzed 
using nuclear magnetic resonance (NMR) and biomarkers were identified with 140 NMR peaks. The 140 NMR 
peak feature was utilized to apply the dataset to ML algorithms for classification of IC patients in this paper (5). 

Machine Learning 

Method. 
Due to limited sample size, we adopted two machine learning algorithms, i.e., Support Vector Machine (SVM) 
(10, 11) and Logistic Regression (LR)(9), that are traditional but work well even with small number of samples. 
These are supervised learning algorithms, where each data sample is represented by a number of features and 
comes with a label that tells which group the sample belongs to.  

When data is represented as scattered data points in a feature space that consists of two clusters representing 
individual groups, SVM finds a decision boundary (either linear or non-linear) that separates the different groups. 
Training an SVM optimizes the decision boundary to maximize the margin between the clusters, and it requires 
a kernel function train a kernel SVM that learns a non-linear decision boundary, i.e., a non-linear classifier (12). 
The model contains a user parameter known as ‘slack variable’ that controls the width of the margin.   

LR is also a classifier that learns via a linear model. By feeding a set of training samples with a number of 
features, it learns specific weights associated with features. When a data sample is input into to a LR model, a 
classification is made by a linear combination between the weights and the data; together with a sigmoid function, 
the combined value is mapped to a probability between 0 and 1. The predicted label is assigned according to 
the probability, and by minimizing the classification error (usually formulated using cross-entropy) in the training 
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dataset, the weights are learned. One can add additional regularization terms in the model, such as 𝑙! or 𝑙"-norm 
of the weights, where 𝑙!-norm controls the sparsity of the weights (13), which will select the most important 
features, while 𝑙"-norm controls the smoothness of the weights to make the model more robust (13, 14).  

Both SVM and LR were implemented using the sklearn package in Python. 

Training.  
Because the sample size was very small, the leave-one-out cross validation (CV) (15) method was utilized to 
make full use of the data set and to obtain unbiased result from the classifiers. With leave-one-out, we picked 
one sample as a testing set while using the rest of samples as a training set to train and test the model. The 
same process was iterated for every sample in the dataset. An illustration of the leave-one-out CV workflow is 
given in the Figure 1.  

For SVM, we performed a set of experiments with a linear model, radial basis function (RBF) kernel, polynomial 
kernel with degree being 3, 5, 7. The slack variable was set to 1 for all cases. For LR, we tried  𝑙! and 𝑙" penalties 
with different strengths; i.e. the inverse of regularization strength C was set to 1, 5, and 10.  

Evaluation. 
After repeating training and testing the model 59 times with leave-one-out CV, each sample was assigned a 
predicted label. By comparing these 59 predicted labels with the true labels, we constructed a confusion matrix 
by counting numbers of True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN). 
From these numbers, accuracy, precision and recall were calculated to evaluate the performances of the models. 
Receiver operating characteristic (ROC) curve and precision-recall (PR) curve are plotted, and their area under 
the curve (AUC) are reported in the result section. Especially when the distribution of labels in the dataset is 
skewed, the AUC of the PR curve is a suitable measure for evaluating to account for the imbalance.  

Figure 1. IC classification experimental scheme with leave-one-out cross validation 

RESULTS 

Classification of IC Samples with SVM. 
SVM was applied to the IC dataset with the leave-one-out CV scheme to classify IC samples from controls. The 
result varied depending on user parameters (i.e., kernel type and kernel parameters) as shown in Figure 2 and 
Table 1. Comparing the numbers, it was found that SVM with polynomial kernel resulted in the best performance 
when the degree of the polynomial kernel was 3 with 86.4% accuracy, 0.88 AUC of PR curve, and 0.85 AUC of 
ROC curve. Although the accuracy was the highest when the degree was 5, the AUCs of ROC and PR curves 
with degrees set to 3 was the highest. Moreover, the degree equal to 3 has less chance of overfitting than a 
degree of 5.  
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Here, the usage of linear kernel did not perform well. It may be because the data were not linearly separable or 
simply the sample size (N=59) was too small compared to the dimension of the data (i.e., 140 features). 
Performance of RBF kernel was also poor; looking at the accuracy using RBF kernel with SVM shown in Table 
1 (i.e., 72.9%), it was the same as the proportion of IC samples in the dataset (i.e., 43 IC subjects out of 59 
subjects) and its recall was 1. This means that the classifier was simply predicting that all the samples belong to 
IC group and was not able to handle the class distribution imbalance problem.  
 
Figure 2. Classification result evaluation curves using SVM. (a) the Precision-Recall curve, (b) ROC curve. 
The values of AUC are calculated for each curve and larger values indicate better performance. 
(a)                                                  

 
 
(b) 

	
 
Table 1. The comparison of results from SVM with different set of parameters. TP: True Positive, TN: 
True Negative, FP: False Positive, and FN: False Negative.  
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Classification of IC Samples with LR.  
In addition to SVM experiment, LR was used to classify IC samples and the results are shown in Figure 3 and 
Table 2 with different user parameter settings. LR with 𝑙!-penalty yielded the best performance when its 
penalty parameter was set to 10 with 84.7% accuracy, 0.91 for AUC of PR curve and 0.86 for the AUC of ROC 
curve, which was slight better than the results from SVM. These numbers are the best among several trials 
because of its randomness with the initial weights being trained, and the results from other trials did not differ 
much from those reported in Figure 3 and Table 2. 

Table 2. The comparison of results from LR with different set of parameters. TP: True Positive, TN: 
True Negative, FP: False Positive, and FN: False Negative.  

Parameters TP TN FP FN Accuracy Precision Recall AUC 
of PR 

AUC of 
ROC 

kernel=linear 36 9 7 7 0.763 0.837 0.837 0.82 0.76 

kernel=poly, 
degree=3 

39 11 5 4 0.847 0.886 0.907 0.88 0.85 

kernel=poly, 
degree=5 

39 12 4 4 0.864 0.907 0.907 0.88 0.84 

kernel=poly, 
degree=7 

39 11 5 4 0.847 0.886 0.907 0.87 0.83 

kernel=rbf 43 0 16 0 0.729 0.729 1.000 0.36 0.00 

LR TP TN FP FN Accuracy Precision Recall AUC of PR AUC of 
ROC 

penalty=l1, C=1 39 9 7 4 0.814 0.848 0.907 0.82 0.75 

penalty=l1, 
C=5 

39 10 6 4 0.831 0.867 0.907 0.88 0.84 

penalty=l1, 
C=10 

38 12 4 5 0.847 0.905 0.884 0.91 0.86 

penalty=l2, C=5 38 7 9 5 0.763 0.809 0.884 0.82 0.75 

penalty=l2, 
C=10 

38 7 9 5 0.763 0.809 0.884 0.82 0.75 
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It was observed that LR worked well despite being a linear model. Notice that the performance of linear SVM 
was poor in Table 1; this is because of the 𝑙!-norm penalty applied to the trained parameter imposing sparsity 
and behaving as a natural feature selector. When we checked the trained weight of features, most of the weights 
converged to 0 (a very small number on average of absolute values across the leave-one-out process). When 
the penalty parameter was 10, the average weights of 133 features was less than or equal to 0.1. This means 
that we only need a few critical features to predict correct label. In our experiment, feature id = 73, 4, 129, and 
35 were the most dominant features with the highest weights regardless of the random initialization. In other 
words, they were the four most useful NMR features. We have performed further statistical group analysis on 
these four NMR peaks using two-sample t-test, which resulted in p-values of 0.003, 0.001, 0.057, and 0.036 
respectively.  It was interesting to see that there were many other NMR peaks with even lower p-values and the 
peak ID=129 had a p-value greater than 0.05. While these statistical tests are performed independently, our 
classification results were derived by taking all the peaks at the same time for the analysis and it demonstrates 
that a linear combination of the features can be more powerful to distinguish IC from controls. 
 
The 𝑙"-norm constraint did not contribute much in these experiments. This is because the model can robustly 
operate even without the 𝑙"-norm regularizer, which typically degrades performance of models in exchange for 
model robustness. Especially with the 𝑙!-norm regularizer significantly lowering the dimension of the data (with 
133 redundant features), the sample size (N=59) was sufficient to make robust and correct predictions for IC 
samples.  
 
Figure 3. Classification result evaluation curves using LR. (a) the Precision-Recall curve, (b) ROC curve. The 
values of AUC are calculated for each curve and larger values indicate better performance.  
	
                        (a) 

(b) 
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DISCUSSION 
 
It comes with no surprise that medicine is awash with claims that ML applications into big healthcare data will 
create extraordinary revolutions(8, 16, 17). Recent examples have demonstrated how big data and ML can 
create algorithms that can perform on par with human physicians. AI is one ML approach without prerequisites. 
Various AI techniques already exist, and successful metabolomics analysis has been reported in previous 
studies(18-20). Conventional statistical analysis and AI-based methods were used to assess the discrimination 
capability of quantified metabolites. A multiple logistic regression (MLR) model, alternative decision tree 
(ADTree), neurofuzzy modelling (NFM), artificial neural network (ANN), and SVM machine learning methods 
were used(21, 22).  
 
Modern advancements in computational and data science, with its most popular implementation in ML, has 
facilitated novel complex data-driven research approaches. Combined with biostatistics, ML aims at learning 
from data. It accomplishes this by optimizing the performance of algorithms with immediate previous knowledge. 
ML can be applied in either a supervised or unsupervised fashion. Supervised learning entails monitoring of the 
algorithm while it is being trained to learn a correct class assignment from a set of parameters, such as how to 
make a correct diagnosis from clinical and laboratory information(18).  
 
Current biomarkers for IC diagnosis and prognosis are insufficiently robust for clinical practice using AI. Instead, 
we used AI to identify IC-related metabolites in an NMR metabolomics dataset from our previous study (5), which 
was able to collectively distinguish IC patient urinary profiles from that of healthy controls. The development of 
diagnostic tools using ML may be useful for more accurately identifying IC patients. AI has the potential to 
manage the imprecision and uncertainty that is common in clinical and biological data. AI or ML-based algorithms 
can take several different forms. The icons in the presented figures in this paper represent typical ML methods. 
These include multilayer neuronal networks, decision tree-based algorithms, SVM, and related algorithms that 
separate classes by placing hyperplanes between them, and prototype-based algorithms, such as k-nearest 
neighbors that compare feature vectors carried by a case with those carried by other cases and assign classes 
based on similarities. ML-based algorithms are not being actively applied to IC research. Such applications could 
lead to a better understanding and deeper knowledge of metabolomics data, which would then provide insights 
into biomarker discovery.  
 
Although this is out of scope for this study, AI algorithms can be used to predict IC progression or therapeutic 
responses, too(23, 24). Patient clinicopathological features are commonly used to train AI algorithms to predict 
patient outcomes in other diseases, such as cancer(25-27). For instance, Wong et al. developed a prostate 
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cancer patient-specific ML algorithm based on clinicopathological data to predict early biochemical recurrence 
after prostatectomy (28). The resulting 3 ML algorithms were trained using 338 patients and achieved an 
accuracy of 95-98% and AUC of 0.9-0.94. When compared to traditional Cox regression analysis, the 3 ML 
algorithms had superior prediction performance. This study demonstrated how AI algorithms, trained with 
clinicopathological data, imaging radiomic features, and genomic profiling, outperformed the prediction accuracy 
of D’Amico risk stratification, single clinicopathological features, and multiple discriminant analysis, a type of 
conventional multivariate statistics (28). There is also a role for AI in selecting effective drugs for cancer 
treatment(29). Using an ML-based algorithm, Saeed et al. quantified the phenotypes of castration-resistant 
prostate cancer cells and tested their response to over 300 emerging and established clinical cancer drugs (30).  
 
We are aware that one of the limitations of this study includes the novelty of using crowdsourcing in medical 
biomarker development. To our knowledge, there is no previous reference for comparison. Additionally, this 
study was limited to participants in South Korea and to a 1-time point collection. A major problem associated 
with medical datasets is a small sample size(5). Given that sufficiently large datasets are important when creating 
classification schemes for disease modeling, a relatively larger dataset can result in reasonable validation due 
to sufficient partitioning of training and testing sets. On the contrary, a smaller training dataset can lead to 
misclassifications and may result in unstable or biased models. For our study, a major problem was the small 
sample size. However, the reason for this is that it takes an immense amount of time, effort, and cost to collect 
a larger amount of medical research data. Furthermore, medical research data is often inconsistent, incomplete, 
or noisy in nature; thereby, reducing sample sizes even more. Such small sample size for high-dimensional data 
often leads to ‘curse of dimensionality’, i.e., failing to properly estimate necessary parameters due to lack of 
samples, which we also faced with only 59 samples for 140 NMR features. In this work, we have used SVM and 
LR as classifiers. For SVM, when casting its objective function as a dual form using Lagrangian multiplier, the 
optimization problem seeks for a sparse solution that identifies a few ‘support vectors’ and thus greatly reduces 
the dimension of problem. For the LR, we used two different regularizers on the parameters to estimate, i.e., L1 
and L2-norms, to avoid curse of dimensionality and obtain feasible solutions. As demonstrated in the results, as 
L1-norm constraint behaved as a data-driven feature selector reducing the dimension of the problem, the 
classifier avoided the curse of dimensionality. Although we were able to stay away from the curse of 
dimensionality in this study, poor analysis may lead to data overfitting and irreproducible results. ML-based 
algorithms may be manipulated by datasets containing dominant but irrelevant features when the sample number 
is limited. Also, AI cannot be used as an end-all solution to any question. There are instances where traditional 
statistics has outperformed AI or where additional AI does not improve results.  
 
In summary, we have found that ML-based algorithms can be applied to developing diagnostic models for IC 
patients. In the current clinical setting, urologists are generally dependent on cystoscopy and questionnaire-
based decisions to diagnose IC due to a lack of objective molecular biomarkers. The purpose of this study was 
to develop machine learning methods for diagnosing IC and assess their performance using metabolomics data. 
Considering how ML techniques for analyzing omics data can play a role in predicting the diagnosis and 
prognosis of diseases, future studies should integrate use of a larger multidimensional and heterogenous dataset, 
application of more accurate validation results, and use of different techniques for classifying and selecting 
features to pave a promising way toward clinical applications. 
 
 

BRINGING MACHINE LEARNING TO PICK OUT HIDDEN CLINICAL VALUES  
FROM BIG DATA IN UROLOGY 

 
Suppose you are asked to select one the most important information technology revolution of our time that can 
give your decision-making processes a massive upgrade. Many of us will choose machine learning (ML). A 
definition of ML is “gives computers the ability to learn without being explicitly programmed.” The main premise 
of ML is to introduce algorithms that ingest input data, apply computer analysis to predict output values within 
an acceptable range of accuracy, identify patterns and trends within the data and finally learn from previous 
experience. ML is often applied to complicated, poorly understood phenomena in nature, such as complex 
biological systems, climate change, astronomy, or particle physics. 
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Let us tell you the mathematics and methodological of ML. The two major pathways in machine learning are 
supervised learning and unsupervised learning. In supervised learning, an algorithm is often provided with data 
X#×% (N samples with P features) related to the learning objective and a desired target measure y. The goal is 
to train a classifier (i.e., learn a decision function) 𝑓 that can perform prediction on the target y for unseen data 
X, i.e., 𝑓(X) = y, and identify links between the features and the target measures. Supervised learning primarily 
deals with classification and regression problems. In unsupervised learning, an algorithm is provided with data 
X without any class label / annotation to find any latent patterns, sometimes producing both answers and 
questions that may not have been conceived by the investigators. Unsupervised learning typically deals with 
clustering and dimensionality reduction problems. The patterns identified in unsupervised learning often need to 
be evaluated for utility either by human interrogation or via application within a supervised learning task. 
 
While validation of unsupervised algorithm can only be performed based on a dataset with ground truth that is 
hidden during the training process, the performance of a supervised learning algorithm can be evaluated by 
various metrics based on the objective of a task. For supervised learning algorithms, a dataset is typically divided 
into two independent sets, i.e., training set and testing set, where training of an algorithm is performed using the 
training set and then the trained model is evaluated using the testing set. In order to remove any bias that may 
have been introduced in a single division of training and testing sets, Cross Validation (CV) is often used to 
evaluate a supervised learning algorithm. CV divides a dataset into k subsets, also known as k-folds, and iterates 
through k number of training and testing phases that use i-th subset as a testing set and the rest of subsets for 
training. Such iterations yields k different results with different training-testing set pairs and aggregating the 
results let us avoid those cases that may have performed successfully or poorly by bias or coincidence.  
 
The performance of a supervised learning algorithm is often measure by accuracy, precision and recall. While 
accuracy being the main measure of interest, it does not consider class distribution imbalance in a dataset which 
is quite common in many biomedical studies. For example, when a dataset consists of two class, e.g., positive 
and negative, where the number of normal subjects dominates, then simply predicting all samples in a testing 
set as normal will yield high accuracy with significant false-positives. That is why one needs to consider precision 
and recall together, where precision measures how precise the prediction made by a trained model is and recall 
measures how much of the total positive examples in the testing set the trained model can predict as true positive. 
F1-score is also a common measure, which accounts for both precision and recall simultaneously.   
 
How ML is applied to develop precision medicine for us? 
 
Many of us may agree with this statement - "big data will transform medicine". In recent years, a large amount 
of data has been accumulated in big omics studies of genomes, epigenomes, transcriptomes, proteomes, 
metabolomes and other sources. This big data needs to be analyzed, interpreted and manipulated to provide 
the biological meaning.  Where ML shines is in handling enormous numbers of predictors. ML has become 
ubiquitous and indispensable for solving complex problems in most sciences. ML will become an indispensable 
tool for clinicians seeking to truly understand their patients. Yet, we are aware that ML has shortcomings in 
dealing with big data[1]. First, algorithms might “overfit” predictions to spurious correlations in the data; 
multicollinear, correlated predictors could produce unstable estimates. Second, ML algorithms often require 
millions of observations to reach acceptable performance levels. Third, biases in data collection can substantially 
affect both performance and generalizability. Finally, ML does not solve any of the fundamental problems of 
causal inference in observational data sets. 
 
Precision medicine is one of the important developments in current medicine. It helps doctors with early 
intervention by using advanced diagnostic procedures and customizes reasonable and better personalized 
treatment methods for patients. Many scientists and physicians are convinced by the importance of information 
technology and ML for the implementation of precision medicine, which includes data storage and analysis for 
determining the association between disease outcome, identification of patient characteristics and optimal 
treatment. Utilizing ML approaches for pattern recognition and development of statistical models, creating a 
knowledge base of all existing phenotype categories and disease, organization of clinical datasets of population 
size and open software platform development for statistical analysis of high-dimensional healthcare and multi-
omics data are crucial for practical realization of precision medicine. 
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As you can imagine, ML will have a huge impact in disease (especially cancer) diagnostics and prognostics, 
specifically on the development of novel computational tools for stratification, grading, and prognostication of 
patients with the goal of improving patient care. There are many different ML techniques and algorithms, which 
have been widely used in disease prediction, diagnosis and prognosis. A series of studies show how ML could 
improve diagnostic performance and prediction accuracy in clinically relevant patient cohorts[2]. A study 
demonstrates how ML can improve well established standards such as the Gleason, thus yielding to more 
precise prognostication. Another study developed a ML system to predict Microsatellite instability (MSI) in 
patients with gastrointestinal cancer and endometrial cancers, both accuracies are higher than the prediction of 
molecular markers. Some studies have shown that ML can get higher accuracy of drug response prediction. ML 
methods have become a popular tool for medical researchers, which is able to effectively predict future outcomes 
of disease. 
 
So how ML is involved in current clinical research? For digitalized pathology field, various applications 
incorporating ML are being developed to assist the process of pathologic diagnosis. Major applications that have 
been studied so far include detection of specific objects such as cancer cells, cell nuclei, cell divisions, ducts, 
and blood vessels, classification and grading of tumors, and quantitative evaluation of immunostaining. The 
major obstacle facing ML of pathological images is inadequate image dataset annotation. At present, many 
technologies have been developed [3]. For example, generative adversarial networks (GAN), the techniques for 
learning and generating color tones using “generative model” technology, is used for pathological data analysis 
to automatically prepare image datasets necessary for subsequent DL. Pathologists are looking forward to a 
gold standard technology to process pathological images. 
 
Ml applications in radiology are designed to help computers identify medical imaging data and support diagnosis 
by associating with clinical data, such as treatment or outcome. These radiomics techniques can predict diseases 
with higher accuracy than human eyes. Using ML to recognize and analyze image data will fundamentally change 
our understanding of disease risk and treatment. ML can also use the image information that human eyes can't 
recognize, so as to find new disease patterns and predictive markers. 
 
At present, it is very popular to find cancer biomarkers through omics research.	Because of the large data set, 
people need to use advanced information technology (such as machine learning technology) to analyze and 
understand the data. ML has been applied to mass spectrometry (MS) data from different biological disciplines, 
particularly for various cancers. ML can be useful in determining which proteins, from MS data, could be used 
as biomarkers to differentiate between samples of different classes. Metabolomics can also be considered as a 
method complementary to proteomics. ML is the most useful for the interpretation of large genomic data sets 
and has been used to annotate a wide variety of genomic sequence elements, in the process, to identify 
potentially valuable disease biomarkers.  
 
Then, how about ML application in urological research?  
 
For prostate cancer (PC) many technology platforms for diagnosis, prognosis, and treatment demonstrated the 
potential benefits of ML. In diagnostic imaging, ML can read cross-sectional radiographic images reproducibly 
and rapidly to make a diagnosis. The ML methods described for diagnostic imaging can be extended to treatment 
planning and interventions by augmenting the surgeon’s display with information such as cancer localization and 
other image-guided interventions.  Computer-assisted diagnosis of PC in histopathological slides could be 
achieved by ML in order to optimize accuracy. ML method is also used in genomics research. By identifying 
specific genes or genes, we can develop diagnostic and risk stratification tools, determine the best individualized 
treatment methods and generate targeted drug treatment schemes. 
 
ML can read radiological / pathological images of bladder cancer to provide diagnostic, treatment and prognostic 
information. Some studies have shown that by using ML model to analyze MRI data of bladder cancer, low-grade 
and high-grade bladder cancer can be identified before operation, with an accuracy of 83%. ML-based methods 
have been further applied to accurately quantify tumor buds from immunofluorescence-labeled slides of muscle-
invasive bladder cancer (MIBC) patients. ML algorithms have been employed to create recurrence and survival 
predictive models from imaging and operative data. ML algorithms used to identify genes at initial presentation 
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that are most predictive of recurrence can be applied as molecular signatures to predict the risk of recurrence 
within 5 years after TURB[4]. 
 
More and more ML technology has been used to analyze the clinical and imaging data of renal cell carcinoma 
to provide doctors with disease diagnosis, prognosis information and help to make treatment plans. Previous 
studies have shown that ML model can accurately distinguish high-grade and low-grade renal clear cell 
carcinoma by analyzing CT image features [4]. In recent years, identifying biomarkers and multiple gene 
expression-based signatures by ML have been developed to predict survival and disease prognosis in ccRCC. 
Moreover, some studies have demonstrated that noninvasive ML and DL models constructed from radionics 
features have comparable performance to percutaneous renal biopsy in predicting the International Society of 
Urological Pathology (ISUP) grading. 
 
ML has been also applied in various modalities of urinary stone therapy. Computer-assisted detection using 
image features can support radiologists in identifying stones. With multiple layers on large datasets, artificial 
neural networks (ANN) can predict outcomes after various forms of endourologic intervention.  ANN has been 
used to differentiate ureteral stones from phleboliths in thin slice CT volumes due to their similarity in shape and 
intensity. ANN also can be used for the early detection of kidney stone type and most influential parameters to 
provide a decision-support system. The model resulted in 97.1% accuracy for predicting kidney stone type. 
Recently, ML algorithms have been used to predict treatment success after a single-session shock wave 
lithotripsy (SWL) in ureteral stone patients. 
 
Furthermore, ML can be applied to benign bladder diseases, such as overactive bladder (OAB) syndrome[5]. A 
ML model using a random forest-based algorithm was studied to identify patients for whom anticholinergic 
medications are likely to fail. A validated ML prediction model can predict the treatment failure of a 3 months 
standard anticholinergic treatment experiment, and the accurate rate is more than 80%. 
 
How ML will be evolved in tomorrow’s urology?  
 
In today’s fast-moving technologically enhanced world, ML is still in its evolution. The steps needed to integrate 
ML into the clinic are still unknown. How the new algorithms will influence the diagnosis and management of our 
patients remains our decision. Future research should focus on the construction of larger medical databases and 
further development of AI techniques. The predictive precision of ML will continue to provide and enhance 
personalized medicine with the further inclusion of data and model retraining. There are limitless future 
applications for artificial intelligence in the field of urology.   
 

 
Metabolomic and Lipidomic Approaches to Identify Biomarkers for Bladder Cancer  

and Interstitial Cystitis 
 
INTERSTITIAL CYSTITIS  
 
IC is a chronic condition of unknown etiology with long-term notable pelvic/suprapubic pain and urinary storage 
symptoms, such as urgency, nocturia, and frequency (21). The advent of cystoscopy led to major findings in 
IC, including bladder glomerulations during hydrodistention and Hunner’s lesions (22). Although the 
epidemiology of IC is difficult to monitor owing to its plethora of symptoms, recent studies have suggested an 
estimated prevalence of 100–300 per 100,000 women. The prevalence rate is about 10–20% lower in men 
(23).  
 
IC is generally diagnosed through exclusion; however, several attempts have been made to define standard 
diagnostic criteria. Recent guidelines set by the European Society for the Study of Interstitial Cystitis and the 
American Urological Association are currently being used worldwide to treat IC (24). Although treatment 
options for IC are limited and included hydrodistention, several oral pharmaceutical drugs have been approved 
by the US Food and Drug Administration, including pentosan polysulfate (Elmiron), antihistamines, tricyclic 
antidepressants, and immune modulators (25).  
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Owing to its unknown etiology and large variability in sites of occurrence and symptom severity, IC is difficult to 
subtype. However, there is still an urgent need for a well-established and precise subtyping system. According 
to the International Society for the Study of Bladder Pain Syndrome, Hunner’s lesions are a clear symptom in 
IC with bladder pain. A recent study found that IC with Hunner’s lesions displayed completely different 
histology, gene expression, and prognoses compared to other forms of IC (26). IC can also be defined as a 
distinct non-inflammatory disorder characterized by preservation of the urothelium layer and symptom spread 
beyond the bladder without lesions (27).  
 
METABOLOMICS AND LIPIDOMICS  

 
Metabolomics  
 
Metabolomics is defined as the large-scale study of small molecules and metabolites involved in the regulation 
of metabolic pathways and their networks. Compared to genomics and proteomics, metabolomics is more closely 
linked to phenotypes; therefore, it can detect subtle changes in biological pathways under different physiological 
conditions and abnormal pathological processes. For the purposes of this review, we will focus on the application 
of metabolomics and lipidomics to BC. 
 
The aim of precision medicine is to create novel approaches to prevent disease and update clinical strategies to 
take into account each individual’s variability in terms of environment, lifestyle, genetics, and molecular 
phenotypes (28). Metabolomics holds much promise for precision medicine and can be used to measure all 
metabolites in biological specimens (29). Metabolomics presents significant analytical challenges over both 
genomics and proteomics; it aims to measure molecules that range in polarity, from organic water-soluble acids 
to nonpolar lipids, which have disparate physical properties (30). As a complement to other omics techniques, 
metabolomics serves as a critical component of systems biology. Moreover, the study of metabolites and 
molecules is closely related to phenotypes and can improve our understanding of intracellular metabolic 
alterations (29). The main aim of metabolomics is to identify altered metabolic pathways and biomarkers (31). 
Recent developments in metabolomics and statistical capabilities have boosted our ability to investigate cancer 
metabolism and better understand cancer-related changes in metabolism, such as the conversion of glucose 
into the macromolecules needed for tumor cell proliferation and vascularization (32-34). 
 
Lipidomics  
 
Lipids are essential building blocks in the body that play several critical cellular functions and can provide a 
snapshot of ongoing lipid metabolism. The lipidome is the total lipid content in a cell (35). The emergence of 
lipidomics now allows for the complete characterization of the cellular metabolome. Lipidomics is the potential 
key to many metabolic diseases and can be utilized in several research areas, as well as in the development of 
diagnostic tools, drugs, and therapeutic strategies (36). Lipidomics combined with bioinformatics can serve as a 
powerful tool for better understanding the biochemical mechanisms underlying lipid-related diseases by 
quantifying changes in the levels of individual lipids, subclasses, and molecular species, and identifying 
alterations in pathways and networks (35). The emergence of metabolomics and lipidomics has enabled us to 
better define differential metabolites in pathological conditions. Over the past two decades, both metabolomics 
and lipidomics have seen significant advances, facilitated by rapid developments in novel analysis strategies, 
approaches, instruments, and techniques (37). 
 
EMERGING TECHNOLOGIES  
 
Current Development of Methodologies 
  
The physicochemical properties of all metabolites add additional complexity to metabolomics studies. To 
overcome these restrictions, various methods have been applied to overcome this complexity/challenges. MS 
and nuclear magnetic resonance (NMR) are the most frequently applied analytical approaches in metabolomics 
studies. 
 
NMR Spectroscopy 
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NMR is a nondestructive, nonbiased, easily quantifiable, fast, and reproducible spectroscopy technique based 
on the principle that nuclei absorb and emit electromagnetic signals based on changes in the external magnetic 
field. NMR has several unique advantages in metabolomics (38). Metabolomics profiling by NMR is a powerful 
tool that can be used to diagnose a variety of diseases. NMR is based on the fact that nuclei, such as 1H, 13C, 
and 31P, have nuclear spins and are able to exist at different energy levels in a magnetic field. Thus, these nuclei 
can generate valuable and identifiable information about metabolites. When analyzing biological samples, 
hydrogen, carbon, and phosphorus are the good targets. 1H NMR is the most commonly used technique in 
metabolomics since 1H is naturally abundant in biological samples. 13C and 31P NMR are used less frequently 
but can provide additional information on specific metabolites. 
   
Mass Spectrometry 
  
MS-based metabolomics offers quantitative analysis of metabolites, ranging from measurement of a single 
molecule to thousands, with high selectivity and sensitivity. The combination of MS with separation techniques 
reduces the complexity of mass spectra by separating metabolites based on time, providing isobar separation, 
and delivering additional information regarding physicochemical properties. To calculate the mass-to-charge 
ratio (m/z), MS acquires spectral data and relative intensity of the measured compounds. One potential drawback 
of MS-based techniques is the need for sample preparation, which can lead to potential loss of metabolites, 
changes in experimental conditions, discrimination of specific metabolite classes, and other consequences. 
 
MS can effectively analyze small molecules separated by techniques, such as gas chromatography (GC), liquid 
chromatography (LC), and capillary electrophoresis (CE). LC-MS and GC-MS can provide huge amounts of 
chemical information for metabolomics studies. GC-MS uses the gaseous phase and achieves better metabolite 
separation than LC. However, unlike LC, GC typically requires chemical derivatization of the metabolic species 
prior to analysis. GC-MS is widely used in metabolomics studies as it can detect a wide range of intact 
metabolites with no need for chemical modification. For the separation of nonpolar to slightly polar molecules, 
traditional reverse-phase chromatography is used. Hydrophilic interaction LC (HILIC) is the technique of choice 
for separating strongly to slightly polar metabolites. 
 
Advantages and Disadvantages 
        
For metabolomics studies, each analytical technique has its own advantages and limitations. No single 
instrument or method can detect all metabolites accurately. Thus, multiple methods and instruments are 
recommended to detect the greatest number of metabolites. For instance, the Phenome Centre Birmingham 
utilizes both LC-MS and NMR spectroscopy for metabolomic profiling and is able to detect a higher number of 
metabolites than using a single method alone (https://www.birmingham.ac.uk). Owing to the complexity of the 
metabolome, no single analytical method can fully discern the metabolome. NMR and MS each have their own 
strengths and weaknesses. 
 
APPLYING METABOLOMICS AND LIPIDOMICS TO IC 
 
Applying Metabolomics to IC 
 
Chronic bladder pain is a hallmark of IC. Metabolomics studies can be used to analyze the characteristics of the 
disease state and identify novel approaches for reducing symptoms (54). Kind et al. performed global 
metabolomics profiling using various platforms, including NMR and LC-MS. Utilizing urine from IC patients, they 
profiled 490 metabolites, including histidine, erythronic acid, and tartaric acid, and identified those with the 
highest fold changes. The identified metabolites were found to be associated with IC, suggesting its possible 
clinical use in urinary IC diagnosis (55). Using an MS-based metabolomics approach, the Multidisciplinary 
Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network’s central clinical protocol, the Trans-
MAPP Epidemiology and Phenotyping discovered urinary biomarkers in female IC patients who underwent 
extensive urologic and non-urologic phenotyping (56). Parker et. al used LC-MS to identify molecular correlates 
of IC from urine obtained from female patients. This study identified a novel biomarker, etiocholan-3α-ol-17-one 
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sulfate (Etio-S), a steroid metabolite, as being associated with a phenotypic subgroup of highly symptomatic IC 
(57). 
 
There are no reports in the literature involving the use of lipidomics to identify lipid compounds associated with 
IC. 
 
HUMAN SPECIMENS-BASED METABOLOMICS MARKERS IN IC 
 
IC can present as a long continuum of mild to severe symptoms. In recent years, new metabolomics techniques 
have been applied to gain a better understanding of disease mechanisms and uncover novel biomarkers (71). 
One study applied UPLC-MS-based metabolomics to examine urine samples from 10 IC patients and 10 healthy 
controls. Phenylacetylglutamine (PAGN) was identified as a urinary marker of IC and was found to be elevated 
in the urine of mild-to-moderate IC patients (72). In a separate study, Parker et al. used LC-MS to profile the 
metabolomes of urine samples from 40 IC patients and matched controls. They identified six metabolites as 
being closely associated with IC pathogenesis; one of which was etiocholan-3α-ol-17-one (Etio-S). Further 
analysis found that elevated Etio-S was a good predictor of IC, with sensitivity of 91.2%, specificity of 87.4%, 
and area under the curve (AUC) of 0.92. Longitudinal analysis of women in this cohort showed that the 
differences in Etio-S persisted, indicating that these changes were long-lasting. 
 
 
 
Taking an untargeted comprehensive metabolomic profiling approach, Kind et al. performed GC-MS analysis on 
urine specimens from IC patients and healthy donors and identified a total of 490 differentially expressed 
metabolites (55). Another study by Lamale et al. used urine samples from 40 women with IC and 29 healthy 
controls collected within a 24-hour time frame. They discovered higher expression of three inflammatory markers, 
histamine, methylhistamine, and IL-6, in IC patients compared to controls (73). In our biomarker discovery study, 
we applied NMR-based global metabolomics analysis to urine samples obtained from female IC patients and 
matched healthy controls. The levels of tyramine and 2-oxoglutarate were significantly elevated in the IC urine 
specimens (71). We also performed comprehensive solid-phase microextraction-gas chromatography-time-of-
flight-mass spectrometry (SPME-GC-TOF-MS) profiling combined with bioinformatic analysis and found that 
levels of volatile urinary metabolites, including menthol, were significantly reduced in IC patients compared to 
normal (74).  
 
Table 2 summarizes metabolomics-based IC biomarker candidates reported previously. 
 
CONCLUSIONS AND PERSPECTIVES 

 
Investigation of potential biomarkers of BC and IC based on pathophysiology, metabolomics, and lipidomics has 
progressed in recent decades. However, these technologies are still evolving. This review systematically outlined 
and reviewed the specific processes and results of metabolomic and lipidomic studies on BC and IC in recent 
years (Figure 1). Biomarkers detected by metabolomics can give great insight into cancer biology and, if utilized 
correctly, can lead to new strategies for diagnosis and therapeutic discovery. Unfortunately, current biomarker 
research in IC is lagging owing to the time required for validation, testing, and approval of assays. Additionally, 
the lack of standardization for urine and tissue biopsy collection can lead to invalid results. Well-structured clinical 
studies that satisfy rigorous criteria are needed to qualify clinical biomarkers for bladder diseases. Thus, a lot of 
work still needs to be done with regards to IC biomarkers, but significant progress has been made to date. As 
techniques and methods continue to expand and improve, omics may prove to be the key to tackling these 
diseases. 
 
Biomarker discovery in the clinical setting.  
The field of metabolomics and lipidomics has advanced with respect to technology development. Large-scale 
datasets can help paint a systems-scale picture of diseases with inputs from metabolomics- and lipidomics-
based analyses, which provide insightful biological data. This data can lead to robust and valid individual specific 
biomarkers for novel disease-specific pathways and networks. The application of new (analytical) technologies 
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in omics studies should provide new information about attractive drug therapeutics and improve our 
understanding of the diseases. 

 
Summary 
The discovery/introduction/clinical use of prognostic and diagnostic biomarkers significantly improved outcomes 
for patients with various illnesses, including bladder cancer (BC) and other bladder-related diseases, such as 
benign bladder dysfunction and interstitial cystitis (IC). Several sensitive and noninvasive clinically relevant 
biomarkers for BC and IC have been identified. Metabolomic- and lipidomic-based biomarkers have incredible 
clinical potential in improving treatment outcomes for cancer patients; however, there are also some noted 
limitations. This review article provides a short and concise summary of the literature on metabolomic and 
lipidomic biomarkers for BC and IC, focusing on the possible clinical utility of profiling metabolic alterations in BC 
and IC. 
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3.3. What opportunities for training and professional development has the project provided? 
This project was not intended to provide training and professional development opportunities. 
"Nothing to Report." 
 
3.4. How were the results disseminated to communities of interest? 
Although this project was not originally proposed to enhance public awareness for communities of interest, I was 
able to provide several talks through media and outreach activities that were undertaken to reach members of 
communities who are not usually aware of these project activities. I have also provided scientific seminars on IC 
research to the science and medical community, focusing on post-doctoral fellows, medical students, nurses, 
and urologists. I believe these talks and educational campaigns greatly enhance public understanding, which 
then increases interest in learning and encourages careers in science, technology, and the humanities.  
 
3.5. What do you plan to do during the next reporting period to accomplish the goals? 
 

• Number of patients completed/ original planned target:  301/300. We will continue with our efforts to 
build upon the CSMC IC cohort for Specific Aims 1 and 2, as planned.  
 

• We will complete all planned analyses using this cohort. 
 

• The experimental data is to be published, submitted, or will be submitted for peer-reviewed 
publications. 

 
• Most of our research results were presented in major scientific conferences and talks. New data will be 

submitted into the 2021 conferences. 
 
 
4. IMPACT:  
 
4.1. What was the impact on the development of the principal discipline(s) of the project? 
 
This study will have significant clinical impact because the results may lead to novel clinical methods that can 
increase diagnostic accuracy and an improved understanding of the molecular origins of IC and its relationship 
with other urological conditions that share overlapping symptoms. In the long term, we seek to validate viable 
drug targets for therapeutic strategies using the expertise of our research team (urology, molecular and cell 
biology, chemical analysts, pathology, and biomarker development). We also believe that these findings can 
promote the adoption of effective and proven tests for IC diagnosis.  
 
There have been many prior efforts attempting to identify unique and directly quantitative biomarkers associated 
with IC. However, these studies have overlooked the potential impact of gender on IC biomarkers. The biological 
basis of gender variability among IC states is not well established and there has been little advancement in 
investigating gender-related metabolomic differences in urine specimens. This underlies the misconception that 
risk factors and treatment regimens should be the same for both males and females. Considering that the 
composition of urine reflects the generation of metabolic by-products in the body, a urine metabolomics approach 
would be a great scientific tool for better understanding IC metabolism. Urine metabolite profiles provide a 
window of opportunity to study the global chemical fingerprints associated with physiological and pathological 
states. However, the discovery of biologically active metabolites in urine has raised questions on the clinical 
value and biological role of urine in IC.  
 
We previously reported that our urine metabolomics profiling identified α-oxoglutarate (α-OG) as a female-
specific IC biomarker. Our preliminary EPIC DNA methylation profiling and mechanistic preliminary studies on 
human bladder epithelial cells revealed the potential role of α-OG in epigenetic remodeling, through its effects 
on ARID1A in the bladder. Interestingly, an additional independent preliminary study conducted by our group 
found sex-associated differences in baseline urinary metabolites in healthy adults. In other preliminary 
studies, comprehensive metabolomics profiling combined with bioinformatic analyses on urine samples from 
healthy males and females revealed biologically meaningful and sex-related baseline characteristics. 
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Interestingly, we found that levels of a series of metabolites, including α-OG, were greater in male samples. 
Recently established chemical similarity enrichment analysis further revealed that differentially expressed 
metabolites were significantly related to gender. These findings indicate that there are baseline sex-related 
differences in urinary metabolites, which should be considered for biomarker discovery, diagnosis, development 
of therapeutic strategies, and treatment options.  

4.2. What was the impact on other disciplines? 
Nothing to Report 

4.3. What was the impact on technology transfer? 
Nothing to Report 

4.4. What was the impact on society beyond science and technology? 

(1) Enhancing public awareness through broadcasting and media:

I moved to Los Angeles from Boston to continue my academic career as an Associate Professor of 
Surgery at CSMC and University of California Los Angeles. I immediately involved myself in a local 
Korean community-based radio broadcasting career and developed a rapidly growing base of listeners. 
Since 1989, I have been a primary interviewer, a reporter, and a scripter for two major media outlets in 
South Korea. I have covered many of the biggest local stories on business, education, and science, either 
at the anchor desk or as a frontier reporter. I have also hosted an hour-long educational quiz show on a 
weekly basis for three years.  

Since this Department of Defense (DoD) research project started in 2015, I have worked closely with my 
Korean radio show and have hosted the daily “Health and Science Story” column series.  

o Woori Broadcasting, USA, Afternoon Radio Program, Talk Show on the Education, Science
and Health in formal talk show setting. April 30, 2015. Talked about the interstitial cystitis
symptoms.

o Woori Broadcasting, USA. Hosting the Daily Column on the Science and Health entitled
“Health and Science Story”, since June 2015 to present (daily basis talk show). Produced
ten topics related to bladder study and interstitial cystitis diagnosis.

o Woori Broadcasting, USA, Afternoon Radio Program, Talk Show on how to prepare the
competition for Science in formal talk show setting. May 17, 2016

o TvK TV Medical and Science Show—“Modern Medicine” Desk, producing and anchor,
starting on-air August 2016 and distributing through USA

o Invited Guest, Talk Show, September 2017

I believe that these outreach activities will improve public knowledge, attitudes of physicians and other 
health providers, social, economic, and environmental conditions of patients and their family members. 

(2) Enhancing public awareness by community health educational lecture (only selected from
very recent events)

I always seek chances to enhance public awareness of IC. Here are some examples of health lectures I 
have done for the local community. I believe that these outreach activities will improve public 
knowledge, attitudes of physicians and other health providers, social, economic, and environmental 
conditions for patients and their family members. 
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June 5, 2018 

CSMC Health Fair, Koreatown Senior Center, Los Angeles, CA  
 
August 15, 2018 

Korea Senior Center in Koreatown, Los Angeles, CA  
 
September 9, 2018 

Oriental Mission Church, Los Angeles, CA 
 

September 22, 2018 
Free Prostate Cancer Screening Day, Cedars-Sinai Medical Center, CA 

 
September 24, 2018  

Health Lecture Series 
Young Nak Church, Evergreen College, Celebration Chapel, Los Angeles, CA 
 

October 19, 2018 
Korean Health Fair (Free Flu Vaccine) 
Young Nak Church, Evergreen College, Celebration Chapel, Los Angeles, CA 

 
December 1, 2018 

KSEA-KWISE STEM FAIR 
Santa Monica College, Los Angeles, CA 
 

May 4, 2019 
KWISE Westcoast Annual Conference 
Biola University, CA 

 
January 12, 2019 

Ygnit 2019 Conference 
Renaissance Los Angeles Airport Hotel, CA 
 

April 12, 2019 
Health Lecture Series 
Young Nak Church, Evergreen College, Celebration Chapel, Los Angeles, CA 
 

April 13, 2019 
KSEA-KWISE Math Competition, Chair 
Harvey Mudd College, CA 
 

April 27, 2019 
KSEA SWRC (South West Regional Conference) 
Speaker 
Chapman University School of Pharmacy, Irvine, CA 

 
May 10, 2019 

Health Lecture Series 
Young Nak Church, Evergreen College, Celebration Chapel, Los Angeles, CA 

 
October 1, 2019 
 Breast Cancer Awareness Initiative 
 Khier Clinic, Los Angeles, CA 
 
October 15, 2019 



89	

Korean American Community Advisory Committee Lunching 
Khier Clinic, Los Angeles, CA 

Working for “press release” in Korean community 

Active committee member of Korean American Health Coalition (KAHC) and the Korean 
American Graduate Medical Association (KAGMA). KAHC is a coalition of over 20 Korean 
American and mainstream organizations committed to making a measurable impact on the 
health disparities in Korean Americans. KAGMA, a non-profit 501c3, is one of the largest Korean 
American physician organizations in California, with its primary mission to improve healthcare 
outcomes in the Korean American and Asian American community 
(www.kukminusa.com/news/view.php?gisa_id...) 

Health and Science Seminar Series for Korean community: 
(ny.koreatimes.com/article/20170609/1060500) 

Speaker and Interview at National Breast Cancer Awareness Month event "Call to Action". 
Please click, below, to links to Korean-media news coverage of this event. 

 [TV] SBS International (Circulation 130,000)  
Headline: Korean’s screening rate is low “Call to action for sign-in free screening” 
Youtube Link: https://youtu.be/i2Qq7vYEYg0 
Website: https://www.sbs-int.com/copy-of-news?lang=en 

 [TV] KBS America (Circulation 1,500,000) 
Headline:  Incident rate of Breast cancer is top 1,  screening rate is low 
Youtube Link: https://youtu.be/VWRSJbbxD7Q      

[Newspaper] Korea Daily (Circulation 80,000) 
Headline: Koreans “I don’t feel sick” neglect regular cancer screening” 
http://www.koreadaily.com/news/read.asp?art_id=7647482 

[Newspaper] Korea Times (Circulation 70,000) 
Headline: Korean's cancer screening rate is lower than other ethnic group 
http://www.koreatimes.com/article/20191002/1272034 

[Newspaper] Koreatown Daily (Circulation 40,000) 
Headline: “I don’t get a breast cancer screening since I don’t feel sick?” 

[Newspaper] Chosun Daily LA (Circulation 40,000) 
Headline: “Call to action for breast cancer screening” 

[Newspaper] Woori1230 (Circulation 60,000) 
http://www.radiok1230.com/news/articleView.html?idxno=505194 

[Radio] Radio Seoul (Circulation 70,000) 
J. Kim CV 9
Headline: Cancer incidence rate among Koreans is increasing, screening rate is low

[Radio] Woori1230 (Circulation 60,000) 
Headline: First step to starting cancer prevention movement for Koreans 
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http://www.radiok1230.com/news/articleView.html?idxno=505194  
 

 
 

Professional Service by Broadcasting and Media Coverage: 
 
Worked closely with the Korean broadcasting and has hosted the daily “Health and Science Story” column 
series at two prominent Korean Broadcasting Station.  
 
Guest speaker of the “Information Plus Show” since 2015 (refer this stream: 
https://soundcloud.com/radiok1230/04302015-2a).  
 
Producer of a series of TV shows focusing on the science and health issues this summer. 
 
Strongly Connected with Korean American mass media (newspapers, magazine, cable, and TV 
channels)—LA Korea Times, Radio Korea, TV K24, Korea Herald, Korea Daily, LA18, Korean American, 
MBC American, YTN, Kook Min Ilbo, and Christian Today et al. 

 
Hosting two radio shows at Korea Town-based Broadcasting Stations (Radio Korea and Woori 
Broadcasting)—daily health talks 

 
Speaker for Education Podcasts 

 
Woori Broadcasting, USA, Afternoon Radio Program, Talk Show on the Education, Science and Health 
in formal talk show setting. April 30, 2015 

 
Woori Broadcasting, USA. Hosting the Daily Column on the Science and Health entitled “Health and 
Science Story”, since June 2015 to present (daily basis talk show) 

 
Woori Broadcasting, USA, Afternoon Radio Program, Talk Show on how to prepare the competition for 
Science in formal talk show setting. May 17, 2016 

 
Woori Broadcasting, USA, TV Health and Science Column, hosting since July, 2016. 

 
TvK TV Medical and Science Show—“Modern Medicine” Desk, producing and anchor, starting on-air 
Summer 2017 and distributing through USA  

 
Radio Korea Broadcasting, USA. Hosting the Weekly Radioshow to enhance the public awareness on 
health issues focused on cancer, since October 2016  

 
Interview articles in newspaper (Korea Daily and LA Korea Times, July 2017) 

 
Interviewed for Korean community health (LA Korea Times, Korea Daily, tvK, Radio Korea, Woori 
Broadcasting, January-February 2018) 

 
Interviewed for Korean education (Korea Daily, January 14, 2019) 

 
Interviewed for STEAM Education (Radio Seoul, May 1, 2019) 
 
Interviewed for Health and Science (Radio Seoul, Health and Morning, May 13, 2019) 

 
Interview articles in newspaper (Korea Daily and LA Korea Times, February 2020) 
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Los Angeles-based Korean Community Cancer Lecture Series (only selected from very recent 
events): 

April 27, 2018  
Young Nak Church, Evergreen College, Celebration Chapel, Los Angeles, CA 

May 11, 2018 
Young Nak Church, Evergreen College, Celebration Chapel, Los Angeles, CA 

May 18, 2018 
Korean CEO Forum, Los Angeles, CA 

June 5, 2018 
CSMC Health Fair, Koreatown Senior Center, Los Angeles, CA 

August 15, 2018 
Korea Senior Center in Koreatown, Los Angeles, CA 

September 9, 2018 
Oriental Mission Church, Los Angeles, CA 

September 22, 2018 
Free Prostate Cancer Screening Day, Cedars-Sinai Medical Center, CA 

September 24, 2018  
Health Lecture Series 
Young Nak Church, Evergreen College, Celebration Chapel, Los Angeles, CA 

October 19, 2018 
Korean Health Fair (Free Flu Vaccine) 
Young Nak Church, Evergreen College, Celebration Chapel, Los Angeles, CA 

December 1, 2018 
KSEA-KWISE STEM FAIR 
Santa Monica College, Los Angeles, CA 

May 4, 2019 
KWISE Westcoast Annual Conference 
Biola University, CA 

January 12, 2019 
Ygnit 2019 Conference 
Renaissance Los Angeles Airport Hotel, CA 

April 12, 2019 
Health Lecture Series 
Young Nak Church, Evergreen College, Celebration Chapel, Los Angeles, CA 

April 13, 2019 
KSEA-KWISE Math Competition, Chair 
Harvey Mudd College, CA 

April 27, 2019 
KSEA SWRC (South West Regional Conference) 
Speaker, Chapman University School of Pharmacy, Irvine, CA 
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May 10, 2019 
Health Lecture Series 
Young Nak Church, Evergreen College, Celebration Chapel, Los Angeles, CA 

January 15, 2020 
Health Lecture Series 
Korea Town Senior Center, Los Angeles, CA 

October 10, 2020 
Community Education Lecture  
Korean American Virtual Conference/ Forum 

October 23, 2020 
Community Education Lecture – Statistics and COVID 19 
Hosted student science video competition  
Korean American Virtual Conference/ Forum  

5. CHANGES/PROBLEMS:

5.1. Changes in approach and reasons for change 
Nothing to Report  

5.2. Actual or anticipated problems or delays and actions or plans to resolve them 
Nothing to Report  

5.3. Changes that had a significant impact on expenditures 
Nothing to Report  

5.4. Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select 
agents 
Nothing to Report  

5.5. Significant changes in use or care of human subjects 
Nothing to Report  

5.6. Significant changes in use or care of vertebrate animals. 
Nothing to Report  

5.7. Significant changes in use of biohazards and/or select agents 
Nothing to Report  

6.PRODUCTS:

6.1. Publications, conference papers, and presentations 

Publications Published During the Funding Period 
Acknowledged DoD grant support 
Acknowledgement of DoD support (yes)  
Please see attached paper 

1. Yun SJ, Jeong P, Kang HW, Shinn HK, Kim YH, Yan C, Choi YK, Kim D, Ryu
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DH, Ha YS, Kim TH, Kwon TG, Kim JM, Suh SH, Kim SK, Kim SY9 Kim ST, 
Kim WT, Lee OJ, Moon SK, Kim NH, Kim IY, Kim J, Cha HJ, Choi YH, Cha EJ, Kim WJ (2016) 
Increased Expression of Herpes Virus-Encoded hsv1-miR-H18 and hsv2-miR-H9-5p in Cancer-
Containing Prostate Tissue Compared to That in Benign Prostate Hyperplasia Tissue. Int 
Neurourol J. 20(2):122-30. PMID:27377944 PMCID: PMC4932644 

 
2. Kind T, Cho E, Park T, Deng N, Liu Z, Lee T, Fiehn O, Kim J (2016) Interstitial Cystitis-Associated 

Urinary Metabolites Identified by Mass-Spectrometry Based Metabolomics Analysis, Scientific 
Reports, 6:39227, PMID: 27976711  

 
3. Chen Z, Kim J. (2016) Urinary proteomics and metabolomics studies to monitor bladder health 

and urological diseases, BMC Urology, 16(1):11, PMID: 27000794  
 
4. Kim J. (2016) Immune Checkpoint Blockade Therapy for Bladder Cancer Treatment, 

Investigative and Clinical Urology; 57 Suppl 1: S98-S105.  
 
5. Moon J, Choi M, Kim J (2016) Metabolic Profiling of Cholesterol and Sex Hormones to Monitor 

Urological Diseases.   Endocrine-Related Cancer 23(10): R455-67 PMID: 27580660 
 

6. Kim J (2016) Are We Ready to Use the Omics Strategies for Precision Medicine? Int Neurourol 
J, 20(Suppl 2):S65-67. PMID: 27915470, PMCID: PMC5169089, DOI: 10.5213/inj.1620edi007 
 

7. Yun SJ, Kim S-K, Kim J, Cha E-J, Kim J-S, Kim S-J, Ha Y-S, Kim Y-H, Jeong P, Kang HW, Kim 
J-H, Park J-L, Choi Y-K, Moon S-K, Choi Y-H, Kim S-Y, Kim W-J. (2017) Transcriptomic 
features of primary prostate cancer and their prognostic relevance to castration-resistant 
prostate cancer, Oncotarget, 2017, Vol. 8, (No. 70), pp: 114845-114855  

 
8. Choi B-H, You S, Park C-S, Cho E-H, Park TD, Kim S, Kim Y-J, Lee T, Kim J. (2017) Differential 

perturbation of the interstitial cystitis-associated genes of bladder and urethra in rat model, Cell 
Cycle, 16(8), 749–758, PMID: 28278053, PMCID: PMC5405721, 
DOI: 10.1080/15384101.2017.1295184 
 

9. Kim WJ, Kim J (2017) Looking to the Metabolic Landscapes for Prostate Health Monitoring, 
Prostate International, 5(3), 85-88  

 
10. Kim J. (2018) Era of the Fourth Industrial Revolution and the Urologists' Journey to Navigating 

Big Omics Data, International Neurourology Journal. 22(Suppl 2):S101-102, PMID: 30068072 
 
11. Shahid M, Yeager N, Yeon A, Cho E, Bae J, Sairam V, Kim M, Yoon H, Berman B, Kim J. 

(2018) Alpha-oxoglutarate inhibits the proliferation of immortalized normal bladder epithelial 
cells via an epigenetic switch involving ARID1A, Scientific Reports, 14;8(1):4505. doi: 
10.1038/s41598-018-22771-2. PMID: 29540744, Publications with *University of California 
Students (SRP program, CSMC Research Interns) 

 
12. Shahid M, Lee MY, Yeon A, Cho E, Sairam V, You S, Kim J. (2018) Menthol, a Unique Urinary 

Volatile Compound Associated with Chronic Inflammation in Interstitial Cystitis, Scientific 
Reports, 8(1):10859. PMID: 30022124, Publications with *University of California Students 
(SRP program, CSMC Research Interns) 

 
13. Fan S, Yeon A, Shahid M, Anger JT, Eilber KS, Fiehn O, Kim J. (2018) Sex-associated 

differences in baseline urinary metabolites of healthy adults, Scientific Reports, 8(1):11883. 
PMID:30089834 
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14. Piao X-M, Byun YJ, Kim WJ, Kim J. (2018) Unmasking molecular profiles of bladder cancer,
Investigative and Clinical Urology, 2018 Mar;59(2):72-82. doi:10.4111/icu.2018.59.2.72.

15. Kim J. (2018) Biological characterization and implications of TRMP7, a calcium channel, in
renal cell carcinoma, Editorial Comment, Investigative and Clinical Urology, 59:263-274.

16. Wen H, Lee S, Zhu W-G, Lee O-K, Yun SJ, Kim J*, Park S*. (2018) Glucose-derived Acetate
and ACSS2 as Key Players in Cisplatin Resistance in Bladder Cancer, Biochimica et Biophysica
Acta - Molecular and Cell Biology of Lipids, S1388 -1981(18) 30126-4. PMID: 29883801

17. Yeon A, You S, Kim M, Gupta A, Park MH, Weisenberger D, Liang G, Kim J. (2018) Rewiring of
cisplatin-resistant bladder cancer cells through epigenetic regulation of genes involved in amino
acid metabolism, Theranostics, 8(16):4520-4534 PMID:30214636

18. Shahid M, Yeon A, Cho E, Bae J, Park RJ, Kim J. (2018) Language and Culture Appropriate
Approaches Needed to Improve Health Education to Reduce Disparities among Korean
American Immigrants Living in Los Angeles Area. (International Journal of Innovative Research
in Medical Science, Volume 03 Issue 08. Publications with *University of California
Students (SRP program, CSMC Research Interns) DOI: https://doi.org/10.23958/ijirms/vol03-
i08/02

19. Jung JH, You S, Oh JW, Yeon A, Shahid M, Cho E, Sairam V, Park TD, Kim KP,
Kim J. (2018) Integrated proteomic and phosphoproteomic analyses of cisplatin-sensitive and
resistant bladder cancer cells reveal CDK2 network as a key therapeutic target, Cancer Letters,
437:1-12. PMID: 30145203, Publications with *University of California Students (SRP
program, CSMC Research Interns)

20. Shahid M, Kim M, Yeon A, Andres AM, You S, Kim J. Quantitative Proteomic Analysis Reveals
Caffeine-Perturbed Proteomic Profiles in Normal Bladder Epithelial Cells, Proteomics,
e1800190. PMID: 30232827 

21. Mansour AM, Abdulreheem M, Laymon M, Elsherbeeny M, Sultan M, Shokeir A, Mosbah A,
Abol-Enein H, Cho E, Sairam V, Park TD, Shahid M, Kim J (2018) Epidermal Growth Factor
Expression as a Predictor of Chemotherapeutic Resistance in Muscle-Invasive Bladder Cancer,
BMC Urology, 18(1):100. PMID:30413194, Publications with *University of California
Students (SRP program, CSMC Research Interns)

22. Shahid M, Andreas A, Li P, Yeon A, Lee M, Yang W, Zhou B, Cho E, Bae J, Wang Y, Kim M,
Kim HL, Kim J. (2018) Centromere protein F (CENPF), a microtubule binding protein,
modulates cancer metabolism by regulating pyruvate kinase M2 phosphorylation signaling, Cell
Cycle doi: 10.1080/15384101.2018.1557496. [Epub ahead of print] PMID: 30526248,
Publications with *University of California Students (SRP program, CSMC Research
Interns)

23. Blaženović I, Kind T, Vaniya A, Wancewicz B, Roberts BS, Lee T, Song H, Ji J, Roselius L,
Biedendieck R, Jahn M, Schauer N, Jahn D, Kim J*, Fiehn O*. (2019) Structure annotation of 
all mass spectra in untargeted metabolomics, Analytical Chemistry, doi: 
10.1021/acs.analchem.8b04698. [Epub ahead of print], PMID:30608141, *co-corresponding 
authors 

24. Kim S, Yeon A, Cho E, Shahid M, Kim J (2019) Effectiveness of a Tailored Colorectal Cancer 
Educational Seminar in Enhancing the Awareness, Knowledge, and Behavior of Korean 
Americans Living in the Los Angeles Koreatown Area, Diversity & Equality in Health and Care, 
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16(1): 1-8, Publications with *University of California Students (SRP program, CSMC 
Research Interns) PMID: 31019695 

25. Kim W-J, Kim J. (2019) Innovative technologies for the smart E-Healthcare system Investig Clin
Urol. 60(1):1-3. PMID:30637354

26. Myung NV, Jung S, Kim J. (2019) Application of low-cost, easy-to-use, portable biosensor
systems for diagnosing bladder dysfunctions. International Neurourology Journal.  23(1):86-87, 
PMID:30943698 

27. Shahid M, You S, Lee MY, Yeon A, Bae J, Kim J. (2019) Downregulation of CENPF Remodels
Prostate Cancer Cells and Alters Cellular Metabolism, Proteomics, 2019 Apr
8:e1900038. PMID:30957416 

28. Kim SJ, Kim J*, Yoon H*. (2019) Sexual Pain and IC/BPS in Women, BMC Urology, 19(1):47, 
PMID:31170952 *co-corresponding authors

29. Kim J. (2019) Looking into Clinical Application of CD47-targeted Near-Infrared
Photoimmunotherapy for Human Bladder Cancer Treatment, Translational Andrology and
Urology, 8(Suppl 3): S322-S324, PMID: 31392158

30. Kim W-J, Jin P, Kim WH, Kim J (2020) Utilizing machine learning to discern hidden clinical
values from big data in urology, Investig Clin Urol, 61(3):239-241. PMID: 32377598,
PMCID: PMC7189104, DOI: 10.4111/icu.2020.61.3.239

31. Park H, Kim J, Jung S (2020) Development of Non-invasive Biosensor Device Development for
Detection of Bladder Cancer in Urine, Clinical Oncology & Research, 3(6): 2-4,
DOI: 10.31487/j.COR.2020.06.11

32. Kim J, Kim WT, Kim W-J. (2020) Advances in urinary biomarker discovery in urological
research, Investigative and Clinical Urology, 61(Suppl 1):S8-S22.

33. Jung S, Kim J. (2020) Biomarker Discovery and Beyond for Diagnosis of Bladder Diseases.
Bladder, 7(1):e40, Selected as a Cover Image

34. Fan S, Shahid M, Jin F, Asher A, Kim J. (2020) Identification of Metabolic Alterations in Breast
Cancer Using Mass Spectrometry-based Metabolomic Analysis, Metabolites, 10(4). pii: E170.
doi: 10.3390/metabo10040170. PMID:32344578 

35. Kim J, Jin P, Kim WH, Kim W-J. (2020) Bringing Machine Learning to Pick Out Hidden Clinic
Values from Big Data in Urology, Investigative and Clinical Urology, 61:239-24, PMID:
32377598

36. Shahid M, Kim M, Jin P, Zhou B, Wang Y, Yang W, You S, Kim J. (2020) S-Palmitoylation as a
Functional Regulator of Proteins Associated with Cisplatin Resistance in Bladder Cancer,
International Journal of Biological Sciences, 16(14):2490-2505, PMID: 32792852, 

37. Tang F, Shahid M, Peng J, Jung S, Kim WH, Kim J. (2020) Classification of the urinary
metabolome using machine learning and potential applications to diagnosing interstitial cystitis, 
Bladder, 7(2):e43; DOI: 10.14440/bladder. 2020.815 

38. Park H, Kim J, Jung S (2020) Non-invasive Biosensor Device Development for Detection of
Bladder Cancer in Urine, Clinical Oncology & Research, 3(6): 2-4,
DOI: 10.31487/j.COR.2020.06.11
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39. Kim J, Gewertz B (2020) Teleurology and digital health app in COVID-19 pandemic, 
Investigative and Clinical Urology, 61(4):333-334, PMID: 32665988 

 
40. Kim J (2020) Equality, Inclusion, and Diversity in Healthcare During the COVID-19 Pandemic, 

International Neurourology Journal, 24(2):1-2, doi:10.5213/inj.2040198.099 
 

41. Shahid M, Yeon A, Kim J, (2020) Metabolomic and Lipidomic Approaches to Identify 
Biomarkers for Bladder Cancer and Interstitial Cystitis, Molecular Medicine Report, 22: 5003-
5011, DOI: 10.3892/mmr.2020.11627 
 

42. Kim J, Jin P, Yang W, Kim W-J (2020) Proteomic Profiling of Bladder Cancer for Precision 
Medicine in the Clinical Setting: A Review for the Busy Urologist, Investigative and Clinical 
Urology, 61(6):539-554, PMID: 33135400 – * Video Interview of Author, 
https://youtu.be/iYVoLYkE7j8 
 

43. Jin P, Park H, Jung S, Kim J (2021) Challenges in Urology During COVID-19 Pandemic, 
Urologia Internationalis, 23;1-14, PMID: 33227808, DOI: 10.1159/000512880 
 

44. Shahid M, Kim J (2020) Exercise Effects on Post-treatment symptoms relief and Metabolism of 
Breast Cancer Patients. Metabolites, 10(9), 377, PMID: 32962184 

 
45. Park H, Jin P, Jung S, Kim J (2021) Quick Overview of Diagnostic Kits and Smartphone Apps 

for Urologists During the COVID-19 Pandemic, Translational Andrology and Urology, 10(2):939-
953, PMID: 33718094, PMCID: PMC7947436, DOI: 10.21037/tau-20-1042 

 
46. Kim J, Yeon A, Parks S, Shahid M, Thiombane A*, Cho E*, You S, Emam H, Kim D-G, Kim M 

(2021) Alendronate-induced Perturbation of the Bone Proteome and Microenvironmental 
Pathophysiology, International Journal of Medical Sciences, 18(14):3261-3270. 
PMID: 34400895, PMCID: PMC8364444, DOI: 10.7150/ijms.61552, * UCLA mentees 

 
 
Research Papers (Peer-Reviewed, in revision)  
Acknowledged DoD grant support 
 

1. Cho H, Tong F, You S, Jung S, Kim WH, Kim J (2021) Prediction of Response to Immunotherapy 
in Bladder Cancer Patients, IEEE Access, in press 

 
2. Kim J*, Yeon A, Kim W-K, Kim K-H, Ohn T. (2021) Stress-Induced Accumulation of HnRNP K into 

Stress Granules, Apoptosis, in review, * corresponding author 
 

3. Kim J*, Yeon A, Ahmed KT, Zhang W, Kim W-K, Kim K-H (2021) Upregulation of Apoptosis and 
Alteration of the Microenvironment is Mediated by Lipid Raft Microdomains in Bladder Epithelial 
Cells Exposed to Candida, in review, * corresponding author 

 
 

6.2. Books or other non-periodical, one-time publications.  
	

Book Chapter  
Acknowledged DoD grant support 
 
 

1. Jin F, Shahid M, Kim J. (2021) Research Progress of Urine Biomarkers in the Diagnosis, 
Treatment, and Prognosis of Bladder Cancer, Springer Nature Switzerland AG 2021, H. M. Baptista 
Carreira dos Santos (ed.), Translational Urinomics, Advances in Experimental Medicine and Biology 
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1306, https://doi.org/10.1007/978-3-030-63908-2_5 
https://www.springer.com/gp/book/9783030639075, PMID: 33959906 

 
 

Other non-periodical, one-time publications.  
 

1. Genetic Engineering & Biotechnology News (GEN) 
i. Metabolomics in Precision Medicine 
ii. http://www.genengnews.com/gen-articles/metabolomics-in-precision-

medicine/5502/?kwrd=jayoung%20kim#gsaccess 
iii. Acknowledgement of federal support (no) 

 
2. UroToday  

i. UroToday since 2003, has established itself as a global leader in the delivery of quality, 
clinically relevant content. 

 
3. Metabolomics insights into pathophysiological mechanisms of interstitial cystitis,  

i. http://www.urotoday.com/recent-abstracts/pelvic-health-reconstruction/interstitial-
cystitis/79104-metabolomics-insights-into-pathophysiological-mechanisms-of-
interstitial-cystitis-beyond-the-abstract-by-jayoung-kim-phd.html 

ii. Acknowledgement of federal support (no) 
 

4. Metabolic Pathway Signatures Associated with Urinary Metabolite Biomarkers Differentiate Bladder 
Cancer Patients from Healthy Controls. 

i. http://www.urotoday.com/recent-abstracts/urologic-oncology/bladder-cancer/88889-
metabolic-pathway-signatures-associated-with-urinary-metabolite-biomarkers-
differentiate-bladder-cancer-patients-from-healthy-controls.html 

ii. Acknowledgement of federal support (no) 
 

5. Commentary articles on IC and painful sex 
https://www.urotoday.com/recent-abstracts/pelvic-health-reconstruction/interstitial-cystitis/113380-
what-we-know-about-sexual-pain-and-ic-bps-in-women-beyond-the-abstract.html 
 
This article was well received by science community. There was a lot of requests of talk and phone 
calls from physicians and patients.   

 
 
6.3. Other Publications, Conference papers, and Presentations  
 
Conference Papers 
 

1. Wen H, Lee T, You S, Park S-H, Song H, Eilber KS, Anger JT, Freeman MR, Park S, Kim J. 
Noninvasive Biomarker Candidates of Interstitial Cystitis, SUFU 2015 Winter Meeting, February 24 - 
28, 2015 , Scottsdale, AZ 

 
2. You S, Lee T, Keay S, Anger J, Freeman MR, Kim J. Signal Network of Interstitial   Cystitis-

Associated Antiproliferative Peptide, SUFU 2015 Winter Meeting, February 24 - 28, 2015,  
Scottsdale, AZ 

 
3. You S, Kim J, Freeman MR. Prostate Cancer Classification Using a Transcriptome Atlas. AACR Joint 

Conference, Translation of the Cancer Genome. Computational and Systems Biology of Cancer. 
February 7-11, 2015. The Fairmont San Francisco San Francisco, CA 
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4. Wen H, Lee T, You S, Park S-H, Song H, Eilber KS, Anger JT, Freeman MR, Park S, Kim J. Urinary 
Biomarker Candidates of Interstitial Cystitis, The Annual Conference US HUPO, March 15-18, 2015, 
Tempe, AZ 

 
5. Kim J. Non-invasive Biomarker Metabolites of Interstitial Cystitis. Metabolomics-2015, April 27-29, 

Philadelphia, PA 
 

6. Kim J. Interstitial Cystitis Metabolic Biomarkers. 11th Annual International Conference of the 
Metabolomics Society, June 29-July 2, 2015, San Francisco, CA 

 
7. Kim J. Cholesterol Metabolism in Prostate Cancer. Androgen Today, July 10, 2015, Seoul, Korea 

 
8. You S, Knudsen BS, Erho N, Alshalalfa M, Takhar M, Ashab HA, Davicioni E, Karnes J, Klein EA, 

Den RB, Garraway IP, Kim J, Freeman MR. Three intrinsic subtypes of prostate cancer with distinct 
pathway activation profiles differ in prognosis and treatment response, Prostate Cancer Foundation 
(PCF) Retreat, October 8-10, 2015, Washington DC  

 
9. You S, Knudsen BS, Erho N, Alshalalfa M, Takhar M, Ashab HA, Davicioni E, Karnes J, Klein EA, 

Den RB, Garraway IP, Kim J, Freeman MR. Three intrinsic subtypes of prostate cancer with distinct 
pathway activation profiles differ in prognosis and treatment response, SBUR, November 12-16, 
2015, Florida  

 
10. An epigenomic pathway from cholesterol to intracrine androgen. The Western Section American 

Urological Association (AUA) Meeting, 2015, held in Palm Springs, California 
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Virus encoded circulatory miRNAs for early
detection of prostate cancer
Jayoung Kim1,2,3*, Seok Joong Yun4 and Wun-Jae Kim4*

Abstract

Background: Prostate cancer (PCa) is the most commonly diagnosed cancer and kills about 28,000 American men
annually. Although progress has been made in understanding the molecular features of different forms of the
disease, PCa is considered incurable when it becomes resistant to standard therapies. Prostate specific antigen (PSA)
test has been a gold standard of diagnosis for PCa, however, it can result in lead to the unnecessary biopsies and
treatment of indolent cancers due to the low specificity. Thus, the limitations of PSA screening for PCa have
prompted much focus on strategies how to enhance the accuracy of PSA for distinction between aggressive
and indolent cancers.

Discussion: Studies of miRNAs in PCa patients have suggested differentially expressed miRNAs between
healthy controls and those with PCa, providing potential biomarker candidates using body fluids including
urine and blood. Virus infection has been considered to associate with PCa incidence. Virus infected PCa cells may shed
extracellular vesicles and communicate with neighboring cells, which were not infected yet, however, no mechanistic
approaches were performed to understand the biology. The miRNAs composition in the shedding extracellular vesicles,
and its role in PCa are completely undefined. In the near future, new insights to connect between the viral derived
miRNAs and PCa progression might provide an opportunity to diagnose, risk prediction and therapeutic strategies.

Summary: The goal of this debate article is to provide a short review on miRNAs, virus infection and viral encoded
miRNAs in PCa, with a primary focus on circulating miRNAs as potential non-invasive biomarkers for PCa patients.

Keywords: miRNAs, Virus, Extracellular vesicles, Prostate cancer

Background
Prostate cancer (PCa) remains one of the most commonly
diagnosed malignant tumor in men and the second leading
cause of death from cancer [1–3]. Several new drugs in-
cluding Radium-223, Cabazitaxel, Sipuleucel-T, Abirater-
one, and Enzalutamide have shown significantly improved
survival in castration-resistant metastatic disease (CRPC)
patients in Phase 3 trials [4–8]. For early detection of PCa,
urologists rely on serum prostate-specific antigen (PSA)
testing or digital rectal examination (DRE) [9]. Serum PSA
testing has successfully achieved a dramatic increase of PCa
detection, however, PSA testing has a low specificity be-
cause an increase of PSA level is not a PCa-specific event.

Serum PSA levels are also elevated in men with benign
prostatic hyperplasia and prostatitis. Limitations of DRE for
the early detection derived from its low accuracy and the
dependence on highly trained clinicians. Such a lack of
PCa-specific early detection tool leads to create unneces-
sary biopsies or severe treatments for indolent PCa [2]. De-
velopment of methods of prebiopsy risk stratification and
more simple, noninvasive, sufficiently sensitive and specific
tests for PCa diagnosis would allow the stratification of PCa
patients who are at the very early stage of disease [1, 10].
Current efforts to improve the accuracy of PSA and de-
velop new biomarkers for PCa may hold the promise of im-
proving the screening, diagnosis, and monitoring of
prostate cancer. PCA3, a non-coding and large chain RNA
that is significantly overexpressed in PCa compared to non-
tumorous prostate cells, was introduced as a biomarker for
PCa to show high sensitivity (52 % to 58 %) and specificity
(72 % to 87 %) [11–16]. The US FDA approved PCA3 as a
risk assessment tool for PCa to guide prostatic biopsy
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among men with negative previous prostate biopsies. Urin-
ary PCA3 assay combined with TMPRSS2:ERG is reported
to improve the diagnostic accuracy [17, 18]. Recently re-
ported studies suggested that these requirements could be
fulfilled using the diagnostic approach based on analysis of
urine, which has become the future for non-invasive
biomarker testing [10, 19].
This brief debate article is to discuss ad seek to

characterize the circulating microRNAs (miRNAs) in
urine with regard to PCa. We aim to provide our audi-
ence the current knowledge, in particular, focused on
clinical implication as a liquid biopsy with a clinically
satisfactory degree of sensitivity and specificity.

Discussion
MicroRNAs in prostate cancer
What are microRNAs?
Small non-coding microRNA (miRNA) molecules are
known as post-transcriptional regulators involved in the
regulation of gene and protein expression by interfering
in the post-transcriptional level, resulting in the degrad-
ation and translation inhibition of mRNAs. Approximately
more than 2,000 mature human miRNAs have been re-
ported so far. These miRNAs are short (19–24 nt) and
low molecular weight RNAs. miRNAs are derived from
hairpin-like precursor transcripts (pre-miRNAs) and
taken out of nucleus by a mediator protein, exportin 5.
Pre-miRNA is then cleaved by Dicer (a ribonuclease III
enzyme) to excise the mature miRNAs in the form of
siRNA-like duplexes and asymmetrical assembling of
the mature miRNA strands. Since miRNAs interact
with multiple messenger RNAs by binding the pairing
of bases of the mRNAs and repress target gene expres-
sion, and regulate mRNA cleavage and mRNA decay
initiated by the miRNA-guided rapid deadenylation,
miRNAs have a wide variety of functions contributing
to various pathological conditions including prostate
cancer [20].

How miRNAs are connected with PCa development and
progression cancer?
Many of miRNAs play roles in cell proliferation and
apoptosis processes, thus miRNA expression profiles
can be considered as useful biomarkers monitoring
many types of cancer progression and treatment re-
sponses [21]. Previous studies have suggested several
miRNA biomarker candidates associated with PCa [22].
miR-548c-3p was found significantly overexpressed in
CRPC. Expression levels of miR-548c-3p negatively cor-
related with recurrence-free survival. miR-375 was sig-
nificantly downregulated in 83.5 % of PC patients
compared to BPH controls. Metastatic CRPC patients
with chemotherapy-resistant had the higher miR-21
levels compared with those with hormone dependent
primary PCa. A combined diagnostic testing of miR-21
and PSA could stratify patients effectively. miR-21 was
introduced as one of miRNAs of a multiple diagnostic
profile, which includes miR-21,miR-141, and miR-221.
miR-141 was independently identified as a biomarker
of CRPC. Another combination panel of PSA and ex-
pression levels of let-7c, miR-30c, miR-141, and miR-
375 was suggested as diagnostic biomarkers for PCa
screening outperforming the PSA testing alone. Some
PCa-specific miRNAs were identified from mouse PCa
model. A set of 46 miRNAs in the serum of transgenic
mice with advanced adenocarcinoma PCa were identi-
fied. Among those, miR-141, miR-298, and miR-375
were found to be elevated in the serum of metastatic
CRPC patients. In particular, miR-141 and miR-375
showed a correlation with disease outcome. Diagram-
matic representation of miRNAs associated with PCa is
shown in Fig. 1.

What can be the target genes or pathways of miRNAs in
PCa?
In the accumulated literature the roles of miRNAs in the
pathobiology of PCa were found in cell cycle, apoptosis,
epithelial to mesenchymal transition (EMT) and

Fig. 1 miRNAs upregulated in PCa
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mesenchymal to epithelial transition (MET) states, in-
vasion and metastasis, PCa stem cell, and androgen re-
ceptor (AR) pathway. PTEN-PI3 Kinase-AKT, EGFR
and AR pathways are considered as the most important
signaling pathways in PCa. Upregulation of miR-221/-
222 in PCa suggest a mechanistic link to PCa since
miR-221/-222 plays a role in AR pathway regulation, c-
kit, PTEN, and TIMP3 et al. miR-124 was characterized
to have a direct targeting of AR thereby inducing
down-regulation of miR-125b and up-regulation of p53.
When miR-125b is suppressed miR-125b effectors (p52,
Puma, Bak1, and p14ARF) were downregulated. The
regulation of miR-125b on apoptotic proteins (mitochon-
drial cytochrome C and Caspase-3) and NCOR2 (a co-
repressor of AR) was well known. Another PCa-
associated miRNA, miR-let-7c regulates AR pathway
and involves in the conversion of hormone dependent
PCa to CRPC.

Urinary microRNAs as prostate cancer biomarkers
Several cancer-associated miRNAs were found in cir-
culating body fluids such as urine, which make it
possible to develop non-invasive biomarkers mainly
due to their ease of access and stability. Only few
studies for PCa-associated miRNA in urine were re-
ported. Five of the miRNAs that were differentially
quantified in PCa patients compared to controls
(miR-107, miR-574-3p, miR375, miR200b and miR-
141) were successfully quantified in urine of men
with cancer, which were much higher in PCa pa-
tients than that of healthy volunteers. Such reports
provide evidence that circulating miRNAs might be a
next-generation biomarker and contribute to cancer
screening in non-invasive liquid biopsy. Two add-
itional promising miRNAs, miR-141 and miR-375
were found in the patient blood. In particular, data
from this study showed that metastatic PCa patients
have approximately 50 fold higher miR-141 levels,
compared to the healthy individuals.

Virus infection and prostate cancer
Among the various viruses, herpes virus is one of the
viruses most commonly related to carcinogenesis. Sev-
eral epidemiological studies evaluated the association
between herpes virus infection and prostate cancer risk,
although results were inconsistent. Herpes virus plays
an important role in the pathogenesis of cancer via the
inhibition of cell apoptosis and stimulation of DNA
synthesis, which may ultimately lead to PC. Previous
meta-analysis indicated that infection by herpes sim-
plex virus type 2 (HSV-2) or human herpesvirus 8
(HHV-8) may be associated with a higher prostate can-
cer risk. However, there has not been a study to eluci-
date the potential mechanism of HSV-2 infection

underlying viral PC carcinogenesis. A potential link be-
tween HPV infection and PCa risk was attempted to
study the causal role of HPV-16 in prostate carcino-
gens. A significant increase of PCa risk related with
HPV-16 infection was observed. However, this is still
contradictory since other epidemiological studies could
not find same association [23–25]. Therefore, an elab-
orate and comprehensive demonstration of the associ-
ation between herpes virus infection and prostate
cancer risk is of significance [24]. Further investigations
and large-sample studies are required to and the rela-
tionship between herpes virus infection and prostate
cancer risk.
Our recent findings demonstrated the overexpression

of herpes virus-encoded miRNAs in urine samples from
prostate cancer patients, compared to those of control
subjects [19]. Interestingly, hsv1-miR-H18 and hsv2-
miR-H9-5p detected in urine samples showed better
diagnostic performance than tPSA levels in patients
within the PSA grey zone. A recent meta-analysis
showed that HSV infection is associated with an in-
creased PCa risk, however, it remains puzzling how
these two particular vir-miRNAs contribute to PCa. To
better understand the biological contribution of hsv1-
miR-H18 and hsv2-miR-H9-5p to PCa, the geographic
distribution, gender difference and socioeconomic vari-
ation of virus infection and their possible impact on
prostate cancer should be considered to investigate
(Fig. 2).

Viral miRNAs circulating through biofluids
Viruses also encode their own sets of miRNAs, which
they use to control the expression of either the host's
genes and/or their own. In the past few years’ evidence
of the presence of cellular miRNAs in extracellular hu-
man body fluids such as serum, plasma, saliva, and urine
has been accumulated [26, 27]. Furthermore, it has been
also demonstrated that miRNAs secreted by virus-
infected cells are transferred to and act in uninfected re-
cipient cells [19].
The first viral-encoded miRNAs was found in cells in-

fected with EBV [27, 28]. The majority of natural viruses
found to encode miRNAs. In DNA viruses (such as her-
pes virus, polyomavirus, ascovirus, baculovirus, irido-
virus, and adenovirus families), a DNA component to
replication cycle can exploit the initiating host miRNA
biogenesis machinery in the nucleus, where they repli-
cate and cause long-term persistent infections. Among
DNA viruses, which account for the majority of known
virus-encoded miRNAs, 95 % of viral miRNAs known
today are of herpes virus origin. However, little has been
identified about the role of circulating miRNAs from the
virus-infected cells.
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Extracellular vesicles and their biological role of EV in
prostate cancer
Cells can release different types of vesicles, which have
been difficult to categorize in a definitive manner. The
transmission of vesicles from cancer cells to other cell
types has been the subject of intensive studies in recent
years. It is a process that can make it possible a sophisti-
cated form of cellular communication through the deliv-
ery of highly complex and dynamic cargo. As a delivery
vehicle between cells, extracellular vesicles (EV) have
been considered as a molecular cargo mediating a
communication between cells in the microenviron-
ment. Although EV were originally considered to be a
means for exclusion of garbage molecules from cells,
it is now clear that EV alter signaling pathways and
have a biological influence in neighboring cells [29].

Also, since EV have the bioactivity of their molecular
cargo and can be readily isolated from multiple bio-
logical fluids (e.g., urine, serum, plasma, pleural effu-
sion, saliva), EV has been considered as a non-invasive
biomarker candidate [30–32].
There are multiple types of EV, the small sealed mem-

brane vesicles that are produced from cells differing in
size, biology, contents, and secretory mechanisms. Exo-
somes and microparticles (MPs) are two distinct groups
of EV. Exosomes are originated from the inward bud-
ding of the limiting membrane of multivesicular bodies
(MVBs), while MPs are in bigger size vesicles formed by
the outward membrane budding. Vesicles that are pro-
duced from cells during cell death are apoptotic bodies.
It is known that PCa patients had higher levels of urin-

ary exosomes than the healthy donors. The membranes
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Fig. 2 Diagnostic performance of urinary hsv1-miR-H18 and hsv2-miR-H9-5p compared with serum PSA levels (published data) [19]. a Overview
of the study design. A heatmap representing miRNA microarray data suggested that miRNA signature segregates PCa from BPH controls (right).
b ROC curves for all patients. c ROC curves for patients only within the PSA grey zone (3–10 ng/ml)
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of exosomes are resistant to the osmeolytic and proteo-
lytic activity of urine, indicating that exosomes are quite
stable in urine. PC cell-derived EV can deliver various
genetic factors such as nucleic acids, including DNA,
mRNA, miRNA, and small non-coding RNAs, as well as
oncoproteins and metabolites, leading to the horizontal
transfer of oncogenic information to neighboring
immune cells, vessel cells, or cancer cells [33, 34]. EV-
mediated RNA transfer provides benefits as a communica-
some [35–37]. However, little is known how EV-mediated
transfer of these molecules enters into recipient cells, and
how specific miRNA species can be sorted into EV. Our
series of publications in this field suggest that EV shedding
can influence on microenvironment of PCa by modulating
immune cell proliferation and activation [38].

EV influence immune response in prostate cancer
Role of immune response caused/mediated by miRNA was
suggested by a series of studies showing that EV-derived
miRNAs participate in the regulation of inflammatory re-
sponses. A recent report from our group demonstrated that
EV derived from amoeboid phenotype of prostate cell may
influence the immune response of the tumor microenviron-
ment. A tritiated thymidine (3H-thymidine) incorporation
assay revealed that EV contain miRNAs (e.g., miR-125a),
which are transferred to tumor microenvironment leading
to proliferative inhibition of immune cells. Other interest-
ing findings suggest immune response may be mediated by
miRNAs regulating Toll-like receptors (TLRs), which play
an important role in immune response and inflammation
including tissue repair and tissue injury-induced in-
flammation. In PCa cell lines, several miRNAs (e.g.,
has-miR-29b, −29c, −148b, and −152) were upregulated
by TLR3 activation, leading to antitumoral effects on
PCa. EV derived from dendritic cells contain miR-155
(a promoter of inflammatory responses) and miR-146a
(a mediator of immune suppression), which are known
as important players to regulate inflammation, alter the
gene expression of inflammation related targets and
reprogramm the response to endotoxin [39, 40].

EV released from virus-infected cells
In virology field, biology of extracellular vesicles are well
understood compared to cancer mainly because virus
should be enveloped to be released from infected host.
The accumulating evidence suggests that viruses, such
as retroviruses, hepatitis C virus, herpes simplex virus,
Epstein-Barr virus, Coxsackie virus B3 (CVB3), utilize
the cellular vesiculation pathway for budding and assem-
bly, immune evasion, and intercellular communication.
It is also well known that many virally infected cells se-
crete vesicles (most of cases, exosomes) containing various
viral proteins and genetic materials such as RNAs. Studies
on herpes simplex virus-infected cells demonstrated that

virus communicate via vesicles. In the case of Epstein-
Barr virus, recent reports suggested that herpes virus uti-
lizes exosomes, one kind of extracellular vesicles, as a
mechanism of cell-to-cell communication and transfers
signaling competent proteins and functional miRNAs to
uninfected neighbor cells. For example, exosomes released
from infected cells have been shown to contain co-
receptors for HIV, which can enhance virus entry into
cells. Proteins in the secreted exosomes from virus-
infected cells can induce apoptosis in CD4 T cells, and
contribute innate immune response.

EV as cargoes to deliver viral miRNAs
EV-mediated communication would allow the virus to re-
spond to the cellular microenvironment. Virus-infected
cells continuously shed and transfer EV to uninfected
neighboring cells. Throughout EV shedding and secretion
to extracellular space, the virus-encoded miRNAs were
delivered to other cells, leading to alteration of miRNA-
mediated gene repression and intercellular communica-
tion. Thus, the presence of viral-encoded miRNAs in EV
suggests that virus-infected cells perturb gene expression
in the surrounding tissue, resulting in destruction of the
immune system. Exosomes secreted from HIV-infected al-
veolar macrophages have been identified to carry viral
miRNA (vir-miRNA) such as vmiR88, vmiR99, and vmiR-
TAR. It has not been clearly identified how vir-miRNA
composition is decided and recruited to EV. Vir-miRNAs
might have a role in cancer initiation by blocking of major
tumor suppressors (e.g., p53) or acceleration of cancer
development by evading cellular immune response
(e.g., mi17-92).
These findings still raise a number of exciting ques-

tions. Does virus-infected prostate cells secrete miRNAs
using EV as a cargo? What are the target genes of the
abundantly secreted viral miRNAs? Are extracellular
vesicles shed only in the absence of viral replication? Is
there any evidence for functional miRNA delivery
in vivo? If so, what’s the biological mechanism? In
addition, the detail mechanism is currently lacking
whether virus infection promotes miRNAs sorting into
EV, or whether this secretion is a selective and specific
process.

Conclusions
In PCa biomarker development, the greatest unmet need
remains: a biomarker that stratifies men at risk of ag-
gressive PCa or a biomarker that identify the early stage
of patients who need active surveillance, eventually lead-
ing to a reduction of unnecessary interventions. Al-
though miRNAs might have many useful clinical
applications for patients with PCa, many additional stud-
ies are warranted to clarify their function and regulation
during tumorigenesis and tumor progression. The
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studies to determine the role of circulating miRNAs dur-
ing PCa progression would have the potential that PCa
patients can be molecularly stratified based on their
miRNAs profile in urine samples. In addition, the studies
could uncover important clues about underlying disease
mechanisms.
Urine analyses have great potential to be adapted in

clinical practice, based on its non-invasiveness. Identifi-
cation of non-invasive clinical indicators of PCa would
be one of the most important advances achievable in this
field. Our current mechanistic understanding of shed-
ding vesicle biology and function, especially in the con-
text of virus infection and communication with host, is
not mature enough. Identification of potential candidates
of the circulating miRNAs signature in patient urine
samples would have significant implications for an alter-
native and/or supportive diagnostic tool for PCa.
Unnecessary diagnostic procedures would be mini-

mized for patients with early stage of PCa, contributing
to the easier diagnostic assessment and to the reducing
associated public health and economic burden to pa-
tients. In addition, the studies to understand role and
biology of the circulating miRNAs have significant clin-
ical relevance to public health since it will improve
accuracy of predicting patient survival, identifying re-
sponsiveness candidates of PCa patients. Furthermore,
we envision that this study will also provide the mechan-
istic data to address the long-term goal of the PCa field
identifying new treatments tailoring more specific and
effective therapies for PCa, thus it holds great promise
for the treatment of high risk PCa patients.
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Interstitial Cystitis-Associated 
Urinary Metabolites Identified 
by Mass-Spectrometry Based 
Metabolomics Analysis
Tobias Kind1, Eunho Cho2, Taeeun D. Park3, Nan Deng4, Zhenqiu Liu4, Tack Lee5, 
Oliver Fiehn1,6 & Jayoung Kim2,4,7,8

This study on interstitial cystitis (IC) aims to identify a unique urine metabolomic profile associated with 
IC, which can be defined as an unpleasant sensation including pain and discomfort related to the urinary 
bladder, without infection or other identifiable causes. Although the burden of IC on the American 
public is immense in both human and financial terms, there is no clear diagnostic test for IC, but rather 
it is a disease of exclusion. Very little is known about the clinically useful urinary biomarkers of IC, 
which are desperately needed. Untargeted comprehensive metabolomic profiling was performed using 
gas-chromatography/mass-spectrometry to compare urine specimens of IC patients or health donors. 
The study profiled 200 known and 290 unknown metabolites. The majority of the thirty significantly 
changed metabolites before false discovery rate correction were unknown compounds. Partial least 
square discriminant analysis clearly separated IC patients from controls. The high number of unknown 
compounds hinders useful biological interpretation of such predictive models. Given that urine analyses 
have great potential to be adapted in clinical practice, research has to be focused on the identification of 
unknown compounds to uncover important clues about underlying disease mechanisms.

More than 3–8 million women and 1–4 million men are diagnosed with Interstitial Cystitis (IC), also known 
as Painful Bladder Syndrome, in the US annually1. IC impacts health-related qualities of life immensely, and in 
some instances can be more debilitating than end-stage renal disease2,3. In spite of an increase in the number of 
diagnosed cases, objective diagnostic criteria are not consistently applied in general practice4. Some lower urinary 
tract symptoms, such as overactive bladder (OAB), have symptoms in common with IC, further complicating the 
diagnosis. Diagnosis of the disease has been dependent on clinical parameters (e.g. pain, urgency, and frequency) 
due to the lack of proper conventional markers (e.g. PSA for prostate cancer diagnosis)3,5. Diagnostic tests include 
urinalysis, urine culture, cystoscopy, bladder biopsy and hydrodistention of the bladder. Nonetheless, we still lack 
definite criteria for the disease. Estimates of the prevalence and natural history of IC still fluctuate widely because 
of different diagnostic standards, populations evaluated, and challenges inherent in following patients over time6. 
Thus, the identification of sensitive and non-invasive biomarkers has the potential to greatly improve the accuracy 
of an IC diagnosis. However, our current understanding of mechanisms involving pelvic pain is also unclear and 
fragmented.

Urinary metabolites represent a signature of a subject’s metabolic state and may convey critical information 
about the pathophysiology of disease. This may be especially true for pelvic disorders because urine is the body 
fluid most proximal to the urinary tract. Because metabolites vary in size, chemistry and physicochemical prop-
erties, a single platform has only a limited capacity to interrogate the entire metabolome in a given body fluid. Use 
of more than one platform spanning different technologies is the preferred means of performing comprehensive 
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metabolome analyses. Urine excretions represent a snapshot of many metabolic endpoints including those from 
food, drugs, nutrients and bacterial transformations. This renders urine analysis very challenging due to the com-
plexity, sources and numbers of metabolites.

In this study, we performed gas-chromatography time of flight mass spectrometry (MS)-based metabolomics 
analysis. Our goal here was to increase coverage of known metabolites that may play a role in IC and to gain new 
insight into disease mechanisms. Previous global metabolomics profiling of urine from IC patients suggests that a 
urinary metabolic signature for IC can be detected using platforms such as Nuclear Magnetic Resonance (NMR) 
and Liquid chromatography–mass spectrometry (LC-MS). The experimental results from this paper suggest that 
candidate metabolites were found to be associated with IC, and that the IC metabolic signature can be identified 
in patient urine. Using multiparametric models such partial least squares discriminant analysis IC metabolic 
signature can stratify patients from control subjects.

Results
Characteristics of the study subjects. A clinical diagnosis of IC was made by two independent urolo-
gists, according to NIDDK criteria (e.g. frequency, urgency, bladder pain, discomfort and the presence of glo-
merulations during cystoscopic hydrodistention), before any treatment or medication was given. Only subjects 
of > 2 month “free of treatment or medication” were included. In total, we enrolled 63 female subjects (42 IC 
patients and 21 normal controls) with a mean age of 51. Given that most of patients (over 80%) are women, we 
recruited only female patients for this particular study to seek potential sex-specific urine biomarkers for female 
IC patients. Population-based, age-matched controls were recruited from one clinic using the same standard 
operating procedures (SOPs) during the same research period (2010–2013).

GC-TOF MS analysis of urine specimens from IC patients and controls. We investigated the metab-
olite profile of the individual urine samples using GC-TOF mass spectrometry. Our analysis and data requisition 
resulted in a total of 490 metabolites detected (200 known and 290 unknown metabolites).

Data were autoscaled and mean-centered. The scores plot for partial least squares (PLS) components showed 
differentiation of the IC samples from controls with good separation and dispersion (Fig. 1A). We assessed the 
accuracy of our predictive model using the leave-one-out cross-validation method as well as the randomized 
permutation (Fig. 1B). The observed statistic of this analysis using MetaboAnalyst 3.0 software1 was significant 
at p =  0.005, suggesting that the model significantly differentiate patients from healthy controls. A heat map also 
showed the distinct expression patterns of metabolites between IC and controls (Fig. 1C). These metabolites are 
responsible for the significant difference between IC and controls with fold change either greater than 1.20 or less 
than 0.83 and p-value less than 0.1.

Identification of differentially expressed metabolites in urine of IC patients. Given 490 detected 
metabolites, we investigated 52 differentially expressed metabolites, including both annotated and unannotated 
metabolites. In the volcano plot (Fig. 2A), annotated metabolites are presented as log2 fold change against the 
–log10 (p) of the differential expression between IC patients and healthy controls. 22 annotated differentially 
expressed metabolites above the threshold (FC >  1.20 or FC <  0.83, and P <  0.1) are marked and presented. 
Erythronic acid and histidine, were the most upregulated metabolites in the IC patient group compared to that in 
control, while tartaric acid were the most downregulated as shown in Fig. 2B and Table 1.

Network modeling derived from IC-associated metabolites. We performed analysis the histidine- 
associated differential module (subnetwork) using multilevel local graphical model7 (Fig. 3). The differential  
network represents the changes of correlation structure in IC when compared to the background network. Levels 
of two metabolites, valine and histidine (in red circle), are increased in IC. The interactions (correlations) among 
metabolites indicate that those metabolites may biologically function together. Generally, the variations of inter-
actions among metabolites under different clinical conditions are associated with IC status. Sparse local graphical 
model8 is used to construct both common and differential metabolite networks simultaneously. Treating each 
metabolite, in turn, as the response variable and the remaining annotated metabolites as predictors, and running 
the sparse regression built the network. In such an approach, for each metabolite xi, the regression model is 
defined as

α β ε= + +− −x X yX ,i i i i i i

where X−i are the metabolite expression values except for metabolite xi, and y (1/0) represents IC (1) or control 
(0). The common and differential networks are formed by collecting all of the αis and βis, respectively. Parameters 
(αi) determine the direct correlations between metabolite xi and the remaining metabolites, and αij ≠  0 indicate 
there is a partial correlation (edge) between metabolites xi and xj, giving the remaining metabolites. Moreover, 
βi measure y dependent associations and differential correlations across different clinical condition. Parameter 
βij ≠  0 indicates that there is a differential interaction between metabolites xi and xj in IC and control.

Cytoscape (www.cytoscape.org/) was used for differential network visualization and subnetwork identifica-
tion. The proposed approach identified the IC associated differential network efficiently (Fig. 3). For further 
understanding on our metabolite signature, software MetaboAnalyst was used for functional enrichment analysis. 
Metabolite enrichment analysis allows us to study the corresponding biological pathways of IC with metabolites 
on the differential network. We performed Metabolite Set Enrichment Analysis (MSEA) with the 18 metabo-
lites, which were derived from data in Fig. 3. We found that those 18 metabolites are highly enriched in Protein 
Biosynthesis and Ammonia Recycling with the FDR of 0.0000136 and 0.00557, respectively (Fig. 4).

http://www.cytoscape.org/
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Discussion
In this study we profiled 490 metabolites in human urine specimens for IC diagnosis using GC-TOF MS. 
Metabolites including histidine, erythronic acid, and tartaric acid were found to have the highest fold-changes. 
Power analysis and false discovery rate correction (FDR, Benjamini-Hochberg) suggests that the study sample 
size has to be increased to validate any findings. The present report has provided evidence that metabolic finger-
prints can predict IC patients using multiparametric models such as PLS-DA, however it remains to be deter-
mined whether these metabolites might have biological and mechanistic meanings. Especially the large number 
of unknown compounds is challenging (59% in this study), because without structural annotation, unnknown 
metabolites can only be partly assigned to larger biochemical modules through mass spectral similarity analysis. 
Some unknowns may even ultimately prove to be chemical contaminants and should be excluded from multipar-
ametric models. One solution to increase mass spectral library coverage is to use quantum chemical simulations 

Figure 1. Differentiation of IC patients and healthy control groups using multivariate analysis. (A) Partial 
least square-discriminant analysis (PLS-DA) score plot of the IC and control groups. PLS-DA plot showed a 
clear separation of metabolites between patients and matched control subjects. Red: control samples; Green: 
IC patient samples. The model was established using three principal components. (B) For model evaluation, 
the class prediction results based on cross model validation predictions of the original labeling compared to 
the permuted data assessed using the separation distance. Histogram shows distribution of separation distance 
based on permutated data. Red arrow indicates observed statistic (P =  5e-04). (C) A heatmap of 52 differentially 
expressed metabolites in IC and control groups. Among 490 detected metabolites in total, 52 metabolites, 
including both annotated and unannotated metabolites, were significantly altered in IC patients compared to 
controls (FC >  1.20 or FC <  0.83 and P <  0.1).
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predict electron ionization mass spectra9 or to utilize novel machine learning methods to improve compound 
identification10. This can also include novel metabolic compounds that can be expected to exist from known 
metabolic transformations11.

Histidine, one of essential amino acids in humans, is a known precursor of the neurotransmitter histamine. 
Increased histidine level leads to increase of histamine level in blood, brain and possibly bladder, suggesting 
the possibility that histidine may have many other possible functions affecting human bladder sensory system. 
Previous work using IC rat model demonstrated that overexpression of monocyte chemo-attractant protein-1 
(MCP-1) in bladder tissues contributes histamine production and IC12. More recently, findings from animal 
model suggest that mast cell-derived histamine mediates IC-associated pain. Authors showed that histamine 
receptors 1 and 2 modulate pelvic pain and antihistamines attenuate bladder pain in their animal model. We 
believe the simplest explanation for this finding is that an increased secretion of histamine and histidine (pre-
cursor of histamine) may be associated with IC symptoms mediated by mast cells infiltrated in bladder. Other 
candidate metabolites from our study are summarized in Table 1.

Previous studies have suggested a series of IC biomarker candidates, including antiproliferative factor13,  
phenylacetylglutamine14, interleukin-6, histamines15, nerve growth factor et al. Our laboratory also found 
tyramine and 2-oxoglutarate as urinary biomarkers for IC diagnosis16. More recently, the Multidisciplinary  
Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network identified Etio-S (etiocholan-3α -ol-17 
-one sulfate) to discriminate IC patients from healthy controls17. This urinary sulfometabolome profiling study 
was performed using Liquid Chromatography–Mass Spectrometry (LC–MS) in female subjects who had high 
symptom scores as well as high pelvic pain/pressure/discomfort scores.

Metabolic fingerprints shown in a heatmap (Fig. 1C) consist of 22 annotated metabolites among 52 metab-
olites shown in a heatmap (Fig. 1C) including histidine, valine, tartaric acid, and erythronic acid et al. These 

Figure 2. A volcano plot showing differentially expressed metabolites in IC patients. (A) 22 annotated 
metabolites were significantly altered in IC patients compared to controls (FC >  1.20 or FC <  0.83 and P <  0.1). 
The red dots represent metabolites above the threshold. The further the metabolite’s position away from the  
(0, 0), the more significant the metabolite is. (B) A boxplot showing up-regulated and down-regulated 
metabolites that could be used to differentiate IC patients from normal subjects. The candidate metabolites, 
erythronic acid and histidine, were significantly increased in IC patients compared to that in controls, while 
tartaric acid was significantly decreased. All metabolites show statistical significance with p-value <  0.1.
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metabolites are listed in Table 1. This metabolic fingerprint might be applicable to segregate IC patients from 
healthy controls in the clinical setting, although it is out of scope of this study.

Urine analysis is certainly challenging due to its high biological variance, because urine is a sink for all water 
soluble metabolites coming from food sources, the microbiome, drugs, chemicals and generally the exposome. 
However urine can be collected non-invasively, across all age ranges and in large quantities compared to blood, it 
is also an excellent matrix for personalized clinical profiles.

For robust statistical analysis many confounding factors such as age, race, geographical location or food intake 
have to be considered. Subject meta-data may be collected through questionnaires at time of sample collection in 
the clinic, but it can also be assessed through thorough chemical profiling analyses, called exposome screening 
(e.g. for pharmaceutical agents or food biomarkers). For example the compound 2-furoylglycine can be used to 
diagnose fatty acid beta-oxidation disorders, but is also found in food prepared by strong heating (http://www.
hmdb.ca/metabolites/HMDB00439). Cotinine is a known marker for exposure to cigarette smoke, and other 
metabolites are known food markers such as caffeine and theobromine for coffee consumption. Such markers can 
be easily collected along with metabolomic analyses and could be used to stratify patient cohorts or to adjust for 
exposure parameters during data analysis.

Urine metabolite levels are currently collected from published reports18. However individual urinary metab-
olite levels are currently not collected in large databases. Therefore it is difficult to determine minimum, mean, 
maximum levels of specific metabolites or to perform correlations to dietary intake, which would affect the valid-
ity of certain biomarkers. Here efforts have to be undertaken to collect such profiles, similar to personalized 
efforts that will sequence individual humans or collect individual metabolic profiles from blood.

In summary, our GC-TOF MS analysis suggested a number of metabolite candidates associated with IC. Large 
cohorts have to be utilized to validate predictive biomarkers or models. This method may provide novel opportu-
nities for better diagnosis and clinical management of IC, particularly in a non-invasive manner. A major clinical 
challenge remains the early diagnosis of IC. Given that these current findings from this study, although it is out 
of scope of this study, however we will aim to test whether abnormal metabolism is a key hallmark of IC as a next 
step. Our metabolic biomarker panel provides the prospect for assisting predictive factor to determine severity of 
urinary symptoms and pain/discomfort of IC patients.

Num Name Fold-change p-value FDR

1 Unknown BB_31554 2.56 0.000132 0.064576

2 Unknown BB_34163 0.55 0.000514 0.12586

3 oleic acid 0.63 0.001933 0.315675

4 2-deoxytetronic acid 1.26 0.008732 0.571396

5 Unknown BB_17651 0.66 0.009136 0.571396

6 saccharic acid 0.80 0.012642 0.571396

7 Unknown BB_17140 1.44 0.015588 0.571396

8 phosphate 0.70 0.016252 0.571396

9 trehalose 1.79 0.017026 0.571396

10 Unknown BB_5900 0.81 0.017487 0.571396

11 erythronic acid 2.25 0.018393 0.571396

12 Unknown BB_109809 0.56 0.018576 0.571396

13 oxalic acid 0.48 0.018665 0.571396

14 Unknown BB_34027 0.44 0.019904 0.571396

15 Unknown BB_1704 0.63 0.020865 0.571396

16 sulfuric acid 0.31 0.021197 0.571396

17 Unknown BB_23635 0.69 0.02138 0.571396

18 cystine 1.47 0.021607 0.571396

19 Unknown BB_3029 0.70 0.022156 0.571396

20 Unknown BB_12330 2.19 0.02596 0.614149

21 Unknown BB_31549 0.37 0.026702 0.614149

22 lyxitol 1.42 0.028288 0.614149

23 Unknown BB_31756 1.74 0.028827 0.614149

24 lysine 1.49 0.034624 0.706901

25 histidine 1.79 0.040576 0.743323

26 Unknown BB_31359 0.81 0.043988 0.743323

27 Unknown BB_5121 0.64 0.045462 0.743323

28 Unknown BB_100869 1.58 0.046685 0.743323

29 Unknown BB_3294 1.37 0.046907 0.743323

30 Unknown BB_31764 1.33 0.048566 0.743323

Table 1.  A list of metabolites differentially expressed in IC, compared to controls (p-level = 0.005, FDR 
(Benjamini Hochberg).

http://www.hmdb.ca/metabolites/HMDB00439
http://www.hmdb.ca/metabolites/HMDB00439
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Materials and Methods
Ethics statement. The Ethics Committee of Inha University Hospital in South Korea approved this study. 
The Institutional Review Board of Inha University Hospital approved collection, curation and analysis of all sam-
ples. All subjects participated in this study provided written informed consent, and all experiments were per-
formed in accordance with relevant guidelines and regulations.

Subjects and urine specimen collection. IC patients and healthy control subjects were diagnosed and 
recruited from an outpatient urology clinic at Inha University Hospital. Work-up included symptom assessment, 
cystoscopic evaluation, physical examination, urodynamics, and/or urine culture. Patients with a history of other 
diseases (such as any types of cancer, inflammation, or diabetes, etc.) were excluded. All subjects were of Asian 
female descent resident in South Korea. To avoid possible contamination with vaginal or urethral cells, first 
morning urine specimens were obtained using clean catch methods in a sterile environment. The de-identified 
specimens were sent to clinical laboratory and were centrifuged to remove cell debris. Supernatants were pro-
cessed into individual aliquots of 1 ml/tube, before storage at − 80 °C until further analysis.

GC TOF-MS analysis of urine. The gas-chromatography/mass-spectrometry (GC-MS) analysis was  
performed19,20. Normally, 10 ul of urine are dissolved in 1 ml − 20 °C cooled acetonitrile, isopropanol and water 
(3:3:2 v/v) mixture at pH 7. In this case the urine volume was adjusted between 2 and 10 ul to externally measured 
creatinine levels using a linear calibration curve. Then the solution was vortexed at 4 °C for 5 minutes in 1.5 ml 
Eppendorf tubes. Samples were centrifuged for 2 min at 14,000 rcf and 500 ul were aliquoted. The aliquot was 
the evaporated in a Labconco Centrivap cold trap to complete dryness. The methoximation step was performed 
with 10 ul of a solution of 40 mg/ml O-methylhydroxylamine hydrochloride (CAS: [593-56-6]; Formula CH5NO.
HCl) and 90 minutes shaking at 30 °C. Then 90 ul of N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) was 
added and shaken at 37 °C for 30 min. Then a mix of 1 ul fatty acid methyl esters (FAME) retention time markers 
was added. The mixture was transferred to amber crimp autosampler vials. Measurements were performed on a 
Leco Pegasus IV TOF coupled to an Agilent 6890GC with Agilent 6890 split/splitless injector. The column was a 
Restek RTX-5Sil MS (95% dimethyl/5% diphenyl polysiloxane) with 30 m length, 0.25 mm i.d. and 0.25 um film 
thickness with 10 m guard column. Injection volume was 1 ul at 250 °C. The GC parameters were set to 1 ml/min  
constant flow Helium and an oven ramp of 50 °C (1 min hold) to 330 °C at 20 °C/min, 5 min hold before 
cool-down. The transfer line temperature was 280 °C and spectra were recorded in electron ionization mode at 
70 eV with a filament temperature of 250 °C TOF and scan range of 85–500 u. All the raw data was deposited to 
the Metabolomics Workbench repository under study ID ST000381.

Figure 3. Network modeling derived from IC-associated metabolites. Histidine associated differential 
module (subnetwork) is shown, where the red nodes indicate upregulated metabolites and light blue nodes 
represents non-differentiated metabolites.
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Annotation and ID of compounds. The peak and compounds detection or deconvolution was performed 
with the Leco ChromaTOF software. Spectra were matched against the FiehnLib mass spectral and retention 
index library20. Post-curation and peak replacements were performed with the in-house developed BinBase soft-
ware and the sample matrix with all known and unknown compounds exported to a Microsoft EXCEL sheet. A 
total of 490 compounds were detected. 200 compounds were annotated as known compounds by retention index 
and mass spectral matching and 290 compounds remain unknown.

Data processing. We excluded one subject from the IC patient group and three subjects from controls 
because their spectra were outliers based on PCA analysis. To identify potential metabolites as marker candidates 
that can discriminate IC patients from healthy subjects, we applied the following steps. Data was normalized and 
the t-test was applied on the log2 of the processed data. The Student’s t-test was performed to extract significant 
metabolites from the normalized GC-MS data. 30 metabolites had levels of p-value threshold <0.05. Twelve of 
these were known metabolites, the remainder unknown metabolites. After false positive correction (FDR) using 
Benjamini–Hochberg procedure none of the p-values remained significant on the chosen level of 0.05.

The volcano plot shows the fold change and the significance of each annotated metabolite. The significant 
metabolites were selected by volcano plot with fold change threshold > 1.20 (or <0.83) and t-tests p-value 
threshold < 0.1. Second, the resultant profiles, which contain profiles of 22 annotated differentially expressed 
metabolites, were imported into MetaboAnalyst version 3.01. Log transformation and mean-centered with 
auto scaling were performed prior to multivariate statistical analysis. Partial least square discriminant analysis 
(PLS-DA) was performed, and model evaluation with permutation strategy was carried out according to a 
published protocol21.

Figure 4. Differential network in IC is identified with multilevel local graphical model7. The differential 
network represents the changes of correlation structure in IC when compared to the background network. 
Two metabolites (in red) are also upregulated in IC. The interactions (correlations) among metabolites indicate 
those metabolites may function together biologically. Metabolite Set Enrichment Analysis (MESA) with the 18 
metabolites shows that those metabolites are highly enriched in Protein Biosynthesis and Ammonia Recycling 
with the FDR of 0.0000136 and 0.00557, respectively. The following is the result of MSEA.
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Urinary proteomics and metabolomics
studies to monitor bladder health and
urological diseases
Zhaohui Chen1 and Jayoung Kim2,3,4*

Abstract

Background: Assays of molecular biomarkers in urine are non-invasive compared to other body fluids and can be
easily repeated. Based on the hypothesis that the secreted markers from the diseased organs may locally release
into the body fluid in the vicinity of the injury, urine-based assays have been considered beneficial to monitoring
bladder health and urological diseases. The urine proteome is much less complex than the serum and tissues, but
nevertheless can contain biomarkers for diagnosis and prognosis of diseases. The urine metabolome has a much
higher number and concentration of low-molecular metabolites than the serum or tissues, with a far lower lipid
concentration, yet informs directly about dietary and microbial metabolism.

Discussion: We here discuss the use of mass spectrometry-based proteomics and metabolomics for urine biomarker
assays, specifically with respect to the underlying mechanisms that trigger the pathological condition.

Conclusion: Molecular biomarker profiles, based on proteomics and metabolomics studies, reliably distinguish patients
from healthy controls, stratify sub-populations with respect to treatment options, and predict therapeutic response of
patients with urological disease.

Keywords: Urinary biomarkers, Proteomics, Metabolomics, Bladder diseases

Background
Personalized medicine aims for a customized healthcare
for each patient to match treatments with the right pa-
tients at the perfect timing. Gene-specific data (SNP
genotyping as well as epigenetics) is too static to enable
such timed treatments. It is therefore essential to collect
variable biomarker, along with other clinical information,
data to achieve accurate diagnostic assessment for indi-
vidual patients [1–3]. Multi-omic readouts of cellular
and organ phenotypes (RNA-Seq, proteomics and meta-
bolomics) will be indispensible in the era of personalized
medicine. Only through a combination of exact geno-
typic and molecular phenotypic information we will im-
prove the development of custom and precision
therapies [4–6]. Sub-grouping of patients is necessary to

define the evidence-based protocol for matching treat-
ments to the right patients with appropriate timing
[5, 7]. The necessity of compiling molecular information
and clinical outcomes in personalized medicine
prompted us to believe that the use of multi-omic data
in conjunction with clinical outcome data is ever more
important not only at the time of medical intervention,
but throughout patients’ lives. The need for and possibil-
ities associated with big data approach to gain insight
into biological processes driving diseases and to identify
novel diagnostics is enlarging. In this review, we will dis-
cuss how far metabolomic and proteomic approaches
have come to aid in this long-term goal.
Urological diseases including urological cancers and

benign bladder dysfunctions are complex in nature and
require powerful, precise treatments. Tests to find pa-
tient candidates for a specific or combination of therapy
and to identify biomarkers are incredibly challenging to
determine [6, 8, 9]. Urine contains information not only
from the urinary track, but also from other organs, pro-
viding biomarkers for bladder and other systemic

* Correspondence: Jayoung.Kim@cshs.org
2Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los
Angeles, CA 90048, USA
3Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700
Beverly Blvd, Los Angeles, CA 90048, USA
Full list of author information is available at the end of the article

© 2016 Chen and Kim. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Chen and Kim BMC Urology  (2016) 16:11 
DOI 10.1186/s12894-016-0129-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12894-016-0129-7&domain=pdf
mailto:Jayoung.Kim@cshs.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
JayoungKim
Highlight



diseases [10–12]. Looking at urine data in conjunction
with other available patient clinical data may enable us
to understand the molecular signature, which helps
monitor the stages of the diseases and responses to ther-
apies. This is particularly true in urological diseases,
where urine samples provide the primary window for
diagnosis and drug behavior observation [13].
A common definition of the proteome is the entire set

of proteins expressed by a cell, tissue or organism at a
certain time. Since proteomics is the large-scale study of
proteome, it can contribute to expanding the under-
standing of biological systems and functions in cells or
organs. Proteomes are directly responsible for cell func-
tions, and therefore, abnormal protein expression is an
indication of cellular disruption due to the pathological
conditions [14, 15]. Current global proteomic technologies
may provide a comprehensive understanding of urological
diseases, characteristics of the disease’s state, and novel
approaches to relieve the clinical symptoms [16–18].
Metabolomics provides a global chemical fingerprint

of the metabolism of cells and indicates physiological
and pathological states of biological samples [19–21].
Thus, the power of metabolomics opens up an unparal-
leled opportunity to query the molecular mechanisms of
the disease. Metabolites are not merely the end products
of gene/protein expression, rather, they are the result of
the interactions of the genome and proteome with their
environment in the cells. They play as powerful mediators
of cellular events both in long-distance actions (e.g. hor-
mones), stress and physiological actors (e.g. oxylipins) [22]
and as cell-internal mediators (e.g. α-ketoglutarate in plur-
ipotency) [23]. Thus, analyzing metabolic differences
between pathological and normal conditions could pro-
vide undiscovered insights into the underlying disease
pathology.
In addition to the advancements in multi-omics data

acquisitions, novel bioinformatics methods enable an inte-
grated view to identify the combined action of biomarkers
as well as to develop drugs [24–27]. A significant volume
of data with various omics data, including genetic, epigen-
etic, transcriptomic, proteomic, metabolomic and clinical
outcome data, provides researchers with the capability to
see a broader perspective and make discoveries that
couldn’t previously be delivered [28–31]. Integrative ap-
proaches have become the essential part of experimental
designs aimed at better understanding the biology of blad-
der diseases.
The main goal of this article is to provide the reader

with an up-to-date summary of the main molecular vari-
ations taking place in biofluids with respect to various
urological diseases including urological cancers (e.g.,
prostate cancer (hereafter PCa) and bladder cancer
(BCa)) and benign bladder dysfunctions (e.g., benign
prostatic hyperplasia (BPH), interstitial cystitis/pelvic

bladder syndrome, bladder pain syndrome (IC)), as well
as of the analytical strategies employed to unveil urinary
biomarkers.
We here focus on mainly two omics analyses—proteo-

mics and metabolomics—and associated data integration
strategies. These approaches enable researchers to: (a)
identify unknown molecular mechanisms; (b) select
molecular markers that can be used for drug discovery,
preclinical, and clinical drug development; (c) develop
diagnostic tools. First, we present a short review on the
urine-based studies. Second, we discuss analytical tech-
niques that are used in urinary omics analyses, includ-
ing computational methods for data processing. Next,
we present studies that have used proteomics or meta-
bolomics approaches to reveal the fingerprints of
urological diseases. Finally, we discuss the future re-
search directions and prospective how to apply to diag-
nosis and precision medicine for patients to summarize
the review.

Discussion
Urine-based biomarkers for diagnosis, prognosis, or
monitoring the treatment efficiency
A concerted effort bridging basic biology and clinical re-
search is needed to identify high quality predictive bio-
markers [31]. Discovery and validation of predictive
biomarkers should be an integral part of clinical trials.
In the clinical setting, the best diagnostic value is given
by noninvasive biomarker tests that have both high sen-
sitivity and specificity. A non- or minimally invasive
diagnostic method using biofluids (e.g., urine, blood, sal-
iva, fecal extract, and sputum specimens) may play a sig-
nificant role in urological diseases with regard to early
detection, diagnosis, prognosis, drug development, and
sensitivity prediction to clinical treatments [12, 32–34].
So far the most attractive biofluids for biomarker dis-

covery in bladder health and urological diseases are
serum and urine [32–34]. Serum is a relatively access-
ible, stable and informative biofluid, making it ideal for
early detection of systemic alteration in a wide range of
diseases [35, 36]. Monitoring of serum has several ad-
vantages mainly due to its stability and minimum dilu-
tion effect. Proteomic and metabolic profiles of serum
can be regarded as important indicators of physiological
and pathological states and may aid in the understanding
of the mechanism behind disease occurrence and pro-
gression [37–39]. However, blood samples pose certain
disadvantages. During blood sample collection, proteases
are often activated, which degrades proteins quickly and
introduces a range of variability. On the other hand, 20
highly abundant proteins in the blood, which correspond
to 99 % of the proteins, may hinder the identification
of other less abundant, potentially important, proteins
[40–43]. This feature makes it challenging to develop
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plasma or serum based assays and often analytes enrich-
ment or protein depletion is needed.
Urine definitely is not a waste in regards to gaining

patients’ diagnostics and therapeutic information [18, 44, 45].
However, it is still in debate whether urine plays an ac-
tive role in regulating bladder biology. Urine’s compos-
ition is 95 % of water with small amounts of ammonia,
sulfate, and other constituents. Total protein concentra-
tion in urine from healthy donor is very low (<100 mg/L)
and urinary proteome contains over 100,000 different pep-
tides [18, 32, 44, 46, 47]. Approximately 1500 proteins
have been shown to constitute the urinary proteome, of
which large proportions are extra cellular proteins,
plasma membrane proteins, and lysosomal proteins [18,
48]. The Human Kidney and Urine Proteome Project by
the Human Proteome Organization (HUPO) suggested
that urine is an ultra filtration of the blood in the body,
since urine and blood samples share the proteome pro-
file [49–51]. Approximately 30 % of the proteins in nor-
mal human urine are plasma proteins, while the other
70 % are proteins derived from the kidney and genito-
urinary tract [49, 50].
Urine samples usually need special treatments to meet

the requirements of reproducible measurements after
sample collections. To obtain reliable and consistent
profiles of urine, first, urine must be collected in a sterile
bag or plastic container, because urinary bacteria metab-
olism significantly interferes on the urine proteome and
metabolome. Secondly, urine samples must be properly
processed (e.g., pH adjustment and/or removal of cell
debris) and frozen at −80°C immediately after collection,
until analysis [40, 46]. In addition, analysis of urine sam-
ples poses several analytical challenges for profiling
owing to wide variations in the ionic strength, pH, and
osmolality, particularly under conditions of physiological
stress, diet, exercise, medication, health condition, and
environmental exposure [46, 52, 53]. Furthermore, urine
samples typically have a huge dynamic range of metabol-
ite and protein concentrations. Another potential prob-
lem is the presence of proteolytic activity in the urine by
urokinase and other enzymes [54]. Proteases found in
stored urine degrade urinary albumin to a substantial
degree. However, the extent to which proteases affect
biomarkers in the urine is still unclear.
Despite all these shortcomings, urine is still an attractive

source for studying bladder diseases. To monitor bladder
condition, urine-based assays present the most attractive
strategy, among other biofluids-based methods, given that
the body fluids that are most proximal to a disease site
often can provide a source of informative biomarkers.
Urine is readily obtained and available with no required
preparations by the patient and it is less complex than
other body fluids. The ease of collection allows for serial
sampling to monitor disease and therapeutic responses.

Care must be taken in interpreting urine-based proteo-
mics and metabolomics data. The main disadvantage of
urine is the variation in protein concentration due to dif-
ferences in fluid consumption during the day, which can
be countered by normalizing with creatinine. However, al-
though creatinine is the best possible internal standard for
correcting urine volume effects, creatinine levels can vary
due to dietary intake and pathological conditions. Compu-
tational approaches for data normalization methods can
be applied to reduce artifacts due to sample variability
using currently developed probabilistic quotient- and
median-fold changes in normalization strategies [55].

Analytical techniques and databases for urine-based
omics for bladder diseases
With the latest advances in high-throughput technologies,
the pace of advances in the “omics” field accelerated the
rate of novel biomarker discovery and therapeutic targets
for various bladder diseases. Various omics technologies
for personalized medicine are shown in Fig. 1, and ideal
applications and workflow of urine-based biomarkers in
clinical settings are shown in Fig. 2.
Proteomic technology has made a dramatic progress

in the overall quality and information content over the
past 5 years [56]. When computationally matching iden-
tified proteins (or metabolites) against knowledge-based
databases, proteomics or metabolomics profiles today
provide direct insights for biological interpretation of
molecular perturbations unique in patients with uro-
logical diseases [47, 57, 58]. In this section, we review
the current proteomic and metabolomic techniques and
analytical tools/softwares that are used to identify signa-
tures of urological diseases.
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Fig. 1 Overview of multi-omics technologies, which can be applied
to urine-based biomarker study
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Urinary proteomics studies
Proteins are the major players influencing a person’s
health, since proteins frequently have the greatest clinical
significance for the diagnosis of diseases. Studies in the
field of proteomics aim to elucidate proteomes and under-
stand the identity, quantity, modification, localization,
interaction, and function of all proteins in a given cell type
or tissue. A number of powerful proteomic technologies
were developed, demonstrating that proteomic approaches
have wide utility [59, 60]. Proteomics profiling enabled the
comparing of protein differences between patients suffer-
ing from a wide range of ailments and healthy controls to
discover biomarkers for diagnosis and monitoring treat-
ment response [49, 56]. Further developments to under-
stand the post-translational modifications (PTMs) in
tissues and biological fluids from patients have been
achieved through the development of mass spectrometry
instrumentation with increasing sensitivity [61, 62]. Estab-
lished protocols for PTM enrichment and pipelines for
high-throughput assays for clinical specimens may provide
the potential of automated and large-scale identification
and quantification of PTM-ome and its biological role in
diseases [63].
For urine proteomics, many mass spectrometry tech-

niques, such as 2D PAGE-mass spectrometry (MS), liquid
chromatography-mass spectrometry (LC-MS/MS), capil-
lary electrophoresis-mass spectrometry (CE-MS), surface-
enhanced laser desorption/ionization time-of-flight mass
spectrometry (SELDI-TOF MS), matrix assisted laser de-
sorption/ionization time-of-flight (MALDI-TOF) MS and
nano-liquid chromatography-tandem mass spectrometry
(Nano-MALDI-MS) have been used with some advantages
and limitations [64–68]. We described here only a few
analytical tools that highlight the usefulness of it for urin-
ary proteomics research. Briefly, 2D PAGE-MS is time

consuming and technically challenging but very effective
for large molecules. LC-MS is also time-consuming but
pretty sensitive. CE-MS is cheap and good for biomarker
discovery. MALDI-TOF MS is relatively simple, inexpen-
sive, and, thus, a good option for fast screening. In general,
nano-MALDI-MS is known to be much more sensitive
than MALDI-TOF MS [64].
The gel-based 2-DE method enables urinary proteins

to be resolved based on their molecular weight and iso-
electric point. Several tools for image noise subtraction,
protein spot detection, spot quantification, and spot
matching can be used for 2-DE analysis including Mel-
anie, ImageMaster2D, and PDQuest et al. The main
steps in differential analysis of 2DE gels involve and stat-
istical analysis. Often, the 2-DE method is coupled with
MALDI-TOF MS or LC-MS/MS. Peptides from protein
spots of interest are mixed with a matrix (e.g., α-cyano-
4-hydroxycinnamic acid) solution and are spotted onto a
MALDI plate and analyzed with a MALDI-TOF MS to
identify a peptide-mass fingerprint. These peptides can
also be analyzed with nanoLC-MS/MS to sequence each
peptide and thus identify the protein.
Besides identification and characterization, urine pro-

teins can also be quantified. Today, label-free proteomics
is the primary approach to relative quantifications of the
human urinary proteome [69, 70]. A major advantage of
label-free quantification is that this method is cheaper,
simpler and involves less complicated data analysis than
isotope-labeled approaches. Data processing is often per-
formed by softwares such as Decyder MS, Protein Lynx,
SIEVE, and skyline [71]. However, label-free quantifica-
tion is limited by its lower quantification accuracy (espe-
cially for spectral counting in data dependent scan
methods), and label-free data dependent acquisition
quantifications are generally results in the identifications
of less proteins and poor reproducibility. Currently
SWATH and other data independent mass spectrometry
acquisition methods and several computational algo-
rithms are tested in their potential to overcome these
limitations [59, 69, 70, 72].
The use of the most advanced proteomics mass spec-

trometry technologies has allowed discovering and veri-
fying several urinary biomarkers of bladder diseases. In a
large proteomics study, 407 patient urine samples were
analyzed using MALDI-TOF MS. Two markers, uromo-
dulin and semenogelin, could distinguish PCa versus
BPH with 71.2 % sensitivity and 67.4 % specificity [9]. In
another study on prostate cancer (PCa), capillary electro-
phoresis was coupled with MS detection of proteins and
was able to identify and validate 12 novel urinary bio-
markers for PCa [73]. This report suggested that collect-
ing mid-stream urine samples was uninformative, but that
first void urine was able to identify patients with PCa with
91 % sensitivity and 69 % specificity [73]. Due to its

Fig. 2 Potential clinical application using urine-based biomarkers
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limited size, this study certainly requires additional valid-
ation in a larger cohort. In general, it can be assumed that
a panel of biomarkers will most likely achieve an overall
high level of specificity and robustness than using a single
urinary protein biomarker. Further development of quan-
titative proteomics and selective or multiple reaction
monitoring (SRM/MRM) methods [74–76] may allow the
protein-quantification data to stand by their own without
redundant validation using traditional protein quantifica-
tion methods such as Western blot and ELISA. In many
cases, there is no antibody available, and the capability of
measuring multiple biomarkers in a panel for immune-
based assays is very limited.

Urinary metabolomics studies
Metabolomic profiling, or metabolomics, is the systemic
study of the unique small chemical fingerprints in a bio-
logical sample, and is the collection of small-molecule
profiles that represent the end products of cellular pro-
cesses in biological systems (e.g., cells, tissues, or organs)
[20, 77]. As little as 5 ul of plasma or urine allows the
characterization of hundreds of metabolites that provide
a functional readout of the metabolic state. A recent ef-
fort to characterize the metabolomes of human urine
has completed to identify and annotate approximately
2500 urinary metabolites using nuclear magnetic reson-
ance spectroscopy (NMR, in most cases 1H-NMR), gas
chromatography mass spectrometry (GC-MS), direct
flow injection mass spectrometry (DFI/LC-MS/MS), in-
ductively coupled plasma mass spectrometry (ICP-MS)
and high performance liquid chromatography (HPLC)
[78]. The detailed information of metabolite structures,
concentrations, related literature references and disease
associations is publically available via an online database
(http://www.urinemetabolome.ca) [77]. Urinary metabol-
ite levels are usually standardized by creatinine concen-
trations. Endogenous substrate levels in normal healthy
subjects can inform on the status of each subject’s me-
tabolizing enzyme activities. The comparison of urinary
metabolite levels of patients vs. healthy controls, and re-
sponders vs. non-responders to a particular drug should
facilitate the development of useful biomarkers to diag-
nose the disease or to predict the response, respectively.
Also, understanding of urinary metabolome in healthy
condition may help the titration of drug dose and moni-
toring drug response [18, 77].
Metabolomic studies typically begin with sample col-

lection followed by sample analysis. A number of analyt-
ical techniques including NMR spectroscopy, GC-MS,
and liquid chromatography-mass spectrometry (LC-MS)
are used as methods of analysis [19]. NMR spectroscopy
has proven to be particularly good for urine metabolomics
analysis, because the technique is highly reproducible, re-
quires minimal sample handling, and is straightforward to

implement [79]. While the reproducibility, quantitative
ability, and structure information derived from the NMR
methods are big advantages, the relatively lower sensitivity
and less straightforward identification methods are disad-
vantages of the NMR method [79]. MS-based metabolo-
mics is considered more sensitive, providing greater
coverage, and to be more cost-efficient than NMR-based
applications. Given that the coverage varies with different
technologies and instruments, the combination of differ-
ent metabolomic approaches may provide a broad range
of information that covers the metabolite profile and may
maximize the capability of metabolomics analysis [19–21].
For metabolomics data processing, several statistical

tools are currently used to analyze NMR and MS-based
metabolomics datasets (e.g., MS-DIAL [80], XCMS,
MZmine, MetAlign, MathDAMP, and LCMStats) [81, 82].
As metabolite databases, the Human Metabolome Data-
Base (HMDB), Madison Metabolomics Consortium Data-
base, METLIN, and LipidMaps are generally used. To
further understand the biology of the identified metabo-
lites, HMDB (http://www.hmdb.ca/), METLIN (http://
metlin.scripps.edu/), MassBank (http://www.massbank.jp),
PubChem (https://pubchem.ncbi.nlm.nih.gov/) and KEGG
(http://www.genome.jp/kegg/) can be used.
There is an increasing awareness of standardization or

careful accounting in experimental design of urinary
metabolomics study. To overcome possible limitations
and pitfalls of the metabolomics approach, specific rec-
ommendations for urine collection, sample handling,
storage, data acquisition, and statistical validation are
also needed [78].

Urinary extracellular vesicle-derived omics studies
Most cells including cancer cells shed different types of
vesicles into extracellular environment [83]. These vesi-
cles are so-called extracellular vesicles (EV) including
microvesicles, exosomes, and oncosomes, which are
named based mainly on their size and characteristics
[84]. EV have an increasing attention in the field of bio-
marker discovery. Given that EV are membrane bound
structures, the components should be protected from deg-
radation by extracellular proteases, DNAse and RNAse. A
possibly selective package process during EV formation
and shedding may lead to the reduced complexity of the
contents [83, 84].
EV were originally considered a cleaning system to

trash away the unnecessary molecules from cells. How-
ever, accumulated evidence demonstrates that EV influ-
ence their microenvironments by altering signaling
pathways and delivering genetic information to other
cells within close proximity [85–88]. Today, EV are ac-
cepted as potent mediators of cellular communication
and as selectively packed delivery vehicle, which can
provide clues to EV biogenesis, targeting, and cellular
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effects [87–89]. EV may also be used as a source of bio-
markers for disease diagnosis, prognosis and response to
treatment [89, 90]. Since EV can be readily isolated from
multiple biological fluids (e.g., urine, serum, plasma,
pleural effusion and saliva et al.), they have been consid-
ered to contain non-invasive biomarker candidates. In
some pathological conditions including urological cancers,
EV are easily secreted into the urine, and the urinary
EV contain rich molecular information specific to the
disease conditions such as cytoplasmic RNAs, miR-
NAs, metabolites and proteins [91]. Several disease-
associated proteome were identified in urine from pa-
tients. Since EV-based urinary biomarkers are cell-free
and do not rely on the presence of shed cells, urine
provides a promise for the easy detection of bladder
diseases [92, 93].
Unfortunately, there is no gold-standard technique for

enriching and isolating EV in the clinical practice [94].
Nevertheless, several techniques have been developed to
enrich and isolate urinary EV. This section discusses the
different methods used to isolate urinary EV. Before iso-
lating EV, it is advised to remove well-known abundant
proteins in urine (e.g., uromodulin) [95]. Step-wise dif-
ferential ultracentrifugation including low speed and
high-speed centrifugation, and immuno-affinity and
peptide-based isolation methods can be applied. The so-
called Vn-96 peptide, based on surface marker of EV,
was introduced to capture EV from biological fluids in-
cluding urine. ExoQuick-TC™, Exospin™, and miRCURY™
EX isolation kits are based on aggregating agents
followed by a low-speed centrifugation. Size-exclusion
chromatography was also introduced to fractionate urine
samples and isolate EV. Exochip™, a microfluidic-based
method, has been recently shown to isolate EV. In par-
ticular, the hydrostatic dialysis method is efficient to en-
rich EV from highly diluted samples with molecular
weight cut-off of 1000 kDa [94]. After omics analysis is
done using EV isolated from urine samples, data can be
analyzed using three major publically accessible EV-
associated databases, EVpedia, ExoCarta, and Vesiclepe-
dia [71, 96].
Because the variable results have been obtained with

different isolation techniques, further discussion on the
standard protocols for EV isolation, and normalization
problem, which are major obstacles for the quantitative
omics studies of EV, will be needed to apply this inter-
esting biological resource into clinical practice.

Computational approaches to integrate data for better
knowledge extraction
Using all information available from a wide variety of
sources, including behavioral, genomic and life-style data
has been coined “Big Data”. In clinical research, Big Data
approaches show promise to connect information for

individualized therapy approaches, called Personalized
Medicine, once Big Data Initiative has been shown to
lead to new scientific insights to better understand the
biology [4]. Omics studies generate long lists of inter-
connected genes, proteins and metabolites, which may
be integrated in clinical settings via computational ap-
proaches [18, 21, 28, 75]. The systems approach, inte-
grating multi-omics, data will increase the reliability of
discovering biomarkers and development therapeutic
strategies for bladder diseases.
Currently available tools for integrating omics data

can be categorized (i) to identify parameters of disease-
associated biological networks and (ii) to identify
pathway-based targets. Computational methods and tools
for identification of important molecular targets and bio-
marker candidates are summarized. The major network-
based visualization tools includeVANTED (https://immer-
sive-analytics.infotech.monash.edu/vanted/), VisAnt
(visant.bu.edu/), Metscape2 (metscape.ncibi.org/mets-
cape2/), Arena3D (arena3d.org/) and MetaMapR [97]. In
order to construct a disease-perturbed network, several
softwares and integrative querying systems for interaction
information (PSICQUIC), network modeling and analysis
tools (STRING [98] and Cytoscape [99]), and pathway ana-
lysis (KEGG [100]) might be useful. Commercial tools (e.g.,
GeneGo and Ingenuity Pathway Analysis (IPA)) are also
helpful to construct a network. For pathway visualization,
various tools are available, including Pathguide
(www.pathguide.org/), KEGG-based pathway visualization
tool (www.genome.jp/kegg/pathway.html), Paintomics
(www.pantomics.com/), ProMeTra (https://www.cebite-
c.uni-bielefeld.de/polyomics/index.php/comics-software/
75-prometra/), KaPPa-View (kpv.kazusa.or.jp/), MapMan
(mapman.gabipd.org/), MAYDAY, and PaVESy (pavesy.m-
pimp-golm.mpg.de/). Based on the biochemical activities
extracted from experimental datasets, interactive pathways
can be constructed [101].
Importantly, in order to extract biological knowledge

and to perform successful data integration across mul-
tiple resources, it is always essential to understand the
context of the biology. Most current approaches, maybe
with the exception of the Ingenuity Pathway analysis,
are ignorant of disease etiologies and common patho-
logical information that are very well known to clinical
scientists. Hence, it is critical that scientists using path-
way or genomic software are aware of this pitfall and
use such network analyses only as additional tool to
structure data and information, but not to expect im-
mediate understanding. Only under careful interpret-
ation of clinical knowledge and scientific literature can
Omics data and software provide new hypotheses on
undiscovered biological pathways and processes, even-
tually allowing us to personalized care and therapies on
bladder diseases.
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Potential biomarkers of bladder diseases
Next, we review the current state of proteomics and
metabolomics in conjunction with recent technical ad-
vances in mass spectrometry in this section. The key ap-
plications and achievements by urinary proteomics and
metabolomics in clinical biomarker research are dis-
cussed. Focus will be given to PCa, BCa, BPH and IC
among other urological diseases. Examples of urine–
based biomarkers suggested by previous studies are
shown in Fig. 3.

Urinary biomarkers for prostate cancer
As the second most prevalent cancer in men, PCa’s inci-
dence reaches 899,000 new cases and 258,000 deaths per
year [102]. One of the gold standard diagnostic tools for
PCa progression detection is the measurement of pros-
tate specific antigen (PSA) in serum [102].
There have been many proteomic approaches to iden-

tify the urine-based biomarkers of PCa. For example, a
large study using urine samples from 591 patients re-
ported Annexin A3, a calcium-binding protein that plays
a role in the regulation of cellular growth and in signal
transduction pathways, as a novel urine-based biomarker
for early PCa detection when used in conjunction with
PSA [103]. Using CE-MS, 12 urinary biomarkers for
PCa, including sodium/potassium-transporting ATPase
γ, collagen α-1(III), collagen α-1(I), psoriasis susceptibil-
ity 1 candidate gene 2 protein, hepatocellular carcinoma
associated protein TB6, histone H2B, osteopontin, poly-
meric Ig receptor, transmembrane secretory component,
prostatic acid phosphatase, fibrinogen α chain precursor,
and semenogelin 1, were identified and validated (91 %
sensitivity and 69 % specificity) [104].
These findings strongly suggest that the use of a panel

of biomarkers for disease diagnosis rather than a stand-
alone biomarker, which may not be as specific, would

benefit to diagnostic precision. However, unfortunately,
currently none of these urinary protein biomarkers have
been introduced into clinical practice, since current
diagnostic biomarkers are suboptimal and of poor utility
for low-grade disease and surveillance. To become rou-
tine tests, these biomarker candidates should be carefully
tested in multicenter clinical trials and should be mea-
sured in biological fluids by robust, standardized analyt-
ical methods.
For development of metabolite markers, both LC-MS

and GC-MS methods were applied to profile various
clinical samples (including tissues, urine, and plasma)
from PCa patients and identified 87 metabolites that dis-
tinguished PCa from normal subjects [105]. This study
suggested that an interesting urinary metabolite, sarco-
sine (N-methylglycine), associates with PCa progression
to metastasis with significant predictive value [105]. A
following nested case control study showed that urinary
sarcosine (and cysteine) levels were significantly higher
in 54 PCa patients who had a recurrence after treatment
[106]. However, another follow-up study done using an
independent cohort of 106 PCa patients failed to repro-
duce the ability of urinary sarcosine (normalized to cre-
atinine) as a PCa biomarker [107]. It is certainly possible
that sarcosine may serve only as cell-internal signal, and
not be excreted or shed into biofluids.
In addition, several cell-free and exosome-derived

urinary microRNAs were suggested as PCa biomarkers
[43]. The following reports provided evidence that circu-
lating miRNAs might be a next-generation biomarker
and contribute to cancer screening in non-invasive li-
quid biopsy. Only few studies for PCa-associated miRNA
in urine were reported. Five of the miRNAs were differ-
entially quantified in PCa patients compared to controls
(miR-107, miR-574-3p, miR375, miR200b and miR-141)
in urine of men with cancer, compared to that of healthy

Fig. 3 Examples of urine-based proteomic and metabolomic signatures of urological diseases
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volunteers [108]. Among them, two miRNAs (miR-141
and miR-375) were also found higher in the PCa patient
blood [108]. In the case of miR-141, the urinary levels
were approximately 50 fold higher in metastatic PCa pa-
tients, compared to the healthy controls. Nilsson et al.
found that exosomes were carriers for the TMPRSS2:ERG
fusion, which is an early molecular event associated with
PCa invasion, and PCA3 RNA.57, which were originally
found as PCa biomarkers in prostate tissues [108].
Recently we also found interesting urinary miRNAs in-

cluding virus-encoded miRNAs, which are specific to
PCa, suggesting that this miRNA panel can be usable for
the clinical setting [88]. This miRNA panel showed
much better specificity and sensitivity to PSA for the
early PCa patients whose serum PSA levels are undetect-
able [88]. In addition to RNA detection, proteomic pro-
filing of exosomes and EV in human urine is underway
and may lead to new biomarker development for a var-
iety of diseases, including urological cancers and other
benign diseases, with a hope of the potential use of EV
as reservoirs of disease biomarkers.

Urinary biomarkers for bladder cancer
Urinary bladder cancer (BCa), the fourth most common
cancer worldwide, is a significant cause of morbidity and
mortality with a high recurrence rate [109]. For a follow-
up surveillance, the diagnostic methods have been
mostly instrumental in approaches including cystoscopy
and cytology, which are painful and invasive. Thus, the
molecular assays in a non-invasive fashion are needed
for BCa patient surveillance at an early stage. High-
throughput proteomic profiling technologies will identify
molecular signatures that are associated with BCa, and
will provide us understanding on bladder cancer biology,
eventually leading to the development of targeted thera-
peutics [57, 110].
The complementary techniques of high-resolution MS

and Western blotting/dot blot were able to quantify the
urinary proteome specific to NMIBC. 29 proteins had a
significantly higher abundance (p < 0.05) in urine sam-
ples of NMIBC compared with matched controls [111].
Another MS analysis using a Bruker Ultraflextreme
MALDI-TOF-MS revealed that the urine peptidome was
associated with MIBC [57, 112]. Using hexapeptide-
based library beads and an antibody-based affinity col-
umn using the iTRAQ technique, six apolipoproteins
(APOA1, APOA2, APOB, APOC2, APOC3, and APOE)
were suggested as BCa-associated urine proteins [112].
In this study, SAA4 and ProEGF were also significantly
altered in BCa subgroups [112]. The combined signa-
tures of SAA4 and ProEGF were demonstrated to have a
good diagnostic capacity (AUC = 0.80 and p < 0.001) on
BCa [112]. The other urine proteomic study using 2-DE
MS demonstrated the increased level of urinary

apolipoprotein-A1 (Apo-A1) in BCa patients compared
to control subjects. Additional validation assays (n = 379)
supported that Apo-A1 could be used as a BCa bio-
marker with a sensitivity and specificity of 89.2 and
84.6 %, respectively [113].
An unbiased global metabolomic profiling using high-

performance liquid chromatography-quadrupole time-
of-flight mass spectrometry (HPLC-QTOFMS) profiled
urine metabolites of BCa patients and controls. Compre-
hensive data analyses suggested 12 differential metabo-
lites that contributed to the distinction between the BCa
and control groups with a great sensitivity (91.3 %) and
specificity (92.5 %) (AUC = 0.937) [114]. Interestingly,
BCa-associated urinary metabolomes are enriched in
glycolysis and beta-oxidation [114]. Recent urine meta-
bolic profiling was performed on two subject cohorts
with and without BCa in three independent platforms,
which include ultrahigh-performance liquid chromatog-
raphy/tandem mass spectrometry (UHPLC-MS/MS) in
the negative ion mode, UHPLC-MS/MS in the positive
ion mode, and GC-MS. As a set of candidate biomarkers
for bladder cancer, 6 biomarkers (palmitoyl sphingomye-
lin, lactate, gluconate, adenosine, 2-methylbutyrylglycine
and guandinoacetate) were suggested [115].
There is no study on urine exosome-derived miRNA

signature associated with BCa, however, exosome prote-
omics studies demonstrated exosomes were highly puri-
fied from cultured BCa cells. Using ultracentrifugation
on a sucrose cushion, Western blotting and flow cytome-
try of exosome-coated beads, 18 urine exosome proteins
(e.g., basigin, galectin-3, and trophoblast glycoprotein
(5 T4) et al.) were identified and validated [116], suggest-
ing that exosomes in urine are a highly stable resource of
biomarkers for BCa.

Urinary biomarkers for BPH
Incidence of benign prostatic hyperplasia (BPH), the
most common benign disease among men, is known to
be associated with age. Since BPH patients have similar
symptoms to those of PCa patients, there have been
diagnostic challenges in clinical settings.
The urine proteome-based method for discrimination

of BPH from high-grade prostatic intraepithelial neopla-
sia or PCa was developed through testing 407 patient
samples using MALDI-TOF [73]. Recently performed
urinary proteome profiling of men with BPH vs. PCa
using iTRAQ LC/LC/MS/MS have identified 25 proteins
that were differentially expressed in urines [73]. Three
proteins, β2M, PGA3, and MUC3, were further validated
by western blot analysis. The combination of these three
proteins showed an AUC of 0.710 (95 % CI: 0.631–
0.788, P < 0.001) and enhanced a diagnostic accuracy
when combined with PSA (AUC = 0.812, (95 % CI:
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0.740–0.885, P < 0.001), suggesting a useful biomarker
candidate panel segregating BPH from PCa [9].

Urinary biomarkers for IC
IC is a chronic bladder syndrome with bladder pain,
urinary frequency/urgency, pressure, discomfort, and
nocturia, which cause the suppressed physical function
and social activity and adverse impact on the quality of
life [117–119]. Approximately 1 out of 77 people in the
United States have been diagnosed with IC. There is no
gold standard for IC diagnosis. Objective diagnostic
markers are urgently needed to improve prospects for
clinical care. Etiologies of IC remain unknown. Prescrip-
tion of medications has not been clearly suggested in
clinical settings. Thus, there is a clear clinical need for
the identification of biomarkers of IC.
The urine-based omics approaches to identify IC diag-

nostic markers have been employed. A small glycosylated
peptide, antiproliferative factor (APF) was found in urine
samples derived from IC patients [120]. Urinary APF bio-
activity could segregate IC patients from controls (94 %
sensitivity and 95 % specificity). The following global and
unbiased quantitative proteomics combined with bioinfor-
matics analysis performed by our group has enabled us
to reveal the in vitro APF signaling network [121, 122].
Additional proteomics profiles associated with IC were
suggested by studies using various technologies. Using
2-DE and MALDI-TOF, urine samples from 9 IC patients
and 9 asymptomatic controls were analyzed, and the pro-
teins such as uromodulin, kininogens (precursors of kinin)
and inter-α-trypsin inhibitory heavy chain H4 were signifi-
cantly altered in urine samples of IC patients [123]. A
study by Kuromitsu et al. suggested that neutrophil elas-
tase is significantly higher in IC subset with bladder pain
and small bladder capacity than in other IC patients and
healthy controls by using the 2D-DIGE nanoLC-MS/MS
[124]. Another urinary proteome identified by Goo et al.
revealed that α-1B-glycoprotein, orosomucoid-1, trans-
thyretin and hemopexin were altered in 60 % of IC pa-
tients compared to controls [125].
A few attempts to use metabolomics analysis to iden-

tify an IC signature have suggested promising metabolite
signatures specific to IC. Fukui et al. used ultra-
performance liquid chromatography-mass spectrometry
(UPLC-MS) and found that the urinary ratio of phenyla-
cetylglutamine to creatinine can be correlated to the
clinical grade of IC (e.g. mild to severe based on symp-
toms) [126]. A report from Van et al. has suggested that
IC patients exhibited distinct MS and NMR spectral pat-
terns from non-IC patients [127]. With follow-up studies
in a larger cohort, global metabolite profiling combined
with multivariate statistical and bioinformatics analysis
may validated some of these compounds as important
biomarker metabolites contributing to the biological

responses, such as the drug-induced toxicity, or response
as metabolic biomarkers.

Conclusion: concluding remarks and perspectives
In this short review, we have provided information on
the current state of ‘omics’ studies and available data
sets relevant to bladder health and pathological condition,
and presents opportunities for new research directed at
understanding the pathogenesis of this complex condition.
We believe that the ultimate goals of urine profiling of
proteome and metabolome should be (i) to identify non-
invasive diagnostic and prognostic biomarkers of bladder
diseases, (ii) to better understand the biology of bladder
diseases, and (iii) to determine the therapeutic strategies
targeting the critical pathways of various bladder diseases.
Recent efforts in the generation of large genomics, tran-
scriptomics, proteomics, metabolomics, and other types of
‘omics’ data sets have provided a series of urinary bio-
marker candidates of bladder diseases. In spite of much
efforts to identify candidate urinary biomarkers, it is still
required to validate such markers in larger numbers of
urine samples using targeted proteomics and metabolo-
mics analyses in a prospective way.
Diagnostic and treatment modalities, even subjective

diagnostic tools, are largely unavailable. As described
here, our attempts to perform a systematic review and
to build a pooled database using existing public ‘omics’
data associated with bladder health and various patho-
logical conditions revealed the significant limitations and
challenges facing investigators in the field. Many reports
have suggested that natural diversity of patient popula-
tion clearly plays a role in the difficulty of validating
urine biomarkers. Expanding tests to include the general
population often leads to loss or decrease in sensitivity.
However, if tests are used for patients presenting specific
symptoms in the clinic, and not for the general popula-
tion, to inform about prognosis or treatment options,
the pitfalls of general-population based urinary bio-
markers may be alleviated. However, the cost of develop-
ing and validating a clinical grade assay is clearly beyond
regular laboratory funding and would require concerted
efforts by health agencies.
Collectively, despite these numerous pitfalls, urine is an

interesting source of biomarkers for monitoring the blad-
der health. Rather than a single urinary molecular bio-
marker, a panel of biomarkers may be required to achieve
the overall high level of specificity needed, so the trend is
shifting towards implementing a panel of biomarkers,
which may increase specificity. In order to translate poten-
tial biomarkers to clinical practice, vigorous validation
must be pursued, with input from industry or large collab-
orative studies. Computational approaches combined with
high quality ‘omics’ data could provide new insights in
the field, essential molecular details about regulatory
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mechanisms and perturbations leading to bladder dis-
eases, and essential information if we are to offer im-
proved diagnostic capability and treatment strategies
for patients.
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INTRODUCTION

Cancer immuno-therapeutics or tumor immunotherapy 
in essence can be viewed as anticancer therapies to spark 
the body’s immune system to help fight against cancer 
[1,2]. In the last several years, new insights into tumor 
immunology have lead to the development of a new class of 
drugs termed “immune checkpoint inhibitors”– several of 
which have demonstrated impressive antitumor responses 
in several malignancies, including melanoma, non-small cell 
lung cancer (NSCLC), and renal cell carcinoma (RCC). The 
personalized cancer immunotherapy (PCI) aims to provide 
each patient with a treatment tailored to harness his or her 
own immune system to fight cancer [3,4]. 

Currently, two representative tumor immunotherapies 
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are in use in various cancer types–T-cell therapy and 
immune checkpoint blockade. The T-cell therapy is based 
on the specialized T cells produced by the immune system 
to target cancer cells, while immune checkpoint inhibition 
targets immune regulatory mechanisms and enhancing the 
immune system to attack cancer cells. These therapies are 
effective for some portion of patients with metastatic cancer. 
By blocking the PD-1–PD-L1 pathway, cancer cells become 
exposed and the immune system becomes triggered to send 
out the alerting messages and launch a system-wide attack 
on cancer cells [3,5].

Bladder cancer (BC) is the second most common 
urological malignancy in humans. There are an estimated 
76,960 new cases of cancer in the urinary bladder every year 
in the United States (US). In 2016, there are expected to be 
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16,390 deaths resulting from BC, with the 5-year survival 
rate failing to improve significantly in the last 10 years. 
The clinico-pathologic feature classifies BC into 2 groups; 
nonmuscle invasive bladder cancer (NMIBC) and muscle-
invasive bladder cancer (MIBC). MIBC is the main cause 
of cancer-specific deaths in BC patients [6,7]. NMIBC shows 
better survival than other malignancies, however, 30%–50% 
of patients with NMIBC will experience frequent recurrence 
after removing the primary tumor, and among them 
10%–20% will progress to MIBC [8,9]. Therefore, frequent 
recurrence and eventual progression to MIBC have been 
challenges to patients and physicians. Unfortunately, there 
have been no new U.S. Food and Drug Administration 
(FDA)-approved therapies for those who cannot tolerate or 
fail to respond to cisplatin-based chemotherapy, a current 
gold standard treatment for BC [10,11].

BC is highly immunogeneic cancer type with a higher 
rate of  mutations, due to the fact that more mutations 
associate with a higher chance of tumor antigens triggering 
the correct immune response. The immune response of 
host to tumor cells is based on their interactions within 
the cancer microenvironment. There has been reported 
various types of tumor-infiltrating immune cells in BC, and 
how the signaling pathways between tumor and tumor-
infiltrating immune cells. Immunotherapy has been used 
as a treatment for BC in the past. A portion of patients 
with moderate to high-grade BC—not those with muscle 
invasive BC—have been given intravesical immunotherapy 
with bacillus Calmette-Guérin (BCG) [12-14]. BCG is the first 
U.S. FDA-approved immunotherapy in the US and reduces 
the risk of  BC recurrence by stimulating an immune 
response. Resultantly, approximately 70% of BC patients 
go into remission after BCG therapy. Thus, the continued 
development of checkpoint inhibiting immunotherapies may 
provide a new treatment for advanced BC. Since the FDA 
granted atezolizumab (MPDL3280A, the anti-PD-L1 antibody) 
“breakthrough” status for the advanced and metastatic 
BC treatment in 2014, a couple of  large immunotherapy 
clinical trials are on going for patients with BC. By blocking 
inhibitory molecules or, alternatively, activating stimulatory 
molecules, these treatments are designed to improve pre-
existing anticancer immune responses. Currently, there are 
a number of additional immune-based BC treatments using 
immune checkpoint inhibitors (such as pembrolizumab or 
atezolizumab) in development, which include nonmuscle 
invasive disease with BCG (clinical trial NCT02324582) as 
well as neo-adjuvant or adjuvant therapy after cystectomy 
(NCT02451423, NCT02450331). Numerous ongoing studies are 
expected to establish the worth of PD-1 pathway inhibitors 

in other tumor types as well as in combinations with 
approved agents.

In summary, this short review article will provide a 
general overview of  the classical and current immune 
therapies for various cancer types. We will also discuss the 
clinical significance and impacts of  immune checkpoint 
blockage for future BC management and treatment. Finally 
we will summarize the clinical trials currently on going for 
BC patients and potential side effects.

CANCER IMMUNOLOGY AND IMMUNE 
CHECKPOINTS

Cancer immunology is the study interaction between 
the immune system and cancer cells, contributing to the 
development of  immuno-therapies such as vaccine or 
antibody therapies. The ultimate purpose of this study is the 
prevention of cancer initiation and disease progression [15-17]. 
Immune therapy modulates and boosts the patient's immune 
response of the tumor leading to an anticancer response. 
Cancer immuno-surveillance and immuno-editing have been 
proposed as mechanisms by which tumors escape control 
through the development of tumor immunogenicity by the 
body’s own immune system [15,18].

BCG has been wildly used to treat BC, in particular to 
NMIBC, as a standard-of-care. The American Urological 
Association and European Association of Urology guidelines 
suggest that the first-line of treatment in the management 
of  intermediate or high-risk NMIBC should complete 
transurethral resection of  the tumor followed by BCG 
intravesical therapy [12-14]. BCG therapy sparks the body’s 
immune system and shows some positive effects, however, 
approximately 40% of  patients show recurrence within 
2 years. Population based studies also showed that BCG 
therapy remains suboptimal and unsuccessful [19-23].

There are several inhibitory immune checkpoints bet-
ween antigen presenting cells (APCs), T cells, cancer cells, 
and normal cells et al. T cells enter the active state when 
T-cell receptors bind to the major histocompatibility com-
plex (MHC)-peptide complex on APCs or tumor cells. 
Several inhibitory checkpoints interact with their cognate 
ligands expressed on each respective tumor cell. When 
T cells encounter an antigen presented by MHC class I 
molecules on a cancer cell, the cancer cell expresses cognate 
ligands to interact with inhibitory checkpoints expressed 
on T cell. In general the immune checkpoint proteins 
are cell surface molecules on tumor-specific lymphocytes. 
There have been many advances in cancer immunology 
with immune checkpoints blockers against cytotoxic T 
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lymphocyte-associated antigen-4 (CTLA-4) and programmed 
death receptor ligand (PD-L1) et al. In next sections, we will 
further discuss immune therapies targeting these immune 
checkpoints.

TARGETING THE CYTOTOXIC T LYM-
PHOCYTE-ASSOCIATED ANTIGEN-4 
(CTLA-4, CD152) CHECKPOINT

To evade the host immune system, tumors use multiple 
strategies. In order to engage the immune system against 
tumors, the interactions between the checkpoint proteins 
and their ligands can be used to inhibit the proliferation and 
function of cancer cells. Antibodies targeting and blocking 
these immuno-inhibitory interactions have been suggested 
as a new immune therapy. Structurally homologous to the 
costimulatory molecule CD28, CTLA-4 exerts its inhibitory 
role by binding to the same ligands, B7.1 (CD80) and B7.2 
(CD86) as CD28 does, but with a much higher affinity than 
CD28 [24-26]. This competitive binding inhibits CD28-induced 
T-cell activation and decreases cytokine production and cell 
cycle transition. CTLA-4 is expressed by Tregs, which plays 
an important role in peripheral tolerance via suppressive 
activity on cytotoxic T cells.

In 2011, the FDA approved ipilimumab (also called 
as Yervoy, an immune checkpoint blocking monoclonal 
antibody to target the CTLA-4) for metastatic melanoma 
patients [27-29]. As one of the most well-known and well-
studied members of the B7 super-family, ipilimumab is used 
as an adjuvant therapy in patients with melanoma in the 
skin and lymph nodes or patients whose diseases cannot 
be removed by surgery. Ipilimumab showed a prolonged 
survival in patients with advanced melanoma. Although 
ipilimumab can produce durable long-term responses in 
patients with advanced melanoma, it showed significant 
immune-related toxicities [18]. This therapeutic effect of 
CTLA-4 is being studied [30], not only in melanoma, but also 
in the treatment of other cancers, such as glioblastoma [31-
33]. Antitumor activity by enhancing naturally or vaccine 
induced T cells was also observed in animal studies, which 
provided the evidence that the transgenic adenocarcinoma 
of the mouse prostate-C1 is implantable in the tumor line. 
Furthermore, these findings led to testing whether CTLA-
4 blockade effectively enhances immune response to reject 
tumors in men with prostate cancer in a clinical setting [34-
36]. 

TARGETING THE IMMUNE CHECK-
POINT PROGRAMMED DEATH–1 (PD-1, 
CD279)

Recent efforts demonstrated that antibodies blocking 
the PD-1 and PD-L1 pathway could have anti-tumor effects 
in the tumor microenvironment [37,38]. PD-1 is a surface 
protein in the activated T cells, and is integral in basic 
protein function throughout the body. When PD-L1 or PD-
L2 (ligands) binds to PD-1, the T cells become inactivated 
(Fig. 1). PD-L1 and the PD-1 pathway is involved in the T-cell 
immune evasion through the induction of T-cell apoptosis, 
anergy, functional exhaustion, or interleukin-10 (IL-10) 
production.

PD-1 is a type I transmembrane receptor member of 
the immunoglobulin superfamily, expressed by activated 
T cells, and binds to two ligands, PD-L1 (B7-H1, CD274) 
and PD-L2 (B7-DC, CD273)—both of  which are part of 
the B7 immunoglobulin superfamily [39-41]. PD-L1 is 
highly expressed in tumor cells, APCs, T lymphocytes, 
epithelial cells, or fibroblasts. PD-L1 secreted from PD-L1-
overexpressing tumor cells protects them from CD8+ T-cell-
mediated tumor cell lysis. Antibodies targeting either PD-1 
or PD-L1 pathways reinvigorating the immune system 
showed clinically meaningful antitumor activity in patients 
with melanoma and NSCLC, RCC, BC and head and neck 
cancers. These antibodies showed the less immune-related 
toxicities, compared to ipilimumab. PD-1 targeting drugs 
include nivolumab (MDX-1106, BMS-936558, ONO-4538), 
pembrolizumab (MK-3475), and pidilizumab (CT-011) et al—
all of which block PD-L1 from binding to PD-1, resulting in 
the T cell to continue active.

Nivolumab, which was approved by the FDA in Decem-

Fig. 1. Tumor cells or tumor-infiltrating immune cells overexpress PD-
L1 on their plasma membrane surface. PD-L1 binds to T-cell receptors 
(B7.1 or PD-1) in active T cells, deactivates cytotoxic T cells. Preventing 
PD-L1 from binding to its receptors on T cells makes T cells to remain 
active in tumor microenvironment.

T cell (active)

PD-1

PD-L1

Tumor cells

B7.1

PD-1
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ber 2014, is a representative human IgG4 subtype anti-
PD-1 monoclonal antibody that blocks ligand activation of 
the PD-1 receptor on activated T cells specific for tumor 
antigens. In the phase I studies, nivolumab was used with 
a single dose (0.3–10 mg/kg) for patients who no longer 
responded to other drugs. These treatment-refractory solid 
tumors include melanoma, colorectal cancer, castration-
resistant prostate cancer, NSCLC, and RCC. The serum half-
life of nivolumab ranged from 12 to 20 days. Nivolumab 
can be used alone or with other drugs such as ipilumumab 
and/or BRAF inhibitors for the patients with resectable 
or metastatic melanoma if they have no BRAF mutation. 
Advanced LSCLC or RCC patients who failed from cisplatin 
chemotherapy or angiogenesis inhibitor therapies along with 
patients suffering from Hodgkin’s lymphoma, can be treated 
by nivolumab. Common treatment-related side effects such 
as pneumonitis, mild fatigue, diarrhea, pruritus, anorexia, 
rash, nausea, and decreased appetite were reported. Single-
agent trials of  nivolumab are ongoing or planned across 
a spectrum of tumor types including lymphomas, NSCLC, 
melanoma after progression on anti-CTLA-4 antibody, and 
hepatocellular carcinoma in multiple clinical trials including 
NCT02038946, NCT02038933, NCT01721759, NCT02066636, 
NCT02156804, and NCT01658878.

Pembrolizumab is a humanized monoclonal IgG4 anti-
body targeting PD-1 receptor. In the preclinical setting, 
antitumor activity of permbrolizumab was demonstrated 
in animal models of multiple tumor types. Being initially 
used to treat melanoma patients, pembrolizumab was 
approved in September 2014 by the FDA. Pembrolizumab 
was tested for treatment of advanced melanoma patients 
containing a BRAF mutation with ipilimumab and a BRAF 
inhibitor. The phase I study showed that the half-life of 
pembrolizumab is 13.6–21.7 days. This trial also showed the 
37%–38% response rate in patients with advanced melanoma 
and an overall response rate of 26% in patients who had 
progressive disease after treatment with ipilimumab [42]. 

Phase II clinical trials of pembrolizumab were for NSC-
LC in patients with oligometastatic disease. Ongoing trials 
of  pembrolizumab monotherapy are being conducted in 
patients with advanced solid tumors (NCT01295827), NSCLC 
(NCT01840579) and hematologic malignancies (NCT01953692). 
Randomized trials comparing pembrolizumab to standards 
of care are ongoing in PD-L1-positive NSCLC patients in 
comparison to combination chemotherapy (NCT02142738). 
Single-agent docetaxel in ipilimumab-treatment-naive 
patients with melanoma are also being tested in comparison 
to ipilimumab and ipilimumab-refractory patients with 
melanoma.

Pidilizumab is a humanized IgG1κ recombinant anti-PD-1 
monoclonal antibody usable for the treatment of cancer and 
infectious diseases. In preclinical mouse cancer models as 
well as phase I study in patients with advanced hematologic 
cancers, pidilizumab has showed antitumor activity. The 
half-life of pidilizumab was observed very short with range 
of 217–410 hours. Phase II studies for diffuse large B-cell 
lymphoma, relapsed follicular lymphoma, or advanced 
melanoma, showed good results. However, the response rate 
of the solid tumor appeared to be less than those reported 
with the other anti-PD-1 inhibitors. Currently, the action 
mechanism of pidilizumab remains elusive.

TARGETING THE IMMUNE CHECKPOINT 
PD-L1 (B7-H1, PD-L1 LIGAND, CD274)

Another approach to targeting the PD-1 pathway is 
through antibodies that bind to and prevent the activity 
of  PD-L1—which is a 40 kDa-transmembrane protein 
expressed on activated T cells, B cells, and myeloid cells. PD-
L1 binding to PD-1 contributes to T-cell inactivation through 
regulation of  signaling pathways (e.g., NF-KB signaling). 
In animal models, a blockade of PD-1 has been tested for 
urine pancreatic carcinoma, B16 melanoma, squamous cell 
carcinoma, and CT26 colon carcinoma. PD-L1 targeting drugs 
such as BMS-936559, MPDL3280A, and MEDI-4736 et al. 
have been developed and applied to patients.

BMS-936559 is a fully humananized IgG4 antibody 
that inhibits binding of  PD-L1 to PD-1 and CD80 with 
high affinity. MPDL3280A is also a human IgG1 antibody 
that targets PD-L1. A significant response rate was noted 
in patients with metastatic melanoma, RCC, NSCLC, or 
advanced BC in recent phase I studies using MPDL3280A. 
In particular, clinical trials for BC patients suggested that 
the PD-L1 expression in tumor-infiltrating immune cells 
was correlated with a response rate. As biomarkers were 
identified with treatment response, circulating interferon-γ, 
IL-18 and activated CD8+ T cells were suggested. Large 
scale phase II trial in patients with advanced BC is ongoing 
(NCT02108652) and supported by the FDA. We will address 
these efforts in the next session in great detail.

In addition to the targeting on PD-1/PD-L1 pathway, 
recent efforts blocking some of negative immune regulators 
have been accumulated to pursue the clinical application. 
These immune regulators include LAG-3 (lymphocyte-
activation gene 3) [43,44], TIM-3 (T-cell immunoglobulin 
and mucin containing protein-3) [45,46], B7-H3 (B7 homolog 
4, B7S1, B7x, VTCN1) [41,47,48] and B7-H4/B7-Hx (V 
domain Ig suppressor of  T-cell activation, B7-H5 or PD-1 
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Homolog) et al. [41,49-51]. Proteins such as CEACAM1 
(carcinoembryonic antigen-related cell adhesion mole-cule 
1 CD66a)—a transmembrane glycoprotein that negatively 
regulates cytotoxic T-cell proliferation—have been targeted. 
In melanoma, CEACAM1 monoclonal antibody blocks 
CEACAM1 homophilic interactions and inhibits cancer cells 
response to T cell mediated lysis [52-54].

Examples of PD-1–PD-L1 pathway and other immune 
checkpoint inhibitors in clinical development were 
summarized in Fig. 2.

PRECLINICAL WORK AND CLINICAL TRI-
ALS FOR BLADDER CANCER PATIENTS

Advanced BC after recurrence is considered as one of 
the most difficult cancer types, with very low survival rates. 
No new treatment options for them have been suggested in 
the last 30 years (since 1998). The standard of care remains 

cisplatin-based chemotherapy, however, not all patients 
are eligible for this treatment. Cisplatin-based systemic 
chemotherapy administered in the neoadjuvant or adjuvant 
setting, often combined with radiotherapy, has decreased 
the morbidity and mortality from recurrent BC. Although 
these approaches are considered as a current gold standard 
for metastatic BC, treatment failure frequently occurs due 
to acquired chemoresistance. The ACS estimates that only 
5%–15% 5 years survival rate was found after recurrence 
in people with advanced BC (stage IV), while approximately 
88% of 5-year survival was shown when they were diagnosed 
in early phase (stage I). 

In particular to BC, there are ongoing and planned trials 
of single-agent or combined inhibitors targeting multiple 
checkpoints as briefly described in the previous section. In an 
early-stage phase I trial, atezolizumab—which is designed to 
target PD-L1 expressing BC and tumor-infiltrating immune 
cells and inhibit the T-cell activation [55,56]—achieved 
impressive results. There was an approximately 25% overall 
response rate in patients with PD-L1-positive metabstatic 
BC (as confirmed to have high levels of PD-L1 expression 
[e.g., score 2 or 3] by immunohistochemistry [IHC] analysis). 
Results in this study include that PD-L1 expressions were 
positively associated with better responses to atezolizumab. 
In order to evaluate PD-L1 expression on tumor cells and 
tumor-infiltrating immune cells, the investigational IHC test 
was developed by Roche Diagnostics. More than half of the 
patients with high levels of PD-L1 expression experienced 
tumor shrinkage at 12 weeks and survived at least one year 
after their treatment. Two of these patients (20%) had a 
complete response, with no signs of cancer after therapy. 
Notably, atezolizumab showed the favourable toxicity profile 
with no renal toxicity in BC patients who are generally old 
and have a higher incidence of renal impairment [57,58].

Following the success of  atezolizumab early trial, 
a randomized phase III study is ongoing to compare 

Targeting LAG-3
BMS-986016

Targeting PD-1
Nivolumab

Pembrolizumab
Pidilizumab

AMP-224
AMP-514
AUNP-12

Targeting PD-L1
BMS935559
BMS936559
MED14736
MSB0010718C
Tremelimumab

Targeting B7-H3
MGA271

Fig. 2. Examples of immune checkpoint blockade drugs for cancer 
treatment in development.

Table 1. Immune checkpoint inhibitor-based immunotherapies for bladder cancer
Clinical trial Phase Agents

NCT02302807 II MPDL3280A
Perbrolizumab 

NCT02324582 III Perbrolizumab/BCG
NCT02308943 I Nivolumab, Ipilimumab
NCT02308943 I Nivolumab, Cabozantinib, Ipilimumab
NCT01693562 I MED14736
NCT102013804 I AMP-514
NCT01943461 I MSB001071BC
NCT01391143 I MGA271

BCG, bacillus Calmette-Guérin.
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atezolizumab with standard-of-care chemotherapy in BC 
patients with relapse. Another study is used to compare 
atezolizumab effects in early-stage MIBC patients with 
high PD-L1 expression and BC patients are at risk for 
recurrence. All studies include the evaluation of an IHC test 
to determine PD-L1 expression status.

A recent Lancet paper reported results performed a by 
a single-arm, multicentre, phase 2 trial [59], which suggested 
that atezolizumab is effective in heavily pretreated patients 
with locally advanced or metastatic BC, and that response 
rates were significantly higher in patients with a greater 
expression of PD-L1 in tumor–infiltrating immune cells. This 
was the first report suggesting that the The Cancer Genome 
Atlas molecular subtypes are associated with atezolizumab 
response, and that mutation load is important to predict 
response to atezolizumab in advanced BC. These findings 
imply that genomic, molecular, and immunological factors 
are involved in the response rate, and support the idea that 
PD-L1 can be applicable as a biomarker to subclassify BC 
patients who are most likely to benefit when treated with 
atezolizumab or a combination of atezolizumab and another 
medicine. Table 1 summarizes the clinical trials.

CONCLUDING REMARKS AND PERSPEC-
TIVES

More recent efforts have accumulated on the activation 
of antitumor immunity of tumor microenvironment using 
antibodies blocking the PD-1–PD-L1 pathway. In this short 
review article, we tried to address and summarize early 
stage clinical studies and clinical trials in various cancer 
types including advanced BC. There have been much efforts 
to develop combination regimens using PD-1 blockade as 
a backbone in unison with other chemotherapeutic drugs. 
Combination therapies to treat BC involving cytotoxic 
chemotherapy, antiangiogenic agents, alternative immune-
checkpoint inhibitors, immuno-stimulatory cytokines and 
cancer vaccines are currently under clinical investigation. 
The combination treatment with checkpoint blockade and 
small molecule inhibitors is an attractive strategy since it 
would increases tumor antigen presentation. 

For the PCI, another important research topic would 
be how to monitor the responses to immune therapy in 
patients. Possibly noninvasive (or minimally invasive) and 
accurate biomarkers should be urgently needed. However, 
we currently do not have gold standard biomarkers to 
predict the likelihood of  response for each patient for 
immune checkpoint inhibitors. Efforts should be focused on 
identification of predictive biomarkers of responses, which 

may lead to advances in BC treatment and control.
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Abstract

Cholesterol and sex steroid hormones including androgens and estrogens play a critical 

role in the development and progression of urological diseases such as prostate cancer. 

This disease remains the most commonly diagnosed malignant tumor in men and is 

the leading cause of death from different cancers. Attempts to understand the role of 

cholesterol and steroid metabolism in urological diseases have been ongoing for many 

years, but despite this, our mechanistic and translational understanding remains elusive. 

In order to further evaluate the problem, we have taken an interest in metabolomics;  

a discipline dedicated to the systematic study of biologically active metabolites in 

cells, tissues, hair and biofluids. Recently, we provided evidence that a quantitative 

measurement of cholesterol and sex steroid metabolites can be successfully achieved 

using hair of human and mouse models. The overall goal of this short review article is 

to introduce current metabolomic technologies for the quantitative biomarker assay 

development and also to provide new insight into understanding the underlying 

mechanisms that trigger the pathological condition. Furthermore, this review will place a 

particular emphasis on how to prepare biospecimens (e.g., hair fiber), quantify molecular 

profiles and assess their clinical significance in various urological diseases.

Introduction

Urological health conditions have become increasingly 
prevalent in the world, affecting individuals spanning 
a multitude of ages. Prostate cancer (PC) is one such 
condition that has seen an exponential rise in the 
number of cases, with over 220,000 new cases having 
been recorded in 2015 alone. The effects of PC can even 
be seen outside of the USA, as it is the most common 
cancer among men in all developed countries. However, 
not all urological health problems are related to cancer, 
and the most common of these include the common 
occurrence of urinary tract infection, kidney stones, 

incontinence and benign prostatic hyperplasia (BPH). 
These diseases pose both a financial and physiological 
burden, indicating the need for further research in the 
prevention and study of these urological conditions. The 
use of biomarkers for early diagnosis in patients would 
be valuable in reducing the recurrence and progression of 
these urological health problems. As an example, there are 
clinical needs for biomarkers to identify PC patients who 
have aggressive disease and are more likely to experience 
disease progression, which could help increase the ability 
to manage patients with urological disease.
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Research has indicated that high levels of cholesterol 
and sex steroid hormones are risk factors of urological 
disease (Allott & Hursting 2015). A correlation has been 
studied, relating a typical Western diet to an increase in 
the risk of urological disease (Ito 2014, YuPeng et al. 2015). 
Western diet normally features a high intake of red meat 
and dairy products, providing a high intake of cholesterol 
and calories to individuals consuming such foods (Ito 
2014, YuPeng et al. 2015). These studies have also provided 
evidence that patients with a metabolic syndrome (e.g., 
obesity, impaired fasting glucose tolerance, high blood 
pressure, hypertension, dyslipidemia, type 2 diabetes and 
cardiovascular diseases) were more likely to have great 
prostate volume increase (Gacci et  al. 2015), suggesting 
a high concentration of cholesterol within urological 
disease. Hypercholesterolemia, an obesity-associated 
co-morbidity, influences approximately 20% of the US 
population (Fryar et al. 2010). Furthermore, cholesterol-
lowering drugs such as statins may reduce the risk of PC 
(Nielsen et al. 2012).

Sex steroids and their receptors play a crucial 
role in the determination of urological disease 
development. Androgen and its derivatives including 
dihydrotestosterone (DHT) are vital in not only male 
development but also the development of PC and 
BPH. Following androgen binding, androgen receptors 
undergo a multi-step process involving dimerization, 
phosphorylation and translocation to the nucleus. Once 
localized, the receptor acts as a transcription factor and 
binds to androgen receptor elements (AREs) in order to 
begin assembling a transcription complex of co-activators 
and co-repressors (Dehm & Tindall 2007). These 
complexes are key oncogenic risk factors associated with 
the increased risk of PC and BPH.

In order to better understand the metabolism and 
internal mechanisms underlying urological diseases, several 
resources have been studied. Metabolomic fingerprints 
have been analyzed in addition to the use of non-invasive 
biomarkers such as urine or blood-based assays. Hair-based 
metabolomic profiles could be useful in confirming the 
correlation between cholesterol and sex steroid hormones 
with urological diseases. Using human and animal hair 
samples in order to study the metabolite process specific to 
urological disease, our research group established the novel 
mass spectrometry-based protocols for steroid metabolomics 
with the goal of monitoring hormone levels, which can be 
used for drug treatment of PC and BPH patients.

This short review article aims to provide support for 
the claim that a correlation exists between cholesterol and 
steroid sex hormones with urological diseases. By specifically 

examining PC and BHP, we discuss the significance of 
cholesterol and steroid sex hormones associated with 
these health conditions, while also introducing current 
technologies that can be used to measure the amount of 
cholesterol and sex steroid hormones in various sources 
throughout the body (tissues, urine, blood and hair). The 
final topic deals with the use of hair metabolomics to 
identify potential biomarkers for PC and BPH.

Metabolism of cholesterol and sex  
steroid hormones

Cholesterol is a crucial component of mammalian cell 
membranes, as it serves diverse cellular functions – 
including the modulation of membrane permeability and 
fluidity (Maxfield & Tabas 2005). Cholesterol synthesis 
pathways are shown in Fig.  1. Cholesterol is also the 
precursor of all steroid hormones and bile acids and plays 
important roles in membrane trafficking, transmembrane 
signaling processes as well as cell proliferation (Goedeke & 
Fernandez-Hernando 2012). Cholesterol is made from the 
conversion of citrate, derived from the tricarboxylic acid 
(TCA) cycle in the mitochondria. Here, acetyl coenzyme A 
(acetyl-CoA) is formed and followed by the mevalonate 
pathway. This combination of reactions is primarily 
regulated by a rate-limiting step catalyzed by 3-hydroxy-
3-methylglutaryl-coenzyme A (HMG-CoA) reductase, an 
integral membrane protein of the smooth endoplasmic 
reticulum, which converts HMG-CoA to a six-carbon 
intermediate mevalonate. This intermediate is then 
metabolized via a series of isoprenoid intermediates to 
squalene (the polymerization of six five-carbon isoprene 
units to form the 30-carbon linear structure of squalene). 
The cyclization of squalene reacted by squalene cyclase 
and one molecule of O2 forms the four fused rings of 
the steroid nucleus, which results in the synthesis of 
lanosterol as a cholesterol precursor.

Cholesterol in tissues and blood is metabolized as 
follows. First, it can be fatty acylated to form cholesteryl 
esters (CEs) through sterol O-acyltransferase (also called 
acyl-CoA cholesterol acyltransferase or simple ACAT) or 
lecithin-cholesterol acyltransferase (LCAT, also called 
phosphatidylcholine-sterol O-acyltransferase). The CEs 
then serve as a major form of transporter as plasma 
lipoproteins, or as storage units in the form of lipid droplets 
(Kraemer 2007). Secondly, cholesterol can be oxidized 
to form oxygenated derivatives of cholesterol, termed 
oxysterols, by enzymatic (hydroxylase, cytochrome P450 
(CYP) families) or non-enzymatic hydroxylations at the 
C-4, C-7, C-19, C-20, C-24, C-25 and C-27 positions 
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(Pikuleva 2006, Son et al. 2014, Seo & Choi 2015). Oxysterols 
serve as regulators of cholesterol homeostasis, allowing 
cells to manage large cholesterol loads rapidly and avoid 
triggering cytotoxic events (Bjorkhem 2002, Bielska et al. 
2012). For example, cholesterol activates 7α-hydroxylase 
(CYP7A1), which produces 7α-hydroxycholesterol as the 
major pathway for elimination of cholesterol from the 
body (Bjorkhem 2002). In addition, the most important 
oxysterols (as transport forms of cholesterol) are side 
chain-oxidized oxysterols at the C-24 or 27 position by 
CYP46 and CYP27, respectively, which flow continuously 
from peripheral tissues to the liver and become further 
oxidized into bile acids or other water-soluble metabolites 
(Nielsen et al. 2012). 4β-hydroxycholesterol catalyzed by 
CYP 3A4 may indicate slow elimination when its levels 
are high in the blood (Bodin et  al. 2002). In addition, 

the 25-hydroxycholesterol that is produced and secreted 
by macrophages can regulate interleukin-1β, a potent 
cytokine, facilitating cross talk between cholesterol 
metabolism and the immune system (Simon 2014).

Cholesterol is also metabolized to steroid hormones, 
which regulate physiological and pharmacological 
processes in the body (Falkenstein et  al. 2000). 
Steroidogenic enzymes are responsible for the biosynthesis 
of cholesterol from various steroid hormones including 
corticoids, progestins, androgens and estrogens. 
These are generally synthesized in the adrenal cortex, 
gonads (testes and ovaries), brain, placenta and adipose 
tissue (Falkenstein et  al. 2000, Payne & Hales 2004). In 
biosynthetic pathways of steroid hormones, two major 
types of enzymes are involved: cytochrome P450 enzymes 
(CYPs) and hydroxysteroid dehydrogenases (HSDs). 

Figure 1
Overview of cholesterol and steroid hormone pathways.
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Initially, steroid hormones start with the conversion of 
cholesterol to pregnenolone by rate-limiting enzyme 
CYP11A (cholesterol side-chain cleavage), which is bound 
to the inner membrane of the mitochondrion in all 
steroidogenic tissues. This acute regulation is mediated 
by the steroidogenic acute regulatory protein (StAR) on 
the outer membrane, which facilitates the rapid influx 
of cholesterol into mitochondria (Payne & Hales 2004, 
Miller 2008).

Cholesterol and sex steroid hormones in 
prostate health

Cholesterol, a critical component of the cellular 
plasma membrane, contributes to the maintenance 
of plasma membrane fluidity. Also, cholesterol is an 
important component of lipid raft micro-domains on 
plasma membrane and regulates intracellular signaling 
processes (Krycer & Brown 2013). Cholesterol is also 
the precursor for endogenous sex steroid biosynthesis, 
suggesting that elevated serum cholesterol levels might 
be somehow linked to the increased risk of prostate 
cancer (Fagherazzi et  al. 2010). Steroid biosynthesis 
may be an important mechanism linking cholesterol 
and prostate cancer and BPH.

StAR and CYP11A are involved in converting 
cholesterol into pregnenolone and progesterone, which 
are sequentially converted to DHEA and androstenedione 
by CYP17A. DHEA is then converted to form testosterone 
and then DHT via HSD3B, HSD17B3 (or AKR1C3) and 
SRD5A. The 5α-androstanedione pathway leads to produce 
DHEA, androstenedione and then testosterone. There are 
multiple enzymes, which actively play roles in cholesterol 
and sex steroid hormone synthesis. AKR1C1 converts 
DHT to 5α-androstane-3,17-diol (3α-androstanediol or 
3α-diol) and AKR1C2 converts DHT to 5α-androstane-
3,17-diol (3β-diol). UGT2B15 and UTG2B17 irreversibly 
inhibit androgen signaling by glucuronidation, which is 
the known rate-limiting step of androgen signaling.

Prostate epithelial cells have higher cholesterol 
content, compared with other organs, and cholesterol 
levels increase during progression of normal healthy 
prostate into PC or BPH (Krycer & Brown 2013), suggesting 
that cholesterol accumulation may benefit prostate cancer 
or BPH progression. Accumulating evidence demonstrates 
that elevated cholesterol is a risk factor of more aggressive 
PC – in terms of recurrence or mortality (Platz et al. 2008, 
2009, Farwell et al. 2011, Mondul et al. 2011, Shafique et al. 
2012). Our previous studies also support the hypothesis 
that cholesterol promotes PC growth in vitro and in vivo 

(Zhuang et  al. 2002). Cholesterol-lowering drugs (e.g., 
statins, zetia or combination of both) also lowered serum as 
well as intratumoral androgen levels, leading to the arrest 
of tumor growth (Mostaghel et al. 2012). Statins have been 
used for patients with cardiovascular diseases (Ridker & 
Cook 2013). There are a series of epidemiological studies 
suggesting that statins could reduce cancer risk (Farwell 
et  al. 2008), chronic inflammation and angiogenesis 
(Demierre et al. 2005, Pelton et al. 2012). However, several 
meta-analyses have also reported a null association 
between statin use and risk of prostate cancer recurrence 
(Mass et al. 2012, Park et al. 2013, Scosyrev et al. 2013), 
suggesting that they remain contradictory in the field.

Analytical techniques for sex  
steroid metabolome

Tissue- and biofluid-based metabolite profiling

As the most common specimens used in biomarker 
discovery, tissues and biological fluids have been used 
for metabolite profiling. Both formalin-fixed, paraffin-
embedded (FFPE) and fresh-frozen tissue specimens can be 
used for the tissue-based metabolomic studies. Metabolite 
extraction from FFPE tissues includes de-paraffinization 
steps with xylene, homogenization in MeOH:H2O 
solution (1:1 v/v), vortexing and sonication.

Biofluids such as urine and serum have a great 
advantage of being the easiest samples to work with, 
urine being the most common and accessible samples 
for metabolomic analyses. Metabolome in urine can be 
greatly influenced by age, occupation, environmental 
factors, different diets, hormones and lifestyle such as 
exercise, and urine specimens should be immediately 
stored within a few hours after sample collection at –80°C 
until further analysis.

In order to identify the steroid signatures and to  
suggest steroid metabolism-associated enzyme activities 
through profiling of tissues or biofluid-derived metabolites, 
we can use quantitative mass spectrometry combined 
with gas or liquid chromatographic separation techniques  
(GC–MS or LC–MS) for steroid profiling. Our previous 
studies to develop the quantitative steroid signatures using 
GC–MS (Ha et al. 2009, Moon et al. 2009) demonstrated that 
we could measure concentrations of over 65 endogenous 
steroids and cholesterols in plasma or urine samples at a 
time. In addition, LC–MS-based steroid profiling enables 
to quantify 21 endogenous corticoids including urinary 
glucocorticoids and mineralocorticoids (Cho et al. 2009). 
Both GC–MS and LC–MS urinary steroid signatures were 
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applied into the samples obtained from patients with PC 
or BPH from age- and gender-matched healthy subjects.

As a good example, our GC–MS analysis data showed 
that urinary cholesterol levels in BPH patients were 
significantly increased in those with healthy controls 
(P = 0.015) (Fig. 2A). First morning urine samples obtained 
from 59 BPH patients (age: 65.3 ± 8.2 years) and 41 
healthy male subjects (age: 56.7 ± 7.1 years) were used 
for this analysis. We screened various cholesterol and sex 
hormones and found that cholesterol level could segregate 
BPH patients from healthy controls (AUC, 0.66) (Fig. 2B).

Hair metabolomics for hair-based metabolite profile

Although urine and blood are widely used to measure 
sex steroid hormones in many clinical and toxicological 
studies (Wudy et al. 2000, Choi et al. 2011, Choi & Chung 
2015, Son et al. 2015), their concentrations fluctuate on 
a daily basis. Additionally, careful handling of biological 
fluids is required for sample collection, handling, 
processing, storage and transport to the laboratory 
(Tworoger & Hankinson 2006) under controlled 
circumstances. In contrast, hair grows about 1 cm per 
month (Wennig 2000). Thus, it can offer the possibility of 
reflecting and revealing historical information of exposure 
to drug abuse, environmental toxins and endogenous or 
exogenous hormones over several months (Villain et al. 
2004). Moreover, hair sampling is non-invasive and the 
storage and processing of it is much simpler than plasma 
or serum (Sulek et  al. 2014). Therefore, hair analysis 
has been used in chemical toxicology, forensic science, 
doping control and clinical applications (Cho et al. 2010, 
Pichini et  al. 2012, Choi et  al. 2013, Gray et  al. 2013, 

Pereg et al. 2013, Chan et al. 2014, Veldhorst et al. 2014, 
Son et al. 2016).

Sample preparation: extraction from hair 
fiber Hair analysis in steroid research is mainly coupled 
with solubilization or digestion of the hair matrix after 
cutting (Choi et  al. 2001a, 2013, Cho et  al. 2010). In 
general, androgens and sterols are extracted from the 
hair matrix by alkaline hydrolysis involving the complete 
digestion of hair (Choi & Chung 1999, Choi et al. 2000, 
Ryu et al. 2006), whereas corticoids are unstable under 
these conditions. Hence, ultrasonication with an organic 
solvent was also tested for steroid profiling including 
androgens, sterols, corticoids and progestins, which 
enables the profiling of hair steroids (Jung et al. 2011). 
A mixed solvent of methanol and dichloromethane is 
an effective solvent for lipid extraction from biological 
samples (Folch et al. 1957). However, absolute methanol 
was chosen as the extraction solvent to decrease sample 
complexity and simplify the sample purification steps. 
The hair strands were washed with isopropyl alcohol to 
prevent contamination and were then obtained simply 
by cutting the specific lengths from the proximal part 
of the vertex scalp (Jung et al. 2011). Thirty milligrams 
of chopped hair were incubated with 0.5 mL methanol 
in an ultrasonic bath for 1 h at 50°C. After cooling to 
room temperature, a methanolic solution was diluted 
with 5.5 mL sodium acetate buffer (pH 5.2) to less than 
8% methanol. The samples were loaded directly onto the 
Oasis HLBTM (divinylbenzene and N-vinylpyrrolidone) 
solid-phase extraction (SPE) cartridge, which is preferable 
for the sample purification of steroidal compounds 
(Moon et  al. 2009, Choi & Chung 2015). The SPE 
procedure removed more effective interference from the 
hair matrix and gave a lower matrix background than 
liquid–liquid extraction (LLE) (Mondul et  al. 2011). 
However, these extraction processes require a relatively 
large amount of hair matrix and extensive, time-
consuming pretreatment procedures.

Recently, the pulverization method has been used to 
highly disintegrate hair components and has allowed for 
efficient extraction (Miyaguchi et al. 2007, Kim et al. 2011, 
Son et al. 2016). Compared with our previous techniques 
(Ryu et  al. 2006, Jung et  al. 2011), this method enables 
increased extractable surface area of the hair matrix 
through the destruction of the cuticle layer and thereby 
the permeation of an extraction solvent into the hair. The 
pulverization of hair using a ball mill such as zirconia beads 
was achieved for improved extraction yields of steroids 
and sterols and therefore can reduce sample preparation 

Figure 2
Our metabolomic profile showing the distinct patterns between prostate 
cancer and healthy controls.
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times as well as sample amounts significantly. Therefore, 
hair steroid analysis has been successfully applied in 
clinical applications using sampling of 100–150 strands of 
hair and extraction from a minimum of 10 mg (Choi et al. 
2013). Hair sterols were measured in only two strands of 
3 cm hair segments, corresponding roughly to a period of 
recent 3 months.

The sample preparation technique is also required 
for the removal of endogenous matrix components 
from lipid-rich samples. In particular, phospholipids are 
extremely abundant in hair as well as blood (Singh & 
Gershbein 1967). The use of hybrid precipitation/SPE  
plates for selective removal of phospholipids and 
precipitated proteins has been increasing over the past 
few years (Bylda et al. 2014). The hybrid SPE-precipitation 
cartridge (H-PPT) applies to reduce the phospholipid-
based matrix effect, which is a superior purification 
method for sterol analysis (Pucci et al. 2009, Son et al. 
2014) relative to membrane filtration (Miyaguchi et  al. 
2007). The H-PPT specifically retains phospholipids by 
Lewis acid–base interactions between the zirconia-coated 
silica particles bonded to the stationary phase and the 
phosphate group of the phospholipids, which provides 
simple yet rapid selective removal of interference (Bylda 
et  al. 2014). When the extraction recoveries of the 
sterols were compared at different pulverization times 
(1, 2, 5, 10, 15 and 20 min) and different frequencies 
(10, 15, 20, 25 and 30 Hz), 10 min at 25 Hz was chosen 
as the optimized extraction method (Son et  al. 2016). 
To facilitate sterol extraction, two strands of 3 cm-long 
hair samples were pulverized in 0.5 mL methanol using 
a TissueLyser for 10 min at 25 Hz in a 2 mL Safe-Lock 
tube containing three zirconia beads (3.0 mm I.D.). 
Bead-assisted liquid–liquid extraction via the addition 
of methanol and then centrifugation can be achieved 
simultaneously with pulverization, extraction and 
protein precipitation (Son et  al. 2016). Samples were 
then loaded into H-PPT cartridges and eluted three times 
with 0.5 mL methanol. The matrix background such 
as proteins and phospholipids was easily removed and 
finally hair sterols were collected.

Sample pretreatment: chemical derivatization In 
GC separation, derivatization of steroid molecules is a 
prerequisite step to generate compounds with better 
volatility, thermal stability and thereby improved 
chromatographic properties (Marcos & Pozo 2015). The 
common reactions used in GC analysis are silylation, 
acylation and alkylation (Choi & Chung 2015), 
depending on the individual properties of the steroid 

and the detection system. Silylation is the most widely 
used derivatization reaction in steroid analysis, and 
trimethylsilyl (TMS) derivatization is extensively used for 
most functional groups on steroid backbone, including 
aliphatic and phenolic alcohols, and carbonyl and amine 
groups. The purpose of this is to increase volatility as well 
as MS characteristics for GC–MS (Choi et al. 2002, Moon 
et  al. 2009, Marcos & Pozo 2015). The most common 
reagents are N,O-bis (trimethylsilyl)-trifluoroacetamide 
(BSTFA) and the more volatile N-methyl-N-trimethylsily
ltrifluoroacetamide (MSTFA) as a powerful trimethylsilyl 
(TMS) donor in the derivatization procedure (Shareef 
et  al. 2006, Marcos & Pozo 2015). One of the most 
reported derivatization techniques in steroid profiling is 
the application of a mixture of MSTFA/ammonium iodide 
(NH4I)/dithioerythritol (DTE) in a ratio of 500:4:2 (v/w/w) 
(Moon et al. 2009, 2010, Jung et al. 2011, Son et al. 2015). 
Most steroids were monitored using their molecular ions 
as base peaks.

For the profiling of 18 sterols, including 
cholesterol, six CEs, three cholesterol precursors 
and eight OHCs Cholesterol and cholesterol 
precursors have a hydroxyl group at the C-3 position, 
and OHCs have two polar functional groups: one is a 
hydroxyl group at the C-3 position and the other is a 
hydroxyl or ketone group at the C-4, C-7, C-19, C-20, 
C-24, C-25 or C-27 position. In TMS derivatization, both 
hydroxyl and carbonyl ketone groups were derivatized 
with TMS, whereas CEs were unaffected by TMS agents 
because they do not have polar groups in their chemical 
structures. The characteristic ions of cholesterol were 
observed at m/z 458 [M]+, m/z 443 [M–15; M–CH3]+, m/z 
368 [M–90; M–OTMS]+, m/z 353 [M–90–15; M–OTMS–
CH3]+, m/z 329 [M–129; M–TMS-O+ = CHCH = CH2]+ 
and m/z 129 [TMS-O+ = CHCH = CH2]+, which are in 
accordance with a general mass spectral interpretation. 
Among these fragments, the m/z 368 ion was chosen 
as the quantitative ion. All CEs generated a base peak 
at m/z 368 by cleavage of the ester bond, regardless of 
the fatty acid moiety (Jung et al. 2009). The quantitative 
ion of desmosterol was selected to be the m/z 343 ion 
that was formed by the loss of the side chain and two 
nuclear hydrogens. The quantitative ions of lathosterol 
and lanosterol were selected to be m/z 458 [M]+ and m/z 
393 [M–90–15]+, respectively. In addition, OHCs showed 
different fragmentation patterns depending on the –OH 
positions (Moon et al. 2014). These results may provide 
useful information about the chemical structures of 
cholesterol and its metabolites.
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For chemical transformation of multi-functional 
steroids Mixed derivatization is performed to improve 
physical and chemical properties and mass spectral 
characteristics. Sensitive and selective quantification 
of eight steroids related to androgen biosynthesis in 
human hair was achieved by a combination of TMS 
and pentafluorophenyldimethylsilylation (flophemesyl-
TMS) (Choi & Chung 1999). The spectra of flophemesyl 
derivatives generally display intense molecular ions 
under electron impact ionization, resulting in enhanced 
chromatographic selectivity and mass spectral information 
with sensitive detection (Choi et  al. 2001a, Choi & 
Chung 2015). Recently, the enhanced GC–MS analytical 
selectivity and sensitivity were allowed for quantitative 
analysis of estrogen metabolites in urine samples 
obtained from the postmenopausal female patients with 
osteoporosis (Moon et  al. 2011b). It was successfully 
achieved by two-phase extractive ethoxycarbonylation 
(EOC) and subsequent pentafluoropropionyl (PFP) 
derivatization. In case of estrogen profiling, the ultra-
sensitive LC–MS analytical method has been conducted 
with a novel chemical derivatization procedure, which 
formed analytes as pre-ionized N-methyl pyridinium-3-
sulfonyl (NMPS) derivatives (Wang et al. 2015).

Analytical instrumentation Although radio-
immunoassay (RIA) or enzyme immunoassays (EIA) are 
widely used to evaluate the quantification of steroid 
molecules (Thomson et al. 2009, Musshoff et al. 2012, Chan 
et al. 2014), the specificity of these methods is relatively 
low, which may result in an overestimation of the actual 
steroid content in samples. Furthermore, only single 
enzymes are estimated at a single time (Spiehler 2000, 
Hsing et al. 2007, Wood et al. 2008), making the method 
even more inaccurate. In contrast, mass spectrometry-
based quantification has better reproducibility and 
generates multi-targeted profiling analysis (Cho et  al. 
2009, Ha et al. 2009, Jung et al. 2009, 2011, Moon et al. 
2009, Son et al. 2015).

Several mass spectrometric methods for the 
measurement of steroids and sterols from various 
biological matrices have been proposed, coupled to GC 
(Ahmida et  al. 2006, Ryu et  al. 2006, Moon et  al. 2009, 
2011b, 2014, Choi et al. 2011, 2013, Son et al. 2014, 2015) 
or LC (Lembcke et al. 2005, Griffiths et al. 2008, DeBarber 
et al. 2008, Honda et al. 2009, Karu et al. 2011). The LC–MS 
methods based on electrospray and atmospheric pressure 
chemical ionization techniques have been conducted 
with a good sensitivity and chromatographic resolution 
of estrogens (Falk et  al. 2008, Penning et  al. 2010,  

Wang et  al. 2015), sterols and oxysterols (Burkard et  al. 
2004, Karuna et al. 2009, McDonald et al. 2012). However, 
the method often requires sample derivatization with 
dansyl chloride (Falk et  al. 2008), pentafluorobenzyl 
chloride (Penning et al. 2010), Girard P hydrazine (Griffiths 
et  al. 2006), picolinyl esterification (Yamashita et  al. 
2007, Honda et al. 2009) and NMPS (Wang et al. 2015) to 
improve ionization efficiencies and detection sensitivity. 
These methods enable to quantify the analytes in the 
low pg/mL ranges but are time-consuming because they 
require derivatization (Yamashita et al. 2007, Honda et al. 
2009) and a long analytical run (Xu et al. 2007). Girard 
P derivatization can be seen in more detailed structure 
information due to MS3 (MS/MS/MS) applicability, but 
it appeared more laborious than GC–MS-based methods 
(Griffiths et al. 2006).

In particular, GC–MS with electron impact ionization 
is used widely for the measurement of steroid hormones 
with good analytical efficiencies as well as structural 
information. Initially, eight steroids related to androgen 
biosynthesis and two main estrogens (estrone and 
17β-estradiol) were determined in hair (Choi et  al. 
2000, Choi & Chung 2015). In 2011, the simultaneous 
quantification of hair steroids, including androgens, 
progestins, corticoids and sterols by GC–MS method in 
selected ion monitoring (SIM) mode, was successfully 
validated to evaluate the concentrations of individual 
steroids as well as the activities of the enzymes responsible 
for steroidogenesis in hair follicles and sebaceous glands 
(Jung et al. 2011). This can synthesize many steroids from 
cholesterol or locally convert circulating steroids with a 
range of metabolic enzymes (Chen et al. 2002, Ohnemus 
et  al. 2006). For hair steroid profiling, 62 steroids were 
analyzed on an Ultra-1 capillary column (25 m × 0.2 mm 
i.d., 0.33 μm film thickness), and only 20 hair steroids, 
including eight androgens, three progestins, five sterols 
and four corticoids, were detectable (Jung et al. 2011).

Compared with the conventional GC–MS techniques 
using a fused silica capillary column (Ahmida et  al. 
2006), high-temperature gas chromatography–mass 
spectrometry (HTGC–MS) with a thermally stable stainless 
steel capillary column is described as an alternative 
technique for the analysis of lipophilic compounds (Son 
et al. 2014). In previous studies, it successfully achieved 
good chromatographic properties for the analysis of lipid 
molecules including cholesterols (Jung et al. 2009, 2010), as 
well as estrogens with two-phase extractive EOC and sub-
sequent PFP derivatization (Moon et al. 2011a,b). Results 
showed that lower bleeding achieved results in better 
detectability with a short analytical run compared with 
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a fused silica GC column. The present HTGC–MS-based 
quantitative cholesterol signatures of 18 sterols including 
cholesterol, six cholesteryl esters (CEs), three cholesterol 
precursors and eight oxysterols have been conducted 
with H-PPT purification and GC separation through a 
HTGC column separation. All analytes were successfully 
separated and detected without any interference within 
a 27-min chromatographic run. The oven temperature 
was held initially at 260°C for 3 min, ramped to 320°C at 
10°C/min, increased to 330°C at 2°C/min (held for 8 min) 
and finally increased to 380°C at 30°C/min and then 
held for 3 min. Cholesterol, three cholesterol precursors 
(desmosterol, lathosterol and lanosterol) and eight OHCs 
were eluted within 7 min, while six CEs were eluted in 
the order of the number of carbons in the hydrocarbon 
chain: cholesteryl laurate (CE 12:0), myristate (CE 14:0), 
palmitate (CE 16:0), oleate (CE 18:1), linoleate (CE 18:2) 
and stearate (CE 18:0) (Son et al. 2014).

Hair metabolomics for monitoring potential biomarkers 
of urological diseases

Although the acute monitoring for drug efficacy is 
not applicable with hair analysis, hair steroid analysis 
still gives us the valuable information to confirm the 
5α-reductase inhibition after dutasteride administration 
(Jung et  al. 2011). With the same pathological events, 
the biochemical mechanism of male pattern baldness 
(MPB) was clearly confirmed with hair steroid analysis 
(Choi et al. 2001b), and mode of actions of sex steroids in 

MPB hair samples was differentiated between Caucasian 
and Korean (Choi et  al. 2013). In addition to the 
androgen actions, the cortisol metabolic alteration can 
be monitored as a biochemical marker of chronic stress, 
which is an excessive symptom that causes cumulative 
negative impacts on health outcomes (Lee et  al. 2015). 
The detection of cortisol in biological fluids, even saliva, 
has still been questionable. The increased levels of hair 
cortisol were observed in childhood obesity, which were 
also linked to long-term activation of HPA axis (Veldhorst 
et  al. 2014), and the risk of cardiovascular disease 
(Manenschijn et al. 2013). Recently, our research team was 
able to successfully establish the analytical method for the 
profiling of cholesterol precursors and metabolites (e.g., 
7β-hydroxylation of cholesterol).

In the laboratory setting, we have observed that high 
circulating cholesterol in blood could be associated with 
high levels of androgens and hair loss in male mice (Fig. 3). 
Nude mice were grouped (n = 5/each group) and fed with 
high-cholesterol diet or normal chow for 2 months. 
No weight changes or liver function or dysfunction 
was observed. Levels of cholesterol and androgen were 
increased in all mice of high-cholesterol group (five out 
of five mice). Interestingly, three out of five mice in high-
cholesterol group showed hair loss (Fig. 3).

Although increased androgen levels have been 
associated with both PC and MPB (Demark-Wahnefried 
et al. 1997), no studies have shown an association in hair 
samples. In establishing a proof of concept, our pilot 
study showed the increased levels of DHEA, testosterone 

Figure 3
High cholesterol, high sex steroids and hair  
loss were observed in mice with chronic 
high-cholesterol diet. Line within the value 
represents the median.

Figure 4
Metabolic ratios of hair androgens in patients 
with prostate cancer and male pattern baldness 
compared with healthy control subjects. Line 
within the value represents the median.

http://dx.doi.org/10.1530/ERC-16-0285


R463Review J-Y Moon et al. Metabolomic profiling for 
urological diseases

En
d

o
cr

in
e-

R
el

at
ed

 C
an

ce
r

DOI: 10.1530/ERC-16-0285
http://erc.endocrinology-journals.org © 2016 The authors

Printed in Great Britain
Published by Bioscientifica Ltd.

23:10

and DHT in hair samples obtained from both PC and 
MPB subjects compared with those of age-/sex-matched 
control subjects. In particular, the metabolic ratios of 
testosterone:DHEA and DHT:testosterone in PC group 
tended to increase against the other two groups, whereas 
a metabolic ration of testosterone:epitestosterone was 
significantly increased in MPB group (Fig. 4). This is in 
accordance with our previous findings (Manenschijn et al. 
2013). These results suggest that the altered metabolic 
ratios of androgens combined with the higher levels of 
androgens might serve as the potential biomarkers for 
PC and MPB.

Concluding remarks and perspectives

PC and BPH are characterized by alterations of 
steroidogenic genes, which are important in synthesis of 
androgens from cholesterol, or genes converting adrenal 
androgens to DHT or DHT to inactive metabolites. In this 
short review article, we summarized these cholesterol 
and sex steroid metabolic pathways during progression 
of PC and BPH. Given the evidence derived from our and 
others’ laboratories, hair metabolomics could be used 
for monitoring lipoidal hormones, such as cholesterol 
and sex steroids as well as corticoids. Both synthesis and 
metabolism of sex steroids with intracrine or paracrine 
actions are expressed locally in skin, which serve as a 
target for various steroid hormones including cholesterol 
(Slominski 2005). Hair as the adnexal structure of 
the skin contains the entire biochemical apparatus 
necessary for the production of steroid hormones either 

from precursors of systemic origin or, alternatively, 
through the conversion of steroid precursors. Thus, hair 
metabolomics could therefore be a promising technique 
for the retrospective assessment of physiological 
changes in many clinical events including urological 
diseases. Figure  5 shows important lipid metabolites 
that our laboratory has successfully established, with 
the optimized quantitative analysis methods to measure 
cholesterol and sex steroid hormones for monitoring, 
using hair metabolomics.
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It was nearing the end of summer on a rainy day when the edi-
torial board members of the International Neurourology Journal 
(INJ) met and discussed publishing a special issue. We decided 
to introduce and summarize recent advances in multiomic ap-
proaches to better understand bladder diseases and beyond. 
 The recently implemented “Precision Medicine Initiative” 
has enabled great advances in personalized healthcare. In recent 
years, the explosive growth of individual whole genomes has 
led to a greater systematic understanding of the variety of im-
portant and essential factors in cellular mechanics, such as tran-
scriptomes, proteomes, and metabolomes. With all of this in-
formation, what then is the promise of precision medicine? We 
have found that it will allow us to deepen our biological under-
standing of a patient’s background and needs at the molecular 
level. This will allow us to tailor our care to provide more pro-
active, predictive, and precise treatments at a highly targeted 
level for individuals. 
 Qualified biomarkers revealed by multiomic approaches are 
part of a more concentrated effort to provide “personalized ad-
vice” with respect to monitoring the severity, progression, and 
prediction of therapies of diseases. As scientists and physicians, 
our long-term goals include determination of disease specific 
biomarkers for accurate diagnosis, continuing improvement of 
our understanding of the biological basis of disease, and identi-
fication of new strategies for patient care. The advanced ap-
proaches and expertise we have described here are meant to 
bring the new capabilities of precision medicine to a wider range 
of areas through cutting edge technology and novel strategies. 
 In this special issue, which is titled “Omic Approaches to 

Understand Bladder Diseases and Beyond,” our goals are (1) to 
update our readers with the current progress of relevant cut-
ting-edge technologies, and (2) to describe the scientific and 
clinical impacts resulting from these new discoveries. 
 Of the various proteomic-based technologies in biomedical 
research, mass spectrometry (MS)-based platforms are one of 
best for unbiased and targeted proteomic analyses. The first pa-
per in this volume is a review titled “Urine Proteomics in the 
Era of Mass Spectrometry” by Dr. Ashely  Beasley-Green [1] at 
the National Institute of Standards and Technology (Gaithers-
burg, MD, USA). It explains a number of advantageous features 
of MS-based technologies on individual biomarker identifica-
tion along with their effectiveness when applied to renal disease 
diagnosis. Urine albumin is a major, biologically noninvasive 
component used in multiple renal disease measurement tech-
nologies. It is shown from this review that amazing results have 
been achieved in protein identification using multiplexed can-
didate reference measurement procedures that utilize mass 
spectrometry and multiple reaction monitoring. These tools 
permit qualitative assessment of biomarker candidates. 
 The second article [2] is an informative review by Dr. Sang 
Tae Park, who was a former trainee at Harvard Medical School 
and the current CEO and CSO of the Macrogen Clinical Labo-
ratory, Macrogen Corporation (Rockville, MD, USA). It pro-
vides a general understanding of next-generation sequencing 
(NGS) such as the following questions: What types of NGS 
technologies and platforms are being used? How can NGS be 
applied in understanding human genetics and genomics? What 
we can expect in a new era of whole genome sequencing (WGS)? 
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NGS applications allow for epigenetic studies, whole genome 
methylation sequencing, and chromatin immunoprecipitation 
followed by sequencing. He explains these important issues 
point-by-point and discusses how these technologies can be ap-
plied to personalized precision medicine. 
 Dr. Gangning Liang, Professor of Research in the Depart-
ment of Urology at the University of Southern California (Los 
Angeles, CA, USA), who has 20 years of hands-on experience 
in the field of epigenetics, then talks about his experience in 
characterizing the roles of DNA methyltransferases and mi-
croRNAs during tumorigenesis. His discussion delves into how 
we can develop novel methods of characterizing epigenetic 
changes and how to monitor these changes in patients. His arti-
cle [3] includes detailed information on current research, rang-
ing from somatic genetic aberrations to various epigenetic reg-
ulations such as DNA methylation, histone modifications, mi-
croRNA regulation, and nucleosome positioning. He also pro-
vides evidence suggesting genetic and epigenetic alterations as 
possible therapeutic targets.
 We then switch gears a little bit to the specific diseases that 
our INJ audience is interested in learning about. The second 
section answers our questions as to how these cutting edge 
technologies can be applied to aspects of translation. We invited 
several more experts in benign urological diseases, such as in-
terstitial cystitis and bladder pain syndrome (IC/BPS), lower 
urinary tract dysfunction (LUTD), prostate cancer, and gastric 
cancer.
 Dr. Hann-Chorng Kuo et al.  at the Buddhist Tzu Chi Gener-
al Hospital and Tzu Chi University (Hualien, Taiwan) introduc-
es the accumulated efforts to identify potential biomarkers tar-
geting IC/BPS, which is an irritating bladder syndrome and is 
usually characterized by frequent nocturia as well as bladder 
pain in patients. He summarized the pathomechanisms of IC/
BPS by mapping the heterogeneity of the disease and the con-
centrated efforts on the potential serum and urinary biomark-
ers of the disease [4]. 
 Dr. Akihiro Kanematsu, a former trainee at Harvard Medical 
School/Boston Children’s Hospital and a current Associate Pro-
fessor and a pediatric urologist at Hyogo College of Medicine 
(Hyogo, Japan), provides a comprehensive review of translation-
al research aimed at elucidating the pathophysiology of pediat-
ric LUTD [5].
 In “Racial Differences of Diagnosis and Treatment for Pros-
tate Cancer,” Dr. Jong Y. Park, an associate member at the Mof-
fitt Cancer Institute (Tampa, FL, USA), discusses how new gen-

eration omic tools have been adapted for the field of molecular 
epidemiology. Prostate cancer is the second most common can-
cer in the U.S. Recent statistics from the American Cancer Soci-
ety state that an estimated 26,120 deaths will occur in 2016 due 
to prostate cancer alone. Interestingly, the incident rates and 
mortality rates of different ethnic groups in the U.S. vary greatly. 
The causes of these disparities are numerous. In his review, Dr 
Jong Y. Park et al. compare inequalities at diagnosis and treat-
ment while also considering the genetic susceptibility of differ-
ent ethnic groups who are affected by prostate cancer. According 
to his study, there is a positive correlation between high socio-
economic status and survival rate in both African American and 
Caucasian groups; socioeconomically wealthier groups had 
more of a chance of detecting prostate cancer at an earlier age 
with a higher survival rate. In terms of therapy/treatment, it is 
important to note the relationship between the lower survival 
rate of African Americans and the fact that African Americans 
experience treatment delays and postoperative complications 
more often than Caucasians. The authors also suggest that we 
need to expand these variables, which affect the differences, in 
order to better understand the factors of these disparities [6].
 It is widely accepted that early prostate cancer detection and 
treatment can result in a higher survival rate for a patient, but, 
occasionally might lead to overdiagnosis and overtreatment. 
The development of precision medicine is therefore a novel tool 
that enables us to lower the chances of false negatives and false 
positives while also improving therapies for diseases. A review 
titled “How Precisely Can Prostate Cancer Be Managed?” by Dr. 
Liyan Zhung et al. [7], at Lahey Hospital and Medical Center, 
Tufts University School of Medicine (Burlington, MA, USA) re-
sponds to the following questions: who will need a biopsy? a re-
biopsy? who are candidates for active surveillance? and who 
needs adjuvant radiation or hormonal therapy after prostatecto-
my? In addition to answering these questions, the paper intro-
duces a number of useful diagnostic tools based on genomic 
screening to give us a better understanding of current tools. It 
also helps us understand the precision medicine that has been 
applied to prostate cancer and other cancer treatments. 
 Dr. Samuel J. Klempner et al. at the Angeles Clinic and Re-
search Institute, and Samuel Oschin Comprehensive Cancer 
Institute, Cedars-Sinai Medical Center (Los Angeles, CA, USA) 
discuss the current research being developed on phosphati-
dylinositol-3-kinase (PI3K) pathway signaling in gastric cancer, 
the most common cancer among men in Korea [8]. 

This collection of 8 review articles in this special issue are all 
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tied together by one common and simple mission: to close our 
knowledge gap for better patient care. While this gap will not 
close overnight, it is time to think of basic science, molecular 
epidemiology, and clinical translation science as utilizing mul-
tiomic approaches as strong tools with a mission that can be 
combined to make greater advances in healthcare.
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ABSTRACT
Interstitial cystitis (IC) is a chronic bladder dysfunction characterized as urinary frequency, urgency, nocturia,
and pelvic pain. The changes in urethra may wind up with the bladder changes in structure and functions,
however, the functions of the urethra in IC remains elusive. The aim of this study was to understand the
perturbed gene expression in urethra, compared with urinary bladder, associated with the defected
urodynamics. Using female IC mimic rats, a comprehensive RNA-sequencing combined with a bioinformatics
analysis was performed and revealed that IC-specific genes in bladder or urethra. Gene ontology analysis
suggested that the cell adhesion or extracellular matrix regulation, intracellular signaling cascade, cardiac
muscle tissue development, and second messenger-mediated signaling might be the most enriched cellular
processes in IC context. Further study of the effects of these bladder- or urethra-specific genes may suggest
underlying mechanism of lower urinary tract function and novel therapeutic strategies against IC.

KEYWORDS
bladder; gene expression;
interstitial cystitis; rat model;
RNA-Sequencing; urethra

Introduction

Interstitial cystitis (IC) is a chronic noninfectious inflammatory
disease of the bladder wall, characterized by recurring discom-
fort or pain possibly related to the bladder symptoms such as
urinary frequency, urgency, nocturia.8 Increasingly clinical
important issues include significant negative impacts on the
quality of life and social function as well as high prevalence in
the general population1,6 Given that IC affects approximately
3.3 million women in the United States, IC is a major health
issue largely affecting the quality of everyday life of patients—
approximately 50% of those diagnosed with IC have difficulties
working full-time, while approximately 70% of patients have
trouble sleeping. Additionally, 75% of patients report dyspareu-
nia.15 Multimodality therapy has become a standard treatment
of IC, because of no notable responses to therapy as a single
agent.7 This suggests that there are multiple underlying factors
involved in the etiology of IC, and all of which have a direct
impact on the symptom characteristics, disease course and vari-
able responses to therapy. Many causative factors of IC have
been documented, however, our current understanding of the
causation still clings to the assumption of a leaky urothelium to
toxic substances, allergens or bacteria from the urine. This may
be the primary step on the inflammatory process of the deeper
bladder wall layer.10 Although it is plausible, additional

understanding of mechanisms involved in this theoretical
mechanism may be required to clarify the mechanisms behind
this devastating disease.

Various rodent models for IC study have been introduced to
phenotype (a) nociception to bladder distention, (b) pelvic
nociception, and/or (c) urinary frequency. IC animal models
include the bladder injury rat model that mimics IC in which
protamine sulfate (PS) and the endotoxin lipopolysaccharide
(LPS) are administered intravesically to Sprague-Dawley rats.
PS treatment destroys the bladder glycosaminoglycan (GAGs)
layer, leading to enhancement of the LPS action. Animal mod-
els including ours bear 3 similarities to currently known patho-
physiologic steps of human IC4,28 At first, PS damaged the
bladder mucus, and then urothelium was injured by bacterial
toxins such as LPS.4 Following these steps, the injured mucus
and urothelium are exposed to rat’s urine for an additional one
month to give enough time for inducing chronic inflammation
into the injured bladder wall by the toxins from urine. Our pre-
vious findings in this rat model demonstrated the involvement
of degranulated mast cells, which was consistent with observa-
tion in the human bladder affected with IC. Over 50% of
patients have mast cells in lamina propria4,26 Mast cells have
been considered to play key pathophysiological roles in the ini-
tiation and propagation of inflammation, by the production
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proinflammatory mediators, neurotrophic factors and immu-
noregulatory cytokines.25 Mast cells also secrete nerve growth
factor (NGF) leading to the neuropathic pain, one of IC
characteristics.26

Another hypothesis for the etiology of IC is that an initial
insult to the bladder such as urinary tract infection triggers
neurogenic inflammation. Several studies have shown that
there is an increase in the number and sensitivity of nerve fibers
in the bladders of patients with IC19,22 A central role of this
inflammation has been suggested in the pathogenesis of inter-
stitial cystitis.9 The etiology of the IC is obscure, and some
studies have been attributed to an anatomic problem such as
bladder outlet obstruction (BOO) in LUT dysfunction, regard-
less of sex difference.5 Chronic prostatitis/chronic pelvic pain
syndrome (CP/CPPS) is a condition that is similar to IC in
men.27 Many men who are categorized as having CP/CPPS
have urodynamically proven BOO.20 Some evidence shows that
the female paraurethral glands in the distal urethra are homolo-
gous to the prostate, and the inflammation in these glands may
be related to the pathophysiology of IC.28 There may be a
wind-up of urethral changes in structure and function with
these bladder changes without any clear mechanistic
explanation.

The urinary bladder and urethra are the 2 most relevant
organs to understand the regulatory mechanism of IC. The nor-
mal function of the lower urinary tract is to store and periodi-
cally evacuate the urine, which is delicately regulated by the
opposing actions of the bladder and the urethra during each
phase of storage and voiding. The urethra, a tube through
which urine is excreted from the urinary bladder inside the
body for elimination to outside the body in urination, allows
voluntary control over urination. In males, the urethra carries
urine as well as semen. In females, it is much shorter than those
in males, and is used only for urination. As the urinary bladder
and urethra work together as a functional unit, the changes in
bladder function are closely related to those of the urethral
function.

In this study, we hypothesized that urethra and urinary
bladder have different molecular signatures and regulatory
mechanisms in IC patients. In this study using the IC rat model
and comparable sham control model, we sought to understand
the urethra- or bladder-specific gene signatures and the differ-
ences of biologic functions.

Results

The goal of this study was to identify the differentially
expressed genes specifically in the bladder or urethra within the
IC model, compared with the control. A workflow describing
our analytic procedures for the construction of our IC rat
model, measurement of cystometric parameters, harvests and
extractions of bladder and urethra from animal model, and
RNA-Sequencing down in this study were shown in Fig. 1.

Body weight, bladder weight and ratio were not changed
in rat model

First, we wondered if there were any general health issues in IC
rats compared with sham control rats. There was no significant

difference in the body weight between the sham group (477.6
§ 10.5 g) and the IC group (495.6 § 13.0 g), one month after
intravesical instillations of PS and LPS or saline. The bladder
weight did not differ significantly between the sham (0.22 §
0.01 mg) and IC group (0.24 § 0.02 mg). Although the bladder
weight was normalized to body weight, there was no significant
difference between the 2 groups (Sham; 0.47 § 0.03, IC; 0.49 §
0.04).

The cystometric parameters between the sham controls
and IC rats were assessed

Rats of the IC group did not show any significant difference to
sham rats in any pressure parameters - including BP, TP, and
MP. However, all volume parameters except the RV (BC, MV
and MI) decreased in IC rats comparing to sham, showing the
features of IC. Although the value of RV did not show any sig-
nificance between sham and IC, 57.1% (4 among 7 rats) of rats
in IC group showed RV. However, no rats in the sham group
showed RV (Table 1 and Fig. 1).

RNA-Sequencing analysis identified the differentially
expressed genes, which are specific to bladder or urethra

To understand the molecular responses associated with IC, we
attempted to perform the next generation RNA sequencing
analysis and to get the expression profile of the bladder and
urethra in response to PS and LPS stimulation, and those of
sham controls. Comparison of RNA-Sequencing status between
raw and filtered reads was performed as follows.

Based on raw sequence data, the filtering processes were per-
formed based on the following criteria; (i) position 1 to 15 base
were removed because of hexamer-primed 2nd strand synthe-
sis, (ii) reads with mean base quality � 20 and total base quality
(� 20) � 80% were removed, and (iii) redundant reads (identi-
cal sequences) were collapsed into one read. Further calculation
of expression level from the finally filtered reads was done as
follows: filtered reads were aligned with the UCSC rn5 build of
the Rattus-norvegicus genome using the Subread aligner.16

Gene-wise counts were obtained using the featureCounts.17 We
compared normalized read count values across samples based
on the annotation from UCSC rn5 build.

The differentially expressed genes in bladder and/or
urethra in IC model vs. sham control

We identified differentially expressed genes (DEGs) with a false
discovery rate (FDR)<0.05. A heatmap shown in Fig. 2A
revealed that approximately 3-fold more DEGs were perturbed
in urethra in comparison of the bladder. Forty-four DEGs were
significantly perturbed in bladder tissues obtained from IC rat
model, compared with those from control group (Fig. 2B and
Supplementary Table 1A).

The gene expression of 159 DEGs was significantly altered in
urethras in the IC rat model (Fig. 2B and Supplementary
Table 1B). Only 5 genes were commonly altered both in the
bladder and urethra, suggesting that the gene expression of
bladder and urethra were distinct (Fig. 2B). These 5 genes
include collagen type VII a 1 (Col7a1), integrin a 7 (Itga7),
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Serpin Family A Member 3 (Serpina3n), Solute Carrier Family
25 Member 24 (Slc25a24) and Slit Guidance Ligand 3 (Slit3)
(Table 2A). We also found 61 IC-specific (Fig. 2C and Supple-
mentary Table 2A) or 62 Sham-specific genes (Fig. 2C and Sup-
plementary Table 2B). Four commonly perturbed genes in
bladder - compared with urethra - included Flavin Containing
Monooxygenase 5 (Fmo5), Integrin Subunit a 7 (Itga7), Lym-
phocyte Cytosolic Protein 1 (Lcp1), and Methyltransferase Like
7B (Mettl7b) (Fig. 2C and Table 2B).

Enriched cellular processes perturbed in IC model and the
differentially enriched cellular processes in bladder and
urethra

We next attempted to understand the biologic and mechanistic
meaning of these DEGs by examining the biologic pathways
over-represented by the genes. The comparison between blad-
der and urethra revealed that responses of bladder or urethra
induced IC model by PS and LPS treatment were different.
GOBP and KEGG pathway enrichment analysis demonstrated

Table 1. Cystometric parameters in conscious, unrestrained Sprague-Dawley rats in the sham and IC groups. Table 1. Cystometric parameters (including pressure and vol-
ume parameters) in awake rats subjected to sham-operation or intravesical PS/LPS-treated rats (IC rats).

BP (cmH2O) TP (cmH2O) MP (cmH2O) BC (mL) MV (mL) RV (mL) MI (min)

Sham 16.14 § 1.16 32.16 § 2.04 74.49 § 5.71 1.86 § 0.18 1.86§ 0.18 0 9.99 § 0.91
IC 18.87 § 2.89 38.10 § 3.76 60.90 § 4.68 1.31§ 0.14� 1.17§ 0.10� 0.15§ 0.09 6.22 § 0.83�

BP, basal pressure; TP, threshold pressure; MP, micturition pressure; BC, bladder capacity; MV, micturition volume; RV, residual volume; MI, micturition interval; IC, intersti-
tial cystitis; Results are expressed as the mean § standard error. Pressure parameters were expressed by intravesical pressure.

�p < 0.05,

Figure 1. A workflow of this study.
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that the altered genes in bladder tissues of IC model were
mainly involved in response to disaccharide stimulus, response
to sucrose stimulus, and regulation of blood pressure (Blue
bars, Fig. 3A). The most enriched cellular processes in urethra
in IC model included the response to abiotic stimulus, epithelial
cell differentiation, extracellular matrix organization and
response to wounding et al. (Orange bars, Fig. 3A). We also
found that the cellular processes (e.g., intracellular signaling
cascade, cardiac muscle tissue development, and second-mes-
senger-mediated signaling) were enriched in IC-specific DEGs
(Green bars, Fig. 3B).

Differentially expressed genes in IC model suggest the
bladder specific or urethra specific DEGs

This pathway analysis could allow us to focus on the gene list of
the greatest interest. We chose 5 genes whose expression levels

were significantly increased in bladder, but not in urethra, of
IC model for further validation. They were Fras1 (Fraser syn-
drome 1), Adipoq (adiponectin, C1Q and collagen domain
containing), Tnfaip2 (tumor necrosis factor, a-induced protein
2), Ace2 (angiotensin I converting enzyme 2), and Frem2
(Fras1 related extracellular matrix protein 2). The fold changes
of gene expression in IC model, compared with sham control,
were presented in Fig. 4A.

Additionally we selected 5 more genes whose expression was
significantly increased only in the urethra of IC model. They
were Ceacam1 (carcinoembryonic antigen-related cell adhesion
molecule 1, biliary glycoprotein), Sox2 (SRY, sex determining
region Y)-box 2), Ido1 (indoleamine 2,3-dioxygenase 1), Ccl21
(chemokine (C-C motif) ligand 21), and Atf3 (activating tran-
scription factor 3) (Fig. 4B). Fig. 4C shows the fold changes of
10 genes’ gene expression levels in bladder or urethra in IC
condition (fold change).

Figure 2. Identification of differentially expressed genes (DEGs) in bladder or urethra obtained from IC rats compared with sham controls. (A) A heatmap showing DEGs
(B) Diagrams indicating IC-specific DEGs in bladder or urethra (upper), and bladder- or urethra-specific DEGs associated with IC (bottom).

Table 2. (A) List of 5 common genes in the comparison of IC vs. Sham controls, (B) List of 4 common genes in the comparison of bladder vs. urethra.

A
Symbol Description IC/Sham (Bladder) IC/Sham (Urethra)

Col7a1 collagen, type VII, a 1 ¡0.65 ¡0.97
Itga7 integrin, a 7 0.81 ¡0.6
Serpina3n serine (or cysteine) peptidase inhibitor, clade A, member 3N ¡0.88 ¡0.74
Slc25a24 solute carrier family 25 (mitochondrial carrier,

phosphate carrier), member 24
0.7 1.14

Slit3 slit homolog 3 (Drosophila) ¡0.86 0.99

B
Symbol Description Bladder/Urethra (Sham) Bladder/Urethra (IC)

Fmo5 flavin containing monooxygenase 5 0.77 0.99
Itga7 integrin, a 7 ¡0.75 0.67
Lcp1 lymphocyte cytosolic protein 1 0.73 0.84
Mettl7b methyltransferase like 7B ¡0.84 0.76
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To validate the expression levels and to challenge the impor-
tance of these candidates as major modulators of important
cellular processes, we performed qRT-PCR analysis using inde-
pendent bladder (n D 3) or urethra (n D 3) tissues obtained
from IC model (n D 3) or sham controls (n D 3). In total the
top 10 genes, which were already selected based on our interest
and representativeness of organ that they were belonged to,
were analyzed (Fig. 5). Consistent with the expression levels
quantified in the RNA-sequencing analysis, we found gene
expression of Fras1, Tnfaip2, Ace2, and Frem2 were increased
in IC model, and expression of Adipoq and activating tran-
scription factor 3 (Atf3) was decreased in IC model, compared
with sham controls (Fig. 6A). In the urethra, expression of
genes such as Ceacam1, Ido1, and Ccl21 was increased in IC
group, while gene expression of Adipoq, Tnfaip2, Ace2, Frem2,
SRY, and Atf3 was significantly decreased (Fig. 6B).

Discussion

In this study, we sought to understand the functional mecha-
nism associated with the altered gene expression in our IC rat

model. Our global RNA profile using a comprehensive RNA-
sequencing analysis identified genes whose expression levels
were significantly altered in Sprague-Dawley rats by intravesi-
cal instillations of LPS following PS. Animal models are useful
tools, in particular to study the symptom-driven human disor-
ders of unknown etiology such as IC.2 Although IC is not an
infectious disease, LPS - an endotoxin from E. coli - is com-
monly used as an acute precipitating factor in animal models
of IC.29 Our previous series of animal experiments in
Sprague-Dawley rats by intravesical instillations of LPS fol-
lowing PS demonstrated that this chronic rat model exhibited
the uninhibited detrusor contractions proved by simultaneous
intra-abdominal pressure (detrusor overactivity; DO) during
the filling phase and the characteristic degranulatedmast cells
in their histologic appearance.4

Our study took a systems approach to overview the enriched
biologic pathways of these DEGs, and to identify an IC-regulatory
bladder or urethra specific gene set. This approach provides a
testable hypothesis that the bladder of IC patients may be differ-
ent from the urethra of these same patients. We also performed
independent biochemical validation experiments, which revealed

Figure 3. (A) Enriched cellular processes perturbed in IC rats by PS and LPS treatment. Representative DEGs of “response to abiotic stimulus” and “epithelial cell differenti-
ation” were indicated in orange boxes. Blue, bladder specific; Orange, urethra-specific DEGs. (B) Differentially enriched cellular processes changed sham or IC specifically.
Gray, sham control specific; Green, IC specific DEGs.
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the 10 most altered genes in bladder vs. urethra. These findings
suggest the molecular mechanism in bladder or urethra tissues of
IC patients may distinct, leading to the different responses to the
therapeutic approaches of IC patients, by regulating downstream
gene sets, and the understanding of the difference would benefit
the patient treatment.

A central observation of the present study was that chronic
IC with similar characteristics to the human disease was
induced in rat model by intravesical instillations of LPS follow-
ing PS.28 All rats in this chronic model except one exhibited
degranulated mast cells, which was crucial evidence for the suc-
cessful establishment of a model resembling the human disease.
All rats demonstrated DO during the filling phase. These find-
ings are similar to those of a previous rat model of IC induced
by intravesical administration of HCl.13 Previous population-
based studies on IC reported a prevalence of urodynamically
verified DO ranging from 14–30% in IC patients.

Urine is a liquid-by-product of the body, which is made
up of 95 percent water and 5 percent dissolved urinary toxic
solutes including urea, chloride, sodium and potassium ions.
These poisonous or toxic materials are always subject to
invadinginto the bladder wall, which is protected in normal
conditions by the tight junction of the umbrella cells and

bladder mucus composed of GAGs and proteoglycans. This
layer is known as a critical regulator of the bladder’s perme-
ability to water and urinary solutes, and is deficient in many
patients with IC.23 The lower urinary tract (LUT) function
results from simultaneous opposing interactions between the
bladder and urethra, such as the bladder relaxation and ure-
thral contraction during storage, and bladder contraction
and active urethral relaxation during micturition. These con-
tinuously changing intravesical environments make the blad-
der wall more susceptible to these toxins. If there were an
initial insult such like the LPS, the toxic urine results in uro-
thelial hyperplasia and alterations of the LUT functions,
forming a vicious cycle. According to the urodynamic study,
obstruction is common in male or female patients with IC,
which was postulated to be primarily due to pelvic floor dys-
function3,24 This may be caused by the bladder wall inflam-
mation. However, these alterations that affect these
interactions and result in voiding dysfunction in IC patients
have not yet been fully elucidated.

Among 10 identified IC-specific DEGs from our female IC
rats, we found that at least 3 of the DEGs (Fras1, Frem2, and
Ceacam1) were related to the cell adhesion or extracellular
matrix regulation. Further GO analysis suggested that the

Figure 4. (A) Bladder specific DEGs, (B) Urethra specific DEGs, (C) Expression patterns obtained from RNA-Sequencing data of 10 genes.
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intracellular signaling cascade, cardiac muscle tissue develop-
ment, and second messenger-mediated signaling were the
most enriched cellular processes in bladder and urethra of
IC group. Experimental data from quantitative RT-PCR
analysis for further validation showed the patterns of gene
expression in bladder and urethral cells were quite different.
Expression of Tnfaip2, Ace2, and Frem2 was significantly
changed but in the opposite way (Fig. 5). These findings
strongly suggest that perturbed genes in IC context are sig-
nificantly different in the bladder and urethra. In contrast,
expression of Atf3 and Adipoq was both significantly down-
regulated both in bladder and urethra of IC rats, compared
with sham controls. Although the biologic function of Atf3
in bladder or urethra remain unknown, a previous study sug-
gested that Atf3 as a player involving in the growth of the
detrusor muscle and its motor innervation following infra-
vesical outlet obstruction,30 suggesting the possibility that
Atf3 downregulation may cause bladder dysfunction
observed in IC. Adiponectin, an adipose tissue-secreted adi-
pocytokine, was reported to associate with bladder contrac-
tion, through PKCa signaling pathway and calcium
sensitivity. Downregulation of Adipoq found in our study
suggests a potential functional link to bladder contraction
allowing proper voiding pattern - although this speculation
should be tested in future work. We also found Ccl21 was
significantly increased only in urethra, not in bladder tissues
of IC rats. A previous study using 15 women with IC and 15

control subjects with stress urinary incontinence without
bladder pain suggested that Ccl21 may be correlated signifi-
cantly with clinical outcomes through an increased nocicep-
tive signaling by Ccl21.21

In summary, we have identified the perturbed gene expres-
sion associated with the defected urodynamics in IC mimic ani-
mal model, thereby exhibiting the dysfunction of the urinary
bladder. A comprehensive analysis based on the next genera-
tion RNA-sequencing method combined with a bioinformatics
analysis was performed. Our experimental results revealed that
the perturbed alterations in gene expression in bladder and ure-
thra are distinct, along with different structure and anatomy,
are functionally associated with extracellular matrix organiza-
tion, wound healing, intracellular signaling cascade and sec-
ond-messenger-mediated signaling. Further study of the effects
on lower urinary tract function may suggest novel therapeutic
strategies.

Materials and methods

Animals and study design

A total of 13 female Sprague-Dawley rats (Orient Bio Inc.,
Gyeonggi-do, South Korea), weighing 200–250 g, were used in
the present study. In 7 rats, LPS was instilled intravesically, fol-
lowing the intravesical administration of PS. In 6 rats, the saline
was instilled into the bladder and served as the sham group. To

Figure 5. Further validation using qRT-PCR analysis.
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avoid potential leak of drugs during instillation of PS and LPS
to the bladder, which might cause epithelial damage and subse-
quent inflammation, we were careful not to overflow the capac-
ity of the individual bladders while the rats were anesthetized.
In addition, the drugs were injected to ensure that the fluid
does not flow to the urethra and were injected only into the
bladder dome. The normal urethra is closed during the storage
phase and anesthesia.

Continuous cystometry was performed in all of the rats
under awake conditions, one month following intravesical
instillation of LPS or saline. After cystometry, rats were killed
by cervical dislocation. Following laparotomy, the bladder and
urethra were obtained en bloc from all rats, separated at the
level of the bladder neck, and the bladder was weighed. All
experimental animal procedures were conducted in accordance
with the Guide for the Care and Use of Laboratory Animals of
the National Institutes of Health (Bethesda, MD, USA) and
were approved by the INHA Institutional Animal Care and
Use Committee at the Inha University Medical School
(Incheon, South Korea; approval ID: INHA 140731–321–1).
The rats were maintained under a 12-h light:dark photoperiod
and normal laboratory conditions, with free access to food pel-
lets and tap water except during the experiments.

Surgical procedures

The rats were anesthetized with ketamine (Ketamine; Yuhan
Corp., Seoul, Korea; 75 mg kg¡1 intraperitoneally) and xylazine
(Rompun; Bayer Korea Corp, Seoul, Korea; 15 mg kg¡1 intra-
peritoneally) mixture, during the surgical procedures. Through
a lower abdominal midline incision, the bladder and the proxi-
mal urethra were approached.

Induction of cystitis

Cystitis was induced by the intravesical instillation of LPS fol-
lowing PS, as described previously.28 Briefly, a 31 gauge needle
attached to a syringe (Insulin syringe, SUNGSHIM MEDICAL
CO., LTD, Gyeonggi-do, Korea) was inserted into the bladder
dome, after the bladder was exposed. The bladder was then
emptied by aspiration of urine, and then an appropriate volume
of PS (10 mg ml¡1) was instilled into the bladder. Twenty
minutes later, the bladder was emptied, washed with phos-
phate-buffered saline (PBS) and then filled with the same vol-
ume of LPS (750 mg/ml) for another 20 min. The sham group
was instilled with normal saline of the same volume.

Procedures for intra-vesicalcatheter implantation

Three days before cystometry, the catheterization for intravesi-
cal pressure (IVP) recordings was done, as described previ-
ously12,14 Briefly, after the bladder exposed, a polyethylene
catheter (PE-50; Becton-Dickinson, Parsippany, NJ, USA) with
a cuff was inserted into the dome of the bladder and held in
place with a purse-string suture to record IVP. The catheter
was tunneled through the subcutaneous space, exited through
the back of the animals and anchored to the skin of the back
with a silk ligature. The free end of the catheter was sealed.
After surgery, the animals were caged individually and main-
tained in the same manner.

Functional evaluation

Cystometrograms were performed under unanesthetized, unre-
strained conditions in metabolic cages. The external portion of
the catheter, implanted into the bladder of the rat, was con-
nected to a 2-way valve that was connected via a T-tube to a
pressure transducer (Research Grade Blood Pressure Trans-
ducer; Harvard Apparatus, Holliston, MA, USA) and a micro-
injection pump (PHD22/2000 pump; Harvard Apparatus).
This was used to record the IVP on the condition of continuous
injection. Room-temperature saline was infused into the blad-
der by microinjection pump at a rate of 10 ml h¡1. The micturi-
tion volume (MV) was recorded by means of a fluid collector
connected to a force displacement transducer (Research Grade
Isometric Transducer; Harvard Apparatus). IVP and MV were
continuously recorded using Acq Knowledge 3.8.1 software
and an MP150 data acquisition system (Biopac Systems, Goleta,
CA, USA) at a sampling rate of 50 Hz. The mean values from 3
reproducible micturition cycles were used for evaluation of cys-
tometric parameters.

Investigation of cystometric parameters

Cystometric parameters consisted of pressure and volume
parameters of the model, including the lowest bladder pressure
during filling phase (BP), bladder pressure immediately before
micturition (TP), maximum bladder pressure during the mictu-
rition phase (MP), MV, remaining urine after micturition (RV),
MVCRV (BC) and intervals between maximum micturition
contractions (MI).

Next generation RNA-Sequencing analysis

RNA-Sequencing analysis identified the differentially expressed
genes, which are specific to the bladder or urethra. To under-
stand the molecular responses associated with IC, we attempted
to perform the next generation RNA sequencing analysis and to
get the expression profile of bladder and urethra in response to
PS and LPS stimulation, and also those of sham controls. Com-
parison of RNA-Sequencing status between raw and filtered
reads was performed as follows.

Bladder (n D 3) and urethra tissues (n D 3) were harvested
from Sham controls (n D 6 in total) or IC rat model (n D 6 in
total), and total RNA from the urine sediments were purified
using the miRNeasy mini kit according to the manufacture’s
instruction (Qiagen). Concentration and yield of RNA samples
was determined using a NanoDrop ND-1000 Spectrophotome-
ter (NanoDrop Technologies). RNA integrity was determined
by analysis on an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies) following the manufacturer’s recommendations. Only
samples with a RIN score greater than 7.0 were used for the
subsequent molecular analysis. Nugen Ovation RNA-Seq Sys-
tem V2 kit was used to generate the double-stranded cDNA
using a mixture of random and poly (T) priming. cDNA library
was prepared using commercial kits and following manufac-
turer’s protocols. Kapa LTP library kit was used to make the
sequencing library. The workflow consists of fragmentation of
double stranded cDNA, end repair to generate blunt ends,
A-tailing, adaptor ligation and PCR amplification Different
adaptors were used for multiplexing samples in one lane.
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Sequencing was performed on Illumina NextSeq 500 for a sin-
gle read 75 run. Data quality check was done on Illumina SAV.
Demultiplexing was performed with Illumina CASAVA 1.8.2.

The quality of sequence reads was assessed using the FastQC
tool (Babraham Bioinformatics, Cambridge, UK). The few low-
quality bases were trimmed from read extremities using Short-
Read (version 1.30.0) package from R bioconductor (version
3.3). More than 30 £ 106 reads were generated for each repli-
cate and were aligned with the UCSC rn5 build of the Rattus-
norvegicus genome, through the use of the Subread aligner.16

Gene-wise counts were obtained with the featureCounts pro-
gram.17 Genes were filtered out and excluded from downstream
analysis if they failed to achieve raw read counts of at least 2
across all the libraries. DESeq218 (version 1.6.1) was used for
calculating normalized data count data by regularized log trans-
formation and conducting differential gene expression analyses.
Differentially expressed genes (DEGs) were determined with
false discovery rate (FDR) < 0.05 and fold change > D 1.5. If
certain conditions didn’t have replicate to estimate dispersion
of the IC model versus Sham control in Urethra tissue and IC
Bladder vs. IC Urethra, DEGs were determined by only using
fold change of more than 1.5 folds due to no replicate in the IC
model from Urethra tissue. Finally, to identify cellular pro-
cesses represented by the DEGs, the enrichment analysis was
performed using the DAVID software.11 Specifically enriched
cellular processes between up- and downregulation was selected
with enrichment P < 0.05. Bar graphs were used to represent
the level of significance of each cellular process with enrich-
ment score (¡log10 [P]).

Reverse transcription and PCR analysis

Total RNA was separately purified from bladder (nD 3) or ure-
thra tissues (n D 3) from the Sham controls (n D 6 in total) and
IC model rates (n D 6 in total) using a QiagenRNEasy tissue
extraction kit (Qiagen Inc., Valencia, California). RNA concen-
tration was measured using a Nanodrop ND-1000 spectropho-
tometer (Thermo Scientific, Willmington, DE). Primers for
RT-PCR were designed based on sequence information sug-
gested from RNA-sequencing data.

Statistical analysis

All results were analyzed using SigmaStat 2.0 (SPSS Inc., Chi-
cago, USA). The results are presented as the mean values §
standard error of the mean. The Shapiro-Wilk W-test con-
firmed normal distributions. Statistical significance was deter-
mined by paired or unpaired t-tests. Unpaired t-tests were used
to determine the statistical significance to detect differences in
urodynamic parameters and histological data between the
sham and IC groups. For multiple comparisons, one-way anal-
ysis of variance with Tukey’s test was used to detect differences.
Statistical significance was considered at p < 0.05. All calcula-
tions were made on the basis of n, which denoted the number
of animals.
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Abnormal metabolism is a widely accepted biological signature of prostatic diseases, including prostate
cancer and benign prostate hyperplasia. Recently accumulated epidemiological and experimental evi-
dence illustrate that the metabolic syndrome, impaired mitochondrial function, and prostatic patho-
logical conditions intersect. The perturbed metabolism and metabolic mediates influence key signaling
pathways in various prostatic pathological conditions. This short review article aids to highlight recent
findings on metabolism, metabolic mechanisms, and mitochondrial metabolism as a possible route to
finding a cure for prostate diseases, including prostate cancer. The effort to better understand the role
that mitochondria plays in cancer metabolism and the biological meaning of defective and/or deleted
mitochondrial DNA in cancer will also be discussed.
© 2017 Asian Pacific Prostate Society, Published by Elsevier Korea LLC. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Metabolism, metabolic syndrome, and prostate health

The definition of metabolism is the set of life-sustaining
chemical transformations within the cells of living organisms.1

Metabolic syndrome (MetS) is a common and complex cluster of
clinical conditions. It includes abdominal obesity, hypertension,
hypertriglyceridemia, hyperglycemia, and low high-density lipo-
protein cholesterol. MetS is a risk factor of cardiovascular and
metabolic complications; which is associated with several medical
conditions such as type 2 diabetes, cardiovascular diseases, and
nonalcoholic fatty liver disease.1e3

A series of epidemiological evidence suggests that MetS is also
associated with various prostatic diseases; which include hypo-
gonadism, erectile dysfunction, infertility, and bladder and prostate
dysfunctions, such as benign prostate hyperplasia (BPH) and lower
urinary tract symptoms (LUTS). Recent studies demonstrated that
MetS is associated with an enlarged prostate size, suggesting
metabolic reprogramming in prostatic diseases.4 Moreover, MetS is
associated with prostatic inflammation.5 Epidemiological studies
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showed that LUTS and BPH are associated with obesity and pros-
tatic inflammation. Recently, a series of urinary chemokines asso-
ciated with obesity and prostatic inflammation were measured in
BPH/LUTS patients and healthy controls. The levels of these cyto-
kines (e.g., CXCL-8, CXCL-10, and sIL-1ra) were increased in BPH/
LUTS patients, suggesting a significant association between obesity,
inflammation, and BPH/LUTS.6

MetS has also been proposed to be associated with prostate
cancer (PC), which is the sixth leading cause of cancer death among
the male population. Consistent with accumulating epidemiolog-
ical evidence, MetS plays a role in PC. Abnormal metabolism in
MetS is linked with the alteration of signaling networks (e.g., in-
sulin and insulin-like growth factor-I), and the modification of sex
steroid pathways (e.g., testosterone and estradiol).7,8 Consistent
with findings from BPH/LUTS, MetS-related cytokines, growth
factors, leptin, and adiponectin are increased significantly in pa-
tients with PC.9,10

2. Cancer metabolism

Altered metabolism has been widely accepted as a cancer hall-
mark.11 The Nobel Laureate, Otto H. Warburg, who demonstrated
that cancer cells have an altered energy metabolism, first postu-
lated the Warburg effect. He found a fundamental difference in the
metabolism between normal and cancer cells is the ratio of
glycolysis to respiration.12,13 Instead of using an oxidative break-
down of pyruvate in mitochondria, cancer cells convert glucose into
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lactate and primarily use glycolysis to synthesize ATP, even in the
presence of high oxygen tension. Thus, aerobic glycolysis can pro-
duce ATP at a high rate, which is an aggressivemetabolic phenotype
and is the dominant metabolism in cancer cells. TheWarburg effect
has been found in a series of cancer cells that exhibit a much higher
rate of glucose uptake, consumption, and lactate production;
leading to a higher volume of amino acid and fatty-acid synthesis
that is needed for rapid cell proliferation.

More recently, the Warburg effect has been more defined in the
context of metabolic reprogramming, which is specifically observed
in cancer cells, not normal cells. Oncogenic signals can be triggered
by activation of oncogenes (e.g., BRAF mutant V600E and c-Myc),
loss of tumor suppressors (e.g., p53), and/or activation of metabolic
signaling pathways (e.g., mTORC1).6,8,14e18 These can all contribute
to metabolic rewiring or reprogramming. BRAF V600E increases 3-
hydroxy-3-methylglutaryl-CoA lyase, intracellular levels of acetoa-
cetate, and MEK1 phosphorylation, suggesting that there is cross-
talk between metabolic pathways and cell-signaling networks.14,19

In glioma and acute myeloid leukemia, cancer associated mu-
tants of isocitrate dehydrogenases 1 and 2 produce an oncometa-
bolite, 2-hydroxyglutamate, and inhibit DNA repair process.20e22 As
MYC is a key driver of cell-cycle entry and progression, the MYC-
dependent cell growth is linked to impairment of mitochondrial
function through the mitochondrial serine hydroxymethyl-
transferase. A previous comprehensive profile of mitochondrial
targets of MYC revealed approximately 400 mitochondrial genes,23

the functions of which are associated with mitochondrial tran-
scription, translation, protein import, and complex assembly. It has
become evident that the impairment of mitochondrial biogenesis
by MYC overexpression leads to the Warburg effect in cancer
through the stimulation of oxidative metabolism, fatty acid meta-
bolism, and production of acetyl-CoA as a source of energy and
chemical intermediates for biosynthesis.24 MYC overexpression
also increases the expression of glucose transporter 1, pyruvate
kinase muscle isozyme M2 (PKM2) and lactate dehydrogenase, and
cell division cycle 25A (CDC25A), which are all important glycolytic
genes. In addition, mutant of p53, a well-known tumor suppressor,
also stimulates theWarburg effect through the RhoA/ROCK/ glucose
transporter 1 signaling pathway that controls cell metabolism.25

Lastly, in the epidermal growth factor receptor-promoted
tumorigenesis we can observe another example suggesting that
altered metabolism influences cell signaling networks. epidermal
growth factor receptor activates the c-Src-mediated CDC25A
phosphorylation, which allows the interaction of CDC25A with
PKM2. Upon binding, CDC25A can dephosphorylate PKM2, leading
to b-catenin activation.26

Being a double-edged regulator of cancer cell metabolism, 50

AMP-activated protein kinase (AMPK) plays a role in tumor initia-
tion, progression, metastasis, etc. Although AMPK is a well-known
tumor suppressor and negative modulator of cancer formation and
growth, recent findings demonstrate that AMPK activation en-
hances tumor growth in a specific cell environment.27 However, the
underlying mechanism that decides the fate of AMPK still remains
unclear.

3. Mitochondria and mitochondrial DNA in cancer
metabolism

Mitochondria, as a main source of energy and biosynthesis, play
a decisive role in cancer metabolism.28 Mitochondria is the location
of ATP production and its intermediates; contributing to the
reprogramming of bioenergetics metabolism by regulating the
biosynthesis of amino acids, lipids, nucleic acids, etc.29,30 Mito-
chondria have a well-recognized role in the activation of signaling
pathways and in the mediation of cell apoptosis, proliferation,
differentiation, stemness, tumorigenesis, etc.31,32 Given that the
mitochondria senses stimuli and makes cells respond accordingly
to microenvironment changes, mitochondrial metabolism has been
considered as a potential cancer therapeutic strategy.

Mitochondria have their own genome containing approximately
16,000þ base pairs of double-stranded and circular DNAmolecules,
mitochondrial DNA (mtDNA). MtDNA encodes for polypeptides of
the mitochondrial respiratory chain, transfer RNAs, and ribosomal
RNAs. In cancer cells, modification, reduction, or depletion of
mtDNA has been identified; which is often linked to those in the
nuclear genome and biological outcomes, such as chemo-resistance
and tumorigenesis.33 The relevance of metabolic reprogramming in
conferring drug resistance could be explained through the biolog-
ical effects of mtDNA defects.34

MtDNA depletion or defects have been observed in various key
cancer types, such as lung, gastric, colorectal, prostate, and breast
cancer. At the molecular level, defected mtDNA in cancer cells re-
sults in increased cell invasion, metastasis, epithelial-to-
mesenchymal transition, and stemness.35,36 Furthermore, several
studies in different cancer cell types showed that mtDNA depletion
leads to the activation of key antiapoptotic signaling pathways,
which allow cancer cells to be more resistant to therapies.25,37,38

The role of mitochondrial dysfunction in promoting chemo-
resistance has been suggested in previous literature.37 MtDNA
depletion made human myelogenous leukemia cells to be resistant
to TNF-induced cell apoptosis.37,39 The mtDNA-defected hep-
atocarcinoma cells became resistant to the reactive oxygen species-
inducing cell apoptosis by increasing expression of antioxidant
enzymes, such as glutathione peroxidase and manganese super-
oxide dismutase.40 Transfer of mtDNA from aggressive breast can-
cer phenotypes was able to provide metastatic characteristics in
NIH3T3 cells. Cisplatin-sensitive ovarian cancer cells showed an
increased mitochondrial membrane potential and higher basal
oxygen consumption compared to its cisplatin-resistant derivative.
Depletion of mtDNA in cisplatin-sensitive ovarian cancer cells
resulted in resistance to cisplatin.41,42 When mtDNA was depleted,
androgen-dependent LNCaP prostate cancer cells became resistant
to paclitaxel, a chemotherapy agent.43,44 The mtDNA depleted PC-3
prostate cancer cells became more invasive, cancer-stem like, and
resistant to chemotherapy as well as radiotherapy.

Recently, mitochondrial RNA has been shown to play a role in
cancer progression and chemo-resistance through the horizontal
mitochondrial transfer mechanism; which is the cell-to-cell
transfer of mitochondria through intercellular bridges of tube-like
structures, called tunneling nanotubes.45e50 This horizontal mito-
chondrial transfer was observed not only between cancer cells but
also between endothelial cells and cancer cells, contributing to
chemoresistance to doxorubicin treatment.41,51

There are several reports on the alternative delivery mecha-
nisms of the horizontal transfer of mtDNA, one of which is pro-
posed to be through exosomes, a type of membrane vesicle that
originates from the endosomal and plasma membrane. Glioblas-
toma and astrocytes cells released exosomes containing
mtDNA.52,53 MtDNA-containing exosomes were found in the serum
and tumors obtained from prostate cancer patients. These recent
findings collectively suggest that targeting mitochondria in cancer
cells may offer a novel strategy for cancer treatment.

4. Concluding remarks and perspectives

Collectively, accumulating evidence based on research in the
laboratory and clinical settings implicates that metabolic rewiring
through mitochondrial bioenergetics, biosynthesis and crosstalk
with activated signaling pathways are critical for cancer initiation,
progression, metastasis, and chemo-resistance. However, there is
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still a missing piece of the puzzle in the field. We still have to
continue emerging studies to assess how to reverse the reprog-
rammed metabolism in cancer, how to deal with the perturbed
heterogeneous metabolism in patients, and when the best timing is
to add antimetabolic approaches to get maximized and synergistic
benefits during chemotherapy for patients.
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To the editor,
I read, with great interest, the article “Current Pharmacologic 
Approaches in Painful Bladder Research: An Update” published 
by Karl-Erik Andersson and Lori Birder in Int Neurourol J on 
December 2017 [1], and would like to commend on the authors 
on their review article. The aim of this short review was to sum-
marize the accumulating literature on interstitial cystitis/blad-
der pain syndrome (IC/BPS) and suggest ways that experimen-
tal findings could be applied to preclinical and clinical research. 
This article discussed several currently developed treatments 
that focus on systemic and pharmacological intervention and 
are being used in the clinical setting. I believe that this topic was 
clinically relevant and the timing was perfect. The recently im-
plemented Multidisciplinary Approach to the Study of Chronic 
Pelvic Pain (MAPP) research network has made great advances 
in understanding the phenotypes of IC/BPS patients and the 
molecular basis that underlie this disease [2,3]. There has also 
been growing interest toward understanding whether symp-
toms related to IC/BPS are bladder-based, outside the bladder 
(systemic), or both. However, this remains discrepant. In this 
review article, the authors discussed a series of research activi-
ties and clinical trials that are focused on pharmaceutical block-
ing of nerve growth factor (e.g., tanezumab and fulranumab), 
tumor necrosis factor-α (e.g., adalimumab), P2X3 receptor (e.g., 
AF-219), and α1-adrenoceptor (e.g., prazosin). The SHIP1 acti-
vating drug, AQX-1125, is a known negative regulator of the 
PI3K network and inflammatory signaling pathways, and has 
also been considered and tested as a potential systemic treat-

ment for IC/BPS. The authors further provided reasoning on 
why current systemic pharmacological treatments have shown 
only limited success. This may be caused by: (1) the lack of cur-
rent knowledge on how to accurately phenotype and subgroup 
individual IC/BPS patients for certain treatments, and/or (2) 
the low efficacy of systemic drug treatments, themselves. Addi-
tionally, the writers debated on the important role of local treat-
ment options in overcoming the lower effectiveness of systemic 
pharmaceutical treatments and concluded that more efforts 
should be focused on investigating local treatment approaches. 
Research strategies, including the blocking of toll-like receptor 
7 (e.g., hydroxychloroquine) and intravesical liposomes should 
be tested against IC/BPS in large well-designed cohorts. Suc-
cessful phenotyping could stratify patient groups who are suf-
fering from localized disease from those suffering from a sys-
temic disorder and provide efficient treatment options. While 
bladder-specific or systemic-based differences are certainly use-
ful, we would also like to bring up sex differences to the atten-
tion of readers. While sex-determined disparities are evident 
and well-documented in numerous other diseases [4,5], the bi-
ological, cellular, and molecular basis of gender biases remain 
elusive in context of IC/BPS. One potential hypothesis would 
be that the biological role of sex hormones, such as estrogen, 
testosterone, et al., create variations in the metabolic rewiring of 
female and male IC/BPS patients [6]. However, we understand 
that there are still many areas lacking in this field. Consider-
ation of sex differences in preclinical work and clinical trials 
will give a better picture of the disease to esteemed readers of 
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this article. We hope investigators in this field will continue to 
conduct studies assessing how to deal with sex disparities and 
their effects on heterogenous metabolism in female and male 
patients. Hopefully, in the near future, merged knowledge will 
enable us to find the best timing to apply a systemic, local, or 
combination treatment against IC/BPS to get maximized and 
synergistic benefits for patients. 
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Have you ever had at least one wearable internet technology or 
downloaded a health-related app on your mobile device for 
monitoring your health status? Beyond providing you with real-
time health information, your wearable technologies can create 
a cloud of big personal data. This is not just limited to your 
health apps; usage of search engines, social media, and enter-
tainment, such as Google, Youtube, Alibaba, Instagram, Face-
book, Netflix, Amazon, and Twitter, creates vast amounts of 
data about “you.” In addition, advancement of sensor-equipped 
technologies will accelerate data collection on the ways we live, 
work, and who we are. According to Klaus Schwab, the founder 
and executive chairman of the World Economic Forum, this is 
just one part of the technological revolution that will be brought 
forth by the fourth industrial revolution. 
 In the business world, all this big data enables us to perform 
better predictions on consumer needs. Big data refers to the 
large quantities of information collected through careful obser-
vations of repeating patterns. It is an essential component for 
artificial intelligence, which utilizes deep machine learning al-
gorithms to digest big data. More data will also result in better 
prediction outcomes. For instance, this principle can be clearly 
applied to the insurance industry. Data associated with health 
and driving habits can be collected and used for determining 
insurance charges and guiding decisions on policies. 
 How about big data and the field of medicine? This powerful 
analytics tool can be used to enhance the quality of healthcare, 
which may include the development of diagnostic subgrouping 

and predictive biomarkers for various therapeutic options. Big 
data can also be applied to the management of clinical informa-
tion. Systems for electronic medical record (EMR) are being 
implemented in the hope of yielding timely and clinically valu-
able data from a patient’s clinical chart without repetitive chart 
review [1]. This wealth of data will allow for clinicians to have 
the tools needed to make appropriate clinical decisions. It could 
be even greater if we have cost-effective and maximized capa-
bilities to retrieve necessary clinical data from multicenter EMR 
in real-time. 
 In the current health care system, there has been accumulat-
ing efforts to optimize precision medicine, also known as per-
sonalized medicine, across all medical specialties, including 
urology. A patient’s omics signature, which is retrieved from ge-
nomics, epigenetics, proteomics, transcriptomics, and/or me-
tabolomics profiles, can independently or jointly identify differ-
ent patient phenotypes. By combining clinical and medical in-
formation, Big data-based signatures can support physicians on 
deciding therapeutic plans unique to individual patients. 
 Recently, our integrated classification of prostate cancer using 
a large cohort of 1,321 human prostate cancer transcriptome 
profiles from 38 different cohorts revealed that pathway activa-
tion signatures can be a new classification system for subgroup-
ing prostate cancer into 3 different types (PCS1, PCS2, and 
PCS3). This subtyping is based on distinct gene expression pat-
terns. Our study further showed that these 3 different prostate 
cancer phenotypes had different clinical outcomes; PCS1 tu-
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mors progressed more rapidly to metastatic disease in compari-
son to PCS2 or PCS3 [2]. Subtyping has also been applied to 
other cancers as well. Molecular subtypes of bladder cancer have 
been identified using comprehensive genomic data from The 
Cancer Genome Atlas, which is a massive coordinated gene data 
bank with contributions from all over the world. Specific DNA 
mutations and/or copy number aberrations were found to be 
unique to each molecular bladder cancer subtype, suggesting 
that personalized management of patients is possible [3]. This is 
just some of the many examples on how big omics data can be 
used to provide personalized medicine. However, in order to 
enhance the utilization of big data in medicine, improved acces-
sibility to robust, well-annotated, and interactive human omics 
data is a critical departing point [4]. Development of deep ma-
chine learning pipelines is also a crucial step for interpreting 
data. Machine learning can provide pattern recognition of infor-
mation from patient charts, medical records, and clinical trials. 
It can produce accurate disease prediction better than traditional 
statistical regression models [5]. If successful, these tools can 
broaden scientific insight and arm clinicians with the knowl-
edge on how to deliver personalized care. 
 The ultimate goal of big data is to access accurate and mean-
ingful material regarding patient symptoms and family history, 
and use that data to provide real-time information about pa-
tients, their clinical outcomes, and the quality of care needed. 
However, there are some issues and problems that can arise 
from this technology. Big data is still elusive–How can individ-
ual privacy be protected? How can such rich data be interpret-
ed? How can this information be explained to patients and 
caregivers who do not have a scientific background? Strategies 
on addressing big data are fully dependent on how the next 
generation of researchers and physicians are trained for analysis 
and interpretation. We are currently limited by this need for 
those specialized in communicating big data to physicians and 
patients. Currently, many medical schools have initiated estab-
lishing an extensive educational curriculum to foster specialists 
in this fourth industrial revolution era [6]. There is a potential 
meaningful use for big data in the future ahead and the possi-
bilities are exciting, but getting there is the challenge.  
 So…are we ready for the next big shift? 
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Alpha-oxoglutarate inhibits the 
proliferation of immortalized 
normal bladder epithelial cells via 
an epigenetic switch involving 
ARID1A
Muhammad Shahid1, Nicole Gull  2, Austin Yeon2, Eunho Cho3, Jooeun Bae3, Hyun Seok Yoon4, 
Sungyong You  1, Hana Yoon4, Minjung Kim5, Benjamin P. Berman  2 & Jayoung Kim1,3,6,7

Interstitial cystitis (IC) is a chronic urinary tract disease that is characterized by unpleasant 
sensations, such as persistent pelvic pain, in the absence of infection or other identifiable causes. We 
previously performed comprehensive metabolomics profiling of urine samples from IC patients using 
nuclear magnetic resonance and gas-chromatography/mass spectrometry and found that urinary 
α-oxoglutarate (α-OG), was significantly elevated. α-OG, a tricarboxylic acid (TCA) cycle intermediate, 
reportedly functions to suppress the proliferation of immortalized normal human bladder epithelial 
cells. Here, we identified AT-rich interactive domain 1 A (ARID1A), a key chromatin remodeler, as being 
hypomethylated and upregulated by α-OG treatment. This was done through EPIC DNA methylation 
profiling and subsequent biochemical approaches, including quantitative RT-PCR and western blot 
analyses. Furthermore, we found that α-OG almost completely suppresses ten-eleven translocation 
(TET) activity, but does not affect DNA methyltransferase (DNMT) activity. Altogether, our studies 
reveal the potential role of α-OG in epigenetic remodeling through its effects on ARID1A and TET 
expression in the bladder. This may provide a new possible therapeutic strategy in treating IC.

Urine is a critical biological fluid that is filtered through the kidneys and stored in the bladder. It contains the 
expression of many metabolites, such as urea (from amino acid metabolism), inorganic salts (chloride, sodium, 
and potassium), creatinine, ammonia, organic acids, various water-soluble toxins, and pigmented products 
from hemoglobin breakdown. Because urination is also the primary route through which the body eliminates 
water-soluble waste and extra unnecessary products, urine has long been considered as an expendable composite. 
However, more recently, urine has been acknowledged as an uninvestigated biomarker source with great poten-
tial use for disease diagnosis. While previous studies of urine have mainly focused on its chemical composition, 
new focus is being placed on its metabolic properties as indicative sources for medical disorders. Although the 
complexity of sources within metabolites creates many obstacles in urine analysis, progress in the field has been 
promising. Urine analysis could prove to be tremendously beneficial1.

Interstitial cystitis/bladder pain syndrome (IC/BPS, hereafter IC) is a debilitating urological dysfunction that 
presents itself as a constellation of symptoms, including bladder pain, urinary urgency, frequency, nocturia, and 
small voided volumes, in the absence of other identifiable etiologies2–7. The prevalence of IC in the United States 
is 3–6% in women and 2–4% in men8,9. IC patients experience substantial decline in physical activity, social 
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interaction, and quality of life, mainly due to chronic pelvic pain, frequent urination, and other symptoms10–12. 
Despite the considerable burden of IC on public health, there is no diagnostic gold standard for IC. Urologists 
currently use the American Urological Association guidelines for diagnosing IC in the absence of other identifia-
ble causes for symptoms (e.g., urinary tract infection and cancer). Therefore, clearer disease indicators and studies 
involving larger populations are needed to further our understanding of the molecular and cellular mechanisms 
behind IC. Current treatment options also remain suboptimal. Because so little is known regarding IC, palliative 
care is the only option available to patients.

In an effort to identify IC biomarkers, we have been keen on examining urine as a bio-resource; mainly 
because bodily fluid most proximal to a disease site provides a wealth of informative biomarkers13–15. A series 
of our studies involving metabolic profiling revealed a list of candidate urinary biomarkers associated with IC. 
Previously, we used nuclear magnetic resonance (NMR) and liquid chromatography−mass spectrometry (LC−
MS) to show substantial differences between the metabolic profiles of urine from IC patients and those of healthy 
control subjects16. We found that α-oxoglutarate (α-OG) was significantly increased in IC patients. α-OG, also 
known as α-ketoglutarate, is a key Krebs cycle intermediate and regulator of cellular redox states17. More recently, 
α-OG has been reported to function in epigenetic regulation, contributing to metabolic reprogramming and 
macrophage activation17,18. Treatment with α-OG in bladder epithelial cells suppressed cell proliferation and was 
consistent with previous observations by other groups that found α-OG inhibited cell cycle transitions through 
the up or downregulation of p21Waf1/Cip1, p27Kip1, cyclin D1, and Rb. However, no functional impacts or mecha-
nisms of urinary α-OG have been proposed in the setting of bladder wall abnormalities or diseases and no corre-
lations have been previously described.

In this study, we examined the biological impact of increased levels of α-OG. Given that our previous global 
metabolomics profiling of IC patient urine suggested the possibility of finding non-invasive metabolic signatures, 
this study focused on gaining new insight into the mechanism of IC through investigating the biological meaning 
of upregulated α-OG. Here, our Infinium MethylationEPIC profiling revealed the bladder DNA methylome as 
being responsive to α-OG. Our findings provide evidence suggesting that α-OG may change the physiology of 
bladder epithelial cells at the epigenetic and metabolic levels.

Materials and Methods
Cell Culture and Proliferation Assay. Immortalized normal human bladder epithelial cells, TRT-HU1, 
were maintained as described previously19. The TRT-HU1 cell line was constructed and extensively characterized 
in previously published papers. Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM), containing 
10% fetal bovine serum (FBS, Invitrogen), 1% penicillin/streptomycin, and 1% L-glutamine (Sigma, St. Louis, 
MO) in a 37 °C humidified incubator with 5% CO2. TRT-HU1 cells were seeded in 10 cm culture plates at a den-
sity of 1 × 106 cells in standard growth medium. When the cells reached approximately 80% confluence, they were 
treated and incubated with 10 mM of α-OG or vehicle for 72 h. For the crystal violet staining cell proliferation 
assay, cells were stained with 0.5% crystal violet (Sigma-Aldrich Corp., St. Louis, MO, USA) in 30% ethanol for 
10 minutes at room temperature. The cells were lysed in a 1% SDS solution. The absorbance of the solution was 
measured using a microplate spectrophotometer at a wavelength of 595 nm.

Epigenome-wide DNA methylation. Methylation profiles were obtained using the Illumina Infinium 
HumanMethylationEPIC BeadChip kit, which assayed approximately 850,000 methylation sites per sample at a 
single nucleotide resolution20. Methylation scores were computed as β-values, which took into account the ratio 
of methylated probe intensities and the overall probe intensities (methylated and un-methylated plus a constant, 
C = 100). β-values are between 0 and 1. Assays and validations were performed according to the manufacturer’s 
recommendations.

Bioinformatic analysis. A data analysis pipeline was established using a combination of R Studio and 
Bioconductor. Illumina HumanMethylationEPIC data (IDAT files) were imported into the Bionconductor minfi 
package. Extension of minifi package to support EPIC arrays is described in previous literature21. Background in 
the data was corrected using PreprocessNoob22. No normalization was done. Data was mapped to the genome 
according to standards outlined by minfi. Annotations were added using IlluminaMethylationManifest, a class 
built within the minfi package. Volcano plots were constructed using the Biconductor package, TCGAbiolinks23. 
Heatmaps were created using the Bioconductor package, ComplexHeatmap24. Differentially methylated genes 
(DMGs) were identified using a simple T-test comparing treated and un-treated groups. Additionally, we com-
pared the mean β-values of two groups and only included probes that had a difference of 10%. Using the DAVID 
software (Ver. 6.8)25, we performed functional enrichment analysis of the DMGs to identify cellular processes and 
pathways perturbed by α-OG treatment.

Network analysis. From the functional enrichment analysis, we identified the hypo-methylated genes as 
those involved in cellular processes, including cell-cell adhesion and chromatin remodeling. We then searched 
for interactions among the hypo-methylated genes using the STRING database26. A network model was recon-
structed with the interactions between these genes and visualized using Cytoscape (Ver. 3.4)27. Node size repre-
sents degree centrality, which is the number of interactions in the network model, and edge thickness represents 
interaction scores, which are combined scores obtained from the STRING database26. These combined scores 
were computed by adding the probabilities from different evidence of interactions in the database and correcting 
for the probability of randomly observing an interaction.

Quantitative RT-PCR. Total RNA was purified using the MagNA Pure Compact RNA isolation kit, accord-
ing to the manufacturer’s instructions (Roche). cDNA was synthesized using the iScript cDNA Synthesis Kit 
(Bio-Rad). Q-PCR was carried out with iTaq universal SYBR green supermix (BioRad) on a 7500 Fast Real-Time 
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PCR system (Life Technologies). The annealing temperature for the qPCR was set to 60 °C and the total cycle 
number was 40. Actb was used as internal control for gene expression normalization. Primers used for qRT-PCR 
assay are described in Supplementary Table 1.

Western blot analysis. Total cell lysates were prepared in lysis buffer (Bio-Rad) with protease inhibitors 
(Thermo Fisher). Protein levels were measured and 25 μg of cell lysates per condition were used for SDS-PAGE 
gel running. After transferring proteins to nitrocellulose membranes, western blot analysis was performed 
using antibodies specific for p53 (1:1000; sc-126; Santa Cruz), p21 (1:1000; 2947;Cell Signaling Technology), 
JunB (1:1000; 3746; Cell Signaling Technology), ARID1A (1:1000; 12354; Cell Signaling Technology), HDAC4 
(1:1000; 5392; Cell Signaling Technology), PKD (1:1000; 2052; Cell Signaling Technology), β-catenin (1:1000; 
8480; Cell Signaling Technology), PBRM1 (1:1000; 91894; Cell Signaling Technology), SMARCA2 (1:1000; 
11966; Cell Signaling Technology), and β-actin (1:2000; A1978; Sigma-Aldrich). These were incubated overnight 
and followed by anti-specie-specific HRP-conjugated secondary antibodies (1:5000; 7074, 7076; Cell Signaling 
Technology) and then chemiluminescent detection. Some blots were stripped using Restore (Thermo Fisher) and 
detected using other primary antibodies.

DNA Methyltransferase (DNMT) and ten-eleven translation (TET) activity assay. Cells were 
seeded 24 h before experiments and incubated with α-OG-containing media for 20 h. A commercially avail-
able EpiQuik™ DNMT Activity/Inhibition Assay Ultra Kit (Epigentek, Farmingdale) was used to determine 
DNMT enzymatic activity as per the manufacturer’s instruction. For the TET activity assay, the EpigenaseTM 
5mC-Hydroxylase TET Activity/Inhibition Assay Kit (Colorimetric) was used, as per the manufacturer’s instruc-
tions. This sandwich-based 5hmC ELISA reads the conversion of methylated products to hydroxymethylated 
products through the presence of TET enzymes in samples.

Ethics statement. The Ethics Committee of Ewha Womans University Hospital (Seoul, Republic of Korea) 
approved this study. The Institutional Review Board of Ewha University Hospital approved collection, curation 
and analysis of all samples. All subjects participated in this study provided written informed consent, and all 
experiments were performed in accordance with relevant guidelines and regulations.

Subjects and biopsy tissue collection. Subjects, including IC patients (mean age, 52.5 ± 10.1) and healthy 
controls (mean age, 54.2 ± 9.3), were Asian-descent female residents in South Korea who were enrolled at their 
initial evaluation, before any treatments or procedures. They were diagnosed and recruited by two independent 
urologists, Drs. Hana Yoon and Hyun Seok Yoon, who have extensive clinical expertise in IC at an outpatient urol-
ogy clinic at Ewha Womans University Hospital. Careful clinical diagnosis was done using clinical criteria in the 
AUA guidelines28,29; “An unpleasant sensation (pain, pressure, discomfort) perceived to be related to the urinary 
bladder, associated with lower urinary tract symptom(s) of more than 6 weeks duration, in the absence of infec-
tion or other identifiable causes” (http://www.auanet.org/education/guidelines/ic-bladder-pain-syndrome.cfm).  
Diagnostic criteria included persistent or recurrent chronic pelvic pain, pressure or discomfort perceived to be 
related to the urinary bladder accompanied by at least one other urinary symptom such as an urgent need to 
void or urinary frequency in the absence of any identifiable pathology. Work-up included symptom assessment, 
cystoscopic evaluation, physical examination, urodynamics, and/or urine culture. Patients with a history of other 
diseases (such as any types of cancer, inflammation, or diabetes, etc.) were excluded. Patients who were under any 
active treatment or medication were clearly excluded. Only subjects >2 months “free of treatment, therapy, or 
any medications”, such as hormone use, pentosan polysulphate, or intravesical instillation therapy, were included. 
Staging was done based on symptoms, bladder pain, and quality of life. Matched controls were carefully selected 

Figure 1. Cell proliferation was suppressed in response to α-OG treatment. (A) TRT-HU1, immortalized 
normal bladder epithelial cells were treated with 10 mM of α-OG for 72 h and then proliferation assay was 
performed as described in Methods. *P < 0.05 (two-sided Student’s t-test) compared with the control group. (B) 
Representative western blot showed the reduced levels of p53 and p21 expression in TRT-HU1 cells treated with 
α-OG. β-actin was used for protein normalization.

http://www.auanet.org/education/guidelines/ic-bladder-pain-syndrome.cfm
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considering age, menopausal status, hormone use et al. Bladder biopsies were performed before procedures such 
as hydrodistention or fulguration. Biopsy sites included lateral walls, dome, posterior wall of bladder wall, but not 
from trigone, for both IC patients and controls.

ARID1A immunohistochemistry (IHC) and scoring system. IHC analysis for ARID1A expression was 
performed on 5-μm slides using a polyclonal rabbit anti-ARID1A antibody (1:250, HPA005456; Sigma-Aldrich). 
Antigen retrieval was performed by submerging the tissue sections in citrate buffer (pH 6.0) and then in a steamer 
for 10 minutes. The sections were then incubated with the rabbit antibody at a dilution of 1:200 at 4 °C overnight. 
A positive reaction was detected by the EnVision + System (Dako).

Statistics. All data were generated from experiments performed at least three times and expressed as 
mean ± standard deviation (SD). The student’s t-tests were used to determine the statistical significance of dif-
ferences between samples treated under different conditions. Differences were considered statistically significant 
when p < 0.05 (*), p < 0.01 (**), or p < 0.001(***).

Results
α-OG, an IC-associated metabolite, suppresses cell proliferation in immortalized normal 
human bladder-derived epithelial cells. In light of our previous global metabolomics data linking α-OG 
to cell cycle arrest and proliferation suppression16, we first investigated the effects of α-OG in immortalized 
normal bladder epithelial cells. Cell cycle transition and proliferation were measured in TRT-HU1 cells treated 
with or without 10 mM of α-OG. Consistent with previous reports, we observed significant suppression of cell 
proliferation in response to α-OG (Fig. 1A). Western blot analysis was performed to ascertain the involvement 
of several key cell cycle and proliferation regulators. We found that levels of p53 and p21 significantly increased 
while levels of JunB modestly increased in the presence of α-OG (Fig. 1B).

Figure 2. Experimental scheme describing EPIC DNA methylation profiling and the following bioinformatics 
analysis.
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α-OG perturbed the epigenetic architecture of immortalized normal bladder epithelial cells.  
Given previous reports demonstrating that α-OG modulates epigenetic regulation, we next tested our hypothesis 
that the global DNA methylome is altered in response to α-OG in immortalized normal human bladder epi-
thelial cells18. In order to assess whether the DNA methylome is changed by α-OG, EPIC array was performed. 
Our workflow is described in Fig. 2. Our analysis and data requisition resulted in differentially methylated genes 
(DMGs) in response to α-OG (Supplementary Table 2–4).

Using the results from the quality control (QC) test, density plots for probes were constructed for DNA meth-
ylation levels (β-values) in control and α-OG treated conditions. Untreated control samples (in orange) showed a 
slight hypermethylation pattern. The α-OG-treated samples (in green) showed a more even distribution of β val-
ues across probes (Fig. 3A). Density bean plots for probes (Fig. 3B) shows the DNA methylation levels (β-values) 
among different samples.

Following the QC steps within minfi (Fig. 3A, B), methylation data for 836,329 CpGs were analyzed. Because 
we were unable to use minfi’s stringent cutoffs to identify Differentially methylated regions (DMRs) with 
BumpHunter and dmpFinder, we opted to do our analysis using quantitative cutoffs, splitting into four groups 
of probes. The resulting volcano plots show the differentially methylated probes present between α-OG treat-
ment and control conditions. Significantly hyper-methylated probes are shown in orange, while hypo-methylated 
probes are shown in blue. First, the most statistically robust CpGs were selected using a p-value cutoff of 0.0005. 
Unexpectedly, the most significant probes had the smallest differences in methylation β-values (β < 0.1). These 

Figure 3. Reprogrammed DNA methylation architecture by α-OG treatment. (A) QC (density plots) of probes 
for DNA methylation levels (β-values). The orange group represents untreated samples, which show a slight 
hypermethylation pattern. The green group, α-OG-treated samples, shows a more even distribution of beta 
values across probes. (B) Density Bean Plot of probes for β-values in two experimental samples. Distribution of 
β-values across each sample (orange, untreated; green, α-OG-treated) was shown. (C) Volcano Plots indicates 
differentially methylated probes between untreated and treated samples. Each dot represents a single CpG probe 
on the array, with hypomethylated probes colored blue and hypermethylated probes colored orange. The upper 
plot defines differential methylation based on statistical significance alone (Group A – hypomethylated probes: 
p < 0.0005, Group B – hypermethylated probes: p < 0.0005). The lower plot shows the exact same volcano plot, 
but defines differential methylation based on both statistical significance and β-value difference (Group C - 
hypermethylated probes: p < 0.05 and β-value difference > 0.1, Group D - hypomethylated probes: p < 0.05 and 
β-value difference > 0.1). (D) Sample-specific β-values are shown as heatmaps for the probes in Groups A-D. 
Group A: 873 probes, Group B: 382 probes, Group C: 32 probes, Group D: 366 probes.
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two cutoffs yielded two groups, Group A and B, shown in Fig. 3C, as having 873 and 382 probes, respectively. 
The other two groups (C and D) were identified by looking at the largest difference in β-values present, β > 0.1. 
These probes were less statistically significant, with a p-value < 0.05. Group C only had 32 probes while Group 
D had 366. Overall, our analysis of probes that were most statistically significant and had the greatest magnitude 
of change showed a general shift towards increased global hypo-methylation. Based on these results, we opted to 
further analyze the groups that had the largest changes in β-values, focusing mostly on group D due to the limited 
number of probes in group C.

Gene tables for the groups with the largest numbers of identified probes, group A, B, and D, can be found in 
Supplementary Tables 2, 3, and 4, respectively). Heatmaps of all four groups of probes are shown in Fig. 3D. The 
heatmaps demonstrate a trend of increased hypo-methylation in probes of cells treated with α-OG, particularly 
in Group D.

Biological meanings of DMGs responsive to α-oxoglutarate. In order to explore the contribution 
of DNA methylation signatures in IC, we performed functional enrichment analysis and network modeling on 
the DMGs. Enriched cellular processes and biological pathways perturbed by α-OG treatment were identified 
by using DAVID software25. Hypo-methylated genes were enriched for cell-cell adhesion, cell projection organ-
ization, neuron projection development, cell cycle processes, chromatin remodeling, and Rho protein signal 
transduction regulation, while cellular responses to stress, Ras GTPase activity, and transport of NADH to uniqui-
tinone in the mitochondrial electron transport chain were enriched for by hyper-methylated genes (Fig. 4A). We 
also found that KEGG pathways. inositol phosphate metabolism, glycosylphosphatidylinositol-anchor biosynthe-
sis, leukocyte trans-endothelial migration, phosphatidylinositol signaling were enriched for by hypo-methylated 
genes and endocytosis, Alzheimer’s disease, oxidative phosphorylation, Huntington’s disease were enriched for 
by hyper-methylated genes (Fig. 4B). Table 1 shows the related DMGs for each of the enriched cellular processes.

Figure 4. Enriched biology perturbed by α-oxoglutarate. (A and B) Enriched cellular processes (A) and KEGG 
pathways (B). Bar plot represents scores of enrichments by hyper- and hypo-methylated genes. (C) Network 
model describes cell-cell adhesion and chromatin remodeling genes that were hypo-methylated by α-OG 
treatment.
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Our previous study on RNA-sequencing analysis of a IC rat mimic model revealed significant association 
of cell adhesion and IC context30. In addition, gene expression changes of chromatin remodeling genes were 
identified in human bladder epithelial cells from patients with IC30. We thus focused on cell-cell adhesion and 

Figure 5. The expression levels of ARID1A were significantly increased in α-OG treated condition. (A) 
Quantification result from RT-PCR analysis to measure the gene expression levels of six candidate genes 
(ARID1A, HDAC4, PKD1, β-CATENIN, SMARCA2, and PBRM1) in the presence or absence of α-OG. 
*P < 0.05 (two-sided Student’s t-test). (B) Representative western blot show the levels of candidates (ARID1A, 
HDAC4, PKD1, β-CATENIN, SMARCA2, and PBRM1) and β-actin. (C) DNMT and (D) TET activity 
were measured in response to α-OG treatment. *P < 0.05 (two-sided Student’s t-test). (E) Representative 
Immunohistochemical stain showed ARID1A expression in bladder tissues obtained from IC patients (IC) 
and healthy donors (C). (F) A diagram showing the potential mechanism that redundant α-OG in urine may 
regulate bladder epithelial cells and contribute to suppression of cell proliferation.
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chromatin remodeling. To this end a network model describing the interactions of the hypo-methylated genes 
involved in cell-cell adhesion and chromatin remodeling were reconstructed with protein-protein interaction 
information from the STRING database26. This network model consisted of β-CATENIN (CTNNB1), PKD1 
(polycystin 1), CDH18 (cadherin 18), SMARCA4 (SWI/SNF related, matrix associated, actin dependent regulator 
of chromatin, subfamily A, member 4), HDAC4 (histone deacetylase 4), ARID1A (AT-rich interactive domain 
1A), PBRM1 (Polybromo-1, a component of the PBAF (Polybromo-associated-BRG1- or BRM-associated fac-
tors) chromatin remodeling complex) et al. Of note, CTNNB1 and SMARCA4 are valid candidates regulating cell 
adhesion and chromatin remodeling in this system (Fig. 4C).

ARID1A expression significantly increased with α-OG treatment. ARID1A, HDAC4, PKD1, 
β-CATENIN, SMARCA2, and PBRM1 were suggested in our network model for IC and were selected for further 
validation. These genes were all hypo-methylated in response to α-OG treatment. To ascertain that α-OG treat-
ment modifies the DNA methylome in TRT-HU1 cells, we next quantified the levels of DNA methylation and 
gene expression of the targeted candidate genes. Using quantitative RT-PCR analysis with customized primers 
(Supplementary Table 1), we found the mRNA expression levels of all candidate genes as being slightly elevated. 
Gene expression of ARID1A was significantly increased in the α-OG treated condition (p = 0.018) (Fig. 5A). The 
Protein expression levels of ARID1A and SMARCA2 increased; however, those of HDAC4, PDK, β-CATENNIN, 
and PBRM1 did not (Fig. 5B).

α-OG treatment altered the activity of ten-eleven translation (TET) hydroxylase but not DNA  
methyltransferase (DNMT). To further elaborate on the effects of α-OG on epigenetic regulation in 
immortalized normal bladder epithelial cells, we measured the activity of two DNA methylation regulators, 
DNMT and TET, in the presence of α-OG (Fig. 5C). In our experiments, α-OG treatment suppressed TET activ-
ity almost completely; however, there was no influence on DNMT activity (Fig. 5D).

On histological examination, we found that ARID1A expression greatly increased in IC patients. IHC analysis 
of bladder tissue samples obtained from 10 IC patients and 10 normal controls showed 100% positive staining 
in IC tissue for ARID1A, while none of the control tissue showed any staining (Fig. 5E). A hypothetical diagram 
suggesting epigenetic modulation on ARID1A by α-OG is shown in Fig. 5F.

Discussion
Our previous reports provided evidence showing that bladder cell metabolism is altered in IC and suggested 
several urinary metabolites, including α-OG, as candidate biomarkers16. However, it is still unclear whether 
these metabolic biomarkers are biologically active in urine and how they contribute to bladder pathogenesis and 
homeostasis. The metabolic changes in the IC bladder are largely speculated to be associated with the microen-
vironment, resulting in altered oxygen states and metabolites. As products of this perturbed metabolism, these 
metabolites may be what are mediating the epigenetic alteration seen in the IC bladder. Here, our experimental 
results demonstrate that a novel IC biomarker, α-OG, directly reduces TET activity. α-OG also simultaneously 

Term Hypo-methylated genes Hyper-methylated genes

cell-cell adhesion

PCDHGA9, PCDHGA8, PCDHGA7, PCDHGA6,PCDHGA5, PCDHGA4, 
PCDHGA3, PCDHGA2, CTNNB1, PCDHGA1, CLDN15, PCDHGB1, 
NPHP4, FAT1, COL6A2, PKD1, DLG1, PCDHGA12, PCDHGA10, 
PCDHGA11, PCDHGB7, CLDN22, PCDHGB6, PCDHGB3, CERCAM, 
PCDHGB2, PCDHGB5, PCDHGB4, CDH13, CDH18

CDK5R1, PARD3, EZR, CTNND2, 
PTPRT

cell projection organization
ADORA2A, PAX6, GRIN3A, TPM1, EPHB1, VCL, DFNB31, IGF1R, 
HOXA2, ATXN10, BCL11B, NUMB, DCLK1, PRKCA, MCF2, BAIAP2L1, 
BAIAP2, RXRA, NUP85, WWTR1, CDH13, TSC1, CYFIP1, MAPK8IP3, 
EFNA5, APBB2, APBB1, DST, NGF, MYH10

PPP1R9B, PARD6B, CDK5R1, 
PARD3, ILK, NUMB, SIAH1, 
LMX1A, FEZ1

neuron projection development
PRKCA, ADORA2A, MCF2, BAIAP2, RXRA, PAX6, GRIN3A, EPHB1, 
IGF1R, HOXA2, ATXN10, BCL11B, NUMB, MAPK8IP3, CYFIP1, 
EFNA5, APBB2, APBB1, DST, DCLK1, MYH10, NGF

PPP1R9B, PARD6B, CDK5R1, 
PARD3, ILK, NUMB, SIAH1, 
LMX1A, FEZ1

cell cycle process

MAD1L1, FZR1, KIF25, TSG101, POLA1, CETN1, CDC34, CDC16, 
TCF7L2, CTNNB1, PLAGL1, PSMF1, CUL2, RAD51L1, PSMD1, PBRM1, 
PKD1, HBP1, PSMD5, TCF3, ZW10, PSMD9, NFATC1, RAD52, WEE1, 
FOXN3, PPM1G, MNAT1, PPM1D, NOLC1, CUL4A, SYCP3, CDK2AP1, 
CDK11B, HORMAD1, CHFR, APBB2, APBB1, DST, MYH10

KIFC1, KIF22, DAXX, TCF7L2, 
CENPJ, DDIT3, PPP1R9B, 
KIF2C, CUL5, CUL4A, ILK, 
SKA2, PSMD4, MAPRE1, MAP9, 
DHCR24

chromatin remodeling HDAC4, SATB2, SYCP3, PBRM1, ARID1A, SMARCA2, RERE, 
SMARCA4 BAZ1B, SUPT5H

regulation of Rho protein signal transduction OBSCN, BCR, PLEKHG1, ABR, TSC1, PLEKHG7, MCF2, ARHGEF16, 
TRIO, ABRA, FARP1 PREX2, BCL6, MLST8, ARHGEF11

actin cytoskeleton organization
FMNL2, SHROOM3, TNXB, SSH1, CALD1, CYTH2, MYO9B, DAAM2, 
TPM1, ARHGAP26, NPHP4, SCIN, GRID2IP, DST, LCP1, MYH10, 
CDC42BPB, DLG1

PPP1R9B, EZR, BCL6, FHDC1, 
ARHGEF11

regulation of cellular response to stress SH3RF1, MAP3K9, MAP3K10, MAPK8IP3, PKN1 FGF19, ERCC6, AIDA, POLH, 
EEF1E1, HIPK3, DAXX, SPP1

regulation of Ras GTPase activity TBC1D2B, TSC1, TBC1D14, RABGAP1L, AGAP1 RABGAP1L, ASAP1, BCL6, EVI5L, 
MLST8, TBC1D20, AGAP2

mitochondrial electron transport, NADH to ubiquinone NDUFS7, NDUFB10, NDUFA10, 
NDUFS1

Table 1. Lists of DMGs for each of the enriched cellular processes.
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causes DNA hypo-methylation of ARID1A and cell cycle transition arrest in immortalized normal bladder epi-
thelial cells (Fig. 5F). These findings are consistent with clinical observations in patients; one characteristic of IC 
is thin bladder epithelium layers31,32. Previous mechanistic studies have shown that bladder epithelial cells derived 
from IC patients have suppressed proliferation and cell cycle arrest31,33. Based on these previous observations and 
our findings, α-OG may not only be a novel urinary metabolite associated with IC, but may also have an active 
biological function.

Altering the methylation status of DNA promoters and enhancers are widely linked to reductions in gene 
transcription. There are two main processes that orchestrate DNA methylation of key epigenetic regulators; these 
involve 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), which are located on the CpG islands of 
gene promoters and enhancers. Currently, the most well-studied process of covalent DNA modification is meth-
ylation through the addition of methyl groups to produce 5mC. Active DNA methyltransferases, such as DNMT1 
and DNMT3A/B, use S-adenosylmethionine as methyl donors and are required for establishing and maintaining 
DNA methylation patterns. DNA demethylation is another important epigenetic mechanism and is mediated by 
TET, which converts 5mC to 5hmC and further to 5-carboxylcytosine (5-caC) through its hydroxylase activity.

In the context of IC, perturbed epigenetic architectures, such as DNA methylation and demethylation, in 
the bladder epithelium have not been carefully investigated. However, given that our encouraging data shows 
suppressed TET activity as a potential IC biomarker, it may be clinically significant to elaborate on the potential 
role of TET and its targets as diagnostic markers and/or therapeutic targets. It is not known how these changes in 
TET and 5hmC profiles are related to IC and how TET can be reactivated. What is known so far is that the TET 
family (TET1, TET2, and TET3) plays an important role in hydroxymethylating and demethylating 5mC in IC. 
It is still unclear how these changes in TET and 5hmC profiles are related to IC and how TET can be reactivated. 
Unfortunately, due to the lack of commercially available TET activators, we could not perform any tests to see if 
TET stimulation can reverse bladder dysfunction.

Our results also suggest the possible physiological role of ARID1A in maintaining normal homeostasis in the 
bladder epithelium through controlling chromatin remodeling. ARID1A and SMARCA2, both are subunits of the 
SWI/SNF chromatin-remodeling complex, were suggested as key players of α-OG signaling pathway in our net-
work model. Although modest, the expression of SMARCA2 also increased upon α-OG treatment (Fig. 5B). This 
finding is consistent with previously published microarray analyses of IC primary culture cells and controls. The 
gene expression of both IC patient-derived primary culture cells and APF (anti-proliferative factor, an urinary IC 
biomarker)-treated cells suggested a less proliferative phenotype, with increased expression of SMARC234.

ARID1A sustains chromatin accessibility through H3K27me3 and H3k27ac in the enhancer regions35,36. 
ARID1A is also a well-known bona fide tumor suppressor that is frequently inactivated by mutations or reduced 
in expression due to promoter hyper-methylation37. Along with p21, cyclins, and E2F-responsive genes, ARID1A 
is essential for normal cell cycle arrest; thus, inactivation of ARID1A results in tumor transformation, metastasis, 
and/or drug resistance38,39. However, the biological function of ARID1A is context dependent. In bladder cancer, 
increased ARID1A expression is generally correlated with higher tumor grade; however, there is some variation 
based on the cancer type40,41. Detailed information regarding the mechanism and physiological roles of ARID1A 
and its co-factors has been lacking. Based on our study, we propose that ARID1A can be regulated through α-OG, 
contributing to an impaired cell proliferation in IC. We believe that additional attempts to validate the epigenetic 
regulation of α-OG on ARID1A in clinical samples may provide novel insight into the etiology of IC and identify 
metabolites that can serve as IC biomarkers for clinical application.

In summary, evidence from our EPIC DNA methylation profiling suggests that α-OG, a potential IC bio-
marker candidate, regulates ARID1A epigenetically. Modification of the promoter for ARID1A contributes to 
increased expression at both the mRNA and protein levels, leading to suppressed proliferation in the bladder epi-
thelial cells. These findings indicate that urinary metabolites in the bladder can lead to epigenetic reprogramming. 
Given our observations, we may have defined the epigenetic regulatory mechanisms of ARID1A and TET activity 
in the anti-proliferative axis in immortalized normal bladder epithelial cells.
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Menthol, a unique urinary volatile 
compound, is associated with 
chronic inflammation in interstitial 
cystitis
Muhammad Shahid1, Min Young Lee2, Austin Yeon1, Eunho Cho3, Vikram Sairam3, 
Luis Valdiviez4, Sungyong You  1 & Jayoung Kim1,3,5,6

Chronic inflammation is a potential systemic risk factor for many bladder dysfunctions, including 
interstitial cystitis (IC). However, the underlying mechanism through which a healthy bladder 
protects itself from inflammatory triggers remains unknown. In this study, we identified odor 
compounds in urine obtained from IC patients and healthy controls. Using comprehensive solid-phase 
microextraction-gas chromatography-time-of-flight-mass spectrometry (SPME-GC-TOF-MS) profiling 
and bioinformatics, we found that levels of urinary volatile metabolites, such as menthol, were 
significantly reduced in IC patients, compared to healthy controls. In an attempt to understand the 
mechanistic meaning of our volatile metabolites data and the role of menthol in the immune system, 
we performed two independent experiments: (a) cytokine profiling, and (b) DNA microarray. Our 
findings suggest that lipopolysaccharide (LPS)-stimulated inflammatory events, such as the production 
and secretion of inflammatory cytokines (e.g., TNF-α, IL-6, and IL-1β) and the activation of NF-κB 
and associated proteins within a large signaling network (e.g., Akt, TLR1, TNFAIP3, and NF-κB), are 
suppressed by the presence of menthol. These findings broaden our knowledge on the role of urinary 
menthol in suppressing inflammatory events and provide potential new strategies for alleviating both 
the odor and inflammation associated with IC.

Interstitial cystitis (IC) is a clinical condition that presents itself as sensory hypersensitivity of unknown cause 
and is characterized by frequent urination, bladder discomfort, and pelvic pain1. IC occurs in both women and 
men over a broad age range and across ethnic/racial groups2. In the United States, more than 3–8 million women 
and 1–4 million men are diagnosed with IC annually3. The prevalence estimates of IC vary substantially because 
of differences in source populations and case ascertainment4. Current diagnostic techniques include cystoscopy, 
potassium sensitivity tests, hydrodistension et al. However, these procedures are not only invasive, painful, and 
inconvenient, but also extremely costly, complicated, and minimally informative. In addition to these compli-
cations with diagnosis, the lack of consensus regarding the cause of IC has resulted in difficulties determining 
effective and specific therapies.

Although there has been immense progress in the fields of genomics and proteomics, further research into 
the biological end points of human diseases is needed for improved disease diagnosis, prognosis, and therapeutic 
development. In recent years, metabolomic profiling, also known as metabolomics, has been viewed as a promis-
ing technique in disease diagnosis. Metabolomics focuses on utilizing and analyzing metabolites and biomarkers 
as signals for cellular states. These biological biomarkers have been used to understand the metabolic changes that 
occur over time in a variety of diseases5. In particular, clinical samples, such as tissues and biofluids (e.g. serum, 
plasma, urine, and saliva), have proven to be valuable sources for diagnostic purposes. For instance, human 
plasma proteins originate from a variety of cells and various medical studies have shown that these proteins reflect 
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human physiological and pathological states. Therefore, they can potentially be utilized to increase diagnostic 
efficiency and prognostic efficacy6. Other biological fluids have been quantitatively determined in regards to their 
metabolic composition through procedures such as gas chromatography, high-pressure liquid chromatography, 
mass spectrometry.

Urine contains a multitude of water-soluble waste products filtered through the kidneys and eliminated from 
the body via micturition. It contains many metabolites, such as urea (from amino acid metabolism), inorganic 
salts (chloride, sodium, and potassium), creatinine, ammonia, organic acids, water-soluble toxins, and urobilin. 
While this complexity can make urine analysis difficult, the potential information that can result will be very 
beneficial, and progress in the field has been promising. Additionally, collection of urine is simpler and provides 
a relatively larger volume of sample compared to other biological fluids.

Odor consists of various volatile organic chemical compounds (VOCs), which can be identified through mass 
spectrometry. Compared to other organic compounds, VOCs generally have a lower molecular weight and higher 
vapor pressure. Many prior studies have applied VOCs into cancer research. For cancer detection, there have been 
several studies on using gas chromatography-mass spectrometry (GC-MS) to detect certain odor compounds 
in skin, tissue, breath, feces, and bodily fluids, such as sweat and urine7–9. VOCs can also be used to assist in the 
diagnosis of lung and prostate cancer10. Electronic noses capable of detecting odor signatures have been devel-
oped and successfully applied in discriminating prostate cancer patients from healthy controls9,11. In terms of IC, 
perturbed VOCs may underlie the commonly reported changes in urine odor. IC is known to negatively impact 
overall quality of life through its effects on urinary odor and leakage; many patients often report foul smelling 
urine12. Given our previous findings that IC patients may have a distinct metabolism13,14, we hypothesized that 
urine from IC patients might contain a distinguishing VOC signature that is reflective of disease conditions.

In our present volatile metabolomics study, we tested the hypothesis that urinary VOCs differ between IC 
patients and healthy controls. Using urinary samples from the urine headspace of IC patients and healthy con-
trols. We extracted VOCs via solid-phase micro-extraction and analyzed them using GC-MS. The aim of this 
study was to identify IC-associated VOCs and further examine their biological meaning in the bladder epithe-
lium. From our comprehensive and unbiased metabolomics analysis, we found menthol to be a novel compound 
involved in IC-associated inflammation. We discovered that urinary menthol decreased in IC patients and that 
these reduced levels are potentially linked to the chronic inflammation commonly observed in IC.

Materials and Methods
Cell Line. The mouse macrophage cell line, RAW 264.7, was obtained from Sigma Cells (St. Louis, MO, USA) 
and was cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum 
(FBS). The cells were kept in humidified incubators with 5% CO2 at 37 °C. The medium was replaced every day 
and the cells were passed every two to three days to maintain logarithmic growth.

Reagents. Menthol and bacterial lipopolysaccharide (LPS) (Escherichia coli, 0111: B4) were purchased 
from Sigma (USA). Mass spectrometry grade reagents (column, buffer et al.) were all purchased from Sigma 
(USA). The Mouse Proteome Profiler Array was purchased from R&D Systems (USA). The antibodies used were 
CCL3 (ab25128, Abcam, USA), IL-6 (12912; Cell Signaling Technology, USA), TNF-α (11948S; Cell Signaling 
Technology, USA), p-NF-κB (3033; Cell Signaling Technology, USA), NF-κB (8242; Cell Signaling Technology, 
USA), p-Akt (4051; Cell Signaling Technology, USA), Akt (9272; Cell Signaling Technology, USA), TLR1(2209; 
Cell Signaling Technology, USA), TNFAIP3 (5630; Cell Signaling Technology, USA), IFIT1 (14769; Cell Signaling 
Technology, USA), viperin (13996; Cell Signaling Technology, USA), IL-1β (AF-401-NA, R&D Systems, USA), 
and β-actin (A1978; Sigma-Aldrich, USA). HRP-conjugated secondary antibodies were obtained from Cell 
Signaling Technologies (7074, 7076; USA).

Ethics Statements. The ethics committee at Inha University Hospital (Incheon, South Korea) approved 
this study. Written informed consent was obtained from all subjects. The Institutional Review Board of Inha 
University Hospital approved collection, curation, and analysis of all samples (IRB #10-0751)13,14. All methods 
were performed in accordance with the relevant guidelines and regulations.

Subjects and Urine Specimen Collection. Patients and healthy control subjects were recruited from an 
outpatient urology clinic at Inha University Hospital. All subjects were Asian females. Subjects were instructed 
to avoid tobacco, nicotine, chemical compounds, alcohol, herbal foods, caffeine, and medication 24 hrs before 
their urine collection. Recruitment was conducted following the National Institute of Diabetes and Digestive and 
Kidney Diseases (NIDDK) guidelines. Workup included symptom assessment, cystoscopic evaluation, physi-
cal examination, urodynamics, and/or urine culture. Patients with a history of other diseases, including cancer, 
chronic inflammation, or diabetes, were excluded.

To minimize possible contamination with vaginal, rectal, or urethral cells, first morning urine specimens were 
obtained using clean catch methods in a sterile environment. The de-identified specimens were sent to laboratory 
and centrifuged for 10 mins to remove cell debris. Urine supernatants were then processed into individual ali-
quots and stored in 15 ml tubes at −80 °C until further analysis.

Availability of data and materials. All the data supporting the findings here is contained within the 
manuscript.
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Volatile Metabolomics
Sample preparation. Metabolomics analysis was performed using urine samples obtained from IC diag-
nosed (n = 10) and healthy age-matched controls (n = 10). Urine samples were prepared in triplicates in 20 ml 
amber headspace vials with magnetic screw caps and silicone/PTFE septa. Urine samples (10 ml) were added to a 
vial containing 2.5 g of sodium chloride that had been dried at 100–150 °C for at least 2 hrs prior to weighing. The 
solution was capped, vortexed, and loaded onto an autosampler tray. No more than 18 samples were prepared at 
a time; this was done to minimize the length of time the last sample in the batch sat at ambient laboratory tem-
perature prior to extraction and analysis. Quality control experiments were performed as described in a previous 
paper15.

Solid-phase microextraction (SPME) and GC-TOF-MS analysis. A LECO Pegasus III Time-of-Flight 
Mass Spectrometer (LECO, St. Joseph, MI, USA) equipped with an Agilent 6890 Gas Chromatograph (Agilent 
Technologies, Santa Clara, CA, USA) was used for analysis. ChromaTOF (ver. 4.50.8.0, LECO) was used for raw 
data processing, including automatic peak detection and deconvolution, as described in a previous paper15.

Urine GC-MS data pre-processing. We performed data cleaning and pre-processing using Excel and R 
Studio15. A two-way analysis of variance comparing the first and last four samples did not show any differences in 
false discovery rate (FDR) corrected significance levels for peak abundances.

Differential expression analysis for volatile metabolite profiles. To identify differentially expressed 
metabolites between the urines of IC patients and controls, we applied the integrative hypothesis testing 
method16. The t-test, log2-median-ratio test, and Wilcoxon rank sum test were also performed. For the t-test and 
log2-median-ratio test, an empirical distribution of the null hypothesis (the means of the metabolite intensity 
levels are not different) was estimated using random permutations of the samples. For each metabolite, an p-value 
was computed by performing a two-tailed test on the empirical distributions. The three p-values were combined 
using Stouffer’s method to compute the adjusted p-values. The FDR was computed from the adjusted p-value 
using Storey’s method17. We identified 12 metabolites with a FDR < 0.1.

Western blot analysis. Cells were lysed with a RIPA buffer (20 mM Tris, 150 mM NaCl, 1% Nonidet, 
P-40, 0.1 mM EDTA) (Pierce, ThermoFisher) that was supplemented with a phosphatase inhibitor cocktail 
(ThermoFisher). The protein concentration of each sample was measured using the Bradford Protein Assay Kit, 
according to the manufacturer’s protocol (Pierce, ThermoFisher). Equal amounts of extracts were separated by 
SDS-PAGE and transferred onto a PVDF membrane. The membranes were then blocked with 5% bovine serum 
albumin or 5% nonfat milk in tris-buffered saline with tween 20 (TBST) [2.42 g/L Tris-HCl, 8 g/L NaCl, and 
1 mL/L Tween 20 (pH 7.6)] and incubated overnight at 4 °C with specific primary antibodies in TBST. Following 
this first incubation, the membranes were washed and incubated again with horseradish peroxidase-conjugated 
secondary antibodies. β-actin was used as an internal control.

Cytokine array. Cell lysates and conditioned media were collected and analyzed using a cytokine array from 
R&D Systems (USA). They were then diluted and mixed with a cocktail of biotinylated detection antibodies. The 
sample/antibody mixture was then incubated with the mouse cytokine array membrane. Any cytokine or detec-
tion antibody complex was bound to its cognate immobilized capture-antibody on the membrane. Following 
a wash to remove unbound material, streptavidin-HRP and chemiluminescent detection reagents were added 
sequentially. Light was produced at each spot in proportion to the amount of cytokine bound. For data quantifi-
cation ImageJ was used.

RNA preparation for DNA microarray analysis. Total RNA was extracted from RAW 264.7 macrophage 
cells that were treated with LPS and/or menthol, using a Qiagen RNEasy Mini Kit (Qiagen Inc., Valencia, CA, 
USA). The RNA concentration of the samples and quality controls was measured using the Bioanalyzer 2100 and 
Nanodrop 8000a (ThermoScientific, Willmington, DE, USA).

Microarrays and data analysis. Total RNA (200 ng) was transcribed to double-stranded cRNA using 
the MessageAmp Primer RNA Amplification Kit (Life Technologies, Carlsbad, CA, USA) with an oligo(dT) 
primer, according to the manufacturer’s instructions. After fragmentation, 11 µg of biotin-labeled cRNA was 
hybridized for 16 hrs at 45 °C on the Affymetrix Mouse Genome 430 Plus 2.0 Array (Affymetrix, Santa Clara, 
CA, USA). GeneChips were then washed and stained in the Affymetrix Fluidics Station 450 and scanned using 
the Affymetrix GeneChip Scanner 3000 G7 (Affymetrix). Quality control was performed with the Affymetrix 
Expression Console software (Affymetrix version 1.3). The raw data was normalized using the gcrma package 
(version 2.10.0) in R 2.6.1. The log2 GC-RMA signals were then exported and used for differential expression 
analysis. Both the CEL files and normalized data discussed here are deposited and available at Gene Expression 
Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE98933.

To identify differentially expressed genes (DEGs), we used a two-tailed Welch’s t-test. DEGs were identified 
as genes with a p-value < 0.05 and fold-change ≥1.5. In order to reduce unreliable detection and false positives, 
probe sets with average expression levels higher than the average of all probe sets in the data were also considered 
for further analysis. To identify biological processes affected by LPS or menthol, we performed functional enrich-
ment analysis of Gene Ontology Biological Processes (GOBPs) using DAVID18. Those with p-values < 0.05 and 
DEGs ≥3 were selected as significantly represented GOBPs.

http://www.ncbi.nlm.nih.gov/geo/
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Statistical analysis. The mean of more than three replicates was used as the average. For simple compari-
sons, p-values were calculated using a standard unpaired Student’s t-test. Statistical significance was considered 
as p < 0.05.

Results
Volatile metabolomics profiling revealed that menthol levels are significantly reduced in the 
urine specimens of IC patients. We sought to determine the VOC composition of urine in IC and healthy 
patients by performing volatile metabolite profiling using SPME-GC-TOF-MS. We used fatty acid methyl esters 
(FAMEs) as internal standards for quality control (including in injections) and for retention index corrections. 
The method used for untargeted profiling was based on the method developed by Robinson19, with some added 
modifications (see materials and methods). The ChromaTOF software was used for automatic peak detection 
and deconvolution of the raw data. After data cleaning and pre-processing, a total of 113 peaks were identified. 
Quality assessment of these quantification results was done after quantile normalization20 (Supplementary Fig. 1). 
Peak intensities were summed for all identified metabolites (mTIC). Each peak was then normalized to the sam-
ple’s total volatile metabolome.

We then investigated the association of these peaks with known metabolic pathways. To do this, we first 
selected 47 peaks that were annotated with a CAS registry number and then identified 26 peaks that can be 
mapped to at least one Kyoto Encyclopedia of Genes and Genomes (KEGG) compound ID. Using the DAVID 
software18, we found that 26 metabolites were associated with 26 pathways (Fig. 1). We next performed differen-
tial analysis to identify which metabolites were significantly altered between IC patients and healthy controls. The 
analysis included 76 peaks, with quantification of more than half of the samples in each condition. This resulted in 
12 peaks that were identified with a FDR <0.1 (Table 1). The FDR was calculated using the integrated hypothesis 
testing method (see materials and methods)16. Among them, menthol (CAS RN: 89-78-1) was identified to be 
significantly different, with a FDR of 0.024 and log2 fold-change of −0.1.467. We observed only authentic VOCs, 
not chemicals or metabolites that could come from degradation processes.

Given our results demonstrating reduced menthol levels in the urine of IC patients and prior knowledge 
from literature, we speculated that menthol may be influencing bladder health. We hypothesized that the urine 
of IC patients contains reduced levels of anti-inflammatory metabolites, particularly menthol, which leads to an 
increase in IC-associated cytokines. To test this hypothesis, we sought to evaluate whether the anti-inflammatory 
effects of menthol could suppress LPS-induced inflammatory events in immune cells. We decided to use two 
independent approaches: (i) mesoscale cytokine profiling, and (ii) gene expression microarray analysis.

In order to characterize the effects of menthol on macrophages, comprehensive microarray analysis was con-
ducted on RAW 264.7 cells under various conditions. Cells were treated with menthol or control vehicle for 1 hr. 
The macrophages were then stimulated with LPS treatment (100 ng/ml) for the following 6 hrs. Three groups of 
gene expression profiles were defined: control vs menthol (C vs M), control vs LPS (C vs LPS), and menthol vs 
LPS (M vs LPS).

Cytokine profiling revealed that menthol downregulated the LPS-induced production of 
inflammatory cytokines in RAW 264.7 macrophages. An inflammatory cytokine array was used to 
identify the specific cytokines that were produced and secreted into the surrounding medium by the RAW 264.7 
cells. To determine whether the presence of menthol affects the production and release of cytokines, RAW 264.7 
cells were pretreated with menthol (500 µmol/ml) or control for 1 hr and then induced with LPS (100 ng/ml) for 
6 hrs. The expression of each inflammatory cytokine was subsequently measured. The cytokine profiling data 
showed that a series of cytokines, including C-C motif chemokine ligand 3 (CCL3), C-X-C motif chemokine 
ligand 10 (CXCL10), and tumor necrosis factor alpha (TNF-α), were induced by LPS (Fig. 2A, LPS condition).

Compared to treatment with LPS alone, the addition of menthol significantly downregulated the produc-
tion and secretion of these cytokines (Fig. 2A, LPS+M compared to LPS). ImageJ analysis software was used 

ID conversion and pathway mapping
113 Metabolites

47 Metabolites were 
mapped to CAS RN

26 Metabolites were 
mapped to KEGG 

Compound ID

ko01120 Microbial metabolism in diverse environments (10)
ko01220 Degradation of aromatic compounds (9)
ko01100 Metabolic pathways (5)
ko00642 Ethylbenzene degradation (3)
ko01110 Biosynthesis of secondary metabolites (2)
ko00902 Monoterpenoid biosynthesis (2)
ko04750 Inflammatory mediator regulation of TRP channels (2)
ko00361 Chlorocyclohexane and chlorobenzene degradation (2)
ko00627 Aminobenzoate degradation (2)
ko00622 Xylene degradation (2)
ko00350 Tyrosine metabolism (1)
ko00930 Caprolactam degradation (1)
ko00360 Phenylalanine metabolism (1)
ko00623 Toluene degradation (1)
ko00362 Benzoate degradation (1)
ko04974 Protein digestion and absorption (1)
ko00903 Limonene and pinene degradation (1)
ko00643 Styrene degradation (1)

Figure 1. The analysis workflow of volatile metabolome identification, conversion to KEGG IDs, and pathway 
mapping.
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Name CAS Registry Number KEGG Retention Time FDR FC SD

Benzaldehyde,3,5-dimethyl- 5779-95-3 NA 540.902 0.005 5.246 3.261

Cyclohexanol, 5-methyl-2-(1-
methylthyl)-, (1a,2a,5a)-(n)- 89-78-1 C00400 520.734 0.024 −1.467 1.381

t-Butyl ethyl ether2 1634-04-4 C11344 228.028 0.026 −0.539 0.597

yy054 NA NA 526.908 0.027 −1.092 0.767

yy088 NA NA 773.515 0.046 0.332 0.278

yy003 NA NA 193.042 0.049 −0.574 1.109

Benzene, (1-methyl-1-butenyl)- 53172-84-2 NA 527.026 0.053 −0.974 0.737

yy032 NA NA 455.642 0.063 0.383 0.372

2-Pentanone 107-87-9 C01949 295.78 0.074 −0.718 1.006

yy082 NA NA 708.541 0.085 0.429 0.671

Benzene, (2-isothiocyanatoethyl)- 2257-09-2 NA 643.92 0.092 1.445 1.298

yy010 NA NA 366.443 0.096 0.770 0.995

Table 1. Differentially expressed metabolites in urine specimens obtained from IC patients compared to health 
controls (FDR < 0.1). Menthol (KEGG compound ID: C00400) was expressed less in IC patients, compared to 
controls. The CAS registry numbers of the identified metabolites were mapped to their KEGG compound IDs. 
The FDR indicates the false discovery rate, which was computed using Storey’s method. FC is log2 fold change 
between IC and control. SD represents standard deviation. Positive and negative FC values indicate up- and 
downregulation of the metabolite in IC urine, compared to control (NA meaning not available).
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Figure 2. Reduced production of LPS-induced inflammatory cytokines by menthol in RAW 264.7 cells (cell 
lysates) (A) Inflammatory cytokine array analysis of CCL3, CXCL10 and TNF-α. The expression of these 
inflammatory cytokines is highly induced by LPS, but downregulated by menthol. (B) Quantification of array 
band intensity of CCL3, CXCL10 and TNF-α with ImageJ-analysis software.
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to measure of the values of the scan dots, according to their intensity on the cytokine array panel (Fig. 2B). 
These results suggested that menthol is involved in downregulating the production of LPS-induced inflammatory 
cytokines.

We also carried out the inflammatory cytokine array to identify which cytokines were secreted into the RAW 
264.7 cell culture media. We detected increased secretion of inflammatory cytokines, including interleukin 1β 
(IL-1β), interleukin 6 (IL-6), C-C motif chemokine ligand 5 (CCL5), C-C motif chemokine ligand 12 (CCL12), 
and granulocyte colony stimulating factor (G-CSF), in the LPS-treated condition (Fig. 3A). We also found that 
pretreatment with menthol significantly downregulated the secretion of these cytokines, compared to LPS alone 
(Fig. 3A, LPS+M compared to LPS). The dot intensities of each inflammatory cytokine were quantified using 
ImageJ software, as described in the Methods (Fig. 3B).

The cytokine profile array results were independently tested again with western blot analysis. The RAW 264.7 
cells used for this analysis underwent the same LPS and menthol treatment as the ones used for the cytokine 
arrays. Western blot data revealed that cells pre-treated with menthol had significantly reduced expression of 
TNF-α, CCL3, IL-6, and IL-1β (Fig. 4A). We next decided to use western blot analysis to examine if the effects of 
menthol were dose-dependent. RAW 264.7 cells were first pretreated with LPS (100 ng/ml) or control for 3 hrs. 
They were then incubated with varying concentrations of menthol (50, 100, 500 µmol/ml) for 6 hrs. Our results 
validated that menthol did indeed affect macrophages in a dose-dependent manner (Fig. 4B).

Gene expression altered by menthol treatment. Further analysis using nucleotide microarrays vali-
dated our previous results showing that menthol mitigates LPS-induced inflammation in RAW 264.7 macrophage 
cells. Genes that were considered to be differentially expressed in C vs M, C vs LPS, and M vs LPS were selected, if 
they had a fold change >1.5 and p-value < 0.05. Figure 5A shows the number of upregulated and downregulated 
genes in each of the different groups. Figure 5B shows the list of DEGs for each group that were upregulated with 
menthol treatment; (C vs M) Trem1, MBP1, and TES; (C vs LPS) CD52, CD40, SEPT11, and MRP152; (M vs 
LPS) SEPT11, RIOK3, and MRP152. We also annotated downregulated DEGs for each group; (C vs M) WDR43, 
WWP1, and XYLT2; (C vs LPS) YPE13, ZDHHC14, and ZFP408; (M vs LPS) GCNT1, GORASP2, and MLER3.

To better understand the biological processes affected by menthol, we performed functional enrichment anal-
yses based on GOBPs. DEGs were classified into different functional categories according to their GOBPs. Genes 
upregulated from LPS treatment were significantly associated with biological processes relating to inflammatory 
response (GO: 0006954) and response to lipopolysaccharides (GO: 0032496) (Fig. 5C). Genes downregulated 
by menthol treatment were those significantly involved in immune system processes (GO: 0002376) and the 

Figure 3. Decreased secretion of LPS-induced inflammatory cytokines by menthol in RAW 264.7 cells 
(conditioned media) (A) Inflammatory cytokine array analysis of IL-1β, IL-6, CCL5, CCL12 and G-CSF. The 
expression of these inflammatory cytokines is highly induced by LPS, but downregulated by menthol. (B) 
Quantification of array band intensity of IL-1β, IL-6, IL-1 and G-CSF with imageJ-analysis software.
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Figure 4. Menthol inhibits LPS-induced cytokine production in RAW 264.7 cells. (A) RAW 264.7 cells were 
pretreated with menthol, followed by stimulation with LPS for 6 hrs. Expression level of TNF-α, IL-6, IL-1β and 
CCL3 were induced by LPS and reduced in LPS+M compared to LPS. (B) Pretreatment of LPS (100 ng/mL) or 
control for 3 hrs and followed by induction with different concentration of menthol (50, 100 and 500 μmol/mL) 
for 6 hrs. Expression level of TNF-α, IL-6 and IL-1β were reduced by menthol treatment in a dose-dependent 
manner. β-actin was used as a loading control for western blot analysis.

Figure 5. Differentially expressed genes in LPS, LPS+Menthol (LPS+M), and menthol (M) only conditions. 
(A) The number of DEGs perturbed by LPS or menthol treatment. (B) Venn diagram depicts shared and 
different DEGs. (C,D) Gene Ontology analysis suggested functional annotations (biological process) that 
were associated with up- (C) and downregulated (D) genes. Bar graph shows significantly enriched biological 
processes, which were up- and downregulated genes in test group. The inflammation events induced by LPS 
were inhibited by menthol in LPS mediated signaling pathway.
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lipopolysaccharide-mediated signaling pathways of different groups (GO: 0031663) (Fig. 5D). These results indi-
cate the LPS-driven inflammatory responses can be modulated by menthol treatment, suggesting that low levels 
of menthol may be associated with higher levels of inflammation from immune stimulants, such as LPS.

Signaling pathways involved in the anti-inflammatory effects of menthol. We next wondered if 
the specific signaling pathways involved in LPS-stimulated cytokine perturbation can be modulated by menthol 
treatment. To determine the signaling pathways associated with the production and secretion of inflammatory 
cytokines, we screened the activation of key signaling pathways, including those of nuclear-factor-κB (NF-κB), 
Akt, and Erk1/2 MAPK. We found that the added presence of LPS induced phosphorylation of NF-κB and Akt 
in RAW 264.7 macrophage cells. Pretreatment with menthol significantly attenuated the phosphorylation levels 
of NF-κB and Akt, but not those of Erk1/2 MAPK (Fig. 6A, LPS+M compared to LPS). In addition, menthol 
treatment significantly reduced LPS-induced phosphorylation of NF-κB and Akt in a dose-dependent manner 
(Fig. 6B). This data suggest that menthol potentially inhibits LPS-induced inflammatory cytokines via the NF-κB 
and Akt signaling pathways.

Nucleotide microarray analysis consistently showed that menthol affects production of 
LPS-induced cytokines in RAW 264.7 macrophage cells. We next sought to identify DEGs in cells 
exposed to LPS with or without menthol via microarray analysis (Fig. 7A). Approximately 30% of the DEGs 
showed increased expression patterns when stimulated by LPS alone and decreased when treated additionally 
with menthol. Those DEGs included: C3, CCL2, CCL3, CCL4, CCL5, CCL9, CCL12, CXCL2, CXCL10, NFKB1A, 
toll-like microbial pattern recognition receptor 1 (TLR1), TNF-α induced protein 3 (TNFAIP3) et al. (Fig. 7A, 
box). Mapping of genes and protein expression from our study suggested that menthol suppresses the TLR path-
way. The gene expression of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), TNFA1P3, 
TLR1, and viperin increased in response to LPS and decreased in response to menthol. To further validate the 
perturbed DEGs, western blot analysis was carried out. Protein levels of IFIT1, TNFA1P3, TLR1, and viperin 
changed consistent to gene expression changes (Fig. 7B).

Collectively, these experimental results propose a potential pathway through which TNF-α production and 
secretion is stimulated. This consequently leads to the activation of TLR1, TNFAIP3-NF-κB signaling, and 
inflammation of the bladder. These results also lead us to suggest that menthol could suppress IC-associated 
inflammation by blocking the activation of our hypothetical pathway (Fig. 7C).

Discussion
Our GC-MS peak resolution and compound identification revealed unique urinary VOC profiles between 
IC patients and healthy controls. Based on these results, we further sought to understand the biological func-
tion of menthol, an identified IC-associated urinary metabolite. We identified this novel compound through 
recently improved data processing that could annotate unknown VOCs. These developments include database 
analysis tools, such as BinBase Database21, AMDIS22, SpectConnect (http://spectconnect.mit.edu), MZmine23, 
TagFinder24, MetAligh 3.0, and MetAlignID25,26. For this study, we used BinBase; this tool can be assessed by the 
public at http://vocBinBase.fiehnlab.ucdavis.edu.

Cytokines and chemokines associated with IC. Although IC affects millions of people every year, the 
etiology of this disease remains elusive. The bladders of IC patients exhibit various pathophysiological alterations 
in the urothelium barrier lining, sensory nervous system, recruitment of immune cells, and activation of major 
signaling pathways. The inflammation that is associated with IC is potentially a result of inflammatory or bac-
terial agents. One such agent is LPS, a component of the bacterial outer membrane, which is known to bind to 
TLR4 and stimulate inflammation through upregulating the release of cytokines. Consequently, this increased 
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Figure 6. Menthol inhibits LPS-induced activation of NF-κB and Akt signaling pathways. (A) Phosphorylation 
levels of NF-κB and Akt were reduced by menthol treatment. (B) Phosphorylation of NF-κB and Akt were 
suppressed by menthol treatment in dose-dependent manner. β-actin was used as the loading control in western 
blot analysis.
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production and secretion of cytokines leads to bladder inflammation, which induces an immune response and 
may be associated with additional urinary symptoms, such as hyper-excitability and pain27,28.

There have been a series of previous reports suggesting the use of inflammatory cytokines as IC biomarkers. 
They demonstrate that levels of cytokines, such as TNF-α, IL-2, IL-6, IL-8, and IL-1β, increase in the bladder and 
urine of IC patients. In our present study, we were able to observe elevated gene and protein expression levels 
of TNF-α, IL-6, IL-1β, and NF-κB in LPS-stimulated RAW 264.7 macrophage cells. TNF-α is a well-known 
pro-inflammatory cytokine that leads to the activation of inflammation, induces the expression of adhesion 
molecules, and contributes to the development of pain sensation. Prior studies have shown that pharmaceutical 
inhibition of TNF-α signaling or addition of neutralizing antibodies against TNF-α reduced the development of 
nociception in animal models. Collectively, the experimental data from our current study and preceding reports 
suggest that the hypersensitivity and/or inflammation seen in IC bladders may be treated by targeting inflamma-
tory cytokines28.

Menthol and IC-associated inflammation. Our VOC metabolomics analysis revealed that menthol 
expression is significantly less abundant in the urine of IC patients. Menthol, an aromatic and cyclic terpene 
alcohol, is a compound that is commonly used in a wide variety of products. Its main use is in relieving local 
inflammation, pain (e.g. joint aches), noxious heat, sensory hypersensitivity, sore throat et al. The analgesic and 
anti-inflammatory effects of menthol may be attributed to the fact that it is a TRPM8 agonist29,30. However, the 
underlying mechanisms of menthol’s biological effects remain obscure. Because of its mitigating effects, menthol 
was a particularly interesting compound in the context of IC. Chronic inflammation is typical in the pathogenesis 
of IC31, and higher levels of pro-inflammatory cytokines, such as macrophage-derived chemokines32 or urinary 
nerve growth factors, are reported to be associated with the disease33,34.

Given its anti-inflammatory effects, ability to suppress respiratory irritation, and association with pain 
relief, menthol is widely used for medicinal purposes35,36. Our study investigated the effectiveness of menthol 
on LPS-induced cytokine production and secretion. Interestingly, we found that levels of various inflammatory 
cytokines were suppressed by menthol. This was done through DNA microarrays and cytokine profiling; the 
results were verified through additional independent western blot analysis. We observed that menthol signifi-
cantly reduced levels of TNF-α, IL-1β, IL-6, and CCL3 in LPS-stimulated RAW 264.7 macrophage cells. Previous 

Figure 7. Menthol regulates the LPS-induced inflammatory response. (A) Heatmap image of DNA microarray 
data. RAW 264.7 cells were treated with LPS (100 ng/mL) with or without menthol (500 μmol/mL) for 6 hrs.  
The list of the genes in the enlarged box was sorted in order of gene symbol. (B) Cells were treated with LPS 
(100 ng/mL) with or without menthol (500 μmol/mL) for 6 hrs. Few candidates from (Figure A, Box): IFIT1, 
TNFA1P3, TLR1, and viperin were repressed by menthol treatment. (C) Hypothetical diagram showing how 
menthol may be attenuating the activation of the TLR1 and TNFAIP3-NF-κB signaling pathways; thereby, 
reducing downstream cytokine expression.
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literature has suggested that histamine release from mast cells is inhibited by menthol37,38. Furthermore, by reg-
ulating the NF-κB signaling pathway, menthol decreases carrageenan-induced inflammation processes39. Our 
results were also in accordance with these past findings and were similar to outcomes observed in menthol treat-
ment of ulcerative colitis40 and ethanol-induced gastric ulcers41.

TNF-α is a pro-inflammatory cytokine involved in regulating a wide spectrum of biological processes, includ-
ing cell differentiation, apoptosis, coagulation, and lipid metabolism. It is associated with a number of diseases, 
including autoimmune diseases, insulin resistance, and, most notably, cancer. NF-κB is protein complex respon-
sible for DNA transcription, cytokine production, and basic survival in almost all animal cells42. Toll-like micro-
bial pattern recognition receptors (TLRs) represent a non-self-recognition system that is hardwired to trigger 
inflammation43. In our present study, LPS-induced TLR1 was downregulated by menthol treatment. TNFAIP3, 
a protein whose expression is rapidly induced by TNF-α, is a ubiquitin-centered enzyme and has been shown to 
constrain NF-κB activation. The encoded protein is involved in most cytokine-mediated inflammatory responses; 
this is likely due to the presence of both ubiquitin ligase and deubiquitinase within the enzyme. Because of this, 
TNFAIP3 serves as a negative feedback regulator of NF-κB activation when TNF is present44. Our results provide 
new insights in LPS-induced inflammation, suggesting that it can be regulated by menthol via its suppression of 
TNF-α, TLR1, and/or TNFAIP3 and subsequent regulation of NF-κB activation. Altogether, this study indicates 
the potential placating role of menthol in IC patients.

Although further studies are warranted to ascertain the mechanistic basis of menthol’s observed 
anti-inflammatory effects, it would be interesting to investigate whether menthol can suppress any inflammation 
or sensory hypersensitivity in IC patients in the pre-clinical or clinical setting. Our discoveries provide potential 
therapeutic strategies; potent agonists of TNF-α, TLR1, TNFAIP3, and/or the NF-κB network may benefit IC 
patients through anti-hyperalgesic and anti-inflammatory effects.

Accession numbers. The metabolomics data have been deposited in the Metabolomics Workbench Public 
Repository with the study ID number ST000603. The microarray data was deposited and is available at the Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), under the accession number GSE98933.
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Sex-associated differences in 
baseline urinary metabolites of 
healthy adults
Sili Fan1, Austin Yeon2, Muhammad Shahid2, Jennifer T. Anger3, Karyn S. Eilber3, Oliver Fiehn  1,4 
& Jayoung Kim5,6,7,8

The biological basis for gender variability among disease states is not well established. There have been 
many prior efforts attempting to identify the unique urine metabolomic profiles associated with specific 
diseases. However, there has been little advancement in investigating the metabolomic differences 
associated with gender, which underlies the misconception that risk factors and treatment regimens 
should be the same for both male and female patients. This present study aimed to identify biologically-
meaningful baseline sex-related differences using urine samples provided by healthy female and male 
participants. To elucidate whether urinary metabolic signatures are globally distinct between healthy 
males and females, we applied metabolomics profiling of primary metabolism with comprehensive 
bioinformatics analyses on urine samples from 60 healthy males and females. We found that levels 
of α-ketoglutarate and 4-hydroxybutyric acid increased 2.3-fold and 4.41-fold in males compared to 
females, respectively. Furthermore, chemical similarity enrichment analysis revealed that differentially 
expressed metabolites, such as saturated fatty acids, TCA, and butyrates, were significantly related 
to the gender effect. These findings indicate that there are baseline sex-related differences in urinary 
metabolism, which should be considered in biomarker discovery, diagnosis, and treatment of bladder 
diseases, such as interstitial cystitis.

Interstitial cystitis (IC), also known as painful bladder syndrome (PBS), is a chronic pain disorder with no known 
etiology1. Due to the limited amount of objective diagnostic tools for IC2,3, there is great need to identify sensi-
tive and non-invasive biomarkers that can vastly improve the accuracy of IC diagnoses4. Unfortunately, current 
understanding of the basic mechanisms behind pelvic pain are also fragmented5,6. One area of interest that may 
provide a wealth of information is the impact of gender on IC. Epidemiological studies have consistently demon-
strated a sex-based dimorphism in IC prevalence rates7–11. It is generally accepted that the female to male ratio is 
approximately 8:2 or 9:17–12. However, the reasons for this difference are currently not well understood.

One suggestion for the stark discrepancy between male and female IC prevalence rates is sexual dimorphism. 
Moreover, there are sex-determined differences when diseases start and develop. Although these disparities are 
well-noted, the biological, cellular, and molecular basis of these gender biases remain elusive. One theory is that 
sex hormones are possibly associated with noted variations in metabolism. This is evident in other diseases. For 
example, it has been reported that female cases of autoimmune disease are three to four times higher than that of 
males13–15. Another study suggested that multiple sclerosis (MS) patients showed distinct gene signatures between 
females and males16.

In addition to the aforementioned diseases, heart failure and cardiovascular disease (CVD) have been reported 
to be associated with sex differences17–21. In females, hypertension is more common and is often the cause of heart 
failure. However, females also have a better prognosis than males with heart failure. For CVD, blood pressure 
and glucose metabolism play more important roles in females, whereas male CVD is affected mostly by choles-
terol. The average starting age of CVD incidence in males is around the mid-30s and gradually increases; while 
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in females, CVD usually occurs much later, around 50 years of age. Furthermore, the plasma lipid profiles of 
younger-aged females are generally better than similarly aged males, which may explain why females have lower 
risk for CVD. In an effort to examine these sex-biases, mammalian animal models have been used to explore how 
males and females develop diseases differently and identify potential therapeutic targets. A study in female and 
male Sprague–Dawley rat models showed that hearts from female rats have better cardioprotection than male 
rats. Phosphorylation of mitochondrial proteins in female rats were altered, leading to less reactive oxygen species 
(ROS) generation and oxidative metabolism22.

Despite the numerous metabolic studies on various types of diseases in animal models23,24, gender bias in 
metabolic signatures has not been mechanistically investigated in the healthy human setting. One study used a 
metabolomics approach to identify specific urinary markers for major depressive disorder (MDD). The authors 
reported that male and female MDD patients showed very distinct metabonomic signatures25. More recently, in 
the cross-sectional KarMeN (Karlsruhe Metabolomics and Nutrition) study, the metabolite profile of healthy 
human urine was reported to be capable of predicting age and sex26. While research into sex differences in other 
diseases has progressed, the same cannot be said for lower urinary tract symptoms, such as IC or overactive blad-
der (OAB). The biological mechanisms underlying sex variation in various bladder dysfunctions are still not fully 
understood. Further investigation into the relationships among sex-specific risk factors, metabolic rewiring, IC 
prevalence, and symptom severity are essential for explaining these sex-related differences.

In this study, our first aim was to determine the base levels of urinary metabolites in healthy controls. We 
additionally attempted to test whether urinary metabolomic profiles were globally different between females 
and males. To achieve these goals, we performed untargeted global gas chromatography-time-of-flight-mass 
spectrometry (GC-TOF-MS) profiling of primary metabolism and comprehensive bioinformatics analysis. Our 
metabolomic profiles showed distinct patterns of differentially expressed metabolites (DEMs) and suggested an 
interesting list of DEMs specific to healthy females and males. Given that sex influences some of the biomarkers 
reported, our findings provide evidence showing that baseline gender-related differences should be considered 
when developing urine-based strategies for metabolomic biomarkers.

Materials and Methods
Ethics statement. The Ethics Committee and the Institutional Review Board of Cedars-Sinai Medical 
Center (CSMC) approved recruitment, sample collection, curation, and analysis of metabolomics profiling data 
for this study (IRB# Pro00040261). All subjects who participated in this study provided written informed consent, 
and all experiments were performed in accordance with relevant guidelines and regulations.

Participants and urine collection. Healthy participants were recruited from an outpatient urology clinic 
at CSMC. Subjects with a history of any chronic diseases (such as any types of cancer, inflammatory conditions, 
diabetes, etc.) were excluded. We enrolled 60 females and 60 age-matched males in this study. All participants 
were >2 months “free of treatment or medication” (2015–2016).

To minimize possible contamination with vaginal or urethral cells, urine was collected using the clean catch 
method in a sterile environment. The de-identified samples were assigned with new identification numbers by 
laboratory staff in a double-blinded manner. To remove cell debris, samples were then centrifuged at 2500 rpm 
for 10 min.

GC-TOF-MS analysis of urine. Sample pre-processing and preparation. We investigated the metabolite 
profiles of the individual urine samples via gas-chromatography/mass-spectrometry (GC-MS) analysis27,28. The 
Gerstel CIS4–with dual MPS Injector and Agilent 6890 GC-Pegasus III TOF MS was used for this analysis.

First, 10 µl of urine was dissolved in a 1 ml −20 °C mixture of acetonitrile, isopropanol, and water (3:3:2 v/v) 
at a pH of 7.0. The urine volume was adjusted between 2–10 µl to match externally measured creatinine lev-
els based on a linear calibration curve. The solution was then vortexed at 4 °C for 5 min in 1.5 ml centrifuge 
tubes. Samples were additionally centrifuged for 2 min at 14,000 rcf and 500 µl of the supernatants were ali-
quoted. Aliquots were evaporated in a Labconco Centrivap cold trap to complete dryness. The methoximation 
step was done using a 10 µl solution of 40 mg/ml o-methylhydroxylamine hydrochloride (CAS:[593-56-6]; for-
mula CH5NO.HCl) in pyridine (Cas:[11-0-86-1]; formula C5H5N) and shaken for 90 min at 30 °C. Then, 90 µl 
of a n-methyl-n-trimethylsilyltrifluoroacetamide (MSTFA) and fatty acid methyl esters (FAME) retention time 
markers mixture (100:1 v/v) was added and the entire solution was shaken for 30 min at 37 °C. The mixture was 
transferred to amber crimp auto-sampler vials with flat bottom micro-inserts. Measurements were performed on 
a Leco Pegasus IV TOF coupled to an Aglient 6890GC with an Agilent 6890 split/splitless injector. The column 
used was a Restek RTX-5Sil MS (95% dimethyl/5% diphenyl polysiloxane) with a 30 m length, 0.25 mm i.d., and 
0.25 µm film thickness with a 10 m guard column. Each injection had a set volume of 0.5 µl and was done at 50 °C. 
The GC parameters were set to a 1 ml/min constant flow helium and an oven ramp temperature of 50 °C (1 min 
hold) that steadily increased to 330 °C at a rate of 20 °C/min, with a 5 min hold before cooling-down. The transfer 
line temperature was set to 280 °C and the spectra were recorded in the electron ionization mode at 70 eV with a 
source temperature of 250 °C TOF and scan range of 85–500 u.

Injector conditions. The Agilent 6890 GC was equipped with a Gerstel Automatic Liner Exchange System 
(ALEX) that included a multipurpose sample (MPS2) dual rail and a Gerstel cold injection system (CIS) (Gerstel, 
Muehlheim, Germany). The temperature program was set as follows: 50 °C to a final temperature of 275 °C at a 
rate of 12 °C/sec with a hold for 3 min. Injections were done at a speed of 10 µl/sec on a splitless injector with a 
purge time of 25 sec. The liner (Gerstel #011711-010-00) was changed after every 10 samples using the Maestro1 
Gerstel software (version 1.1.4.18). Before and after each injection, the 10 µl injection syringe was washed 3x with 
10 µl of ethyl acetate.
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Gas chromatography conditions. A 30 m long, 0.25 mm i.d. RTX-5Sil MS column (0.25 µm, 95% dimethyl 5% 
diphenyl polysiloxane film) with an additional 10 m integrated guard column was used (Restek, Bellefonte, PA). 
A constant flow of 1 ml/min 99.99% pure helium, with a built-in purifier, was set. The oven temperature was held 
at 50 °C for 1 min and then ramped up to 330 °C at a rate of 20 °C/min, where it was then maintained constant for 
5 min.

Mass spectrometer settings. A Leco Pegasus IV Time-of-Flight Mass Spectrometer was used and controlled using 
the Leco ChromaTOF software (vers. 4.1) (St. Joseph, MI). The transfer line temperature between the gas chro-
matograph and mass spectrometer was set to 280 °C. A 70 V electron impact ionization was employed with an ion 
source temperature of 250 °C. The acquisition rate was set to 17 spectra/sec, with a scan mass range of 85–500 Da.

Annotation and ID of compounds. The peak and compounds detection or deconvolution was performed with 
the Leco ChromaTOF software. Spectra were matched against the FiehnLib Mass Spectral and Retention Index 
Library28. Post-curation and peak replacements were performed with the in-house developed BinBase software 
and the sample matrix with all known and unknown compounds was exported to an excel sheet. Missing peak 
intensity data was automatically replaced with the raw extracted ion intensities at the target retention times for 
each compound, subtracted by adjacent noise levels. This way, only 2 of the 49,680 values were reported with 
‘zero’ values, compound BB 109708 and creatinine. These two values were replaced with a value of 1.

Figure 1. Differentiation of male and female groups using multivariate analysis. (A) Score plot of the PCA 
model distinguishing male and female urine samples. (B) PLS-DA scores plot. It depicted obvious differences 
between male and female urine samples, with PC1 (11.3%) and PC2 (7%). (C) Heat map showed the 
distribution of 25 metabolites, which include 12 annotated ones, that were significantly different (FDR adjusted 
p-value < 0.05) between male and female urine samples.



www.nature.com/scientificreports/

4SCIentIfIC REPORtS |  (2018) 8:11883  | DOI:10.1038/s41598-018-29592-3

Missing value replacement method. BinBase was used for post-curation and peak replacements and the sample 
matrix was exported to an excel sheet. Any missing peak intensity data was automatically replaced by the raw 
extract ion intensity subtracted by their adjacent noise levels. For each positively detected metabolite, the average 
retention time was calculated. For each chromatogram and each missing value, the intensity of the quantification 
ion at this retention time was extracted by seeking its maximum value in a retention time region of 1 sec and sub-
tracting the minimum (local background) intensity in a retention time region of 5 sec around the peak maximum. 
The resulting report table therefore did not have any missing values29.

The two missing values (ion intensity = 0), for compound 109708 and creatinine, were replaced with a value of 
1. All peak intensities were normalized to the sum of the peak intensities of all identified metabolites to account 

Figure 2. Volcano plot and significant metabolite table. (A) In the volcano plot, a total of 50 peaks were 
significantly changed (Mann-Whitney U test p-value < 0.01) in urine samples. Red dots represent 25 
significant peaks with FDR adjusted p-values < 0.05. The annotated significant metabolites are labeled on 
the plot. (B) List of the 21 potential biomarkers in urine samples. P-values were calculated using two-tailed 
Mann-Whiney U tests. FDR p-values were p-values corrected for the multiple comparison problem using the 
Benjamini and Hochberg procedure. Fold changes were defined as the ratio of median of male over female 
for each compound. The variable importance for projection (VIP) reflects the capability of the compounds to 
explain Y (gender effect).
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for small errors during extraction or normalization. We found that 77% of all compounds yielded a non-normality 
distribution. Hence, a nonparametric univariate method, the Mann-Whitney U test, was performed to measure 
and discover significantly changed metabolites between the male and female urine samples. Additionally, we 
adopted the Benjamini-Hochberg false discovery rate (FDR) correction procedure to deal with the multiple com-
parison problem and ensure the reproducibility of our significant metabolites detection. Multivariate statistical 
analyses, principal component analysis (PCA) and partial least-square discriminant analysis (PLS-DA), were 
performed to discriminate males and females.

Figure 3. Compound individual boxplots. Boxplots showing upregulated (A) and downregulated (B) 
metabolites that could be used to differentiate male and female samples. Significance levels were highlighted 
using *(p value < 0.05), **(p < 0.01), ***(p < 0.001), and ****(p < 0.0001).
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Statistical analysis. The Mann-Whitney U test was performed on each compound to compare males vs. females. 
The Benjamini-Hochberg false discovery rate (FDR) correction was utilized to deal with the multiple comparison 
problem.

Results
GC-TOF-MS analysis of urine specimens from healthy females and males. In total, we enrolled 
60 females and 60 age-matched males (age range, 45–65) in this study. All participants were >2 months free of 
treatment and/or medication. In order to compare the metabolite profiles of urine samples from healthy females 
and males, individual urine samples were analyzed using GC-TOF mass spectrometry. Multivariate statistical 
analyses, PCA and PLS-DA, were performed to discriminate males and females (Fig. 1A, B).

Metabolites responsible for the differences in multivariate metabolic phenotypes between male and female 
urine was obtained based on variable importance in the projection (VIP) from a 10-fold cross-validated PLS-DA 
model. This model achieved a 48.5% rate of discrimination for Q2 and an 89.1% for R2. In addition, the model 
was further validated with the permutation test on prediction accuracy and had a significant result (p < 0.05), 
indicating that the model was robust and results were not obtained by chance. Significantly altered metabolites 
distinguishing male and female urine were acquired based on conditions of p < 0.05, fold-change < 0.8 or >1.2, 
and VIP > 1 (Fig. 1B). Hierachical clustering analysis (Euclidean distance and complete method) and constructed 
heatmaps, using the significant metabolites (corrected FDR p < 0.05), depicted the relatively disturbed and unbal-
anced metabolism states between male and female samples (Fig. 1C).

Distinct urinary metabolite patterns between healthy females and males. Next, we performed 
the Mann-Whitney U test and Benjamini-Hochberg false discovery rate (FDR) correction on each compound 
to compare them between males and females. There were 25 significantly different compounds with FDR cor-
rection and 94 without (Supplementary Table 1). The volcano plot shows the fold change and significance of 
each annotated metabolite. Significant metabolites in the volcano plot had a fold-change threshold >1.20 or 
<0.83 with a t-test p-value < 0.05 (Fig. 2A). The 25 significantly different compounds are shown with their 
p-values, FDR p-values, fold-changes of male vs. female, and PLS-DA VIP values (Fig. 2B). These compounds 

Num Name
Fold-
change p-value FDR

1 Unknown BB_31554 2.56 0.000132 0.064576

2 Unknown BB_34163 0.55 0.000514 0.12586

3 oleic acid 0.63 0.001933 0.315675

4 2-deoxytetronic acid 1.26 0.008732 0.571396

5 Unknown BB_17651 0.66 0.009136 0.571396

6 saccharic acid 0.80 0.012642 0.571396

7 Unknown BB_17140 1.44 0.015588 0.571396

8 phosphate 0.70 0.016252 0.571396

9 trehalose 1.79 0.017026 0.571396

10 Unknown BB_5900 0.81 0.017487 0.571396

11 erythronic acid 2.25 0.018393 0.571396

12 Unknown BB_109809 0.56 0.018576 0.571396

13 oxalic acid 0.48 0.018665 0.571396

14 Unknown BB_34027 0.44 0.019904 0.571396

15 Unknown BB_1704 0.63 0.020865 0.571396

16 sulfuric acid 0.31 0.021197 0.571396

17 Unknown BB_23635 0.69 0.02138 0.571396

18 cystine 1.47 0.021607 0.571396

19 Unknown BB_3029 0.70 0.022156 0.571396

20 Unknown BB_12330 2.19 0.02596 0.614149

21 Unknown BB_31549 0.37 0.026702 0.614149

22 lyxitol 1.42 0.028288 0.614149

23 Unknown BB_31756 1.74 0.028827 0.614149

24 lysine 1.49 0.034624 0.706901

25 histidine 1.79 0.040576 0.743323

26 Unknown BB_31359 0.81 0.043988 0.743323

27 Unknown BB_5121 0.64 0.045462 0.743323

28 Unknown BB_100869 1.58 0.046685 0.743323

29 Unknown BB_3294 1.37 0.046907 0.743323

30 Unknown BB_31764 1.33 0.048566 0.743323

Table 1. List of metabolites differentially expressed in IC, compared to controls (p-value = 0.005, FDR 
(Benjamini Hochberg).
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include succinic acid, malic acid, N-acetylaspartic acid, 2-hydroxyglutaric acid, citric acid, α-ketoglutarate and 
others. Among these, α-ketoglutarate (male/female fold-change of 2.29) or 4-hydroxybutyric acid (male/female 
fold-change 4.41) increased in healthy males compared to females. In contrast, levels of succinic acid (male/
female fold-change of 0.40), malic acid (male/female fold-change of 0.43), or glycine (male/female fold-change of 
0.40) greatly decreased in males compared to females.

Significantly increased and decreased metabolites in males, compared to females, are shown in Fig. 3A and 3B, 
respectively. Box-whisker plots were constructed after log2 transformation. The Mann-Whitney U test was used to 
determine significance (*p < 0.05, **p < 0.01, or ***p < 0.005). All metabolites identified in this study are shown 
in Supplementary Tables 1 and 2. A few example metabolites whose expression was lower or higher in healthy 
females compared to healthy males are shown in Fig. 3A and 3B. Expression levels of UDP-glucuronic acid, 
stearic acid, propane-1,3-diol, pelargonic acid, heptadecanoic acid, caprylic acid, capric acid, α-ketoglutarate, 
hydroxybutyric acid, and unknown compound BB 315573 were all detected to be considerably lower in urine 

label PubChem PLS-DA VIP Score p_value p_value_adj Fold Change

xylose 135191 1.28 0.0187 0.1077 0.70

UDP-glucuronic acid 17473 1.31 0.0026 0.0448 1.65

succinic acid 1110 3.11 0.0000 0.0000 0.40

propane-1,3-diol NIST 10442 1.70 0.0028 0.0460 1.54

pelargonic acid 8158 1.74 0.0009 0.0241 1.53

palmitic acid 985 1.28 0.0408 0.1890 1.24

oleic acid 445639 1.34 0.0040 0.0563 1.22

N-acetylaspartic acid 65065 2.43 0.0001 0.0099 0.68

malic acid 525 1.67 0.0000 0.0004 0.43

lyxose 439240 1.11 0.0078 0.0737 0.58

isothreonic acid 151152 1.13 0.0163 0.1036 1.21

hydroxylamine 787 1.26 0.0170 0.1049 1.31

heptadecanoic acid 10465 1.32 0.0110 0.0834 1.23

glycine 750 1.55 0.0003 0.0149 0.40

gluconic acid 6857417 1.57 0.0124 0.0883 0.72

galactonic acid 128869 1.46 0.0369 0.1798 0.80

citric acid 311 1.98 0.0001 0.0103 0.61

caprylic acid 379 1.38 0.0040 0.0563 1.41

capric acid 2969 1.51 0.0110 0.0834 1.27

4-hydroxybutyric acid 10413 1.69 0.0009 0.0239 1.61

2-hydroxyglutaric acid 43 2.17 0.0001 0.0103 0.62

2,8-dihydroxyquinoline 97250 2.16 0.0009 0.0239 4.41

Table 2. List of metabolites with a PLS-DA VIP score > 1, Mann-Whitney U test p-value < 0.05, fold-change 
(male/female) <0.8 or >1.2.

Figure 4
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Figure 4. Chemical similarity enrichment analysis results. Y-axis shows the most significantly altered 
clusters on the top. Cluster color gives the proportion of increased or decreased metabolites (red = increased, 
blue = decreased, purple = mostly decreased). Chemical enrichment statistics was calculated using 
Kolmogorov–Smirnov test. Only significantly different enrichment clusters (raw p < 0.05) were shown.
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obtained from healthy females compared to males (Fig. 3A). In contrast, levels of xylose, succinic acid, maltose, 
malic acid, lyxose, glycine, galactonic acid, fumaric acid, citric acid, and 2-hydroxyglutaric acid were found to be 
greater in females than in males (Fig. 3B). Table 1 shows a list of metabolites differentially expressed in IC, com-
pared to controls (p-level = 0.005, FDR (Benjamini Hochberg). A list of metabolites with PLS-DA VIP score > 1, 
Mann-Whitney U test p value < 0.05, and fold change (male/female) <0.8 or >1.2 are shown in Table 2.

We speculated that metabolite enrichment analysis may be able to provide the corresponding gender-specific 
pathways derived from the specific metabolites on their differential networks. We performed metabolite set 
enrichment analysis (MSEA) with the 29 significant metabolites (Mann-Whitney U test p-value < 0.05). We 
found that differentially expressed metabolites in female and male groups were highly related to α-ketoglutarate 
dehydrogenase complex deficiency, with a FDR of 0.00524 (raw p, 0.0000181; Holm p, 0.00524) (Supplementary 
Fig. 1).

Recently, we published a paper demonstrating that the hypergeometric test could be flawed for metabolomics 
analyses and should not be used30. We also noted that MSEA may be faulty as well. Thus, in this study, we opted 
to utilize the newly developed chemical similarity enrichment analysis (ChemRICH)30 instead (http://chemrich.
us). ChemRICH is a chemical similarity-based statistical enrichment tool with better subsequent enrichment 
statistics than pathway enrichments and is not dependent on biochemical knowledge annotations. However, it 
does not provide information regarding enzymes or diseases. To better understand the metabolic signature spe-
cific to female and male groups, we performed ChemRICH using the Mann-Whitney U test p-values and median 
fold-changes of our 140 identified metabolites. ChemRICH was implemented using the Kolmogorov–Smirnov 
test on the identified clusters to evaluate whether a metabolite cluster was represented more than expected by 
chance. As a result, we found that saturated fatty acids (FA) (raw p, 0.0000096; FDR p, 0.00018), TCA (raw p, 
0.000027; FDR p, 0. 0.00025), and butyrates (raw p, 0.000054; FDR p, 0.00034) were significantly related (FDR 
p < 0. 05) to the gender effect (Fig. 4, Table 3).

Discussion
Our objective in this study was to systematically examine sex differences in urine samples obtained from healthy 
participants. The experimental results from this study provided evidence suggesting that gender influences the 
global metabolome in healthy female and male subjects. It has been generally accepted that pathogenesis in 
females may be influenced by metabolic perturbations caused by various hormones, such as estrogen, and other 
reproductive factors. Although further research is needed, levels of sex hormones may be related to the differ-
ences in metabolites detected in the urine of healthy adults.

As proposed in our previously published review articles, monitoring the changes in metabolic landscape, 
cholesterol, and sex hormones through metabolic profiling can be of immense benefit to patients31,32. Our urinary 
metabolomics data clearly suggests that sex differences should be considered in future laboratory and clinical 
studies. Sex has not been heavily considered as an important factor when it comes to identifying druggable targets 
in diseases, resulting in few biomarker studies that actively look at sex. Since gender is an influencing factor on 

Cluster name
Cluster 
size p-values FDR Increased Decreased

Increased 
ratio

Altered 
Ratio

Saturated FA 10 0.0000096 0.00018 6 0 0.6 0.6

TCA 8 0.000027 0.00025 1 5 0.1 0.8

Butyrates 5 0.000054 0.00034 2 0 0.4 0.4

Pentoses 4 0.011 0.054 0 2 0 0.5

Sugar Acids 9 0.26 0.99 0 2 0 0.2

Amino Acids 7 1 1 0 1 0 0.1

Benzoates 3 1 1 0 0 0 0

Cinnamates 3 1 1 0 0 0 0

Dicarboxylic Acids 3 1 1 0 0 0 0

Disaccharides 4 1 1 0 1 0 0.2

Gum Arabic 3 1 1 0 0 0 0

Hexoses 7 1 1 0 0 0 0

Hippurates 3 1 1 0 1 0 0.3

Indoles 4 1 1 0 0 0 0

Phenols 5 1 1 0 0 0 0

Phenylacetates 4 1 1 0 0 0 0

Purinones 3 1 1 0 1 0 0.3

Pyrimidinones 3 1 1 0 0 0 0

Sugar Alcohols 14 1 1 0 1 0 0.07

Table 3. Chemical similarity enrichment analysis. Cluster name is redefined metabolite chemical clusters. 
Cluster size indicates the size of the cluster. P-values are the result of the Kolmogorov–Smirnov test evaluating 
how significant difference a metabolite cluster was represented by chance. FDR is the Benjamini-Hochberg 
corrected p values. The Increase/ratio (Decreased/ratio) shows the numbers/ratio of directions of significant 
compounds in a cluster.

http://chemrich.us
http://chemrich.us
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pharmacological responses, which in turn is monitored through biomarker changes, careful should be done when 
consideration should be given when developing effective treatments for males and females.

Levels of urinary metabolites, including UDP-glucuronic acid, α-ketoglutarate, and 2-hydroxyglutaric acid, 
were found to be higher or lower in females than in males (Fig. 3). We further hypothesized the biology associ-
ated with sex-specific metabolites detected in urine samples is linked with sex hormones. Our data suggested the 
level of UDP-glucuronic acid is higher in healthy males, compared to females. UDP-glucuronic acid is oxidized 
from UDP-glucose and NAD+ by UDP-glucose dehydrogenase (UGDH). Considering that the expression of 
UGDH is known to be stimulated by androgen, a male sex hormone33, it would be interesting to see if androgen 
causes the differential levels of UDP-glucuronic acid found in urine samples of female vs. males. In addition, 
2-hydroxyglutaric acid (2HG) was found to be greater in females than in males (Fig. 3B). 2HG is known as an 
oncometabolite that can accumulate in estrogen receptor-negative breast tumors34, suggesting a potential associ-
ation between increased 2HG levels and estrogen, a female sex hormone.

Previous work from our laboratory and others proposed a series of urinary metabolites as potential IC bio-
marker candidates35–40. Compared to healthy controls, these metabolites significantly increased or decreased in IC 
patient urine samples36. One metabolite of interest that we found was α-ketoglutarate, which is an important TCA 
cycle product and is involved in lipid and acetate metabolism. It is also an epigenetic regulator, controlling tran-
scription and translation of DNA through histone acetylation. Treatment with α-ketoglutarate slowed cell prolif-
eration in normal bladder epithelial cells39. This is consistent with prior clinical observations suggesting that there 
are thinner layers of bladder epithelium in IC41,42. It was interesting that our current study found higher levels of 
α-ketoglutarate in healthy males, compared to females. Furthermore, a recent finding from our laboratory sug-
gested the molecular mechanism through which α-ketoglutarate epigenetically regulates bladder epithelial cells43.

Unfortunately, in this current study, we could not provide solid experimental evidence explaining why healthy 
male urine samples contained these higher levels of α-ketoglutarate. Furthermore, considering that previous 
results from our group were based only on female participants, expansion of our earlier findings in both sexes 
would be warranted in the near future.

In summary, our findings suggested that baseline sex-determined differences would be helpful in identifying 
sex specific biomarkers. Currently, gender differences have not been carefully considered as important confound-
ing factors for biomarker development. Our results provide evidence demonstrating otherwise; drug develop-
ment and therapies may need more precise and detailed experimental designs that recognize the effects of sex 
differences on therapeutic efficacy.
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INTRODUCTION

Molecular profiling is the global analysis of  genomic, 
epigenetic, transcriptomic, proteomic and metabolomics 
profiles. It represents a critical pre-requisite for the future 
success in developing tailored treatment strategies for 
individual patient [1]. 

Bladder cancer (BC) is the second most common urolo-
gical malignancy and requires the most expensive care [2]. 
Since the time of  diagnosis directly influences survival 
rate, early detection and life-long surveillance of BC is very 
important. Microhematuria testing and urine cytology are 
currently the most widely used diagnostic tools for BC; 
however, these methods are limited due to its costliness and 
invasiveness [3]. 

Clinico-pathological features classify BC into two distinct 
groups; non-muscle invasive bladder cancer (NMIBC) and 
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muscle-invasive bladder cancer (MIBC). MIBC is the main 
cause of  cancer-specific deaths among BC patients [4,5]. 
Although NMIBC has better survival than MIBC and 
other malignancies, 30% to 50% of patients will experience 
recurrence throughout the remainder of their lives. This 
rate accounts for cases with surgical resection of  the 
primary tumor and adjuvant therapy. About 10% to 20% 
of these recurrences will progress to MIBC [6,7]. Therefore, 
the odds of recurrence and progression in BC have been 
major challenges for patients and physicians. While the 
introduction of cisp latin-based chemotherapy has increased 
the chances of recurrence-free survival, there have been no 
new U.S. Food and Drug Administration (FDA)-approved 
therapies for those who cannot tolerate or fail to respond to 
the treatment [8]. 

BC is also known as a highly immunogenic cancer 
type that has a higher rate of mutation than other types 
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of  cancer. In BC, various types of  tumor-inf iltrating 
immune cells have been reported. The signaling pathways 
between the tumor and immune cells have been studied. 
Immunotherapy has been widely accepted as a treatment 
option for BC and recent new immunotherapies have 
been studied in various BC clinical trials. New cancer 
immunotherapies have been tested and applied using 
clinically immune checkpoints blockers against cytotoxic 
T lymphocyte-associated antigen-4 (CTLA-4), checkpoint 
programmed death–1 (PD-1), or programmed death 
receptor ligand (PD-L1) etc. [9]. A portion of patients with 
moderate to high-grade NMIBC has been given intravesical 
immunotherapy with bacillus Calmette-Guérin (BCG) [10-12]. 
However, this has not been shown to be effective in those 
with MIBC. 

Muscle-invasive disease is managed through cystectomy 
with or without systemic cisplatin-based chemotherapy. 
Despite this, it is still not possible to distinguish between 
patients who will benefit and those who will not from 
the chemotherapy. It would be tremendously useful and 
innovative to identify reliable biomarkers that could 
enable clinicians to distinguish these patients and would 
provide optimal and personalized treatment plans for each 
individual case. However, to ensure that the path from 
discovery to clinical diagnostics continues to be successfully 
paved, the analytic, diagnostic, and regulatory requirements 
of a clinical assay need to be understood. Furthermore, active 
partnerships with industry and effective communication 
between clinicians and scientists are necessary. 

In this short review article, we will provide a general 
overview of classical and current technologies and molecular 
f indings in BC research. We will also summarize the 
clinical significance and impacts of  these discoveries for 
future precision medicine in BC patient management 
and treatment. A simplified diagram shows a series of 
approaches to precision medicine for BC patients that will 
be discussed in this short review (Fig. 1). 

ESTABLISHED TECHNOLOGY AND RE-
CENT BREAKTHROUGHS IN BLADDER 
CANCER RESEARCH

Improved understanding of the molecular classification 
of BC could provide great benefits in the clinical setting. It 
would serve to bring improved insight and decision-making 
regarding diagnosis, prognosis, and treatment. The Cancer 
Genome Atlas (TCGA) includes such comprehensive genomic 
analyses; such as whole-exome sequencing, mRNA and 
microRNA (miRNA) sequencing, DNA methylation analysis, 
and proteomic analysis [13]. 

Epigenetic modifications include DNA methylation, 
histone modifications, miRNA, and nucleosome positioning 
etc. Expression changes and genetic mutations of epigenetic 
regulatory genes such as DNA methyltransferases, 
chromatin modifiers and remodelers have been found 
[14]. Epigenetic alterations contribute to gene expression 
levels during cancer initiation and progression [14]. As an 
epigenetic regulator, miRNAs regulate gene expression. For 
example, miRNAs such as miR-101, miR-21, miR-148a, miR-
126, miR-152, and miR-29a/29b/29c etc. can repress epigenetic 
regulators like EZH2 (H3K27 methyltransferase) [15], 
DNMT1 (DNA methyltransferase) [16,17], and DNMT3A/3B 
[18].

For clinical proteomics, there have been a series of 
mass spectrometry-based techniques used; including liquid 
chromatography-mass spectrometry (LC-MS/MS), capillary 
electrophoresis-mass spectrometry (CE-MS), surface-enhanced 
laser desorption/ionization time-of-flight mass spectrometry, 
matrix assisted laser de- sorption/ionization time-of-flight 
mass spectrometry (MALDI-TOF MS), and nano-liquid 
chromatography-tandem mass spectrometry (nano-MALDI-
MS) [19]. Each of these proteome analytic technologies has 
their own advantages and disadvantages. LC-MS is sensitive 
yet expensive, while CE-MS is cheaper than the others. 
MALDI-TOF MS is relatively cheap and simple; however, 
nano-MALDI-MS is known more sensitive than MALDI-
TOF MS [20-22].

Fig. 1. A diagram showing current transla-
tional and clinical approaches to precision 
medicine for bladder cancer patients.
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In order to better understand cancer metabolism, 
a metabolomics approach has of ten been utilized. It 
has since provided information and insight on global 
chemical fingerprints associated with the physiological 
and pathological states of  cancer [23]. Using various 
metabolomics technologies, including nuclear magnetic 
resonance spectroscopy (NMR, also known as, 1H-NMR), 
gas chromatography mass spectrometry (GC-MS), direct 
f low injection mass spectrometry, inductively coupled 
plasma mass spectrometry, and high performance liquid 
chromatography, possible metabolic fingerprints associated 
with BC have been tried to be identified.

In addition to analytic technologies, an adequate ex vivo 
BC model, which is currently a major limitation towards 
identifying predictive biomarkers, is needed to better 
understand the molecular mechanisms of BC. A series of 
previous studies have suggested that cancer cells in three 
dimensional (3D) culture systems respond differently from 
those in 2D cultures [24,25]. The lack of clinico-physiology 
of  cell line models, and in vivo models (e.g., animal and 
patient-derived xenografts) have greatly limited urological 
research. However, recent developments of  3D organoids 
received from patients seem to provide a realistic bladder 
microenvironment. This pre-clinical BC mimic model has the 
potential to be used as a method of therapeutic pre-screening 
for individual patients. Using a rotating wall vessel 
bioreactor under microgravity conditions, BC organoids have 
been previously developed from cell line or tissue biopsy 
samples. Well-constructed 3D organoids play as a functional 
unit and closely mimic the tissue of origin. 3D organoids are 
characterized to exhibit 4–6 multiple cell layers, and this 
amenability allows organoids to be powerful pre-clinical BC 
models.

Successful construction of BC patient-derived 3D orga-
noids has further broadened our understanding of  the 
molecular mechanisms and drivers that promote BC 
development. DNA sequencing analysis of patient-derived 3D 
organoids suggest that these organoids share very similar 
mutational profiles with those of real tumor samples [26]. 
Thus, it is speculated that genetic information from patient 
organoids can be used for personalized drug-prescreening 
and predicting responses to treatment. While these 
experimental results need intensive follow-up validation, 3D 
organoid-based drug response assays seem very promising 
and will undeniably benefit clinical decisions. If successful, 
a patient-derived organoid biobank could facilitate perso-
nalized medicine in BC research. 

APPLICATION TO BLADDER CANCER 
STUDY

1. Urine biomarkers for early detection of bladder 
cancer
Molecular prof iling methods have been used for 

phenotyping BC. Recent reports have shown that modern 
classif ication of  BC into various distinct subtypes is 
associated with responses to chemotherapy and immune 
checkpoint inhibitors. There are various commercial BC 
biomarkers that are currently being used in the clinical 
setting. They include nuclear-matrix protein 22 (NMP22), 
UroVysion test, and others. NMP22 levels are shown to 
be associated with disease recurrence and progression [27]. 
The UroVysion test is a multicolor fluorescence in situ 
hybridization (FISH) assay designed to detect aneuploidy 
of chromosomes 3, 7, or 17, and/or the loss of the 9p21 locus 
[28]. A series of recent reports showed that utilization of 
FISH-based assay may be used as an additional tool for sub-
classification of patients or determining a treatment option 
[29-32].

Because it is stored in the bladder before micturition, 
urine is an attractive non-invasive biomarker resource 
for BC. As potential urinary BC biomarkers, perturbed 
levels of  urinary miRNAs and DNA methylation have 
been reported. The most promising urinary BC biomarkers 
include: miRNA-96, miRNA-138, miRNA-126, miRNA-182, 
miRNA-143, miRNA-222, miRNA-21, miRNA-133b, miRNA-
518c-5p, miRNA-452, miRNA-129, miRNA-200c, miRNA-99a, 
miRNA-100, and miRNA-29c [33].

The methylation statuses of  SALL3, CFTR, ABCC6, 
HPR1, RASSF1A, MT1A, ALX4, CDH13, RPRM, MINT1, and 
BRCA1 in the urine samples of BC patients is also shown to 
be associated with the disease [34]. In other studies, a specific 
three-gene panel, consisting of BCL2, hTERT, and DAPK, 
was linked with BC in urine [35]. Seven other genes in 
urinary cell-free DNA (cfDNA) have also been found to be 
associated with BC. These include FGFR3, TERT, PIK3CA, 
TP53, HRAS, RXRA, and KDM6A [36]. This report suggested 
that one of  avenues of  biomarker detection includes 
identifying circulating cell-free tumor DNA. 

2. Genomic alterations detected by next-generation 
sequencing in bladder cancer
BC, and in particular MIBC, has one of  the largest 

mutational burdens of all tumor types studied in the TCGA. 
The key cause of  this is believed to be due to smoking, 
which leads to the production of reactive oxygen species 
and resultant DNA damage. TCGA analysis has shown 
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that DNA mutation of the ERCC2 and APOBEC3B genes 
drives BC genomic heterogeneity and disease progression 
[37,38]. Inactivation of the TP53 gene is also a well-known 
mutation in BC. TP53 gene mutations were observed in 
approximately 50% of MIBC cases and 20% of NMIBC cases 
[39]. TERT promoter mutations and chromatin-modifying 
gene mutations are some of  the most frequently altered 
genes, having frequency rates of 73% and 69%, respectively 
[40,41]. In addition, amplification of cyclin D1 and MYC has 
been reported in BC [42]. Approximately 20% of NMIBC 
and MIBC show cyclin D1 amplification and 13% of MIBC 
show MYC amplification. Activating mutations, fusions, or 
amplifications of the EGFR family have also been reported 
[43]. 

DNA alterations of EGFR, ERBB2, ERBB3, and ERBB4 
have been reported in BC [44,45]. FGFR3 mutations are 
common in low-grade and low-stage NMIBC. FGFR3 mutant 
tumors are known to be associated with higher risk for 
intravesical recurrence. Both ERBB2 and FGFR3 alterations 
are present in 57% of  high-grade NMIBC tumors in a 
mutually exclusive pattern [46-48]. 

In BC, oncogenes or tumor suppressor genes, such as 
those found in the Ras-MEK-ERK pathway and PI3 kinase-
AKT-mTOR pathway, are often mutated. PIK3CA and/or 
P13k/Akt pathway alterations are associated with favorable 
disease-specific outcomes, independent of tumor and lymph 
node stage [49]. For better sensitivity and specificity, FGFR3 
mutation levels are sometimes combined with PIK3CA or 
CDKN2A alterations [50]. 

3. Epigenetic alterations in bladder cancer 
In this section, we will discuss the epigenetic alterations 

in BC. Several epigenetic drugs have been used in the 
clinical and pre-clinical settings. They include: DNMT 
inhibitors (5-azacytidine and 5-Aza-2’-deoxycytidine), 
histone deacetylases in-hibitors (SAHA, valproic acid, and 
romidepsin), and Tazemetostat (an EZH2 inhibitor). These 
epigenetic drugs are being considered for BC treatment [51]. 

Modified histone proteins lead to the perturbation of 
gene expression and other key biological processes [52]. For 
example, histone modification, such as trimethylation of 
histone H3 at lysine 4 (H3K4me3), trimethylation on H3 
lysine 9 (H3K9me3), lysine 27 (H3K27me3), acetylation on H3 
lysine 9 (H3K9Ac), and lysine 27 (H3K27Ac), regulates gene 
activation [53]. DNA alterations are frequently observed on 
histone H3 lysine 27 (H3K27) in NMIBC and histone H3 
lysine 4 (H3K4) methyltransferase MLL2 in MIBC [54].

DNA hypomethylation of  LINE-1 repetitive element 
has been found often in BC, and this correlates with 

activated MET oncogene transcription [55]. RUNX3-pro-
moter DNA methylation is positively correlated with BC 
progression and patient survival [56]. It was also reported 
DNA hypermethylation of A2BP1, NPTX2, SOX11, PENK, 
NKX62, DBC1, MYO3A, CA10, POU4F2, HOXA9, MEIS1, 
GDF15, TMEFF2, VIM, STK11, MSH6, BRCA1, TBX2, 
TBX3, GATA2, ZIC4, PAX5A, MGMT, and IGSF4 [57]. DNA 
hypermethylation of CDH1, FHIT, LAMC2, RASSF1A, DAPK, 
MINT31, and SFRP are also related to BC development and 
survival [58-60]. Furthermore, DNA methylation signatures 
of candidate genes were combined and tested to determine if 
the joint DNA methylation signature shows high sensitivity 
and specificity in diagnosing BC. The recently identified 
urinary 3-marker DNA methylation panel (SOX1, IRAK3, 
and LINE-1-MET) showed an area under the curve (AUC) of 
0.90 (95% confidence interval [CI], 0.86–0.92) with sensitivity 
of 86% (95% CI, 74%–99%) and specificity of 89% (95% CI, 
81%–97%) by the 5-fold cross-validation analysis [61]. 

4. Molecular predictors of efficacy of BCG therapy
BC is known as one of highly immunogenic cancer types 

[62,63], and cancer immunotherapies aimed to stimulate 
the body’s immune system (e.g., BCG) have been utilized to 
treat BC patients [9]. In the last ten years, there have been 
continued drug developments on new classes of  immune 
checkpoint inhibitors. These include Pembrolizumab, 
Atezolizumab, Nivolumab, Avelumab, Durvalumab, Ipili-
muumab, and Tremelimab etc. The current ongoing clinical 
trial NCT02324582 was designed to test the efficacy of 
immune checkpoint inhibitors when combined with BCG in 
NMIBC. Clinical trials for testing neo-adjuvant and adjuvant 
immune checkpoint therapy following cystectomy were also 
designed as well (NCT02451423, NCT02450331). 

For over forty years, BCG therapy, the first FDA-app-
roved immunotherapy and the most effective intravesical 
treatment, has been used to reduce the risk of BC recurrence 
for high-risk disease. However, approximately 70% of BC 
patients eventually failed to respond to intravesical BCG 
therapy and experienced remission after treatment [12]. 
Interestingly, BC patients who did not respond to BCG 
therapy exhibit the higher PD-L1 expression than those who 
responded to it. This suggests that PD-L1 could attenuate 
responses to BCG therapy by neutralizing T cells and 
possibly infers a biological role for PD-1/PD-L1 interactions 
[64]. 

More recent studies on the genomic alterations 
correlated with recurrence following BCG therapy suggest 
a possible association between ARID1A mutations and 
BCG outcomes. When compared to the ARID1A wild-type, 
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ARID1A truncating mutations were significantly associated 
with an increased risk of recurrence following BCG therapy 
[65]. Further investigation is needed in determining whether 
inactivation of ARID1A, due to its truncating mutation, can 
be a reliable predictive biomarker of BCG therapy. ARID1A 
inactivation may also be reversed by epigenetic inhibition, 
which could benefit patients who fail to respond to BCG 
treatment [66,67]. 

5. Proteomics in bladder cancer
The scope of  this section is to briefly present on the 

contribution of proteomics towards BC research. Concerted 
efforts aimed at discovering biomarkers for BC detection 
and disease monitoring have led to the discovery of many 
proteomic biomarkers in the urine, tissue, blood etc. [20,21].

Multiple different approaches have been attempted 
in order to characterize the BC-specific urine proteome 
landscape. These include using LC-MS/MS, multiple reaction 
monitoring, and/or CE-MS. These biomarker candidates were 
also validated using targeted proteomic techniques such as 
enzyme linked immunosorbent assay (ELISA). 

Global urinary glycoproteomic analysis performed by 
Kreunin et al. [68] revealed the alpha-1B-glycoprotein as 
a potential biomarker for BC. A different study found 
increased levels of urinary fibrinogen, lactate dehydrogenase 
B, Apo-A1, clusterin, and haptoglobin as being associated 
with BC [69,70]. Higher levels of histone H2B and nuclear 
interacting factor 1/Zinc f inger 335 were detected in 
the urine and tumor tissue from BC patients. This was 
further conf irmed through independent ELISA and 
immunohistochemistry (IHC) analyses. ADAM28, midkine, 
and hepatocyte growth factor activator inhibitor type 1 
(HAI-1) were also found to be significantly elevated in the 
urine of BC patients, compared to controls [71]. Interleukin 
8, matrix metallopeptidase 9, and syndecan-1 are additional 
metabolites discovered to be heightened in a set of urine 
samples [72]. Moreover, some secreted proteins from isolated 
exosomes (e.g., calcium-signal transducer 2) were found in 
the in vitro cell culture as well as in the urine specimens of 
BC patients.

In addition to urine, the BC-specific proteome has also 
been obtained from tissue and blood specimens. Dynamin 
and clusterin were identified as potential biomarkers of 
BC and were further validated via IHC of tissue arrays. It 
was found that lowered expression of clusterin is associated 
with MIBC. Dynamin is negatively correlated with adverse 
outcomes [71]. From these proteomic analyses, differentially 
expressed proteins were found when comparing MIBC to 
NMIBC [73]. Cullin-3 and stathmin-1 were found to have 

increased expression in BC and are linked with unfavorable 
outcomes [74]. Differential expression of  prelamin-A/C 
(LMNA), transcription factor AP-1 (JUN), nucleasesensitive 
element-binding protein 1 (YBOX1), L-selectin (LYAM1), 
cyclindependent kinase inhibitor 1 (CDN1A), and mothers 
against decapentaplegic homolog 3 (SMAD3) were reported 
as tissue-based BC biomarkers. Three proteins, 4F2 cell-
surface antigen heavy chain (SLC3A2), stathmin (STMN1) 
and transgelin-2 (TAGLN2), were revealed as upregulated 
in BC. The BC-specific blood proteome revealed S100A8 and 
S100A9 expression as being significantly different between 
BC and healthy controls (AUC of 0.946) [75].

Evidently, our future research efforts should concentrate 
on the proper validation of  these promising biomarkers 
through multiple large and independent patient cohorts. 
Coordinated efforts to utilize existing or developing bio-
repositories of clinical samples and perform well-designed 
proteomic profiling should be maintained. BC molecular 
subtypes should be considered in the proteomics approach of 
attributing biological significance to proteomic findings.

6. Metabolomics of bladder cancer 
Signif icant progress has been made from current 

metabolomic techniques to distinguish BC patients from 
control subjects. Various techniques such as NMR, GC-MS, 
and LC-MS have contributed to BC metabolomic research. 
The intermediates of glucose metabolism, including lactic 
and citric acids, were found to be significantly different in 
cancer samples [76]. This phenomenon is widely known as 
the Warburg effect, which states that cancer cells exhibit 
increased dependence on the glycolytic pathway for ATP 
generation, giving rise to enhanced lactic acid production 
[77]. Hence, measuring lactic acid level in biological samples 
of BC is useful in BC diagnosis. Increased amino acid levels 
have been demonstrated in the urine, serum and tissue 
samples of BC patients. Decreased levels of citric acid and 
fumarate, which are the metabolic intermediates of aerobic 
oxidation, were also observed in BC samples [76]. 

A NMR-derived metabolomics study has also proven 
to be a potential useful avenue for BC diagnosis [23,78,79]. 
NMR spectroscopy was found to adequately detect hidden 
biomarkers for the early detection of BC [78]. In a current 
study with the urinary metabolomics-based diagnostic 
approach, both high sensitivity and specificity were found 
[80]. This approach is non-invasive, needs only a small sample 
of urine, and the diagnosis can be made relatively quickly 
and objectively. The study showed that patients with BC 
had elevated levels of  urinary acetyl-CoA and carnitine. 
It also established several acylcarnitines that were found 
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to differentiate between cancer and control groups [80]. 
Another study using the targeted mass spectrometry found 
that it is highly sensitive for detecting metabolic alterations. 
This provides insight into metabolic pathways that are 
potentially associated with tumorigenesis and tumor 
progression [77].

CLINICAL IMPLICATIONS OF MOLECU-
LAR PROFILES

1. Intrinsic molecular subtypes of bladder cancer
Intrinsic molecular subtypes of  BC were recently

established through many studies based on comprehensive 
genomic data from TCGA. The relationships between 
subtypes and their clinical implications have been inves-
tigated. 

Specific genetic alterations have been found in distinct 
phenotypes, suggesting distinct disease entities. Most of 
NMIBC primarily show FGFR3 mutations, Ras activation, 
and wild-type TP53 [33,81]. Basal/squamous cell carcinoma 
(SCC)-like MIBC is the most aggressive phenotype. However, 
it is also the most sensitive to cisplatin chemotherapy [82]. 
RB1 and NFE2L2 mutations are frequently observed in 
the basal/SCC-like MIBC phenotype. The p53-like MIBC 
is characterized as being chemo-resistant. Alterations 
of  FGFR3 and KDM6A are associated in the luminal 
subtype of p53-like MIBC. Luminal cluster I shows lowered 
expression of CD8+ effector genes and PD-L1 immune or 
tumor cells. Meanwhile, luminal cluster II subtypes are 
linked to activated T-effector cells. The Lund classification 
currently recognizes five subtypes of BC; urobasal A (uroA), 
urobasal B (uroB), genomically unstable, and infiltrated/
SCC-like [83]. Cancerous cells that can switch between 
the luminal and basal subtypes has also been found. 
This suggests that longitudinal studies are critical for 
understanding subtype changes and the associated responses 
to various chemotherapies. Collectively, based on these 
genetic alterations of these different phenotypes, research 
efforts are now moving to consider clinical strategies that 
can better the management of BC patients. 

2. Liquid biopsy
Liquid biopsies are being considered as a potential

applicable non-invasive molecular prof iling tool. A 
number of non-invasive multi-marker tests are currently 
commercially available for BC. In particular, ImmunoCytTM 
is able to measure levels of mucin and carcinoembryonic 
antigens in urine samples for BC diagnosis [84]. Another 
urine test, Aura Tek FDP TestTM, can detect BC recurrence 

[85]. Circulating factors, including circulating tumor cells 
(CTCs), cfDNAs, RNAs (miRNAs, long non-coding RNAs 
[lncRNAs], mRNAs), cell-free proteins, peptides, or exosomes 
et al., are derived from cells in human body. However, it is 
still elusive where these circulating molecules are coming 
from. 

CTCs of BC were previously detected in the urine and 
serum from patients with metastatic BC. Rising levels of 
CTCs were also positively correlated with aggressiveness 
[86,87]. CTCs derived from BC can be measured by using 
CTC-specific proteins, such as c-MET and PD-L1 [88-90]. 
Increased CTC levels were able to predict clinical outcomes, 
such as recurrence and survival. CellSearchTM, an FDA-
approved CTC assay kit, is currently being used in the 
clinical setting for prognostic purposes. 

Tumor-derived DNA is released into the body’s circu-
lation. Circulating tumor DNA (ctDNA) may reflect the 
genetic profile of all tumor sub-clones. In most cases, ctDNA 
has a very small size, usually between 180–200 base pairs. 
Quantification of ctDNA levels and the integrity status of 
ctDNA can be of great potential clinical utility for early 
diagnosis and prognosis of BC. Like other liquid biopsies, 
ctDNA testing can also be easily and frequently repeated in 
order to monitor changes during treatment [91]. In addition, 
genetic alterations can be detected in ctDNA. In the urine 
specimens of  BC patients, TERT  promoter mutations 
correlated with recurrence [92], while KRAS2 mutations 
were found in the plasma even before BC diagnosis [93].

Circulating RNA classes, which include mRNAs, 
miRNAs, and lncRNAs, were also found to be potential non-
invasive biomarkers [94]. The urinary CAIX splice variant 
mRNA was reported to have high diagnostic performance 
and value [95]. Urinary UBE2C and hTERT mRNA are 
found to be potential markers for early diagnosis and 
prognosis of BC [96]. Urinary levels of miR-126 and miR-
146a-5p were also discovered to be elevated in BC and are 
associated with tumor grade and invasiveness [97].

The delivery of  circulating molecules employs the 
use of  small vesicles, called exosomes. Exosomes transfer 
biologically active molecules and can be secreted into the 
urine, blood, and other body fluids [98]. Hence, exosomes are 
essential mediators of cell-to-cell communication [98]. There is 
a strong association between heightened exosome levels and 
BC [99]. In urinary exosomes, significantly increased levels of 
active molecules (e.g., TACSTD2, lncRNAs–HOTAIR, HOX-
AS-2, ANRIL, and linc-ROR, et al.) were found to in high-
grade MIBC patients [100]. 
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CONCLUDING REMARKS AND PERSPEC-
TIVES

In this short review article, we addressed current 
concerted ef forts on developing molecular prof iling 
focused on BC. Development of high-throughput profiling 
technologies, including genomics, epigenomics, proteomics, 
metabolomics, and bioinformatics etc., have accumulated 
evidence through research in the laboratory and clinical 
settings. Experimental findings have proposed promising 
biomarker candidates for clinical application. Subtyping of 
BC based on molecular signatures associated with clinical 
outcomes suggest mechanistic clues on how to monitor 
responses to chemotherapy in patients. However, clinically 
applicable and personalized biomarkers for early diagnosis 
and prediction of recurrence, progression, and treatment are 
unsolved and require more investigation. Focused efforts 
should continue in order to extract applicable and synergistic 
benefits from our current findings. This will likely ensure 
that a clear path from discovery to clinical diagnostics will 
be successfully paved. 
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Down-regulation of transient receptor potential 
melastatin member 7 prevents migration 
and invasion of renal cell carcinoma cells via 
inactivation of the Src and Akt pathway
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Purpose: Transient receptor potential melastatin member 7 (TRPM7), an ion channel and serine/threonine protein kinase, has 
been linked with distinct human malignancies. However, the role of TRPM7 in renal cell carcinoma (RCC) has not been investigated. 
The aim of this study is to determine whether TRPM7 regulates the migration and invasion of RCC cells. Its relationship with signal 
transduction pathways was also studied.
Materials and Methods: The human RCC cell lines ACHN and SN12C were chosen for this study. The molecular mechanisms of 
TRPM7 action were studied using Western blot analysis and small interfering RNA (siRNA)-based knockdown. The effect of TRPM7 
knockdown on RCC cells was measured by using Transwell invasion and wound healing migration assays.
Results: siRNA-induced silencing of TRPM7 notably decreased the migration and invasion of ACHN and SN12C RCC cells. The phos-
phorylation levels of Src in both cells were obviously reduced after TRPM7 silencing compared with that of the control ACHN and 
SN12C cells. Furthermore, the phosphorylation levels of Akt were greatly decreased in ACHN cells after siRNA-induced knockdown 
of TRPM7. Additionally, the treatment of cells with Src and Akt inhibitors clearly limited the migration and invasion of RCC cells.
Conclusions: Our data show that TRPM7 regulated ACHN and SN12C RCC cell invasion via the Src/Akt signaling pathway. There-
fore, targeting the Src/Akt signaling pathway and/or the expression or function of TRPM7 could be a potential beneficial treatment 
for patients with RCC.
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INTRODUCTION

Renal cell carcinoma (RCC) accounts for 3% of all can
cers and 90% of all kidney cancers. RCC is also the third 
most recurrent urologic tumor [1,2]. At first diagnosis, circa 
30% of patients with RCC have metastases. Additionally, 
20% of the patients diagnosed with a clinically localized 
disease will develop metastases, regardless of  the use of 
curative nephrectomy. Therefore, the mean survival of 
metastatic RCC is only 12 months [35]. Furthermore, limited 
therapeutic options are currently available. For instance, 
metastatic RCC is insensitive to chemotherapy, and drugs 
for targeted therapies and immunotherapies are ineffective 
in the treatment of this disease [6]. Thus, there is an urgent 
need to explore novel therapeutic agents against metastatic 
RCC.

Transient receptor potential melastatin member 7 
(TRPM7) is a nonselective cation channel. Furthermore, it 
is a member of the diverse TRPM subfamily and part of 
the transient receptor potential (TRP) superfamily [7]. A 
recent study showed the participation of TRP channels in 
cell homeostasis, including cell proliferation, differentiation, 
apoptosis [8]. Specifically, TRPM7 is well known as an 
essential regulator of Mg2+ homeostasis and a transporter 
of other cations [9,10]. Structurally, TRPM7 is comparable 
to TRPs and possesses six transmembrane domains, which 
form a hydrophobic central pore or channel. Additionally, 
TRPM7 transmembrane domains have amino and carboxyl
terminals (N and Cterminals) facing the intracellular 
side of  the cell membrane flanking the transmembrane 
segments [11]. TRPM7 is a bifunctional protein that has the 
ability to function as an ion channel and a protein kinase, 
participating in cancer and other diseases. Indeed, some 
TRP channels have been associated with the growth and 
development of cancer [12] and recent research has suggested 
some mechanisms underlying the role of TRPM7 in human 
cancers. Nonetheless, the functional relationship between 
TRPM7 and RCC has not been well documented. Moreover, 
the effect of TRPM7 knockdown on RCC cell migration and 
invasion and the underlying mechanism have not yet been 
determined. Hence, we aimed to explore the role of TRPM7 
in RCC.

MATERIALS AND METHODS

This study was approved by the Institutional Review 
Board of Kyungpook National University Chilgok Hospital 
(approval number: KNUMC 201605021).

1. Cell culture
The ACHN, SN12C, Caki1, and Caki2 cell lines were 

obtained from the Korean Cell Line Bank (Seoul, Korea) 
and American Type Culture Collection (ATCC, Manassas, 
VA, USA). All kidney cancer cells were grown in Dulbecco’s 
modified Eagle’s medium (DMEM) (Hyclone, Logan, UT, 
USA) supplemented with penicillin (100 U/mL), streptomycin 
(100 mg/mL), and 10% fetal bovine serum (FBS) and incu
bated at 37°C in a humidified atmosphere containing 5% (v/v) 
CO2.

2. TRPM7 small interfering RNA (siRNA) and  
transfection
AccuTarget Predesigned siRNAs specific for human 

TRPM7 and scramble siRNAs purchased from Bioneer 
(Daejeon, Korea) were used to knockdown TRPM7 expre
ssion. The sequences for human TRPM7 siRNA were Fwd 
5′-GUC UUG CCA UGA AAU ACU CUU-3′ and Rev 5′-
GAG UAU UUC AUG GCA AGA CUU-3′. For transient 
transfection, cells were grown to 80% confluence, and 
Lipofectamine® RNAiMAX (13778150; Invitrogen, Carlsbad, 
CA, USA) was used. Knockdown efficiency was determined 
using Western blot analysis.

3. Reverse transcriptase-polymerase chain  
reaction (PCR)
Total RNA was isolated using the TRIzol reagent. The 

Revert Aid First strand cDNA synthesis kit (K1621; Thermo 
Fisher Scientific, Waltham, MA, USA) was used for reverse 
transcription. PCR was performed by using a Maxime PCR 
Premix (25025; iNtRON Biotech, Seongnam, Korea). The 
cycling conditions were as follows: 95°C for 2 minutes and 35 
cycles at 94°C for 20 seconds, 56°C for 40 seconds, and 72°C 
for 90 seconds. The primers for TRPM7 were Fwd 5′-TAG 
CCT TTA GCC ACT GGA C-3′ and Rev 5′-GCA TCT CCT 
AGA TTT GC-3′. For β-actin, the primers were Fwd 5′-CAT 
CCT GCG TCT GGA CCT G-3′ and Rev 5′-ATC TCC TTC 
TGC ATC CTG TC-3′.

4. Western blot analysis
Total cell lysates were prepared in lysis buffer (#9803; 

Cell Signaling Technology, Beverly, MA, USA) and 
centrifuged at 14,000 ×g  for 10 minutes. Proteins (50 μg) 
were loaded into a sodium dodecyl sulfatepolyacrylamide 
gel and transferred onto nitrocellulose membranes for 
immunoblotting analysis. An antiβactin antibody (#4967, 
rabbit polyclonal, 1:1,000; Cell Signaling Technology) was 
used as an internal loading control. An antiTRPM7 
antibody (ab85016, mouse monoclonal, 1:1,000) was purchased 



265Investig Clin Urol 2018;59:263-274. www.icurology.org

TRPM7 prevents RCC migration and invasion

from Abcam (Cambridge, UK), and the rabbit polyclonal 
antibodies (1:1,000) against matrix metalloproteinase (MMP)
2 (#4022), MMP9 (#2270s), Akt (#9272), phosphoAkt (#9271, 
Ser473), p38 (#9212), phosphop38 (#9211, Thr180/Tyr182), 
Src (#2108), phosphoSrc (#2105, Tyr527), ERK1/2 (#9102), 
phosphoERK1/2 (#9101, Thr202/Tyr204), JNK (#9252), 
phosphoJNK (#9251, The183/Tyr185) were purchased from 
Cell Signaling Technology. Immunoreactive protein bands 
were visualized using a chemiluminescent substrate (Thermo 
Fisher Scientific).

5. Cell proliferation assay
For the cell viability assay, ACHN and SN12C cells were 

seeded at 1×105 cells/mL and cultured for 24 hours before 
transfection with 50 to 100 pmole/μL siRNA for 24 hours. 
After treatment, 20 μL/well of MTS from a cell proliferation 
colorimetric assay kit (K300; BioVision, Milpitas, CA, USA) 
was added, followed by a 2hour incubation at 37°C in the 
dark. Subsequently, the medium was removed, and the 
formazan precipitate was dissolved in dimethyl sulfoxide 
(34869; SigmaAldrich, St. Louis, MO, USA). The absorbance 
of the formazan product was measured at 490 nm using an 
enzymelinked immunosorbent assay (ELISA) reader (BioTek, 
Winooski, VT, USA).

6. Wound healing assay
For wound healing assay, the surface of cell monolayers 

in 6well plates were scratched with a pipette tip. The 
wounded cells were washed several times with phosphate
buffered saline to eliminate debris. Subsequently, DMEM 
containing Lipofectamine (25 pmole) and TRPM7 siRNA 
(50–100 pmole) were added into the scratched wells. The cells 
were then incubated for 24 hours at 37°C. The initial wound 

and migration of  the cells into the scratched area were 
photographically monitored and imaged at 0 and 24 hours 
using an Olympus CKX41 inverted microscope coupled with 
a digital imaging system.

7. In vitro migration assay
A 24well Transwell plate system (Costar; Corning Inc., 

Corning, NY, USA) was used to analyze cell migration. 
Kidney cancer cells were implanted at a density of 5×104 
cells/well onto 8.0 μm Transwell inserts. Inserts were filled 
with 300 μL of cell suspension, and the lower chamber was 
filled with 700 μL of DMEM containing 10% FBS. The cells 
were incubated for 24 hours or 48 hours at 37°C (5% CO2). 
Pictures (at 40× magnification) of  the membrane were 
taken in 10 random fields per chamber. After imaging, all 
Transwell membranes were harvested by incubating the 
inserts in 100 μL of DMSO for 20 minutes. An ELISA reader 
(BioTek) was used to detect the absorbance intensity at 595 
nm. Each experiment was performed in triplicate.

8. In vitro invasion assay 
Invasion assays were performed as previously described. 

Briefly, 300 μL of cell suspensions (5×104 cells) in DMEM 
supplemented with 10% FBS were added into Matrigel
coated invasion chambers (8.0μm, 24well plates, Costar; 
Corning Inc.) for 2 hours at 37°C. Photographs were taken, 
and membranes were harvested by incubating the wells in 
100 μL DMSO for 20 minutes. Absorbance was measure at 
595 nm on an ELISA reader (BioTek). 

9. Inhibitor treatments
Src (ab141987, SKI606, Bosutinib) and Akt1/2 (#9901, 

LY294002) inhibitors obtained from SigmaAldrich and 
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Abcam, respectively; were used in in vitro migration and 
invasion assays.

10. Statistical analysis
Data were expressed as mean±standard error. Student’s 

ttest and ANOVA were used to compare groups and 
determine statistical significance. All statistical analyses 
were performed using the Statistical Package for the Social 
Sciences with PASW Statistics ver. 18.0 software (IBM 
Co., Armonk, NY, USA). A pvalue <0.05 was considered 
statistically significant. 

RESULTS

1. TRPM7 expression and knockdown
To determine whether TRPM7 is expressed in RCC cell 

lines, TRPM7 mRNA and protein expression levels were 
assessed in different RCC cells (Caki1, Caki2, SN12C, and 
ACHN cell lines). As TRPM7 was more highly expressed in 
ACHN and SN12C cells than in the other cell types, they 
were selected for knockdown experiments (Fig. 1A). TRPM7 
siRNA was used to knockdown its expression, and the 
efficiency of this knockdown was determined by analysis 
the protein expression levels of TRPM7 by Western blot. 
The results show that TRPM7 expression was successfully 
silenced with TRPM7 siRNA in both ACHN and SN12C 
RCC cells compared with that in mock and negative control 
cells (Fig. 1B).

2. Effect of TRPM7 silencing on RCC cell growth
To assess the effects of TRPM7 gene silencing on RCC 

cells, we first analyzed cell viability using the MTS assay. 
After transfection of ACHN and SN12C cells with TRPM7 
siRNA at different doses, silencing of TRPM7 had a weak 
suppressive effect on ACHN cells, but this effect was not 
significant. Moreover, silencing of TRPM7 had no effect on 
SN12C cell viability (Fig. 2).

3. Migration and invasion are suppressed in 
TRPM7 siRNA-transfected RCC cells
Next, we focused on whether TRPM7 gene silencing 

influences the migration and invasion ability of RCC cells. 
Cells that were 90% confluent were scratched with a pipette 
tip and incubated with either TRPM7 siRNA, mock siRNA, 
or negative control (transfection reagent alone) for 24 hours. 
As demonstrated in Fig. 3, a decrease in cell migration to 
the scratched area was observed following TRPM7 siRNA 
treatment. Subsequently, the effect of TRPM7 siRNA on the 
migration of RCC cells was examined by Transwell assays. 
As shown in Fig. 4A, knockdown of TRPM7 significantly 
inhibited the migration ability of ACHN and SN12C cells. 
Furthermore, the effect of TRPM7 siRNA on the metastatic 
potential of  the RCC cells was examined by using an 
invasion assay. The invasive rates were reduced by TRPM7 
siRNA transfection (Fig. 4), suggesting that silencing 
TRPM7 expression inhibits the metastatic potential of RCC 
cells.

4. TRPM7 gene silencing leads to a decrease in the 
phosphorylation Src and Akt 
To determine the mechanism of  action by which 

TRPM7 influences the migration and invasion of RCC cells, 
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the phosphorylation of Src, ERK, JNK, p38, and Akt was 
examined by immunoblotting. After silencing of TRPM7, 
a considerable decrease in the phosphorylation level of 
Src was observed compared to that with mock siRNA and 
negative control (Fig. 5). Similarly, the phosphorylation level 
of Akt in ACHN RCC cells was reduced considerably after 
silencing of TRPM7 compared to that with mock siRNA 
(Fig. 5). To confirm that TRPM7 knockdownmediated 
inhibition of migration and invasion is indeed linked to Src 

and Akt phosphorylation, the cells were treated with the 
Src inhibitor SKI606 and the Akt inhibitor LY294002. Fig. 
6A shows that treatment with Akt or Src inhibitor reduced 
the migration ability of  ACHN cells in wound healing 
assays. Moreover, the Src inhibitor decreased the migration 
of SN12C cells to the scratched area (Fig. 6B). In Fig. 7A, the 
Transwell assay showed that the Src inhibitor significantly 
inhibited the migration ability of ACHN and SN12C cells. 
In ACHN cells, the Akt inhibitor considerably suppressed 
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cell migration as indicated by the Transwell assay (Fig. 7A). 
The effect of Src and Akt inhibition on RCC invasion was 
also examined using an invasion assay. Invasion rates were 
reduced by inhibition of both Src and Akt, suggesting that 
TRPM7 silencing inhibits the metastatic potential of RCC 
cells via inactivation of the Src and Akt signaling pathways 
(Fig. 7B).

5. TRPM7 knockdown in RCC cells is not linked to 
MMP-2 and MMP-9 expression
Recently, a study has reported that MMP9 expression 

is associated with migration, invasion, and aggressiveness 
of  tumor cells [13]. Thus, we examined whether TRPM7 
knockdown inhibits the expression of MMP2 and MMP9 in 
RCC cells. MMP2 and MMP9 were not reduced by TRPM7 
siRNA transfection of RCC cells (Fig. 8). 

DISCUSSION

To date, kidney cancer remains the ninth most prevalent 
malignancy among men, with an estimated 1,131 deaths in 
Korea in 2017 [14]. Kidney cancer progression varies from 
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slow to highly aggressive. When kidney cancer metastasizes, 
the mean survival of patients is limited. Given the hete-
rogeneity of  RCC, the vigorous study of  the underlying 
molecular mechanisms is a sensible approach [15]. Moreover, 
metastasis of RCC is a significant obstacle for the systemic 
treatment of this disease [16,17]. Metastasis, the migration 
of tumor cells from their original site to distant organs, is 
an intricate multistep mechanism, which involves complex 
cell adhesion, invasion, and migration [18]. Despite the 
significance of metastasis to RCC survival and morbidity, 
little is known on the cellular and molecular mechanisms 
mediating RCC metastasis.

TRPM7, a wellknown member of the TRP protein fa
mily, is an ion channel and protein kinase that is ubiqui
tously expressed in several normal tissues [9]. Recently, 
TRPM7 has been implicated in cancer metastasis and 
carcino genesis [19]. In this study, the evidence collected 
from wound healing and Transwell assays distinctly shows 
reduced migration and invasion in ACHN and SN12C RCC 
cells after the silencing of TRPM7 (Figs. 3, 4). However, cell 
proliferation remained unaffected (Fig. 2). These results 

suggest that TRPM7 plays an important role in the invasion 
phenotype of ACHN and SN12C RCC cells. A recent study 
showed that depressing the function of TRPM7 is known to 
inhibit the migration and invasion of MDAMB435 breast 
cancer cells, which is consistent with our data [19]. Besides, 
upregulation of TRPM7 augments the migration of A549 
lung cancer cells and vascular smooth muscle cells [20,21].

Although there is a substantial amount of  evidence 
that indicates that TRPM7 is required for controlling 
cell migration and invasion, the signaling pathways 
that mediate its action remain largely undiscovered. In 
the current study, we investigated the expression and 
activation of various signaling molecules to examine the 
pathways involved in RCC migration and invasion that are 
dependent on TRPM7. Akt, the main signal transducer of 
the phosphoinositide 3kinase (PI3K) pathway, promotes the 
progression of tumor cells by inhibiting apoptosis, promoting 
cell proliferation, and regulating cell migration and invasion 
[22]. In RCC, the PI3K/Akt pathway is moderately mutated 
but highly activated. A large number of  patients with 
RCC were recently involved in an extensive integrated 
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analysis of the PI3K/Akt pathway. The results reiterated 
the crucial role of  the PI3K/Akt pathway in this cancer 
[23]. Indeed, PI3K pathway inhibitors of the rapalog family 
have been approved for use in RCC therapy [24]. Our data 
show that activity of Akt was altered, when the migration 
and invasion capacity of  ACHN cells was decreased by 
the silencing of  TRPM7 (Fig. 5). Moreover, the Akt1/2 
inhibitor LY294002 further reinforced the role of Akt in 
cell migration and invasion of RCC (Figs. 6, 7). Therefore, 
the conjecture that the TRPM7mediated migration and 
invasion of ACHN RCC cells was associated with the Akt 

signaling pathway is justified. Nevertheless, these results 
were not apparent in SN12C cells.

Cancer metastasis generally involves the complex coordi
nation of  signal transduction pathways. As these signa
ling pathways control cancer cell migration, invasion, and 
the reestablishment of  tumors, the potential role of  Src 
and mitogenactivated protein kinase (MAPK) in RCC 
metastasis was considered and studied. These two signaling 
pathways are known to regulate crucial occurrences in 
metastasis, such as cancer cell invasion and migration 
[25,26]. Indeed, a previous study indicated that a member of 

Fig. 6. Effect of Akt and Src inhibition on cell migration. (A) Treatment with Akt or Src inhibitor of ACHN cells reduced cell migration in wound 
healing assays. (B) In SN12C cells, the Src inhibitor decreased the cell migration to the scratched area. M, mock; N, negative control.
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the Src kinase family is associated with a poor prognosis 
in patients with RCC and could be a potential therapeutic 
target for RCC [27]. Moreover, a recent study identified 
that the activation of p38MAPK signaling was associated 
with RCC metastasis [28]. Our data demonstrated that the 
siRNAmediated silencing of TRPM7 led to a considerable 
reduction in the migration and invasion capacity of ACHN 
and SN12C cells and concomitant inactivation of Src (Fig. 5). 
This suggests that TRPM7 alteration of the migration and 
invasion of RCC cells involves the Src signaling pathway. 
To support these findings, ACHN and SN12C cells were 
treated with the Src inhibitor SKI606 (Figs. 6, 7). The results 
indicated that the inhibition of Src reduced the migration 
and invasion abilities of these cells. Similar results were 
seen in a previous report in which Src inhibition promoted 
tumor cell inhibition in RCC [29]. Epithelialmesenchymal 
transition in RCC cells is known to involve both the Src 
and Akt signaling pathways [30]. Notwithstanding, our data 
indicated that when the migration and invasion capability 
of  RCC cells was reduced by silencing of  TRPM7, the 
activity of MAPKs, including p38, ERK1/2, and JNK1/2, was 
not affected. 

The current study has some limitations. Overexpression 
experiments should be performed to identify the exact role 
of TRPM7 in RCC cells. Moreover, TRPM7 expression in 
human RCC tissues should be measured. To elucidate the 
precise effects of TRPM7 in RCC, further studies such as 
expression studies in human tissues are needed.

CONCLUSIONS

To the best of our knowledge, this is the first report to 
address TRPM7 function and mechanism of action in RCC. 
We provide compelling evidence that TRPM7 channels play 
an important role in the migration and invasion of cancer 
cells in human RCC. There is also significant evidence that 
the signaling route is through the Akt and Src pathways. In 
conclusion, TRPM7 downregulation reduced the migration 
and invasion activity of RCC cells via inactivation of Src 
and Akt signaling pathways.
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EDITORIAL COMMENT

Biological characterization and implications of 
transient receptor potential melastatin member 7,  
a calcium channel, in renal cell carcinoma

It is estimated that there will be approximately 65,340 
new cases (42,680 men and 22,660 women) and 14,970 deaths 
(10,010 men and 4,960 women) from kidney cancer in 2018. 
Kidney cancer, also known as renal cell carcinoma (RCC), 
is widely recognized as the most lethal genitourinary 
cancer. Metastatic RCC (mRCC) is advanced kidney cancer 
and occurs when the cancer has spread to the lymph 
nodes or other organs in the body. The US Food and Drug 
Administration has approved the use of numerous agents 
for treating mRCC and most of them are based on scientific 
understanding of  cellular signaling pathways, such as 
VHL, VEGFR, mTOR, HGF/c-MET, and Wnt/βcatenin. 
Unfortunately, a number of drugs developed in recent years 
have shown limited efficacy in treating mRCC. 

Given that regulation of  cell invasion and migration 
are critical for tumor metastasis, a research team led by 
Dr. Tae Gyun Kwon (Kyungpook National University) 
discovered promising findings suggesting that transient 
receptor potential melastatin member 7 (TRPM7) kinase, 
a membrane cation channel, is a central regulator of RCC 
invasion and migration in vitro. Knocking down TRPM7 
expression in RCC cell lines impaired their ability to migrate. 
Furthermore, the investigators were able to demonstrate 
that TRPM7 controls RCC migration and invasion through 
the Src/Akt pathway. These experimental results implicate 
the function of TRPM7 as a sort of sensor that may enable 
RCC cells to receive signals from the microenvironment 
and direct cells to metastasize. Although TRPM7 is known 
to regulate cell adhesion and migration and is a critical 
determinant of metastasis in several cancer types, such as 
breast, ovarian, and bladder, it has not been determined if it 
has an important role in RCC metastasis. 

Even though further validation in mRCC mouse models 
and human patient cohorts are essential, these findings 
from the Kwon laboratory present evidence suggesting the 
biological mechanism of TRPM7 in mRCC and its clinical 
implications. As described in the hypothetical mechanism, 
TRPM7 may play a role in Src/Akt signaling and metastasis 
of RCC by epigenetic regulation, perturbed gene expression, 
and/or key transcriptional factors (Fig. 1). The effects of 
potent TRPM7 inhibitors on the metastatic capability of 
RCC could also be easily tested in vitro and in the pre
clinical setting. If successful, these experiments will have 
direct clinical significance since it may identify biomarkers 
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of mRCC. Additionally, we envision that this study will 
provide mechanistic data for addressing the longterm goal 
of identifying new therapeutics for mRCC cases for which 
current therapeutic options do not exhibit optimal efficacy. 
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A B S T R A C T

Cisplatin is an important chemotherapeutic agent against metastatic bladder cancer, but resistance often limits
its usage. With the recent recognition of lipid metabolic alterations in bladder cancers, we studied the metabolic
implications of cisplatin resistance using cisplatin-sensitive (T24S) and resistant (T24R) bladder cancer cells.
Real-time live metabolomics revealed that T24R cells consume more glucose, leading to higher production of
glucose-derived acetate and fatty acids. Along with the activation of general metabolic regulators, enzymes
involved in acetate usage (ACSS2) and fatty acid synthesis (ACC) and a precursor for fatty acid synthesis (acetyl-
CoA) were elevated in T24R cells. Consistently, metabolic analysis with 13C isotope revealed that T24R cells
preferred glucose to acetate as the exogenous carbon source for the increased fatty acid synthesis, contrary to
T24S cells. In addition, ACSS2, rather than the well-established ACLY, was the key enzyme that supplies acetyl-
CoA in T24R cells through glucose-derived endogenous acetate. The relevance of ACSS2 in cisplatin resistance
was further confirmed by the abrogation of resistance by an ACSS2 inhibitor and, finally, by the higher ex-
pression of ACSS2 in the patient tissues with cisplatin resistance. Our results may help improve the treatment
options for chemoresistant bladder cancer patients and provide possible vulnerability targets to overcome the
resistance.

1. Introduction

Bladder cancer (BC) usually arises in the bladder epithelial lining,
and is the seventh most common cancer for men worldwide [1–3]. A
majority of BC cases (~90%) are classified as transitional cell carci-
noma (TCC), which can be further categorized as non-muscle invasive
(NMIBC) or muscle invasive bladder cancer (MIBC), according to the
extent of invasion into the muscular layer. NMIBC exhibits better
prognosis and survival rate, but about 20% of those patients progress to
MIBC [4, 5]. Radical cystectomy is a standard treatment for MIBC, but
about 50% of the patients develop distant metastases within two years.
For metastatic BC, cisplatin-based chemotherapy, with or without

radiotherapy, is the current gold standard. Those who do not respond
well to this treatment generally have a poor prognosis [6].

It is well established that cisplatin kills rapidly proliferating cancer
cells mostly through DNA damages [7]. It generates intra- and inter-
strand purine crosslinks that interferes with DNA replication, which
eventually lead to apoptosis. The toxicity mechanism, especially for
kidney, has also been reported as involving the generation of reactive
oxygen species and oxidative stress [8]. However, the biochemical
processes underlying its resistance are more complex and may involve
various signaling pathways such as p53, PI3K/AKT, and ROS detox-
ification [9]. In addition, the contribution of these individual me-
chanisms may differ according to the particular tumors involved.
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Recent results suggest that not only these well-established cell sig-
naling mechanisms, but also metabolic activities may be involved in
cisplatin-induced cell death [10]. For example, differences in succinate
dehydrogenase-mediated production of NADPH generation may be re-
sponsible for pharmacometabonomic heterogeneity of cisplatin-induced
kidney toxicity [11]. In addition, the level of UDP-GlcNAc, the meta-
bolite involved in N-acetylglucosmaine glycosylation, was shown to
correlate with cisplatin sensitivity of cancer cells [12]. As metabolism is
increasingly recognized as involved in cancer initiation and progression
[13], metabolic study of cisplatin resistance may lead to clues for im-
proving therapies for refractory bladder cancer.

Among key metabolites that fuel cancer cell proliferation, acetate
has not drawn as much attention as glucose and glutamine [14]. Recent
studies, however, have found acetate to be a key substrate for cancer
bioenergetics or macromolecular synthesis [15, 16]. In addition, in-
creased usages of 11C-aceate positron emission tomography in clinics
provide proof of concept evidence for the importance of acetate meta-
bolism in cancer [17]. At the heart of acetate utilization in cancer is the
enzyme ACSS2, responsible for converting acetate to acetyl-CoA. Pro-
duction of acetyl-CoA is critical for the upkeep of fatty acid synthesis in
cancer cells [14]. Fatty acid metabolism is a critical aspect of cancer
metabolism, as cancer cell proliferation requires large amount of bio-
mass. It is also interesting to note that bladder cancer may also have
alterations in lipid or fatty acid metabolism [18–21]. Despite this in-
teresting relationship among acetate, fatty acid, and cancer metabo-
lism, the exact source of acetate in cancer cells is still debatable due to
the low blood concentration of acetate.

In this study, we applied real-time live metabolomics to identify
metabolic reprogramming in cisplatin-resistant bladder cancer cells and
verified the results in patient-derived tissues. Our findings may reveal a
new aspect of the acquired chemoresistance and vulnerabilities to
overcome the resistance.

2. Materials and methods

2.1. Chemicals and reagents

The stable isotope labeled D-Glucose (U-13C6, 99%) and acetate
(1,2-13C, 99%) were purchased from Cambridge Isotope Laboratories
(Andover, MA, USA). The standard compounds, including pyruvate,
lactate, alanine, acetate, succinate, glucose, palmitate, glycine, gluta-
mate, isoleucine, valine, leucine, and glutathione(reduced) were ob-
tained from Sigma-Aldrich (St. Louis, MO, USA). The inhibitors for
ACSS2, 1-(2,3-di(thiophen-2-yl)quinoxalin-6-yl)-3-(2-methoxyethyl)
urea, and for ACLY, 3,5-Dichloro-2-hydroxy-N-(4-methoxy[1,1′-bi-
phenyl]-3-yl)-benzenesulfonamide (BMS-303141), were purchased
from ChemBridge (San Diego, CA, USA) and Bio-Techne (Minneapolis,
MN, USA), respectively. The following antibodies, β-Actin (A1978,
1:5000) from Sigma, ACSS2 (PA5-52059, 1:1000) from Thermo Fisher
Scientific, were used. All other antibodies, ACC (3676, 1:750), FAS
(3180, 1:750), EGFR (2232; 1:1000), phospho-EGFR (Tyr1068) (3777;
1:1000), Src (2108; 1:750), phospho-Src (Tyr527) (2105; 1:1000),
mTOR (2983; 1:1000), phospho-mTOR (Ser2448) (5536; 1:1000), and
HRP-conjugated secondary antibodies (7074, 1:1000; 7076, 1:1000)
were obtained from Cell Signaling Technologies.

2.2. Cell culture and biochemical assays

T24S and T24R urothelial carcinoma cells were cultured in DMEM
supplemented with 10% FBS, 2mM L-glutamine, and 1% antibiotic
solution (all from Invitrogen, Carlsbad, CA). All cells were maintained
in a humidified incubator (37 °C and 5% CO2). Cisplatin-resistant
bladder cancer cells (T24R) were obtained through chronic treatments
of cisplatin at low doses over six months [22, 23]. Briefly, the final cell
viability was< 40% for T24S cells and nearly 100% for T24R cells
upon 10 μM cisplatin treatment for 12 h. Cell viability assay was

performed using MTS (Promega, Inc., Madison, WI) according to the
manufacturer's protocol. Western blot analysis was performed following
routine procedures with actin as normalization control.

2.3. Sample preparation for live NMR metabolomics

Six plates (100mm) of 70% confluent cultured cells were harvested
with centrifugation. After the re-suspension of the cells with 5mL
DPBS, cells were counted, and 3×107 cells were moved into a new
tube. After centrifugation, the harvested cells were re-suspended with
500 μL glucose-free DMEM media (Gibco, Grand Island, NY, USA)
supplemented with 10% dialyzed FBS (Welgene, Daegu, Korea), 25mM
13C6-labeled glucose, and 10% D2O. The cells were spun in an NMR
tube with a weak centrifugal force (30g for 100 s) to allow sedimenta-
tion, enough to cover the active region of the NMR detection coil. The
NMR tubes with the cells were inserted into NMR magnet and the
spectra were acquired as usual.

2.4. Isotope incorporation analysis for fatty acids

The T24S and T24R cells were counted (5×106) and seeded in 6-
well plates. After 24 h adaptation, cells were treated with glucose-free
DMEM media (Gibco, Grand Island, NY, USA) supplemented with 10%
dialyzed FBS (Welgene, Daegu, Korea), and 5mM non-labeled glucose.

For the13C-acetate and 13C-glucose treatment, 0.5mM [1,2-13C]
acetate and 20mM [U-13C] glucose was added, respectively. For the
inhibitor treatment, the ACSS2 inhibitor (15.6 μM) and the ACLY in-
hibitor (32 μM) were also added to the cell media. After a 24 h treat-
ment, the fatty acids were extracted from the counted (9.05×106) cells
using the two-layer methanol-chloroform extraction method as pre-
viously described [24].

2.5. NMR measurement

1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR
spectra were measured on a 800-MHz Bruker Avance spectrometer
(Bruker BioSpin, Rheinstetten, Germany) equipped with a cryogenic
triple resonance probe at Seoul National University, Korea. The dataset
comprises 1024×128 points for the direct and indirect dimensions,
respectively. The time course spectral measurement was obtained at
310 K for 24 time points, with each experiment lasting for 288 s. Each of
the metabolites was identified by spiking the standard compounds.
Metabolites were quantified as described previously [25]. Non-uni-
formly sampled HSQC (NUS-HSQC) were obtained as described pre-
viously [26].

2.6. Quantification of acetyl-CoA

The levels of acetyl-CoA were measured from cell lysates using
PicoProbe™ Acetyl-CoA Assay Kit (BioVision, Milpitas, CA), following
the protocol provided by the manufacturer. Briefly, free CoA was
quenched, and then Acetyl-CoA was converted to CoA. The CoA was
then reacted to form NADH which interacts with PicoProbe, resulting in
the fluorescence. The reading was done with Ex=535/Em=587 nm.

2.7. Immunohistochemistry (IHC) analysis

To stain the slides of bladder tumor tissues obtained from BC pa-
tients showing complete remission (CR) or progressive disease (PD), the
ACSS2 antibody (1:100, LifeSpan Biosciences, Inc., Seattle, WA) was
utilized. A high pH was used for the antigen retrieval and an Ultraview
DAB Detection Kit from Ventana Medical Systems was used for coun-
terstaining. To acquire the digital images, stained slides were scanned
using an Aperio Turbo Scanscope AT machine (Leica Biosystems,
Buffalo Grove, IL). High-resolution images of each slide were uploaded
onto the Leica Biosystems cloud drive for further annotations and
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analysis. Digitized images were analyzed with the Tissue IA Optimiser
(Leica Biosystems, Buffalo Grove, IL) software installed on the Leica
Digital Image Hub. Following pathological annotations, the Measure
Stained Cells Algorithm option on the Leica Tissue IA software was
used. Each annotated slide had a minimum threshold of 100,000 cells to
be analyzed. After analysis, data for the nuclear h-score, % of positive
nuclei, and % of positive nuclear area in tissue were collected and used
for comparative graphing.

2.8. Routine statistics

All functional validation experiments were repeated at least three
times. Data were compared using Student's t-tests. P < 0.05 was con-
sidered to be statistically significant.

3. Results

3.1. Live metabolomics comparison between cisplatin-sensitive and resistant
bladder cancer cells

Through several metabolomics studies, it has been found that
bladder cancers may have abnormalities in metabolites involved in
lipid usages [18, 21]. It has been also suggested that perturbed meta-
bolism may have implication in cancer drug resistance and cancer ag-
gressiveness or progression [27]. We hypothesized that there should be
differences in metabolism and metabolism-associated pathways be-
tween cisplatin-sensitive and resistant bladder cancer cells. To test the
possibility, we applied the live metabolomics approach that we recently
developed [24] to isogenic bladder cancer cell lines T24S (cisplatin-
sensitive) and T24R (cisplatin-resistant) [22]. The metabolites gener-
ated from 13C-glucose tracer were monitored with 2D 1H-13C HSQC
NMR in real-time (Fig. 1A and B). By spiking the spectra with standard
compounds, we obtained the peak assignments for those with sig-
nificant changes (Supplementary Table S1). Along with the peaks for
metabolites involved in glycolysis, pyruvate metabolism and the TCA
cycle, those corresponding to fatty acids could be readily identified.
This was possible by the live metabolomics, since lipid-soluble fatty
acids and water-soluble polar metabolites are usually not quantifiable
in a single analysis with conventional cell lysate metabolomics [26].

3.2. Cisplatin resistance may be linked to the increased glucose consumption
and acetate production

The time-dependent changes of these metabolites revealed that
T24R cells exhibited specific metabolic characteristics in comparison
with T24S cells. Glucose consumption was greater in T24R cells, in-
dicating the higher input to glycolysis in T24R cells (Fig. 1C). The level
of pyruvate, the last glycolytic metabolite prior to the TCA cycle, be-
came almost the same, just after the brief higher consumption at an
early period in T24R cells (Fig. 1D). Lactate, alanine and acetate all
exhibited net productions in both cells, but there was an intriguing
difference. Lactate and alanine accumulated faster and to higher levels
in T24S than T24R cells (Fig. 1E and F), while acetate accumulated
much faster and kept the much higher level throughout in T24R cells
(Fig. 1G). In addition, despite the higher consumption of glucose in
T24R cells, lactate production and excretion was significantly lower,
(Fig. 1E and Supplementary Fig. S1). These findings suggest that the
preferred metabolic route of the increased glucose consumption in
T24R cells is not lactate formation, as occurs in Warburg-type meta-
bolism, but it may be other metabolites generated through acetate. One
possible destination may be fatty acids, because the fatty acid level was
also higher in T24R cells, as estimated by their mid-chain CH2 peak
intensities (Fig. 1H). For other metabolites, glycine, a possible indicator
of one carbon metabolism, and glutamate, an important anaplerotic
metabolite to TCA, exhibited no significant difference in the two cells
(Fig. 1I and J).

3.3. Two carbon pathway involving acetate leading to fatty acid synthesis is
enhanced in the cisplatin-resistant T24 cells

We took notice of the differential patterns of changes of acetate in
comparison with lactate and alanine between T24S and T24R cells.
These three downstream metabolites from pyruvate exhibited similar
patterns of changes in our previous live metabolomics studies with liver
cells [24]. In addition, lactate and alanine retain all three carbons from
pyruvate, whereas acetate is formed through the loss of one carbon
from pyruvate. With these unique characteristics of acetate and the
higher 13C-fatty acid level in T24R cells, we hypothesized that there
might be an alteration in pathways of fatty acid metabolism involving
acetate. To test this hypothesis, we first looked at the levels of the
upstream signaling molecules that can affect fatty acid metabolism.
Significant increase in the phosphorylated EGFR and mTOR in T24R
without much increase in their total levels suggested that cisplatin re-
sistance is associated with the activation of upstream metabolic reg-
ulators (Fig. 2A). Then, looking at more downstream enzymes, we
found that acetyl-CoA carboxylase (ACC), a key enzyme synthesizing
malonyl-CoA from acetyl-CoA, is expressed much higher in T24R cells
(Fig. 2B). Malonyl-CoA is a direct substrate of fatty acid synthase (FAS)
which was present at similar levels in both cells (Fig. 2B). For the in-
volvement of acetate in the fatty acid synthesis, we measured ACSS2
levels, as it is a key enzyme in pathways for incorporating acetate into
fatty acids. The ACSS2 level was much higher in T24R cells (Fig. 2C),
which was also corroborated by the higher level of acetyl-CoA gener-
ated from acetate by ACSS2 (Fig. 2D). Given that ACC and ACSS2 are
two major enzymes that incorporate the acetate into fatty acids, our
experimental results suggest that T24R may have the enhanced fatty
acid synthesis via two carbon metabolism involving acetate.

3.4. Glucose-derived endogenous acetate contributes to the enhanced fatty
acid de novo synthesis in T24R cells

The metabolic flux through a particular step can increase sig-
nificantly even with a constant enzyme level, as long as there is an
increased supply of the substrates. We observed activation of the
acetate-involving two carbon metabolism leading to the FAS step in
T24R cells despite similar FAS levels in T24S and T24R cells (see
Fig. 2B). Therefore, we tested if the actual fatty acid de novo synthesis
is increased and correlated with the activation of the acetate-involving
two carbon metabolism in T24R cells. The de novo fatty acid synthesis
was assessed by measuring the splitting of the omega methyl carbon
signal arising from13C-13C coupling in the HSQC spectra obtained with
13C-glucose tracer. This is possible because 13C labels from a glucose-
derived two carbon unit are incorporated into the omega methyl group
for de novo fatty acid synthesis (Fig. 3A). In comparison, fatty acid
chain elongation starting from a pre-existing fatty acyl chain occurs
only at the carboxyl terminal end. The intensities of the splitting
doublet of the omega methyl group of fatty acids, derived from the
tracer glucose, were much higher in T24R (Fig. 3B), indicating elevated
de novo fatty acid synthesis from glucose in T24R. Combined with the
above results for the increased acetate production from glucose and
higher levels of ACSS2, ACC and acetyl-CoA, this indicates that an
acetate-involving two carbon unit from glucose should contribute to the
enhanced fatty acid synthesis in T24R cells.

Since previous studies emphasized the roles of blood-borne exo-
genous acetate, not glucose-derived endogenous, in the bioenergetics or
lipid biosynthesis [15, 16], we also tested the de novo fatty acid
synthesis from exogenous 13C-acetate added to the medium. The in-
corporation of acetate to the terminal methyl was much lower in T24R
cells, indicating that exogenous acetate is not a major source for their
increased fatty acid de novo synthesis (Fig. 3C). The lower production
of glucose-derived fatty acids in T24S cells is also consistent with the
higher excretion of lactate from glucose (See Supplementary Fig. S1). In
comparison, the higher consumption of glucose in T24R cells may
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Fig. 1. Live NMR metabolomic comparison be-
tween cisplatin-sensitive and resistant cells.
(A) The first (black) and last (red) spectra obtained
from cisplatin-sensitive (T24S) cancer cells over 1 h
and 56min after the addition of 13C6-glucose. (1:
lactate, 2: alanine, 3: acetate, 4: pyruvate, 5: suc-
cinate, 6: fatty acid, 7: glycine, 8: glucose, 9: glu-
tamate, 10: isoleucine, 11: valine, 12: leucine, 13:
glutathione (reduced); see supplementary Table
S1). Assignments were obtained by spiking the
standard compounds. (B) One-dimensional spectra
from two compounds were extracted for compar-
ison (1 and 3). (C through J) Time-dependent me-
tabolic changes between T24S (black) and T24R
(red) cells were obtained in real-time with live NMR
metabolomics approach. The metabolites were
quantified as described previously [24].
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contribute to the higher de novo fatty acid synthesis through acetate
production.

3.5. ACSS2 Inhibition decreases fatty acid synthesis and cell viability for
T24R cells

As the data above collectively suggest a possible link from glucose to
fatty acid synthesis through endogenous acetate from glucose, we
decided to obtain further details on the pathways. Theoretically, a
glucose-derived two carbon unit can be incorporated into fatty acids
either via acetate or citrate, with the former mediated by ACSS2 and the
latter by ACLY (Fig. 4A). The ACLY-mediated pathway has been con-
sidered the major pathway in various cancers [28], whereas the ACSS2-
mediated pathway using glucose-derived endogenous acetate has been
very little explored. Therefore, we selectively inhibited either of the two
pathways using specific inhibitors, and measured the de novo fatty acid
synthesis with NMR as above.

Inhibition of the ACSS2 pathway by 1-(2,3-di(thiophen-2-yl)qui-
noxalin-6-yl)-3-(2-methoxyethyl)urea decreased the de novo synthesis
of fatty acid by>60% in T24R cells, whereas no significant changes
were observed in T24S cells (Fig. 4B). In comparison, ACLY inhibition
by BMS-303141 led to a decrease in the de novo synthesis in T24S cells
without significant effects on T24R cells. Importantly, the same ACSS2
inhibitor led to the growth inhibition of the T24R cells under cisplatin
resistance condition (Fig. 4C). As we did not add any acetate in the
media, these results confirm that the incorporation of glucose-derived
endogenous acetate into fatty acids via ACSS2 is important in the cis-
platin-resistance phenotype of T24R. We further obtained consistent
data with siRNA approach. ACSS2 siRNA treatment induced a sub-
stantial decrease in acetyl-CoA in T24R cells, whereas ACLY siRNA
treatment did not change the level (Supplementary Fig. S2A). The data
also show that ACSS1 has much smaller role in acetyl-CoA production
in T24R cells. Furthermore, ACLY siRNA induced a larger decrease in
fatty acid synthesis in T24S than T24R cells (Supplementary Fig. S2B).

3.6. ACSS2 expression is increased in cisplatin-resistant patient tissue

To obtain the relevance of the above results in clinical settings, we
tested the implication of ACSS2 with patient tissues. We measured the
expression of ACSS2 in bladder tumor tissues obtained from patients
who underwent a series of cisplatin-based chemotherapies. Bladder
tumor tissues obtained from BC patients with complete remission (CR)

upon chemotherapies exhibited low levels of ACSS2, while those from
patients with progressive disease (PD) had much higher levels of ACSS2
expression (Fig. 5A and B). Representative IHC images are also shown
in Fig. 5C. These results confirm the relevance of ACSS2 in the cisplatin
resistance of bladder cancer. As cisplatin-resistant bladder cancers are
often more aggressive, we also performed an immunohistochemistry
(IHC) analysis using bladder cancer tissue microarrays (TMA) with
varying aggressiveness. The results showed that ACSS2 protein ex-
pression level is significantly associated with the aggressiveness of
bladder cancers (Supplementary Fig. S3).

4. Discussion

By employing a live metabolomics and biochemical approach, we
show that glucose-derived endogenous acetate contributes to fatty acid
synthesis in cisplatin-resistant cells. Fatty acids are required compo-
nents in proliferating cells, just like DNA, and therefore, it may not be
surprising that cisplatin-resistant cells can have an alternative ma-
chinery to make fatty acids in the presence of the toxic drug. Still, the
use of endogenous acetate in fatty acid synthesis may require more
explanation. The most well-established pathway for fatty acid synthesis
utilizes citrate as an intermediate for acetyl-CoA, whether it is from
glucose or glutamine [29]. Citrate formed in mitochondria is lysed in
the cytosol by ACLY to give oxaloacetate and acetyl-CoA that can be
used for fatty acid synthesis. Another pathway for fatty acid synthesis
involves exogenous acetate and requires ACSS2 for generating acetyl-
CoA in the cytosol [16]. Although the involvement of ACSS2 is the same
for both exogenous and endogenous acetate usage for fatty acid
synthesis, we showed that 13C incorporation into fatty acids from
exogenous 13C-acetate is much lower in cisplatin-resistant cells.
Therefore, endogenous acetate seems to be the preferred source of the
two carbon unit needed for fatty acid synthesis for the cisplatin-re-
sistant cancer cells. Actually, the formation of endogenous acetate in
cancers is not unprecedented. It was first documented about 80 years
ago [30], but its roles in cancer metabolism has been little considered.
For general fatty acid synthesis, too, endogenous acetate was proposed
as an intermediate about 50 years ago [31], but it has been largely
neglected compared to citrate as the main intermediate [14, 29]. Now,
our data suggest a novel implication of endogenous acetate from glu-
cose in the fatty acid synthesis in cisplatin-resistant cells. With currently
available state-of-the-art analytical techniques, more roles of en-
dogenous acetate in cancer metabolism are expected to be revealed.

Fig. 2. Expression levels of metabolic regulators and enzymes in T24S and T24R cells.
Western blot analysis of (A) upstream regulators of metabolism (EGFR, Src, and mTOR) and their phosphorylated forms, (B) acetyl-CoA carboxylase (ACC) and fatty
acid synthase (FAS) involved in fatty acid synthesis, and (C) acetyl-CoA synthetase 2 (ACSS2) for acetate utilization in T24S and T24R cells. The expression levels of
β-actin were used as a loading control for western blot analysis. (D) The acetyl-CoA level was measured as described in the method section. The statistical analysis
was performed using Student's t-test, and the asterisk indicates P < 0.05. The error bars represent the standard deviation (N=5).
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Our data suggest that the endogenous acetate is derived from glu-
cose, most probably through pyruvate, and we showed that acetate can
be generated from pyruvate in mitochondria [32]. We also observed
decrease in acetate production when T24R cells are treated with
UK5099, an inhibitor of mitochondrial pyruvate carrier (MPC) (Sup-
plementary Fig. S4). The pyruvate uptake through MPC is lower in
some cancer cells, but still many cancers import pyruvate into mi-
tochondria. For example, glioblastoma generates about half of cellular
glutamate from glucose-driven TCA cycle that goes through pyruvate
[15]. In osteosarcoma cells, glucose-derived citrate through pyruvate
accounted for ~60% of total citrate pool [33]. Simultaneous

enhancement of Warburg effect and TCA cycle using glucose-derived
pyruvate was also observed in small cell lung cancer [34]. Therefore,
despite pronounced Warburg effect that can reduce pyruvate uptake
into cancer mitochondria and reduced MPC functions in some cancer
cells, pyruvate can still contribute to acetate generation in mitochon-
dria. The higher oxygen consumption rate for T24R cells also supports
functional mitochondrial activity in T24R cells. (Supplementary Fig.
S5).

An interesting question may be raised as to how the increased fatty
acid synthesis affects the cisplatin chemosensitivity. There have been
several reports linking fatty acid synthesis and anticancer drug

Fig. 3. Fatty acid de novo synthesis
from glucose and acetate.
(A) Schematic representation of NMR
signal splitting patterns by 13C-acetyl-
CoA for fatty acid elongation and de
novo synthesis steps. Filled circles re-
present 13C isotopes whereas open cir-
cles represent unlabeled carbons. (B)
13C isotope incorporations in the
omega position of the fatty acid alkyl
chain with U-13C-glucose. Left and
Middle, NUS HSQC spectra for the
omega carbon in fatty acid alkyl chains
from T24S and T24R cells, respectively.
Right, The peak area of the doublet of
the omega carbon from the spectra. The
peak area was normalized by the
number of harvested cells. (C) 13C iso-
tope incorporations as in (B) with
U-13C-acetate. T24S and T24R cells
were cultured in the media containing
5mM non-labeled glucose supple-
mented with 20mM 13C-glucose (B) or
0.5 mM 13C-acetate (C) for 24 h. The
statistical analysis from three in-
dependent experiments was performed
using the Student's t-test and the re-
sulting P-values are indicated. The
error bars represent the standard de-
viation.
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resistance. First, de novo fatty acid synthesis may lead to plasma
membrane remodeling by changing fatty acid and lipid composition.
This can lead to altered drug uptake and intracellular drug concentra-
tion, affecting the chemosensitivity [35, 36]. Second, it has been re-
ported that increased de novo fatty acid synthesis lowers the portions of
unsaturated fatty acids in plasma membrane [36]. Lowered levels of
unsaturated fatty acids have been implicated in reduced efficacy of anti-
cancer drugs, as unsaturated fatty acids are important sources of re-
active oxygen free radicals [36]. In addition, the production of reactive
oxygen species (ROS) is an important mechanism for the cytotoxicity of
many anticancer drugs, including cisplatin. Third, increased fatty acid
synthesis by FASN overexpression may protect cancer cells from
apoptosis. The increased FASN reducing the expression of biosynthesis
of pre-apoptotic lipid molecules has been suggested as a new me-
chanism of chemoresistance [37]. As the above mechanisms are not
mutually exclusive, the increased cisplatin resistance upon elevated
fatty acid synthesis from glucose-derived acetate may involve all the
above or a yet-to-be identified pathways.

By implicating ACSS2 in chemosensitivity in cells and patient tis-
sues, our results suggest two key translational opportunities involving

the protein. For one thing, as elevated levels of ACSS2 were observed in
cisplatin-resistant patient tissues, which are often more invasive and
refractory, the ACSS2 level may be used to stratify patients who would
require more aggressive treatment from the beginning. In addition, the
ACSS2 level may be helpful in deciding whether or not cisplatin should
be administered to particular patients. For the other, inhibitors of
ACSS2, along with other treatment modalities, may be used to treat
cisplatin-resistant bladder cancer patients. Although the inhibitor used
in the current study may not be suitable in the clinical settings, given
the importance of ACSS2 in the tumorigenesis of glioblastoma and
hepatocellular carcinoma [15, 16], more inhibitors are expected. In
addition, other enzymes on the fatty acid synthetic pathway involving
endogenous acetate, i.e., acetyl-CoA thioesterase needed for acetate
transport across the mitochondrial membrane, may be novel targets for
cisplatin-resistant bladder cancer.
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Fig. 4. The involvement of ACSS2 in
the fatty acid de novo synthesis and
survival in T24R cells.
(A) Schematic pathways for fatty acid
synthesis from glucose. Pathways in-
volving ACSS2 or ACLY are described.
The question mark on the side of ACH
indicates that the exact mechanism of
acetate generation from pyruvate in
mitochondria is yet to be firmly estab-
lished (Additional references in
Supplemental Information). (B) The
effects of ACSS2 and ACLY inhibitors
on the de novo fatty acid synthesis in
T24S (blue) and T24R (red) cells. The
de novo synthesis was estimated as in
Fig. 3 and normalized against that of
T24S without inhibitors. For inhibitors,
either ACSS2 (15.6 μM) or ACLY
(32 μM) inhibitors were added to the
culture media. See the method section
for the chemical names of the in-
hibitors. The statistical analysis was
performed using Student's t-test. Two
asterisks, P < 0.001; one asterisk,
P < 0.05; NS, not significant,
P > 0.05. The error bars represent the
standard deviation. (C) The effect of
the ACSS2 inhibitor on the cell survival
of T24R cells in the presence of cis-
platin. Upper: The T24R cells were
seeded in a 6-well plate 1 day before
experiment and cells were treated with
ACSS2 inhibitor or vehicle 1 h before
the addition of cisplatin (10 μM). Cells
were stained with crystal violet solu-
tion 48 h after the cisplatin treatment.
Lower: Bar graph for the cell viability
obtained from photometric analysis of
the upper samples. Abbreviation: GLU,
glucose; GLY, glycine; ALA, alanine;
PYR, pyruvate; LAC, lactate; ACoA,
acetyl-CoA; OAA, oxaloacetate; SUC,
succinate; AKG, a-ketoglutarate; CIT,
citrate; ACH, acetyl-CoA hydrolase; CS,
citrate synthase; ACSS2, acetyl-CoA
synthetase 2; ACLY, ATP citrate lyase;
ACC, acetyl-CoA carboxylase.
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Abstract 

Alterations in DNA methylation are important epigenetic markers in bladder cancer (BC). These epigenome 
modifications may drive the mechanisms of aggressive chemo-resistant BC. Clinicopathological biomarkers that 
indicate chemotherapeutic resistance are critical for better assessing treatment strategies for individual 
patients. Thus, in this study, we aimed to determine whether DNA methylation of certain metabolic enzymes 
is significantly altered in cisplatin-resistant BC cells.  
Methods: To characterize CpG methylation and nucleosome accessibility in cisplatin-resistant BC cells, the 
Illumina Infinium HM450 DNA methylation assay was performed. Perturbed gene expression was found to be 
associated with cisplatin resistance, and the biological roles of spermidine/spermine N1-acetyltransferase 
(SAT1) and argininosuccinate synthase 1 (ASS1) were further studied using qRT-PCR analysis and various cell 
biology assays, including western blot. 
Results: ASS1 and SAT1, genes for amino acid and polyamine metabolism catalysts, respectively, were found to 
be vastly hypermethylated, resulting in greatly downregulated expression. ASS1 expression is of particular 
interest because prior studies have demonstrated its potential association with BC stage and recurrence. In 
regard to chemoresistance, we found that aberrant expression or induced stimulation of SAT1 restored 
cisplatin sensitivity in the cell culture system. We also found that the addition of exogenous arginine deiminase 
through administration of ADI-PEG 20 (pegylated arginine deiminase) increased ASS1 expression and enhanced 
cisplatin’s apoptotic effects.  
Conclusions: Our study demonstrates a novel mechanistic link between the epigenetic perturbation of SAT1 
and ASS1 and cancer metabolism in cisplatin-resistant bladder cancer cells. These findings suggest potential 
utility of SAT1 and ASS1 as predictive biomarkers in re-sensitizing bladder cancer to chemotherapy and 
personalizing therapy. 

Key words: SAT1, ASS1, cancer metabolism, metabolomics, DNA methylation, chromatin accessibility, cisplatin 
resistance 

Introduction 
Bladder cancer (BC) is the second most common 

genitourinary malignancy worldwide and the fourth 
most common cancer in the U.S. [1-3]. Most patients 

are diagnosed with treatable cell carcinoma or 
non-muscle invasive bladder cancer (NMIBC) [4, 5]. 
However, approximately 20-30% of all NMIBC cases 
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eventually progress to become muscle-invasive 
bladder cancer (MIBC). From there, about 50% of 
these patients develop metastases within two years, 
even after radical cystectomy [6, 7]. In addition, MIBC 
patients who do not respond to adjuvant 
chemotherapy have a worse prognosis [8]. 
Unfortunately, there are currently no well-defined 
and available prognostic marker(s) that can identify 
these higher-risk patients [9-11]. Therefore, in order to 
develop new diagnostic technologies, a 
comprehensive molecular understanding of the 
patient subsets who will acquire chemoresistance is 
required. The identification of markers capable of 
predicting the response in patients treated with 
platinum-based drugs is urgently needed in order to 
improve the outcomes for those BC patients who are 
at higher risk of developing resistance.  

Epigenetic regulation has been demonstrated to 
play an important role in bladder tumorigenesis 
[12-14]. Recently, three separate subtypes of BC 
patients have been identified through analysis of 
DNA methylation profiles [14]. Epigenetic 
dysregulation occurs via cytosine methylation- 
dependent gene silencing, which is also considered a 
characteristic of therapeutic-resistance [15]. 
Cancer-specific DNA methylation mostly occurs on 
the CpG islands located in the promoter regions of 
genes and causes silencing of downstream genes [16, 
17]. Currently, two DNA methyltransferase (DNMT) 
inhibitors (5-azacytidine and its variant, 5-aza-CdR) 
have been approved by the FDA for the treatment of 
high-risk myelodysplastic syndrome [18] and are also 
in clinical trials for solid forms of human cancers [19]. 
In addition to DNA methylation, there are other 
relevant epigenetic mechanisms that affect gene 
expression levels, including histone modification and 
nucleosome positioning. These processes work 
together to create the epigenetic landscape that directs 
the process of gene expression. Chromatin structure, 
which is based on DNA methylation and nucleosome 
accessibility (occupancy), plays a critical role in the 
regulation of gene expression at the transcriptional 
start sites of genes. Recent computational modeling 
using molecular dynamics simulations revealed the 
potential effects of epigenetic DNA methylation on 
nucleosome stability [20] and demonstrated that CpG 
methylation that contributes to nucleosome 
positioning can also be DNMT1 independent [21]. 
These findings suggest that monitoring chromatin 
accessibility, DNA methylation, and histone 
modification is crucial for better understanding 
therapeutic responses in BC [22-24].  

Since first observed 90 years ago by Dr. Otto 
Warburg, metabolic reprogramming has been 
accepted as a hallmark of cancer [25-28]. Considering 

this, targeting cancer-associated amino acid 
metabolism has been tested as a potential treatment 
option [29, 30]. Amino acids, such as arginine, proline, 
and glutamine, play a variety of functional roles in the 
cell. However, most importantly, they act as essential 
precursors for the biosynthesis of proteins. Therefore, 
depletion therapies, such as arginine deiminase (ADI) 
treatment, are being extensively tested against several 
cancer types, including ovarian cancer, mesothelioma, 
and hepatocellular carcinoma [31-35].  

In this study, we sought to understand the 
epigenetic alterations underlying the metabolic 
reprogramming in cisplatin-resistant BC cells. Our 
experimental results suggest that cancer-specific 
epigenetic silencing of two genes encoding for 
metabolic enzymes, spermidine/spermine N1-acetyl-
transferase (SAT1) and argininosuccinate synthase 1 
(ASS1), is closely associated with cisplatin resistance 
and is epigenetically regulated in T24 BC cells. Both 
enzymes are related to arginine metabolism: ASS1 
catalyzes the final step in arginine biosynthesis. SAT1, 
on the other hand, catabolizes spermidine and 
spermine that are derived from arginine in sequential 
enzymatic steps that involve the conversion of 
arginine to ornithine, ornithine to putrescine, 
putrescine to spermidine, and spermidine to spermine 
[36, 37]. 

Results 
Characterization of CpG methylation and 
nucleosome accessibility in cisplatin-resistant 
BC cells 

In order to investigate the epigenetic modulation 
linked to cisplatin resistance in BC, we used two 
isogenic T24 BC cell lines—one that is cisplatin 
sensitive (T24S) and one cisplatin resistant (T24R). T24 
cells were utilized because the characteristics of these 
cells have been previously reported by our group [38]. 
The T24R cell line exhibited much less responsiveness 
to cisplatin-induced apoptosis compared to T24S cells 
(Figure 1A). In order to understand the epigenetic 
reprogramming associated with cisplatin resistance, 
three independent sets of data profiles, namely (1) 
DNA methylation, (2) nucleosome accessibility, and 
(3) gene expression, were generated in T24R and T24S 
cells (Figure 1B).  

We first performed DNA methylation analysis 
using the Illumina HumanMethylation450 BeadChip, 
in which >482,421 CpG sites are queried across the 
human genome. We identified 118,465 CpG sites as 
being differentially methylated in T24R cells 
compared to T24S cells, with a fold change of M-value 
≥ 1.0. Of these 118,465 differentially methylated CpG 
sites, we identified decreased methylation of 9,014 
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sites in 4,052 genes and increased methylation of 
109,451 sites in 93,068 genes in T24R cells compared to 
T24S. (Figure S1 and Table S1). These findings 
suggest that DNA methylation profiles are radically 
altered in T24R cells and that hypermethylation may 
be correlated to cisplatin resistance in T24 BC cells.  

Given the predominant global DNA 
hypermethylation pattern in T24R cells, we 

speculated that T24R cells also have distinctive 
chromatin modifications and accessibility alterations 
that affect gene expression. Chromatin structure, 
which is organized through DNA methylation and 
nucleosome accessibility (or occupancy), plays a 
critical role in regulating gene expression at the 
transcription start site [39]. Thus, monitoring of 
chromatin accessibility, DNA methylation, and 

 

 
Figure 1. Determination of the epigenetic rewiring in cisplatin-resistant bladder cancer. (A) Cell viability was measured at the indicated times after 10 µM cisplatin 
treatment. (B) Overall experimental workflow of the investigation of epigenetic regulation associated with cisplatin resistance in this study. (C) Bar graph showing increased and 
decreased chromatin accessibility in T24R and T24S cells. Selection of the accessible CpG sites was based on delta beta at a threshold value 0.2. The percentage indicates the 
changes in accessible chromatin upon cisplatin resistance for individual genome features. (D) Chromatin accessibility visualized by Kernel density scatter plot of 
delta-methylation versus delta-accessibility. Circle depicts the region showing a loss of chromatin accessibility accompanied by DNA hyper-methylation. (E) Venn diagram 
depicting 14,801 genes with DNA hypermethylation and 1,449 genes with decreased accessibility. (F) Venn diagram showing 2,378 genes with DNA hypomethylation and 1,123 
genes with increased accessibility. (G) Bar graph depicting enriched KEGG pathways of 1,328 hypermethylated genes with reduced chromatin accessibility. 
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histone modification is crucial for understanding 
disease progression and responses to therapy. Due to 
its importance in chromatin structuring, we 
hypothesized that nucleosome accessibility is altered 
in cisplatin-resistant BC cells, leading to altered DNA 
methylation.  

To test this hypothesis, we used the AcceSssIble 
assay [39] to determine nucleosome occupancy and 
positioning in T24R and T24S cells by probing CpGs 
using the Illumina HM450 BeadChip [39]. We 
identified a digital footprint of nucleosome occupancy 
and positioning in both the CpG-rich islands and 
CpG-poor regions of T24R and T24S cells. 
Methylation of nuclei treated with or without M.SssI, 
a CpG methyltransferase enzyme that methylates 
CpG sites on nucleosome-depleted unbound DNA, 
was compared using the Illumina HM450 BeadChip. 
We then stratified CpG sites with altered nucleosome 
accessibility (Figure 1C). Many genomic regions 
displayed decreased accessibility, except TSS 200 and 
the first exon.  

Differential DNA methylation plotted against 
differential chromatin accessibility is shown in the 
Kernel density scatter plot (Figure 1D) with the circle 
depicting genes with decreased chromatin accessi-
bility and DNA hypermethylation. Interestingly, we 
observed that nucleosome occupancy was greatly 
altered in T24R cells compared to the control T24S 
cells (Figure S1). In particular, we identified 1,328 
genes with DNA hypermethylation and decreased 
chromatin accessibility in T24R cells compared to 
T24S cells (Figure 1D-E and Table S2). We also 
identified 310 genes with DNA hypomethylation and 
increased chromatin accessibility in T24R versus T24S 
cells (Figure 1D, F and Table S3). The top 10 genes 
with hypermethylation and decreased chromatin 
accessibility and the top 10 genes with 
hypomethylation and increased accessibility are listed 
in Table S4 and Table S5. To understand the 
biological function of these genes, we performed 
functional enrichment analysis on the 1,328 
hypermethylated genes, which revealed significant 
advancement of cancer-related pathways in T24R cells 
(Figure 1G). These findings provide a finer resolution 
on the nature of epigenetic mechanisms and broaden 
our understanding of nucleosome occupancy and 
DNA methylation changes in cisplatin-resistant BC 
cells. 

Perturbed epigenetic signatures in 
cisplatin-resistant BC cells may lead to 
changes in gene expression 

The DNA methylation data was integrated with 
our previously reported gene expression data [40]. 
According to the gene expression and DNA 

methylation pattern, we grouped the genes into 6 
clusters (Figure 2A). Among these, clusters 1 
(up-hypo) and 2 (down-hyper) showed opposite 
patterns of gene expression and DNA methylation 
between T24R and T24S cells (Figure 2A). Cluster 1 
contained genes in T24R cells whose expression was 
upregulated and DNA methylation was decreased. 
Cluster 2 consisted of genes in T24R cells whose 
expression was downregulated and DNA methylation 
was increased (Figure 2A). Follow-up gene ontology 
bioinformatic analyses of the experimental data 
further suggested that there is significant epigenetic 
silencing of genes that regulate arginine and proline 
metabolism, as well as extracellular matrix receptor 
interaction, PPAR signaling, adherens junction and 
focal adhesion, in cisplatin-resistant BC cells [40] 
(Figure 2B). In contrast, genes related to DNA 
replication were found to be epigenetically 
upregulated (hypomethylated) (Figure 2B).  

As a result of this hypomethylation, 
transcription of genes associated with DNA 
replication, repair, and pyrimidine metabolism was 
upregulated. This suggests that there may possibly be 
a metabolic relationship between amino acid 
metabolism and DNA repair mechanisms. In an 
independent effort to explore metabolic perturbation 
of cisplatin resistance, a Kyoto Encyclopedia of Genes 
and Genomes (KEGG) metabolic map was 
constructed that displayed the differential regulation 
of metabolic pathways between cisplatin-resistant BC 
cells and controls. This also supported the idea that 
transcripts for the metabolism of amino acids, such as 
arginine and proline (down-hyper), and of purine and 
pyrimidine (up-hypo), are significantly altered in 
T24R cells (Figure 2C). In particular, promoters of 
genes associated with amino acid metabolism, such as 
arginine and proline metabolism, were 
hypermethylated, leading to decreased gene 
expression levels, as shown in the dotted box in 
Figure 2C and Figure S2.  

Cisplatin-resistant T24 cells displayed epigenetic 
silencing (hypermethylation and decreased mRNA 
expression) of genes associated with arginine and 
proline metabolism, such as GLUD2 (glutamate 
dehydrogenase 2), ARG2 (arginase 2), ALDH2 
(aldehyde dehydrogenase 2), P4HA1 (prolyl 
4-hydroxylase subunit alpha 1), ALDH7A1, (aldehyde 
dehydrogenase 7 family member A1), GLUD1 
(glutamate dehydrogenase 1), PYCR1 (pyrroline-5- 
carboxylate reductase 1), ASS1 (argininosuccinate 
synthase 1), ALDH18A1 (aldehyde dehydrogenase 18 
family member A1), P4HA2 (prolyl 4-hydroxylase 
subunit alpha 2), NAGS (N-acetylglutamate synthase), 
as well as SAT1 (spermidine/spermine N1-acetyl-
transferase), and CKB (creatine kinase B) (fold 
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change≥2 and FDR<0.05; Table 1). We identified 
SAT1 and ASS1 as the two most prominently 
hypermethylated and downregulated genes in T24R 
cells. The fold change of SAT1 expression was -6.09 
(FDR<0.001), while that of ASS1 was -5.27 
(FDR=0.017). Given that SAT1 and ASS1 have not yet 
been studied in the context of cisplatin resistance in 
BC, our results suggest new gene targets.  

Expression levels of epigenetically regulated 
genes are associated with clinical outcomes in 
BC patients 

We next speculated if the differentially 
methylated genes (DMGs) identified in T24R cells 
could be clinically predictive indicators for 
recurrence, tumor grade, overall survival, and/or 

 

 
Figure 2. Metabolic pathways directed by differentially expressed and methylated genes. (A) Heatmap depicting differential gene expression and DNA methylation 
patterns of T24R cells compared to T24S cells. (B) The enriched biological processes associated with the upregulated genes with DNA hypomethylation vs. the downregulated 
genes with DNA hypermethylation. (C) Metabolic pathway map displaying the changes seen in cisplatin-resistant BC. The KEGG metabolic map was overlaid with gene 
expression data. The nodes represent metabolic compounds and edges represent genes involved in the reactions (red lines: upregulated and hypomethylated genes; green lines: 
downregulated and hypermethylated genes). The boxes with dotted lines indicate significantly altered pathways, including those for arginine and proline metabolism. 



 Theranostics 2018, Vol. 8, Issue 16 
 

 
http://www.thno.org 

4525 

stage. To test this, we performed a series of analyses 
on the association of the DMGs with clinical outcomes 
using publicly available gene expression microarray 
data derived from 103 BC patients [41]. GLUD1, ASS1, 
and ALDH2 were found to be associated with 
recurrence in BC patients who had already undergone 
chemotherapy (Figure 3A). ASS1 was downregulated 
in BC patients who had recurrence (n=36) compared 
to those without (n=67) (Figure 3A). BC tumor grades 
were positively or negatively associated with gene 
expression levels of our protein panel, which included 
GLUD1, ARG2, TYMS (thymidylate synthase), and 
TK1 (thymidine kinase 1) (Figure 3B). TYMS and TK1 
are proteins associated with pyrimidine metabolism 
and their gene levels were more upregulated and 
hypomethylated in T24R cells (Figure 2B). 
Furthermore, gene expression patterns of GLUD1, 
GLS, ALDH2, SAT1, ASS1, and TYMS distinguished 
patients who had worse overall survival from those 
with recurrence-free survival (Figure 3C). Of note, 
ASS1 expression was also negatively correlated with 
BC stage: lower ASS1 expression was a feature of 
higher tumor stage (Figure 3D). Collectively, these 
results suggest that SAT1 and ASS1 are 
hypermethylated in cisplatin-resistant BC cells, 
thereby resulting in aberrant loss of expression. These 
defects may be what causes the decrease in recovery 
efficiency after DNA damage. 

Epigenetic landscapes of SAT1 and ASS1 in 
cisplatin-resistant BC cells 

We next sought to determine the DNA 
methylation landscape of ASS1, which is located on 
chromosome 9 and has several CpG islands. The 
difference in DNA methylation of ASS1 between T24R 
and T24S cells was 4.35-fold (log2) and the gene 
expression difference was -5.27-fold (log2) (Figure 
4A). SAT1 and TYMS are localized on chromosomes X 
and 18, respectively. SAT1 showed 1.33-fold (log2) 
increased DNA methylation and 6.09-fold (log2) 
decreased gene expression in T24R cells. Individual 
DNA methylation levels at specific CpG sites in ASS1, 
SAT1, and TYMS are shown in Figure 4B.  

To further assess the causative relationship of 
ASS1 and SAT1 to cisplatin resistance, protein 
expression levels were compared between T24R and 
T24S cells (Figure 4C). We also found that in vitro 
addition of decitabin, a DNMT inhibitor, increased 
protein expression of both SAT1 and ASS1 in T24R 
cells (Figure 4D). Furthermore, two additional 
cisplatin-resistant BC cells lines, J82R and RT4R, were 
used to test whether decitabine treatment increases 
SAT1 and ASS1 expression. Experimental results 
showed that protein expression of both SAT1 and 
ASS1 were significantly enhanced in the presence of 

decitabine, which was consistent with data from T24R 
cells (Figure 5E). Collectively, these findings indicate 
that downregulation of SAT1 and ASS1 may most 
likely be due to changes in epigenetic regulation 
(DNA hypermethylation of CpG promoter regions).  

 

Table 1. Comparison of genes in cisplatin-resistant 
(T24R) and cisplatin-sensitive (T24S) cells. The genes are 
listed in two categories, DNA replication (pink) or arginine, 
proline, and polyamine metabolism (blue). The most 
downregulated (and hypermethylated) genes in cisplatin-resistant 
cells are those regulating arginine and proline metabolism, which 
include ASS1 and SAT1.  

Pathways Symbol Full name mRNA 
Fold 
change 

Accessibility 

DNA 
replication 

MCM7 minichromosome maintenance 
complex component 7 

2.35 No change 

POLD1 polymerase (DNA directed), 
delta 1, catalytic subunit 

1.54 No change 

POLE4 polymerase (DNA-directed), 
epsilon 4, accessory subunit 

1.52 No change 

POLE polymerase (DNA directed), 
epsilon, catalytic subunit 

1.48 No change 

RFC3 replication factor C (activator 1) 
3, 38kDa 

1.36 No change 

RNASEH2C Ribonuclease H2, subunit C 1.28 No change 
Arginine 
and proline 
metabolism 

GLUD2 glutamate dehydrogenase 2 -1.12 No change 
ARG2 arginase 2 -3.15 No change 
ALDH2 aldehyde dehydrogenase 2 

family (mitochondrial) 
-5.09 Decreased 

P4HA1 prolyl 4-hydroxylase, alpha 
polypeptide I 

-1.67 No change 

ALDH7A1 aldehyde dehydrogenase 7 
family, member A1 

-1.27 Decreased 

GLUD1 glutamate dehydrogenase 1 -1.09 No change 
GLS glutaminase -1.88 No change 
PYCR1 pyrroline-5-carboxylate 

reductase 1 
-1.14 No change 

ASS1 argininosuccinate synthase 1 -5.27 Decreased 
ALDH18A1 aldehyde dehydrogenase 18 

family, member A1 
-1.21 No change 

SAT1 spermidine/spermine 
N1-acetyltransferase 1 

-6.09 Increased 

P4HA2 prolyl 4-hydroxylase, alpha 
polypeptide II 

-1.31 Decreased 

NAGS N-acetylglutamate synthase -1.91 No change 
CKB creatine kinase, brain -1.22 No change 

 

SAT1 and ASS1 play critical roles in cisplatin 
resistance 

Western blot analysis data demonstrated that 
cisplatin-resistant BC cells express little SAT1, while 
cisplatin-sensitive cells exhibit clearly detectable 
expression. Based on this, we hypothesized that 
activation or induced expression of SAT1 could 
re-sensitize T24R cells. T24R cells were transfected 
with a FLAG-SAT1 vector (Figure 5A). We found that 
induced SAT1 expression in T24R cells enhanced 
apoptosis in both the absence and presence of 
cisplatin (Figure 5B). Upon cisplatin treatment, 
SAT1-overexpressing T24R cells displayed a 
significant increase in apoptosis, an approximate 
3.5-fold of untreated basal levels (Figure 5B). SAT1 
overexpression also led to an estimated 2.3-fold 
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increase in the production of reactive oxygen species 
(ROS), which may contribute to the re-sensitization of 
T24R cells to cisplatin (Figure 5C).  

Next, to evaluate the potential interdependence 
of SAT1 activation and drug sensitivity, we treated 
T24R cells with a combination of cisplatin and 
BENSpm (a SAT1 inducing reagent) (Figure 5D). This 

resulted in a significant synergistic reduction of cell 
survival that was greater than treatment with cisplatin 
or BENSpm alone. Consistent with the findings in 
T24R cells, additional experiments conducted on J82R 
(Figure 5E) and RT4R (Figure 5F) cells showed that 
BENSpm sensitized cisplatin-resistant BC cells.  

 

 
Figure 3. Clinical association of DMGs with differential expression in T24R and T24S cells. (A) Box plot showing recurrence predictability of GLUD1, ASS1, and 
ALDH2. (B) Box plot showing grade predictability of GLUD1, ARG2, TYMS, and TK1. (C) Overall survival rate graph showing survival predictability of GLID1, GLS, and ALDH2. 
(D) Box plot showing tumor stage predictability of ASS1.  
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Figure 4. Alteration of DNA methylation landscapes in cisplatin-resistant BC cells. (A) Table showing promoter CpG methylation sites identified by HM450 array, 
and fold changes in DNA methylation and gene expression of ASS1, SAT1, and TYMS. Fold changes of DNA methylation (orange bars) and gene expression (green bars) of ASS1, 
SAT1, and TYMS in T24R compared to T24S, are shown. (B) Methylation sites on ASS1, SAT1, and TYMS (red circle, hypermethylated sites; green circle, hypomethylated sites; 
white circle, no changes). (C) Downregulation of SAT1 and ASS1 protein expression levels in T24R cells compared to T24S. (D) Increased protein expression of SAT1 and ASS1 
in T24R cells upon treatment with decitabine, an inhibitor of DNA methylation. (E) Increased protein expression of SAT1 and ASS1 in J82R or RT4R cells upon treatment with 
decitabine.  

 

Our experimental data provided evidence that 
DNA methylation of ASS1 is increased and gene 
expression is decreased in T24R cells (Figure 4A). In 
addition, arginine metabolism is also shown to be 
defective in T24R cells. This opens the possibility that 
this may also hold true for other cisplatin-resistant 
cancers. During analysis of publicly available human 
BC data collections, we found that ASS1 expression is 
negatively correlated with BC recurrence and grade. 
Currently, pegylated arginine deiminase (ADI-PEG 
20), an arginine-depleting therapy, is under 
evaluation in clinical trials for many types of cancers, 
including BC. We found that similar treatment with 
ADI-PEG 20 increased ASS1 expression in T24S cells 
(Figure 5G). In T24R cells, ASS1 was not expressed up 
to 72 h following treatment with ADI-PEG 20 (Figure 
5G). We also found that ASS1 was not re-expressed 

when T24R cells were treated for 96 h. Given that T24S 
cells exhibit ASS1 expression, ASS1 deficiency will 
likely be a key factor in selecting patients for clinical 
trials involving ADI-PEG 20 therapy, which is 
consistent with previous observations in other cancer 
types [42].  

Next, we determined whether arginine depletion 
via ADI-PEG 20 could induce apoptosis in T24R cells 
that do not express ASS1. T24R cells were treated 
under various conditions: (1) cisplatin alone, or (2) 
combination of cisplatin and ADI-PEG 20 in a 
dose-dependent manner (1, 10, 100, and 750 ng/mL). 
Cell survival rates were measured using two 
independent assays, the MTS (Figure 5H) and crystal 
violet assay (Figure 5I). The following 
time-dependent experiments showed consistent 
results (Figures 5J (crystal violet assay) and Figure 5K 
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(MTS assay)). In addition, J82R and RT4R cells were 
tested with ADI-PEG 20 treatment as well. The results 
suggested that a combination of cisplatin and 
ADI-PEG 20 greatly enhances responsiveness to 
cisplatin in resistant BC cell lines and resulted in 
approximately 50% and 40% reduction in cell survival 
rates in J82R and RT4R cells, respectively (Figures 
5L-M).  

To further supplement evidence for the 
association of ASS1 and SAT1 with BC, 
immunohistochemistry (IHC) analysis was performed 

using commercial BC tumor microarrays (TMAs). We 
found that 80% of the tumors (32/40 cores) were 
negative for SAT1 and ASS1 protein expression (data 
not shown). These results imply that SAT1 and/or 
ASS1 silencing are potential indicators of disease. In 
this regard, patients with little to no expression of 
SAT1 and ASS1 may be good candidates for 
combination treatments with ADI-PEG 20 and 
cisplatin. This is because SAT1 and ASS1 expression 
may be indicators of clinical benefit from cisplatin 
chemotherapy and/or arginine deprivation therapy.  

Figure 5. Sensitization of T24R cells to cisplatin-induced apoptosis by overexpression of SAT1 or BENSpm treatment. (A) Overexpression of SAT1 protein in 
T24R cells transfected with pCMV7.1 3XFLAG-hSAT1 was confirmed by western blot analysis using an anti-flag antibody. (B) Sensitization of T24R cells to cisplatin-induced cell 
apoptosis upon overexpression of SAT1. (C) Increase in ROS production through overexpression of SAT1 in T24R cells and reduction of ROS by N-acetylcysteine (NAC). The 
levels of ROS produced in control cells are set at 100%. Each bar represents the mean ± SD of three independent experiments (*, P<0.05). (D) Suppression of survival of 
cisplatin-treated T24R cells by BENSpm treatment. (E-F) Treatment with BENSpm sensitized cisplatin-resistant BC cells, J82R (E) and RT4R (F). (G) Restoration of ASS1 
expression in T24S cells by API-PEG 20 in a dose-dependent manner. Cells were harvested 72 h after treatment. (H-J) Enhancement of apoptosis through the combination of 
cisplatin and ADI-PEG 20 in cisplatin-resistant T24R, but not T24S, cells. Cell survival was determined used (H) MTS assay and (I) crystal violet assay 72 h after treatment with 
cisplatin with or without ADI-PEG 20. (J) T24R cells were treated with cisplatin alone, ADI-PEG 20 alone, or with cisplatin plus ADI-PEG 20 for 0, 24, or 72 h. Crystal violet assay 
was performed. (K) T24R cells were treated with cisplatin alone, ADI-PEG 20 alone, or with cisplatin plus ADI-PEG 20 for 0, 8, 24, 30, 48, or 72 h. (Blue circle: ADI-PEG 20 plus 
cisplatin; white circle: cisplatin alone; gray circle: ADI-PEG 20 alone). Cell survival rates were measured using MTS assay. (L-M) Cell survival rates increased in J82R or RT4R cells 
upon treatment with cisplatin and ADI-PEG 20. 
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Discussion  
In this study, we sought to determine if 

epigenetically regulated metabolic reprogramming is 
associated with cisplatin resistance in BC, and if SAT1 
and ASS1 are potential predictive biomarkers for 
cisplatin resistance. Generally, treatment for recurrent 
BC involves systemic cisplatin chemotherapy [43]. 
Although this current standard has decreased 
morbidity and mortality, failure of treatment 
frequently occurs due to acquired chemoresistance. 
This has resulted in a 5-year survival rate of only 
5-15% following recurrence [44-46]. Therefore, 
concerted efforts are necessary to identify markers 
associated with cisplatin resistance in BC patients. 
Moreover, identification of markers is key to 
comprehending the mechanisms of cisplatin 
resistance that is critically needed in order to develop 
novel treatment strategies.  

In our study, decitabine reestablished cisplatin 
susceptibility in resistant BC cells by increasing ASS1 
expression. Our experimental results demonstrate the 
epigenetic regulatory mechanisms of ASS1 and SAT1 
and their potential contributions to metabolic 
perturbations that are apparent in the context of drug 
resistance. This study also provides evidence that 
therapeutic targeting of metabolic pathways through 
the use of BENSpm or ADI-PEG 20 may help 
overcome cisplatin resistance. Furthermore, analysis 
of tumor tissue samples from BC patients showed that 
approximately 80% had little to no expression of ASS1 
and SAT1, an indication that these genes have 
profound roles in BC tumorigenesis and 
development. Although this is out of the scope of this 
current study, it would be of great interest to evaluate 
if ASS1 and/or SAT1 are predictive indicators of 
response to adjuvant chemotherapy among 
assembled BC patient populations.  

Global reprogramming of DNA methylation has 
been linked to the onset and progression of cancer [23, 
47]. DNA hypermethylation at promoter regions of 
tumor suppressor genes often leads to silencing of 
expression. In contrast, DNA hypomethylation has 
been reported to induce genome instability and can 
activate proto-oncogenes [48, 49]. DNA-demethyl-
ating agents, such as 2′-deoxy-5-azacitidine/ 
decitabine (DAC) and 5-azacitidine/azacitine (AZA), 
can induce global DNA demethylation in tumor cells 
when they are transiently given at low doses [50, 51]. 
DAC and AZA can also reverse epigenetic silencing 
and reactivate tumor suppressor gene expression, 
which might contribute to antitumor effects. In 
non-cancer diseases, such as myelodysplastic 
syndrome (MDS), the FDA has approved AZA and 
DAC as treatment options. Next-generation DNMT 
inhibitors and oral formulations are also currently 

under development. However, epigenetic therapies 
alone may not be effective in treating human cancers. 
They are likely best when combined with other 
modalities, such as chemotherapies or immuno-
therapies. Thus, there are a series of ongoing clinical 
trials using DNMT inhibitors in combination with 
conventional regimens for many cancer types [52].  

Our current study further investigated the 
epigenetic landscape of cisplatin-resistant BC and 
found that resistance may be associated with 
modifications in the arginine metabolome via ASS1, 
the rate-limiting enzyme in arginine synthesis. Loss of 
ASS1 drives cancer cells to become dependent on 
extracellular arginine, effectively converting these 
cells into arginine auxotrophs. ASS1 deficiency has 
been observed in various other cancer types, 
including hepatocellular carcinoma, melanoma, 
myxofibrosarcoma, mesothelioma, prostate cancer, 
and renal cancer [53-57]. In terms of BC, ASS1 
deficiency is particularly common in urothelial 
carcinoma, small cell, and squamous cell carcinoma 
subtypes [57, 58]. Based on this, ADI-PEG 20 is 
currently being tested in clinical trials for many cancer 
types (https://clinicaltrials.gov, identifiers 
NCT01497925, NCT02029690, and NCT02101593, etc.). 
Given previous findings demonstrating that ASS1 
expression is negatively correlated with the 
anti-cancer effects of ADI-PEG 20 treatment, loss off 
or reduced ASS1 may be a predictive factor that can 
determine which patients will benefit from treatment.  

Our results also showed that SAT1 
overexpression promotes the sensitivity of T24R cells 
to cisplatin-induced apoptosis. This is consistent with 
a previous report showing that SAT1 overexpression 
can lead to the depletion of spermidine and spermine, 
while simultaneously increasing polyamine oxidation 
[59]. This depletion of spermidine and spermine 
causes apoptosis through a mitochondria-mediated 
pathway [59]. Since mitochondrial dysfunction and 
redox imbalance are known to contribute to cancer, it 
would be interesting to investigate the connection 
between polyamine metabolism and cisplatin 
resistance in the context of mitochondrial function, 
metabolic pathways, and cell signaling. Although we 
did not delve into this area in our study, we believe 
that a better understanding of the potential link 
between nitrogen metabolism and cisplatin resistance 
in BC may provide supplemental information on 
epigenetic regulation of metabolism. 

In summary, our present study suggests that the 
epigenetic regulation of certain amino acids and 
polyamine metabolic enzymes is significantly altered 
in BC and that this change may play a critical role in 
BC chemoresistance. The main results from our study 
are expected to lead to a novel molecular signature 
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that could potentially be applied in clinical tests for 
guiding treatment decisions. Thereby, these results 
could pave a path towards identification of novel 
drugs that can decrease chemoresistance. Our data 
also suggests the involvement of polyamine and 
arginine pathways in BC chemoresistance. The 
experimental results from this study contribute to a 
better understanding of the dependence of BC on 
exogenous polyamine or arginine, which may 
potentially lead to the capability of accurately 
distinguishing MIBC patients who will not develop 
cisplatin resistance. The status of SAT1 or ASS1 
expression may be a reliable method of identifying 
which MIBC patients will or will not develop cisplatin 
resistance after chemotherapy. Furthermore, this 
study has significant clinical relevance to public 
health; it provides pre-clinical evidence that 
enhancing polyamine catabolism or arginine 
biosynthesis may overcome cisplatin resistance in 
aggressive BC.  

Methods 
Reagents 

ADI-PEG 20 was generously provided by Polaris 
Pharmaceuticals (San Diego, CA). A vector construct 
encoding FLAG-tagged human SAT1 (pCMV7.1 
3XFLAG-hSAT1) was provided by Dr. MH Park [60]. 
BENSpm, a SAT1 agonist, was a gift from Dr. David 
Oupicky at the University of Nebraska Medical 
Center. Decitabine, a DNMT inhibitor, was obtained 
from Selleckchem (Cat. No. S1200). The following 
antibodies were purchased, as indicated: β-actin 
(Sigma, USA), SAT1 (Thermo Fisher Scientific, USA), 
ASS1 (Cell Signaling Technology, USA), PARP, and 
cleaved-PARP (Cell Signaling Technology, USA). 

Tissue culture 
Three human BC cell lines (T24, J82, and RT4) 

were procured from the American Type Culture 
Collection (Manassas, VA). Cisplatin-sensitive (T24S, 
J82S, and RT4S) or resistant (T24R, J82R, and RT4R) 
cells were constructed and characterized in our 
laboratory [38]. Experiments were carried out in 
accordance with approved protocols and all methods 
adhered to institutional guidelines.  

Accessibility assay 
The principle of this assay has been described 

and published prior [39, 61]. Cell pellets were washed 
twice with ice-cold PBS buffer then resuspended in 1 
mL PBS. Lysis buffer (10 mM Tris (pH 7.4), 10 mM 
NaCl, 3 mM MgCl2, 0.1 mM EDTA, 0.5% NP-40) was 
then added and the lysates were centrifuged at 1006 
rcf for 5 min at 4 °C. The supernatant was removed 
and the pellets were suspended in 2 mL of wash 

buffer (10 mM Tris (pH 7.4), 10 mM NaCl, 3 mM 
MgCl2, 0.1 mM EDTA). This suspension was then 
divided into two microcentrifuge tubes (no enzyme 
and M.Sssl reactions) and centrifuged again at 1006 rcf 
for 5 min at 4 °C. The supernatant was removed and 
the following was added to each tube: 84.25 µL 1X 
NEBuffer 2, 7.5 µL 10X NEBuffer 2, 45 µL 1 M sucrose, 
1.5 µL 32 mM S-adenosylmethionine (SAM), and 12.5 
µL 4 U/µL M.Sssl (or H2O for the no enzyme tube). 
The reaction mixtures were incubated at 37 °C for 15 
min. Pre-warmed (37 °C) 300 µL stop solution (10 mM 
Tris-HCl (pH 7.9), 600 mM NaCl, 1% SDS, 0.1 mM 
EDTA) and 6 µL of Proteinase K were added to each 
tube, and the reaction mixtures were incubated at 55 
°C for 16 h. DNA was then purified via 
phenol/chloroform extraction and ethanol 
precipitation, and then redissolved in 20 µL of ddH2O 
for subsequent analyses. 

Quality control M.SssI treatment 
In total, 1 µg of no enzyme or M.Sssl-treated 

DNA was subjected to bisulfite conversion using the 
Zymo EZ DNA Methylation Kit (using the Illumina 
Infinium® Methylation Assay alternative incubation 
conditions). Bisulfite (BS)-converted DNA was then 
analyzed by the high-resolution melt (HRM) method 
using the Bio-Rad Precision Melt Supermix (Catalog 
#172-5110) (reaction mix: 10 µL Precision Melt 
Supermix, 0.8 µL of 5 µM primer mix, 1 µL 
BS-converted DNA, 8.2 µL ddH2O) (PCR protocol: 95 
°C for 00:02:00, [95 °C for 00:00:10, 58 °C for 00:00:30, 
plate read, 72 °C for 00:00:30] × 60 cycles, 95 °C for 
00:00:30, 60 °C for 00:01:00, melt curve 65 °C to 90 °C 
[00:00:10 and plate read at each degree]). Primer 
sequences: ACTB: 5'-AGAGGGGGTAAAAAAATGT 
TGTAT-3', 5'-TCGAACCATAAAAAACAACTTTC 
-3’; GADPH: 5'-TTTTAAGATTTTGGGTTGGGT-3',
5'-CTATCGAACAAAAAAAACAAAAAAC-3'; C1D:
5'-TTTTTGGAGAAGAGTTAAGGAGTAGG-3'; 5'-AC
TCCAATCTCCCGAAAAAC-3'; RPLP0: 5'-AGGTGG
TAGTAGTTTAGAGTAAGTTTT-3’, 5'-CGAATACA
AACAACCATTAAATA-3'. Proper M.SssI treatment
was verified by a shift in melting curves upon
methylation. For HM450 analysis, >0.5 µg of
BS-treated DNA samples with verified M.Sssl
treatment were submitted.

Infinium® HumanMethylation450 BeadChip 
assay and data processing 

The amount of bisulfite-converted DNA and the 
completion of bisulfite conversion were determined 
using a panel of MethyLight-based quality control 
(QC) tests, as described previously [62]. All the 
samples that passed the QC tests were subjected to the 
HM450 assay data production [49]. 
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The HM450 probes interrogate the methylation 
statuses of ~485,000 CpG sites, which covers 99% of 
RefSeq genes, 96% of CpG islands, and spans 
promoters 5’ UTRs, first exons, gene bodies, and 3’ 
UTRs. The probe list was then filtered to remove 
probes with a detection p-value > 0.05 and those 
located within 15 base pairs of a single-nucleotide 
polymorphism, mapped to multiple locations, or are 
on sex chromosomes. The end result is a dataset of 
corrected beta-values for 385,826 probes that cover 
~19,500 genes. The intensities of methylation-specific 
probes over the signals of unmethylated-specific 
probes were computed as M values [63]. The M values 
from the arrays were normalized using the quantile 
method [64].  

Chromatin accessibility analysis 
The beta value method with methylation data 

was used to analyze bisulfite-treated DNA as 
described in a previous study [39]. Briefly, The 
accessibility scale was defined as the beta value of 
M.SssI-treated cells minus the beta value of the 
no-enzyme control (delta-beta), defined on a 0–1 scale, 
after removing the probes with delta-beta <0. 
Accessible probes were defined as delta-beta >0.2. 

Identification of differentially expressed genes 
To identify differentially expressed genes 

(DEGs) between T24S and T24R cells, we performed 
the integrated hypothesis testing method [65, 66]. 
Briefly, the T value, log2-median ratios, and Z values 
for rank-sum differences were computed for each 
gene. Empirical distributions of the null hypothesis 
were estimates for the T values, log2-median ratios, 
and Z values of the genes after permuting the 
samples. For each gene, adjusted P-values of its 
observed T-values, log2-median ratios, and rank-sum 
ratios were computed using their corresponding 
empirical distributions in a two-tailed test. The 
individual P-values from the two tests were then 
combined and the false discovery rate (FDR) was 
computed using the Stouffer’s method [65, 66]. The 
DEGs were chosen based on their FDR and fold 
change (FDR<0.05 and log2-fold-change≥1.0).  

Functional enrichment analysis 
Enrichment analysis of gene ontology biological 

processes (GOBPs) and KEGG pathways for the genes 
listed as DMGs and DEGs was performed using the 
DAVID software [67].  

Construction of a network model 
To construct a network model describing 

cisplatin resistance in BC cells, we first selected the 
subsets of genes from Clusters 1 and 2 that were 
involved in metabolic processes. We then collected 

the interaction data regarding these genes from the 
STRING database (Ver. 10.5) and used this 
information to reconstruct a network model [68]. 
Finally, the network model was visualized using 
Cytoscape [69]. The nodes in the network model 
represent the genes distributed according to the 
metabolic pathway in which they are involved.  

Quantitative RT-PCR analysis 
Total RNA was purified using the MagNA Pure 

Compact RNA Isolation Kit (Roche), according to the 
manufacturer’s instructions. The cDNA was then 
synthesized using the iScript cDNA Synthesis Kit 
(Bio-Rad), which was followed by qPCR using iTaq 
Universal SYBR Green Supermix (Bio-Rad) on an ABI 
7500 Fast Real-Time PCR System (Life Technologies). 
The annealing temperature for qPCR was set to 60 °C 
and actin-beta (ACTB) was used as an internal control 
for normalization of gene expression.  

Western blot analysis 
The collected cells were washed twice with 

ice-cold PBS and lysed with a whole-cell extract lysis 
buffer (Bio-Rad) with a protease inhibitor cocktail 
(Thermo Fisher). Protein levels were measured and 
cell lysates containing 25 µg of proteins were used for 
SDS-PAGE. Proteins were then electrophorectically 
transferred onto nitrocellulose membranes for further 
processing. After blocking for 30 min with 5% milk in 
tris-buffered saline with tween 20 (TBST), the 
membranes were incubated with a specific primary 
antibody overnight at 4 °C. Following this step, the 
membranes were washed and incubated with 
secondary, species-specific horseradish peroxidase- 
conjugated antibodies. Immunoreactive proteins were 
detected via chemiluminescence (Pierce Laboratories) 
and band intensities were quantified using ImageJ.  

Cell survival assay 
T24 cell lines were incubated with cisplatin, 

BENSpm, and/or ADI-PEG 20, as indicated. Cell 
survival after treatment was determined by 
measuring cell viability using MTS reagents (Promega 
Corporation, Madison, WI), according to the 
company’s protocols. 

Reactive oxygen species (ROS) measurement 
To determine intracellular ROS levels, cells were 

stained using dischlorofluorescein diacetate 
(DCF-DA) (Sigma-Aldrich). Cells were seeded into 
6-well plates at a density of 2×105 cells/well. At 24 h 
post seeding, DCF-DA was added to the wells under 
low-light conditions and the plates were incubated in 
the dark at room temperature for 20 min. The cells 
were then washed twice with PBS and fluorescence 
intensities were determined using the FACS Calibur 
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Flow Cytometer. Data was analyzed using FlowJo 
software.  

Statistical analysis 
Statistical analyses were conducted using 

MATLAB (Ver. 9.2). Data was expressed as mean ± 
standard deviation (SD). For most of the biochemical 
data analyses, Student’s t-test was used. Differences 
were considered statistically significant when *p < 
0.05, or **p < 0.01.  
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A B S T R A C T

Background: Cisplatin-based chemotherapy is currently part of the standard of care for bladder cancer (BC).
Unfortunately, some patients respond poorly to chemotherapy and have acquired or developed resistance. The
molecular mechanisms underlying this resistance remain unclear. Here, we introduce a multidimensional pro-
teomic analysis of a cisplatin-resistant BC model that provides different levels of protein information, including
that of the global proteome and phosphoproteome.
Methods: To characterize the global proteome and phosphoproteome in cisplatin-resistant BC cells, liquid
chromatography-mass spectrometry/mass spectrometry experiments combined with comprehensive bioinfor-
matics analysis were performed. Perturbed expression and phosphorylation levels of key kinases associated with
cisplatin resistance were further studied using various cell biology assays, including western blot analysis.
Results: Analyses of protein expression and phosphorylation identified significantly altered proteins, which were
also EGF-dependent and independent. This suggests that protein phosphorylation plays a significant role in
cisplatin-resistant BC. Additional network analysis of significantly altered proteins revealed CDK2, CHEK1, and
ERBB2 as central regulators mediating cisplatin resistance. In addition to this, we identified the CDK2 network,
which consists of CDK2 and its 5 substrates, as being significantly associated with poor survival after cisplatin
chemotherapy.
Conclusions: Collectively, these findings potentially provide a novel way of classifying higher-risk patients and
may guide future research in developing therapeutic targets.

1. Introduction

Bladder cancer (BC) is a common malignancy of the urinary tract.
Resection of the tumor (when possible) and cisplatin-based che-
motherapy is the present standard of care. However, resistance to
chemotherapy has been a clinical challenge for long-term remission
[11]. Chemo-resistance can rapidly develop and a majority of patients
ultimately experience disease progression and a poor prognosis [4]. The
failure of conventional treatment following remission typically results

in a<15% chance of 5-year survival [10,18,39]. Therefore, ther-
apeutic strategies that can re-sensitize tumors to chemotherapy would
significantly benefit BC patient care. Additionally, a molecular sig-
nature panel capable of predicting cisplatin resistance in BC would
greatly improve prognostic and clinical outcomes for high-risk patients.
Unfortunately, despite multiple independent studies aimed at identi-
fying the subset of patients who will develop chemo-resistance, re-
search on predictive biomarker(s) is still in its infancy [3,36,38].

Overexpression, amplification, or mutations of EGFR family
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members are often observed in BC. This suggests that the proteins in-
volved in the epidermal growth factor receptor (EGFR) signaling
pathways may play important roles in the carcinogenesis and main-
tenance of BC, making them relevant therapeutic targets. Our group
had previously established cisplatin-sensitive (T24S) and resistant
(T24R) T24 human BC cell lines [21]. The viability of the resistant cells
was reduced by inhibition of EGFR kinase activity [21]. Either ex-
pression or phosphorylation of the proteins involved in signaling
pathways can contribute to alterations of pathway activations. Thus,
analyses of the global proteome and phosphoproteome would allow for
direct interrogation of the altered activation of signaling pathways and
provide comprehensive profiles regarding protein quantification and
phosphorylation [6,8,41]. A network model describing such protein
alterations in cancer cells could provide novel insights into the mole-
cular mechanisms of resistance and contribute to identifying new bio-
markers or therapeutic targets.

To obtain such a systems-level insight into cisplatin-resistance, we
used high-resolution mass spectrometry and investigated the temporal
changes in protein abundance and phosphorylation in T24S and T24R
cells after EGF stimulation. Our comprehensive proteomic analysis
identified proteins involved in EGFR signaling that were perturbed in
cisplatin-resistant cells. This included substrates of EGF receptors and
downstream kinases. Further network analysis of our proteomic and
phosphoproteomic data identified downstream kinases of EGFR sig-
naling pathways.

2. Materials and methods

2.1. Reagents

Antibodies against CDK2 (1:1000, Novus Biologicals; Littleton, CO),
and β-actin (1:5000, Sigma) were used for this study. The following
antibodies: P-CDK2 (Thr160) (2561, 1:1000), P-ERBB2 (Tyr1196)
(6942, 1:1500), P-CHEK1 (Ser345) (2348, 1:750), phospho-mTOR
(Ser2448) (5536; 1:1000), p-Rb (Ser807/811) (8516, 1:1000), p-tyr-
osine (P-Tyr-100) (9411, 1:2000), and HRP-conjugated secondary an-
tibodies (7074, 1:1000; 7076, 1:1000) were obtained from Cell
Signaling Technologies.

2.2. Cell culture

T24, J82, and RT4 BC cells were obtained and cultured, according
to instructions provided by the American Type Culture Collection
(ATCC) (Manassas, VA). Media was supplemented with 10% fetal bo-
vine serum, 2% glutamine, and 1% antibiotics (Invitrogen, Carlsbad,
CA). Cells were maintained in a humidified incubator with 5% CO2 at
37 °C [21].

2.3. Protein extraction and quantification

The cell pellets were kept at−80 °C for 30min. Afterwards, the cells
were lysed with RIPA buffer [50mM Tris-HCl, 150mM NaCl, 0.1% (w/
v) sodium dodecyl sulfate (SDS), 1% (v/v) NP-40, 1mM PMSF, 1X
protease inhibitor cocktail, 1X phosphatase inhibitor cocktail,
PhoSTOP] and left on ice for 15min while undergoing sonication. The
cellular lysates were centrifuged at 14,000 g for 15min at 4 °C. The
supernatant was collected and 500 μg of protein for each cell line was
digested using the filter aided sample preparation (FASP) method [43].

2.4. Filter aided sample preparation (FASP)

Proteins were reduced in a sodium dodecyl sulfate (SDS)-lysis buffer
(4% (w/v) SDS; 0.1 M Tris/HCl pH 7.6; 0.1 M DTT) at 37 °C for 45min.
The proteins were then boiled at 95 °C for 10min and then sonicated for
10min. The solution was transferred to a 30 k membrane filter
(Microcon devices, YM-30, Millipore, MA) and centrifuged at 14,000 g

and 20 °C for 60min. The concentrates were diluted in their filters with
0.2 ml of UA solution (8M urea in 0.1 M Tris/HCl, pH 8.5) and cen-
trifuged at 14,000 g for 30min to remove the remaining SDS (×3).
After that, the concentrates were mixed with 0.1ml of 50mM indole-3-
acetic acid (IAA) in UA solution and incubated in darkness at room
temperature for 25min. Following centrifugation, the resulting product
was diluted with 0.2ml of UA solution and concentrated again. This
step was repeated 3 times. Next, the concentrates were washed with
0.2 ml of 100mM triethyl ammonium bicarbonate (TEAB) and cen-
trifuged at 14,000 g for 30min (×3). Subsequently, 10 μg of trypsin
prepared in 0.1 ml of 100mM TEAB (with the enzyme to protein ratio
of 1:50) was added to the filter and the samples were incubated at 37 °C
overnight. The second digestion was done using trypsin with an enzyme
to protein ratio of 1:100 for 6 h. Peptides were collected by centrifuging
the filter units at 14,000 g for 30min. TEAB (75 μL, 100mM) was added
to the filter and centrifuged at 14,000 g for 20min (×3). Finally, the
peptide solutions were dried in a speed vacuum concentrator and stored
at −80 °C.

2.5. TMT labeling of peptide

Peptides were labeled with TMT™ Isobaric Mass Tagging Reagent,
according to the manufacturer's instructions (ThermoScientific, Foster
City, CA). For each sample of 500 μg peptides, 250 μl of 200mM TEAB
were added. TMT reagents were resuspended in anhydrous acetonitrile
and then added to each sample (126: Cisplatin sensitive/EGF 0min,
127: Cisplatin sensitive/EGF 10min, 128: Cisplatin sensitive/EGF
30min, 129: Cisplatin resistant/EGF 0min, 130: Cisplatin resistant/
EGF 10min, 131: Cisplatin resistant/EGF 30min). After 1 h, the reac-
tion was quenched with 5% hydroxylamine. The chemically tagged
samples were pooled into one tube and concentrated via speed vacuum
centrifugation. The labeled samples were then mid-pH fractionated.

2.6. Mid-pH reversed phase liquid chromatography (RPLC) fractionation

Mid-pH RPLC fractionation was performed to separate peptides
based on their hydrophobicity. An Accucore™ 150 C18 LC column
(150× 2.1mm, 4 μm) was used for fractionation with mid-pH buffers A
and B; (A) the mobile phase was 10mM TEAB in water (pH 7.5) and (B)
the mobile phase was 10mM TEAB in 90% CAN (pH 7.5). The samples
were then divided into 15 smaller samples using the Agilent 1260 Series
HPLC System (Agilent Technologies, Santa Clara, CA). The resultant
gradient was 0–10min, 5% B; 10–70min, 5–35% B; 70–80min, 70% B;
80–105min, 5% B. The separated peptides were collected and dried in a
speed vacuum. Each fraction was vacuum dried and stored at −80 °C
until liquid chromatography-mass spectrometry/mass spectrometry
(LC-MS/MS) experiments.

2.7. Phosphopeptide enrichment using immobilized metal affinity
chromatography (IMAC)

IMAC beads were prepared from Ni-NTA magnetic agarose beads.
Ni-NTA beads (500ml) were washed (3×) with deionized water (DIW).
The beads were then reacted with 100mM of EDTA (pH 8.0) for 30min
with end-over-end rotation to remove nickel ions. The reacted EDTA
solution was eliminated and the beads were washed 3× with DIW. The
NTA beads were treated with 10mM of aqueous FeCl3 solution for
30min with end-over-end rotation. Iron-chelated IMAC beads were
washed (×3) with DIW. IMAC beads were aliquoted into 10 micro-
centrifuge tubes and each bead was washed with 400 μl of 80% acet-
onitrile (CAN)/0.1% trifluoroacetic acid (TFA). In total, 10 fractions,
which were obtained by combining some fractions from 15 (#1 and
#11, #2 and #12, #3 and #13, #4 and #14, #5 and #15, #6, #7, #8,
#9, #10), were used to enrich for phosphopeptides. The 10 fractionated
peptide samples were suspended in 500 μl of 80% ACN/0.1% TFA and
were reacted with IMAC beads again for 30min with end-over-end
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rotation. Phosphopeptides were eluted using 125 μl of 1:1 ACN/2.5%
ammonia in 2mM phosphate buffer (pH 10) after incubating for
1.5 min. All phosphopeptides were acidified immediately with 10%
TFA. The collected phosphopeptides were dried in a speed vacuum and
purified in C18 spin columns for LC-MS/MS analysis.

2.8. LC-MS/MS analysis

All peptide samples were separated on an ultra performance liquid
chromatography (UPLC) system that was equipped with analytical
columns (75 μm×50 cm, C18, 3 μm, 100Å) and trap columns
(75 μm×2 cm, C18, 3 μm, 100Å). The temperature of the analytical
columns was set to 60 °C. The solvents A and B were 0.1% formic acid in
water and 0.1% formic acid in acetonitrile, respectively. A gradient
made after 180min (1–40% solvent B for 160min, 40–80% solvent B
for 5min, 80% solvent B for 10min, and 1% solvent B for 5min) was
used for global proteome profiling analysis. A gradient made after
134min (5–40% solvent B for 120min, 40–80% solvent B for 2min,
80% solvent B for 10min, and 1% solvent B for 2min) was used for
phosphoproteome analysis. The flow rate of all experiments was set to
250 nl/min. The eluted peptides from LC were mass-analyzed on a Q
Exactive Orbitrap Mass Spectrometer (ThermoScientific, Bremen,
Germany). The electric potential of electrospray ionization was kept at
2.0 kV and the temperature of desolvation capillary was set to 250 °C.
Full MS scans were acquired for a mass range of 400–2000 Th at a re-
solution of 70,000. The 10 most abundant ions, with charges of 2, 3, 4,
and 5, were dynamically selected with an isolation width of 2.0 Th and
fragmented with an exclusion duration of 30 s with a normalized col-
lision energy (NCE) of 30 for higher energy collisional dissociation
(HCD). The LC-MS/MS scans were acquired at a resolution of 17,500
with a fixed initial m/z of 100 Th. Maximum ion injection times were
120ms for both the full MS and LC-MS/MS scans. The automated gain
control (AGC) target value was set to 1.0×106 for both the MS and LC-
MS/MS scans.

2.9. Identification of peptides and proteins

MS and MS/MS spectra were converted from Thermo.RAW files into
the mzML format using Msconvert (ProteoWizard) and searched with
MSGF + against the Universal Protein Resource Human Database
(Uniprot released 2016_02, 20,198 entries, http://www.uniprot.org/).
Search parameters were as follows: 20 ppm tolerance for precursor ion
mass error and fixed modification for carbamidomethylation
(+57.0214 Da) to cysteine, variable modification for methionine oxi-
dation (+15.994915 Da), phosphorylation (+79.966330 Da) to serine,
threonine, tyrosine, TMT (+229.162932) to N-termini and lysine and
acetylation (+42.010564) to N-terminal of protein. The peptide iden-
tification stringency was set to a maximum of 1% peptide-to-spectrum
matches (PSMs) FDR in the target-decoy way. The intensities of all
TMT-6 plex reporter ions were extracted using the MAGIC software
[27]. When multiple phosphopeptides were assigned to a phospho-
protein, the phosphopeptide that had the largest comparative fold
change [44] was used as the representative fold change of the phos-
phoprotein. The mass spectrometry proteomics data has been deposited
to the PRIDE [17] repository with the dataset identifier, PXD005308.

2.10. Identification of proteins with altered expression or phosphorylation

TMT intensities of the peptides were normalized using the quantile
normalization method [5]. Protein abundance was estimated by sum-
ming all TMT reporter ion intensities of different fully tryptic peptides
belonging to the same protein groups. Of these qualified proteins, those
with more than 2 non-redundant peptides were chosen for the next
analyses. We then identified differentially expressed proteins (DEPs)
using an integrative statistical method, as reported previously [14].
Briefly, for each protein, the t-test and log2-median-ratio test were

applied to its abundances for all 3 replicates. An empirical null dis-
tribution was estimated by applying the Gaussian Kernel Density Esti-
mation method to log2 fold-changes that were obtained after per-
forming all possible permutations on all the TMT labels [1]. Using the
distributions for each protein, we computed the adjusted p-values for
the two tests. We then combined the p-values to compute the overall p-
value using Stouffer's method. Finally, we computed the false discovery
rate (FDR) for the overall p-values using Storey's method. We selected
DEPs that had a combined FDR<0.05, fold change ≥1.5, and were
detected as proteins in at least 2 of the 3 replicates.

For the phosphoproteome, we applied differential phosphorylation
analysis at the peptide level to identify significantly altered phospho-
peptides between cell types or time points. For this, the same normal-
ization and statistical testing methods described above were used.
Phosphopeptides were selected and considered as significantly altered if
they had a FDR<0.05 and fold-change ≥ 1.5. Finally, differentially
phosphorylated proteins (DPPs) were identified as proteins that con-
tained significantly altered phosphopeptides that were uniquely as-
signed to the protein. The Phospho-UMC filter was used to localize the
site of phosphorylation. This simple method uses unique mass class
(UMC) information to differentiate phosphopeptides with different
phosphorylation sites [28]. Briefly, MS features within 10 ppm, but
emerging over a period of time during their LC elution, were identified
and grouped into an UMC. Then, the links between the LC-MS/MS data
and the UMCs were made. The resultant LC-MS/MS data were subjected
to a database search using the MSGF + engine and peptide identifi-
cations within 1% FDR were used.

To explore the cellular processes and subcellular localizations re-
presented by the DEPs and DPPs, functional enrichment analyses of
gene ontology biological processes (GOBPs), gene ontology cellular
components (GOCCs), and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways [19] were performed using the DAVID software [13].
The GOBPs, GOCCs, and KEGG pathways represented by DEPs and DPPs
were identified as those with p < 0.05.

2.11. Reconstruction of cellular network models and identification of key
kinases

To identify key kinases regulating DPPs, data for more than 12,000
kinase-substrate interactions (KSI) was collected from the SIGNOR da-
tabase [34]. For each kinase, the number of targets in the DEPs was
calculated using the KSI data. The p-value for the number of substrates
was then computed based on a hypergeometric distribution from
Fisher's exact test. Of the kinases with p < 0.05, those belonging to
DEPs or DPPs were selected as key kinases. We estimated an empirical
distribution of network density by randomly sampling the same number
of proteins in each kinase group with KSIs 100,000 times. Significance
levels of the kinases were computed using the right-sided test.

2.12. Western blot analysis

After EGF treatment (10 ng/ml), cells were quickly harvested, flash
frozen in liquid nitrogen, and stored at −80 °C. Total protein was ex-
tracted using a lysis buffer [1% Nonidet P-40, 50mM Tris (pH 7.4),
10mM NaCl, 1 mM NaF, 5mM MgCl2, 0.1mM EDTA, 1mM phe-
nylmethylsulfonyl fluoride] with a complete protease inhibitor cocktail
(Roche Diagnostics GmbH, Mannheim, Germany). The solution was
centrifuged at 12,500×g for 15min. After measuring for protein con-
centration, 25 μg of protein per line were subjected to SDS-PAGE gel
running and then transferred onto nitrocellulose membranes for wes-
tern blot analysis. After blocking for 1 h with 10% bovine serum al-
bumin (BSA) in phosphate buffered saline with Tween 20 (PBST), the
membranes were incubated with specific antibodies in PBST, overnight.
β-actin was used as the loading control. The blots were visualized using
enhanced chemiluminescence.

J.H. Jung et al. Cancer Letters 437 (2018) 1–12

3

http://www.uniprot.org/


2.13. Gene silencing and cell viability assay

For transient cell transfections of siRNA oligonucleotides, T24R cells
were grown to 80% confluence in 6-well culture plates and transfected
with siRNAs targeting CDK2, CHEK1, ERBB2, and control
(ThermoScientific) using Lipofectamine 2000 (Invitrogen), according to
the manufacturer's instructions. Cisplatin-resistant BC cells (T24R,
J82R, and RT4R) were incubated with cisplatin and/or CDK2 inhibitor
for 72 h. Post-treatment cell survival was determined by measuring cell
viability using MTS reagents (Promega Corporation, Madison, WI),
according to the provided protocols.

2.14. Tissue micro-array (TMA) construction

Patient consent and IRB approval was given prior to tissue collec-
tion, and TMA slides were constructed from a cohort of 42 BC patients
at Cedars-Sinai Medical Center (IRB #: Pro00044997). Detailed in-
formation was not available except that a majority of the patients were
male and over 60 years old. Although tumors were pathologically
graded prior to tissue collection, the annotations and image analysis
were blindly conducted by two trained scientists, including one certi-
fied pathologist. Tumor and normal bladder tissue samples were re-
ceived from all patients. Circular TMA cores 1mm in diameter were
constructed for all tissue samples onto glass slides. In total, there were
82 TMA cores per slide.

2.15. Immunohistochemistry (IHC) analysis

Antibodies against CDK2 (Novus Biologicals; Littleton, CO) were
incubated on their respective slides for 32min. Following antibody
incubation, antigen retrieval was done at a high pH for 64min.
Ultraview DAB Detection (Ventana Medical Systems; Tucson, AZ) was
used for nuclear and cytoplasmic counterstaining. These slides were
scanned and uploaded onto the Leica Biosystems cloud drive.

2.16. Digitalized image analysis

Following staining with both the antibodies of interest and pan-CK,
the slides were scanned using the Aperio Turbo Scanscope AT (Leica
Biosystems; Buffalo Grove, IL). High resolution images of each slide
were uploaded onto the Leica Biosystems cloud drive for annotations
and analysis.

Annotation and analysis of slides were done using the Leica Tissue
Image Analysis (IA) 2.0 software program (Copyright, 2012 by
SlidePath Ltd.). Stromal and structural tissues were not included in the
annotations. Although these structures may provide additional insight,
the focus of the experiment was based on tumor epithelium only. Each
annotated core had a minimum threshold of 100,000 cells to be ana-
lyzed. Following annotations, the “Measure Stained Cells Algorithm”
option in the Leica Tissue IA software was used. For each antibody
slide, color definition preferences were defined and algorithm input
parameters were optimized based on several cores. These in-
dividualized parameters were used to analyze the annotated regions on
each slide.

For the color definition, haematoxylin was set as the nuclear
counter stain, and DAB was set as the nuclear, cytoplasmic, and
membrane marker. Parameters in the program were based on a num-
bered greyscale between 0 and 255, with 0 being the minimum in-
tensity (black) and 255 being the maximum (white). The max threshold
in our analysis was set to 220, with 180 being the threshold for positive
or negative staining. The max nuclear window size radius was set to 37
(default) and the nuclear area threshold was set to be 0–1500mm2; any
nuclei or cells out of these parameters were eliminated from analysis.
The minimum percent of stained area in the nucleus to be considered as
positive was set to 20%. The threshold for positive identification of
cytoplasmic staining was set at a higher threshold for some of the

antibodies due to differences in background and staining. The max-
imum threshold range was set for cytoplasmic staining detection be-
tween 220 and 240, with a minimum percent of stained area set to 70%.

After analysis, data regarding the nuclear h-score, % of positive
nuclei, % of positive nuclear area in tissue, cytoplasmic h-score, and %
positive cytoplasm of cells was collected and used for comparative
graphing. These scores were chosen to represent the level and intensity
of nuclear and cytoplasmic staining in the epithelial cells. Test runs of
the analysis were conducted with a pathologist to assure that the pro-
gram correctly identified and graded the nuclear and cytoplasmic
components of epithelial cells.

2.17. Comparative graphing and statistical analysis

R Studio was used for analyzing and graphing the data. Using the
ggplot2 package, violin plots were constructed to demonstrate the dif-
ferences in nuclear h-score, % of positive nuclei, % of positive nuclear
area in tissue, cytoplasmic h-score, and % of cells with positive cyto-
plasmic staining between tumor and normal adjacent to tumor (NAT)
cores. Statistical analysis was done via a two-sided Wilcoxon rank-sum
test. Statistical significance was defined as p < 0.05.

3. Results

3.1. Global proteome and phosphoproteome in cisplatin-resistant BC cells

We sought to understand the molecular mechanisms of cisplatin
resistance using a paired cell culture system consisting of T24S and
T24R cells. Alterations of EGFR signaling pathways have been fre-
quently observed and reported in various cancer types. It has also been
considered a critical module associated with resistance mechanisms
against several kinase inhibitors and other drugs, including cisplatin
[9,12,15,29]. Based on this knowledge, we applied a multiplexed TMT
and LC/LC-MS/MS approach to samples and replicates harvested after
0min, 10 min, and 30min of EGF stimulation (10 ng/ml) (Fig. 1A).
After a FASP peptide digestion, each conditioned peptide was respec-
tively labeled with 6-plex TMT reagents. For mid-pH fractionation, we
used TEAB as a buffer solvent. Several benefits of using TEAB include
compatibility with TMT labeling, high volatility (allowing us to skip the
desalting step), and low harmful impact on separation columns. After
fractionation, 5% of the peptides from each of the 15 fractions were
used for global proteome analysis. The remaining 95% of the peptides
were subjected to an IMAC enrichment experiment and analyzed using
an orbitrap-based high resolution/accurate-mass mass spectrometer
(Fig. 1B). This serial enrichment strategy was done to simultaneously
observe changes in either global or phosphopeptides from the same
peptide pool [32]. We then searched for acquired mass spectra using
MS/MS automated selected ion chromatography (MASIC) in the Uni-
prot Human Protein Database (2016) with MSGF + TMT reporter ion
extraction [20] (see methods). From the 3 biological replicates of the
global proteome, we identified an average of 48,044 non-redundant
peptides (9405 protein groups) (Supplementary Table 1 and Fig. 1C).
We also identified an average of 13,980 phosphopeptides and 16,700
phosphosites (Supplementary Table 2) belonging to 3939 protein
groups (Supplementary Table 3 and Fig. 1D).

3.2. Altered proteins in cisplatin-resistant BC cells

To identify proteins with altered expression and phosphorylation
between T24R and T24S cells before any EGF stimulation, we per-
formed separate statistical hypothesis testing for the global proteome
and phosphoproteome. From the global proteome, we identified 223
DEPs between T24R and T24S cells (Fig. 2A). When analyzing the
phosphoproteome, we identified 899 differentially phosphorylated
peptides belonging to 501 DPPs (Fig. 2B). Comparing the list of DEPs
and DPPs (Supplementary Table 4), we observed that 33 proteins
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exhibited a positive correlation (Spearman's rho=0.50; P< 0.001),
with significant changes at both the phosphorylation and expression
levels (Fig. 2C). Functional enrichment analysis, using DAVID [13],
showed that DEPs and DPPs were enriched for common and distinct
cellular processes (Fig. 2D). DEPs exhibited predominant enrichment
for cell adhesion and migration-related processes, including extra-
cellular matrix organization and leukocyte migration. DPPs, on the
other hand, displayed direct association with the EGFR signaling
pathway and downstream processes, such as small GTPase signal

transduction, mitotic cell cycle, and chromatin organization. Both DEPs
and DPPs were enriched for cell survival and proliferation-related
processes. These results suggest that DPPs in cisplatin-resistant BC cells
represent the activation of EGFR signaling pathways or EGF-driven
resistance mechanisms.

Fig. 1. Quantitative measuring of the proteome and phosphoproteome using TMT labeling. A. Experimental design to study the effects of EGF stimulation
across 3 time points. A total of 3 and 2 biological replicates from T24S and T24R cells were analyzed for their global proteome and phosphoproteome, respectively. B.
Overall experimental workflow for multiplex TMT labeling and comprehensive profiling of the global proteome and phosphoproteome. Both T24S and T24R cells
were treated with EGF (0, 10, or 30 min). Proteins were extracted using RIPA buffer and peptides were FASP digested with trypsin. Peptide samples were derived at 6
different time points, labeled using TMT reagents, mixed, and separated using mid-pH reverse phase chromatography. Fractions were combined in a non-contiguous
way into 15 fractions for proteome analysis (5% of total proteins) and 10 fractions for phosphoproteome analysis (95% of total proteins). All peptides and phos-
phopeptides were analyzed on a Q Exactive Mass Spectrometer. Protein identification and quantification was achieved using the MSGF + search engine and MASIC
(reporter ion intensity extractor). C and D. Numbers of identified (C) proteins or (D) phosphopeptides from T24S and T24R cells. Venn diagrams depict the number of
common and uniquely identified proteins or phosphopeptides in T24S and T24R cells after 0, 10 and 30min of EGF stimulation.
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3.3. Altered proteins belonging to the EGFR signaling pathway are involved
in cisplatin resistance

Using our global proteome and phosphoproteome data, we next
performed differential analyses of EGF stimulation in T24R and T24S
cells. For the global proteome in both T24R and T24S cells, only the
tails of the density distribution in the log2 fold change increased with
EGF stimulation (Fig. 3A and Supplementary Fig. 1A). In contrast, the
global median of the phosphoproteome in T24S cells increased in
abundance when stimulated with EGF (Fig. 3B). The largest changes in
EGF-induced phosphorylation were observed in T24S cells, which ex-
hibited phosphosite changes of 4% (656) and 5.3% (887) after 10min

and 30min of EGF stimulation, respectively. T24R cells were altered
less, with the percentage of altered phosphorylation sites being 1.1%
and 0.7% after 10min and 30min, respectively (Supplementary
Fig. 1B). This suggested that the effects of EGF stimulation impacts
T24S cells more. Volcano plots for differentially phosphorylated pro-
teins were consistent with the density plots shown in Fig. 3B (Fig. 3C).

We next sought to select altered proteins (APs) that were associated
with cisplatin resistance and were part of the EGFR signaling pathway.
Both DEPs and DPPs were considered as APs because either protein
expression or phosphorylation can reflect alterations in signaling
pathways. A total of 749 APs (454 APs at 10min and 547 APs at
30min) were identified in T24S cells (Supplementary Table 5). Of these

Fig. 2. Altered proteins in the global proteome and phosphoproteome between T24R and T24S cells. A and B. Volcano plots display differentially expressed
(A) proteins or (B) differentially phosphorylated peptides. Red and blue dots represent upregulated and downregulated proteins or peptides, respectively. C. Protein
expression and phosphorylation levels were compared and represented in the scatterplot. Proteins and phosphorylation sites were considered to be perturbed by
cisplatin resistance based on the integrative hypothesis testing method (FDR < 0.05). Comparison between biological replicates of MS-based quantitative proteomic
and phosphoproteomic experiments of T24R and T24S cells. Each dot represents one protein. D. Enrichment analysis using DAVID software showed that differentially
expressed proteins (cyan) and differentially phosphorylated peptides (purple) were enriched for various cellular functions. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)
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749 APs, 353 overlapped with the 724 APs identified from T24S vs.
T24R cells with no EGF treatment. Interestingly, 49% (353 out of 724)
of the APs responsible for cisplatin resistance were regulated by EGF
stimulation (Fig. 3D). This suggested that a large proportion of APs are
involved in downstream EGFR signaling and are likely to also be as-
sociated with cisplatin resistance. In contrast, T24R cells exhibited a
relatively smaller number of APs (n=92) that overlapped with those
found between T24R and T24S cells (Fig. 3E). Functional enrichment
analysis of the 353 APs (Supplementary Table 6) in T24S cells revealed
known associations of cisplatin resistance with DNA damage, repair,

and cell cycle regulation (Fig. 3F). This was replicated with the 92 APs
(Supplementary Table 7) found in T24R cells (Fig. 3G). The results were
consistent with previous reports demonstrating inherent and persistent
downstream EGFR signaling in resistant cells [21].

3.4. Several key kinases involved in cisplatin resistance were identified

Given this total list of 374 APs, 353 from T24S and 92 from T24R
(with overlap), we next aimed to identify the key regulators of the
observed phosphorylation profiles linked to cisplatin resistance. To this

Fig. 3. Distinct protein alteration patterns in T24R and T24S cells after EGF stimulation. A and B. Density plots are shown for the log2fold changes of the (A)
global proteome and (B) phosphoproteome for T24R and T24S cells after 10min and 30min of EGF treatment. Only phosphopeptides or proteins quantified in at least
two samples were plotted. Log2 fold changes in T24S cells at 10min (S10) vs. 0 min (S0) of EGF treatment, T24S cells at 30min (S30) vs. 0 min (S0) of EGF treatment,
T24R cells at 10min (R10) vs. 0 min (R0) of EGF treatment, T24R cells at 30min (R30) vs. 0 min (R0) of EGF treatment, and R0 vs. S0 are displayed. C. Volcano plots
display differentially expressed phosphopeptides in T24R and T24S cells after 10min and 30min of EGF treatment. Red and blue dots indicate up- and down-
regulated phosphopeptides, respectively. Only those quantified in at least two samples were plotted. D and E. Number of phosphoproteins associated with cisplatin
resistance mechanisms that are involved in EGFR signaling in (D) T24S and (E) T24R cells. Venn diagram depicts the overlapping altered phosphoproteins in (D)
T24S or (E) T24R cells with or without EGF treatment. F and G. Enriched cellular functions of the overlapping proteins after 10min and 30min of EGF treatment in
(F) T24S and (G) T24R cells. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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end, we focused on the kinases that can regulate the phosphorylation
levels of these differential sites by performing a kinase enrichment
analysis. Using kinase-substrate interactions obtained from the SIGNOR
database [34], we constructed a network model consisting of 121 ki-
nases and 329 substrates with 893 interactions (Supplementary Fig. 2).
Kinase enrichment analysis of the network model identified 3 out of the
27 kinases (Supplementary Table 8), checkpoint kinase 1 (CHEK1),
cyclin-dependent kinase 2 (CDK2), and Erb-B2 receptor tyrosine kinase
2 (ERBB2), as having a significant number of interactions with APs
when stimulated by EGF (Fig. 4A and B). Based on these 3 key kinases
and their substrates, we reconstructed a subnetwork consisting of 101
nodes connected by 265 edges (Fig. 4A). The subnetwork was visualized
using Cytoscape [37]. Notably, most of the substrates were highly
phosphorylated in T24R, rather than T24S cells (Fig. 4C).

Validation with western blot analysis confirmed that phosphoryla-
tion of CDK2, CHEK1, ERBB2, mTOR, AKT, and RB significantly in-
creased in T24R cells after treatment with 10 ng/ml of EGF (Fig. 5A).
These results provide potential molecular mechanisms through which
these 3 major kinases mediate cisplatin resistance. To further identify
genes that have a critical effect on cisplatin resistance, we knocked-
down the 3 kinases, CDK2, CHEK1, and ERBB2, in T24R cells using

siRNAs. Western blot analysis was conducted to confirm knockdown of
these kinases (Fig. 5B, right). T24R cells were significantly sensitized to
cisplatin when CDK2 was knocked-down, suggesting that CDK2 may be
important in maintaining resistance (Fig. 5B). We next tested whether a
potent and selective inhibitor of CDK2, dinaciclib (SCH 727965) [33],
could overcome resistance in three independent cisplatin-resistant
human BC cell lines, T24R, J82R, and RT4R (Fig. 5C). Consistent to the
data shown in Fig. 5B, inhibition of CDK2 sensitized resistant cells when
they were incubated in combination with cisplatin (Fig. 5C).

To further investigate the correlation of high CDK2 expression in
BC, IHC analysis was done on BC TMAs. There were statistically sig-
nificant differences in comparative scores for CDK2 expression between
tumor and normal adjacent to tumor (NAT) cores (Fig. 5D). We applied
a digital annotation algorithm to the core images in an effort to quan-
titatively assess this observation. Our image algorithm was set so that
nuclear and cytoplasmic staining could be detected as positive at a color
spectrum darker than that for typical DAB staining. Using the scores
from our digital image analysis, we observed significantly upregulated
expression of CDK2 in tumor cores. Comparative images of the tumor to
NAT tissue show increased nuclear and cytoplasmic staining in the
tumor epithelium (Fig. 5D). Collectively, these results demonstrate that

Fig. 4. Identification of key kinases linked to cisplatin resistance through the activation of EGFR signaling. A. Schematic diagram describing the process of
reconstructing the networks of proteins significantly altered by EGF stimulation in T24R and T24S cells. Venn diagram depicts number of altered proteins involved in
cisplatin resistance in downstream EGFR signaling. Using kinase-substrate interaction information of the significantly altered proteins and their upstream kinases, 27
kinases were initially selected. Of those, 3 kinases were found to be significant altered in either protein expression or phosphorylation after EGF treatment. B. List of
the 3 key kinases with the number of significantly altered substrates and number of interactions. C. Network model describing the interactions of the 3 kinases and
their substrates. Node and border color represent proteins phosphorylation ratios in T24R vs. T24S cells after 10min or 30min of EGF treatment, respectively. Red
and green indicate up- and downregulated phosphorylation following EGF treatment, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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our proteome-driven signature may be a useful predictor of survival for
patients who have already undergone cisplatin chemotherapy.

3.5. Clinical implications of the key kinases and their substrates

Based on the significance of CDK2 and its substrates to cisplatin
resistance, we examined the association of gene expression of CDK2 and
its substrates to clinical outcomes. For this, we utilized the tran-
scriptome dataset (GSE5287) from Als et al. [2], which contains the
gene expression profiles of 30 BC patients along with their survival
information after cisplatin chemotherapy. We first assessed the

correlation of APs in the global network model in terms of gene ex-
pression versus protein expression or phosphorylation levels (Fig. 6A).
Significant positive correlations between gene expression versus protein
expression (P=1.09e-16) and gene expression versus protein phos-
phorylation (P=0.003) were observed (Fig. 6A). This suggests that
gene expression profiling can reflect protein expression and phosphor-
ylation, supporting the possibility that the gene expression profiles of
APs in BC patients can be indicators of dysregulated networks. We then
searched for CDK2 substrates from the network model, which resulted
in 48 proteins that were selected based on kinase-substrate interaction
information from the SIGNOR database (Fig. 6B). For further selection,

Fig. 5. Functional role of CDK2 associated with cisplatin resistance. A. Western blot analysis of the key protein kinases. After stimulation with 10 ng/ml of EGF
treatment for 0, 10, or 30min, cells were harvested for protein extraction and western blot analysis. Representative western blot images were selected after
experiments were repeated at least 3 times. B. Gene silencing of CDK2 enhanced cisplatin sensitivity in T24R cells. T24R cells transiently transfected with siRNAs
targeting CDK2, CHEK1, or ERBB2 were incubated in culture medium with 10 μM cisplatin. T24R cells transfected with control siRNAs (siCtrl) were used as controls.
The cell viability rate was measured at various time points (0, 8, 24, 32, 40, 48, and 72 h). Experiments were done in triplicate. *p < 0.05 (Student's t-test).
Representative western blot analysis data demonstrated that the levels expression of CDK2, CHEK1, or ERBB2 in these experiments were downregulated by targeting
siRNAs. C. Cisplatin resistant BC cell lines (R24R, J82R, or RT4R) were treated with cisplatin alone, CDK2 inhibitor (CDKi), or a combination of both for 72 h. Cell
survival rates were quantified as describe in Methods. D. Increased expression levels of CDK2 in BC. IHC analysis was performed to measure the protein expression of
CDK2 in bladder tissues from BC patients. Violin plots showing expression of CDK2 in NAT and tumor tissue. Representative images of NAT and tumor cores are
shown.
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we examined differential gene expression of the 48 proteins, including
CDK2 and its substrates, using the BC dataset from Als et al. (GSE5287)
[2]. For this we stratified the samples into those who survived 5 or
more years (alive) and those who deceased within 5 years after che-
motherapy (dead). This allowed us to identify genes in the CDK2

network that were significantly associated with poor survival after
cisplatin chemotherapy (Fig. 6C). As a result, 6 genes out of 72 were
found to have higher expression in the dead group. These were CDK2,
CENPF, DLGAP5, MKI67, TPX2, and RAD9A.

We further investigated the clinical association of the 6 genes to the

(caption on next page)
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CDK2 network using two gene expression datasets from Als et al.
(GSE5287) [2] and Lee et al. (GSE13507) [24]. The Als et al. dataset
showed significantly higher expression of the 6 genes in the CDK2
network and its summarized score (Z-score) in the dead group (Fig. 6C).
The same was true in the Lee et al. dataset (Fig. 6D). Using the Lee et al.
dataset, we then examined the association of these 6 CDK2 network
genes to recurrence-free survival (RFS) by performing multivariate Cox
regression analysis (Fig. 6E). Although individual genes showed no
significant correlation with RFS, the summarized score of the 6 genes
presented significant association with RFS (Fig. 6F). We further con-
firmed that expression of the 6 gene and its summarized score in the
CKD2 network were significantly segregated high vs low grade BC
samples from The Cancer Genome Atlas (TCGA) [35] (Fig. 6G). Col-
lectively, these results suggest that our AP-derived CDK2 network genes
may be helpful in predicting prognosis and treatment options for BC
patients.

4. Discussion

Our present work characterized the enriched global proteome and
phosphoproteome in cisplatin-resistant BC. By characterizing the sig-
naling network alterations associated with cisplatin resistance, we also
demonstrated the utility of quantitative phosphoproteomics in high-
lighting perturbed networks between cisplatin-resistant and sensitive
BC cells. This approach revealed a vastly different cellular context be-
tween T24R and T24S cells, suggesting that there are potential key
regulators modulating the perturbation of signaling networks.
Measuring the abundance of proteins and mapping the phosphorylated
kinase-substrate interactions facilitated a comprehensive biological in-
terpretation of the complex network context behind cisplatin resistance.
Expanded analysis of transcriptome data from BC patients further
provided strong evidence that concurrent molecular alterations in gene
expression to protein modification can be the core basis of disease.

Our experimental results illustrated that the global phosphopro-
teomics profile in cisplatin-resistant cells is significantly altered and
that several key kinases may be mediating this. These kinases could
potentially be used as therapeutic targets for blocking chemo-resilience.
We also observed an increase in the phosphorylation of CDK2, CHEK1,
and ERBB2 in cisplatin-resistant cells. Our comprehensive proteomics
approach revealed many novel phosphorylation sites of CDK2, CHEK1,
ERBB2, and their substrates, suggesting new intervention points in
cisplatin resistance-specific signaling networks. The experimental re-
sults from this study implicate the active involvement of CDK2, CHEK1,
and ERBB2 in contributing to resistance against cisplatin-based che-
motherapies.

CHEK1 is a serine/threonine kinase that is involved in the check-
point-mediated control of the cell cycle and the activation of DNA re-
pair in response to DNA damage or the presence of unreplicated DNA.
The ATR-CHEK2 signaling pathway was recently proposed to play an
important role in regulating the response to cisplatin in BC [16]. In-
hibition of the ATR-CHEK2 pathway with selective inhibitors can sen-
sitize cells to cisplatin [7,26]. ERBB2 (HER2), a member of the EGF
receptor family of receptor tyrosine kinases, has been known to be as-
sociated with aggressive variants of BC. Mutated ERBB2 is well docu-
mented as a cancer driver gene and is primarily found in high-risk

tumors. Mutations in ERBB2 have also been found to be independent
risk factors associated with death in BC patients [22]. Thus, ERBB2-
targeting treatment has been an attractive option in improving clinical
outcomes for BC patients.

Our kinase activity-based network modeling suggested that one of
the most significantly increased sites of phosphorylation in resistant
cells is CDK2. The CDK2 network consists of several putative substrates,
including CDC27, DAXX, and CENPF (Fig. 4A). CDK2, a Ser/Thr protein
kinase, phosphorylates substrates at the S/TPx(x)R/K consensus motif.
CDK2 is originally known to function in cell cycle regulation; increased
CDK2 kinase activity is essential for the G1 to S stage transition as well
as the phosphorylation of the Rb protein. During the S phase, active
CDK2 and cyclin A complexes predominate and phosphorylate E2F
[30]. CDK2 inhibitors (e.g., ribociclib, dinociclib, seliciclib et al.),
which deregulate E2F, have been suggested as promising pharmacolo-
gical strategies against various cancer types. However, a comprehensive
overview of CDK2 and its substrates has not yet been established and
the biological effects or regulatory mechanisms of CDK2 remain elusive.

Our findings suggest that inhibition of CDK2, a key player of cis-
platin resistance, could induce cisplatin sensitivity. Therefore, CDK2
may be a potential target in the modulation of cisplatin resistance
modulating human BC. This is consistent with previous reports.
Alterations of CDK2 that are associated with cisplatin resistance in vitro
have been reported in other cancer types, such as ovarian [31,40], oral
[25], testicular [23] and cervical [42]. While our results are promising,
we are aware of the limitations in our study, mainly owing to a lack in
quantity of clinical specimens for phosphoproteomic analysis. Our
study was also restricted to cell line-derived signatures; although, it was
further validated in the clinical setting. Since this finding was based on
a retrospective study from a single institution, the efficacy of the sig-
nature could be impaired. Future prospective validation studies using
high-throughput assays should be followed up in multiple centers to
consolidate our signature's analytical validity and reproducibility in the
routine clinical practice setting.
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Quantitative Proteomic Analysis Reveals Caffeine-Perturbed
Proteomic Profiles in Normal Bladder Epithelial Cells

Muhammad Shahid, Minhyung Kim, Austin Yeon, Allen M. Andres, Sungyong You,
and Jayoung Kim*

Lower urinary tract symptoms (LUTSs) are highly prevalent among the elderly
and negatively impact quality of life. Since caffeinated beverages are enjoyed
worldwide and the relationship between LUTS and caffeine is still not fully
understood, it would be of particular interest to examine the underlying
mechanisms that drive caffeine’s influence on LUTS development and
progression. The aim of this study is to characterize the effects of caffeine on
hTert-immortalized normal bladder epithelial cells by investigating whether
exposure to caffeine can cause potential changes in the bladder proteome
and/or biological pathways. In labeled LC–MS/MS proteomic analysis, 57
proteins are found as being differentially expressed in caffeine-treated bladder
epithelial cells, compared to controls; this included 32 upregulated and 25
downregulated proteins. Further functional gene enrichment analysis reveals
that caffeine affects major biological pathways, including those for “muscle
contraction” and “chromatin assembly.” These findings provide new scientific
insights that may be useful in future studies investigating the role of caffeine
in bladder dysfunctions.

1. Introduction

It is estimated that by the end of 2018, 2.3 billion individu-
als will be affected by at least one lower urinary tract symptom
(LUTS).[1] These symptoms include urinary storage problems,
such as urgency, frequency, nocturia, or voiding problems. LUTS
alsoweighs heavily on overall quality of life; patients report signif-
icantly higher mental health issues, lower work productivity, and
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diminished general health status.[2]

The current standard treatment for
LUTS involves α-blockers, 5α-reductase
inhibitors, and antimuscarinics.[3]

However, these are mainly palliative
and require consistent maintenance.
Consequently, there is a substantial eco-
nomic burden associated with LUTS.[4]

Previous reports have demonstrated that
diet and stress play important roles in the
development and progression of LUTS.[5]

In particular, caffeine, a naturally oc-
curring compound, has been reported
to be a potential dietary risk factor in
developing LUTS.[6] Caffeine is ubiqui-
tously found in many plants, includ-
ing cocoa beans, tea leaves, and coffee
beans. It is a stimulatory drug that is
widely used to prevent sleepiness and
can be found in over-the-counter med-
ications, such as some pain remedies.
It has also been observed that caffeine

may aggravate or worsen urinary symptoms in patients who al-
ready have some form of LUTS.[7] In recent years, caffeinated
drinks have become a staple of the average diet; more than 85%
of adults in the United States regularly consume caffeine.[8] A
longitudinal study of caffeine intake in young healthy volunteers
found that subjects who regularly drank coffee had significant in-
creases in urinary urgency and frequency.[9] Additionally, a sepa-
rate study observed that greater coffee intake raised the odds of
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LUTS progression in men and women more than carbonated or
citrus beverages.[10] The effects of caffeine have also been stud-
ied in the context of bladder cancer (BC); however, rather than
finding a negative risk, there have been reported benefits. A case-
control study of BC patients in Italy found no causal relationship
between caffeine and BC.[11] A separate study found that caffeine
may actually benefit BC patients by making cells more suscepti-
ble to chemotherapy and apoptosis.[12] Mechanistically, this has
been reported to be mediated through caffeine’s effects on the
tumor suppressor protein, p53.[13]

Despite the potential link between caffeine and LUTS, re-
search into causative mechanisms and functions is lacking. One
prior study suggested that caffeine may be facilitating bladder
instability and frequent urination by enhancing the activation
of neuronal micturition centers through increased expression of
transcription factor c-Fos and nerve growth factor.[14] While infor-
mative, this study focused primarily on the bladder muscles with
little attention on the bladder epithelium, which is more anatom-
ically exposed to urine and its biological/chemical contents. A
separate study using a mouse model found that oral caffeine ad-
ministration resulted in detrusor overactivity and increased blad-
der sensory signaling.[15] Further studies found similar effects
on the detrusor muscle in humans.[16] However, the direct effects
of caffeine, its delivery into cells, and its mechanisms remain
unestablished.
Our present study sought to examine the cellular effects of

caffeine on the bladder epithelium without any pathological con-
ditions. Quantitative and global proteomics analysis found that
caffeine can perturb the whole proteome, possibly through the
regulation of chromatin assembly in normal bladder epithelial
cells.

2. Experimental Section

2.1. Cell Culture and Cell Proliferation Assay

Immortalized normal human bladder epithelial cells, TRT-HU1,
were maintained as described previously.[17] The TRT-HU1 cell
line was constructed and extensively characterized in previously
published papers. The passage number of each cell line was be-
low ten, and mycoplasma contamination was tested for monthly
via PCR analysis. Cells were cultured in Dulbecco’s modified Ea-
gle’s medium, containing 10% fetal bovine serum (Invitrogen),
1%penicillin/streptomycin, and 1% l-glutamine (Sigma–Aldrich
Corp., St. Louis, MO, USA) in a 37 °C humidified incubator with
5% CO2. To test cell growth during exposure to caffeine, TRT-
HU1 cells were seeded onto six-well plates with a density of 5 ×
104 cells per well. Cells were then incubatedwith standard growth
mediumwith varying doses of caffeine at 0, 0.005, 0.05, or 0.1mm
(C6035, Sigma–Aldrich Corp.) or vehicle for 24, 48, or 72 h. Cell
proliferation was measured by manually counting cells using a
hemocytometer. The averages of each count were used as the
total density of the well after each time point. For crystal violet
staining, the culture medium was removed, the cells were fixed
with 4% paraformaldehyde at room temperature for 5 min and
then stained with 0.05% crystal violet for 15 min. The cells were
then washed with tap water, after which the water was removed
and the cells were dried out on filter paper. The cell plates were

Significance Statement

Caffeine, amethylxantine that is derived fromcoffee intake, has
been reported to be apotential dietary risk factor in develop-
ing lower urinary tract symptoms (LUTS).Despite this known
potential link, research into causativemechanismsand func-
tions is lacking.Our unbiasedproteomics study revealed that
caffeine alters the global proteome inhuman-immortalized
normal bladder epithelial cells and enriches biological path-
ways related tomuscle contraction and chromatin assembly.
Our study is clinically significant because it provides thepoten-
tialmechanisms throughwhich caffeine canprovoke LUTSand
suggests that the restrictionof caffeine intakemaybebenefit
muscle contraction and functional gene expression.

scanned and quantified using 10% acetic acid andmeasured at an
absorbance of 570–590 nm.[18] All experiments were run in trip-
licate for each cell line, and the data are representative of three
independent trials.

2.2. Antibodies and Reagents

Antibodies against various proteins were obtained from the fol-
lowing sources: ACTG2 (ab189385, Abcam), ACTA2 (ab5694,
Abcam), MYH2 (ab124937, Abcam), MYH7B (ab172967, Ab-
cam), HISTH2B (ab52599, Abcam), HIST1H2BM (SAB1301739,
Sigma), and β-actin (A1978, Sigma). Commercially available
horseradish peroxidase (HRP)-conjugated secondary antibodies
(7074 and 7076) were obtained from Cell Signaling Technology.
All other chemical reagents were procured from Sigma Chemical
Corp.

2.3. Quantitative Proteomics

Tandem mass tagging (TMT)-based quantitative proteomics was
performed as previously described.[19] Briefly, cellular protein
was extracted from caffeine-treated and control cells using 4%
SDS-containing buffer. The protein concentration was measured
using the Pierce 660 nm Assay Kit. From each sample, 60 μg
of protein was digested with trypsin using filter-aided sample
preparation and labeled with TMT6plex reagents in parallel.
After TMT labeling, the peptides were merged, desalted with

C18 spin columns (Thermo Scientific), and fractionated via high-
pH reversed phase liquid chromatography (RPLC) using an Ulti-
mate 3000 XRS System (Thermo Scientific). For high-pH RPLC,
about 50 μg TMT-labeled peptides were loaded onto a 100-mm
Hypersil GOLDC18 column (2.1mm id, 3μmparticle size, 175 Å
pore size; Thermo Scientific), flushed for 3 min with solvent A
(10 mm ammonium formate, pH 10), and then separated with
a 7-min linear gradient of 0–40% solvent B (10 mm ammonium
formate, 95% acetonitrile, pH 10.0). A total of 24 fractions were
collected, concentrated into 12 fractions, and dried down in a
SpeedVac (Thermo Scientific). Peptides in each fraction were re-
dissolved with 0.2% formic acid and analyzed by LC–MS/MS us-
ing an EASY-nLC 1000 connected to an LTQ Orbitrap Elite Mass
Spectrometer (Thermo Scientific). Briefly, peptides were loaded
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onto a 2-cm trap column (PepMap 100 C18, 75 μm id, 3 μm par-
ticles, 100 Å pore size) and separated by a 50-cm EASY-Spray col-
umn (PepMap RSLC C18, 75 μm id, 2 μm particles, 100 Å pore
size) heated to 55 °C. For low-pH RPLC separation, the mobile
phase consisted of 0.1% formic acid in water (phase A) or ace-
tonitrile (phase B). The LC gradient was 4–24% B over 200 min,
24–50% B over 20 min, and 50–100% B over 5 min at a flow rate
of 150 nL min−1, followed by 100% B over 15 min at a flow rate
of 300 nL min−1.
Mass spectra were acquired in a data-dependent manner, se-

lecting up to the 15 most abundant precursor ions for higher-
energy collisional dissociation. Themass resolution for precursor
and fragment ionswas set to 120 000 and 30 000, respectively. The
isolation width was set as 1.5 and the normalized collision energy
was set as 40. Database searching and protein quantification was
performed by Proteome Discoverer (v2.1), using the SEQUEST
algorithm. The acquired raw data were searched against the hu-
man Uniprot Protein Sequence Database (released on January
22, 2016, containing 20 985 protein sequences). Searching pa-
rameters were set as follows: trypsin, up to two missed cleavage;
precursor ion tolerance of 10 ppm and fragment ion tolerance of
0.02 Da; carbamidomethylation of cysteins and TMT6plex mod-
ification of lysines and peptide N-term as fixed modifications;
and acetylation of protein N-term, oxidation of methionine, and
deamidation of asparagines and glutamines as variable modifica-
tions. A standard false discovery rate (FDR) of 1% was applied to
filter peptide-spectrum matches (PSMs), peptide identifications,
and protein identifications.
For protein quantification, peptides with >30% precursor ion

interferencewere excluded tominimize erroneous quantification
caused by precursor ion interference. PSM level information was
extracted using the Proteome Discoverer.[20] After quantifying
each PSM intensity, the peptide intensities were summarized,
as described by Niu et al.[21] In brief, this was done in four steps:
1) the normalized log2 intensity of the PSMs matched to each
peptide by the substrate mean PSM from each reporter intensity
was centered, 2) outliers were detected using Dixon’s Q-test and
generalized electrostatic discharge test, 3) the mean intensity
without outliers was taken, and 4) the grand-mean intensities
of the three highest abundant PSMs were added before being
mean-centered. Bipartite graphs of peptides and protein groups
were generated according to the information of the aligned pep-
tides. Among the proteins in the protein group, we defined the
representative protein that had the largest number of peptides
or unique peptide.[22] When there were more than proteins with
the same number of peptides in the same protein group, we
selected the protein that had the higher sequence coverage. We
then computed the relative intensity of the protein group using
a linear-programming formulation, as previously described.[23]

2.4. Identification of Differentially Expressed Proteins

To identify the differentially expressed proteins (DEPs), we se-
lected proteins that have more than two nonredundant peptides.
For the selected proteins, we then performed an one sample t-test
using log2-fold changes to compute the significance of t-values.
For this statistical test, an empirical distribution of the null hy-
pothesis, a protein is not differentially expressed, was estimated

by following steps: 1) 100 000 random permutations were applied
to the samples, 2) t-values were computed using the log2-fold
changes of the randomly permutated samples, and 3) the Gaus-
sian kernel density estimation method was applied to t-values.
The FDRs of each protein from the one sample t-tests were then
calculated using Storey’s method.[24] The DEPs were identified as
thosewith a FDR< 0.05 and absolute log2-fold change> 0.58 (1.5
fold). Functional enrichment analysis of DEPs was performed us-
ing DAVID software (Ver. 6.8).[25] Significantly enriched cellular
processes were selected for if they had a p-value < 0.05.

2.5. Western Blot Analysis

Cells were seeded onto 10-cm plates and exposed to 0.05 mm
concentrations of caffeine for 72 h. Cells were lysed with RIPA
buffer (20 mm Tris, 150 mm NaCl, 1% Nonidet, P-40, 0.1 mm
EDTA; Pierce, ThermoFisher) supplemented with a phosphatase
inhibitor cocktail (ThermoFisher). The protein concentration of
each sample was measured with the Bradford Protein Kit As-
say, according to the manufacturer’s instructions (Pierce, Ther-
moFisher). Equal amounts of protein extract were separated by
SDS–PAGE and transferred onto a PVDFmembrane. The mem-
branes were then blocked with 5% bovine serum albumin or 5%
nonfat milk in Tris-buffered saline with 0.1% Tween 20 (TBST
[2.42 g L−1 Tris–HCl, 8 g L−1 NaCl, and 1 mL L−1 Tween 20 (pH
7.6)]) and incubated overnight at 4 °C with specific primary anti-
bodies in TBST. The membranes were then incubated with sec-
ondary antibodies conjugated with HRP, as described previously.
β-actin was used as an internal control. All western blot experi-
ments were run in at least triplicates for each antibody.

2.6. Seahorse Respirometry Assay

TRT-HU1 cells were seeded onto a 24-well Seahorse culture
plate at a density of 50 000 cells per well 24 h before the Seahorse
assay. Media was then changed to XF Base Medium (pH 7.4)
supplemented with 10 mm glucose, 1 mm sodium pyruvate, and
1mm sodium glutamine. Cells were equilibrated for 1 h in a non-
CO2 incubator at 37 °C before the assay began. Cells were treated
with caffeine at 0.05 mm, or 0.5 mm for experiments. Chemical
reagents (Sigma) were used at final concentrations, as follows:
1 μm oligomycin—an ATP synthase inhibitor, 1 μm (FCCP)
carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone—an
uncoupling agent, and a mixture of 0.5 μm antimycin A—a
cytochrome C reductase inhibitor and 0.5 μm rotenone—a
complex I inhibitor. Oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR) was monitored during the
duration of the assay run. OCR and ECARweremonitored before
and after addition of caffeine. Results were normalized to protein
concentrations determined by BCA assay (Thermo Scientific).

2.7. Statistical Analysis

Student’s t-test was performed to confirm differential expression
of the proteins between two groups. Variables with normal distri-
bution were presented as mean ± SD. All reported p-values are
two-tailed, with p-values< 0.05 indicating statistical significance.
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Figure 1. Unbiased proteomics analysis identified proteins in TRT-HU1 cells. A) Experimental scheme describing unbiased global proteomics profiling
and bioinformatics analysis. B) Venn diagram depicts number of unique proteins detected in caffeine treated and nontreated normal bladder epithelial
cells. C) Pie chart displays functional categories of all the identified proteins.

3. Results

3.1. Quantitative Proteomic Analysis of Normal Bladder
Epithelial Cells

Due to the lack of knowledge regarding the effects of caffeine on
biological and proteomic perturbations in the normal bladder
epithelium, this study aimed to examine the whole proteome
alterations caused by caffeine consumption. To gain insight on
the underlying mechanism of caffeine on the bladder epithe-
lium, we treated normal bladder epithelial cells with caffeine
and performed TMT-based quantitative proteomic analysis, as
outlined in Figure 1A. Based on previous literature, we opted
to use caffeine concentrations within normal physiological
consumption.[12,26] Whole-cell lysates in biological duplicates
were digested with trypsin. Using LC–MS/MS and followed
by bioinformatic analyses, we identified 44 597 peptides corre-
sponding 5832 proteins with more than two peptides in more
than two sets of pooled lysates from at least three biological sam-
ples per condition. The caffeine-treated group had 5821 identified
proteins with high expression, while the control group had 5808

(Figure 1B). We then performed functional categorization of the
proteins to check whether our quantitative proteomic analysis
was biased by any cellular compartments or biological process-
related proteins using Panther software.[27] All the identified
proteins can be categorized into 14 cellular processes, including
cellular process, metabolic process, cellular component organi-
zation of biogenesis, localization, biological regulation, response
to stimulus, developmental process, multicellular organismal
process, biological adhesion, immune system process, locomo-
tion, reproduction, growth, and cell killing, indicating that this
proteome reveals major biological functions of bladder epithelial
cells in normal physiology (Figure 1C). In addition to this, we
examined the cellular localization of the detected proteins, which
showed significant enrichment of eight cellular compartments,
including cell part, organelle, macromolecular complex, mem-
brane, extracellular region, cell junction, synapse, and extracel-
lular matrix. (Figure S1, Supporting Information). Collectively,
our quantitative proteomic analysis identified a comprehensive
list of proteins in all cellular components and illustrated the
cellular functions of highly expressed proteins in normal bladder
epithelial cells.
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3.2. Whole Proteome in Bladder Epithelial Cells Perturbed by
Caffeine Treatment

Wedetermined which proteins were differentially expressed after
caffeine treatment. DEPs were selected for if they had an abso-
lute log2-fold change greater than 0.58 and p-value less than 0.05.
In total, we identified 32 upregulated and 25 downregulated pro-
teins between the control versus caffeine groups (Table 1 and 2;
Figure 2A). As shown in the volcano plot, some DEPs, including
PSMC6 (proteasome 26S subunit ATPase 6), RUFY1 (RUN and
FYVE domain containing 1), IARS (isoleucyl-tRNA synthetase),
MCU (mitochondrial calcium uniporter), NAV1 (neuron naviga-
tor 1), RARG (retinoic acid receptor, gamma), etc., were signif-
icantly increased with caffeine treatment, while ST13P4 (ST13,
Hsp70 interacting protein pseudogene 4), EIF5AL1 (eukaryotic
translation initiation factor 5A-like 1), WASH2P (WAS protein
family homolog 2 pseudogene), RBMS3 (RNA binding motif
single stranded interacting protein 3), etc. decreased (Figure 2B).
Next, to understand the function of the perturbed proteins, we

performed gene set enrichment analysis (GSEA) using the hall-
mark gene sets from the Molecular Signature Database.[28] As
a result, we found that the “glycolysis” and “PI3K/AKT/MTOR
signaling” gene sets were significantly enriched for by the differ-
entially expressed proteins (Figure 2C). We also checked the en-
richment of Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways in the same context and found that the “neurotrophin
signaling pathway” and “purine metabolism” were significantly
enriched for in caffeine-treated cells (Figure 2D). These results
suggest that caffeine may be stimulating the bladder epithelium
by altering the activation of the PI3K/AKT/MTOR pathway, neu-
rotrophin signaling, and purine metabolism.
In addition, we conducted separate functional enrichment

analyses on each of the 32 up- and 25 downregulated proteins
using DAVID.[25] The results suggest that upregulated DEPs
were significantly enriched for “actin-myosin filament sliding,”
“muscle contraction,” “purine nucleotide metabolic process,”
“ATP metabolic process,” “autophagy,” “response to external bi-
otic stimulus,” and “response to other organism.” Downregu-
lated DEPs were significantly enriched for “chromatin assem-
bly,” “DNA packaging,” and “cellular macromolecular complex
assembly” (Figure 3A). From this, we extracted the list of most
significantly upregulated DEPs belonging to “purine nucleotide
metabolic process”, “autophagy”, “muscle contraction”, and “re-
sponse to external biotic stimulus”. Additionally, significantly
downregulated DEPs for “chromatin assembly” are also listed
(Figure 3B and C).

3.3. Biological Effects of Caffeine Treatment on Immortalized
Normal Bladder Epithelial Cells

To evaluate the direct effects of caffeine on bladder epithelial cells
in vitro, we used TRT-HU1 cells in our study as described in
Section 2. After incubating the TRT-HU1 cells in varying con-
centrations of caffeine (0.005, 0.05, and 0.1 mm) for 24, 48, or
72 h, we sought to determine if caffeine affects or controls cell
proliferation and metabolism. We found that the cell prolifera-
tion rate of caffeine-treated TRT-HU1 cells was not significantly
altered, compared to controls (Figure 4A and B).

Table 1. List of upregulated proteins in bladder epithelial cells perturbed
by caffeine treatment.

Symbol Full name
Fold change
(log2) p-value

S100A8 S100 calcium binding protein A8 4.17759 0.000112

ST13 ST13, Hsp70 interacting protein 3.918705 0.000224

SERPINB3 Serpin family B member 3 3.553147 0.000559

SERPINB4 Serpin family B member 4 3.553147 0.000559

WASH3P WAS protein family homolog 3
pseudogene

2.327444 0.001342

POTEKP POTE ankyrin domain family
member K, pseudogene

2.210099 0.001565

RBMS1 RNA binding motif single
stranded interacting protein 1

2.032904 0.001789

KPRP Keratinocyte proline rich protein 1.526693 0.002124

S100A7 S100 calcium binding protein A7 1.4274 0.002236

TGM1 Transglutaminase 1 1.214751 0.002572

MYH7B Myosin heavy chain 7B 0.970592 0.003131

MYH3 Myosin heavy chain 3 0.970592 0.003131

MYH1 Myosin heavy chain 1 0.970592 0.003131

MYH7 Myosin heavy chain 7 0.970592 0.003131

MYH8 Myosin heavy chain 8 0.970592 0.003131

MYH2 Myosin heavy chain 2 0.970592 0.003131

MYH13 Myosin heavy chain 13 0.970592 0.003131

MYH4 Myosin heavy chain 4 0.970592 0.003131

MYH7B Myosin heavy chain 7B 0.970537 0.004025

MYH3 Myosin heavy chain 3 0.970537 0.004025

MYH1 Myosin heavy chain 1 0.970537 0.004025

MYH7 Myosin heavy chain 7 0.970537 0.004025

MYH8 Myosin heavy chain 8 0.970537 0.004025

MYH2 Myosin heavy chain 2 0.970537 0.004025

MYH13 Myosin heavy chain 13 0.970537 0.004025

MYH4 Myosin heavy chain 4 0.970537 0.004025

H2BFS H2B histone family member S 0.895712 0.005255

S100A9 S100 calcium binding protein A9 0.871394 0.005367

UVRAG UV radiation resistance associated 0.738812 0.00559

SULT1A4 Sulfotransferase family 1A
member 4

0.665067 0.005814

SULT1A1 Sulfotransferase family 1A
member 1

0.665067 0.005814

UCHL1 Ubiquitin C-terminal hydrolase L1 0.622981 0.006261

MAGI3 Membrane-associated guanylate
kinase, WW and PDZ domain
containing 3

0.615023 0.006373

KRT74 Keratin 74 0.598941 0.006485

KRT73 Keratin 73 0.598941 0.006485

ACTA2 Actin, alpha 2, smooth muscle,
aorta

0.598824 0.006708

LRRC8E Leucine rich repeat containing 8
VRAC subunit E

0.594574 0.00682

KRT74 Keratin 74 0.594473 0.006932

KRT73 Keratin 73 0.594473 0.006932

KRT74 Keratin 74 0.594472 0.007156

(Continued)
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Table 1. Continued.

Symbol Full name
Fold change
(log2) p-value

KRT73 Keratin 73 0.594472 0.007156

FLCN Folliculin 0.592834 0.007379

KRT74 Keratin 74 0.589943 0.007491

KRT73 Keratin 73 0.589943 0.007491

CPNE6 Copine 6 0.587267 0.007715

CPNE4 Copine 4 0.587267 0.007715

To examine the effects of caffeine on cell metabolism, we per-
formed Seahorse respirometry analysis. Caffeine treatment over
a 12-h period did not alter the OCR (mitochondrial respiration)
or ECAR (glycolysis) in TRT-HU1 cells (Figure 4C). Briefly, basal
OCR and ECAR measurements (first three time points) were
monitored before caffeine (0.05 mm) or vehicle (methanol) was
administered. OCR and ECAR continued to be monitored up
to 12 h post treatment. Nontreated cells (media administration
only) were included to control for any effects of the cells being
in the analyzer for an extended period (Figure 4C). We could not
detect any changes in both the OCR and ECAR, even after a 12-h
treatment with 0.05 mm caffeine. Additional western blot anal-
ysis demonstrated that expression of ACTG2 and HIST1H2BM
was reduced in the 0.05 mm caffeine-treated cells, while ex-
pression of ACTA2, MYH2, and MYH7B was upregulated. The
expression of histone H2B and ACTB remained unchanged
(Figure 4D).

4. Discussion

Approximately 60% of adults in the United States consume cof-
fee or some other caffeinated beverage. Caffeine, a methylxan-
thine derived from coffee, is known to affect biological and phys-
iological responses. Low to moderate levels of caffeine intake
have been shown to benefit liver function, diabetes, neurologi-
cal diseases, such as Alzheimer’s and Parkinson’s, and certain
types of cancers. Caffeine is also known to increase urine cal-
cium excretion via translocation of annexin A1 from the apical
surface of cells into the cytoplasm. Therefore, caffeine intake is
considered to be associated with lower risk of kidney stones.[29]

A previous prospective study on the effects of caffeine in coffee
suggested that coffee reduction can be a strategy in preventing
urinary symptoms, such as frequency, urgency, and bladder pain
syndrome.[9]

The aim of this study was to evaluate if caffeine consump-
tion is associated with changes to protein expression in the nor-
mal bladder using semiquantitative proteomic analysis. While
there are reports about antilipid accumulation via gene ex-
pression suppression of proliferator-activated receptor ɣ and
CCAAT/enhancer binding protein α in 3T3-L1 adipocytes,[30] or
apoptosis induction in various cell lines, the direct effects of
caffeine on the bladder remains elusive. Although the amount
of caffeine in a cup of coffee varies, it is typically 300–600
mg. Using caffeine concentrations equivalent to typical coffee

Table 2. List of downregulated proteins in bladder epithelial cells perturbed
by caffeine treatment.

Symbol Full name
Fold change
(log2) p-value

ST13P4 ST13, Hsp70 interacting protein
pseudogene 4

−4.06184 0.000224

EIF5AL1 Eukaryotic translation initiation
factor 5A-like 1

−3.14456 0.000559

LOC102723897 – −2.27955 0.001453

WASH2P WAS protein family homolog 2
pseudogene

−2.27955 0.001453

RBMS3 RNA binding motif
single-stranded interacting
protein 3

−2.22487 0.001565

POTEI POTE ankyrin domain family
member I

−1.25276 0.004137

POTEJ POTE ankyrin domain family
member J

−1.25276 0.004137

HIST1H2BM Histone cluster 1 H2B family
member m

−1.07852 0.00436

DES Desmin −0.97497 0.004584

TENM1 Teneurin transmembrane protein
1

−0.87939 0.004919

ACTG2 Actin, gamma 2, smooth muscle,
enteric

−0.82627 0.005255

HIST1H2BD Histone cluster 1 H2B family
member d

−0.78302 0.006708

HIST1H2BC Histone cluster 1 H2B family
member c

−0.78302 0.006708

HIST2H2BF Histone cluster 2 H2B family
member f

−0.78302 0.006708

HIST1H2BH Histone cluster 1 H2B family
member h

−0.78302 0.006708

HIST1H2BN Histone cluster 1 H2B family
member n

−0.78302 0.006708

RPL29 Ribosomal protein L29 −0.73583 0.007044

RNF175 Ring finger protein 175 −0.71108 0.007267

TFAP2B Transcription factor AP-2 beta −0.65122 0.007715

DLG2 Discs large MAGUK scaffold
protein 2

−0.64864 0.007826

RAB3A RAB3A, member RAS oncogene
family

−0.62645 0.00805

ZDHHC13 Zinc finger DHHC-type containing
13

−0.60304 0.009951

EPHA6 EPH receptor A6 −0.60218 0.010063

PRC1 Protein regulator of cytokinesis 1 −0.59503 0.010174

MRPL34 Mitochondrial ribosomal protein
L34

−0.5944 0.010286

consumption (one to two cups), we performed unbiased pro-
teomic analysis using LC–MS/MS on bladder epithelial cells
treated with caffeine and identified 32 upregulated and 25
downregulated DEPs (log2-fold change > 0.58; p-value < 0.05;
Figure 1B; Table 1 and 2). These DEPs were enriched for func-
tions such as actin–myosin filament sliding, muscle contraction,
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Figure 2. Differentially expressed proteins (DEPs) perturbed by caffeine treatment. A) Pie chart showing the DEPs in presence of caffeine. B) A volcano
plot showing the up- or downregulated DEPs due to caffeine in bladder epithelial cells. Up- or downregulated DEPs are marked as red or blue dot.
C) GSEA plot of Hallmark gene set MsigDB (Glycolysis and PI3K/AKT/mTOR signaling). D) GSEA plot of KEGG pathway gene sets (Purine Metabolism
and Neurotrophin signaling pathway).

and chromatin assembly proteins (Figure 3A). Alterations to the
cytoskeleton and the proteins that interact with it have been
linked to a wide range of diseases.[31] Caffeine has similar ac-
tions with 5′ adenosine monophosphate-activated protein kinase
(AMPK), an enzyme whose roles include contraction during en-
ergy deprivation in skeletal muscles.[32] Among the proteins in-
volved in the enriched cellular functions, ACTG2, also known as

alpha smooth muscle actin, is associated with multiple functions
in cell motility, structure, integrity, and intercellular signaling.[33]

However, caffeine did not change any of the muscle-associated
stabilizing proteins, which regulate the number, or the length,
of microtubules.[34] This suggests that increased expression of
ACTG2 by caffeine in the bladder may enhance the contractility
of bladder and may also be associated with urinary symptoms.

Proteomics 2018, 18, 1800190 C© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1800190 (7 of 11)

http://www.advancedsciencenews.com
http://www.proteomics-journal.com


www.advancedsciencenews.com www.proteomics-journal.com

Figure 3. Differential enrichment of cellular processes by up- and downregulated proteins perturbed by caffeine. A) Bar plot showing enriched cellular
processes in up- or downregulated DEPs. B) List of proteins involved in the enriched cellular processed by upregulated DEPs. C) List of proteins involved
in the enriched cellular processed by downregulated DEPs. Proteins reported with cancer are in bold.

Our experimental data suggested that these proteins, such as
ACTG2 and HIST1H2BM, become more redundant in bladder
epithelial cells upon exposure to caffeine. Although the function
of HIST1H2BM as a regulator of caffeine and its effects has not
been studied well, it is originally known to be associated with epi-
genetic regulation in response to DNA methylation.[35]

In this study, we also found that the protein expression level of
membrane-associated guanylate kinase inverted 3 (MAGI3) was
upregulated in presence of caffeine in normal bladder cells. This
was further validated using western blot experiments. MAGI3
localizes to the tight junction in epithelial cells and has originally
been identified as a scaffolding protein and tumor suppressor
in gliomas and breast cancers. The previous investigations on
the role and molecular mechanism revealed that MAGI3 plays a
role in phospholipid signaling pathways and suppresses cancer
cell proliferation via upregulation of phosphatase and tensin ho-
molog (PTEN), a well-known tumor suppressor.[36] MAGI3 has
been found to interact with PTEN, via the PDZ domain of
MAGI3, and together contribute to regulation of the kinase

activity of AKT/PKB and tumor cell survival. Interestingly,
MAGI3 has been reported to be involved in the reduced cell pro-
liferation, arrests of the cell cycle, and inhibition of the migration
of glioma cells. Overexpression of MAGI3 resulted in a suppres-
sion of β-catenin’s transcriptional activity and inhibition the
expression of target genes such as Cyclin D1 in glioma cells.[36]

More interestingly, mysregulated or modified MAGI3 demon-
strated its different roles in cell proliferation and cancer. For
example, whenMAGI3 is found fused with AKT3, MAGI3-AKT3
contributes to a constitutive phosphorylation and activation of
AKT kinase and its downstream targets, such as GSK3b, in
breast cancer.[37] Premature cleavage and polyadenylation of
MAGI3, MAGI3pPA, was identified to result in an oncogenic
protein in breast cancer.[38] Given that overexpressed MAGI3 has
a functional link to the suppressed oncogenic characteristics, our
data support the hypothesis that caffeine might benefit in the
prevention of cancer, which is consistent with previous reports
showing that coffee consumption is inversely associated with
risk for various cancers, including prostate.[39]
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Figure 4. Cell proliferation was suppressed in response to caffeine treatment. (A and B) TRT-HU1, immortalized normal bladder epithelial cells, were
treated with 0.005, 0.05, and 0.1 mm caffeine for 24, 48, or 72 h. A) Cell counting and B) crystal violet proliferation assay were conducted as described in
Methods. *p < 0.05 (two-sided Student’s t-test) compared with the control group. Representative images of TRT-HU1 cells treated with caffeine (lower
panels). C) Seahorse data showed that caffeine treatment did not alter metabolism of normal bladder epithelial cells. Top, oxygen consumption rate
(OCR) chart *p < 0.05. Bottom, extracellular acidification rate (ECAR) chart ** p < 0.05. D) Quantification results from western blot analysis to measure
the expression levels of ACTG2, HIST1H2BM, ACTA2, MYH2, MYH7B, and histone H2B proteins in the presence or absence of caffeine. β-actin was
used loading control. The differentially expressed protein levels obtained from proteomics analysis were shown in table (right).
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There are several limitations in this study. We are aware that a
single proteomic study conducted on one cell line and MS plat-
form is not enough for conclusive statements on whether in vitro
protein perturbation due to caffeine can represent the same per-
turbation in vivo. Urinary caffeine levels can be quantified by ul-
tra high performance LC–MS/MS, and those levels are positively
associated with consumption frequency of coffee (area under the
curve= 0.849, 95% confidence interval [0.808;0.891]).[40] Also, we
conducted two biological replicates under each condition. In gen-
eral, a small number of replicates has low statistical power. How-
ever, we identified DEPs using an empirical null distribution esti-
mated by randomly permuted samples, which should reflect dis-
tribution of detected proteins. Furthermore, expression of some
DEPs was confirmed using western blot analysis (Figure 4C).
Despite these limitations, our experimental findings provide ev-
idence for the potential mechanisms through which caffeine in-
take is associated with LUTS, suggesting that the restriction of
caffeine may benefit muscle contraction and functional gene ex-
pression through impaired epigenetic regulation.
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Abstract

Background: Epidermal growth factor receptor (EGFR) overexpression is believed to be associated with bladder
cancer (BC) progression and poor clinical outcomes. In vivo studies have linked EGFR subcellular trafficking and
chemo-resistance to cisplatin-based chemotherapies. This has not been studied in the clinical adjuvant setting. We
aimed to investigate the prognostic significance of EGFR expression in patients receiving cisplatin-based adjuvant
chemotherapy following radical cystectomy for advanced BC.

Methods: The database from the Urology and Nephrology Center at Mansoura University was reviewed. BC patients
who were treated with radical cystectomy and adjuvant chemotherapy for adverse pathological features or node
positive disease were identified. Patients who underwent palliative cystectomy, had histological diagnoses other than
pure urothelial carcinoma, or received adjuvant radiotherapy were excluded from the study. Immunohistochemical
staining for EGFR expression was performed on archived bladder specimens. The following in vitro functional analyses
were performed to study the relationship of EGFR expression and chemoresponse.

Results: The study included 58 patients, among which the mean age was 57 years old. Majority of patients had node
positive disease (n = 53, 91%). Mean follow up was 26.61 months. EGFR was overexpressed in 25 cystectomy specimens
(43%). Kaplan-Meier analysis revealed that EGFR over-expression significantly correlated with disease recurrence
(p = 0.021). Cox proportional hazard modeling identified EGFR overexpression as an independent predictor
for disease recurrence (p = 0.04). Furthermore, in vitro experiments demonstrated that inhibition of EGFR may
sensitize cellular responses to cisplatin.

Conclusions: Our findings suggest that EGFR overexpression is associated with disease recurrence following
adjuvant chemotherapy for advanced BC. This may aid in patient prognostication and selection prior to
chemotherapeutic treatment for BC.
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Background
Bladder cancer (BC) is the second most common genito-
urinary malignancy and the fourth most common cancer
in the United States (U.S.). Over an estimated $4 billion/
year is spent on BC treatment annually in the U.S., mak-
ing BC one of the most expensive cancer treatments to
date [1–3]. Currently, BC is also the most common cancer
in Egyptian males, representing about 30% of all cancer
types [4]. Thus, BC is a major burden on the health ser-
vices and economic resources at an international level [5].
Despite the drastic decrease in the prevalence of schisto-
somiasis in Egypt due to nationwide anti-bilharzial cam-
paigns, there has been an increase in incidences of
bladder urothelial carcinoma. This could possibly be due
to smoking and carcinogenic chemical exposure [6, 7].
The gold standard therapy for patients with muscle-in-

vasive bladder cancer (MIBC) is radical cystectomy with
regional lymphadenectomy. Despite local aggressive
therapy, nearly half of patients eventually develop metas-
tasized tumors and, ultimately, die from the disease [8].
In an attempt to improve survival, integration of
systemic chemotherapy with surgical management has
been suggested to control micrometastasis [9]. However,
around 40% of patients receiving neoadjuvant chemo-
therapy are termed “non-responders”, with a complete
pathological down-staging rate of only 14–38% [10, 11].
MIBC patients who do not respond to adjuvant
chemotherapy generally have a poor prognosis [12]. The
incidence of BC recurrence following chemotherapy re-
mains high with a modest survival advantage of 5–15%.
Thus, there is an important and urgent need to identify
prognostic marker(s) that will identify patients who are
at risk and to better understand the functional contribu-
tion of potential predictive markers in aggressive BC.
Prior research has shown that epidermal growth factor

receptor (EGFR) overexpression has been associated with
BC progression and poor clinical outcomes [13, 14]. In
vivo studies have linked EGFR subcellular trafficking and
chemo-resistance in many tumor types [15, 16]. However,
this has not yet been studied in the clinical adjuvant
setting.
In this study, we aimed to investigate the prognostic

significance of EGFR expression in patients receiving
adjuvant chemotherapy. Our study was conducted on an
Egyptian cohort. Our findings suggest that EGFR protein
expression may be indicative of aggressive BC and these
expression patterns possibly involve direct action on sig-
naling pathways in BC cells.

Methods
Patients and tissue samples
All of the enrolled patients had been treated with similar
or identical regimens with at least four cycles of
cisplatin-based chemotherapy. Patients previously treated

with radical cystectomy and had completed adjuvant
chemotherapy for adverse pathological features or node
positive diseases were selected. Exclusion criteria were
applied to patients who underwent palliative cystectomy,
those with histological diagnosis other than pure transi-
tional cell carcinoma, and patients who received adjuvant
radiotherapy. Bladder tumors were staged according to
the 2002 TNM classification. Disease progression was de-
fined as newly diagnosed distant metastases with a ≥ 20%
increment increase in tumor mass following radical
cystectomy. Surgical tumor tissues were macro-dissected,
typically within 15 min of surgical resection. Each BC
specimen was confirmed as representative by analysis of
adjacent tissue in fresh frozen sections from radical
cystectomy specimens.

Reagents
Cisplatin was purchased from Sigma. Antibodies against
EGFR and β-actin were obtained from Cell Signaling
Technology (for Western blot analysis), Abcam (for IHC
analysis) and Santa Cruz Biotechnology. The ECL detec-
tion kit was from BioRad and New England Nuclear. All
other biochemical reagents were purchased from Sigma
or BD Biosciences.

Immunohistochemical staining
Immunohistochemical (IHC) analysis for EGFR expres-
sion was performed on archived bladder specimens. The
relationship of EGFR expression and clinical outcomes
was assessed. In vitro studies were performed to deter-
mine whether EGFR expression was associated with re-
sistance to chemotherapeutic reagents. Paraffin blocks
from 58 BC cases were used for immunohistochemical
analysis. Tissue sections were cut and placed on Super-
frost Plus microscope slides. Using the Benchmark XT
automated immunohistochemistry stainer (Ventana
Medical Systems, Inc., Tucson, AZ, USA), slides were
stained following typical procedure. Detection was done
using the Ventana Ultraview DAB Kit (Ventana Medical
Systems).
Sections were deparaffinized using EZ Prep solution.

CC1 standard (pH 8.4 buffer contained Tris/Borate/
EDTA) was used for antigen retrieval. DAB inhibitor (3%
H2O2, Endogenous peroxidase) was blocked for 4 min at
37 °C temperature. Sections were incubated with an
anti-EGFR (Cat # ab32077, Abcam Inc., San Diego, CA,
dilution 1/100) primary antibody for 40 min at 37 °C,
and then incubated with a secondary antibody of Universal
HRP Multimer for 8 min at 37 °C. Slides were then
incubated with DAB + H2O2 substrate for 8 min, followed
by hematoxylin and bluing reagent counterstain at 37 °C.
Reaction buffer (pH 7.6 Tris buffer) was used as the
washing solution. Staining intensity and proportion of
positively-stained cells were evaluated. Staining intensity
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was classified as follows: none (score 0), weak (score 1),
moderate (score 2) and strong (score 3). Each specimen
was examined and scored separately by two pathologists,
and discrepancies were discussed until agreements were
reached.

Cell culture and transfection
TCCSUP or T24 human BC cells were purchased from
American Type Culture Collection (ATCC, Manassas,
VA) and maintained in DMEM or RPMI1640 (Invitrogen,
Carlsbad, CA) with 10% FBS and 1% Penicillin/Strepto-
mycin at 37 °C under 5% CO2. The day before transfec-
tion, TCCSUP or T24 cells were trypsinized and counted.
Cells were plated in 6-well plate with approximately
6.25 × 105 cells per well in 2 ml of complete growth
medium. When cell density reached 80–90% confluence,
TCCSUP or T24 BC cells were transiently transfected
with 25-50 nM of small interfering RNAs (siRNAs) target-
ing EGFR (SignalSilence® EGF Receptor siRNA, Cell Sig-
naling #6482) using Lipofactamine 2000. For transfection
controls, empty (Ctrl) or non-target siRNAs (siCtrl) were
used.

Cell viability assay
Experiments were performed in 6-well plates after cell
density reached to about 90% (2 × 103/well). TCCSUP or
T24 cells were transfected with various constructs or siR-
NAs and cisplatin simultaneously for 48 h (siRNA added
2 h before cisplatin). Cells were then incubated with
cisplatin containing serum-free medium (RPMI1640

Strong (Score 3)

Modest (Score 2)

Weak (Score 1)

ND (Score 0)

Fig. 1 Representative figures showing IHC slides with different scores. Immunohistochemical staining for EGFR in BC tissue samples. Four
representative fields are shown after IHC staining with anti-EGFR (1:1000 dilution). Negative (Score 0), weak (Score 1), intermediate (Score 2), and
strong (Score 3). EGFR expression was observed in the cytoplasm, membrane, and/or nucleus in our BC specimens. The intensity of EGFR staining
was often heterogeneous within the same cancer tissue.

Table 1 Baseline characteristics of the patients in this study

Variables Incidence (SD or %)

Age mean (SD) 57 (6.6)

No. gender (%) Male 53(91.4)

Female 5 (8.6)

No. clinical T stage (%) T2 7 (12.1)

T3 30 (51.7)

T4a 18 (31.1)

T4b 3 (5.2)

No. pathologic T stage (%) TIS 1 (1.7)

T1 1 (1.7)

T2a 7 (12.1)

T2b 7 (12.1)

T3a 22 (37.9)

T3b 15 (25.9)

T4a 5 (8.6)

No. pathologic N status (%) N0 5 (8.6)

N1 14 (24.1)

N2 37 (63.8)

N3 2 (3.4)

No. lymphovascular invasion (%) Yes 45 (77)

No 13 (23)

No. strong EGFR expression (%) Yes 10 (17.2)

No 48 (82.8)
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or DMEM) for the indicated time. Cell viability was
determined using MTS reagents, as instructed by the
company’s protocol (Promega Corporation, Madison,
WI).

Statistical analysis
Univariate analysis with the Pearson chi-square was
performed to analyze associations between strong EGFR
expression and pT stage, pN stage, (N0 and greater than
N0) and lymphovascular invasion. A Kaplan-Meier
estimator curve with the log rank test and a Cox propor-
tional hazard model were used to test whether observed

response to chemotherapy predicted disease specific
survival.

Results
Baseline characteristics
The study included 58 patients. The mean age of the 57
patients who received adjuvant therapy was 57 ±
6.6 years, and the mean follow-up period was
26.61 months. A majority of patients had node positive
disease (n = 53, 91%). Forty-five patients (77%) had
lymphovascular invasion. Other baseline characteristics
of the patients are presented in Table 1.

Fig. 2 Cancer-specific survival in BC patients stratified by EGFR staining

Table 2 Cox proportional hazard model of overall survival predictors

Covariate Univariate Multivariate

HR (95% CI) P value HR (95% CI) P value

Age 1.41 (1.02–2.45) 0.029 1.34 (0.94–1.77) 0.056

Sex (M vs F) 1.88 (1.06–3.34) 0.048 1.48 (0.26–1.80) 0.479

EGFR expression
(strong vs negative/weak/moderate)

1.55 (1.30.-2.33) 0.002 1.38 (1.201–2.744) 0.004

Chemotherapy Regimen
(MVAC vs GemCis)

1.72 (0.84–3.75) 0.159

pT stage
(T2 or less vs greater than T2)

2.88 (1.92–3.99) 0.003 3.28 (1.54–4.62) < 0.001

pN stage
(N0 vs greater than N0)

2.31 (1.88–2.93) < 0.001 1.81 (1.23–2.74) < 0.001
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EGFR expression is negatively correlated with survival
To measure EGFR expression in our cohort, IHC
analysis was performed. IHC images were scored
from 0 (negative staining) to 3 (highest staining in-
tensity). Representative images are shown in Fig. 1.
Cox proportional hazard modeling identified EGFR
overexpression as an independent predictor for dis-
ease recurrence (OR, 1.38 (1.201–2.744), p = 0.004)
in the Egyptian cohort (Table 2). Kaplan-Meier ana-
lysis revealed that EGFR overexpression (score ≥ 2)

significantly correlated with disease recurrence (p =
0.021) (Fig. 2).

EGFR silencing alters cell proliferation, viability and
response to cisplatin-induced apoptosis
We further performed loss-of-function studies on
TCCSUP human BC cells to assess the biological role of
EGFR. EGFR was knocked-down using iRNAs and this
was subsequently confirmed via western blot analysis
(Fig. 3a). Silencing of EGFR did not induce a

a b

Fig. 3 EGFR expression is associated with drug sensitivity to cisplatin treatment. a, b TCCSUP cells were transiently transfected with varying doses
of siRNA against EGFR. Knockdown of EGFR with control and EGFR-targeted siRNAs shows that proliferation in TCCSUP BC cells decreases in a
dose-dependent manner (siEGFR_1, siEGFR_2, siEGFR_3). Cell proliferation assay was performed at the indicated time points (0, 6, 16, 36, or 48 h
after transient transfection with siRNAs) using MTT assay at the varying time points. *p < 0.05 (Student’s t-test)

a b

Fig. 4 Knockdown of EGFR suppresses recovery from cisplatin treatment. a EGFR silenced TCCSUP cells (siEFGR) or control TCCSUP cells (siCtrl)
were challenged with cisplatin treatment. TCCSUP cells were incubated with cisplatin (10 µM) and siRNAs for 48 h and then re-treated with
cisplatin alone for an additional 6 h. After, the cisplatin was removed from the culture media and cells were incubated in normal growth medium
for 24 h. b Cell viability was measured using MTT assay. Cell viability levels of three wells of transfected cells were determined. The graph was
plotted as %, compared to control, no cisplatin treatment in siCtrl group (± SD). *P < 0.05 (Student’s t-test). All experiments were done in at
least triplicates
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morphological switch. However, in vitro functional ana-
lysis demonstrated that EGFR expression levels can alter
cell proliferation rates in TCCSUP BC cells. A dose
dependent transfection of EGFR siRNAs (siEGFR_1, _2,
or _3) revealed that EGFR deficiency evoked an approxi-
mately 50% decrease in cell proliferation (Fig. 3b). This
data implicates that EGFR loss as an important mechan-
ism through which BC cells keep proliferating.
We next assessed whether loss of EGFR expression

can result in cell viability responses in relation to the ef-
fects of cisplatin and whether inhibition of EGFR can
enhance the sensitivity of BC cells to cisplatin. We found
that EGFR expression is associated with resistance to
cisplatin-induced cytotoxicity. EGFR knockdown delayed
cell recovery from 10 μM cisplatin treatment (Fig. 4).
Viability of control cells (siCtrl) in serum-free medium

was compared with or without a challenge by 10 μM
cisplatin. Cell viability assay revealed that silencing of

EGFR sensitized TCCSUP BC cells to cisplatin treatment.
Knockdown of EGFR was validated by western blot ana-
lysis (Fig. 4a). Cells transfected with EGFR siRNAs showed
around 50% viability after cisplatin treatment compared to
control TCCSUP cells (siEGFR). Removal of cisplatin from
the culture medium of control cells resulted in 100% re-
covery of cell viabilitya (siCtrl) (Fig. 4b).
We next sought to determine whether gene silencing

of EGFR might also increase drug sensitivity to cisplatin.
TCCSUP BC cells were transfected with EGFR siRNAs
or control siRNAs for 48 h. Immunoblotting confirmed
that EGFR expression was significantly reduced in
siEGFR-transfected cells (Fig. 5a). Interestingly, loss of
EGFR made TCCSUP cells more sensitive to
cisplatin-induced cell apoptosis, leading to reduced cell
viability. TCCSUP cells were ~2x more sensitive to 5 or
10 μM cisplatin treatments (Fig. 5b). These results were
further validated in T24 BC cells (Fig. 5c-d). These

a b

dc

Fig. 5 Gene silencing of EGFR enhances drug sensitivity to cisplatin treatment. (a and b, TCCSUP; c and d; T24) Transiently transfected TCCSUP
(a) or T24 (c) cells with siRNA of EGFR were treated with cisplatin (0, 1, 5 and 10 μM). Cisplatin was added together with siNRA for 48 h and then
re-treated with cisplatin. Cell viability was measured by MTS assay after 2 days. Overexpression of siEGFR, but not a control siRNA, in TCCSUP (c)
or T24 (d) cells reduced cell proliferation (Student’s t-test, *p < 0.05)
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findings suggest that EGFR knockdown not only sup-
presses the recovery of BC cells from cisplatin-reduced
cell viability but also enhances the sensitivity of BC cells
to cisplatin’s cytotoxicity.

Discussion
Systemic chemotherapy is currently being used as the
first line of treatment in advanced stages of BC. How-
ever, it is still unclear which group of patients will bene-
fit and which patients will be more sensitive to
cisplatin-based therapy. Our findings suggest that EGFR
overexpression is associated with disease recurrence fol-
lowing adjuvant chemotherapy for advanced BC [17, 18].
Determining EGFR expression status may help predict
prognoses and assist in deciding which patients would
best benefit from adjuvant chemotherapy. Our findings
also suggest that patients with higher EGFR expression
may have a worse prognosis than those with little to no
EGFR expression. An evaluation of intratumoral molecu-
lar marker(s) could be used to identify BC patients more
likely to respond to cisplatin-based chemotherapy.
These findings align with previous studies showing

that approximately 50% of BC tumor tissues overexpress
EGFR and that EGFR positivity indicates more invasive
cells and poor differentiation [13, 14]. However, the
mechanisms through which BC tumors acquire cisplatin
resistance are still elusive. Our results suggest that EGFR
silencing may enhance cisplatin’s capability to shrink tu-
mors. This observation highlights the potential of EGFR
targeting strategies (e.g., kinase inhibitors or EGFR neu-
tralizing antibodies such as gefitini, erlotinib, trastuzu-
mab, cetuximab, matuzumutab, panitumumab et al.) to
improve the effects of cisplatin-based chemotherapy. Re-
cent reports have demonstrated that a subgroup of
muscle-invasive bladder carcinomas with a basal-like
phenotype are sensitive to EGFR kinase blockers, such
as erlotinib [19, 20]. Rebouissou et al. identified a sub-
group of aggressive MIBC, which shows a basal-like
phenotype using their 40-gene expression classifier. In
this BC subgroup, the EGFR pathway was highly
activated, suggesting that anti-EGFR therapy could be
used as a powerful therapeutic strategy [21, 22].
EGFR-targeted agents have only shown modest success
due to acquired resistance in current ongoing clinical
trials. Therefore, comprehensive clinical studies using
EGFR-targeting in combination with other therapies
would be more attractive.

Conclusions
Many questions regarding EGFR silencing strategies re-
main unanswered. For example, what signaling cascades
are modulated by high EGFR expression? How can these
be regulated pharmacologically? Will BC cells obtain re-
sistance to cisplatin? Can cells become resistant to EGFR

silencing? In this study, our experimental results present
EGFR as a marker of recurrence in Egyptian BC patients.
Further studies are needed to better understand the regu-
latory mechanisms of EGFR overexpression and its down-
stream signaling pathways in BC, particularly in the
context of squamous cell carcinoma (SCC) and transi-
tional cell carcinoma (TCC). Our findings also suggest
that elucidating some of these facets of EGFR and BC drug
resistance might improve pharmacologic intervention.
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Centromere protein F (CENPF), a microtubule binding protein, modulates cancer
metabolism by regulating pyruvate kinase M2 phosphorylation signaling
Muhammad Shahida, Min Young Leeb, Honit Piplanic,d, Allen M. Andresc,d, Bo Zhoua, Austin Yeona, Minjung Kime,
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ABSTRACT
Prostate cancer (PC) is the most commonly diagnosed cancer in men and is the second leading
cause of male cancer-related death in North America. Metabolic adaptations in malignant PC cells
play a key role in fueling the growth and progression of the disease. Unfortunately, little is known
regarding these changes in cellular metabolism. Here, we demonstrate that centromere protein
F (CENPF), a protein associated with the centromere-kinetochore complex and chromosomal
segregation during mitosis, is mechanically linked to altered metabolism and progression in PC.
Using the CRISPR-Cas9 system, we silenced the gene for CENPF in human PC3 cells. These cells
were found to have reduced levels of epithelial-mesenchymal transition markers and inhibited cell
proliferation, migration, and invasion. Silencing of CENPF also simultaneously improved sensitivity
to anoikis-induced apoptosis. Mass spectrometry analysis of tyrosine phosphorylated proteins
from CENPF knockout (CENPFKO) and control cells revealed that CENPF silencing increased
inactive forms of pyruvate kinase M2, a rate limiting enzyme needed for an irreversible reaction
in glycolysis. Furthermore, CENPFKO cells had reduced global bio-energetic capacity, acetyl-CoA
production, histone acetylation, and lipid metabolism, suggesting that CENPF is a critical regulator
of cancer metabolism, potentially through its effects on mitochondrial functioning. Additional
quantitative immunohistochemistry and imaging analyzes on a series of PC tumor microarrays
demonstrated that CENPF expression is significantly increased in higher-risk PC patients. Based on
these findings, we suggest the CENPF may be an important regulator of PC metabolism through
its role in the mitochondria.
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Introduction

Prostate cancer (PC) remains a major public
health concern; it is the most common malignant
neoplasia among men and is the 6th leading cause
of cancer-related male mortality worldwide [1]. In
the U.S., there are more than 200,000 newly diag-
nosed cases and nearly 40,000 deaths from PC
annually. The current standard methods of diag-
nosing and monitoring PC involve testing the
levels of prostate specific antigen (PSA) and digital
rectal screening. However, recent studies have
reported that these procedures contribute little to
no reduction in overall PC mortality [2,3].

Proliferating PC cells generate the energy required
to support accelerated cell division by modulating its

metabolism. These cells exhibit increased glucose
uptake and lactate production [4,5]. Rapidly dividing
cells are able to convert glucose into lactate, regard-
less of oxygen availability, a phenomenon known as
aerobic glycolysis or the Warburg effect [2]. The
Warburg effect has been demonstrated to be a key
contributor of tumorigenesis and can be a target for
cancer therapy [6]. Many oncogenes and/or tumor
suppressor genes have been reported to be involved
in the metabolic switch towards aerobic glycolysis.
For instance, oncogenes AKT [7], c-Myc [8], Ras [9],
and HIF-1α [10] promote the Warburg effect;
whereas tumor suppressors p53 and PTEN inhibit
it [11,12]. Epithelial-mesenchymal transition (EMT)
also plays a pivotal role in the development of meta-
static castration-resistant prostate cancer (mCRPC)
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[13] and chemoresistant PC [14]. However, current
understandings of the dynamic metabolic changes
underlying EMT are limited.

Centromere protein F (CENPF), which is
located on chromosome 1q41, encodes for
a protein that acts as part of the centromere-
kinetochore complex and is a component of the
nuclear matrix during G2 of interphase [15]. As
a regulator of chromosome segregation, CENPF is
expressed in a cell cycle-dependent manner; it
gradually accumulates during the cell cycle,
reaches peak levels in the G2/M phase, and then
degrades upon completion of mitosis [16]. CENPF
is upregulated in PC and plays an important part
in malignant progression [17,18]. Interestingly,
CENPF also significantly enhances chemothera-
peutic sensitivity [19]. It was recently observed
that CENPF and forkhead box M1 (FOXM1)
cooperate together, acting as synergistic master
regulators of malignancy in PC [20].
Furthermore, COUP transcription factor 2
(COUP-TFII) may be promoting metastasis in
PC through the CENPF signaling pathway [21].

In this study, we aimed to determine the func-
tional role of CENPF and its underlying mechan-
ism in PC progression. Our experimental results
showed that silencing CENPF expression signifi-
cantly inhibited EMT, cell proliferation, and col-
ony formation, while also enhancing global
phosphorylation and sensitivity to anoikis-
induced apoptosis. Additional proteomics and
computational analysis demonstrated that
CENPF may regulate cancer cell metabolism
through the phosphorylation of pyruvate kinase
M2 (PKM2). Moreover, Seahorse Respirometry
revealed that CENPF loss leads to a general
decrease in metabolic activity in PC cells, which
is characterized by reduced respiration and gly-
colysis. In summary, we propose CENPF as
a novel target protein, providing a potential effec-
tive paradigm in curing PC.

Materials and methods

Cell culture and cell lines

Human prostate cancer cell lines PC3, DU145,
and 22RV1 were purchased from American
Type Culture Collection (ATCC, Manassas,

VA, USA) and were cultured in 10% fetal
bovine serum (FBS)/Dulbecco’s Modified Eagle
medium (DMEM) or RPM1640 medium. Cells
were maintained in humidified incubators set at
37°C with 5% CO2. A CENPF-knockout PC3
cell line (CENPFKO) was constructed using the
CRISPR/Cas9 system by ALSTEM, LLC
(Richmond, CA). The combination of two
gRNAs (GTTTCAGCTTGACAGTCTCG and
CATTATTGACAGAGAAGTGC) targeted the
deletion of an 85 bp fragment in the exon1-
intron1 junction, with 32 bp of this deletion
fragment in the exon1 and 54 bp deleted in
intron. For transient transfection of cells with
a CENPF-expressing construct or siRNA
CENPF (ThermoScientific), we followed the
previously established protocol using
Lipofectamine 2000 (Invitrogen), according to
the manufacturer’s instructions [22]. All cell
lines were confirmed and tested for myco-
plasma every 6 months during the experimental
period.

Antibodies and reagents

The following antibodies were used: β-Actin
(A1978) from Sigma, E-Cadherin (610182),
Phosphotyrosine (610000) from BD
Transduction Laboratories, ACSS2 (PA5-52059)
from ThermoFisher Scientific, ALDH7A1
(ab154218), CENPF (ab5), and OXPHOS
(ab110413) from Abcam, and Tom40
(sc365467) from Santa Cruz Biotechnology,
phospho-mTOR (2971), phospho-β-catenin
(9564), phospho-p38 MAPK (9216), phospho-
PAK1 (2601), phospho-NF-κB (3033), TCF8/
ZEB1 (3396), phospho-PKM2 (3827), PKM2
(4053), Snail (3879), N-cadherin (13116),
MMP2 (13132), MMP9 (13667), Slug (9585),
phospho-p70 S6 Kinase (9206), phospho-Src
Family (2101), Phospho-p44/42 MAPK (Erk1/2)
(Thr202/Tyr204) (4370), β-Catenin (8480),
Cleaved-PARP (9541), and Fatty acid and Lipid
Metabolism Antibody Kit (8335), Acetyl-Histone
Antibody Kit (9933), Tight Junction Antibody
Kit (8683) and HRP-conjugated secondary anti-
bodies (7074, 7076) from Cell Signaling
Technology.
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Proliferation assay

Cell proliferation was analyzed using trypan blue
staining. Cells were seeded onto 6-well culture
plates (2x102 cells/well) and cultured for 24 hrs.
Each well culture was maintained and incubated
for 2 d. The medium was replaced every day. The
results are presented as the percentage of viable
cells relative to that of the control.

Two-dimensional (2D) and three-dimensional
(3D) colony formation assay

The growth capability of CENPFKO and control
cells was examined using 2D colony formation
assays. Approximately 500 controls and
CENPFKO cells were seeded onto separate 15 cm
culture plates. After incubation at 37°C for 14 d,
the cells were washed with PBS twice, fixed with
methanol and then stained with 0.1% crystal violet.
The number of colonies containing >30 cells was
counted under the microscope. Anchorage-
independent growth was measured through a 3D
colonization assay. Cells were seeded at 1 × 104 in
3 ml 0.35% agar in DMEM/FBS, overlaid on 2 ml
of 0.7% agar in DMEM/FBS, in six-well plates.
Plates were incubated for up to 14 d and cells
were fed every 3–4 d. After two weeks, the plates
were stained with MTT and the number of colo-
nies that developed within each well was counted
and visualized under a microscope. Colonies that
were comprised of more than 10 cells were scored
as positive. Experiments were run in triplicate for
each cell line and data are representative of three
independent trials.

Wound-healing assay

For the wound-healing migration assay,
CENPFKO and control cells were seeded on
6-well plates at a density of 1 × 105 cells/well in
culture medium. After 24 hrs post seeding, the
confluent monolayer of the culture was scratched
with a fine pipette tip and migration capacity was
visualized under a microscope. The rate of wound
closure was observed for an additional 24 hrs
during incubation.

Anoikis assays

Cells (5 × 105) were plated onto poly-HEMA-
coated six-well plates (Corning, Tewksbury, MA,
USA) in growth medium to prohibit attachment.
After 24, 48 and 72 hrs in suspension, cells were
transferred onto regular cell culture plates in
growth medium supplemented with FBS (1%) to
aid attachment. Cells were incubated for 0, 1, 2,
and 3 hrs prior to the MTT assay (no. G4100,
Promega, Madison, WI, USA). Absorbance was
read using a microplate reader
(Tecan, Männedorf, Switzerland). Experiments
were repeated three times.

Western blot analysis

Cells were lysed with RIPA buffer (20 mM Tris,
150 mM NaCl, 1% Nonidet, P-40, 0.1 mM EDTA)
(Pierce, ThermoFisher) supplemented with
a phosphatase inhibitor cocktail (ThermoFisher).
The protein concentration of each sample was
measured using the Bradford Protein Kit Assay,
according to the manufacturer’s instructions
(Pierce, Thermofisher). Equal amounts of protein
extract were separated via SDS-PAGE and trans-
ferred onto a PVDF membrane. The membranes
were then blocked with 5% bovine serum albumin
or 5% nonfat milk in TBST buffer [2.42 g/L Tris–
HCl, 8 g/L NaCl, and 1 mL/L Tween 20 (pH 7.6)]
and incubated overnight at 4°C with specific pri-
mary antibodies in TBST. The membranes were
then incubated with secondary antibodies conju-
gated with horseradish peroxidase. β-actin was
used as an internal control.

Immunohistochemistry (IHC) analysis

Two independent commercial PC tissue microar-
rays (TMAs) were purchased from US Biomax
(Derwood, MD). Detailed information was not
available except sex, TMN, grade, and stages.
TMAs were immunestained with mAb CENPF,
according to the manufacturer’s recommended
protocol. Immunostaining was considered positive
when more than 10% of all tumor cells were
immunoreactive. For quantification, the TMAs
were scored for IHC intensity by two independent
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investigators. Tumors that showed no positive
staining were given a score of 0, those with weak
staining were given a score of 1, and tumors with
strong IHC staining were given a score of 2.

Acetate measurement assay

The acetate colorimetric assay kit (BioVision,
Milpitas, CA) was used according to the instruc-
tions provided. The reaction was incubated at
room temperature for 40 min. Acetate fluores-
cence (absorbance at 450nm) was measured using
a POLARstar Galazy fluorometer in a 96-well
plate.

Free fatty acid (FFA) and cholesterol
quantification

Quantification of FFAs and cholesterol were deter-
mined using the Free Fatty Acid Quantification Kit
and Cholesterol Quantification Kit (FFA: MAK044
and Cholesterol: MAK043, Sigma MO, USA).
Briefly, cells were lysed in 1% Triton X-100 in
chloroform (w/v). The samples were centrifuged
at 13,000 × g for 10 min to remove insoluble
debris. The organic phase was collected and air
dried in a 50°C dry bath for 20 min. Samples
were vacuum dried for 30 min to remove traces
of chloroform. The dried lipids were resuspended
via vortex in fatty acid assay buffer and further
quantified, using the manufacturer’s instructions.

Global proteomics

All chemicals used for preparation of liquid chro-
matography-tanden mass spectrometry (LC-MS/
MS) samples were of at least sequencing grade
and were purchased from Sigma-Aldrich, unless
otherwise stated. Whole protein was extracted
from CENPFKO and control cells using 4% SDS-
containing buffer. Protein concentration was mea-
sured with the Pierce 660nm Assay Kit. From each
sample, 60 μg of protein was digested with trypsin,
using FASP, and labeled with TMT6plex reagents
in parallel. After TMT labeling, peptides were
merged, desalted with C18, and fractionated by
high-pH reverse phase liquid chromatography
(RPLC). Peptides were sequenced and quantified
by LC-MS/MS. Database searching and

quantification were performed using Proteome
Discoverer (v2.1). A standard false discovery rate
of 1% was applied to filter peptide-spectrum
matches, peptide identifications, and protein iden-
tifications. Next, data was normalized in the
Proteome Discoverer environment, assuming that
the total peptide amount in each different sample
was the same. In addition, TMT126-labeled sam-
ples wereselected as a reference channel and ratios
between samples were computed by Proteome
Discoverer [23]. The fold-changes between
CENPFKO and parent PC3 cells were determined
as the average ratios of the three TMT tags for each
group. The significance of the differential abun-
dances between the two groups was computed
using Welch’s t-test on the scaled abundances and
Benjamini-Hochberg (BH) procedure for multiple
testing corrections. Differentially expressed pro-
teins (DEPs) were identified by applying
a threshold of BH FDR ≤ 0.01 and ratio ≥ 1.5.

Phosphoproteomics

Proteins were eluted from p-Y conjugated beads
and resolved by a quick separation (5–6mm
height) in a 12% SDS-PAGE gel. Upon in-gel
reduction, alkylation, and trypsin digestion, the
tryptic peptides were extracted and reconstituted
in 0.2% formic acid. The peptides were then
separated in a 15 cm EASY-Spray C18 column
and analyzed on a LTQ Orbitrp Elite Mass
Spectrometer (Thermo Scientific). Up to 20 colli-
sion-induced dissociation (CID) spectra were
acquired per survey scan in the rapid CID scan
mode. The raw MS/MS spectra were searched
against the Uniprot Human Database (released
on 01/22/16, including 20,985 sequences) with
MaxQuant (v 1.5.2.8) and Andromeda.
A stringent 1% false discovery rate was set for
peptide and protein identifications [24].

Network analysis

We identified gene ontology biological processes
(GOBPs) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways represented by the
DEPs using DAVID [25]. The significance of terms
was determined at a BH FDR ≤ 0.1. To delineate the
associations of enriched biological functions and
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DEGs, a network model was constructed using
HitPredict, a database of experimentally determined
protein-protein interactions [26]. The database
update version, 04Jul2017, was downloaded and
only high confidence interactions among genes
involved in the selected terms were parsed for the
network construction. Genes involved in the same
biological functions were grouped into the same
module, each of which was labeled by their corre-
sponding GOBP and KEGG pathway terms. The net-
work was visualized using Cytoscape (v. 3.2.1) [27].

Seahorse respirometry assay

CENPFKO and control PC3 cells were seeded into
a 24-well Seahorse culture plate at a density of
50,000 cells/well 24 hrs before the Seahorse assay.
The media was then changed to a XF Base Medium
(pH 7.4) supplemented with 10 mM glucose, 1mM
sodium pyruvate and 1mM sodium glutamine. Cells
equilibrated for 1 hour in a non-CO2 incubator at
37°C before assay start. Chemical reagents (Sigma)
were used at final concentrations as follows: 1 μM
oligomycin – an ATP synthase inhibitor, 1 μM
(FCCP) carbonyl cyanide 4-(trifluoromethoxy) phe-
nylhydrazone – an uncoupling agent, and a mixture
of 0.5 μM antimycin A – a cytochrome C reductase
inhibitor and 0.5 μM rotenone – a complex
I inhibitor. Oxygen consumption rate (OCR) and
extracellular acidification rate was monitored dur-
ing the duration of the assay run. Results were
normalized to protein concentrations determined
by a BCA assay (Thermo Scientific).

Statistical analysis

Statistical analyses were performed using a two-
tailed Student’s t-test. For all experiments with
error bars, the standard deviation (SD) was calcu-
lated to indicate the variation within each experi-
ment, and values represent mean ± SD.
Differences were considered significant if p < 0.05.

Results

CENPF is associated with aggressive PC

To evaluate whether CENPF expression is asso-
ciated with cancer progression, we performed two

independent IHC imaging analyses using PC
TMAs, as described in Methods section. Using
commercial PC TMAs, we found that CENPF was
overexpressed in approximately 70% of call cases,
with an upward trend in tumors of higher grades
(III-IV) (Figure 1(a)). IHC analyses using 2 differ-
ent commercial TMAs revealed that CENPF was
expressed in approximately 60% and 50% of all
cases, respectively. We also found moderate stain-
ing in the normal prostate tissues and hyperplasia.
CENPF expression was considerably higher in PC
tissue compared to adjacent normal prostate tissue
from the same patient. Levels of CENPF expression
were also positively correlated to pathological stage
and grade (Figure 2(b)). This observation was con-
sistent with previous literature demonstrating
CENPF as part of a signature that distinguishes
biochemical recurrence and advanced cancer [28].
Collectively, the expression levels of CENPF in PC
tissue were significantly higher than that of normal
prostate tissue. These results point to the notion
that CENPF expression may be potentially asso-
ciated with PC progression.

CENPF loss reversed EMT in PC3 cells

To elucidate the role of CENPF in PC cells, CENPF
was stably knocked-out in PC3 cells using the
CRISPR/Cas9 system. These CENPF-knockout
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(a)

NAT           Malignant tumor (stage IV)
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Figure 1. CENPF expression is correlated with PC progression.
Two independent tissue microarrays (TMAs) were used. TMA
slides were stained with CENPF specific antibody (brown) and
counterstained with hematoxylin (blue). (a) The IHC images
represent adjacent normal prostate tissues (NAT) or tumors
from PC patients with different stages, as described in figures.
(b) Representative IHC images show the differential CENPF
protein levels.
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Figure 2. Knockout of CENPF reduces Epithelial-Mesenchymal transition (EMT) and slows proliferation of prostate cancer cells. (a)
Morphological changes between parental PC3 cells (Ctrl) and CENPF – knockout PC3 cells (CENPFKO) were observed. Representative
images were shown. (b) Western blot analysis demonstrated well-known EMT markers in Ctrl and CENPFKO cells. (c) Cell junction
markers were assessed by Western blot analysis. (d) Cell proliferation was determined by trypan blue staining and compared in Ctrl
and CENPFKO cells at 0, 24 and 48hrs. (e-f) Gene knockout of CENPF reduced colony formation ability in 2D (e) or 3D (f) settings. (g)
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(CENPFKO) cells were then carefully characterized
in the laboratory. There were some noted morpho-
logical alterations in the CENPFKO cells, compared
to the control PC3 cell line (Figure 2(a)). Western
blot analysis demonstrated that CENPF expression
was lost in the CENPFKO cells (Figure 2(b)).
Consistent with morphological changes, we found
that protein expression of mesenchymal cell mar-
kers, including N-cadherin (Figure 2(b)), snail, slug,
matrix metalloproteinase-2 (MMP2), MMP9, β-
catenin (Supplementary Figure 1), was significantly
reduced in CENPFKO cells, compared to control
cells [29,30]. E-cadherin, an epithelial marker, dra-
matically increased in CENPFKO cells (Figure 2(b)).
In addition, tight junction proteins (e.g. afadin,
claudin, and zonula occludens (ZO), such as ZO-2
and ZO-3), which are involved in cell-cell contact
regions [31], were also greatly reduced in CENPFKO

cells. This was consistent with the morphological
changes observed (Figure 2(c)).

Effects of CENPF silencing on the biological
outcomes of PC cells

We next sought to determine if CENPF plays any
major roles in controlling cell proliferation,
migration, invasion, and colony formation cap-
ability. In-vitro wound healing, migration, and
Matrigel invasion assays were conducted on
both PC3 CENPFKO and control cells. Starting
from day 2, the cell proliferation rate of
CENPFKO cells was significantly reduced com-
pared to controls (Figure 2(d)).

We further assessed the ability of the cells to
form colonies in the 2-dimensonal (2D) and
3-dimensional (3D) planes. These colony forma-
tion assays revealed that CENPFKO cells formed
very few colonies even after 2 wk of incubation
(2D, p < 0.0001) (Figure 2(e)). Anchorage-
independent cell proliferation was measured
with the 3D colony formation assay, and,

compared to control cells, CENPFKO cells showed
very low colony formation capacity (3D,
p < 0.003) (Figure 2(f)).

For the cell wound healing assay, a scratch was
inflicted on cell cultures once they reached 90%
confluence. We found that the wound healing
capability of CENPFKO cells was significantly
delayed than the control, suggesting that the
migratory ability of CENPFKO cells may be
impaired (Figure 2(g)). Knockout of CENPF also
increased PC3 cell death by anoikis, which is apop-
tosis that is induced when cells are unable to
attach to the extracellular matrix (ECM) [32].
Expression levels of cleaved PARP (c-PARP), an
apoptotic marker, were higher in CENPFKO cells
compared to controls (Figure 2(h)). This was con-
sistent with the cell viability assay results (Figure 2
(i)). Furthermore, a rescue experiment using
a CENPF construct showed that the effects of
CENPF knockout could be diminished by indu-
cing overexpression of CENPF (Figure 2(j)). In
addition, we found that CENPF plays the same
roles in DU145 PC cells, whose CENPF expression
levels were as redundant as PC3 cells (Figure 2(k)).
Colony formation capability (Figure 2(l)) and via-
bility (Figure 2(m)) were both significantly
decreased when CENPF was knocked-down in
DU145 cells. Collectively, these results indicate
that CENPF inhibition reverses EMT and sup-
presses the proliferative characteristics of PC
cells, while simultaneously enhancing anoikis-
induced apoptosis.

CENPF silencing alters the whole proteome to
promote signaling and glucose metabolism

Since there have been no previous proteomics studies
showing the biological function of CENPF in the
context of PC, we were prompted to understand the
whole proteome alterations caused by CENPF silen-
cing. In order to understand the mechanisms

Wound-healing assay showed the slower migration of CENPFKO cells, compared to Ctrl. Knockout in prostate cancer cell line. (h-i)
Anoikis-induced cell apoptosis was enhanced when CENPF was downregulated. (h) Western blot analysis showed that cleaved form
of PARK, an apoptotic marker, was increased in CENPF KO. (i) Levels of cell viability were measured by MTT assay after anoikis for 0,
1, 2, or 3h. All experiments were carried out in triplicate. (j) CENPF overexpression reversed the effects of CENPF knockout on cell
viability in response to anoikis. (k) The protein expression of CENPF was compared in PC3, DU145, and 22RV1 PC cells. (l-m)
Downregulation of CENPF reduced colony formation (l) and decreased cell viability in response anoikis (m) in DU145 cells. For all
Western blot analysis, β-actin was used as the loading control. Data are representative of at least three different experiments and are
expressed as the means ± SD.
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underlying CENPF function, we performed mass
spectrometry-based proteomics analysis, as described
in the Methods. Whole-cell lysates in biological tripli-
cates were digested with trypsin. Using LC-MS/MS,
we determined which proteins were differentially
expressed following CENPF knockout. In total, 549
DEPs were identified (adjusted p-value based on BH
procedure ≤ 0.01 and ratio ≥ 1.5) (Supplementary
Table 1), of which 130 were upregulated and 419
were downregulated, as shown in the volcano plot
(Figure 3(a)). We next conducted a functional gene
enrichment analysis of DEPs using the DAVID soft-
ware to understand the most perturbed pathways
based on previously reported GOBPs or KEGGs.
Significantly enriched GOBPs included “negative reg-
ulation of microtubule polymerization” and “canoni-
cal glycolysis” (Figure 3(b)). CENPF silencing
significantly enriched KEGG terms for “glycolysis/
gluconeogenesis” and various metabolic pathways
(Figure 3(c)). To further understand the changes in
relationships among biological networks, network
analysis was performed. Phosphorylation signaling
transduction pathways, various metabolisms (carbo-
hydrate, lipid, amino acids), adhesion, actin cytoske-
leton, and endocytosis pathways were clearly marked
as being highly enriched for by DEPs in CENPFKO

cells (Figure 3(d)). DEPs linked to fatty acid degrada-
tion were enriched as well (Figure 3(d)). Figure 3(e)
shows the top 10 enriched pathways and the DEPs
that belong to each term.

Silencing of CENPF impeded epigenetic
modulation of histone markers and lipid
synthesis in PC3 cells

We further defined the biological roles of CENPF
in PC3 cells. Fatty acid and lipid metabolism play
critical roles in energy maintenance and cellular
nutrition in cancer, particularly in PC [33,34].
Biosynthesis of fatty acids utilizes glucose and
exploits a pathway that is mainly controlled by
an enzyme, fatty acid synthase (FASN). Prior stu-
dies have presented evidence showing that FASN
is also associated with cell growth, survival, and
drug resistance in PC [33]. To test the hypothetical
link between CENPF levels and metabolic shifts in
PC, cholesterol and free fatty acid levels were
quantified in CENPFKO and control PC3 cells.
We found significant reduction in both cholesterol

and free fatty acid levels in the CENPFKO cells
(Figure 4(a,b)). We further measured the expres-
sion levels of genes related to fatty acid and lipid
synthesis in both cell lines. Expression levels of
long-chain fatty-acid-coenzyme A ligase (ACSL1)
[35], FASN [36], acetyl-CoA carboxylase (ACC),
and phosphorylation levels of ACC (p-ACC) [37]
were significantly decreased in CENPFKO cells
(Figure 4(c)). This data demonstrated that knock-
ing-out CENPF resulted in decreased expression of
lipid metabolism-associated proteins, as well as
intracellular concentrations of FFAs and
cholesterol.

In addition, we found that expression levels of
acyl-coenzyme A synthetase short-chain family
members 1 and 2 (ACSS1 and ACSS2), which are
key regulatory proteins for lipid synthesis and
energy generation, were also downregulated when
CENPF was silenced (Figure 4(d)). Western blot
analysis of CENPFKO cells showed that ACSS2
expression greatly decreased, while ACSS1 was
modestly downregulated, compared to controls
(Figure 4(d)). Interestingly, ACSS2 expression is
positively correlated with PC progression [38–40].
ACSS2 has been reported to mediate acetyl mod-
ification of histone proteins (histone acetylation)
and gene regulation through the generation of
acetyl-CoA [41]. Thus, we speculated that
CENPF is required for regulating acetate metabo-
lism and contributes to epigenetic modification
through its effects on histones via ACSS1 and/or
ACSS2 (Figure 4(e)). Our acetate measurements,
using a commercial kit, showed that acetate levels
in CENPFKO cells were almost completely dimin-
ished. We also evaluated for expression of acety-
lated histones in CENPFKO and control cells.
Western blot analysis found that expression levels
of key acetylated histones, including H2A, H2B,
H3 and H4, were significantly reduced in
CENPFKO cells (Figure 4(f)).

CENPFKO cells have a distinct tyrosine
phosphorylation profile

We next sought to profile the phosphorylation
events that occur when CENPF is knocked-out.
Just to get a general idea of the phosphorylation
statuses of specific signaling pathways modulated
by CENPF silencing, a series of western blot
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Figure 3. Silencing of CENPF perturbed proteome. (a) Unbiased global proteomics analysis was performed using CENPFKO cells and
Ctrl. The volcano plot shows the differentially expressed proteins. Green, upregulated; Blue, downregulated proteins in CENPFKO cells,
compared to Ctrl (b-c) Functional enrichment analysis of DEPs was performed using DAVID. GOBP- (b) or KEGG-based analysis (c), (d)
Network modeling suggested activation of phosphotyrosine signaling in PC cells. (e) The list of DEPs who belong to the 10 most-
enriched pathways.
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analyses were carried out on both CENPFKO PC3
cells and controls. We found that CENPF is
required for maintaining various phosphorylation
events that are important for PC progression.
Compared to control cells, the phosphorylation
levels of Src (Tyr416), β-catenin (Ser45), p21 acti-
vated kinase 1 (PAK1) (Thr423), and NF-κB
(Ser536) were elevated in CENPFKO cells (Figure
5(a)). In contrast, phosphorylation of Akt
(Ser473), extracellular signal-regulated kinase 1/2
(ERK1/2) (Thr202/Tyr204), S6Kinase (Thr389),
mTOR (Ser2448), and p38MAPK (Thr180/
Tyr182) decreased in CENPFKO cells compared
to controls. However, the total protein expression
levels remained unchanged (data were not shown)
(Figure 5(a)). Interestingly, western blot analysis
with anti-phospho-tyrosine antibodies revealed

that CENPFKO cells have stronger p-Tyr intensity
with distinct phosphorylation patterns (Figure 5
(b)), signifying that subduing CENPF increased
or changed patterns of tyrosine phosphorylation.

Tyrosine phosphorylation levels of pyruvate
kinase M2 (PKM2) were decreased in CENPFKO

cells

Although phosphorylation of tyrosine sites consti-
tutes less than a few percentage of all phosphor-
ylation events, we next attempted to specifically
focus on defining tyrosine phosphorylation events.
This was because previous findings have indicated
that phospho-tyrosine (pTyr) based phosphopro-
teomics can be utilized as a tool for measuring the
critical events needed for activating key kinases. In
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Figure 4. CENPF involved in epigenetic regulation of histone and lipid metabolism. (a) The histogram showed free fatty acid level.
(b) Cholesterol level between CENPFKO and Ctrl. (c) Western blot analysis showing long-chain fatty-acid-coenzyme A ligase (ACSL1),
acetyl-CoA carboxylase (ACC), phosphorylation level of ACC (p-ACC) and fatty acid synthase (FASN). (d) Both ACSS1 and ACSS2
expression are reduced in CENPFKO. (E) CENPFKO decreased the synthesis of acetate to Ctrl. (f) Western blot analysis of key acetylated
histone markers (H2A, H2B, H3, and H4) between CENPFKO and Ctrl. The data represent the mean ± standard deviation. A two-tailed
Student’s t-test was used to calculate statistical significance. β-actin was used as the loading control.
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Figure 5. CENPF reduce metabolism in prostate cancer cells. (a) Western blot analysis of key signal transduction proteins. (b)
Western blot analysis of phospho-tyrosine (pY) signaling was performed in CENPFKO cells and Ctrl. (c) A workflow including phospho-
tyrosine-enrichment by protein pull-down and LC–MS/MS illustrates the experimental design to identify the tyrosine phosphorylated
proteins specifically enriched in CENPFKO cells. (d) The 10 top proteins identified from B. (e) Representative MS spectrum of PKM2,
ENO1, MHY9, and VIM, which were identified in this study. (f) Phosphorylation of PKM2 at Y105 and non-phosphorylated form of
PKM2 were assessed by western blot analysis in CENPFKO cells and Ctrl. β-actin was used as the loading control.
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turn, this allows for better recognizing perturba-
tion of downstream signaling pathways [42,43]. To
further define tyrosine-phosphorylated proteins in
CENPFKO cells and controls, proteomics profiling
and bioinformatics approaches were applied.
Tyrosine-phosphorylated proteins were enriched
for target protein identification via mass spectro-
metry. This enrichment was done using p-Tyr, an
anti-phospho-tyrosine antibody coupled to agar-
ose beads. The coupled proteomic identification
was then carried out using LC-MS/MS (Figure 5
(c)). This procedure resulted in a list of candidate
proteins that may be biologically important for PC
progression. Figure 5(d) shows the top 10 proteins,
which included myosin-9, actin, PKM, alpha-
enolase, myosin-10, vimentin, phosphoglycerate
kinase 1, glyceraldehyde-3-phosphate dehydrogen-
ase, and 2 additional proteins without annotations.

PKM2 is known as a tumor-specific isoform
of pyruvate kinase (PK), the rate-limiting
enzyme during glycolysis, which catalyzes the
production of pyruvate and adenosine 5'-
triphosphate (ATP) from phosphoenolpyruvate
(PEP) and adenosine 5'-diphosphate (ADP)
[44]. The detected tandem mass spectrum of
PKM2 and other proteins (e.g. Enolase 1
(ENO1), myosin, heavy chain 9 (MHY9),
Vimentin (VIM)) are shown in Figure 5(e).
Additional western blot analysis confirmed that
phosphorylation levels of PKM2 at site Y105 sig-
nificantly increased in CENPFKO cells, while
expression of total PKM2 levels remained
unchanged (Figure 5(f)). Given prior findings
demonstrating that PKM2 activity is crucial for
aerobic glycolysis and that phosphorylation of
the Y105 site may inactivate PKM2 [45], our
data suggests that knockout of CENPF may be
inactivating PKM2 via Y105 site phosphorylation
and this may be associated with the biological
outcomes observed.

Both mitochondrial respiration and glycolysis are
downregulated in CENPFKO cells

Given that CENPF silencing leads to PKM2
inactivation, we hypothesized that CENPF can
regulate cancer-associated metabolism, such as
aerobic glycolysis and mitochondrial respiration.
To determine the effect of CENPF knockout on

PC energy shifts, we used the Seahorse XFe24
Analyzer [46]. Mitochondrial respiration was
profiled by measuring the oxygen consumption
rate (OCR), which can determine the changes in
levels of oxidative phosphorylation (OXPHOS)-
dependent ATP generation. Compared to the
control PC3 cells, CENPFKO cells had
a considerable decrease in OCR (Figure 6(a)).
Both the basal and maximum oxygen consump-
tion rates were significantly reduced; approxi-
mately 35% and 50%, respectively, of the
control rates were observed in CENPFKO cells
(Figure 6(b,c)). Extracellular acidification rate
(ECAR), which is an indicator of glycolysis,
also decreased in CENPFKO cells (Figure 6(d)).
Collectively, these experimental results suggest
that biogenesis was significantly reduced in
CENPFKO cells and that these cells were meta-
bolically quiescent, compared to controls.

We next examined whether CENPF regulates
mitochondrial quantity. Mitochondrial metabolic
respiration-associated proteins, including TOM40
(a central component of the translocase of outer
membrane (TOM) receptor complex in mitochon-
dria) and a series of mitochondrial oxidative phos-
phorylation (OXPHOS) proteins [47], were
measured via western blot analysis. The expression
levels of TOM 40, C I subunit (NDUFB8), C II
subunit (SDHB), C III core protein 2 (UQCRC2),
C IV subunit (I MTCO1), and C V alpha subunit
(ATP5A) decreased in CENPFKO cells (Figure 6
(e)). These findings suggest that CENPF abroga-
tion results in attenuated metabolism evidenced by
impaired mitochondrial ATP production and gly-
colysis. Furthermore, we tested whether the
increase in PKM2 phosphorylation can be reversed
when mitochondrial biogenesis is boosted by pio-
glitazone, a medication that is widely used for
diabetes [48,49]. Western blot analysis suggested
that pioglitazone treatment significantly decreased
CENPF knockout-induced tyrosine phosphoryla-
tion of PKM2 (Figure 6(f)).

Discussion

Since the discovery of evidence presenting that
perturbed metabolic pathways, such as oxidative
phosphorylation, glycolysis, and fatty acid bio-
synthesis, can suppress cancer cell growth,
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cancer metabolism has become an emerging field
[50–52]. In this study, a series of unbiased pro-
teomics and consecutive functional experiments
revealed that knocking-out CENPF impaired

mitochondrial functioning and signaling activa-
tion that is required for PC growth and metas-
tasis. We herein demonstrated that CENPF
knock-out can reverse EMT and suppress
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Figure 6. Silencing of CENPF decreased mitochondrial oxidative phosphorylation. The mitochondrial biogenetic activity was
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Student’s t-test was used to calculate statistical significance.
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metabolic rates by reducing OXPHOS and gly-
colysis, possibly through its effects on PKM2.

High levels of PKM2 are expressed in a variety
of human tumors, including lung, breast, and
colon cancer [53], and are reported to promote
the Warburg effect [44]. PKM2 exists as a low-
activity dimeric or high-activity tetrameric form,
and cancer cells predominantly express the low-
activity dimeric form with a reduced ability to
convert phosphoenolpyruvate to pyruvate [54].
Phosphorylation of PKM2 at Tyr105 is reported
to disrupt its active tetrameric form [45,55] and
reduce its catalytic activity. PKM2 phosphoryla-
tion at Tyr105 is known to impair PKM2’s enzy-
matic activity and ability to catalyze the formation
of ATP from ADP using a phosphate group from
2-phosphoenolpyruvate (PEP).

Our histone acetylation data suggested that meta-
bolic reprogramming influences histone acetylation
levels in PC (Figure 4(a)). Previous studies have
demonstrated the correlation between histone acet-
ylation levels and clinical outcomes, such as recur-
rence and patient survival, in various cancer types
[56]. Other studies have shown that elevated nuclear
levels of acetylated histone 2A.Z or decreased global
histone acetylation in PC was correlated to poorer
prognoses [52,57,58]. Although it is well-accepted
that histone acetylation has important roles in gene
regulation and DNA repair, the biological signifi-
cance of global histone acetylation levels and its
underlying effects on metabolic rewiring (e.g. how
histone modification regulates PC progression and
treatment response) remain elusive.

Since nuclear acetylation events are highly
dependent on the availability of acetyl-CoA, we
decided to survey acetate levels in our control
and CENPFKO PC3 cell lines. An acetate assay
showed decreased acetate levels in CENPFKO

cells, which was consistent with their histone acet-
ylation levels (Figure 4(b)). Lipogenic enzymes,
such as ACCS, are the primary enzymatic sources
of acetyl-CoA outside of the mitochondria. Several
studies have demonstrated that ACLY may also be
present in the nucleus and plays a crucial role in
regulating histone acetylation. However, our study
did not provide any evidence showing CENPF
affecting ACLY’s role in histone acetylation.

In summary, our study demonstrates that
CENPF, a centromere protein, is required for

PC progression through its effects on signaling,
glucose metabolism, and epigenetic regulation.
Improved understanding of whether a perturbed
metabolism precedes changes in epigenetic regu-
lation or vice versa could provide clues on the
cross talk that occurs between oncogenic meta-
bolic reprogramming and the epigenome. The
finding that the PKM2–mediated glucose meta-
bolism pathway is a key player in maintaining
mitochondrial function represents potential ther-
apeutic strategies against PC. Future functional
studies assessing the causative role of histone
acetylation with altered metabolism by CENPF
silencing are needed to further grasp how
CENPF regulates mitochondrial functioning dur-
ing metabolic and epigenetic changes in PC
progression.
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ABSTRACT: Urine metabolites are used in many clinical and biomedical studies
but usually only for a few classic compounds. Metabolomics detects vastly more
metabolic signals that may be used to precisely define the health status of
individuals. However, many compounds remain unidentified, hampering bio-
chemical conclusions. Here, we annotate all metabolites detected by two untargeted
metabolomic assays, hydrophilic interaction chromatography (HILIC)-Q Exactive
HF mass spectrometry and charged surface hybrid (CSH)-Q Exactive HF mass
spectrometry. Over 9,000 unique metabolite signals were detected, of which 42%
triggered MS/MS fragmentations in data-dependent mode. On the highest
Metabolomics Standards Initiative (MSI) confidence level 1, we identified 175
compounds using authentic standards with precursor mass, retention time, and MS/
MS matching. An additional 578 compounds were annotated by precursor accurate
mass and MS/MS matching alone, MSI level 2, including a novel library specifically
geared at acylcarnitines (CarniBlast). The rest of the metabolome is usually left
unannotated. To fill this gap, we used the in silico fragmentation tool CSI:FingerID and the new NIST hybrid search to annotate
all further compounds (MSI level 3). Testing the top-ranked metabolites in CSI:Finger ID annotations yielded 40% accuracy
when applied to the MSI level 1 identified compounds. We classified all MSI level 3 annotations by the NIST hybrid search
using the ClassyFire ontology into 21 superclasses that were further distinguished into 184 chemical classes. ClassyFire
annotations showed that the previously unannotated urine metabolome consists of 28% derivatives of organic acids, 16%
heterocyclics, and 16% lipids as major classes.

Metabolomics is used as one of the major -omics tools to
tackle the complex area of personalized medicine and

health.1 Target analysis of metabolites is an integral part of
clinical laboratories worldwide. Conversely, untargeted metab-
olomics provides comprehensive insights into complex
metabolomes and allows for discovery of novel biomarkers
and generating new metabolic hypothesis. Yet, untargeted
metabolomics is challenged by very low identification rates.2,3

Since there is no single platform capable of capturing the entire
metabolome of urine, we have employed two chromatographic
platforms that are highly suited for untargeted metabolome

analysis: hydrophilic interaction chromatography (HILIC; for
polar metabolite profiling) and charged-surface hybrid
chromatography (CSH, for lipidomics profiling). While lipids
are usually low abundant in (aqueous) urine samples, recent
technological advancements of high-resolution mass spectrom-
etry (MS) have largely improved the comprehensive lipid
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profiling of cells, tissues, and biofluids, including urine. Lipids
can serve as important biomarkers even in urine samples, for
example for prostate cancer4 or segmental glomerulosis.5

Combined, metabolomics and lipidomics reveal biologically
active metabolites in urine and provide a diagnostic chemical
signature of human metabolic phenotypes. The urinary
metabolome is associated with urological diseases, including
bladder dysfunctions such as interstitial cystitis/bladder pain
syndrome (IC).6−8 IC is characterized by chronic bladder and/
or pelvic pain, as well as nocturia and an increase in urinary
frequency and urgency.9−11 The work presented here
investigated how many urine metabolites from IC patients
could be identified, as defined by the Metabolomics Standards
Initiative (MSI),12 using freely available comprehensive
metabolite annotation tools, novel databases, and libraries
that were developed and used here for the first time.13

■ EXPERIMENTAL SECTION
Extraction. Subjects, urine specimen collection, and clinical

and pathological features of subjects were described in a
previous paper from our laboratory.14 Deidentified urine
samples were stored at −80 °C until further analysis. Urinary
lipids were extracted with methanol and methyl tert-butyl ether
both containing a cocktail of lipid standards.15 Water was
subsequently added for phase separation. This extraction
protocol extracts all main lipid classes in urine with high
recoveries, specifically phosphatidylcholines (PC), sphingo-
myelins (SM), phosphatidylethanolamines (PE), lysophospha-
tidylcholines (LPC), ceramides (Cer), cholesteryl esters
(CholE), and triacylglycerols (TG).16 Lipid standards were
purchased from Avanti Polar lipids (Alabaster, USA). After
concentrating extracts to complete dryness, samples were
reconstituted prior to LC-MS analysis as published before.17

Polar metabolites were retrieved by using the polar phase of
the lipid extraction procedure. Samples were dried in a
centrivap prior to a cleanup step of 50% acetonitrile and dried
again. Samples were reconstituted for HILIC-MS analysis in an
80:20 acetonitrile:water solution containing internal standards
from Sigma and CDN Isotopes.
Instrumentation. All measurements were carried out on a

Thermo Q Exactive instrument. For lipidomics measurements,
1 μL of diluted samples was separated on a Waters Acquity
UPLC CSH C18 column (100 × 2.1 mm; 1.7 μm) coupled to
an Acquity UPLC CSH C18 VanGuard precolumn (5 × 2.1
mm; 1.7 μm). The column was maintained at 65 °C with a
flow rate of 0.6 mL/min. The positive ionization mobile phases
consisted of (A) acetonitrile:water (60:40, v/v) with
ammonium formate (10 mM) and formic acid (0.1%) and
(B) 2-propanol:acetonitrile (90:10, v/v) with ammonium
formate (10 mM) and formic acid (0.1%). The negative
ionization mobile phases consisted of (A) acetonitrile:water
(60:40, v/v) with ammonium formate (10 mM) and (B) 2-
propanol:acetonitrile (90:10, v/v) with ammonium formate
(10 mM). The separation was conducted under the following
gradient: 0 min 15% B; 0−2 min 30% B; 2−2.5 min 48% B;
2.5−11 min 82% B; 11−11.5 min 99% B; 11.5−12 min 99% B;
12−12.1 min 15% B; 12.1−15 min 15% B. The Q Exactive MS
instrument was operated using positive mode electrospray
ionization using the following parameters: Mass range, 120−
1200 m/z; Sheath gas flow rate, 60; Aux gas flow rate, 25;
Sweep gas flow rate, 2; Spray Voltage (kV) 3.6; Capillary temp,
300 °C; S-lens RF level, 50; Aux gas heater temp, 370 °C. Full
MS parameters: Resolution, 60,000; AGC target, 1e6;

Maximum IT, 100 ms; Spectrum data type, Centroid. Data
dependent MS2 parameters: Resolution, 15,000; AGC target,
1e5; Maximum IT, 50 ms; Loop count, 4; TopN, 4; Isolation
Window, 1.0 m/z; Fixed First Mass, 70.0 m/z; (N)CE/stepped
(N)CE, 20, 30, 40; Spectrum data type, Centroid.
For profiling polar compounds and biogenic amines, HILIC-

Q Exactive MS/MS data acquisition was performed. One μL of
diluted samples was separated on a Waters Acquity UPLC
BEH Amide column (150 × 2.1 mm; 1.7 μm) coupled to an
Acquity UPLC BEH Amide VanGuard precolumn (5 × 2.1
mm; 1.7 μm). The column was maintained at 45 °C with a
flow rate of 0.4 mL/min. The mobile phases consisted of (A)
water with ammonium formate (10 mM) and formic acid
(0.125%) and (B) acetonitrile:water (95:5, v/v) with
ammonium formate (10 mM) and formic acid (0.125%).
The separation was conducted under the following gradient: 0
min 100% B; 0−2 min 100% B; 2−7.7 min 70% B; 7.7−9.5
min 40% B; 9.5−10.25 min 30% B; 10.25−12.75 min 100% B;
12.75−17 min 100% B.
The Q Exactive MS instrument was operated using positive

mode electrospray ionization (ESI HILIC) with the following
parameters: Mass range, 60−900 m/z; Sheath gas flow rate, 60;
Aux gas flow rate, 25; Sweep gas flow rate, 2; Spray Voltage
(kV) 3.6; Capillary temp, 300 °C; S-lens RF level, 50; Aux gas
heater temp, 370 °C. Full MS parameters: Microscans, 1;
Resolution, 60,000; AGC target, 1e6; Maximum IT, 100 ms;
Number of scans, 1; Spectrum data type, Centroid. Data
dependent MS2 parameters: Microscans, 1; Resolution,
15,000; AGC target, 1e5; Maximum IT, 50 ms; Loop count,
4; MSX count, 1; TopN, 4; Isolation Window, 1.0 m/z;
Isolation offset 0.0 m/z; (N)CE/stepped (N)CE, 20, 30, 40;
Spectrum data type, Centroid.

Data Processing and Compound Identification. The
LC-MS/MS data was analyzed by MS-DIAL software.18

Detailed parameter settings are listed in Supplemental Table
1 (HILIC and lipidomics data processing settings). Data tables
containing accurate masses, retention times, and peak heights
were exported, and further analysis was performed in R and
Metabox.19 Automated annotation of metabolites was
performed separately for polar metabolites and lipids. Table
S1 lists libraries, methods, and software used for each platform.
Metabolite annotations were achieved using a combination

of different tools. On MSI level 1, we developed and used a
novel HILIC-MS/MS library of 1,102 authentic standards
including retention time, precursor mass, and MS/MS spectra.
All spectra, retention times, and chromatography conditions
are freely available at MassBank of North America (http://
massbank.us). Search windows were used as follows: 0.1 min
RT tolerance (for the alignment of peaks), 0.0001 Da tolerance
for the precursor masses, and 0.05 Da tolerance for the MS/
MS spectral matching. Similarly, we used lipid retention times
and MS/MS spectra for lipidomics identifications.15 On MSI
level 2, we annotated compounds that did not trigger MS/MS
fragmentations in data dependent mode but that were still
identified based on accurate mass and retention time using the
HILIC-MS/MS library in addition to manually curated lipid
retention times. Moreover, MSI level 2 annotations were also
based on accurate mass and MS/MS annotations for spectra
for which no authentic retention time library was available,
such as the NIST17, HMDB,20 GNPS,21 the new CarniBlast
library, and the LipidBlast libraries.17,22,23 For MSI level 3
annotations, we used CSI:FingerID,24 the NIST-Hybrid
Search,25 and LipidBlast accurate mass search services.
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■ RESULTS AND DISCUSSION
MSI Level 1 Annotations. The number of precursors that

triggered MS/MS fragmentations was sample dependent.
Table S2 contains all 3,894 merged spectra for all samples
that were aligned and processed by MS-DIAL software which
were subsequently used for MSI level 1 and 2 annotations
(Table 1). Compound identifications with the highest level of

confidence (MSI level 1) were achieved using libraries of
authentic standards. All library spectra and retention times
were acquired under identical conditions as the experimental
urine spectra. Specifically, a new HILIC-Q Exactive MS/MS
library was established using 1,102 authentic compounds
measured in positive mode. Data and metadata for this library
can be downloaded from MassBank of North America (Fiehn
HILIC). By matching experimental urine spectra against
library retention times (RT), accurate precursor masses (m/
z), and MS/MS spectra, overall 175 compounds were
identified at MSI level 1. Specifically, we identified 72 lipids
in CSH-Q Exactive MS/MS as members of 7 lipid classes and
103 hydrophilic compounds using HILIC-Q Exactive MS/MS
as amino acids, biogenic amines, and other polar compound
classes (Table S2). Detailed settings and cutoffs are listed in
Table S1.
MSI Level 2 Annotations. Retention-time based libraries

of authentic standards are necessarily smaller than the
complement of available MS/MS spectra in public or licensed
mass spectral libraries. Therefore, it is a common practice in
metabolomics research to perform mass spectral similarity
searches of experimental to library MS/MS spectra to increase
the annotation rate. While metabolite MS/MS fragmentations
are independent of chromatography conditions, spectra often
show differences due to slightly different fragmentation
parameters or different mass spectrometers used. In addition,
many metabolites show only a few characteristic fragment ions,
rendering the use of classic spectral similarity searches
unreliable. To retain high confidence, we combined accurate
precursor mass and MS/MS searches for all over queries, using
750 dot-product score (HILIC-MS/MS) and 400 reverse dot-
product (CSH-MS/MS) as lower threshold below which no
further correct match hits were expected. Subsequently, each

spectrum was manually inspected to verify spectral matches
and retention time matches, where available.
MassBank of North America (MoNA; http://massbank.us)

currently contains over 260,000 mass spectra from 15
individual mass spectral repositories such as MassBank,
MassBank EU, GNPS, ReSpect, LipidBlast, MetaboBase, and
HMDB, covering more than 80,000 compounds. We combined
MoNA spectra with MS/MS data from the NIST17 library, the
largest available licensed repository with over 550,000
experimental spectra from 13,808 chemical compounds. We
merged all spectra from both resources into one.msp within
MS-DIAL software for mass spectral similarity matching. In
total, this approach yielded 480 identified compounds on MSI
level 2.
While investigating and validating MS/MS spectra, we

observed many spectra that appeared similar to 17
acylcarnitines annotated by using LipidBlast or MoNA spectra.
Acylcarnitines in urine serve as biomarkers for bladder
cancer,26 diabetic nephropathy,27 obesity,28 and human kidney
cancer.29 The identification of acylcarnitines has to be
performed either using authentic reference compounds or
with reference library spectra.30 However, only a few tandem
mass spectra of acylcarnitines exist in commercial (NIST) and
open mass spectral libraries (MassBank,31 METLIN,32 Respect
DB33), covering less than 50 acylcarnitine structures.
Conversely, when using a structure similarity search in the
CAS SciFinder literature database, we found 453 acylcarnitine-
like structures of which only 62 were commercially available.
Such finding indicated a high chemical diversity of
acylcarnitines that could not possibly be closed by purchasing
more chemical compounds. To overcome this gap and identify
all urinary acylcarnitines, we developed an in silico tandem
mass spectral library of acylcarnitines using structure
templates23 similar to our previous LipidBlast22 and FAHFA
predicted MS/MS libraries.34 Here, we constructed the
CarniBlast library of 2,400 acylcarnitine species covering a
wide range of saturated, unsaturated, -hydroxyl, -keto,
-dicarboxylic, and oxidized acyl chain substituted acylcarni-
tines. We matched all experimental MS/MS spectra from both
polar and lipidomics profiling against the new in silico database
of acylcarnitines. After removing duplicates and manually
validating each candidate spectrum, we identified 67 novel
acylcarnitines through the CarniBlast library in addition to the
17 acylcarnitines obtained by LipidBlast and MoNA. Detailed
settings and cutoffs are listed in Table S1.
All urinary metabolomic data were acquired by data-

dependent MS/MS. Yet, we used retention-time based MS/
MS libraries such as the new HILIC-Q Exactive MS/MS
repository. For lipids, we have recently shown35 that
compound annotations can be based on accurate precursor
mass and retention time alone with high confidence. Using
these two orthogonal parameters (m/z and RT), six further
acylcarnitines were annotated at MSI level 2. In the same
manner, we assigned 201 further compounds that were too low
abundant to trigger MS/MS fragmentations but that were
covered in our m/z and RT libraries that were acquired under
the same experimental conditions.
In combination, we identified 578 metabolites at MSI level 2

confidence (39 lipids, 85 acylcarnitines, and 454 hydrophilic
compounds). Metadata such as dot product, reverse dot
product scores, number of matching ions, and MS-DIAL
calculated MS2 similarity have been taken into account.
Detailed results are listed in Table S2.

Table 1. Results of Comprehensive Annotation of Urinary
Metabolomics and Lipidomics MS/MS Spectra

chromatography and
databases type of matching

MSI level of
annotation

no. of
annotations

HILIC precursor m/z, RT
experimental library
MS/MS

MSI level 1 103

lipidomics m/z, RT, experimental +
in silico library MS/MS

72

HILIC:
MoNA+NIST17

precursor m/z,
experimental library
MS/MS

MSI level 2 440

HILIC precursor m/z and RT 13

lipidomics: CarniBlast m/z, in silico library MS/
MS

18

HILIC: CarniBlast precursor m/z, in silico
library MS/MS

107

lipidomics: mzRT
lookup

precursor m/z with RT
curation

MSI level 3 96

HILIC and lipidomics:
NIST17 hybrid search

MS/MS (hybrid and
experimental library)

6,447

HILIC:
Sirius/CSI:FingerID

precursor m/z and in silico
predicted MS/MS

728
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MSI Level 3 Annotations. When combining compound
annotations on MSI level 1 and 2, the 753 compound
annotations only covered 19.3% of the acquired urinary MS/
MS spectra (Figure 1). While this number of annotated

compounds is already significantly higher than most other
studies on urine metabolomics,36,37 it is worrisome that more
than 80% of all MS/MS spectra remain unannotated in
metabolomics screens. Many biologists will focus their
attention only on identified compounds and not even perform

statistical assessments on complete metabolome data, includ-
ing unknowns. Yet, it appears very likely that the fraction of
more than 80% unknowns might include very important
biomarkers or signatures of diseases, food patterns, exposome
compounds, or other significant chemicals. We therefore used
three tools to investigate this dark matter of metabolomics38

closer: (a) accurate mass search, (b) structure elucidation
tools, and (c) mass spectral library hybrid search. We used the
most exhaustive MS/MS files for MSI level 3 annotations,
using raw MS/MS spectra from individual IC patients for each
stepped collision energy to enable best-possible annotations.
Spectra were exported as either mgf or msp files and used in
the different software programs. For HILIC-MS/MS analyses,
we used between 5,192 and 6,447 MS/MS spectra; for CSH-
MS/MS lipidomics analyses, the number of spectra ranged
from 5,705 to 7,050 MS/MS spectra per sample (Table 1 and
Table S2). The number of raw spectra is higher than in the
MS-DIAL processed file because MS-DIAL merged the
stepped collision energies during data acquisition.
First, we used precursor mass lookups. In general, simple

mass lookups yield many false discoveries due to a plethora of
isomers and isobars at a given accurate mass level. This
problem is especially pronounced in HILIC-MS for which
hardly any constraint can be applied with respect to the
number of possible chemicals. Yet, for lipidomics assays, lipids
can already be assigned to specific lipid classes with some level
of confidence based on m/z and retention time (in relation to
MSI level 1 and 2 annotated lipids within the same study).
Additional structure information on such lipid class annota-
tions and their acyl chains cannot be made using accurate mass
alone. We extracted m/z precursor information from the MS-

Figure 1. Categorized overview of the complete annotation of MS/
MS spectra of human urine metabolomes based on MSI level 1, 2, and
3 confidence scores.

Figure 2. Head-to-tail comparison of MS/MS spectra of distinct shifts in spectra of modified versions of canonical metabolites. (A) methylation: 1-
methyladenosine to adenosine, (B) phosphorylation: phosphothreonine to threonine, (C) hydroxylation: hydroxyarginine to arginine, (D):
acetylation: N-acetylmethionine to methionine.
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DIAL output in positive ionization mode and used the m/z
lookup macro within LipidBlast v49 to assign additional lipids.
We used a 5 mDa mass tolerance for lipid assignments based
on the mass accuracy of the Q Exactive instrument. This way,
an additional 96 lipid annotations were obtained for the
lipidomics data set in positive ionization mode.
Second, we used cheminformatics tools to annotate accurate

mass HILIC-MS/MS spectra to likely chemical structures. A
range of software tools has been published such as MS-
FINDER,39 Sirius, CFM-ID,40 and others. Here, we used two
programs, Sirius 4.0 with CSI:FingerID interface24 and the new
NIST17 hybrid-search.25 Sirius/CSI:FingerID scored highly
during the latest CASMI structure identification challenges41,42

but has never been applied to urinary metabolomics. The
NIST17 hybrid-search software was released after the CASMI
challenges but offers advantages by greatly expanding the
utility of existing mass spectral libraries. For Sirius/CSI:Finger
ID, MS/MS spectra were exported as a MGF file from each
raw file using the MSConvert program. The largest MGF file
contained 6,447 MS/MS spectra. Formulas were assigned at 10
ppm search windows, retaining the 10 best formula candidates.
Using Sirius, spectra were processed within 2 min on a 16 CPU
machine, assigning formulas to a total of 6,184 features (96%).
Subsequently, CSI:FingerID performed spectral fingerprint
matching via a Web service to annotate isomer structures.
Within 5 min processing time, 728 MS/MS spectra were
assigned to chemical structures in the biodatabase, a filtered
version of Pubchem containing over 270,000 structures of
biological interest, and 1,557 MS/MS spectra were assigned to
chemicals in the much larger PubChem database. Scored
results of all isomeric structures were exported as CSV files.
For structures returned by biodatabase searches, CSI:Finger ID
yielded up to 130 results per MS/MS scan and up to 10,000
structure candidates per MS/MS spectrum in PubChem
queries. Time-consuming manual investigations have to be
performed to select the most likely structures. To test
CSI:Finger ID accuracy, we selected 103 MS/MS spectra

from the urinary HILIC-Q Exactive MS/MS data set that were
unambiguously assigned by authentic standards and tested
these spectra within 5 ppm mass accuracy and a biodatabase
structure query. Using our publicly available HILIC library
(see above), 41 compounds (40%) were correctly annotated
by CSI:Finger ID as top hit, and 54 MS/MS spectra (52%)
were correctly assigned within the top 3 isomer candidates.
Detailed results are given in Table S3. CSI:FingerID is not
optimized for use in lipidomics MS/MS spectra.
Third, we used the novel NIST17 hybrid search25 that

combines mass spectral library-based scoring with calculating
fragment and precursor mass shifts for chemical modifications
of library structures. Such a tool mimics the experience of well-
trained chemists43 because known biochemical modifications
such as methylations or acetylations produce epimetabolites
that are removed from their classic functions in canonical
metabolic pathways.44 Four examples of how the NIST17
hybrid search works are given in Figure 2 for head-to-tail MS/
MS spectral comparisons of methyladenosine/adenosine,
phosphothreonine/threonine, hydroxyarginine/arginine, and
acetylmethionine/methionine. Spectra of modified metabolites
show distinct shifts in precursor masses and fragments when
comparing to nonmodified library spectra. Yet, the NIST17
hybrid search correctly associated the modified spectra with
their best scoring related library spectra.
We exported all lipidomics and HILIC-MS/MS spectra from

43 interstitial cystitis patients from MS-DIAL to the NIST
pepSearch software and used the NIST17 hybrid search
function. The software supports batch processing, enables
users to include or exclude specific MS/MS spectra, and yields
quick overviews of the complement of chemical structures in
mass spectral profiling studies. Results are given in Table S2.
Within 10 min processing time, 95% of all spectra were
assigned with structure annotations and compound names,
including a set of confidence scores such as forward and
reverse dot products and a probability score. Hybrid search
annotations must be treated with caution as they do not

Figure 3. Structural categorization of compounds present in urine samples of 43 subjects diagnosed with interstitial cystitis. Chemicals are
structured according to the “Superclass level” of the ClassyFire classification system.
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represent an identification but rather a nearest known neighbor
to the unknown spectrum. While in many cases NIST17 hybrid
searches give correct results (Figure 2), overall results highlight
a high probability of chemical class annotations (MSI level 3)
rather than exact structures. We therefore used these results for
exactly this purpose, classifying the thousands of patient
urinary MS/MS spectra to chemical classes. For this purpose,
we implemented a batch search version of the automated
chemical hierarchy classification system ClassyFire45 (https://
cfb.fiehnlab.ucdavis.edu). ClassyFire requires International
Chemical Identifiers (InChI keys) as input.46 Today, InChI
keys are a standard tool in all chemical and biochemical
databases to assign and compare chemical structures with
machine-readable, unique keys. The ClassyFire Batch search
utilizes the ClassyFire API to look up provided InChIKeys and,
if no match is found, to query its nonstereo form. It yields a
tabular CSV version of the results. We used the online tool
Chemical Translation Services (CTS)47 to convert chemical
names from the NIST17 hybrid pepSearch results to InChI
keys. This conversion reduced the compound list by ∼1%
because some NIST17 hybrid search chemical names are not
yet included in PubChem or the other 200 chemical databases
that support the CTS tool. Hence, of the average number of
5,250 MS/MS spectra found per patient in lipidomics and
HILIC-MS/MS, about 95% of all spectra were now annotated
by exact chemical structures or by chemical classes (MSI level
3, Figure 1). Results of classifications are organized into
Kingdom, Superclass, Class, Subclass, and two parent levels.
Detailed results are given in Table S4, with varying chemical
classes present in urines of different patients. An average MSI
level 3 classification is given in Figure 3 using the superclass
and subclass classifications as defined by ClassyFire. Roughly
one-third of the urinary metabolome was classified as
chemicals containing aromatic rings or heterocycles, one-
third was classified as compounds containing ketones, alcohols,
or acids, while the remaining one-third consisted of lipids,
phenylpropanoids, and nitrogenous- or sulfur containing
organics. As expected, organic phosphates, organometallic, or
other compound classes comprised less than 1% of the urinary
metabolome.

■ CONCLUSION

Unlike proteomic MS/MS spectra assignments, the field of
metabolomics currently lacks generally accepted and validated
automated calculations of compound identification confidence
levels with false-discovery rate assessments. As remedy,
structure annotation in untargeted MS/MS metabolomics
reports must be annotated with MSI confidence levels to detail
which metabolites can be trusted and used for metabolic
pathway annotations (MSI level 1 and 2), especially if
annotated spectra use accurate mass information and manual
curation. While the majority of acquired MS/MS spectra
cannot be annotated with certainty to specific chemicals,
Sirius/CSI:Finger ID and NIST17 hybrid search results yield
many structure assignments that are worthy to be validated by
acquiring spectra from corresponding authentic chemicals. In
addition, MSI level 3 chemical classes can be ordered by
ClassyFire and used for chemical class enrichment statistics,48

for example, in biomarker discovery studies. Moreover, MSI
level 3 classifications may yield differences in urinary chemicals
that detail differences in subjects due to diet and chemical
exposure in epidemiology studies.
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1

“Oh wow, a dolphin! It looks so real and it’s swimming 
around me.” Calming music in the background mingles with 
the faint sound of ocean water and aquatic animals. Several 
clown fish slowly move into view and swim in a circle. A 
cute dolphin beckons, as if to play, and a big whale is seen 
leisurely swimming in the distance.

Michael, a six-year old boy with burns on his two legs 
due to recent car accident, is enjoying his deep-sea adventure 
through smart phone virtual reality (VR), a three-dimen-
sional (3D) computer-generated virtual environment. It was 
only a week ago when he was living in constant fear and 
pain from the daily dressing of  his burn wounds at the 
hospital. His physicians needed to prescribe heavy doses of 
strong intravenous pain medication during these sessions. 
However, a VR kit was recently recommended as an 
alternative for Michael’s pain management.

For severe, acute, and/or chronic pain, various painkillers, 
including opioids, are being used. Unfortunately, use of 
such powerful painkillers can often lead to f inancial 
burden and potential drug addiction. Misuse of addictive 
painkillers leads to the overdosing and death of about 47,000 
people a year [1]. More and more physicians are starting to 
consider VR technologies as an alternative to painkillers. 
The basic idea behind using VR for pain management 
is that immersive environment and stimuli can distract 
patients from their pain and emotional states. In particular, 
hospitalized and/or bed-bound patients, such as women 
in labor and patients receiving chemotherapy, dialysis, 
radiation, or imaging procedures, may have biopsychosocial 
distress, such as depression, anxiety, and boredom due to 
their health condition and environment changes. Since 
1996, the Harborview Burn Center in Seattle has used VR 
for burn patients, which has helped distract patients by 
providing relief  and escape from painful treatments [2]. 
Recent studies from my institute at Cedars-Sinai Medical 
Center and others explored the use of VR in 100 hospitalized 
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patients and found that those who participated in VR 
therapy showed a significant reduction in pain scores [3]. 
This suggests that VR may offer holistic inpatient care 
by effectively reducing anxiety and pain perception and 
helping patients relax before, during, or after procedures. 
Additionally, VR technology is now becoming more user-
friendly, cost-effective, interactive, flexible, immersive, and 
portable. VR is now being considered an effective, safe, and 
feasible intervention for a variety of disease states, such 
as obesity, anxiety, eating disorders, post-traumatic stress 
disorder, cancer, Parkinson's, nicotine/alcohol addiction, 
cognitive/motor rehabilitation et al. However, the challenge 
remains on f iguring out how to incorporate VR into 
standard of care procedures in the everyday clinical setting.

One interesting use of VR could be in urology. Medical 
training using VR and/or AR (augmented reality, an inte-
rac tive experience of environments where objects in the real-
world are "augmented" by computer-generated perceptual 
information) could improve education and surgical practice, 
thereby increasing the speed and accuracy of  certain 
procedures. The traditional Halstedian method of “see one, 
do one, teach one” in medical training could be improved 
by applying VR/AR-based simulators before performing 
live surgery. Complicated anatomy can be visualized in a 
3D hologram format, and AR navigation can then facilitate 
the recognition and localization of  anatomic structures. 
Using a projector beam and a see-through device, such as a 
smart google, physicians can see the virtual model directly 
projected on the patient. Furthermore, individual medical 
records can be reviewed, and images can be portrayed on 
screens during camera-based AR procedures. VR stimulation 
training has also been shown to result in superior speed and 
significant reduction of procedure-related complications. VR/
AR stimulators can provide a variety of surgical scenarios 
that can be used during medical training to improve the 
overall skills required for operations, such as transurethral 
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resection of the prostate or prostatectomy. It can record the 
operative process of trainees in real-time, which can be used 
for evaluations. Considering how robotic surgical procedures 
continue to grow rapidly, a computer-derived virtual 
operative field with a tactile feedback system could be a 
new reliable standard method in robotic training programs.

A VR/AR simulator can not only be applied for surgeries, 
but also for personalized treatment of debilitating benign 
bladder dysfunctions, such as interstitial cystitis (IC)/
painful bladder syndrome. IC is characterized by a need 
for frequent urination, typically urgent (and often un-
controllable), involuntary episodes, and flares of acute pain 
without any bacterial or yeast infections [4]. Along with 
no known etiology, IC has been challenging to urologists 
because there are no effective pharmacological, surgical, or 
behavioral treatments available. Current recommendations 
include exercising specific pelvic floor muscles to reduce 
severe urinary symptoms. To train unconscious physiological 
processes, a VR/AR-based biofeedback designed to visualize 
these exercising muscles could be applied. If patients can see 
the pelvic floor muscles through a head-mounted display, 
tablet, or hologram, they can easily understand exactly 
which muscles they are working and focus their efforts with 
more specificity; thereby, improving the overall efficacy of 
the therapy.

Including our own group, many scientific investigators 
have been developing biomarkers specific to each urological 
disease using biospecimens from tissues, blood, or other body 
fluids [5]. It is widely accepted that molecular biomarkers 
are useful since they can be used for prognoses and 
treatment response monitoring. Of note, accurate real-time 
monitoring can be immensely helpful for disease prevention, 
early diagnosis, and reduction of incidence rates. Biosensors 
are analytical devices designed to detect biological and 
physiochemical biomarkers and have been developed into 
smart health monitoring devices that can wirelessly sync 
with smartphones [6]. Data collection, storage, and analysis 
can be done in the connected cloud environment. The 
key components of  potentially successful biosensors in 
the clinical setting include portability, rapidity, and cost-
effectiveness. In particular, for efficient application in 
communication between urologists and patients, more effort 
should be placed on developing newer generations of highly 
sensitive molecular diagnostic biosensors with compact and 
user-friendly platforms.

While blood tests are currently the gold standard 
for noninvasive, painless, and continuous monitoring of 
biomarkers, urine is a particularly attractive resource 
in the urology field. Urine biosensors may provide real-

time levels of the patients’ urinary metabolite biomarkers, 
electrolytes, temperature, and pH. There have been studies 
on developing rapid diagnoses of urinary tract infections 
(UTIs) in the clinical setting, which would allow for the 
early identification of UTI and timely antibiotic treatment. 
UTI is one of the most common infections in women, elders, 
and infants. Recently, investigators developed a small and 
disposable UTI biosensor embedded in a diaper. When 
activated upon exposure to urine, the self-powered sensor can 
determine the presence of chemical compounds associated 
with UTI [7]. The data can then be collected via a wireless 
smartphone app and used for further analysis by urologists 
and patients, allowing them to discuss the patterns of UTI. 
For other bladder diseases, such as IC, urinary biosensors 
may be able to facilitate real-time identification of flares 
(acute pain) and fluctuation of biomarkers, such as specific 
metabolites [5]; thereby enabling personalized treatment 
regimens for patients. Wearable wireless urinary metabolic 
sensors enable remote tracking of disease biomarkers and 
bladder health 24/7. They can replace bladder diaries (voiding 
diaries) and help accelerate interventions regardless of 
location, time, or device.

Research related to smart health devices is already 
changing the paradigm of the healthcare industry. Smart 
healthcare is characterized by eHealth, which is supported 
by computer-based information and communication tech-
nology, and mHealth services, a medical practice supported 
by mobile devices. Our healthcare system is now rapidly 
evolving for better patient diagnoses and treatment by 
establishing the personal digital assistants for electronic 
record management and smart remote services through 
biosensor platforms that are wirelessly connected between 
urologists and patients.
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To the editor
A recently published series of articles in the International 
Neurourology Journal elegantly presented the current trends in 
Smart Health. In particular, 3 articles by Taeg-Keun Whangbo 
and colleagues [1,2] and Kang et al. [3] summarized how close 
we are to making personalized technology-based healthcare a 
reality in the clinical setting. Given that the authors provided an 
overview of the current applications of newly emerging tech-
nologies, we thought about how they could be utilized for diag-
nosing and monitoring nonfatal bladder diseases, such as inter-
stitial cystitis (IC). Because of its unknown etiology and symp-
tomatic manifestation as urinary discomfort in the absence of 
other causes, diagnosing IC is dependent on clinical parame-
ters, such as pain, urinary urgency, and frequency. Additionally, 
due to the lack of proper conventional markers, diagnosis in-
volves traditional urinalysis, urine culture, cystoscopy, bladder 
biopsy, and bladder hydro-distention. IC can cause a multitude 
of symptoms that have a negative impact on sexual activity and 
quality of life. The most significantly reported concern is chron-
ic pelvic pain [4], which can also create sexual dysfunctions. Al-
though the financial and personal burden of IC is extensive on 
the American public [5], there is still no clear diagnostic test for 
IC. Although our own group and several other laboratories 
have identified a series of IC urinary biomarkers, it is still un-
known whether they would be clinically useful. Expanding use 

of this knowledge is costly and complexity of conventional ana-
lytic platforms, such as mass spectrometry, is hard to imple-
ment clinically.
 Evaluating the impact duration, severity, pain localization, 
anxiety, and depression related to bladder dysfunctions may 
help identity risk factors. In addition to our own laboratory, 
many scientists have focused on developing biomarkers specific 
to each urological disease using biospecimens, such as tissue, 
blood, or other bodily fluids. Molecular biomarkers are widely 
accepted as a useful resource for prognoses and treatment re-
sponse monitoring. Most importantly, accurate real-time moni-
toring of biomarkers may be immensely helpful for disease pre-
vention, early diagnosing, and incidence rate reduction. Active 
oversight of biomarkers could be implemented using bio/
chemical sensors, which are analytical devices designed to de-
tect biological or physiochemical markers, that can also be inte-
grated with other smart health monitoring devices that sync 
wirelessly with smartphones. This data can be collected, stored, 
and analyzed in a shared cloud environment between patients 
and physicians. In order for such internet of biosensors to be 
successful in the clinical setting, they need to be portable, rapid, 
and cost-effective. For particularly efficient application in urol-
ogy, effort should be focused on developing next generations of 
highly sensitive diagnostic biosensors that are portable, user-
friendly, and low cost. 
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 Biosensors are analytical devices that can selectively detect 
and quantitatively measure analytes interacting with biological 
elements, such as tissues, microorganisms, antibodies, and nu-
cleic acids. Biosensors consist of receptor-functionalized sensing 
materials that react to analytes and transducers that can convert 
biological responses into electrical signals. It is integrated with 
electronic circuits to readout and process signals, including am-
plifying, filtering, digitizing, analyzing, interfacing, transmitting, 
and displaying. The readout circuits are typically implemented 
with an operational amplifier, an analog-to-digital converter, a 
microcontroller, and a communication device. The types of bio-
sensors can be categorized based on their detection mecha-
nisms, such as electrochemical, thermal, electrical, magnetic, 
optical, and piezoelectric. Among these biosensors, electro-
chemical sensors are the most versatile, portable, and highly de-
veloped (approximately 58% of all chemical sensors) in the mar-
ket.  Prime examples of commercially available portable and 
easy-to-use electrochemical analyzers include glucose meters 
and portable blood analyzer (e.g., i-Stat Blood Chemistry Ana-
lyzer, Abbott, Princeton, NJ, USA), which have clearly demon-
strated their ability to cost-effectively detect multiple analytes 
from small sample volumes. Like blood chemistry analyzers, 
high density electrochemical sensor arrays can be developed to  
accurately identify and quantify IC biomarkers from urine.
 In addition to the development of portable analyzers for bio-
logical fluids, there has been rapid developments in gas sensor 
technology to mimic the human olfactory system to identify 
and quantify various gases (odors). This artificial olfactory sys-
tem (e-nose) simulates the different stages of the human olfac-
tory system, including sampling and filtering gaseous molecule. 
Using artificial gas sensors that odor molecules can react with, 
these sensors can then amplify and treat signal responses. Inte-
grated artificial intelligence and web-based knowledge systems 
can evaluate key information to finally recognize the odor. Such 
devices could have a significant role in the early diagnosis and 
detection of IC by analyzing odors from urine samples. 
 Research and development related to mobile health devices 
will provide a game-changer in Smart Health and the future 
healthcare industry. Smart hospitals supported by computers, 
wireless network-based information, and communication tech-
nology are now rapidly evolving for more personalized care and 
electronic management of clinical records. As innovative think-
ers, how can we apply biosensor technologies for medical diag-

nostics and health monitoring, particularly in urological care? 
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Downregulation of CENPF Remodels Prostate Cancer Cells
and Alters Cellular Metabolism
Muhammad Shahid, Minhyung Kim, Min Young Lee, Austin Yeon, Sungyong You,
Hyung L. Kim, and Jayoung Kim*

Metabolic alterations in prostate cancer (PC) are associated with progression
and aggressiveness. However, the underlying mechanisms behind PC
metabolic functions are unknown. The authors’ group recently reported on
the important role of centromere protein F (CENPF), a protein associated with
the centromere–kinetochore complex and chromosomal segregation during
mitosis, in PC MRI visibility. This study focuses on discerning the role of
CENPF in metabolic perturbation in human PC3 cells. A series of
bioinformatics analyses shows that CENPF is one gene that is strongly
associated with aggressive PC and that its expression is positively correlated
with metastasis. By identifying and reconstructing the CENPF network,
additional associations with lipid regulation are found. Further untargeted
metabolomics analysis using gas chromatography-time-of-flight-mass
spectrometry reveals that silencing of CENPF alters the global metabolic
profiles of PC cells and inhibits cell proliferation, which suggests that CENPF
may be a critical regulator of PC metabolism. These findings provide useful
scientific insights that can be applied in future studies investigating potential
targets for PC treatment.
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1. Introduction

Prostate cancer (PC) is the second most
commonly diagnosed cancer and the fifth
leading cause of male mortality world-
wide, with an estimated 1.3 million new
cases and 359 000 associated deaths
in 2018.[1,2] It is now widely accepted
that proliferating cancer cells alter their
metabolic activities to satisfy increased
needs for energy and biosynthetic pre-
cursors, such as glucose.[3] Rather than
utilizing the normal process of oxida-
tive phosphorylation, even with the pres-
ence of oxygen and fully functioning
mitochondria, these proliferating can-
cer cells favor aerobic glycolysis, which
dramatically increases the uptake of glu-
cose and production of lactate; a pro-
cess known as the Warburg Effect.[4] Glu-
tamine metabolism also plays a vital role
in cancer cell energy metabolism by pro-
viding Krebs cycle intermediates, which
further corroborates the idea of altered

cancer cell metabolism.[5] Most cancers depend on increased
glutaminolysis to compensate for increased energy needs and
fill their carbon and nitrogen pools for the biosynthesis of
macromolecules.[6] Besides the higher utilization of the glycolytic
pathway, cancer cells frequently exhibit a heightened ability to
synthesize lipids, and this increased lipogenesis is tightly coupled
to glucose metabolism.[7,8] Reprogrammed energy metabolism is
an important hallmark of the upkeep of altered homeostasis in
cancer.[9] For instance, increased glycolysis has been observed
in many cancer types, including PC.[10,11] Several studies have
shown that this dysregulated metabolism plays a crucial role in
PC progression.[12–14] These alterations inmetabolic featuresmay
represent potential prognostic biomarkers.[15] Therefore, investi-
gating PC metabolism could be an opportunity to find new prog-
nostic or therapeutic biological markers.
Metabolomics involves the study of metabolism and metabo-

lite profiling and is an important analytical tool used in oncology
for discovering novel biosignatures and therapeutic targets.[16] It
is widely applied as an interdisciplinary omics approach, combin-
ing pattern recognition, bioinformatics, epidemiology, analytical
biochemistry, and biology.[17] This comprehensive analysis pro-
vides a valuable opportunity to better understand the biochemical
changes underlying cancer metabolism and improve early detec-
tion, progression, and therapeutic monitoring.[18] Metabolomics
can also respond to clinical challenges by providing a method of
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detecting vital and promising novel biomarkers.[19,20] In terms
of cancer, metabolomics can enable additional measurement
of downstream activities, thereby allowing for the discovery of
key oncometabolites.[21] These metabolites are markers of bio-
chemical activity and are closely related to clinical phenotypes.[22]

An increasing number of metabolomic studies have focused on
improving the current understanding of PC. There have been
several attempts at capturing metabolic PC biomarkers due to
evidence suggesting that perturbed metabolism may play a cru-
cial role in the development and progression of PC.[14] These
metabolite profiles can be distinct and could provide important
prognostic information. For example, a metabolomic study of PC
and healthy controls found increased choline levels in malignant
tissue.[23] PC can be a particularly attractive model for metabolic
profiling; the healthy prostate has a unique metabolism that is
needed for producing prostatic fluid and alterations can be feasi-
bly tracked.[24]

Our group recently conducted a transcriptomic study on mag-
netic resonance imaging (MRI)-visible and -invisible prostate
cancers to find differentially expressed genes (DEGs) between
the two groups. We identified centromere protein F (CENPF)
as one of four genes related to MRI visibility, progression-free
survival, and metastatic deposits.[25] We further found that
CENPF is a critical regulator of cancer metabolism, potentially
through pyruvate kinase M2 (PKM2). Our findings align with
previous reports suggesting that CENPF is a master regulator
of malignancy in PC.[26,27] PKM2 is also well known to be a key
player in PC metabolism[28]; however, its link between CENPF
and the development of PC using untargeted metabolomics
profiling has not been done before. By further defining the
role of CENPF in PC, we can gain a deeper mechanistic un-
derstanding of its effects in downstream events and disease
development.
This study aimed to determine the metabolic profile of

CENPF-knockout (CENPFKO) PC cells and identify differentially
expressed metabolites (DEMs) that can be used as prognos-
tic markers. Our experimental results showed that silencing of
CENPF reduced global metabolism. Additional computational
analysis demonstrated that CENPF regulates PC metabolism.
Our results may allow us to derive new information that could
be helpful in better targeting the underlying mechanisms driv-
ing PC.

2. Experimental Section

2.1. Cell Lines and Culturing

Human PC3 cells were obtained from American Type Cul-
ture Collection (ATCC) (Manassas, VA, USA). Cells were main-
tained in Dulbecco’s modified Eagle medium (DMEM) supple-
mented with 10% heat-inactivated fetal bovine serum (FBS) and
penicillin–streptomycin at 37 °C with 95% air and 5% CO2.
DMEM and FBS were purchased from Life Technologies (Grand
Island, NY, USA). The CENPFKO PC3 cell line was constructed
using the CRISPR/Cas9 system by ALSTEM, LLC (Richmond,
CA) and maintained as described previously.[29] If frozen, after
thawing, cells were used under ten passages. Mycoplasma con-
tamination was monitored for periodically.

Significance Statement

PC remains to be aworldwidepublic health concern. It has been
accepted that proliferatingPCcells satisfy elevated energy re-
quirements needed to support accelerated cell divisionbymod-
ulatingmetabolism.However, themechanismsbehind these
metabolic alterations are largely unknown.One keymodulator
that has beenpreviously identified isCENPF,which is shown to
beupregulated inPCcells.Despite this knowledge, there has
beennodetailed systematic analysis onhowCENPF regulates
PC cellularmetabolism. In this study,we aimed tobetter un-
derstand the globalmetabolic changesmediatedbyCENPF in
PCcells using aquantitativemetabolomics approach,which
includesGC-TOF-MS. Themetabolites andmetabolic enzymes
thatwe identifiedmay serve aspotential biomarkers or thera-
peutic targets. These findings shednew light on thebiochemi-
calmechanismsandbiological functionsof CENPF inPCand
maypave theway for novel treatment options.

2.2. Identification of DEGs

The transcriptome of 1,321 PC patient samples was ob-
tained from the Prostate Cancer Transcriptome Atlas (PCTA;
www.thepcta.org), which was then used to develop the prostate
cancer subtype (PCS) classification system.[30] PC transcriptome
data was then normalized and batch corrected by median-
centering and quantile scaling (MCQ). Independent PC data
describing gene expression changes in multiparametric (MP)-
MRI-visible and invisible tumors based on ribonucleic acid
(RNA) sequencing (GSE95369) was obtained from the Gene
Expression Omnibus (GEO) database.[31] Read count data was
normalized using the TMM normalization method.[32] The
integrated hypothesis testing method was applied, as previously
reported.[33] Briefly, three independent statistical tests were
performed, including the T-test, median ratio test, and rank-sum
test, on each gene. To compute the significance level (p-values)
of the observed T-values, log2-median ratios, and rank-sum
differences, the empirical null hypothesis distribution was used,
which was estimated by random permutation of the samples.
Finally, the adjusted p-values were computed using Stouffer’s
method.[34] DEGs between MRI visible and invisible patients in
the MP-MRI data were selected for if they had adjusted p-values
<0.05 and absolute fold-changes �2. DEGs between metastatic
castration-resistant prostate cancer (mCRPC) and primary pa-
tients in the PCTA were selected for if they had adjusted p-values
<0.01 and absolute fold-changes �1.5. Functional enrichment
analyses were performed using gene set enrichment analysis
(GSEA) for hallmark gene sets[35] and DAVID (Ver. 6.8).[36]

2.3. Selection of CENPF Network Genes

To identify genes that are differentially regulated by CENPF in
PC, samples were selected from the PCTA data with high and
low CENPF expression. High and low CENPF samples were de-
fined as those with upper and lower terciles of expression, re-
spectively. The adjusted p-values were then computed using the
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same method, as described above. DEGs between the high- and
low-CENPF groups were selected if they had adjusted p-values
<0.05.

2.4. Identification of Hub Genes in the CENPF Network

To identify hub genes that could be potential regulator candi-
dates of the CENPF network in PC, protein–protein interac-
tions were collected from six different databases; the Biologi-
cal General Repository for Interaction Datasets (BioGRID)[37]),
the Databased of Interacting Proteins (DIP[38]), High Confidence
Protein–Protein Interactions (HitPredict)[39]), the IntAct Molecu-
lar Interaction Database (IntAct)[40]), the Molecular INTeraction
Database (MINT),[12] and the Functional Protein Associations
Network (STRING)[41]). The number of interactions in the up-
and downregulated genes in the high and low-CENPF samples
was then counted separately. Significance of the number of the
interactions was computed as enrichment p-values using Fisher’s
exact test.

2.5. Reconstruction of a Network Model

To reconstruct a network model, we first selected for lipid
metabolism and pathway-associated genes from the CENPF net-
work genes using Gene Ontology Biological Process (GOBP).
Then, protein–protein interaction and transcription factor (TF)-
target interaction information of the differentially expressed
lipid-related genes were collected from the six interactome
databases that were used for our master regulator analysis.
CENPF transcriptional target information from a prior study
done by Aytes et al.[26] was also included. The network was vi-
sualized using Cytoscape (v. 3.2.1).[42]

2.6. GC-TOF-MS Analysis

Gas chromatography-time-of-flight-mass spectrometry (GC-
TOF-MS) analysis was performed on CENPFKO and control
PC3 cells.[43,44] Samples were dissolved in 1 ml of 20 °C mixture
of acetonitrile, isopropanol, and water (3:3:2 v/v) at a pH of
7. The solution was then vortexed at 4 °C for 5 min. Samples
were centrifuged for 2 min at 14 000 rcf and 500 μL were
aliquoted. The aliquots were then evaporated in a Labconco
Centrivap Cold Trap to complete dryness. The methoximation
step was performed using a 10 μL solution of 40 mg mL−1

of O-methylhydroxylamine hydrochloride (CAS: [593-56-[6]];
formula: CH5NO.HCl) and shaken for 90 min at 30 °C. Then,
90 μL of N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA)
was added and the solution was shaken for 30 min at 37 °C.
After that, a 1 μL mixture of fatty acid methyl ester (FAME)
retention time markers was added. The mixture was transferred
to amber crimp autosampler vials. Measurements were done on
a Leco Pegasus IV Time of Flight Mass Spectrometer coupled
to an Agilent 6890GC with an Agilent 6890 Split/Splitless
Injector.

The column used was a Restek RTX-5Sil MS (95%
dimethyl/5% diphenyl polysiloxane), which had 30 m length,
0.25 mm i.d., 0.25 μm film thickness, and an additional 10 m
guard column. The injection volume used was 1 μL at 250 °C.
The GC parameters were set to have a constant helium flow of
1 mL min−1 and an oven ramp temperature of 50 °C (1 min
hold) that increased to 330 °C at a rate of 20 °C min−1 with a
5 min hold before cool down. The transfer line temperature
was set to 280 °C, and spectra were recorded in the electron
ionization mode at 70 eV with a filament temperature of 250 °C
TOF and scan range of 85–500 Da.

2.7. Annotation and Identification of Compounds

Detection or deconvolution of peaks and compounds was per-
formed using the Leco ChromaTOF software. Spectra were
matched against the FiehnLib Mass Spectral and Retention In-
dex Library.[23] Post-curation and peak replacements were done
using the in-house developed BinBase software, which was set
as follows: validity of chromatogram (<10 peaks with intensities
>107 counts per second), unbiased retention index marker de-
tection (MS similarity >800, validity of intensity range for high
m/z marker ions), and retention index calculation by 5th or-
der polynomial regression. Sample matrices with all known and
unknown compounds were then exported to a Microsoft excel
sheet. A total of 524 compounds were detected. Of these, 144
were annotated as known compounds with KEGG compound
identifier.

2.8. Normalization and Identification of DEMs

The raw data was normalized based on mTIC, which is the sum
of all peak heights for all identified metabolites for a sample.[45]

The average mTIC was calculated and a normalization factor for
a sample was defined by dividing the average mTIC by the mTIC
of the individual sample. The normalized intensity was then cal-
culated bymultiplying the raw intensity by the normalization fac-
tor. DEMs were selected according to the criteria of a false discov-
ery rate (FDR) adjusted p-value (q-value)� 0.05 from a two-tailed
Welch’s t-test and a fold-change �1.5.[46]

The normalized intensities of the 524 metabolites were trans-
formed into log2 scale and were standardized as z-score, and then
principal component analysis (PCA) was applied to understand
variations in the metabolite profiles of different cell lines. Hier-
archical clustering of the DEMs was performed using Euclidean
distance and ward linkage.

2.9. Metabolite Enrichment Analysis

Metabolites Biological Role (MBROLE) 2.0 was used to iden-
tify statistically significant metabolic pathways enriched by the
DEMs.[47] MBROLE is a web-based tool containing functional an-
notations on chemical compounds compiled from various pub-
lic databases, such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and PubChem. P-Values are computed based
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on hypergeometric distribution by comparing the number of
metabolites in the DEMs and background set, which is the an-
notated metabolites with KEGG compound identifiers. Pathways
with P-values < 0.1 and at least 2 DEMs were selected for func-
tional interpretation.

2.10. Proliferation Assay

Trypan blue assay was carried out to assess cell proliferation.
Briefly, cells were seeded at a density of 2 × 102 cells per well
onto six-well culture plates in complete medium. Following 24 h
of cell growth, each well culture was maintained and incubated
for 48 h. The medium was replaced every day. After 48 h, cells
were trypsinized, washed, and resuspended in PBS containing
0.4% trypan blue. The number of viable cells was counted using
a hemocytometer, as per standard protocol. Each experiment was
done a minimum of three independent times. The results are
presented as the percentage of viable cells relative to that of the
control.

2.11. Branched-Chain Amino Acid/Aromatic Amino Acid Ratio

The branched-chain amino acid (BCAA)/aromatic amino acid
(AAA) ratio was calculated as the ratio between the concentration
of BCAAs (valine, leucine, and isoleucine) and AAAs (phenylala-
nine and tyrosine).[48]

BCAA / AAA ratio = [valine]+ [leucine]+ [isoleucine]
[
phenylalanine

] + [
tyrosine

]

The concentration of each amino acid was calculated by divid-
ing the quantified intensity by the quantified m/z.

2.12. Acetate Measurement Assay

Acetate levels were measured using an Acetate Colorimetric As-
say Kit (Biovision Inc.) according to the instructions provided.
Briefly, cells (1 × 106) were rapidly homogenized with 100 μL of
ice-cold acetate assay buffer for 10 min on ice. The mixture was
then centrifuged at 12,000 rpm for 5min, and the resulting super-
natant was collected. After that, 1–50 μL of sample (50–200 μg)
was added onto a 96-well plate. The final volumes were adjusted
to 50 μL with acetate assay buffer. The reaction was incubated at
room temperature for 40 min, and optical reading was taken at
450 nm using a spectrophotometer. The unknown sample con-
centration was calculated from the standard curve.

2.13. Statistical Analysis

Results were expressed as mean ± standard error (SE) from
at least three independent experiments. To evaluate differences
between two groups, statistical analysis was done using Stu-
dent’s t-test. Unless otherwise indicated, p < 0.05 was deemed

significant. MATLAB (v.9.0; Mathworks, Natick, MA, USA) and
R (v.3.5) were used for bioinformatic analyses.

3. Results

3.1. Transcriptome Analysis Reveals Genes Associated With
Aggressive PC

To identify genes associated with aggressive PC, we utilized two
independent transcriptome datasets. One was obtained from
the PCTA database, which provided 1321 PC transcriptome
profiles[30] (hereafter referred to as PCTA). The other was from
a separate study that examined the gene expression differences
between MP-MRI-visible and invisible tumors[25] (hereafter re-
ferred to as MRI). The transcriptome data was produced using
RNA sequencing, and the count data was deposited in the GEO
database under the accession number GSE95369. Of note, sur-
vival analysis of these independent study cohorts presented four
gene signatures as being significantly correlated with metastatic
progression and biochemical recurrence.
With this transcriptome data, we hypothesized that DEGs be-

tween mCRPC versus primary PC and MP-MRI-visible versus
invisible tumors may be potential regulator candidates of PC
progression. We then performed integrative hypothesis testing
on the PCTA and MRI datasets to identify 182 (mCRPC vs PC)
and 457 (MRI-visible vs invisible) DEGs (Figure 1A; see Section
2 for details). Between these two compared groups, ten shared
DEGs were identified (Figure 1B). SPP1 (secreted phosphopro-
tein 1), CENPF, MEX3A (mex-3 RNA binding family member
A), NUSAP1 (nucleolar and spindle associated protein 1), and
TOP2A (DNA topoisomerase II alpha) were significantly upreg-
ulated inmCRPC andMRI-visible PC, while GAS1 (growth arrest
specific 1), PGM5 (phosphoglucomutase 5), CHRDL1 (chordin-
like 1), PCAT4 (prostate cancer associated transcript 4), and H19
(H19, imprinted maternally expressed transcript) were signifi-
cantly downregulated. Interestingly, the clinical significance of
CENPF in PC was previously reported[49] and identified as a po-
tential master node of PC malignancy.[26]

3.2. CENPF Expression is Correlated with PC Progression

We examined CENPF expression in tissues with five distinct dis-
ease statuses (benign, Gleason score (GS) <6, GS = 7, GS >7,
and mCRPC) to discern the association of CENPF with disease
progression (Figure 2A). Consistent with previous studies,[27]

CENPF gene expression levels increased significantly in higher
GS and mCRPC tissue (one-way ANOVA P <0.001, rank-sum
p < 0.001). A prior cross-species study[27] and MRI study[25] re-
vealed a regulatory relationship between CENPF and FOXM1
in PC progression. We thus checked for a correlation between
CENPF and FOXM1 expression in the PCTA data.[30] We found
that expression of CENPF and FOXM1 exhibited a significant
positive correlation in all PCTA samples and individual disease
states (Figure 2B). This implies that gene expression and regula-
tion of CENPF and FOXM1 are significantly associated with PC
progression.
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Figure 1. Selection of genes associated with aggressive PC. A) Venn diagram depicts the number of DEGs in MP-MRI-visible versus invisible tumors
and mCRPC versus primary PC. Transcriptome data of MP-MRI visibility was obtained from the GEO database (GSE95369), and mCRPC and PC gene
expression profiles are from PCTA. DEGs for MRI visibility were selected if they had an adjusted p-value< 0.05 and fold-change �2. DEGs in the mCRPC
and PC group were selected if they had an adjusted p-value< 0.01 and fold-change�1.5. B) List of overlapping genes associated with both MRI visibility
and metastatic progression.

3.3. Genes Involved in the CENPF Network in PC

Given the significance of CENPF expression in PC progression,
investigating the downstream CENPF transcriptional network
may be relevant in discovering themolecular mechanisms of PC.
For this, we defined high and low CENPF-expressing groups in
the PCTA by selecting for upper and lower terciles. Secondly, we
identified significantly up and downregulated CENPF-associated
genes in the high and low groups (Figure 3A). To identifymolecu-
lar pathways and cellular processes regulated by CENPF, we then
performed GSEA and functional enrichment analysis using hall-
mark gene sets from MsigDB and GOBP. GSEA results showed
that the E2F target, G2M checkpoint, MYC target, and mitotic
spindle gene sets were significantly enriched for in the high-
CENPF group. However, myogenesis, TGF-beta signaling, ultra-
violet (UV) response, protein secretion, apical surface, apoptosis,
epithelial-mesenchymal transition, apical junction, and hypoxia
gene sets were significantly enriched in the low-CENPF group
(Figure 3B).
Functional enrichment analysis results from DAVID also

showed consistent results with GSEA. Cell cycle–related GOBPs,
likemitosis, nuclear division, organelle fission, and chromosome
segregation, were enriched in the high-CENPF group. This may
be reflective of the known function of CENPF as a core member
of the centromere–kinetochore complex. Development-related
(cell development, muscle system processes, muscle structure
development), motility-related (regulation of cell migration, lo-
comotion, and motility), and response to stimuli–related GOBPs
(response to wounding and chemical stimuli) were enriched

in the low-CENPF group (Figure 3C). In addition to this, we
searched for hub genes among the identified DEGs that could
be key regulators of the CENPF downstream transcriptional net-
work (see Section 2 for details).
When searching for both up- and downregulated genes among

the DEGs, MYC, CCDC8 (coiled-coil domain-containing pro-
tein 8), BRCA1, CDK1 (cyclin-dependent kinase 1), and PLK1
(Polo-like kinase 1) were found to be the top five genes
that act as key regulator candidates in the CENPF network
(Figure 3D). When performing the same analysis with only up-
regulated genes, these five genes were selected with signifi-
cant consistence (Figure 3E). When searching for only down-
regulated genes, SMAD3 (SMAD family member 3), GSK3B
(glycogen synthase kinase 3 beta), CAV1 (caveolin 1), SMAD4
(SMAD family member 4), and PRKCA (protein kinase C
alpha) were identified as the top five regulator candidates
(Figure 3F).

3.4. CENPF and Lipid Regulation

Lipid-related GOBPs, including positive regulation of lipid
biosynthetic process, regulation of lipid metabolic process, phos-
pholipid scrambling, lipid modification, lipid metabolic process,
cellular lipid metabolic process, lipid biosynthetic process, cellu-
lar response to lipid, and response to lipid, were highly enriched
by the downregulated genes in high-CENPF samples (Figure 4A).
To identify genes that both regulate lipid-related functions and
are CENPF-dependent, we performed hub gene analysis on
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Figure 2. Gene expression of CENPF in PC progression. A) Lollipop plot (upper panel), box plot (lower left), and line plot (lower right) display CENPF
gene expression patterns across disease progression from the PCTA data. Lollipop plot shows CENPF expression levels of individual samples. For each
disease state, samples were sorted by CENPF expression. Whiskers on the box plot indicate interquartile range (IQR) and 1.5 times the IQR. Individual
dots on the box plot represent individual samples. The line plot shows the average expression level of CENPF for each disease state. Dotted lines on
the plot indicate the trend of gene expression between disease states. B) Scatter plot and regression lines were drawn to illustrate correlation between
CENPF and FOXM1 in all the PCTA samples and each disease state. Input 1 and 2 represnt CENPF and FOXM1, respectively.
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Figure 3. Identification of genes in the CENPF network. A) Heatmap depicts differential expression patterns of the genes between samples with high
and low CENPF expression. Red and blue indicate up- and downregulated genes, respectively, in PC samples with high CENPF expression (CENPF high)
compared with those with low expression (CENPF low). B) Bar plot displays enrichment scores of hallmark gene sets based on GSEA. All the gene sets
on the plot were significantly enriched for in the CENPF-high or low groups with nominal p-value < 0.05. NES; normalized enrichment score. C) Gene
Ontology Biological Processes (GOBPs) enriched by DEGs in CENPF-high versus CENPF-low with p-value < 0.05. D–F) Scatter plots illustrate up- and
downregulated genes in the CENPF network (D), upregulated gene in the CENPF network (E), and downregulated genes in the CENPF network (F). Hub
genes are indicated with red dots. These genes have more than three interactions in the CENPF network and p-values < 0.05.
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http://www.advancedsciencenews.com
http://www.proteomics-journal.com


www.advancedsciencenews.com www.proteomics-journal.com

Figure 4. Association of the CENPF network with lipid regulation. A) Bar plot shows enrichment scores of the GOBPs associated with lipid metabolism
and pathways in the DEGs of CENPF-high versus CENPF-low. B) Scatter plot illustrates the number of interactions among the lipid metabolism and
pathway-associated genes in the CENPF network. Genes represented by red dots indicate hub genes with p-values< 0.05. C) A network model describing
interactions among the lipid-associated genes in the CENPF network. Node color represents up- and downregulation in CENPF-high versus low PCs.
Edges represent interactions.

those listed to be involved in lipid-related GOBPs in Figure 4A,
which resulted in BRCA1, SMAD3, CAV1, GSK3B, and NR3C1
(nuclear receptor subfamily 3 group C member 1) (p < 0.05)
(Figure 4B). We then reconstructed a network model describing
the interactions between the presence of CENPF and lipid-related
genes (Figure 4C).

3.5. CENPFKO Cells Show Perturbed Cellular Metabolism and
Metabolic Pathways

To elucidate on the metabolite enrichment analysis between con-
trol PC3 and CENPFKO cells, the annotated DEPs were further
explored for their corresponding biological meaning by gene on-
tology annotations retrieved from the Gene Ontology Consor-
tium and mapped against their KEGG biological pathway infor-
mation. A total of 524 metabolites were profiled and quantified

from the GC-MS-based metabolomics experiment. The intensi-
ties of the 524 metabolites were normalized based on the peak
sums, also called metabolite total ion chromatogram (mTIC).
The normalized data was then sequentially log2 and z-score
transformed before PCA, which revealed a difference in overall
metabolite expression profiles between the control and CENPFKO

cells (Figure 5A). Further statistical significance analysis between
the two cell lines identified a total of 92 DEMs. Of these 92 DEMs,
68 were upregulated and 24 were downregulated in CENPFKO

cells, compared to controls. These metabolites were determined
based on a fold-change�1.5 and a FDR-adjusted p-value (q-value)
� 0.05 (Figure 5B). Among the 92 DEMs, 23 upregulated and
12 downregulated metabolites in CENPFKO cells were annotated
with a KEGG compound identifier (Figure 5C). The expression
profiles of the 92DEMswere illustrated in a heatmap (Figure 5D).
The annotated metabolites were labeled with the corre-

sponding compound names. Functional enrichment analysis
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Figure 5. Metabolomic profiling of CENPFKO PC3 cells. A) Principal component analysis (PCA) plot based on the 524 metabolites profiled as different
between CENPFKO and control PC3 cells. B) Volcano plot displaying the statistical significance (log10-based p-value) andmagnitude of the changes (log2-
based fold-change) of the metabolites. Red and cyan indicate statistically significant up- and downregulation in CENPFKO cells, respectively (fold-change
�1.5 and FDR-adjusted p-value (q-value)� 0.05). C) The number of DEMs identified from the statistical analyses is summarized. D) The heatmap shows
the expression profiles of the 92 DEMs. The 37 annotated DEMs with compound names were marked with the corresponding identifications.
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Table 1. Pathways significantly enriched for by the DEMs.

KEGG pathway Count p-Value FDR Metabolites

Up Carbon fixation in photosynthetic organisms 4 0.0099 0.3510 Ribulose-5-phosphate, ribose-5-phosphate, pyruvic acid, phosphoenolpyruvate

Vitamin B6 metabolism 3 0.0108 0.3510 Ribulose-5-phosphate, pyruvic acid, pyridoxal-5-phosphate

Pyruvate metabolism 2 0.0218 0.3770 Pyruvic acid, phosphoenolpyruvate

Pentose phosphate pathway 4 0.0290 0.3770 Ribulose-5-phosphate, ribose-5-phospahte, pyruvic acid, gluconic acid lactone

Phosphotransferase system (PTS) 4 0.0290 0.3770 Pyruvic acid, phosphoenolpyruvate, mannose, hexitol

Purine metabolism 4 0.0436 0.4720 Ribose-5-phosphate, inosine 5′-monophosphate, adenosine-5-monophosphate, adenine

Zeatin biosynthesis 2 0.0594 0.5450 Adenosine-5-monophosphate, adenine

Down Amino-tRNA biosynthesis 6 0.0038 0.1570 Valine, threonine, methionine, isoleucine, glutamine, alanine

Valine, leucine, and isoleucine biosynthesis 3 0.0071 0.1570 Valine, threonine, isoleucine

Glucosinolate biosynthesis 3 0.0221 0.2930 Valine, threonine, isoleucine

Valine, leucine, and isoleucine degradation 2 0.0266 0.2930 Valine, isoleucine

Cysteine and methionine metabolism 3 0.0470 0.4140 Methionine sulfoxide, methionine, alanine

ABC transporter 5 0.0642 0.4710 Valine, threonine, isoleucine, glutamine, alanine

of the annotated DEMs based on KEGG pathways identified
various dysregulated metabolic pathways in CENPFKO cells
(Table 1). Upregulated metabolites were enriched for pathways
related to carbon fixation, vitamin B6 metabolism, pyruvate
metabolism, pentose phosphate pathway, phosphotransferase,
purine metabolism, and zeatin biosynthesis. Downregulated
metabolites were primarily enriched for pathways related to
amino acid biosynthesis and metabolism (Table 1).

3.6. CENPF-Stimulated PC Proliferation

To determine whether CENPF is also required for regular cell
growth, our cell proliferation assay compared growth between
CENPFKO and control cells. The proliferation rate of CENPFKO

cells was significantly reduced after 48 h (Figure 6A). We specu-
lated that CENPF is required for regulating acetate metabolism.
As expected, our results showed that acetate levels in CENPFKO

cells were almost completely reduced (Figure 6B). Several stud-
ies have demonstrated that significant alterations are found
in the utilization of BCAAs in cancers.[50] We then checked
BCAA/AAA ratio frommetabolomics data. In contrast to the con-
trol, BCAA/AAA ratio was significantly decreased (Figure 6C).

4. Discussion

The aim of this study was to determine the role of CENPF in
tumor growth and aggression in both clinical PC tissue and hu-
man PC3 cells. Although CENPF is named after its association
with the centromere–kinetochore protein complex, it has been
reported to function in mitosis regulation and cellular prolifera-
tion as well.[51–53] Previous studies have also shown that CENPF
can potentially predict PC clinical outcome and progression.[49]

We decided to investigate if CENPF expression could stratify risk
in PC patients, and if there are any resulting perturbed metabo-
lite panels that can be used as a prognostic signature. Our study
found that CENPF expression is necessary for cellular growth. Si-
lencing of the gene resulted in significantly delayed proliferation.

Furthermore, we found that increased CENPF expressionmay be
correlated with PC aggressiveness. PC tissue with higher clinical
grades showed increased expression of CENPF, which further
validates the potential use of CENPF as a prognostic marker of
PC progression.
Our current study also focused on the relationship of CENPF

to other genes as well. Prior studies have suggested that CENPF
and FOXM1may have a synergistic interaction that drives PCma-
lignancy and aggressiveness.[26],54] In addition, our previous study
found that ALDH2may be negatively correlated to CENPF.[[25] In
order to validate these relationships in the context of predicting
PC aggressiveness, we tested these genes in clinically graded PC
samples. We found that PC samples with prediction analysis of
microarray 50 (PAM50) scores>7 had higher CENPF expression
and, consequently, increased FOXM1 and reduced ALDH2 levels
(Figure S1, Supporting Information). This confirmed our initial
speculation on the relationship of CENPF to these other genes.
To further examine the association of CENPF with various PC

types, we tested for the expression of CENPF in PC tissue clas-
sified with our PCS signatures. Our prior analysis of subtype-
specific gene expression patterns found that PCS1 and PCS2 tu-
mors reflect luminal subtypes, while PCS3 tumors are basal.[30]

We found that PCS1 and PCS2 tissues had significantly higher
expression of CENPF, which suggests that CENPF is elevated
in luminal subtypes (Figure S2, Supporting Information). Ad-
ditionally, this could mean that testing for both CENPF expres-
sion and our PCS signature could potentially identity which
PC tissues are luminal. Considering how luminal subtypes are
transformation-competent and, thereby, more progressive and
aggressive, it would be clinically helpful to be able to accurately
identify tissue subtypes.
In this study, we found that CENPF and its network may be

controlling PC aggression and progression by altering cellular
metabolism. BCAA metabolism is one such pathway that is
regulated by CENPF, and there have been several conflicting
studies regarding the relationship between BCAA metabolism
and cancer progression. Loss of BCAA catabolism has been
shown to lead to BCAA accumulation and activation of mTORC1
in liver and ovarian cancers [55–57]. However, contrastingly, loss
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Figure 6. Perturbed metabolisms due to CENPF silencing. A) Cell growth analysis using trypan blue staining. Cell proliferation was suppressed in
CENPFKO cells compared to controls at 48 h. *p < 0.05 (two-sided Student’s t-test). B) CENPFKO cells showed decreased synthesis of acetate compared
to control. C) Box plot showing BCAA/AAA ratio in Ctrl and CENPFKO cells. CENPFKO cells showed inhibited BCAA content compared to Ctrl. *p < 0.05
and **p < 0.01 (two-sided Student’s t-test). Error bars represent standard deviation (n = 3).

of BCAA catabolism was found to limit proliferation in glioblas-
toma, NSCLC, and breast cancer [58–60]. As described recently
by White et al.[61], BCAAs are also currently used as biomarker
for disease pathogenesis. They have been shown to significantly
involve in the development of different diseases, such as type 2
diabetes (T2D) and cardiovascular problems. Our own study
found that elevated CENPF expression enhances BCAA
catabolism, which leads to increased PC cell proliferation and
tumor formation. Furthermore, we found that low-grade PC
has limited BCAA catabolism, and this accumulation of BCAAs
had no effect on mTORC1. The observed changes in CENPF-
dependent acetate concentration also support the regulation
of BCAA catabolism. Acetate is one of the major short-chain
fatty acids and is a key substrate for cancer bioenergetics [62].
Fatty acid synthesis requires acetate and acyl-CoA synthetase
short-chain family member 2 (ACSS2) [63]. Given acetate derived
from glucose metabolism rewiring is elevated in cancer cells [64],
it has now become apparent that acetate metabolism regulates

many different types of cancer through its role in energy or lipid
production. Additionally, acetate can also affect certain cancers
through regulation of histone acetylation [65].
These findings provide a basis for further studies. Despite this

exciting discovery, the main limitation of our study was the lack
of a large prospective patient cohort to test on. Additionally, the
functional mechanisms behind CENPF that are responsible for
these effects in PC patients remain elusive. However, given our
previous observations[25,29] and current human PC data bioinfor-
matic analyses, future studies could be expanded to investigate
the molecular mechanisms associated with CENPF and assess
whether CENPF silencing can be a clinical biomarker for diag-
nosing PC or predicting aggressiveness.
The data obtained in this study will be accessible at the NIH

Common Fund’s Data Repository and Coordinating Center (sup-
ported by NIH grant, U01-DK097430) website, theMetabolomics
Workbench, http://www.metabolomicsworkbench.org.
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Abstract

Background: Improving rates of colorectal cancer (CRC) screening can reduce CRC-related 

mortality, which is estimated to cause about 50,630 deaths in the U.S. by the end of 2018. There is 

a noted increasing prevalence of CRC among Korean Americans. Although CRC screening has 

been widely implemented, Korean Americans over the age of 50 have the lowest rates of proper 

CRC screening, compared to those of other Asian ethnicities. Barriers, such as language and 

culture, may be making participation in screening procedures difficult for those with immigrant 

backgrounds. Thus, this study aimed to determine whether proper CRC education can enhance 

awareness, knowledge, and behavior in screening among Korean Americans living in the Los 

Angeles Koreatown area.

Design: This study was conducted among 100 self-identified Korean Americans between the 

ages of 45–75, who voluntarily participated in this study through local community outreach from 

January to June 2018. Educational brochures were provided for those in the control group, while 

those in the intervention group attended an additional short educational seminar. All participants 

were asked to complete a questionnaire after, and data were collected on site.

Results: We found that intervention had a significant effect on awareness regarding colorectal 

polyps (OR (odds ratio): 22.47; 95% CI: 6.42–78.62; p-value <0.001) and fecal occult blood tests 

(FOBTs)/stool blood test (OR, 245.37; 95% CI: 34.55–1742.75; p-value <0.001). Willingness for 

CRC screening in following 6 months significantly increased (OR: 87.17; 95% CI: 19.01–399.63; 

p-value <0.001). Knowledge on options for CRC screening (OR: 126.63; 95% CI: 23.61–679.07; 

p-value <0.001) and stool blood tests (OR: 157.17; 95% CI: 18.02–1370.41; p-value <0.001) were 

significantly enhanced. In additional univariate analysis, we found that Korean Americans with 
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higher level of education, birthplace in US or better general health showed better CRC awareness 

or knowledge.

Conclusion: There is a significant gap in our knowledge and understanding of the contributing 

factors that may be leading to low CRC screening rates in Korean Americans. This study suggests 

that well-tailored educational seminars can overcome certain barriers to screening and improve 

CRC knowledge and awareness, which is critical to achieving greater screening compliance. Our 

findings provide important references for designing effective strategies to increasing CRC 

screening rates among Korean Americans.

Keywords

Colorectal cancer screening; Korean Americans; Koreatown Los Angeles; Educational seminar; 
Inequality

Introduction

Colorectal cancer (CRC) is the third most common cancer and third leading cause of cancer-

related deaths in both men and women in the United States (US) [1]. Changes in risk factors, 

improvements in treatment, and advancements in early detection have steadily lowered rates 

of CRC [2]. One of the most important factors that reduced CRC incidence and death is 

surveillance. A recent study found that, compared to no surveillance, one or two surveillance 

visits were associated with significantly lower CRC incidence [3]. While there are many 

options for CRC screening, including fecal occult blood testing, stool DNA analysis, and 

sigmoidoscopy, the gold standard remains to be colonoscopy [4]. According to statistics 

provided by the American Cancer Society (ACS), treatment options for CRC have greatly 

improved recently, resulting in more than 1 million CRC survivors in the US alone. Along 

with this development, early diagnosis through regular and timely screening can decrease 

CRC risk; however, there are certain populations that have shown a steady rise in CRC 

incidence. In particular, Asian communities have not only seen a higher rate of CRC, but an 

increasing trend as well [5].

Although there are no concrete explanations for this increase of CRC incidence among 

Asians, studies have shown some attribution to fatalistic attitudes, changes in diet, and 

education on screening [5–7]. This lapse in vigilant CRC monitoring is particularly evident 

in the Korean population [8]. CRC is ranked as one of the most common cancers in Korea 

and places an immense economic burden on patients and society at large [9]. This is not just 

limited to the Korean population overseas. Rates of colorectal cancer in immigrant patients 

have been found to be similar to those in their home countries, compared to Caucasians in 

the same area [10]. Additionally, studies on minority health have shown that the Korean 

American population has one of the lowest cancer screening rates [11]. Screening for CRC 

is further hindered by the socioeconomic and cultural barriers Korean Americans face [12]. 

A prior study found that less than 30% of Korean Americans in Los Angeles County had 

ever received screening for CRC [13]. Furthermore, a California Health Interview Survey 

found that, compared to other Asian American groups, Korean Americans had the lowest 

rates of CRC screening [14]. More than half of Japanese, Chinese, Filipino, and Vietnamese 

Americans between the ages of 50 to 64 years old received screening for CRC, while only 
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37% of Korean Americans in the same age range have [15]. Therefore, there is an urgent 

need to solve this increasing discrepancy in the Korean population.

Southern California, particularly Los Angeles (LA) and Orange County (OC), has the 

highest concentration of Koreans and Korean Americans in the US, making up about 25% of 

all Koreans residing in America. A majority of Koreans are concentrated around the LA 

Koreatown area. Koreatown is the most densely populated district, by population, in LA 

county, with an average of 42,611 people per square mile. There is an increasing burden of 

CRC in Korean populations. CRC is the most commonly occurring cancer in males 

particularly [16]. Koreans over the age of 50 had the lowest rate of proper colorectal 

screening compared to those of other Asian and Asian American ethnicities [17]. In 

addition, there is a significant knowledge gap in the comprehensive understanding of the 

contributing factors that affect colorectal screening in Korean Americans. Being that LA is 

home to such a large number of Koreans, it provides the ideal environment to study and 

attempt to resolve this troubling issue.

To better understand how to improve current knowledge and awareness of CRC in the 

Korean American immigrant population, we conducted a survey of general questions 

regarding CRC on two different Korean audiences in LA Koreatown. This area was ideal 

because it is one of the most densely populated districts in LA and is home to the largest 

concentrations of Koreans outside of Korea. This study broadens our knowledge of the 

contributing factors of low CRC screening in Korean Americans living in LA county. The 

questionnaire inquired about whether primary healthcare providers recommended CRC 

screening (lack of awareness), which CRC screening methods were preferred (screening 

method), and if their health insurance covered the cost of screening (access to care). The 

findings from this study suggest that implementing cultural and language appropriate 

seminars significantly increase both knowledge and interest in CRC screening among 

Korean Americans.

Methods and Materials

Data collection procedures

Eligible participants included men and women between the ages of 45 to 75, who self-

identified as of Korean ethnicity, were Korean or English speaking, and were living or had 

contacts in the LA Koreatown area. Individuals with a prior history of CRC or significant 

medical problems that affected attendance to the educational seminar or survey were 

excluded. The sample size for this study was limited to 100 participants, who were all 

recruited from Korean churches, senior recreation centers, senior community colleges, 

language schools, college cultural organizations, grocery stores, coffee shops, and nail/hair 

salons (Cedars-Sinai Medical Center Institutional Review Board Approval number 

Pro00048053).

Our structured research questionnaire, Korean Community Health Survey: Colorectal 

Cancer, was administered in either Korean or English. It involved inquiries about 

demographics, general health concerns and lifestyle factors, such as age, weight, height, and 
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general health level (Table 1). The survey was designed to establish base information for 

future Korean community-based CRC epidemiologic research.

Those in the control group received an English-language brochure provided by Cedars-Sinai 

Medical Center. Participants in the intervention group received the brochure and an 

additional 30-min educational seminar with a slide presentation. American Cancer Society 

(ACS)-developed CRC educational materials and presentation slides were used after slight 

modifications and translation by a certified Korean translator. The presentation included 

information related to colon health and CRC (incidence rate, risk factors, diet and lifestyle 

recommendations, screening methods, etc.). During the seminar, participants were 

encouraged to ask their primary physicians about CRC and screening options.

Self-reported paper and pen-based surveys were distributed directly after intervention and 

confirmation of willingness to participate. Some demographic characteristics, such as sex, 

age range, marriage status, height, and weight (Q1-Q4) were asked. Participants’ birth place, 

proportion of lifetime in the US, English proficiency, and education level were next 

questioned (Q5-Q8). Computer skills and usage of social network service were asked as well 

(Q10-Q11). To determine general information on healthcare utilization, participants gave 

responses to the three following questions; “How’s your overall health?”, “Do you 

frequently access a healthcare newsletter?”, and “Where do you find health information 

from?” (Q9, Q12-Q13). The control group took the survey after only examining the brief 

brochure, while the intervention group took the survey after examining both the brochure 

and attending the seminar on CRC prevention, screening, and treatment.

Data analysis

Sociodemographic characteristics included age, sex, marital status, height, weight, 

birthplace, years lived in the US, English fluency, educational level, computer skill, and use 

of social networks. Health-related variables included self-perceived health status, family 

history of CRC, and reasons for reluctance to screen for CRC, if any. Self-reported CRC 

screening behavior was assessed as: 1) ever having had a fecal occult blood test (FOBT), 

colonoscopy, or any other test done, and 2) being up-to-date with CRC screening. 

Knowledge regarding CRC was assessed with 6 questions, which included knowing how 

many CRC screening tests exist, the age to begin screening, recommended frequency of 

tests, and awareness of gender differences in CRC risk. CRC awareness was measured by 

asking whether participants had ever heard of CRC, colon polyps, FOBT, and colonoscopy.

For statistical analysis, data are presented as frequency (percentage, %) for categorical 

variables and median (IQR, interquartile range) for continuous variables. Univariate 

associations were examined using Wilcoxon rank-sum tests for continuous variables, and 

chi-square test or Fisher’s exact test for categorical variables, as appropriate. To avoid 

potential overfitting due to a large number of baseline characteristics and to balance 

potential confounding factors between the intervention and control groups, propensity score 

(PS) analysis was performed [18]. The propensity score of being in the intervention group 

(vs. control group) was estimated using a multivariable logistic regression model after 

adjusting for Q1 through Q11, Q13, and Q28-Q29 [18–20], and the estimated propensity 

scores were included as a covariate in the multivariable logistic regression model for each 
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outcome [19]. Analyses were performed using SAS 9.4 (SAS Institute, Inc., Cary, North 

Carolina) with two-sided tests and a significance level of 0.05.

Results

Participant characteristics

A total of 100 Korean American participants voluntarily participated in this study. Table 1 

presents baseline characteristics of the participants in this study. Most of the participants 

(96%) were over the age of 50. There were more female participants (63%) than males 

(37%), and most participants were married (74%). Almost all the participants were born in 

the Korea (98%), and 70% had lived in the US for more than 20 years. Many participants 

reported not speaking English fluently or well; they self-reported their English-speaking 

abilities to be at a beginner’s level (96%). Only 32% of participants had a high school 

education or higher. A majority of participants reported that their overall health levels were 

fair/poor (77%). Most of them find health-related information from television (85%). Nearly 

all participants were not familiar with social network services (97%) and lacked computer 

skills (84%).

Comparison of intervention and control groups

Conventional educational materials on CRC and screening methods were provided for the 

control group (n=50). In addition to these materials, the intervention group received a 30-

min health lecture designed for seniors. Both groups were asked to complete a 1-page 

questionnaire, which was translated by a certified English-Korean translator. Participants 

were allowed to choose from either an English or Korean version.

Awareness test included four “yes or no” screening questions –

““Q14. Have you heard about colorectal cancer?”

“Q15. Have you heard about colorectal polyp?

“Q16. Have you heard about the fecal occult blood test (FOBT) or stool blood 

test?”, and

“Q19. Have you heard about colonoscopy?” Behavior domain contained five 

questions -

“Q17. Have your doctor told you that you should be tested for colon cancer 

(FOBT)?” “Q18. Have you ever had a FOBT?”

“Q20. Have your doctor recommend colonoscopy?” “Q21. Have you ever had a 

colonoscopy?”, and

“Q30. Are you willing to undergo colon cancer testing within 6 months?” 

Knowledge domain consisted of six questions –

“Q22. I believe that there is only one screening test for colon cancer”,

“Q23. There is a stool blood test using a “home” test”,
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“Q24. I believe that people are supposed to start getting tested for colon cancer at 

age of 50”,

“Q25. Once people start having stool blood test, they should have them every 3 

years”,

“Q26. In general, once people start having colonoscopy exams at age of 50, they 

should have them every 5 years”, and

“Q27. I believe that colon cancer is mainly a problem for men” (Table 2).

Participants in the intervention group had significantly better awareness, behavior, and 

knowledge on compared to the control group. Both the control and intervention groups had 

awareness about CRC and colonoscopies; however, participants in the intervention group 

were significantly more aware on colorectal polyps (90% vs. 28%) and FOBT (94% vs. 8%) 

than the control group (Tables 2).

Willingness to undergo CRC screening within 6 months was significantly higher in the 

intervention group (88% vs. 8%). In addition, participant knowledge regarding CRC 

screening test options were higher in the intervention group. Most participants in the control 

group (90%) believed that there was only one screening test for CRC. The intervention 

group recognized other options for CRC screening, and only 8% thought there was only one 

form of screening. Only 2% of participants in the control group knew that the FOBT/stool 

blood test could be done at home, compared to 78% of intervention group.

There was no difference in knowledge on the recommended age for CRC screening and how 

often it should be conducted between the control and intervention groups (Tables 2).

Univariate and multivariable analyses of awareness, behavior, and knowledge

After propensity score (PS), we found that intervention remained a significant effect on 

awareness of colorectal polyps (OR (odds ratio): 22.47; 95% CI: 6.42–78.62; p-value 

<0.001) and FOBT or stool blood test (OR: 245.37; 95% CI: 34.55–1742.75; p-value 

<0.001). In the intervention group, willingness to screen for CRC in the following 6 months 

was significantly higher than the control group (OR: 87.17; 95% CI: 19.01–399.63; p-value 

<0.001). Knowledge on additional screening options (OR: 126.63; 95% CI: 23.61–679.07; 

p-value <0.001) and stool blood test (OR: 157.17; 95% CI: 18.02–1370.41; p-value <0.001) 

was also significantly enhanced (Table 3).

Further univariate analyses showed that, participants who reported overall health as “very 

good/good” were more likely to have heard about colorectal polyps than those who reported 

overall health as “fair/poor” (p-value=0.009, data not shown). Participants born in the US 

were more likely to have ever had a FOBT compared to those born in Korea (p-value=0.040, 

data not shown). Participants with higher education levels were more likely to answer yes 

regarding the possibility of using stool blood tests at home (p-value=0.006, data not shown). 

Overall health status was associated with increased knowledge regarding CRC and CRC 

screening (Q24. I believe that people are supposed to start getting tested for colon cancer at 

age of 50, p-value= 0.020; Q26. In general, once people start having colonoscopy exams at 
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age of 50, they should have them every 5 years, p-value=0.018; Q27. I believe that colon 

cancer is mainly a problem for men, p-value=0.023, data not shown).

Discussion

The current study showed that a tailored CRC seminar can improve knowledge, behavior, 

and awareness among Korean American immigrants facing language barriers or those of 

lower socioeconomic status. This study examined the associations between groups 

(intervention vs. control), and outcomes/domains, such as knowledge, behavior and 

awareness in univariate and multivariable analyses. By conducting multivariable analysis of 

each outcome/domain, we calculated a PS. We further examined the associations between 

questionnaires and outcomes/domains in univariate analyses and found that better general 

health, higher education level, and birthplace in US were significantly associated with 

greater CRC awareness or knowledge.

Due to cultural and language barriers, Korean Americans in the LA Koreatown area have 

been a difficult population to reach when implementing cancer education and prevention 

programs. Our results were consistent with other studies suggesting that a lack of 

acculturation in the US seems to be a critical barrier in receiving preventive health services 

[21]. Providing culturally integrated and tailored cancer education to Korean Americans 

could significantly improve knowledge regarding CRC and screening; thereby, ultimately 

reducing CRC screening disparities in the Korean population. Our present study suggests 

several associated factors related to knowledge improvement of CRC after educational 

intervention. These results should be taken into consideration by local academic medical 

centers when creating culturally integrated educational programs.

Several previous reports have demonstrated that health education intervention can improve 

preventative cancer screening in the Asian American populations, including Vietnamese 

Americans, Chinese Americans, Hmong Americans, Korean Americans, Filipino Americans 

et al. [22–26]. Gu et al. suggested that small group-based education programs prepared by 

Chinese-speaking community health workers can enhance the implementation fidelity for 

breast cancer screening by mammography [27]. Aligned with these findings, our results 

strongly argue for the necessity and importance of raising self-awareness about CRC 

screening in Korean Americans. After health education, participants were more likely to be 

aware of and willing to try CRC screening options. Their own knowledge and inquiry 

influenced physicians who were also motivated by the specific request from their patients 

(action-reaction). We also found that detailed information could not be delivered efficiently 

or memorized by participants, particularly those were older. Considering the age range of 

our participants, we suggest that follow-up information via phone call, text, or voicemail 

regarding future CRC screenings should be considered by healthcare providers.

Findings from this pilot study indicate a strong need for education programs that are 

linguistically and culturally customized for the Korean American population. Although 

further studies should be conducted to determine the feasibility of such interventions and to 

ascertain their long-term impact on actual screening rates, tailored education will 

nevertheless be critically necessary for reducing CRC-related mortality and morbidity 
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among Korean Americans. However, we are aware that there are several limitations in our 

study. First, considering that our study was based on self-reported responses and that the 

extent of reliability and validity of self-reporting is somewhat limited, we believe that an 

additional study assessing objective and quantitative results should be designed. Second, this 

study was restricted to concentrated populations living in the LA Koreatown area, and it may 

not be generalizable to Korean American populations based in other regions. Third, the 

study was not able to determine the long-term effects of intervention, such as actual CRC 

screening rates. Fourth, our voluntary participants may be more active and self-motivated 

about health issues in general, so the findings from this study cannot be expected to be the 

same in a less motivated population. Lastly, our sample size was relatively small, so 

conclusive statements cannot be made.

Despite our limitations, a major strength of our study was the finding that culturally and 

linguistically integrated seminars by trusted community leaders in the academic field can 

support the wellbeing of participants. Our educational seminar included a short slide 

presentation and provided a point-by-point lecture on layman’s terminology, to particularly 

assist the older or less educated participants. This approach created a friendly and informal 

environment to help participants clearly understand the health messages in the educational 

materials. Participants were encouraged to ask questions in their own languages during and 

after the seminar.

Conclusion

In conclusion, our tailored intervention made a significant improvement in awareness, 

knowledge, and behavior related to CRC and screening in Korean Americans residing in 

Koreatown, many of whom could be considered underserved. Although further larger scale 

community-based studies are required to validate this finding, the results from our current 

study suggest that providing culturally and linguistically integrated educational community 

programs may greatly improve cancer prevention in high risk subgroups of Asian Americans 

and reduce disparities in CRC screening.
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Sexual pain and IC/BPS in women
Su Jin Kim1,5, Jayoung Kim2,3* and Hana Yoon4*

Abstract

Interstitial cystitis/bladder pain syndrome (IC/BPS) and female sexual dysfunction (FSD) are common conditions that
substantially reduce women’s health. In particular, women with IC/BPS show vulvodynia, a kind of FDS that
originates from consistent pain around the vulvar area. There have been many studies attempting to find the
underlying mechanisms that induce the chronic pain associated with IC/BPS and vulvodynia and explain why these
two conditions often coexist. Proposed theories suggest that pain hypersensitivity is being mediated by peripheral
and central sensitization. However, there are still many unknown factors, such as etiologies, that can evoke pain
hypersensitivity and may be linking the casual relationship between IC/BPS and vulvodynia. At present, knowledge
regarding IC/BPS and vulvodynia are insufficient when considering their clinical importance. Therefore, efforts are
necessary to elucidate the issues surrounding IC/BPS and vulvodynia.

Keywords: Cystitis, interstitial, Sexual dysfunction, Chronic pain, Vulvodynia, Lower urinary tract symptoms, Quality of life

Background
Female sexual dysfunction (FSD) and interstitial cystitis/
bladder pain syndrome (IC/BPS) are two conditions af-
fecting women’s health. A study on the association be-
tween sexual and general well-being found that women
reported better quality of life (QoL) with higher sexual
satisfaction, regardless of age and/or menopausal status
[1]. Both FSD and IC/BPS significantly impairs a
woman’s abilities to pursue and enjoy sexual relations.
Approximately 40–50% of women experience FSD and
0.5–12% experience IC/BPS. Considering these incidence
rates, both FSD and IC/BPS present serious challenges
for patients and clinicians [2–6].
Chronic pain deteriorates not only personal health and

wellness, but also QoL. Chronic pain can induce sexual
dysfunction, such as arousal disorder, and relationship
problems [7]. Furthermore, studies have shown that sig-
nificantly more women with chronic pelvic pain (CPP)
show FSD compared to those without CPP. Women
with CPP and FSD reported various types of sexual dys-
functions, including hypoactive sexual desire disorder,
sexual arousal disorder, orgasmic disorder, and sexual
pain disorder [8].

The symptoms of IC/BPS, such as urinary frequency, ur-
gency, and pelvic pain, can have a negative impact on sex-
ual activity and QoL [9]. Women with overactive bladder
(OAB) frequently have a risk for sexual dysfunction [10]. In
the postmenopausal group, women with scores indicating
severe OAB reported worse sexual function, particularly in
the arousal, lubrication, orgasm, pain, and total domains
[11]. Despite the known association between FSD and blad-
der diseases, contributing risk factors have yet to be ex-
plored. Evaluating the impact of duration, severity, pain
localization, sexual trauma history, anxiety, and depression
associated with sexual dysfunction may help elucidate risk
factors. Increasing our knowledge about sexual dysfunction
as it relates to bladder diseases may aid in clinical diagno-
ses, treatment strategies, and overall symptom improve-
ment. This review will provide an overview of studies that
address FSD in women with IC/BPS.

Pain in FSD
According to consensus from the 4th Internaional Consult-
ation on Sexual Medicine (ICSM), FSD is classified as
hypoactive sexual desire dysfunction, female sexual arousal
dysfunction, female orgasmic dysfunction, female-genital-
pelvic pain dysfunction, persistent genital arousal disorder,
postcoital syndrome, hypohedonic orgasm, or painful or-
gasm [2, 12]. Guidelines from the 4th ICSM also define
pain-associated FSD as female-genital-pelvic pain dysfunc-
tion and include all conditions that inhibit sexual
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intercourse or induce negative effects on sexual functions.
Female-genital-pelvic pain dysfunction is different from the
previous classification characterized as pain associated with
FSD, which includes sexual pain disorder including dyspar-
eunia and vaginismus [13]. According to the ICSM, female-
genital-pelvic pain dysfunction includes persistent or recur-
rent difficulties with at least one of the following: (1) vaginal
penetration during intercourse, (2) marked vulvovaginal or
pelvic pain during genital contact, (3) marked fear or anx-
iety about vulvovaginal or pelvic pain in anticipation of,
during, or as a result of genital contact, or (4) marked
hypertonicity or overactivity of pelvic floor muscles with or
without genital contact [14]. Painful orgasm also falls under
this category and is defined as genital and/or pelvic pain
during or shortly after orgasm [2]. These recent new defini-
tions reflect the evolving concept behind pain-associated
FSD as it also now includes pain in the vulvovaginal and
pelvic area and pelvic floor hypertonicity. The new
categorization of female-genital-pelvic pain dysfunction has
broadened the view on pain-associated FSD and has differ-
entiated it from its previous classification, which confined
symptoms to each organ or single disease. This recent
change in classification by the ICSM considers pain-
associated FDS as a complex condition influenced by psy-
chological and physical factors and supports the general
thought that FSD is multifactorial.
Previously, vulvodynia had been generalized under

chronic vulvar pain with no precise discrimination for it.
However, recent consensus has redefined chronic vulvar
pain as vulvar pain associated with specific diseases,
such as inflammation, neoplasm, and/or injury. This was
conducted at a conference with the International Society
for the Study of Vulvovaginal Disease, the International
Society for the Study of Women’s Sexual Health, and the
International Pelvic Pain Society [15]. Vulvodynia can
have diverse pain characteristics; therefore, pain-based
classification helps in identification, diagnosis, and treat-
ment. Vulvodynia can be characterized as either general
(entire vulva) or localized (parts of the vulva). Addition-
ally, based on the situation of the pain, vulvodynia can
be classified as either provoked (triggered by physical
contact) or unprovoked (spontaneous occurrence with-
out specific triggers) [16]. Women of all ages can experi-
ence vulvodynia, and provoked vulvodynia is the most
commonly diagnosed [17, 18]. Provoked vulvodynia is
thought to be more widely diagnosed than unprovoked
because its symptoms can be better recognized by doc-
tors. Therefore, there is an great need to better identify
unprovoked vulvodynia patients.

Sexual pain and IC/bps
IC/BPS is a disorder that induces chronic pain or discom-
fort in the bladder and surrounding pelvic organs [19, 20].
At present, IC/BPS is not a disease confined to just the

bladder and pelvic area; it is a complex disease that in-
cludes the outside of the genitourinary tract. Tripp et al.
[21] investigated the pain characteristics of IC/BPS using
whole-body diagram pain locators. They found that
women with IC/BPS reported significantly more pain all
over their body, compared to healthy women without.
Only 52 of the 193 IC/BPS diagnosed women (27%) pre-
sented pain restricted to the bladder and pelvic area.
Moreover, IC/BPS patients had various co-morbidities.
Diseases, such as irritable bowel syndrome, fibromyalgia,
vulvodynia, chronic pelvic pain, endometriosis, OAB, al-
lergies and chronic fatigue syndrome, were found to coex-
ist in IC/BPS patients [22–28].
In addition, there are several reports that IC/BPS can

increase the risk for or worsen other diseases, including
FSD. A population-based study found higher prevalence
of FSD in women with IC/BPS [29]. FSD incidence also
increased depending on the severity of IC/BPS symp-
toms, suggesting that FSD is a factor may be worsening
IC/BPS. In regards to the pain associated with FSD, vul-
vodynia may be contributing to flare-ups of IC/BPS
symptoms and could be the reason why IC/BPS patients
avoid sexual activity [9, 30].

Can FSD and IC/bps be generalized as one disease?
Diseases characterized with lower urinary tract symp-
toms (LUTS) in females, such as incontinence and OAB,
are known to have a negative impact on all domains in
female sexual function. Symptoms of IC/BPS can also
deteriorate patient’s sexual activities and QoL. A signifi-
cant number of IC/BPS patients avoid sexual activity be-
cause of pain. In addition, FSD and IC/BPS share similar
clinical characteristics and comorbidities, making it diffi-
cult to discriminate between the two [31–33]. As men-
tioned previously, there are many clinical reports
presenting an association between IC/BPS and vulvody-
nia, mainly due to shared FSD conditions.
Although the mechanisms of the association between

IC/BPS and vulvodynia are unclear, visceral nerve cross-
talking and the anatomic relationship between genital
organs and the bladder offer a simple proximity explan-
ation. Another possible mechanism behind the relation-
ship is abnormal pain hypersensitivity induced by
peripheral and central sensitization. The abnormal pain
response frequently observed in vulvodynia patients is
caused by central or peripheral maladaptive pain pro-
cessing from local insult, injury, or trauma (Fig. 1).

Role of peripheral sensitization in the pain
hypersensitivity of vulvodynia and IC/BPS
Exposure of nociceptors to repetitive pain stimulation re-
duces the pain threshold and amplifies the responsiveness
of nociceptors. Therefore, this can abnormally increase
peripheral transduction of sensitivity and lead to the
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development of peripheral pain hypersensitivity [34–36].
The potential underlying mechanism of peripheral pain
hypersensitivity noted in both vulvodynia and IC/BPS
could be due to sensory nerve upregulation. Previous
studies have shown that sensory nerve density is signifi-
cantly increased in the vulva vestibule and bladder. Com-
pared to the normal controls, patients with vulvodynia
were found to have increased nociceptors in their vulvar
vestibule [37–40]. Consequentially, this increased density
of peripheral nociceptors results in increased sensitivity. It
was also found that transient receptor potential V1
(TRPV1) exists in these nociceptive nerve endings and en-
hances pain signaling [37, 41, 42]. Pukall CF et al. [43] and
Giesecke J et al. [44] reported increased peripheral tactile,
pressure, and pain sensitivity in the patients with vulvody-
nia and confirmed histologic and molecular changes of
peripheral nociceptors is associated with clinical manifes-
tations. Similarly with vulvodynia, it has been reported
that IC/BPS patient bladders have upregulated sensory in-
nervation and TRPV1 expression [45–47].

Role of central sensitization in the pain hypersensitivity
of vulvodynia and IC/BPS
Central sensitization is an important mechanism under-
lying various conditions associated with chronic pain and
induces pain hypersensitivity through pathologically en-
hanced pathways that are not normally associated with
nociception. For example, the low-threshold Aδ fiber, that
is mostly used for temperature and pressure signaling, can
be sensitized to pain. Chronic pain induced by central
sensitization is persistent even after initiation of the signal
and disappearance of the peripheral cause [48]. Studies
have shown that the pain characteristics of central
sensitization can be found in vulvodynia patients. Foster
DC et al. [49] observed that vulvar vestibulitis syndrome
patients experienced hyperalgesia and allodynia more
often than normal controls after intradermal foot and

forearm capsaicin injections. In addition, pelvic organ
crosstalk has an important role in central sensitization be-
cause pelvic organs, such as the bladder, colon and vulva,
are controlled by the same neural pathway [50]. Thus, af-
ferent signals from other pelvic organs can provoke pain
through neural crosstalk even though the initiation and
peripheral causes of vulvodynia and IC/BPS have gone.
Therefore, central sensitization plays an important role in
the chronic pain observed in vulvodynia and IC/BPS. Clin-
ically, similar manifestations of vulvodynia and IC/BPS
have also existed. Moreover, recently, there has been an
attempt to categorize various pain-associated conditions
due to central sensitization as central sensitivity syndrome
(CSS). Vulvodynia and IC/BPS are considered subgroups
of CSS [51]. Previous studies on clinical findings support
the notion that the same mechanisms associated with cen-
tral sensitization are involved in the pain behind vulvody-
nia and IC/BPS [52–54].
Recently, evidence supporting central sensitization using

functional and structural brain imaging were reported in
vulvodynia and IC/BPS. Previously, Pukall et al. [55]
showed that increased perception and activation of pain-
related brain regions were observed in women with vulvar
vestivulitis syndrome, compared to normal women, after
tacticle stimulation of the vulvar vestibule. Other studies
have reported that vulvodynia patients show increased
grey matter density in pain-modulating and stress-related
regions of the brain as well as alterations in the intrinsic
connectivity of regions comprising the sensorimotor, sali-
ence, and default mode resting state networks [56, 57].
Similarly, women with IC/BPS showed alterations of oscil-
lation frequency and functional connectivity of brain re-
gions previously reported in other chronic pain conditions
[58] and various white matter (right anterior thalamic ra-
diation, left forceps major, and right longitudinal fascic-
ulus, right superior and bilateral inferior longitudinal
fasciculi) abnormalities that correlated with severity of
pain, urinary symptoms, and impaired QoL [59]. Fig. 2
shows common therapeutic approaches and points of di-
vergence among IC/BPS, IC/BPS + vulvodynia, and vulvo-
dynia patient groups.

Approach and management of vulvodynia and IC/bps
patients
Clinically, vulvodynia and IC/BPS often coexists and dif-
ferentiation between the two is not easy, especially when
the patient reports LUTS combined with pain. A major-
ity of patients also seek medical care after relatively lon-
ger periods of initially feeling pain, leading to central
sensitization that has been firmly established. Further-
more, clinical manifestations of chronic pain found in
various other comorbidities can mask vulvodynia and
IC/BPS, making it confusing and difficult to officially
diagnose.

Fig. 1 FSD and IC/BPS: FSD; Female sexual dysfunction, IC/BPS
Interstitial cystitis/bladder pain syndrome, QoL Quality of life
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Fig. 2 Approach for differential diagnosis of IC/BPS, vulvodynia, and IC/BPS + vulvodynia (LUTS lower urinary tract symptoms, IC/BPS interstitial
cystitis/bladder pain syndrome)

Table 1 Characteristics of FSD observed in women with IC/BPS

Age Types of FSD Prevalence (%) Other associated conditions

Verit et al. [8]a 34.73 ± 8.07 years NA 67.8 (78 of 112) NA

Gardella et al. [28] 38.7 ± 12 years Vulvodynia Dyspareunia Vulvodynis: 85.1 (40 of 47) LUTS (frequency, urgency)

Vaginal burning: 65.9 (31 of 47)

Dyspareunia: 31.9 (15 of 47)

Carrico et al. [24] 52 years (range, 19–90) Vulvodynia Vulvar pain: 48.1 (91/189) Sexually transmitted infections
(genital warts, positive HPV,
gonorrhea, chlamydia)Pain with intercourse: 66.9 (117/175)

Yoon et al. [9] 51.0 ± 14.7 years Vulvodynia Dyspareunia NA LUTS (frequency, urgency)

Bogart et al. [27] 43.6 ± 16.7 NA Women experienced with sexual
dysfunction symptoms: 88 (866/985)

NA

years

Gardella et al. [23] 38.2 ± 11.3 years Vulvodynia Dyspareunia Spontaneous vulvodynia: 23.4 (11 of 47) NA

Provoked vulvodynia: 74.5 (35/47)

Localized vulvodynia: 80.9 (38/47)

Generalized vulvodynia: 17 (8/47)

Dyspareunia: 87.2 (41/47)
aThis study was done in the women diagnosed of chronic pelvic pain. FSD female sexual dysfunction, IC/BPS interstitial cystitis/bladder pain syndrome, LUTS lower
urinary tract symptom, NA Not applicable
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Many previous studies have revealed a close correl-
ation between LUTS and impaired sexual function; IC/
BPS is not an exception. Besides, it is not uncommon to
have trouble differentiating sexual pain and IC/BPS-re-
lated genital pain in women. Unfortunately, despite the
growing population of affected individuals, there is a
lack of comprehensive studies regarding sexual dysfunc-
tion and IC/BPS (Table 1). Clinicians should take more
concern regarding sexual dysfunction and pain in IC/
BPS patients, and more randomized controlled studies
should be conducted to better understand correlations
and diagnostic differentiations.

Conclusions
Both vulvodynia and IC/BPS are common and irritable
conditions that disrupt normal life and reduce QoL in
women. Vulvodynia also manifests itself along with IC/
BPS and there are several reports supporting an associ-
ation between the two diseases. Unfortunately, know-
ledge concerning vulvodynia and IC/BPS is inadequate
when considering the clinical impact and importance of
these two conditions. Therefore, there is an essential
need for further studies that delve into discovering the
features of vulvodynia and IC/BPS.
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A recently published paper by a Stanford research team 
led by Dr. Joseph C. Liao in Clinical Cancer Research (1) 
reported on their well-designed study demonstrating the 
potential application of CD47-targeted near-infrared 
photoimmunotherapy (NIR-PIT) for human bladder cancer 
(BC) (Figure 1).  

CD47, also known as an integrin-associated protein, 
is a cell surface transmembrane protein that plays a role 
in neutrophil migration and T-cell co-stimulation. In the 
context of BC, high expression levels of CD47 have been 
observed in BC tumor cells (in both non-muscle invasive 
and muscle invasive BC). However, expression was found to 
be absent in terminally differentiated luminal umbrella cells 
of the normal bladder epithelium. Thus, blocking CD47 
may enable our immune system to selectively recognize 
BC cells, leading to the hypothesis that targeting CD47 
may be the potential strategy for specifically killing cancer 
cells while avoiding unnecessary harm to normal bladder 
cells. In this paper, the authors elegantly performed a series 
of in vitro experiments using well-characterized BC cell 
lines. Their in vivo experiments used human specimens, 
which successfully showed that anti-CD47-IR700 may 
play as a molecular photosensitizer for NIR-PIT of BC. 
Further experimental results using a xenograft mouse model 
suggested that CD47-targeted NIR-PIT may effectively 
block BC growth. 

Phototherapy, also known as light therapy, utilizes 
specific wavelengths of light to treat medical conditions. 
The inception of this idea began in the late 19th century 
by Ryberg Finsen, who developed phototherapy for the 
treatment of lupus vulgaris, a type of skin condition (2). 
Since then, phototherapy has been adapted and modified into 
various forms, such as photoimmunological, photochemical, 
and photodynamic therapies (3) .  These different 
phototherapies have become incredibly advantageous when 
it comes to treating cancer. They have diversified treatment 
options and are versatile enough to be combined with other 
therapies. For instance, photoimmunotherapy (PIT) has 
been shown to increase nano-drug uptake 24-fold in tumor 
tissues compared to normal (4). Photodynamic therapy 
(PDT) has been demonstrated to successfully destroy tumor 
cells, which leads to stimulation of anti-tumor immunity 
and generation of an innate immune response (5). Because 
treatment options for BC are mainly limited to surgery and 
chemotherapy, utilization of these phototherapies are of 
particular interest.

Unfortunately, when it comes to BC, PDT has largely 
been abandoned. Clinical trials of PDT lead to several 
noted adverse events that ultimately demonstrated 
toxicity and bystander effects on normal bladder cells (6).  
Another potential challenge of using PDT in BC is the 
hypoxic microenvironment in BC tissues, which limits 
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the needed O2 supply for creating reactive oxygen species 
and eventual cell death (7,8). There have been some 
studies that have addressed the issue of hypoxia and 
demonstrated potential reintroduction of PDT in BC, 
but clinical application remains far ahead (9). On the 
other hand, PIT has had promising results and is being 
further explored as a viable treatment option. Studies 
have demonstrated highly-selective targeting of BC cells 
by conjugating a photoabsorber dye with panitumumab, 
an anti-EGFR antibody (10).  This strategy takes 
advantage of the fact that EGFR is overexpressed in BC 
tissue, with relatively low expression in normal bladder 
urothelial cells (11,12). A recent study took this a step 
further by targeting HER2 along with EGFR, which 
would allow for more effective apoptosis of BC cells 
across different tumor phenotypes (13). 

Collectively, these promising findings by this research 
team was able to provide persuasive evidence that CD47-
targeted NIR-PIT can be deployed endoscopically and 
holds the potential to augment treatment of localized BC. 
NIR-PIT, a localized molecular cancer therapy combining a 
photosensitizer-conjugated monoclonal antibody and light 
energy, is a particularly attractive tool to use in the urinary 
tract due to ease of access. One major and important 
concern is related to safety and therapeutic efficacy. Since 
it is currently being investigated in other clinical trials 

for hematopoietic and solid cancers (ClinicalTrials.gov 
NCT02216409), I believe that we will have better idea how 
CD47-targeted NIR-PIT therapy can be used as a potential 
standard option of treatment against BC in the real clinical 
setting soon. 
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Suppose you are asked to choose the single most impor-
tant information technology that has given decision-making 
processes a massive upgrade. Many of us would choose ma-
chine learning (ML). The application of ML is defined as 
“giving computers the ability to learn without being explicitly 
programmed”. The main purpose of ML is to introduce algo-
rithms that ingest input data, apply computer analysis to pre-
dicting output values within an acceptable range of accuracy, 
identify patterns and trends in data, and to learn from previ-
ous experience. ML is often applied to complicated and poorly 
understood natural phenomena, such as complex biological 
systems, climate change, astronomy, or particle physics.

The two major pathways in ML are supervised and un-
supervised learning. In supervised learning, an algorithm is 
often provided with data, XN×P (N samples with P number of 
features) and a desired target y. The goal is to train a model 
f  (e.g., a decision function), that performs prediction on for X, 
i.e., f(X)=y. Supervised learning primarily deals with classifi-
cation and regression problems. In unsupervised learning, an 
algorithm is provided with data, X, without any labels/an-
notations, to find latent patterns, sometimes producing both 
answers and questions that may not have been conceived by 
the investigators. Unsupervised learning typically deals with 
clustering and dimensionality reduction problems. The pat-
terns identified in unsupervised learning often need to be 
evaluated for utility by human interrogation or via applica-
tion within a supervised learning task.

While validation of unsupervised algorithm can only 
be performed with a hidden ground, the performance of a 
supervised learning algorithm can be evaluated by various 
metrics based on the objective of a task. A dataset is typi-
cally divided into two independent sets, i.e., training and 
testing sets; where training of an algorithm is performed us-
ing the training set and then the trained model is evaluated 
using the testing set. In order to remove bias introduced in 
a single division of training/testing sets, cross validation is 
often used to evaluate supervised learning algorithms. 

HOW IS ML APPLIED TO DEVELOP PRE-
CISION MEDICINE?

Many of us in the healthcare and science field would 
agree that big data will transform medicine. In recent years, 
large amounts of  data have been accumulated through 
big omics studies of  genome, epigenomes, transcriptomes, 
proteomes, metabolomes, and other sources. This immense 
data needs to be analyzed, interpreted, and manipulated to 
provide biological meaning. Where ML shines is in handling 
enormous numbers of predictors. ML has become ubiquitous 
and indispensable for solving complex problems in most sci-
ences. ML will become an indispensable tool for clinicians 
seeking to truly understand their patients. However, there 
are several shortcomings when it comes to applying ML to 
big data [1]. First, algorithms might “overfit” predictions to 
spurious correlations in the data; multicollinear, correlated 
predictors could produce unstable estimates. Second, ML 
algorithms often require a large number of observations to 
reach acceptable performance levels. 

Precision medicine is one of the important developments 
in modern medicine. It provides clinicians with early inter-
vention by using advanced diagnostic procedures and cus-
tomizes personalized treatments for patients. Many scientists 
and physicians are convinced of the importance of informa-
tion technology and ML in precision medicine. This includes 
data storage and analysis for disease outcomes, and identifi-
cation of patient characteristics and optimal treatment. Uti-
lizing ML for pattern recognition, development of statistical 
models, creation of knowledge bases for existing phenotype 
categories and diseases, organization of clinical datasets of 
population size, and development of open software platforms 
for statistical analysis of high-dimensional healthcare and 
multi-omics data are crucial for practical realization of pre-
cision medicine. 

As one can imagine, ML will have a huge impact on dis-
ease (especially cancer) diagnostics and prognostics; in par-
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ticular, on the development of novel computational tools for 
stratification, grading, and prognostication of patients with 
the overall goal of improving care. There are various ML 
techniques, which have been widely used in disease diagno-
sis, and prognosis. A series of previous studies have shown 
how ML can improve diagnostic performance and prediction 
accuracy in clinically relevant patient cohorts [2]. One study 
demonstrated how ML can improve on already established 
standards, such as Gleason scoring; thus, providing more pre-
cise prognostication. Another study engineered a ML-based 
system to predict microsatellite instability in patients with 
gastrointestinal or endometrial cancers; both accuracies were 
higher than prediction with molecular markers. Some stud-
ies have also shown that ML can lead to higher accuracy in 
drug response prediction. ML is becoming a popular tool for 
medical researchers and has demonstrated promising ability 
to effectively predict future disease outcomes. 

So how is ML currently being used in clinical research? 
For digitalized pathology, various applications incorporating 
ML are developed to assist in processing pathological diag-
noses. Major applications include detection of specific ob-
jects, such as cancer cells, cell nuclei, cell division, and blood 
vessels, classification/grading of tumors, and evaluation of 
immunostaining. The major obstacle in using ML in patho-
logical imaging is inadequate image annotations. At present, 
there exist many technologies to address this concern [3]. 
For example, generative adversarial networks are used for 
pathological data analysis to automatically prepare image 
datasets necessary for subsequent deep learning. Patholo-
gists are looking forward to this potential new gold standard 
technology for processing images. 

Applications of ML in radiology are designed to help 
computers analyze medical imaging data and support di-
agnoses by associating clinical outcomes. These radiomic 
techniques can predict diseases with higher accuracy than 
humans. Using ML to recognize and analyze image data will 
fundamentally change our understanding of disease risk 
and treatment. ML can often extract image information 
that humans cannot recognize, which can lead to the discov-
ery of novel disease patterns and predictive markers. 

At present, the use of omics research to drive cancer bio-
marker discovery is very popular. Because of large datasets, 
researchers need advanced information technology, such as 
ML, to analyze and understand data. ML has already been 
applied to mass spectrometry (MS) data across different bio-
logical disciplines, including various cancers. ML can be useful 
in determining which proteins from MS data can be used as 
biomarkers to differentiate between classes. ML is also use-
ful for interpreting large genomic datasets and annotating a 

wide variety of genomic sequence elements, which has led to 
the identification of potentially valuable disease biomarkers. 

HOW ABOUT APPLYING ML INTO  
UROLOGICAL RESEARCH? 

When it comes to prostate cancer (PC), many technology 
platforms for diagnosis, prognosis, and treatment have dem-
onstrated potential benefits of ML. The ML methods can 
be extended into treatment planning and intervention by 
augmenting surgeries with information, such as tumor lo-
calization and other image-guided options. Computer-assisted 
diagnosis of PC in histopathological slides can be achieved 
by ML to enhance accuracy. ML can also help genomics re-
search. By identifying specific genes, ML can be used to de-
velop diagnostic and risk stratification tools, determine the 
best individualized treatments, and generate targeted drug 
treatment schemes.

ML can be used to read radiological or pathological im-
ages of bladder cancer (BC) to provide useful information. 
Previous studies have used ML models to analyze magnetic 
resonance imaging data of BC; they were able to identify 
low and high-grade BC before surgery with 83% accuracy. 
ML-based methods have been further applied to accurately 
quantify tumor buds from immunofluorescence-labeled 
slides of muscle-invasive BC patients. ML algorithms have 
also been employed to create recurrence and survival predic-
tive models from imaging and operative data. These algo-
rithms can be used to identify genes at initial presentation 
that are most predictive of recurrence and can be applied 
as molecular signatures to predict recurrence risk within 5 
years after transurethral resection of the bladder tumor [4].

ML technology has been used to analyze the clinical and 
imaging data of renal cell carcinoma (RCC) to provide dis-
ease diagnoses, prognostic information, and assist in treat-
ment plans. Previous studies have shown that the ML model 
can accurately distinguish high-grade and low-grade RCC by 
analyzing computed tomography (CT) image feature [4]. In 
recent years, ML has been developed to identify biomarkers 
and multiple gene expression-based signatures to predict sur-
vival and disease prognosis in clear cell RCC. Moreover, some 
studies have demonstrated how noninvasive deep learning 
models constructed from radionic features have comparable 
performance to percutaneous renal biopsy in predicting In-
ternational Society of Urological Pathology grading. 

ML has also been applied to various modalities of uri-
nary stone therapy. Computer-assisted detection using image 
features can support radiologists in identifying stones. With 
large datasets, artificial neural networks (ANN) can predict 
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outcomes after various forms of endourologic intervention. 
ANN has been used to differentiate ureteral stones from 
phleboliths in thin slice CT volumes due to their similar-
ity in shape and intensity. ANN also can be used for the 
early detection of kidney stone types and most influential 
parameters to provide a decision-support system. The model 
resulted in 97.1% accuracy for predicting kidney stone type. 
Recently, ML algorithms have been used to predict treat-
ment success after a single-session shock wave lithotripsy in 
ureteral stone patients.

Additionally, ML can be applied to benign bladder dis-
eases, such as overactive bladder syndrome [5]. A ML model 
using a random forest-based algorithm was studied to 
identify patients for whom anticholinergic medications are 
likely to fail. A validated ML prediction model can predict 
treatment failure in a 3-month standard anticholinergic 
treatment experiment with accuracy rate higher than 80%.

HOW WILL ML BE EVOLVED INTO  
TOMORROW’S UROLOGY? 

In today’s fast-moving technologically enhanced world, 
ML is still in its evolution. The steps needed to integrate ML 
into the clinic are still unknown. How the new algorithms 
will influence diagnosis and management of patients re-
mains within our realm of decision. Future research should 
focus on the construction of larger medical databases and 
further development of artificial intelligence techniques. 
The predictive precision of ML will continue to provide and 
enhance personalized medicine with the further inclusion of 
data and model retraining. There are limitless future appli-
cations for artificial intelligence in the field of urology. 
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ABSTRACT

With the advent of artificial intelligence (AI) in biostatistical analysis and modeling, machine learning can potentially be 
applied into developing diagnostic models for interstitial cystitis (IC). In the current clinical setting, urologists are depen-
dent on cystoscopy and questionnaire-based decisions to diagnose IC. This is a result of a lack of objective diagnostic 
molecular biomarkers. The purpose of this study was to develop a machine learning-based method for diagnosing IC 
and assess its performance using metabolomics profiles obtained from a prior study. To develop the machine learning 
algorithm, two classification methods, support vector machine (SVM) and logistic regression (LR), set at various pa-
rameters, were applied to 43 IC patients and 16 healthy controls. There were 3 measures used in this study, accuracy, 
precision (positive predictive value), and recall (sensitivity). Individual precision and recall (PR) curves were drafted. Since 
the sample size was relatively small, complicated deep learning could not be done. We achieved a 76%–86% accuracy 
with leave-one-out cross validation depending on the method and parameters set. The highest accuracy achieved was 
86.4% using SVM with a polynomial kernel degree set to 5, but a larger area under the curve (AUC) from the PR curve 
was achieved using LR with a l1-norm regularizer. The AUC was greater than 0.9 in its ability to discriminate IC patients 
from controls, suggesting that the algorithm works well in identifying IC, even when there is a class distribution imbal-
ance between the IC and control samples. This finding provides further insight into utilizing previously identified urinary 
metabolic biomarkers in developing machine learning algorithms that can be applied in the clinical setting.

Keywords: interstitial cystitis; biomarker; urine; metabolomics; machine learning; artificial algorithm

INTRODUCTION

Interstitial cystitis (IC), also known as painful bladder syndrome 
or bladder pain syndrome, is a chronic visceral pain syndrome of 
unknown etiology that presents itself as a constellation of symptoms, 
including bladder pain, urinary frequency, urgency, and small voided 
volumes, in the absence of other identifiable diseases [1-3]. Urine is 
in direct contact with the bladder epithelial cells that could be giving 

rise to IC; as a result, metabolites released from bladder cells may be 
enriched in urine [4].

The urinary metabolome was previously investigated by our group 
for potential IC diagnostic biomarkers [5-7]. We attempted to identify 
IC-associated metabolites from urine specimens obtained from IC 
patients and controls using nuclear magnetic resonance (NMR). Our 
findings provided preliminary evidence that metabolomics analysis of 
urine can potentially segregate IC patients from controls. We sought to 
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capture the most differentially detected NMR peaks and discern if there 
was a significant difference in the peak distribution between IC and 
control specimens. Based on multivariate statistical analysis, principal 
component analysis (PCA) suggested that the urinary metabolome of 
IC patients and controls were clearly different; 140 NMR peaks were 
signifi antly altered in IC patients (FDR < 0.05) compared to controls [5].

Machine learning (ML), originally described as a program that 
learns to perform a task or make decisions based on data, is a valuable 
and increasingly necessary tool for modern healthcare [8]. However, 
this definition is broad and could cover nearly any form of data-driven 
needs. ML is not a magical approach that can turn data in immediate 
benefits, even though many news outlets imply that it can. Rather, it 
is natural extension to traditional statistical approaches. In our present 
study, we utilized ML and automated performance metrics to evaluate the 
clinical value of our 140 identifi d NMR peaks. We used ML algorithms 
examine the relationship between metabolic expression and disease. 
We applied logistic regression (LR) [9] and support vector machine 
(SVM) [10,11], which are traditionally known to work well even with 
small sample sizes, to our metabolomics signatures and used this data 
together with patient clinicopathological features to diagnose IC. We 
used our dataset of 59 cases to train, test, and validate the model. The 
results showed that our ML-based algorithms were able to successfully 
identify IC patients from healthy subjects.

This study aimed to address the question of, “Does utilizing metabolic 
data in ML play a role in diagnosing IC?”. ML is a form of artificial
intelligence (AI) and learns from past data in order to predict the future. 
Our NMR-based ML algorithm was able to collectively distinguish the 
IC patient urinary profile from that of controls

MATERIALS AND METHODS

Ethics statement
For this paper, we used the deposited dataset derived from the pub-

lished data. This study used the publicly deposited data, which does 
not need IRB approval.

Dataset
There are 59 samples in total in the IC dataset. In order to acquire 

IC-associated metabolites, urine samples were collected from 43 IC 
patient group and 16 healthy control group. Each urine specimen was 
analyzed using NMR and biomarkers were identified with 140 NMR 
peaks. The 140 NMR peak feature was utilized to apply the dataset to 
ML algorithms for classification of IC patients in this paper 5].

Method
Due to limited sample size, we adopted two machine learning algo-

rithms, i.e., support vector machine (SVM) [10,11] and LR [9], that are 
traditional but work well even with small number of samples. These are 
supervised learning algorithms, where each data sample is represented 
by a number of features and comes with a label that tells which group 
the sample belongs to.

When data is represented as scattered data points in a feature space 
that consists of two clusters representing individual groups, SVM finds
a decision boundary (either linear or non-linear) that separates the 
different groups. Training an SVM optimizes the decision boundary 
to maximize the margin between the clusters, and it requires a kernel 

function train a kernel SVM that learns a non-linear decision boundary, 
i.e., a non-linear classifier [12]. The model contains a user parameter 
known as “slack variable” that controls the width of the margin.

LR is also a classifi r that learns via a linear model. By feeding 
a set of training samples with a number of features, it learns specific
weights associated with features. When a data sample is input into to a 
LR model, a classification is made by a linear combination between the 
weights and the data; together with a sigmoid function, the combined 
value is mapped to a probability between 0 and 1. The predicted label is 
assigned according to the probability, and by minimizing the classifi ation 
error (usually formulated using cross-entropy) in the training dataset, 
the weights are learned. One can add additional regularization terms in 
the model, such as l1 or l2-norm of the weights, where l1-norm controls 
the sparsity of the weights [13], which will select the most important 
features, while l2-norm controls the smoothness of the weights to make 
the model more robust [13,14]. Both SVM and LR were implemented 
using the sklearn package in Python.

Training
Because the sample size was very small, the leave-one-out cross 

validation (CV) [15] method was utilized to make full use of the data 
set and to obtain unbiased result from the classifiers.With leave-one-out, 
we picked one sample as a testing set while using the rest of samples as 
a training set to train and test the model. The same process was iterated 
for every sample in the dataset. An illustration of the leave-one-out CV 
workflow is given in the Figure 1.

For SVM, we performed a set of experiments with a linear model, 
radial basis function (RBF) kernel, polynomial kernel with degree 
being 3, 5 and 7. The slack variable was set to 1 for all cases. For LR, 
we tried l1 and l2 penalties with different strengths; i.e., the inverse of 
regularization strength C was set to 1, 5, and 10.

Evaluation
After repeating training and testing the model 59 times with leave-

one-out CV, each sample was assigned a predicted label. By comparing 
these 59 predicted labels with the true labels, we constructed a confu-
sion matrix by counting numbers of true positive (TP), true negative 
(TN), false positive (FP) and false negative (FN). From these numbers, 
accuracy, precision and recall were calculated to evaluate the perfor-
mances of the models. Receiver operating characteristic (ROC) curve 
and precision and recall (PR) curve were plotted, and their area under 
the curve (AUC) are reported in the result section. Especially when 
the distribution of labels in the dataset is skewed, the AUC of the PR 
curve is a suitable measure for evaluating to account for the imbalance.

RESULTS

Classification of IC samples with SVM
SVM was applied to the IC dataset with the leave-one-out CV scheme 

to classify IC samples from controls. The result varied depending on 
user parameters (i.e., kernel type and kernel parameters) as shown in 
Figure 2 and Table 1. Comparing the numbers, it was found that SVM 
with polynomial kernel resulted in the best performance when the degree 
of the polynomial kernel was 3 with 86.4% accuracy, 0.88 AUC of PR 
curve, and 0.85 AUC of ROC curve. Although the accuracy was the 
highest when the degree was 5, the AUCs of ROC and PR curves with 
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degrees set to 3 was the highest. Moreover, the degree equal to 3 has less chance of overfitting than a degree of 5

Figure 1. IC classification experimental scheme with leave-one-out cross validation.

Figure 2. Classification result evaluation curves using SVM. A. Precision-Recall curve. B. ROC curve. The values of AUC are calculated for each 
curve and larger values indicate better performance.
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Here, the usage of linear kernel did not perform well. It may be 
because the data were not linearly separable or simply the sample size 
(N = 59) was too small compared to the dimension of the data (i.e., 
140 features). Performance of RBF kernel was also poor; looking at the 
accuracy using RBF kernel with SVM shown in Table 1 (i.e., 72.9%), 
it was the same as the proportion of IC samples in the dataset (i.e., 43 
IC subjects out of 59 subjects) and its recall was 1. This means that the 
classifier was simply predicting that all the samples belong to IC group 
and was not able to handle the class distribution imbalance problem.

Classification of IC samples with LR
In addition to SVM experiment, LR was used to classify IC samples 

and the results are shown in Figure 3 and Table 2 with different user 
parameter settings. LR with l1-penalty yielded the best performance 
when its penalty parameter was set to 10 with 84.7% accuracy, 0.91 
for AUC of PR curve and 0.86 for the AUC of ROC curve, which was 
slight better than the results from SVM. These numbers are the best 
among several trials because of its randomness with the initial weights 
being trained, and the results from other trials did not differ much from 
those reported in Figure 3 and Table 2.

Table 1. The comparison of results from SVM with different set of parameters.

Parameters TP TN FP FN Accuracy Precision Recall AUC of PR AUC of ROC

Kernel = linear 36 9 7 7 0.763 0.837 0.837 0.82 0.76

Kernel = poly, 
degree = 3

39 11 5 4 0.847 0.886 0.907 0.88 0.85

Kernel = poly, 
degree = 5

39 12 4 4 0.864 0.907 0.907 0.88 0.84

Kernel = poly, 
degree = 7

39 11 5 4 0.847 0.886 0.907 0.87 0.83

Kernel = RBF 43 0 16 0 0.729 0.729 1.000 0.36 0.00

Table 2. The comparison of results from LR with different set of parameters.

LR TP TN FP FN Accuracy Precision Recall AUC of PR AUC of ROC

Penalty = l1, C = 1 39 9 7 4 0.814 0.848 0.907 0.82 0.75

Penalty = l1, C = 5 39 10 6 4 0.831 0.867 0.907 0.88 0.84

Penalty = l1, C = 10 38 12 4 5 0.847 0.905 0.884 0.91 0.86

Penalty = l2, C = 5 38 7 9 5 0.763 0.809 0.884 0.82 0.75

Penalty = l2, C = 10 38 7 9 5 0.763 0.809 0.884 0.82 0.75

It was observed that LR worked well despite being a linear model. 
Notice that the performance of linear SVM was poor in Table 1; this is 
because of the l1-norm penalty applied to the trained parameter imposing 
sparsity and behaving as a natural feature selector. When we checked 
the trained weight of features, most of the weights converged to 0 (a 
very small number on average of absolute values across the leave-one-
out process). When the penalty parameter was 10, the average weights 
of 133 features was less than or equal to 0.1. This means that we only 
need a few critical features to predict correct label. In our experiment, 
feature ID = 73, 4, 129, and 35 were the most dominant features with 
the highest weights regardless of the random initialization. In other 
words, they were the four most useful NMR features. We have per-
formed further statistical group analysis on these four NMR peaks using 
two-sample t-test, which resulted in P-values of 0.003, 0.001, 0.057, 
and 0.036 respectively. It was interesting to see that there were many 
other NMR peaks with even lower P-values and the peak ID = 129 had 
a P-value greater than 0.05. While these statistical tests are performed 
independently, our classifi ation results were derived by taking all 
the peaks at the same time for the analysis and it demonstrates that a 
linear combination of the features can be more powerful to distinguish 
IC from controls.

The l2-norm constraint did not contribute much in these experiments. 
This is because the model can robustly operate even without the l2-

norm regularizer, which typically degrades performance of models in 
exchange for model robustness. Especially with the l1-norm regularizer 
significantly lowering the dimension of the data (with 133 redundant 
features), the sample size (N = 59) was sufficient to make robust and 
correct predictions for IC samples.

DISCUSSION

It comes with no surprise that medicine is awash with claims that ML 
applications into big healthcare data will create extraordinary revolutions 
[8,16,17]. Recent examples have demonstrated how big data and ML 
can create algorithms that can perform on par with human physicians. 
AI is one ML approach without prerequisites. Various AI techniques 
already exist, and successful metabolomics analysis has been reported in 
previous studies [18-20]. Conventional statistical analysis and AI-based 
methods were used to assess the discrimination capability of quantifi d 
metabolites. A multiple logistic regression (MLR) model, alternative 
decision tree (ADTree), neurofuzzy modelling (NFM), artificial neural 
network (ANN), and SVM machine learning methods were used [21,22].

Modern advancements in computational and data science, with its 
most popular implementation in ML, has facilitated novel complex 
data-driven research approaches. Combined with biostatistics, ML 
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aims at learning from data. It accomplishes this by optimizing the per-
formance of algorithms with immediate previous knowledge. ML can 
be applied in either a supervised or unsupervised fashion. Supervised 
learning entails monitoring of the algorithm while it is being trained to 
learn a correct class assignment from a set of parameters, such as how to 
make a correct diagnosis from clinical and laboratory information [18].

Current biomarkers for IC diagnosis and prognosis are insufficientl  
robust for clinical practice using AI. Instead, we used AI to identify IC-re-
lated metabolites in an NMR metabolomics dataset from our previous 
study [5], which was able to collectively distinguish IC patient urinary 
profiles from that of healthy controls. The development of diagnostic 
tools using ML may be useful for more accurately identifying IC patients. 

AI has the potential to manage the imprecision and uncertainty that is 
common in clinical and biological data. AI or ML-based algorithms 
can take several different forms. The icons in the presented figure  
in this paper represent typical ML methods. These include multilayer 
neuronal networks, decision tree-based algorithms, SVM, and related 
algorithms that separate classes by placing hyperplanes between them, 
and prototype-based algorithms, such as k-nearest neighbors that com-
pare feature vectors carried by a case with those carried by other cases 
and assign classes based on similarities. ML-based algorithms are not 
being actively applied to IC research. Such applications could lead to 
a better understanding and deeper knowledge of metabolomics data, 
which would then provide insights into biomarker discovery.

Figure 3. Classification result evaluation curves using LR. A. Precision-Recall curve. B. ROC curve. The values of AUC are calculated for each 
curve and larger values indicate better performance.
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Although this is out of scope for this study, AI algorithms can be used 
to predict IC progression or therapeutic responses, too [23,24]. Patient 
clinicopathological features are commonly used to train AI algorithms 
to predict patient outcomes in other diseases, such as cancer [25-27]. For 
instance, Wong et al. developed a prostate cancer patient-specific ML 
algorithm based on clinicopathological data to predict early biochemical 
recurrence after prostatectomy [28]. The resulting 3 ML algorithms 
were trained using 338 patients and achieved an accuracy of 95%–98% 
and AUC of 0.9–0.94. When compared to traditional Cox regression 
analysis, the 3 ML algorithms had superior prediction performance. This 
study demonstrated how AI algorithms, trained with clinicopathological 
data, imaging radiomic features, and genomic profiling, outperformed 
the prediction accuracy of D’Amico risk stratification, single clinico-
pathological features, and multiple discriminant analysis, a type of 
conventional multivariate statistics [28]. There is also a role for AI in 
selecting effective drugs for cancer treatment [29]. Using an ML-based 
algorithm, Saeed et al. quantified the phenotypes of castration-resistant 
prostate cancer cells and tested their response to over 300 emerging 
and established clinical cancer drugs [30].

We are aware that one of the limitations of this study includes the 
novelty of using crowdsourcing in medical biomarker development. 
To our knowledge, there is no previous reference for comparison. 
Additionally, this study was limited to participants in South Korea 
and to a 1-time point collection. A major problem associated with 
medical datasets is a small sample size [5]. Given that sufficiently 
large datasets are important when creating classification schemes for 
disease modeling, a relatively larger dataset can result in reasonable 
validation due to sufficient partitioning of training and testing sets. On 
the contrary, a smaller training dataset can lead to misclassifi ations 
and may result in unstable or biased models. For our study, a major 
problem was the small sample size. However, the reason for this is that 
it takes an immense amount of time, effort, and cost to collect a larger 
amount of medical research data. Furthermore, medical research data 
is often inconsistent, incomplete, or noisy in nature; thereby, reducing 
sample sizes even more. Such small sample size for high-dimensional 
data often leads to “curse of dimensionality”, i.e., failing to properly 
estimate necessary parameters due to lack of samples, which we also 
faced with only 59 samples for 140 NMR features. For the SVM used 
in this study, when casting its objective function as a dual form using 
Lagrangian multiplier, the optimization problem seeks for a sparse solu-
tion that identifie  a few “support vectors” and thus greatly reduces the 
dimension of problem. For the LR, we used two different regularizers 
on the parameters to estimate, i.e., l1 and l2-norms, to avoid curse of 
dimensionality and obtain feasible solutions. As demonstrated in the 
results, as l1-norm constraint behaved as a data-driven feature selector 
reducing the dimension of the problem, the classifier avoided the curse 
of dimensionality. Although we were able to stay away from the curse of 
dimensionality in this study, poor analysis may lead to data overfitting
and irreproducible results. ML-based algorithms may be manipulated 
by datasets containing dominant but irrelevant features when the sample 
number is limited. Also, AI cannot be used as an end-all solution to any 
question. There are instances where traditional statistics has outperformed 
AI or where additional AI does not improve results.

In summary, we have found that ML-based algorithms can be ap-
plied to developing diagnostic models for IC patients. In the current 
clinical setting, urologists are generally dependent on cystoscopy and 
questionnaire-based decisions to diagnose IC due to a lack of objective 

molecular biomarkers. The purpose of this study was to develop machine 
learning methods for diagnosing IC and assess their performance using 
metabolomics data. Considering how ML techniques for analyzing omics 
data can play a role in predicting the diagnosis and prognosis of diseases, 
future studies should integrate use of a larger multidimensional and 
heterogenous dataset, application of more accurate validation results, 
and use of different techniques for classifying and selecting features 
to pave a promising way toward clinical applications.
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Abstract 

Protein S-palmitoylation is a powerful post-translational modification that regulates protein trafficking, 
localization, turnover, and signal transduction. Palmitoylation controls several important cellular 
processes, and, if dysregulated, can lead to cancer, cardiovascular disease, and neurological disorders. 
The role of protein palmitoylation in mediating resistance to systemic cisplatin-based chemotherapies in 
cancer is currently unknown. This is of particular interest because cisplatin is currently the gold standard 
of treatment for bladder cancer (BC), and there are no feasible options after resistance is acquired. Using 
unbiased global proteomic profiling of purified S-palmitoylated peptides combined with intensive 
bioinformatics analyses, we identified 506 candidate palmitoylated proteins significantly enriched in 
cisplatin-resistant BC cells. One of these proteins included PD-L1, which is highly palmitoylated in 
resistant cells. Pharmacological inhibition of fatty acid synthase (FASN) suppressed PD-L1 palmitoylation 
and expression, which suggests the potential use of FASN-PD-L1-targeted therapeutic strategies in BC 
patients. Taken together, these results highlight the role of protein palmitoylation in mediating BC 
chemoresistance. 

Key words: S‐palmitoylation; lipid; lipidation; post‐translational modification; tumor 

Introduction 
Systemic cisplatin-based chemotherapy is the 

current gold standard of treatment for metastatic 
bladder cancer (BC) [1-3]. However, acquired 
chemoresistance is common; thereby, limiting the 
usage of cisplatin. Patients who acquire 
chemoresistance ultimately have no further viable 
treatment options and their cancer usually recurs. The 
5-year survival rate for BC after recurrence is 
approximately 15% [4-6]. As of now, there is a lack of 
comprehensive understanding behind the 
mechanisms driving cisplatin resistance. Thus, there 
is an unsolved and urgent need to identify a method 
of distinguishing which BC patients are at a higher 
risk of developing chemoresistance. 

Metabolic reprogramming has been accepted as 
a hallmark of cancer [7-10]. These changes in 
metabolic activities may also be involved in 

cisplatin-induced cell death. As a result, metabolic 
studies on cisplatin resistance may potentially lead to 
new clues for improving therapies against refractory 
BC. Several prior metabolomic studies found that BC 
may have abnormalities in metabolites involved in 
lipid usage [11,12]. It has also been suggested that 
perturbed metabolism may be implicated in cancer 
drug-resistance, aggressiveness, or progression [13]. 
Consistent with these earlier findings, our recent 
study suggested that alterations in acetate and lipid 
metabolism, which is mediated by acetyl-CoA 
synthetase 2 (ACSS2), an enzyme that converts acetate 
to acetyl-CoA, plays a role in cisplatin resistance [14]. 
By performing unbiased data-driven analysis, as 
described below, our real-time live metabolomics 
identified metabolic reprogramming in a series of 
isogenic cisplatin-sensitive and resistant BC cell lines. 
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In a previous study, we also found that glucose- 
derived endogenous acetate contributes to cell 
viability and increased de novo synthesis of lipids via 
ACSS2 [15]. However, the role of these bioactive 
metabolites in influencing lipid metabolism in BC 
cisplatin resistance is not fully understood. 

Lipid modification of proteins at the post- 
translational level mostly occurs on cysteine thiols 
through the covalent addition of long-chain fatty 
acids (predominantly 16-carbon palmitic acid) [16,17]. 
This is called protein palmitoylation and can lead to 
an increase in hydrophobicity of cytoplasmic proteins 
and an affinity to cytosolic membrane surfaces [18]. 
Palmitoylation is an attractive mechanism for 
modulating protein activity, stability, interactions, 
localization, signaling transduction, apoptosis, and 
carcinogenesis [19-24]. It has been shown that 
palmitoylation is particularly important for protein 
stability; it suppresses degradation by preventing 
ubiquitylation [19]. The role of palmitoylation in 
protein stability has been demonstrated in a wide 
variety of targets and diseases, including c-Met, 
TEAD transcription factor, progressive rod-cone 
degeneration, and Huntington’s disease [16,25-27]. 
Based on the critical role of palmitoylation in protein 
function and disease, investigating its impact on 
acquired chemoresistance in BC presents a promising 
opportunity. From our original palmitoyl-protein 
identification and site characterization (PalmPISC) 
method [28], we previously developed a low- 
background acyl-biotinyl exchange (LB-ABE), a 
significantly improved method for successful 
purification and identification of hydrophobic 
palmitoylated proteins [28,29]. By largely eliminating 
the co-isolation of non-palmitoylated proteins, LB- 
ABE minimizes the “ratio compression” issue and 
substantially improves quantification accuracy 
[29,30]. 

Fatty acid synthase (FASN) is a multifunctional 
enzyme that is involved in the de-novo synthesis of 
lipids [31]. Its main function is catalyzing the 
synthesis of 16-C palmitate [32]. Overexpression of 
FASN has been noted in a variety of different tumor 
types, including non-muscle invasive BC (NMIBC), 
and is significantly associated with poorer prognoses 
[33]. Studies have shown that FASN is a particularly 
informative prognostic predictor in BC; expression 
was found to be positively correlated with tumor 
aggressiveness, histologic grade, recurrence, and poor 
survivability in patient cohorts [34,35]. Additionally, 
inhibition of FASN via siRNA increased apoptosis 
and decreased proliferation in BC cells [36]. The 
primary product of FASN, palmitate, plays an 
especially important in protein palmitoylation by 
attaching to and regulating protein localization, 

stability, and function [17]. Consequently, FASN is 
directly involved in the palmitoylation of proteins. 

Current understanding of protein palmitoylation 
(more accurately termed S-acylation) status and its 
role in cisplatin resistance remains very limited. In 
this paper, our proteome-scale analysis of adipocyte 
S-acylated proteins in cisplatin-sensitive vs resistant 
BC cells suggest 506 putative palmitoylated proteins 
associated with cisplatin resistance. We also tested the 
hypothesis that lipid metabolism changes in 
cisplatin-resistant BC cells may be mediated by the 
S-palmitoylation of FASN. Our experimental results 
demonstrated that protein palmitoylation of FASN 
contributes to cisplatin resistance in BC cells. This 
study also provides evidence suggesting that FASN 
inhibition alters the palmitoylation of programmed 
death ligand-1 (PD-L1). 

Materials and Methods 
Cell culture 

Parental T24 human BC cells were procured 
from American Type Culture Collection. Cisplatin- 
sensitive (T24S) and resistant T24 (T24R) BC cells were 
developed and characterized in the laboratory [37]. 
Cells were cultured in Dulbecco’s modified eagle 
medium (DMEM) supplemented with 10% fetal 
bovine serum, 2% glutamine, and 1% antibiotics 
(Invitrogen, Carlsbad, CA). All BC cells used for this 
paper were maintained under a humidified 
atmosphere of 5% CO2 at 37 °C. 

Antibodies and reagents 
The following antibodies and dilutions were 

used according to manufacturer’s instructions: β-actin 
(A1978) from Sigma; PD-L1 (13684) (1:1000), FASN 
(3180) (1:1000) and HRP-conjugated secondary 
antibodies, rabbit (7074) (1:3000), mouse (7076) 
(1:3000), from Cell Signaling Technology. 

Palmitoyl-protein enrichment using LB-ABE 
Palmitoyl proteins were enriched using our 

LB-ABE method[30]. Briefly, after cell lysis, 0.7 mg of 
protein from each replicate was reduced by 50 mM 
tris(2-carboxyethyl)phosphine (TCEP) and alkylated 
sequentially by 50 mM N-ethylmaleimide and 50 mM 
2,2’-dithiodipyridine (DTDP). Palmitoyl proteins 
were converted into biotinylated proteins using 2 M 
neutral hydroxylamine and 1 mM biotin-N-[6- 
(biotinamido) hexyl]-3’-(2’-pyridyldithio) propion-
amide (HPDP), enriched by streptavidin affinity 
purification, and eluted by 50 mM TCEP. 
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CAPTUREome™ S-Palmitoylated Protein Kit 
Assay 

Confirmation of S-palmitoylated proteins in BC 
cells was conducted using the commercially available 
CAPTUREome™ S-Palmitoylated Protein Kit (cat # 
K010-311, Badrilla, UK). Following the indicated 
2-bromopalmitate (2-BP) treatments, cells were
collected and washed in phosphate-buffered saline
(PBS). The methodology for acyl-RAC, including
blocking of free thiols, cleavage of thioester linkages,
and capture of nascent thiols on Sepharose, was
carried out according to the manufacturer’s
instructions. In particular, equal amounts of protein
(1-2 mg) were diluted in 500 μl of blocking buffer
(buffer A and thiol blocking reagent) and incubated at
40 °C for 4 hours with constant shaking. Three
volumes of cold acetone were added, and proteins
were allowed to precipitate at −20°C for 20 min.
Following centrifugation of the solution at 16,000 g for
5 min, the pellet was extensively washed with 70%
acetone five times and air-dried completely after the
final wash. Pellet was re-dissolved in 300 μl binding
buffer and incubated in a shaking heat block at 40°C
for 1 hour. The homogenates were centrifuged at
16,000 × g for 5 min to remove insoluble debris.
Approximately 20 μl of each supernatant was saved
as the “total input.” The pre-washed capture resin
slurry (50 μl) was added to the remaining lysates, and
19 μl of thioester cleavage reagent was then added.
Binding reactions were carried out on a rotator at
room temperature for 2.5 hours. Resins were washed
at least five times with binding buffer. Supernatants
were removed and mixed with 2× Laemmli loading
buffer, heated to 60 °C for 10 min, and separated via
SDS-PAGE. All kits were used following the
manufacturer’s instructions.

Palmitoyl protein digestion and label-free 
proteomic analysis 

Enriched palmitoyl proteins were digested by 
trypsin, using filter-aided sample preparation (FASP) 
[38,39]. Label-free proteomic analysis was performed 
using an EASY-nLC 1000 connected to an LTQ 
Orbitrap Elite Hybrid Mass Spectrometer, as 
previously described [29]. Tryptic peptides were 
loaded onto a 2 cm trap column and separated on a 50 
cm EASY-Spray Analytical Column heated to 55 °C, 
using a gradient of 2-34% B in 174 min, 34-60% B in 10 
min, 60-100% B in 2 min, and 100% B in 14 min at the 
flow rate of 150 nL/min. Mass spectra were acquired 
in a data-dependent manner, with automatic 
switching between mass spectrometry (MS) and 
tandem mass spectrometry (MS/MS) scans. In the MS 
scans, a lock mass at m/z 445.120025 was applied to 
provide internal mass calibration. The full scan was 

performed using a 240,000 resolution at m/z 400 Th, 
with an ion packet setting of 1×106 for automatic gain 
control and maximum injection time of 500 ms. The 20 
most intense peptide ions with charge state ≥2 were 
automatically selected for MS/MS fragmentation by 
rapid collision-induced dissociation (rCID), using a 
resolution of 7,500, 1×104 automatic gain control, 50 
ms maximum injection time, 10 ms activation time, 
and 35% normalized collision energy. Dynamic 
exclusion was enabled with a repeat count of 1, an 
exclusion duration of 30 s, and a repeat duration of 90 
s. 

Database searching for protein identification 
and quantification 

The acquired MS data was searched against the 
Uniprot_Human Database (released on 01/22/2016, 
containing 20,985 sequences) using the Andromeda 
[40] algorithm in the MaxQuant [41] (v1.5.5.1)
environment. The searching parameters were set as
follows: trypsin/P as the protease; oxidation (M),
acetyl (protein N-term), NEM(C), and carbamido-
methyl (C) as variable modifications; up to two
missed cleavages; minimal peptide length as 7; mass
tolerance for MS1 was 4.5 ppm for main search and
for MS2 was 0.5 Da; identification of second peptides
enabled; label-free quantification (LFQ) enabled, and
match-between-runs within 2 min were enabled. A
stringent 1% FDR was used to filter PSM, peptide, and
protein identifications.

Identification of differentially palmitoylated 
proteins (DPPs) 

LFQ intensities were normalized using the 
quantile normalization method [42] to compare 
different conditions. To filter out low-quality proteins, 
selected proteins were detected in at least two 
samples under each condition. DPPs between T24S 
and T24R cells were identified using a previously 
reported statistical test [43]. Briefly, log2-intensities of 
each protein from T24R cells were compared to those 
in T24S cells using the Student’s t-test and log2- 
median ratio test. We estimated empirical null 
distributions of t-values and log2-median ratio values 
by randomly permuting 6 samples 1,000 times and 
calculating the t-test and log2-median ratio test. These 
two p-values were then integrated into an overall 
p-value using Stouffer’s method [44]. DPPs were
identified as proteins with overall P<0.05 and
absolute log2-fold-change ≥ 0.58.

Functional enrichment analysis 
Enrichment analysis of gene ontology biological 

process (GOBPs) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways for DPPs was 
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performed using DAVID [45]. The functional 
classification analysis of GOBPs, gene ontology 
cellular components (GOCCs), and gene ontology 
molecular functions (GOMFs) was performed using 
PANTHER (Ver. 11) [46]. 

Reconstruction of a network model 
To reconstruct a network model describing 

cisplatin resistance in BC cells, a subset of genes that 
are involved in metabolic processes was selected. 
Interaction information of the genes from the STRING 
database (Ver. 10.5) [47] was then collected and used 
to reconstruct a network model. Finally, the network 
model was visualized using Cytoscape [48]. The 
nodes in the network model were distributed 
according to the metabolic pathways that they are 
involved in. 

Western blot analysis 
Whole-cell lysates for western blot analysis were 

prepared as described in a previous paper [49]. T24R 
and T24S BC cells were cultured on 10 cm plates and 
treated with 2-BP or orlistat at varying doses. Cells 
were lysed with RIPA buffer (20 mM Tris, 150 mM 
NaCl, 1% Nonidet P-40, 0.1 mM EDTA) (Pierce, 
ThermoFisher) supplemented with a phosphatase 
inhibitor cocktail (ThermoFisher), homogenized, and 
centrifuged at 13,000 ×g and 4°C for 20 min. 
Afterwards, 25 μg of protein lysates per lane was run 
on a 4-15% gradient SDS-PAGE gel. Following protein 
transfer onto polyvinylidene fluoride (PVDF), the 
membranes were blocked with either 5% bovine 
serum albumin (BSA) or 5% nonfat milk in 
Tris-buffered saline with 0.1% Tween 20 (TBST [2.42 
g/L Tris–HCl, 8 g/L NaCl, and 1 mL/L Tween 20 (pH 
7.6)]) for 1 hour at room temperature. This was 
followed by incubation with specific primary 
antibodies at 4 °C overnight and 3 X 10 min washes 
with TBST solution. The membranes were further 
incubated with HRP-conjugated secondary antibodies 
at room temperature for 1 hour. β-actin was used as a 
loading control. Experiments were performed in at 
least triplicates for each western blot analysis. 

Measurement of palmitate and cholesterol 
Levels of palmitate in T24S and T24R cells were 

determined by targeted metabolomics analysis 
through the University of Florida Metabolomics Core 
using mass spectrometry-based targeted 
metabolomics analysis. Levels of cholesterol in the BC 
cells were determined using the commercially 
available Cholesterol Quantification Kit (cat 
#MAK043, Sigma, MO, USA). Cells were lysed in 1% 
(w/v) Triton X-100 in chloroform. The homogenates 
were centrifuged at 13,000 × g for 10 min to remove 
insoluble debris, and the organic phase (lower phase) 

was collected and dried in a 50°C dry bath for 20 min. 
Samples were vacuum dried for 30 min to remove 
traces of chloroform. The dried lipids were 
resuspended via vortex in an assay buffer and further 
quantified. All kits were used in accordance with the 
manufacturer’s instructions. 

Cell proliferation assay 
Cells were seeded at a density of 2×106 cells/well 

in 12-well plates. Cells were then incubated with 
standard growth medium and treated with varying 
doses of 2-BP or orlistat, as described in the figures. 
Cells were stained with 0.05% crystal violet solution 
after removing the medium. After incubation at room 
temperature for 15 min, the wells were washed 
thoroughly with PBS, and cells were fixed with 4% 
paraformaldehyde at room temperature for 5 min. For 
quantitative analysis, the stained cells were dissolved 
in 10% acetic acid solution for reading absorbance at 
570-590 nm [50]. All experiments were run in at least 
triplicates. 

Statistical analysis 
Student’s t-tests were performed to evaluate 

differential expression of the proteins between two 
groups. Variables with normal distribution were 
expressed as mean ± standard deviation (SD). All 
reported p-values are two-tailed, with P<0.05 being 
considered as statistically significant. 

Results 

Palmitoyl-proteomics analysis identified DPPs 
associated with cisplatin resistance in BC cells 

Our group previously developed and 
characterized isogenic human BC cell lines, cisplatin 
sensitive (T24S) and resistant T24 BC cells (T24R) [51]. 
In this study, we coupled LB-ABE enrichment with 
label-free proteomics to identify the potential link 
between protein palmitoylation and cisplatin 
resistance in BC. Briefly, we isolated palmitoyl- 
proteins from whole cell lysates by LB-ABE, digested 
them into peptides with trypsin using FASP, analyzed 
peptides by liquid chromatography-tandem mass 
spectrometry (LC-MS/MS), and performed database 
searching analysis and LFQ using MaxQuant. Our 
proteomics analysis workflow is summarized in 
Figure 1A. A total of 4,188 putative palmitoylated 
proteins were identified with a false discovery rate of 
≤1%. Representative MS spectrum of FASN is shown 
in Figure 1B. 

After filtering out the low-quality proteins, 
which are detected less than two replicates from T24S 
or T24R BC cells, we found that most of the 
palmitoylated proteins overlap in T24S and T24R cells 
(3,315 proteins: 89.71% of total) (Figure 1C). We also 
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identified 184 proteins that were palmitoylated only 
in T24R cells, not in T24S, and 196 proteins that were 
palmitoylated only in T24S cells, not in T24R (Figure 

1C). The heatmap shows that the palmitoylation 
levels of most proteins in T24S and T24R cells were 
not significantly different (Figure 1D). 

 

 
Figure 1. (A) Workflow for quantitative palmitoyl-proteomic comparison of two isogenic BC cells, T24R and T24S, using LFQ LC-MS/MS analysis following LB-ABE. After 
LB-ABE, a total of 16 samples (4 samples x 4 conditions) were digested in parallel into tryptic peptides by FASP, followed by LC-MS/MS. (B) Representative tandem mass 
spectrum of candidate palmitoyl peptide. LB-ABE-enriched proteins were separated by SDS-PAGE and digested in gel, followed by the extraction of tryptic peptides, which were 
analyzed by LC-MS/MS. Free cysteines in the purified peptides are candidate palmitoylation sites. (C-G) The detected palmitoylated proteins from T24R and T24S cells were 
classified by gene ontology categories. (C) Venn diagram shows the number of identified proteins in T24R and T24S cells. (D) Heatmap depicts abundance of commonly identified 
proteins in both T24R and T24S. Red and blue indicate high and low abundance of the proteins, respectively. (E-G) Pie chart visualizes the proportion of the number of proteins 
involved in the enriched gene ontology categories including cellular compartment (E), biological processes (F), and molecular functions (G). 
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Supplementary table 1 shows the 3,695 
palmitoylated proteins identified in both T24S and 
T24R BC cells. To assess the functions of these 3,695 
palmitoylated proteins, we performed functional 
classification analysis using PANTHER [46]. The 
location and function of these proteins are 
summarized in Figures 1E-1G. The identified 
palmitoylated proteins are functionally highly 
diverse; however, 35.1% of the classified proteins are 

related to metabolic processes and localization 
(Figure 1F). 

DPPs between T24R and T24S cells. Among the 
3,695 identified proteins, at least 2,581 (70%) were 
previously reported to be palmitoylated in other 
human cells [29,52], confirming successful enrichment 
of palmitoyl-proteins in this study. Most of the 2,581 
putative palmitoylated proteins were not reported in 
normal human bladder or BC cells (Figure 2A). 

 

 
Figure 2. Known and novel palmitoylated proteins from T24R and T24S cells. (A) Pie chart depicts the proportion of palmitoylated and non-palmitoylated proteins 
from the total identified proteins. (B) Pie chart shows proportion of known and novel candidate palmitoyl-proteins. (C-D) Known and novel palmitoylated proteins in other 
cancer cells and bladder cells. 
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Next, we sought to identify DPPs in T24R cells 
compared to T24S. To further understand cisplatin 
resistance-associated protein palmitoylation changes, 
we aimed to identify DPPs between T24R and T24S 
cells. A statistical hypothesis test using an empirical 
null model was conducted (see Methods). From the 
total 3,315 putative palmitoylated proteins, 506 
proteins were identified as DPPs based on the criteria 
of a combined P<0.05 and log2-transformed 
fold-change of 0.58 (Figure 2B). Furthermore, we 
found only 506 proteins as being differentially 
abundant in T24R cells compared to T24S after 
extensive statistical analysis. Among those identified 
506 DPPs, at least 351 (69%) were identified as known 
palmitoyl proteins [29,52] (Figure 2B). To construct 
the database of known palmitoylated proteins, we 
combined the 3,593 human palmitoyl proteins 
compiled in the SwissPalm (v2), a compendium of 
palmitoyl proteins, with the 2,895 high-confidence 
candidate human palmitoyl proteins identified from 
LNCaP cells using LB-ABE to generate the currently 
most comprehensive palmitoyl-proteome database, 
containing 4,669 known palmitoyl proteins. Then, by 
comparing the 506 differentially abundant palmitoyl 
proteins with the 4,669 known human palmitoyl 
proteins, 351 DPPs were identified as known 
palmitoyl-proteins. The remaining 155 (31%) DPPs are 
novel putative palmitoyl-proteins and not reported in 
any type of cells (Figure 2B). A few examples of 
known and novel DPPs were shown in Figures 2C 
and 2D. 

Cisplatin resistance-associated protein 
palmitoylation changes 

These 506 DDPs included 180 upregulated and 
326 downregulated DPPs in T24R cells, compared to 
T24S (Figure 3A). A volcano plot displays DPPs 
between the T24R vs. T24S cells (Figure 3B). Among 
these DDPs, NCAM1, VIM, ROR1, MAOA, and 
SLC7A2 are known to be palmitoylated in other types 
of cells[52]. Figure 3C summarizes the most altered 
known palmitoylated proteins in T24R compared to 
T24S cells. 

Biological and mechanistic meaning of DDPs 
associated with cisplatin resistance 

The top 10 significantly enriched biological 
processes suggest that carboxylic acid transport, 
cell-cell adhesion, and biological adhesion were 
enriched for by DPPs in T24R cells (Figure 4A). 
Further functional enrichment analysis of the 180 
upregulated DDPs in T24R cells revealed that 
oxidation-reduction or lipid metabolic processes were 
enriched, while the 326 downregulated DDPs were 
enriched for anion/ion transport and apoptosis (5 out 

of top 7 biological processes) (Figure 4B). The 
following doughnut charts exhibit the proportion of 
the numbers of up (outside) and downregulated DPPs 
(inside) for enriched molecular functions (Figure 3B) 
and cellular compartments (Figure 4C). In terms of 
molecular functions, those related to catalytic activity 
or binding were enriched for in both up and 
downregulated DDPs, suggesting that palmitoylation 
functions in membrane anchoring, trafficking, and 
cellular localization-associated enzymatic activity 
(Figure 4D). Cellular compartments, such as the 
organelles and membrane, were also enriched for by 
DDPs (Figure 4E). 

Table 1 shows the enriched biological processes 
of DPPs between T24R and T24S cells. Functional 
analysis suggested that proteins related to 
oxidation-reduction and lipid metabolism pathways 
are highly palmitoylated in T24R cells. In contrast, 
those related to ion and anion transport were 
significantly downregulated in T24R cells. 
Collectively, our data imply that protein 
palmitoylation may be involved in a wide range of 
biological processes and aggressiveness of cancer, 
which can be further associated with cisplatin 
resistance. 

Inhibition of palmitoylation differently 
perturbed protein palmitoylation in T24S and 
T24R cells 

A lipid-based protein palmitoylation inhibitor, 
2-BP, was used to test how palmitoylation of
identified DPPs are regulated in T24R and T24S cells.
In T24S cells, 165 DDPs were identified as being
downregulated in response to 2-BP (log2-fold-change
>0.58, combined p-value <0.05) (Figure 5A). A
volcano plot exhibits the DDPs significantly altered by
palmitoylation inhibition (Figure 5B). The enriched
biological processes among downregulated DDPs
indicated protein localization (Figure 5C), while those
upregulated include intermediate filament, skin
development, and fatty acid beta-oxidation. (Figure
S1A).

In T24R cells, 75 DDPs were upregulated and 132 
were downregulated by palmitoylation inhibition 
(log2-fold-change >0.58, combined p-values <0.05) 
(Figure 5D). A volcano plot exhibits up or 
downregulated DDPs after 2-BP treatment (Figure 
5E). The enriched biological processes among the 132 
processes downregulated by palmitoylation 
inhibition indicated the glycosaminoglycan 
metabolomic process, hippo signaling, and protein 
localization to the plasma membrane (Figure 5F); 
while those upregulated include epidermis 
development, skin development, cell junction 
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organization, and fatty acid beta-oxidation. (Figure 
S1B). 

There were several clustered patterns of 
palmitoylation changes among DPPs. For example, 
palmitoylation levels of DDPs, such as AGPAT1 (1- 
acylglycerol-3-phosphate O-acyltransferase 1), PKP2 
(plakophilin 2), TMEM231 (transmembrane protein 
231), SLC7A2 (solute carrier family 7 member 2), 
CLCN2 (chloride voltage-gated channel 2), and F2R 
(protease-activated receptors), decreased in both T24S 
and T24R cells after 2-BP treatment (Figure 5G). In 

contrast, DPPs, like PPP2R1B (protein phosphatase 2 
scaffold subunit A beta), CSRP1 (cysteine and glycine 
rich protein 1), SHB (SH2 domain containing adaptor 
protein B), were decreased only in T24R cells 
following 2-BP treatment (Figure 5G). Collectively, 
these findings suggest that a variety of palmitoylation 
mechanisms may play a role in the regulation of 
protein palmitoylation. In both T24S and T24R cells, 
there were noticeable common biological processes 
affected by palmitoylation inhibition, including 
protein localization and fatty acid beta-oxidation. 

 

 
Figure 3. Identification of differentially palmitoylated proteins (DPPs). (A) Diagram showing 180 up and 326 downregulated DPPs in T24R cells. (B) Volcano plot 
shows all putative palmitoylated proteins. Red, upregulated DPPs in T24R cells compared to T24S (n=180). Blue, downregulated DPPs in T24R cells compared to T24S (n=326). 
(C) Top 10 most and least DDPs among known palmitoylated proteins. 
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Figure 4. Biological enrichment of DPPs between T24R and T24S cells. (A) Bar graph shows top 10 biological processes enriched by DPPs in T24R cells compared to 
T24S. (B-C) Bar graphs show enriched biological processes upregulated (B) and downregulated by DPPs in T24R cells (C). (D-E) Doughnut charts visualize the proportion of 
the numbers of up (outside donut) and downregulated (inside donut) DPPs in the enriched molecular functions (D) and cellular compartments (E). 

 

ACSS2 inhibition decreases fatty acid synthesis 
and changes palmitoylation of proteins in BC 
cells 

Our previous study extensively investigated and 
demonstrated the link between lipid production and 
cisplatin resistance. The total lipid levels in T24R cells 
were significantly higher than those in T24S cells 
(~170%) [52]. In T24R cells, expression of several lipid 
metabolism-related proteins, such as ACC (acetyl- 
CoA carboxylase), FASN, and ACSS2 (acyl-CoA 

synthetase short chain family member 2), was found 
to be increased. Since FASN is a key player in 
palmitate synthesis, the influence of palmitate levels 
and cholesterol concentration was examined in the 
context of cisplatin resistance. Experimental results 
from our previous [53] and current study show 
increased palmitate, cholesterol, and lipid production 
in T24R cells compared to T24S (Figure 6A and 6B). 
Our group previously found that ACSS2 inhibition 
decreased the de novo synthesis of fatty acid by more 
than 60% in T24R cells, but not in T24S [51]. 
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Table 1. Enriched biological process of DPPs 

 GOBPs Gene count P-value Genes 

T2
4R

 v
s 

T2
4S

 U
p 

cell adhesion 29 0.006294  ARHGAP5, ATP1B1, CASP8, CSRP1, DSP, CYR61, LDHA, BCAM, ME1, NCAM1, NEO1, PKP2, PLCB3, 
PLXNB3, PSMB10, SHB, SHC1, STK10, TPBG, SCARF1, NRP2, ME3, TMOD3, OLA1, ERBIN, ESYT2, EFHD2, 
VASN, MICA. 

lipid metabolic process 27 0.000834  ACAA1, ACACA, ALDH1A3, ALDH3A2, CREBBP, AKR1C1, DHCR7, GM2A, HMGCS1, CYR61, PITPNA, 
PLCB3, ABCD3, SCD, ALDH5A1, SCARF1, ACAA2, AGPAT1, DDX20, PTGR1, ACSL5, NANS, DOLPP1, 
MBOAT7, PTPMT1, CERS6, IAH1. 

oxidation-reduction process 26 0.000018  ACAA1, ALDH1A3, ALDH3A2, ALDOC, COX15, AKR1C1, DHCR7, LDHA, ME1, NDUFS8, PGD, ABCD3, 
PYGB, SCD, SPR, ALDH5A1, ACAA2, ME3, PTGR1, PRDX5, KDM3A, SQOR, NXN, VKORC1L1, QSOX2, 
HEPHL1. 

T2
4R

 v
s 

T2
4S

 D
ow

n 

cell adhesion 45 0.005795  CD59, CLPTM1, COL6A1, DNM2, DSC3, HDLBP, HSPB1, JUP, LAMC1, LGALS1, LRP6, LYN, TACSTD2, 
MCAM, NCAM2, PDPK1, PNN, PODXL, PRKCD, PSEN1, RANGAP1, ROBO1, RPL22, S100A11, SLC9A1, ZEB1, 
TGFB1, TGFBR2, MAD1L1, RIPK2, TJP2, FLOT1, PACSIN2, CLASP2, MPRIP, ICOSLG, NECTIN3, TES, 
BAIAP2L1, JAM2, EPS8L2, VMP1, CD99L2, ANTXR1, PHLDB2. 

ion transport 47 0.000072  ABCD1, CLCN2, CLCN7, CLN3, COX4I1, DNM2, DPYSL2, STOM, F2R, GLS, LYN, ABCC1, P2RX4, PDPK1, 
PKD2, PLP2, PSEN1, PSEN2, SLC6A9, SLC7A2, SLC9A1, SLC12A2, SLC25A1, SNAP25, TGFB1, SLC39A7, 
SLC43A1, SLC5A6, SLC16A3, TMEM63A, SLC12A7, SERINC3, SLC39A14, CALHM2, TRPV2, SLC38A2, 
MCOLN1, SERINC1, SLC26A6, TTYH3, SLC38A1, MCU, ORAI3, SLC46A1, NIPA1, SLC9B2, CALHM5. 

anion transport 25 0.000003  ABCD1, CLCN2, CLCN7, CLN3, DPYSL2, GLS, ABCC1, P2RX4, PSEN1, SLC6A9, SLC7A2, SLC12A2, SLC25A1, 
SNAP25, SLC43A1, SLC5A6, SLC16A3, SLC12A7, SERINC3, SLC38A2, SERINC1, SLC26A6, TTYH3, SLC38A1, 
SLC46A1. 

 
Given these findings, we speculated that 

increased palmitate and cholesterol production via 
ACSS2 in T24R promotes changes in palmitoylation 
status of specific proteins; thereby, contributing to 
cisplatin resistance. An LC-MS/MS approach was 
used to determine if ACSS2 inhibition perturbs 
palmitoylation status of proteins in T24S and T24R 
cells. In T24S cells, bioinformatic analysis revealed 255 
DPPs, of which 80 were upregulated and 175 were 
downregulated (Figure 6C). The volcano plot in 
Figure 6D shows the downregulated proteins and 
their palmitoylation levels following ACSS2 
inhibition treatment. The biological processes of these 
DPPs include ion transport, cellular homeostasis, cell 
adhesion, cell migration, and proliferation (Figure 
6E). In T24R cells, ACSS2 inhibition led to 
98 downregulated DDPs (Figure 6F and 6G). The 
downregulated DDPs are involved in immune 
response related biological processes, such 
as regulation of response to external stimulus, 
homeostatic process, inflammatory response, chemo-
taxis, leukocyte migration, and regulation of cell 
proliferation (Figure 6H). 

FASN palmitoylation and PD-L1 expression in 
BC 

The palmitoylation of FASN was first validated 
because its link to lipid metabolism is well established 
in many cancer types, including BC [33,36,54,55]. 
FASN was found to be more palmitoylated in T24R 
cells compared to T24S. Because palmitoylation often 
contributes to increased protein stability and eventual 
upregulated expression, FASN expression could be 
associated with BC cisplatin resistance. We next tested 
a possible link between increased lipid production 
and palmitoylation with cisplatin resistance in BC. 

At baseline, T24R cells were found to express 
modest but greater levels of FASN expression than 

T24S (Supplementary Figure 2). The LB-ABE method 
was used to validate whether FASN was 
palmitoylated in BC cells. FASN palmitoylation levels 
were increased in T24R cells compared to T24S 
(Figure 7A). There were more palmitoylated FASN 
proteins detected as well. Palmitoylation inhibition by 
2-BP repressed FASN expression in a dose-dependent 
manner in both T24S and T24R cells (Figure 7B). This 
implies that FASN is palmitoylated in BC cells, and 
the increase in palmitoylation of FASN is likely 
associated with cisplatin resistance in BC. 

Additional experiments were conducted to 
support the FASN palmitoylation data using 
commercial palmitoylation protein assay kits, as 
described in the Methods. These kits are based on 
similar enrichment principles as our own. After 
palmitoylation enrichment, the total palmitoylation 
levels were almost identical in T24R and T24S cells. 
However, after treatment with 2-BP, the total 
palmitoylated proteins were significantly reduced in 
T24S cells compared to T24R, which had partial 
remaining palmitoylated proteins. Further data using 
western blot analysis showed that palmitoylated 
FASN was increased in T24R cells compared to T24S 
(Figure 7C, palmitoylated FASN panel). PD-L1 was 
also found to be palmitoylated in both T24S and T24R 
cells. Palmitoylation levels of PD-L1 were greater in 
T24R cells with or without 2-BP treatment (Figure 7C, 
palmitoylated PD-L1 panel). PD-L1 expression was 
determined to be approximately 15-fold greater in 
T24R cells compared to T24S (Figure 7D). When 
palmitoylation was inhibited by 2-BP, PD-L1 
expression was significantly reduced in both T24R 
and T24S cells (Figure 7D). Although 2-BP abolished 
PD-L1 palmitoylation completely, it was not able to 
effectively suppress PD-L1 palmitoylation in T24R 
cells. 
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Figure 5. Effects of palmitoylation inhibition in T24S and T24R cells (A) Pie chart depicts the number of up and downregulated DPPs by palmitoylation inhibitor 
treatment in T24S cells. (B) Volcano plot shows the distribution of the DPPs with log2 ratio of palmitoylation inhibitor treated and untreated T24S cells (x-axis) and statistical 
significance (y-axis). (C) Bar plot shows downregulated biological processes in T24S cells in response to the inhibitor treatment. (D) Pie chart depicts the number of up and 
downregulated DPPs by palmitoylation inhibitor treatment in T24R cells. (E) Volcano plot shows the distribution of the DPPs with log2 ratio of inhibitor treated and untreated 
T24R cells (x-axis) and statistical significance (y-axis). (F) Bar plot shows downregulated biological processes in T24R cells in response to the inhibitor treatment. (G) 
Palmitoylated protein abundance with or without palmitoylation inhibitor in T24S and T24R cells. Examples of palmitoyl-proteins that have different effects on the treatment of 
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palmitoylation inhibitor are shown. (Top) Three proteins exhibit higher expression in T24R cells compared to T24S and have significant downregulation after inhibitor treatment 
in both. (Middle) Three proteins are significantly higher in T24S cells compared to T24R and have significant downregulation in both. (Bottom) Three proteins are significantly 
higher in T24R cells compared to T24S and have significant downregulation only in T24R. 

 
Figure 6. Effects of ACSS2 inhibitor in T24S and T24R. (A) Palmitate concentration in T24S and T24R cells. (B) Cholesterol levels were compared in T24S and T24R 
cells. (C) Pie chart depicts the number of up (n=175) and downregulated DPPs (n=80) following ACSS2 inhibitor treatment in T24S cells. (D) Volcano plot shows the distribution 
of the DPPs with log2 ratio of ACSS2 inhibitor treated and untreated T24S cells (x-axis) and statistical significance (y-axis). (E) Bar plot shows downregulated biological processes 
in T24S cells in response to ACSS2 inhibitor treatment. (F) Pie chart depicts the number of up (n=164) and downregulated DPPs (n=98) following ACSS2 inhibitor treatment in 
T24R cells. (G) Volcano plot shows the distribution of the DPPs with log2 ratio of ACSS2 inhibitor treated and untreated T24R cells (x-axis) and statistical significance (y-axis). 
(H) Bar plot shows downregulated biological processes in T24R cells in response to ACSS2 inhibitor treatment. 

 
Next, the effects of FASN inhibition on 

BC-specific palmitoylated proteins was examined. 
T24S and T24R cells were treated with orlistat. This 
reduced PD-L1 protein expression in both T24R and 
T24S cells (Figure 7E), suggesting that FASN activity 
likely regulates PD-L1 palmitoylation and stability. It 

was confirmed that there were no cytotoxic effects of 
orlistat within the conditions used, based on 
additional analysis showing that there were no 
observed changes in cell viability in response to 
orlistat in both T24S and T24R cells (Figure 7F). 
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Figure 7. (A) Validation of FASN palmitoylation in T24S and T24R cells. Western blot analysis was performed using palmitoylation-enriched proteins. The same amount of 
proteins was used as starting materials (input). (B) FASN protein expression is downregulated by palmitoylation inhibition. Vehicle-treated cells acted as controls. (C) Further 
validation of FASN palmitoylation using a commercial kit. PD-L1 was also palmitoylated both in T24S and T24R cells. (D) Palmitoylation inhibition by 25 µM 2-BP treatment 
dramatically reduced protein expression of PD-L1 and FASN. Western blot analysis of FASN and PD-L1 protein expression from cells exposed to either 2-BP or vehicle control. 
(E) Expression of PD-L1 decreased in response to 50 µM orlistat treatment. (F) Cell viability assays on the effects of orlistat at varying time points or concentrations did not 
show any significant difference. Differences in cell viability, in which vehicle acted as control, was determined by t-test. Data are representative of at least three different 
experiments. Error bars denote SEM. *, **, and n.s. stand for p < 0.01, p < 0.05, and p ≥ 0.05, respectively. 

 

Discussion 
S-palmitoylation (S-acylation) is the enzymatic 

addition of a fatty acid (acyl) group, such as palmitate, 
onto cysteine residues of a protein via thioester 
linkage, which is catalyzed by palmitoyltransferases 
and depalmitoyltransferases [56]. Many protein 
substrates can be palmitoylated by more than one 
DHHC enzyme with certain DHHC-substrate 

specificity. DHHCs may act as a functional 
heterodimer, which may affect their enzymatic 
activities. S-palmitoylation is a powerful regulatory 
mechanism for a number of cellular processes, 
including signal transduction, protein turnover, 
vesicle fusion, and cell-cell interactions. Dysfunctions 
can lead to cancer, cardiovascular disease, and 
neurological disorders [57-59]. The reversible 
modification of cysteine residues by thioester 
formation with palmitate by the addition of a C16:0 
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carbon palmitoyl moiety is an abundant lipid post- 
translational modification. This addition of palmitate 
enhances a protein’s affinity to the membrane, directs 
its distribution in membrane micro-domains, and 
mediates protein-protein interactions, trafficking, 
stability, and aggregation state. There is an intriguing 
potential connection between alterations in the 
metabolome and mitochondrial regulation. In 
addition, post-translational lipid modification targets 
and shuttles proteins between the cytosol and lipid 
raft within the plasma and mitochondrial membranes. 
Palmitoylation is known to play active roles in the 
sorting and trafficking of many proteins, and 
fluctuations in palmitoylation may contribute to 
signaling outcomes. S-palmitoylation has been 
observed in many ER and mitochondrial proteins, 
suggesting an intriguing potential connection 
between metabolic lipids and mitochondrial 
regulation [60]. However, it is unknown whether or 
how mitochondrial S-palmitoylation is regulated in 
the context of resistance against chemotherapy 
[16,61-63]. 

Our palmitoyl-proteomics approach detected a 
total of 25,598 peptides and 3,695 putative 
palmitoylated proteins in either T24S or T24R BC 
cells. The further defined 506 DDPs included 180 
upregulated and 326 downregulated palmitoylated 
proteins in T24R cells. Our results also uncovered a 
novel molecular mechanism of palmitoylation, which 
demonstrates that protein palmitoylation of putative 
candidate proteins, is linked with responsiveness to 
chemotherapy, such as cisplatin. In this study, our 
palmitoylated protein-enriched proteomics profiling 
comparing cisplatin-resistant and sensitive BC cells 
showed that FASN is critical for protein 
palmitoylation in cisplatin-resistant cells. FASN plays 
an important role in synthesis of palmitate, which is 
both a precursor for fatty acids and the acyl group 
that is added to cysteine residues during 
palmitoylation [64]. Therefore, it is logical to infer that 
overexpression of FASN is associated with increased 
protein palmitoylation, which then contributes to 
worse prognoses in certain cancers [65]. Furthermore, 
a recent study found that FASN mediates EGFR 
palmitoylation in EGFR-mutated chemo-resistant 
non-small cell lung cancer [32]. 

We found that FASN expression and 
palmitoylation may lead to increased PD-1 expression 
and palmitoylation. PD-L1, a T cell regulatory 
molecule that is expressed on the surface of tumor 
and tumor-infiltrating immune cells, was also found 
to be highly palmitoylated in cisplatin-resistant BC 
cells, compared to isogenic control cells [66]. 
Activation of the pathway inhibits the activation of 
cytotoxic T lymphocytes and is one of the main 

methods through which tumor cells evade immune 
responses [67]. Antibodies targeting PD-L1 are known 
to benefit overall survival in BC, and several agents 
have received accelerated approval from the FDA for 
treatment [68]. In addition to being a clinical target, 
PD-L1 has also been shown to be a significant clinical 
predictor for stage and treatment response in BC [69]. 
It has been previously shown that PD-L1 is 
palmitoylated via a covalent attachment of palmitic 
acid to its 272 cysteine residue for stability [70]. 
Although the effects of PD-L1 palmitoylation has not 
been thoroughly examined in the context of BC, 
previous studies have shown that palmitoylation 
stabilizes PD-L1 and promotes tumor growth in other 
cancer types, such as breast cancer [71], melanoma, 
and BC. Based on this prior evidence, exploring the 
influence of PD-L1 palmitoylation in BC progression 
and aggression presents a promising opportunity. 

There are limitations in this study. Although 
there are ongoing studies in our laboratory, this study 
did not provide evidence to demonstrate whether 
inhibition of both FASN and PD-L1 may have 
synergistic inhibitory effects on cancer progression. 
These alternative hypotheses await further 
investigation. Currently, the most widely used 
palmitoylation inhibitor, 2-BP, a non-metabolizable 
palmitate analog, elicits pleiotropic effects. However, 
no inhibitory drugs targeting palmitoylation with 
high-affinity and specificity are available. There is an 
urgent need to identify specific, high-affinity 
inhibitors of protein palmitoylation for basic research 
and therapeutic intervention based on palmitoylation. 
Thus, much work remains to be developed on the 
specific and high affinity inhibitors of protein 
palmitoylation that can be applied as therapeutic 
strategies designed for overcoming cisplatin 
resistance in BC. In this study, we did not focus on the 
specific enzymes that catalyze palmitoylation of 
PD-L1. Further analysis on how palmitoylases and 
depalmitoylases, such as ZDHHC and APT/PPT, 
control PD-L1 palmitoylation and activity and 
contribute to activation of oncogenic pathways is 
warranted. Additional exploration of these 
mechanisms is necessary to clarify how PD-L1 is 
trafficked in the cell and how its activity is controlled 
in the context of cisplatin resistance. 
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A disease-specific biomarker (or biomarkers) is a characteristic reflecting a pathological condition in human body, which can be 
used as a diagnostic or prognostic tool for the clinical management. A urine-based biomarker(s) may provide a clinical value as 
attractive tools for clinicians to utilize in the clinical setting in particular to bladder diseases including bladder cancer and other 
bladder benign dysfunctions. Urine can be easily obtained by patients with no preparation or painful procedures required from pa-
tients’ side. Currently advanced omics technologies and computational power identified potential omics-based novel biomarkers. 
An unbiased profiling based on transcriptomics, proteomics, epigenetics, metabolomics approaches et al. found that expression 
at RNA, protein, and metabolite levels are linked with specific bladder diseases and outcomes. In this review, we will discuss about 
the urine-based biomarkers reported by many investigators including us and how these biomarkers can be applied as a diagnostic 
and prognostic tool in clinical trials and patient care to promote bladder health. Furthermore, we will discuss how these promising 
biomarkers can be developed into a smart medical device and what we should be cautious about toward being used in real clinical 
setting.
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INTRODUCTION

The bladder is a hollow, soft muscular organ located in 
the lower abdomen, which stores urine until it is ready to 
excrete. In urological diseases, the incidence of bladder dis-
eases is quite high. The common bladder diseases include 
bladder cancer (BC), bladder dysfunction (cystitis, urinary 
incontinence, overactive bladder, etc.) and other bladder 
problems. BC is the sixth most common cancer in the United 
States, accounting for 4.7% of cancer cases [1]. About 45,000 
men and 17,000 women in the United States are diagnosed 

as BC every year.
Interstitial cystitis (IC) is the most common disease in 

bladder dysfunction. According to the International Con-
tinence Society, the definition of  IC is “the complaint of 
suprapubic pain related to bladder filling, accompanied by 
other symptoms such as increased daytime and nighttime 
frequency, in the absence of proven urinary infection or oth-
er obvious pathology.” [2]. The morbidity of IC in the general 
population is 0.26% to 12.6% [3,4]. The estimated morbidity of 
IC in women is 45/100,000, which is 4 to 5 times than that 
in men, with the morbidity of 8/100,000 [5]. In the United 
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States, 3.3 million women are diagnosed as IC every year [6]. 
At present, one of the most important methods to diagnose 
bladder diseases is cystoscopy, but this technique is invasive 
and may lead to urinary tract infection. Compared to cys-
toscopy, urine testing is easier to perform in clinical practice. 
Urine can be obtained non-invasively and shows increased 
stability over serum or blood, which allows for easy multiple 
sampling. With the direct contact between urine and bladder 
diseases, the use of urinary biomarkers detection in bladder 
diseases becomes more and more important.

WILL IT BE USEFUL THE URINE-BASED 
DIAGNOSTIC BIOMARKERS TO DETECT 
AND MONITOR THE BLADDER DISEASES?

Urinary biomarkers are particularly attractive due to 
the direct contact of the urine with the urothelial tumor 
cells and the ease of sample collection. Urine-based diagnos-
tic biomarkers are reviewed in our paper from the following 
aspects: gene mutations and gene expression-based biomark-
ers, proteomic biomarkers, metabolomic biomarkers, and 
DNA methylation biomarkers. 

1. Gene mutations associated with BC
The exact cause of BC is still unclear. There are several

risk factors related to BC, including environment, smoking, 
toxic industrial chemicals and gases, bladder inflammation, 
and gene mutations. As a noninvasive method, detecting 
mutant genes in urine plays an important role in the diag-
nosis of BC. 

A study of Zhu et al. [7] indicated 14 important muta-
tion genes related to BC by searching the Catalogue Of 
Somatic Mutations In Cancer (COSMIC) database. The 
mutation genes included P53, fibroblast growth factor re-
ceptor 3 (FGFR3), TSC complex subunit 1 (TSC1), stromal 
antigen 2 (STAG2), HRas proto-oncogene (HRAS), phosphati-
dylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha 
(PIK3CA), Erb-B2 receptor tyrosine kinase 3 (ERBB3), neuro-
fibromatosis type 1 (NF1), ERBB2, FGFR1, cyclin-dependent 
kinase inhibitor 2A (CDKN2A), AT-rich interaction domain 
1A (ARID1A), histone-lysine N-methyltransferase 2D (KT-
M2D), and CREB binding protein (CREBBP). Several stud-
ies showed that the development of BC is associated with 
the mutations of P53 gene [8-11]. Sidransky et al. [12] first 
described the mutations of P53 gene in the urine of BC pa-
tients in 1991. They found that alterations in P53 gene were 
associated with poor differentiation, advanced urothelial cell 
carcinoma and poor prognosis [8,9]. Traczyk-Borszynska et al. 
[13] showed that the mutations of P53 gene were more com-

mon in clinically and histologically advanced carcinoma, and 
were the negative prognostic factor in BC. FGFR3 mutations 
also participated in the development of BC. A study showed 
that mutations of the FGFR3 gene were surrogate markers 
for the detection of genome stable bladder tumors [14]. An-
other study indicated that FGFR3 mutations were the fea-
ture of well-differentiated BC but not the prognostic marker 
in BC [13]. In other studies, van Rhijn et al. [15] showed that 
the combination of FGFR3 with MIB-1 (Ki67) had a more 
accurate prediction of the progression and survival in BC. 
Ploussard et al. [16] found that the progression and recur-
rence of FGFR3 mutations in disease depended on allele loss 
of 9p22. Also, Rebouissou et al. [17] found that the progres-
sion of  FGFR3 mutations in non-muscle-invasive disease 
depended on the homozygous deletion of 9p21. HRAS is a 
proto-oncogene, which may promote tumorigenesis in several 
organs including the bladder. HRAS gene mutations in blad-
der cells were associated with BC, but the mutation rate was 
low. A study showed that the mutation rate of HRAS gene 
varies greatly in BC (0%–30%) [18]. Beukers et al. [19] indicat-
ed that HRAS gene mutations were more likely to occur in 
young BC patients (<20 years) compared with older patients. 
It suggested that mosaicism of oncogenic HRAS mutations 
may increase the risk of developing BC at a young age. 

Several studies showed that TSC1 had inactive point 
mutations on 9q34 in10% to 15% of BC patients, resulting in 
complete loss of function of TSC1 [20-22]. Also, the deletion 
of a single TSC1 allele may promote the growth of bladder 
epithelial cells and therefore promote the development of 
BC [23]. STAG2 mutations were recently identified in BC 
patients. However, the significance of  STAG2 mutations 
remains controversial. Solomon et al. [24] showed that loss 
of STAG2 promoted the lymph node metastases in BC and 
increased the risk of recurrence and mortality. However, 
different subtypes of BC may exhibit different mutations 
[25]. In several studies, loss of STAG2 was reported to be 
associated with BC in low stage and low grade [26-28]. Lelo 
et al. [29] found that STAG2 mutations were much more 
common in non-muscle invasive BC (32%) than in muscle 
invasion BC (12%). These studies suggested that STAG2 
could be a potentially useful biomarker for predicting recur-
rence and progression in non-muscle invasive BC. BRCA1-
associated protein 1 (BAP1) is a nuclear ubiquitin carboxy-
terminal hydrolase or deubiquitinating enzyme which can 
regulate several cellular functions, including cell cycle, dif-
ferentiation, proliferation, and DNA damage response [30]. 
The recent research indicated that BAP1 mutations were 
related to BRCA pathway alterations in BC. Lin et al. [31] 
indicated that patients carrying BAP1 genetic variant al-
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leles of rs12163565 had an increased risk of developing BC, 
although the increased risk was not statistically significant 
(odds ratio, 1.17; p=0.070). There were studies showed that 
PIK3CA gene alterations, including mutations, copy gains or 
amplifications, were associated with non-muscle invasive BC 
[32,33]. Dueñas et al. [33] showed that PIK3CA gene altera-
tions were frequent and associated with low recurrence and 
low progression in non-muscle invasive BC, which indicated 
that PIK3CA may be a potential biomarker for predicting 
recurrence and progression in non-muscle invasive BC. Col-
lectively, many genes mutations have been found in BC 
patients. Further studies are required to discover more gene 
mutations and new biomarkers in BC before they can be 
used in clinical practice.

2. Gene expression-based BC biomarkers
Gene expression-based urinary biomarkers have good 

sensitivity and specificity in the detection of BC. They are 
less likely to be affected by inflammatory and other be-
nign conditions. Several important genetic changes in BC 
have been identified in the past two decades. Based on the 
technology of rapid nucleic acid extraction and the proven 
stability of DNA and RNA in urine, gene expression-based 
biomarkers play an important role in the detection of BC.

A study from Beukers et al. [34] showed that FGFR3, 
telomerase reverse transcriptase (TERT), and orthodenticle 
homeobox 1 (OTX1) were significant in the diagnosis of BC. 
They acted as a urinary biomarker combination with a sen-
sitivity of 57% in low grade primary BC patients and 83% 
in pT1 or muscle invasive BC. In a study of Holyoake et al. 
[35], the researchers used microarray data from BC patients 
and healthy controls to generate a panel of genes that were 
differentially expressed in various stages and grades of BC 
patients and normal controls. They tested the markers in 
voided-urine samples to generate an mRNA panel, includ-
ing cyclin-dependent kinase-1 (CDK1; also known as CDC2), 
midkine (MDK), insulin like growth factor binding protein 5 
(IGFBP5), and homeobox A3 (HOXA3), which could predict 
the presence of BC with a sensitivity of 48% to 100% and a 
specificity of 85%. Park et al. [36] examined aurora kinase 
A (AURKA) gene amplification in exfoliated cells in urine 
samples. They concluded that AURKA could be a biomarker 
for the detection of BC with a specificity of 96.6% and a 
sensitivity of 87%, and the degree of gene amplification was 
also associated with high grade BC. Urquidi et al. [37] used 
Affymetrix arrays of 92 patients (52 BC and 40 controls) 
and derived a 14 gene panel that could predict the presence 
of BC, with high sensitivity and specificity (90% and 100%, 
respectively) and AUC (area under the receiver operat-

ing curve) of 0.98. The 14 genes were: carbonic anhydrase 9 
(CA9), transmembrane protein 45A (TMEM45A), C-C motif 
chemokine ligand 18 (CCL18), matrix remodeling associated 
8 (MXRA8), matrix metallopeptidase 9 (MMP9), semaphorin 
3D (SEMA3D), ERBB2, vascular endothelial growth factor A 
(VEGFA), desmocollin 2 (DSC2), Ras-related protein Rab-1A 
(RAB1A), angiotensinogen (AGT), synaptogyrin 1 (SYNGR1), 
deleted in malignant brain tumors 1 (DMBT1), angiogenin 
(ANG). The first seven genes were upregulated and the 
last seven genes were down-regulated in the urines of BC 
patients. Bongiovanni et al. [38] found that the expression 
levels of septin 4 (SEPT4) were up-regulated in the urine of 
BC patients, with a sensitivity of 93%, a specificity of 65%, 
and AUC of 0.798. All these studies have shown promise in 
the diagnosis of BC. However, the majority of them remain 
in the discovery phase. 

MicroRNAs (miRNAs) are a class of small, endogenous, 
noncoding RNA. They regulate gene expression by affect-
ing mRNA translation and stability or by modulating pro-
moter activity of their target genes. In oncology, miRNAs 
are considered as promising biomarkers for early diagnosis, 
prognosis evaluation and therapeutic response prediction of 
the tumor. A large number of studies showed that miRNAs 
acted as diagnostic biomarkers in urine samples of BC pa-
tients [36,39-42]. Some miRNAs were down-regulated such 
as miR-125b, miR-140-5p, miR-141, miR-200a, miR-200c, and 
others were up-regulated such as miR-18a, miR-92a, miR-96. 
Other studies indicated that miR-126, miR-152, miR-222, and 
miR-452 were up-regulated in BC [43-45]. However, miR-200 
family, miR-155, miR-192, miR-205, and miR-143 were found 
to be down-regulated in studies [44,46]. Eissa et al. [47] found 
that the levels of miR-324-5p, miR-4738-3p, and FOSB mRNA 
were up-regulated in the urine of BC patients, whereas ln-
cRNA miR-497-HG and RCAN1 mRNA were down-regulated 
in BC patients, compared with patients with benign lesions 
and healthy controls. The sensitivities and accuracies of 
the RNAs were significantly higher than those of cytology. 
In the urinary ceRNA: lncRNA-miRNA-mRNA network, 2 
mRNAs (FOS B and RCAN1) displayed the highest accuracy 
for the diagnosis of BC. A study of Chen [48] showed that 
miR-101 was decreased in BC patients, and was negatively 
associated with aggressive clinical characteristics, with a 
sensitivity of 82.0% and a specificity of 80.9% in BC.

Most of the studies on miRNAs were different in meth-
odology, with little overlap, and no results were fully vali-
dated. At present, there are no valid conclusions about uri-
nary miRNAs in the detection of BC patients. Multicenter 
prospective validation studies in large clinical settings are 
needed in the future.
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3. Proteomics profiling revealed urinary biomark-
ers for BC
The urinary proteome enriched in proteins reflects the

development and invasion of the tumor through direct con-
tact with BC. The study of urinary proteomic biomarkers 
has been mainly used to help diagnose primary and recur-
rent BC and to assess the aggressiveness of the disease.

Nuclear matrix protein 22 (NMP22) is one urinary bio-
marker approved by the U.S. Food and Drug Administration 
(FDA) using enzyme-linked immunosorbent assay (ELISA) 
test and BladderChek point-of-care test [49,50]. However, in a 
meta-analysis of 19 studies for the detection of BC, the sensi-
tivity of NMP22 was 52% to 59% and the specificity was 87-
89%, with an AUC of 0.83 [51]. Another biomarker approved 
by FDA is the bladder tumor antigen (BTA), also known as 
human complement factor H related protein (hCFHrp). In a 
meta-analysis of 13 studies using BTA STAT test, the sensi-
tivity of BTA was 64% to 69% and the specificity was 73% 
to 77% [52]. In a meta-analysis of 5 studies using BTA STAT 
test, the sensitivity of BTA was 62% to 71% and the specific-
ity was 45% to 81% [53]. Both of the two markers above were 
not good in sensitivities and specificities. 

An ideal protein biomarker should be the one with high 
sensitivity, specificity, positive predictive value (PPV), nega-
tive predictive value (NPV), and AUC values [54]. Several 
studies showed that Apo-A1, BLCA-4, and hyaluronidase in 
urine were independently validated in BC with high sensi-
tivities and specificities [55-60]. Apo-A1 is the primary protein 
component of high-density lipoprotein, which may improve 
tumor angiogenesis through kinase activation [61,62]. But the 
association between lipoproteins and BC progression is still 
not very clear. Studies showed that Apo-A1 was indepen-
dently validated in BC with the sensitivity of 89% to 95% 
and the specificity of 85% to 92% [55-57]. BLCA-4 is a nuclear 
transcription factor found in the early stages of BC. Cai et 
al. [58] found that BLCA-4 was independently validated with 
the sensitivity of 93% and the specificity of 97% through 
an analysis of nine studies. Hyaluronidase could improve 
cellular proliferation and motility through hyaluronic acid 
[63]. Studies of Eissa et al. [59] and Pham et al. [60] showed 
the sensitivity and specificity of hyaluronidase ranged from 
87% to 100% and 89% to 98% respectively. Besides the three 
proteins, there were several additional urine proteins that 
exhibited with high sensitivities and specificities, but they 
have not yet been independently validated, including ANG, 
apolipoprotein E (APOE), CA-9, interleukin-8 (IL-8), MMP, 
MMP10, plasminogen activator inhibitor 1 (PAI-1), VEGF 
[63,64]. Goodison et al. [63] found that the eight-biomarker 
panel above achieved a sensitivity of 92% and a specificity 

of 97%, while the BTA TRAK ELISA test achieved a sen-
sitivity of 78% and a specificity of 83% in the same cohort 
for BC detection. Another study of Urquidi et al. [65] showed 
that urine CCL18 achieved a sensitivity of 88% and a speci-
ficity of 86%, while BTA TRAK ELISA achieved a sensitivi-
ty of 80% and a specificity of 84% in the same cohort for BC 
detection. All of the biomarkers above had better sensitivi-
ties and specificities than BTA. These head-to-head studies 
compared the biomarkers with the FDA-approved test in the 
same patient cohort, increasing the validity of the studies.

4. Proteomics profiling revealed urinary biomark-
ers for IC
IC/bladder pain syndrome (BPS) is the most common

disease in bladder dysfunction. At present, the etiology of 
IC/BPS is still not fully understood. There are several pos-
sible mechanisms, including infection, inflammation, toxic 
substances absorption, mucus layer with deficient glycos-
aminoglycan, hypoxia, and genetics. So far there are no gold 
standards in the diagnosis of IC/BPS. Some invasive testing 
including biopsy, urodynamic, and cystoscopy are applied to 
help diagnose the disease. However, there is still a lack of 
tools to facilitate accurate diagnosis and objective follow-up. 
Therefore, it is significant to investigate urinary biomarkers 
that can be used in clinical practice. 

A study by Magalhaes et al. [66] reviewed the urinary 
biomarkers associated with IC/BPS. They found potential 
biomarkers investigated in urine specimens included mac-
rophage inhibitory factor (MIF), nerve growth factor (NGF), 
methylhistamine, histamine, IL-6, antiproliferative factor 
(APF), epithelial growth factor (EGF), heparin-binding (HB)-
EGF, glycoprotein G5P1, and a chemokine profile. Tonyali 
et al. [67] detected urinary NGF and nerve density in the 
bladder mucosa. They found that urinary NGF/Cr was sig-
nificantly increased in IC/BPS patients comparing to control 
groups, which was similar to nerve density. Corcoran et al. 
[68] assessed both urine samples and bladder biopsy samples
to determine the profile of 23 chemokines in 10 IC/BPS pa-
tients and 10 controls. The results indicated that univariate
analysis showed no significant differences in any of the
urinary proteins assessed, but multivariate analysis showed
that VCAM-1 and ICAM-1 in urine were significantly dif-
ferent between IC/BPS and controls. A study of Vera et al.
[69] studied urinary MIF concentrations in subgroups of
BPS with and without Hunner lesions and control groups.
They verified that urinary MIF was significantly higher in
BPS patients with Hunner lesion compared with patients
without Hunner and with controls, with a sensitivity of
74.4%, a specificity of 71.8%, and AUC 0.718. For the urinary
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MIF/Cr ratio, the sensitivity was 47%, the specificity was 
91% and AUC was 0.730 in identifying patients with IC/
BPS and Hunner lesions. Lamale et al. [70] investigated 
urinary histamine, IL-6, and methylhistamine in IC/BPS pa-
tients and controls. They found that urinary concentrations 
of histamine and IL-6 were increased in IC/BPS patients. 
However, methylhistamine levels had no significant differ-
ences between IC/BPS patients and controls. Further logistic 
regression analysis demonstrated that the best predictor 
for IC/BPS was a combined model with IL-6 and methylhis-
tamine, with an AUC of 0.788. Furthermore, Keay et al. [71] 
found that APF was increased in IC/BPS patients compared 
to controls, but HB-EGF concentrations were decreased in 
IC/BPS patients. Byrne et al. [72] demonstrated that glyco-
protein G5P1 concentration in urine was lower in IC/BPS 
patients than that in controls. 

In general, urine proteomic biomarkers of bladder dis-
eases have great promise, but the best biomarkers with the 
highest clinical utility remain to be discovered. There is still 
a need for more comprehensive screening of urine proteomic 
markers through extensive multi-institution validation. 
Table 1 shows the urinary biomarkers suggested for BC and 
IC diagnosis [51-53,55-60,63,65,67-72].

5. Metabolomic biomarkers for BC
At present, urinary metabolomic biomarker studies are 

primarily conducted either by NMR-based or mass spec-
trometry (MS)-based identification. Three metabolites (2,5-fu-
randicarboxylic acid, ribitol, and ribonic acid) were found to 
be lower in the urine of BC patients than in healthy con-
trols [73-75]. Taurine is the metabolite known as a free-radi-
cal scavenger that can prevent cell damage. Studies showed 
that taurine was elevated in the urine of BC patients than 
in healthy controls [75,76]. Several studies showed that uri-
nary citrate, succinate, and hippurate were reduced in BC 
patients compared with control groups, which suggested 
that citrate changes were related to an altered tricarboxylic 
acid (TCA) cycle in BC metabolism [73-77]. On the study of 
glycolysis-related metabolites, decreased fructose levels and 
increased lactate levels were showed in BC patients [73,75]. 
Urinary acetylcarnitine and adipate in BC patients were 
elevated, which were the results of  disturbed fatty acid 
transportation, altered mitochondrial TCA cycle, and energy 
metabolism processes or an excess of acetyl-CoA production 
[74,75,77]. 

Wittmann et al. [75] identified between 178 and 233 dis-
criminating metabolites (depending on the respective com-
parison) in a retrospective MS study. They compared current 
BC patients with three different control groups: patients 

with haematuria, controls with BC in the past but without 
the current disease, and a mixed group of  patients with 
haematuria, those with BC in the past and some healthy 
subjects. They found that 3-hydroxybutyrate and gluconate 
were the most highly increased in BC patients, while an-
serine, 3-hydroxyphenylacetate and pyridoxate showed the 
lowest values in BC patients. In another high-resolution liq-
uid chromatography (LC)-MS study, glycolysis and acylcar-
nitines were increased in BC than a combined control group 
(patients with haematuria and healthy controls) [78]. Besides, 
amino acid metabolism and fatty acid oxidation were also 
important factors in BC pathology. A study showed that 
the acylcarnitines, decanoylcarnitine, decenoylcarnitine, hy-
droxynonanoylcarnitine and hydroxybutyrylcarnitine were 
all increased in BC patients [79]. These urinary metabolomic 
biomarkers may have potential significance in the diagnosis 
of BC.

6. Metabolomic biomarkers for IC
In the research of IC/BPS, Parker et al. [80] used LC-MS 

in urine samples of 40 women with IC/BPS and 40 controls 
to determine metabolomic profiles. They found six metabo-
lites were closely associated with IC/BPS. One of them was 
etiocholan-3alpha-ol-17-one (Etio-S). The elevated Etio-S was 
a good predictor of IC/BPS, with a sensitivity of 91.2%, a 
specificity of 87.4%, and AUC of 0.92. Longitudinal analysis 
of women in this cohort showed that the differences in Etio-
S persisted, indicating that these changes could last long.

The results from these early studies on metabolomic 
biomarkers suggest that urine may act as a potential tool on 
screening or monitoring bladder diseases in the clinical field, 
but it is still in the discovery phase. More large multicenter 
studies with independent validation cohorts are needed to 
advance the field. Table 2 shows the urinary biomarkers 
suggested for IC diagnosis [73-80].

7. DNA methylation biomarkers for BC
DNA methylation has been recognized to be important 

in developmental biology and cancer etiology [81]. Aberrant 
DNA methylation is a major characteristic of  BC and it 
plays an important role in tumor occurrence and progres-
sion [82-84]. Compared to RNA or protein, DNA is inherently 
stable, so it is more powerful in cancer detection. Chan et al. 
[85] examined the DNA methylation of seven genes (the reti-
noid acid receptor-β [RARβ]), death associated protein kinase 
1 (DAPK1), E cadherin, CDKN2A (p16), p15INK4b (p15), gluta-
thione S-transferase Pi 1 (GSTP1), and O-6-methylguanine-
DNA methyltransferase (MGMT) in voided urine of  BC 
patients and age  and sex matched controls. Four biomarkers 
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DAPK1, RARβ, E-cadherin, and p16) achieved a sensitivity of 
91% and a specificity of 76% for detecting BC. And cytology 
achieved a sensitivity of 46% and a specificity of 100% by 
comparison. Friedrich et al. [86] examined DNA methylation 
of apoptosis associated genes (DAPK, TERT, and apoptosis 
regulator [BCL2]) in the urine of BC patients. They found 
that combined methylation analyses achieved both high 
sensitivity and specificity (78% and 100%, respectively) for 
detecting BC. In another study, Hoque et al. [87] examined 
the DNA methylation of nine genes (adenomatous polypo-
sis coli (APC), ARF tumor suppressor (p14ARF), cadherin-1 
(CDH1), GSTP1, MGMT, cyclin dependent kinase inhibitor 
2A (CDKN2A), retinoic acid receptor beta (RARb2), ras as-
sociation domain family member 1 (RASSF1A), and TIMP 
metallopeptidase inhibitor 3 (TIMP3). They found that com-
bined methylation analysis based on four genes (CDKN2A, 
p14ARF, MGMT, and GSTP1) achieved a sensitivity of 69% 
and a specificity of 100%. Recently there were some stud-
ies on Twist family BHLH transcription factor 1 (TWIST1) 
and nidogen 2 (NID2) genes. Renard et al. [88] reported that 
TWIST1 and NID2 genes were frequently methylated in BC 
patients in a total of 496 urine samples collected from three 
urology clinical sites. The sensitivity of this 2 gene panel was 
significantly better than that of cytology (90% and 48%, re-
spectively), with the specificity of 93% and 96%, respectively. 
The PPV and NPV of the 2 gene panel was 86% and 95%, 
respectively. However, the sensitivities of these two genes 
were poor in the studies of Abern et al. [89] and Fantony et 
al. [90]. In other studies, Reinert et al. [91] found a 4 marker 
panel (zinc finger protein 154 [ZNF154], homeobox protein 
Hox-A9 (HOXA9), POU class 4 homeobox 2 (POU4F2), and 
eomesodermin (EOMES) achieved a sensitivity of 84% and 
a specificity of 96% for detecting BC in urine samples from 
119 BC patients and 59 controls. Another study of Reinert et 
al. [92] found a 6-marker panel (EOMES, HOXA9, POU4F2, 
TWIST1, vimentin (VIM), and ZNF154) had a sensitivity of 
82% to 89% and a specificity of 94% to 100% for detecting BC 
in urine samples from 184 BC patients and 35 controls. 

In a study of 368 urine samples collected from 90 non-
muscle invasive BC patients, Su et al. [93] reported that a 
panel of 3 markers (SRY-box transcription factor 1 [SOX1], 
interleukin 1 receptor associated kinase 3 [IRAK3], and L1-
MET) discriminated between patients with recurrence and 
with no recurrence, with a sensitivity of 86% and a specific-
ity of 89% of patients with recurrence, compared with the 
sensitivity of 80% and specificity of 97% of patients with no 
recurrence in validation sets. The results demonstrated that 
the combination of SOX1, IRAK3, and L1 MET could detect 
disease recurrence with high sensitivity and specificity. An-
other study selected seven DNA methylation biomarkers 
(CDH13, cystic fibrosis transmembrane conductance regula-
tor [CFTR], NID2, spalt like transcription factor 3 (SALL3), 
transmembrane protein with EGF like and two follistatin 
like domains 2 [TMEFF2], TWIST1, and VIM2) from four 
recently published BC studies [81,94,95]. They found that the 
best possible combination to discriminate against BC from 
controls was the combination CFTR, SALL3, and TWIST1 
[96]. The three-gene methylation classifier achieved an AUC 
of 0.874, with a sensitivity of 85% and a specificity of 68%. 
The discovery of highly sensitive methylation biomarkers 
may allow us to lower the number of follow-up cystoscopies 
in patients with BC, which can improve the life quality of 
the patients. 

8. DNA methylation biomarkers for IC
In the research of IC/BPS, Magalhaes et al. [66] concluded 

that DNA methylation in urine samples was associated with 
IC/BPS. Bradley et al. [97] determined DNA methylation 
profiles in IC/BPS and controls. After Bonferroni correction, 
there was no genome-scale significantly different methyla-
tion in CpG sites. Among the methylated CpG sites, the most 
prominent enrichment pathway was the mitogen-activated 
protein kinase (MAPK) pathway. This pathway had 86% of 
sites with hypomethylation in IC/BPS patients compared to 
the controls.

There is evidence that DNA methylation biomarkers 

Table 4. Commercially available biomarker kits
Biomarker kits Study Sensitivity (%) Specificity (%) Notes
Cytology Liou, 2006 [99] 16–89 81–100 FDA-approved 
Hematuria dipstick Liou, 2006 [99] 40–93 51–97 FDA-approved 
NMP22 Wang et al., 2017 [51] 52–59 87–89 FDA-approved 
BTA stat test Guo et al., 2014 [52] 64–69 73–77 FDA-approved 
BTA TRAK test Glas et al., 2003 [53] 62–71 45–81 FDA-approved 
Immuno Cyt Liou, 2006 [99] 39–100 73–84 Approved only for BC surveillance 
FGFR3 Beukers et al., 2017 [34] 57–83 59–82.7 FDA-approved 

FDA, U.S. Food and Drug Administration; NMP22, nuclear matrix protein 22; BTA, bladder tumor antigen; FGFR3, fibroblast growth factor receptor 3.
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are more sensitive than cytology although there were bio-
markers tested on cohorts that varied between studies. And 
some markers showed specificity comparable with that of 
cytology. A highly selective panel of methylation biomarkers 
may increase the sensitivity and specificity of urine analysis 
in the clinical studies [98]. Standardized assays and cutoff 
values should be used in a large and well-designed cohort in 
future studies. Table 3 summarizes urine epigenetics-based 
biomarkers for BC and IC [34-38,43-47,66,85-93,96,97].

CONCLUSIONS

Many studies have shown that urinary-based biomark-
ers have high sensitivity and specificity in the diagnosis 
of  bladder diseases (such as BC and IC), which confirms 
the feasibility of using urinary exfoliated epithelium as an 
analyzer to diagnose bladder diseases. As shown in Table 4 
[34,51-53,99], commercially available biomarker kits for di-
agnosis of bladder disease such as BC have been introduced 
in market. If this method is accurate and reliable enough, 
it can be used not only for the diagnosis of bladder diseases 
but also for the screening of  diseases in the population. 
However, further researches are needed to apply urinary 
biomarkers to clinical practice. More efforts should be made 
to improve and validate the biomarker panel and promote 
the progress of urine-based biomarker analysis, which will 
be applied to clinical work as soon as possible.
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ABSTRACT

Molecular biosignatures of altered cellular landscapes and functions have been casually linked with pathological condi-
tions, which imply the promise of biomarkers specific to bladder diseases, such as bladder cancer and other dysfunctions. 
Urinary biomarkers are particularly attractive due to costs, time, and the minimal and noninvasive efforts acquiring urine. 
The evolution of omics platforms and bioinformatics for analyzing the genome, epigenome, transcriptome, proteome, 
lipidome, metabolome, etc., have enabled us to develop more sensitive and disease-specific biomarkers. These discov-
eries broaden our understanding of the complex biology and pathophysiology of bladder diseases, which can ultimately 
be translated into the clinical setting. In this short review, we will discuss current efforts on identification of promising 
urinary biomarkers of bladder diseases and their roles in diagnosis and monitoring. With these considerations, we also 
aim to provide a prospective view of how we can further utilize these bladder biomarkers in developing ideal and smart 
medical devices that would be applied in the clinic.

Keywords: biomarker; bladder; urine; medical device; biosensor

URINE AND URINARY BIOMARKERS FOR BLADDER 
DISEASES

Urine is a waste product that is readily produced by all patients and 
contains a wealth of information. It can be produced in high-volume 
and procurement of samples is noninvasive. Considering these factors 
alone, urine is a highly attractive potential resource. However, there 
are several glaring issues that make urinalysis difficult. Factors such 
as preanalytical reliability and data analysis can be a major challenge 
[1,2]. Transport and preservation of urine samples are particularly im-
portant. It has been shown that increased time gaps between sampling 
and analysis, lack of temperature control, and lack of preservatives for 
samples that cannot be analyzed within two hours after collection can 
lead to low-quality test results [3]. However, preservatives may also 
affect the chemical properties and alter the appearance of certain particles 
[4]. Additionally, urine contains much more complex compounds that 

can be affected by a wide range of external factors, including diet and 
environment [5]. A comparative urinary metabolite profiling study of 
habitual diet discovered that 417 urinary metabolites were correlated with 
more than one food, beverage, or supplement [6]. Exposure to different 
environmental toxins and chemicals have been shown to be reflected
in urine. A study of pediatric exposure to pyrethroids, an insecticide, 
found differing concentrations of the chemical in urine based on each 
child’s level of risk [7]. Fortunately, recent advances in technology 
and standardization have made urinalysis more of a viable option for 
a number of clinical issues [8]. Because the uroepithelial-associated 
sensory web may be related to hypersensitive benign urological disor-
ders [9], it is not always necessary that clinopathological status results 
in a change in urinary components. As the pathology of genitourinary 
diseases is being better understood, more diagnostic and prognostic 
biomarkers are also being identified [10]. A recent study reported that 
4 urinary biomarkers were associated with kidney injury [11]. By 
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integrating newer technologies with increased knowledge of diseases, 
novel biomarkers can be discovered.

MULTI-OMICS APPLICATION FOR BLADDER BIO-
MARKER DEVELOPMENT

Omics involves the high-throughput analysis of different domains of 
biological information, including the genome, transcriptome, proteome, 
and metabolome [12,13]. Comprehensive omics analysis of urine can 
be a potentially valuable source of disease biomarkers. For instance, the 
proteomic profile of healthy urine can be used as a standard to compare 
disease-state urine to identify proteins of interest [14]. Recent new 
types of software are being developed to create workflows that involve 
distinguishing biomarkers via integrated comparative and quantitative 
analysis [15]. Advanced proteomic analysis has led to high-throughput 
profiling of bladder cancer-related proteins with both high sensitivity 
and specificity, which has resulted in a wealth of informative biomarkers 
[16]. A similar strategy was utilized in a recent study that identified 54 
potential protein biomarkers of bladder schistosomiasis by quantitatively 
comparing urinary samples from humans [17]. Other types of omics 
applications, such as genomics, epigenomics, transcriptomics and 
metabolomics, were also applied to determine biomarkers of bladder 
schistosomiasis. Metabolomic profi ing using urine and plasma samples 
revealed that the perturbed glycerophospholipid and sphingolipid me-
tabolisms are associated with schistosomiasis and its associated-bladder 
cancer pathologies [18]. Epigenetic regulation on RASSF1A and TIMP3 
were found using a quantitative methylation-specific PCR assay in urine 
sediments of patients with schistosomiasis infection. Hypermethylation 
of both RASSF1A and TIMP3 shows 77.55% of area under the receiver 
operator characteristic (ROC) curves (P = 0.023) [19]. Another study 
profiled urinary amino acids to identify potential biomarkers for lower 
urinary tract symptoms in male patients [20]. As non-invasive disease 
biomarkers, urinary extracellular vesicles such as exosomes have been 
discovered to contain a variety of molecular and genetic materials in-
cluding nucleotides, proteins, metabolites, miRNAs, and they function 
as a cargo and transfer those materials to nearby neighbor cells [21,22]. 
Progress in these comprehensive tests continues to increase our under-
standing of the complexity of biomarkers that underlie diseases and, 
with technology, it is becoming easier to navigate how to utilize them.

MICROBIOME STUDIES IN UROLOGICAL DISEASES

The microbiome is defined as the collective genome of all micro-
organisms in an environment [23]. Interest in this field has recently 
boomed as it has been shown that microbiota and alterations in their 
communities can contribute to the pathogenesis of chronic urological 
diseases, such as urothelial carcinoma [24]. A preliminary study found 
an association between urinary dysbiosis and urothelial carcinoma, 
suggesting that the ratio for microbiota could be used as a potential 
diagnostic indicator [25]. Another study observed that bacterial richness 
increased in the urine of patients with cancer compared to controls 
[26]. However, despite all the promising exploratory data surrounding 
microbiome’s usage in urological diseases, the field is still relatively 
new and more comprehensive studies are needed [27]. Studies on the 
influence of microbiota expand beyond the genitourinary tract as well. 

For instance, Helicobacter pylori is, well-documented, increasing 
the risk of duodenal and gastric ulcer disease and gastric cancer [28]. 
Bacterial pathogenesis is also noted to be potentially associated with 
colorectal cancer [29]. Based on the extensive role of microbiomes in 
many diseases, a better understanding of urinary microbes and their 
roles in urological diseases may prove to be significant

Aside from potential utilization of the microbiome in diagnostics 
and prognostics, identifying present microbiota may be important when 
it comes to various treatments. For instance, gastrointestinal microbes 
are known to affect the metabolism and toxicity of various agents [30]. 
Mycoplasma hyorhinis has been shown to metabolize and inactivate 
gemcitabine, a chemotherapeutic drug, which can result in drug re-
sistance [31]. Additionally, reactivation of the inactive metabolites of 
irinotecan, a topoisomerase I inhibitor, by gastrointestinal bacteria can 
lead to adverse toxicities, such as severe diarrhea [32]. For urological 
diseases, there are also some noted interactions between microbiota 
and treatment. It has been shown that D-mannose, a simple sugar, can 
hinder bacterial adhesion to the urothelium, thereby reducing risk of 
urinary tract infections and aiding in acute cystitis management [33].

The urinary microbiome is believed to play an important role in pre-
dicting disease status for many different urogenital diseases. Recently, a 
pilot study looking into the relationship between the urinary microbiome 
and bladder cancer uncovered that that bacteria belonging to the genus 
Fusobacterium were signifi antly more abundant in urine specimens 
from cancer patients [34]. Another exploratory study comparatively 
surveyed the urine microbiota of female patients with interstitial cystitis 
(IC)/bladder pain syndrome (BPS) and controls who were enrolled in the 
National Institutes of Health (NIH) Multidisciplinary Approach to the 
Study of Chronic Pelvic Pain (MAPP) Research Network. It identified
potential negative impacts of the presence of Lactobacillus gasseri and 
protective influence of Corynebacterium [35]. It should be noted that a 
different study on urinary incontinence (UI) found a lack of Lactobacil-
lus to be associated with urgency UI and resistance to anticholinergic 
treatments [36]. However, being that these are two different diseases, 
the conflicting results are not unexpected. Furthermore, there are many 
species of Lactobacillus and some may contribute to a healthy or disease 
bladder. On the other hand, another study that collected urinary samples 
from 21 IC patients and 20 matched controls found no signifi ant differ-
ences in urinary microbiota [37]. The conflicting conclusions between 
these two recent studies highlight controversy surrounding this fairly 
new field and the need for a more comprehensive longitudinal stud .

CHALLENGES AND CONSIDERATION IN URINE 
BIOMARKER DEVELOPMENT

Despite the promising potential of urinary biomarkers, there are 
several precautions to consider. One important factor that can affect 
biomarker outcomes is age. Studies have shown that the maturing kidney 
can affect biomarker levels and interpretation, suggesting that age-spe-
cifi  biomarker reference ranges may be needed for certain diseases 
[38]. Furthermore, baseline metabolites have been shown to be different 
among different age-groups, which may highlight carefully establishing 
different age groups should be warranted when conducting urinalysis 
[39]. Gender is another factor to be considered when establishing refer-
ence values for urinary biomarkers [14]. Proteomic analysis of female 
and male urine observed different patterns and variations of proteins 
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[40]. Given that urine sample can have huge variation in concentration 
of proteins or metabolites due to the fluid consumption, special care 
should be taken to data normalization methods to reduce any potential 
artifacts [41]. Furthermore, external factors that are dependent on in-
dividuals can influence the expression of urinary biomarkers. Studies 
have shown differences in expression of urinary biomarkers in patients 
who have undergone cisplatin therapy [14]. Certain procedures can 
also affect urinary levels of metabolites; another study found increased 
urinary neurotrophin in women with stress urinary incontinence after a 
midurethral sling procedure [42]. This suggests that in order to effectively 
utilize urinalysis, there needs to be a comprehensive understanding of 
the fluctuations in biomarkers that can occur within each individual

BIOSENSOR FOR THE DETECTION OF URINARY 
BIOMARKERS

Biosensors are an arising field of great interest when it comes to 
detecting and monitoring markers in biofluids, such as sweat and urine. 
Wearable sensors are particularly garnering attention because they can 
be portable, convenient, non-invasive, and provide real-time evaluation 
of important biomarkers [43]. In addition to its detection and monitoring 
benefits, biosensors could also be integrated with therapeutic drugs to 
monitor for response to treatments [44]. The potential for sensors can 
extend to many different types of situations. For example, biosensors 
can be developed into electrochemical sensors or fluidmeasuring sensors 
[45]. These biosensors can be constructed to detect various compounds, 
such as antigens, biomarkers, and bacterial enzymes.

With the advent of smart technologies, there has been exciting 
developments in utilizing such devices in healthcare as well. In 2015, 
a team of biomedical engineers at the University of Arizona was able 
to develop a highly-sensitive and cost-efficient paper-based analytical 
device (µPad) that could monitor urine for urinary tract infection (UTI) 
and gonorrhea [46]. A recent study developed a similar device that 
quantified β-glucuronidase, an enzyme released by 95% of E. coli, 
the bacteria that causes UTI [47]. In addition to these urinalysis-based 
detection devices, several others have been developed to detect other 
compounds. A study by the Southern Taiwan University of Science and 
Technology developed an ultraportable microsensor-lined biosensor 
that can actually quantify the presence of Gal-1, a protein biomarker 
indicative of multiple oncological conditions, including bladder cancer 
[48]. These novel devices only scratch the surface of the great potential 
for biosensors.

The use of technology can also extend beyond detection. Taking 
advantage of the fact that most people use a smartphone, a study in 
the United Kingdom crowdsourced members of the public to grade 
immunohistochemistry stains of bladder cancer tumor microarrays [49]. 
Surprisingly, this was found to be a potentially accurate way to screen 
immunohistochemistry (IHC) data and speed biomarker discovery.

DIGITAL APPLICATIONS OF BIOSENSORS

The rise of digital applications of biosensors is also a rising field of 
great interest. There are incredible possibilities that comes from being 
able to use everyday technology to monitor health. Not only would this 
reduce risks to patients and lower healthcare costs, but it could also 

lead to an immense wealth of data that can be used to pioneer science 
even further. The most commonly used interactive app for monitoring 
has been in diabetes. Currently, there are two major mobile apps that 
incorporate self-monitoring of blood glucose (SMBG) recording and 
insulin bolus calculators. These are Diabeo (Voluntis) and Diabetes 
Interactive Diary (DID) [50]. Studies have shown that monitoring of 
patients with type 1 diabetes by using Diabeo can lead to substantial 
improvement in metabolic control in chronic poorly controlled patients 
without requiring more medical time and at a lower cost than typical 
standard care [51]. Similar studies with DID show that it can reduce 
risk of moderate to severe hypoglycemia while also improving quality 
of life [52]. However, these apps are still a work in progress and have 
only shown improvements in certain areas of diabetes monitoring. With 
rapid technological innovation and progress, the focus on making these 
apps better should be continued.

In addition to real-time monitoring of chronic diseases, digital 
applications can lead to an enormous wealth of health data that can 
be used for more comprehensive studies. For instance, adding internet 
of things (IoT) capabilities to commercially used continuous glucose 
monitors (CGM) can lead to both the monitoring of patients remotely 
and crowdsourcing of that data [53]. As personal tech becomes in-
creasingly embedded in the lives of patients, digital phenotypes can be 
captured to enhance health and wellness [54]. There is one caveat with 
this integration of technologies with personal health. As information is 
formed and sourced, careful attention must be paid to decentralizing 
databases and ensuring that patient health information remains private 
and protected. With proper cyber security, the promises of digital health 
monitoring are endless.

CONCLUDING REMARKS

Advances in urine-based molecular profiling technologies, the de-
velopment of biosensor targeting disease-specific biomarkers and the 
wirelessly connected medical device would lead to smart diagnosis and 
monitoring for patients affected by bladder diseases. Thanks to rigorous 
efforts of scientists and urologists including us to define biomarkers 
for bladder diseases such as bladder cancer and other types of bladder 
dysfunction, we have better idea how to manage those bladder diseases. 
As we discussed in this paper, the current evidence suggests the integra-
tion of multi-omics profi ing-based characterization of bladder diseases 
and application of urinary biomarkers into smart medical device could 
lead future tools for patient care.

Acknowledgments
The authors acknowledge support from National Institutes of Health 

grants (1U01DK103260, 1R01DK100974, U24 DK097154, NIH NCATS 
UCLA CTSI UL1TR000124), Department of Defense grants (W81X-
WH-15-1-0415 and W81XWH-19-1-0109), Centers for Disease Controls 
and Prevention (1U01DP006079), IMAGINE NO IC Research Grant, the 
Steven Spielberg Discovery Fund in Prostate Cancer Research Career De-
velopment Award, and the U.S.-Egypt Science and Technology Joint Fund 
(to J.K.). J.K. is a former recipient of the Interstitial Cystitis Association 
Pilot Grant, a Fishbein Family IC Research Grant, New York Academy of 
Medicine, and Boston Children’s Hospital Faculty Development.

Jay
Highlight



4 Bladder | 2020 | Vol. 7(1) | e40

Jung and Kim

References
1. Coppens A, Speeckaert M, Delanghe J (2010) The pre-analytical challenges 

of routine urinalysis. Acta Clin Belg 65: 182-189. doi: 10.1179/acb.2010.038. 
PMID: 20669786

2. Howanitz PJ, Howanitz JH (1983) Quality control for the clinical laboratory. Clin 
Lab Med 3: 541-551. doi: 10.1016/S0272-2712(18)30974-0. PMID: 6357609

3. Delanghe J, Speeckaert M (2014) Preanalytical requirements of urinalysis. 
Biochem Med (Zagreb) 24: 89-104. doi: 10.11613/BM.2014.011. PMID: 24627718

4. Fogazzi GB, Verdesca S, Garigali G (2008) Urinalysis: core curriculum 2008. Am 
J Kidney Dis 51: 1052-1067. doi: 10.1053/j.ajkd.2007.11.039. PMID: 18501787

5. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, et al. (2013) The human 
urine metabolome. PLoS One 8: e73076. doi: 10.1371/journal.pone.0073076. 
PMID: 24023812

6. Hg DS, Siltberg-Liberles J (2016) Paralog-specific patterns of structural disorder 
and phosphorylation in the vertebrate SH3-SH2-tyrosine kinase protein family. 
Genome Biol Evol 8: 2806-2825. doi: 10.1093/gbe/evw194. PMID: 27519537

7. Glorennec P, Serrano T, Fravallo M, Warembourg C, Monfort C, et al. (2017) 
Determinants of children's exposure to pyrethroid insecticides in western France. 
Environ Int 104: 76-82. doi: 10.1016/j.envint.2017.04.007. PMID: 28453973

8. Filip S, Zoidakis J, Vlahou A, Mischak H (2014) Advances in urinary proteome 
analysis and applications in systems biology. Bioanalysis 6: 2549-2469. doi: 
10.4155/bio.14.210. PMID: 25411698

9. Apodaca G, Balestreire E, Birder LA (2007) The uroepithelial-associated sensory 
web. Kidney Int 72: 1057-1064. doi: 10.1038/sj.ki.5002439. PMID: 17667988

10. Xing J, Reynolds JP (2018) Diagnostic advances in urine cytology. Surg Pathol 
Clin 11: 601-610. doi: 10.1016/j.path.2018.06.001. PMID: 30190143

11. Nadkarni GN, Coca SG, Meisner A, Patel S, Kerr KF, et al. (2017) Urinalysis 
findings and urinary kidney injury biomarker concentrations. BMC Nephrol 18: 
218. doi: 10.1186/s12882-017-0629-z. PMID: 28683730

12. Rhee EP (2018) How omics data can be used in nephrology. Am J Kidney Dis 
72: 129-135. doi: 10.1053/j.ajkd.2017.12.008. PMID: 29478865

13. Miyake M, Owari T, Hori S, Fujimoto K (2019) Significant lack of urine-based 
biomarkers to replace cystoscopy for the surveillance of non-muscle invasive 
bladder cancer. Transl Androl Urol 8(Suppl 3): S332-S334. doi: 10.21037/
tau.2019.05.07. PMID: 31392161

14. Zhao M, Li M, Yang Y, Guo Z, Sun Y, et al. (2017) A comprehensive analysis and 
annotation of human normal urinary proteome. Sci Rep 7: 3024. doi: 10.1038/
s41598-017-03226-6. PMID: 28596590

15. Salomonis N (2018) Integrative analysis of proteomics data to obtain clinically 
relevant markers. Methods Mol Biol 1788: 89-111. doi: 10.1007/7651_2017_94. 
PMID: 29147916

16. Zhang H, Fan Y, Xia L, Gao C, Tong X, et al. (2017) The impact of advanced 
proteomics in the search for markers and therapeutic targets of bladder cancer. 
Tumour Biol 39: 1010428317691183. doi: 10.1177/1010428317691183. PMID: 
28345451

17. Onile OS, Calder B, Soares NC, Anumudu CI, Blackburn JM (2017) Quantitative 
label-free proteomic analysis of human urine to identify novel candidate protein 
biomarkers for schistosomiasis. PLoS Negl Trop Dis 11: e0006045. doi: 10.1371/
journal.pntd.0006045. PMID: 29117212

18. Adebayo AS, Mundhe SD, Awobode HO, Onile OS, Agunloye AM, et al. (2018) 
Metabolite profiling for biomarkers in Schistosoma haematobium infection and 
associated bladder pathologies. PLoS Negl Trop Dis 12: e0006452. doi: 10.1371/
journal.pntd.0006452. PMID: 29708967

19. Zhong X, Isharwal S, Naples JM, Shiff C, Veltri RW, et al. (2013) Hypermethylation 
of genes detected in urine from Ghanaian adults with bladder pathology associated 
with Schistosoma haematobium infection. PLoS One 8: e59089. doi: 10.1371/
journal.pone.0059089. PMID: 23527093

20. Mitsui T, Kira S, Ihara T, Sawada N, Nakagomi H, et al. (2018) Metabolomics 
approach to male lower urinary tract symptoms: identification of possible 
biomarkers and potential targets for new treatments. J Urol 199: 1312-1318. 
doi: 10.1016/j.juro.2017.11.070. PMID: 29175111

21. De Palma G, Di Lorenzo VF, Krol S, Paradiso AV (2019) Urinary exosomal 
shuttle RNA: Promising cancer diagnosis biomarkers of lower urinary tract. Int J 
Biol Markers 34: 101-107. doi: 10.1177/1724600819827023. PMID: 30862241

22. Junker K, Heinzelmann J, Beckham C, Ochiya T, Jenster G (2016) Extracellular 
vesicles and their role in urologic malignancies. Eur Urol 70: 323-331. doi: 
10.1016/j.eururo.2016.02.046. PMID: 26924769

23. Schwabe RF, Jobin C (2013) The microbiome and cancer. Nat Rev Cancer 13: 
800-812. doi: 10.1038/nrc3610. PMID: 24132111

24. Xu W, Yang L, Lee P, Huang WC, Nossa C, et al. (2014) Mini-review: perspective 
of the microbiome in the pathogenesis of urothelial carcinoma. Am J Clin Exp 
Urol 2: 57-61. PMID: 25126590

25. Alfano M, Canducci F, Nebuloni M, Clementi M, Montorsi F, et al. (2016) The 
interplay of extracellular matrix and microbiome in urothelial bladder cancer. 
Nat Rev Urol 13: 77-90. doi: 10.1038/nrurol.2015.292. PMID: 26666363

26. Wu P, Zhang G, Zhao J, Chen J, Chen Y, et al. (2018) Profiling the urinary 
microbiota in male patients with bladder cancer in China. Front Cell Infect 
Microbiol 8: 167. doi: 10.3389/fcimb.2018.00167. PMID: 29904624

27. Markowski MC, Boorjian SA, Burton JP, Hahn NM, Ingersoll MA, et al. (2019) 
The microbiome and genitourinary cancer: a collaborative review. Eur Urol 75: 
637-646. doi: 10.1016/j.eururo.2018.12.043. PMID: 30655087

28. Wroblewski LE, Peek RM (2010) Wilson KT. Helicobacter pylori and gastric 
cancer: factors that modulate disease risk. Clin Microbiol Rev 23: 713-739. doi: 
10.1128/CMR.00011-10. PMID: 20930071

29. Dahmus JD, Kotler DL, Kastenberg DM, Kistler CA (2018) The gut microbiome 
and colorectal cancer: a review of bacterial pathogenesis. J Gastrointest Oncol 
9: 769-777. doi: 10.21037/jgo.2018.04.07. PMID: 30151274

30. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ (2016) The microbial 
pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat 
Rev Microbiol 14: 273-287. doi: 10.1038/nrmicro.2016.17. PMID: 26972811

31. Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, et al. (2017) Potential 
role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic 
drug gemcitabine. Science 357: 1156-1160. doi: 10.1126/science.aah5043. 
PMID: 28912244

32. Wallace BD, Wang H, Lane KT, Scott JE, Orans J, et al. (2010) Alleviating 
cancer drug toxicity by inhibiting a bacterial enzyme. Science 330: 831-835. 
doi: 10.1126/science.1191175. PMID: 21051639

33. Domenici L, Monti M, Bracchi C, Giorgini M, Colagiovanni V, et al. (2016) 
D-mannose: a promising support for acute urinary tract infections in women. 
A pilot study. Eur Rev Med Pharmacol Sci 20: 2920-2925. PMID: 27424995

34. Bucevic Popovic V, Situm M, Chow CT, Chan LS, Roje B, et al. (2018) The 
urinary microbiome associated with bladder cancer. Sci Rep 8: 12157. doi: 
10.1038/s41598-018-29054-w. PMID: 30108246

35. Nickel JC, Stephens-Shields AJ, Landis JR, Mullins C, Bokhoven, A. van , et 
al. (2019) A culture-independent analysis of the microbiota of female interstitial 
cystitis/bladder pain syndrome participants in the MAPP research network. J 
Clin Med 8. doi: 10.3390/jcm8030415. PMID: 30917614

36. Govender Y, Gabriel I, Minassian V, Fichorova R (2019) The Current Evidence 
on the Association Between the Urinary Microbiome and Urinary Incontinence 
in Women. Front Cell Infect Microbiol 9: 133. doi: 10.3389/fcimb.2019.00133. 
PMID: 31119104

37. Bresler L, Price TK, Hilt EE, Joyce C, Fitzgerald CM, et al. (2019) Female 
lower urinary tract microbiota do not associate with IC/PBS symptoms: a 
case-controlled study. Int Urogynecol J 30: 1835-1842. doi: 10.1007/s00192-
019-03942-9. PMID: 30993388

38. Greenberg JH, Parikh CR (2017) Biomarkers for diagnosis and prognosis of 
AKI in children: one size does not fi  all. Clin J Am Soc Nephrol 12: 1551-1557. 
doi: 10.2215/CJN.12851216. PMID: 28667085

39. Psihogios NG, Gazi IF, Elisaf MS, Seferiadis KI, Bairaktari ET (2008) 
Gender-related and age-related urinalysis of healthy subjects by NMR-based 
metabonomics. NMR Biomed 21: 195-207. doi: 10.1002/nbm.1176. PMID: 
17474139

40. Guo Z, Zhang Y, Zou L, Wang D, Shao C, et al. (2015) A proteomic analysis of 
individual and gender variations in normal human urine and cerebrospinal fluid
using iTRAQ quantifi ation. PLoS One 10: e0133270. doi: 10.1371/journal.
pone.0133270. PMID: 26222143

41. Chen Z, Kim J (2016) Urinary proteomics and metabolomics studies to monitor 
bladder health and urological diseases. BMC Urol 16: 11. doi: 10.1186/s12894-
016-0129-7. PMID: 27000794

42. Antunes-Lopes T, Coelho A, Pinto R, Barros SC, Cruz CD, et al. (2016) 
Urinary neurotrophin levels increase in women with stress urinary incontinence 
after a midurethral sling procedure. Urology 99: 49-56. doi: 10.1016/j.
urology.2016.08.048. PMID: 27697460

43. Kim J, Campbell AS, de Ávila BE, Wang J (2019) Wearable biosensors for 
healthcare monitoring. Nat Biotechnol 37: 389-406. doi: 10.1038/s41587-019-
0045-y. PMID: 30804534

44. McKeating KS, Aube A, Masson JF (2016) Biosensors and nanobiosensors for 
therapeutic drug and response monitoring. Analyst 141: 429-449. doi: 10.1039/
c5an01861g. PMID: 26631282

45. Liu X, Lillehoj PB (2017) Embroidered electrochemical sensors on gauze for 
rapid quantifi ation of wound biomarkers. Biosens Bioelectron 98: 189-194. 
doi: 10.1016/j.bios.2017.06.053. PMID: 28675839

46. Cho S, Park TS, Nahapetian TG, Yoon JY (2015) Smartphone-based, sensitive 
microPAD detection of urinary tract infection and gonorrhea. Biosens Bioelectron 



Bladder  | 2020 | Vol. 7(1) | e40 5

Bladder biomarker discovery

74: 601-611. doi: 10.1016/j.bios.2015.07.014. PMID: 26190472
47. Noiphung J, Laiwattanapaisal W (2019) Multifunctional paper-based analytical 

device for in situ cultivation and screening of Escherichia coli infections. Sci 
Rep 9: 1555. doi: 10.1038/s41598-018-38159-1. PMID: 30733495

48. Chuang CH, Yc, Du , Wu TF, Chen CH, Lee DH, et al. (2016) Immunosensor 
for the ultrasensitive and quantitative detection of bladder cancer in point of 
care testing. Biosens Bioelectron 84: 126-132. doi: 10.1016/j.bios.2015.12.103. 
PMID: 26777732

49. Smittenaar P, Walker AK, McGill S, Kartsonaki C, Robinson-Vyas RJ, et al. 
(2018) Harnessing citizen science through mobile phone technology to screen 
for immunohistochemical biomarkers in bladder cancer. Br J Cancer 119: 220-9. 
doi: 10.1038/s41416-018-0156-0. PMID: 29991697

50. Shan R, Sarkar S, Martin SS (2019) Digital health technology and mobile 
devices for the management of diabetes mellitus: state of the art. Diabetologia 
62: 877-87. doi: 10.1007/s00125-019-4864-7. PMID: 30963188

51. Charpentier G, Benhamou PY, Dardari D, Clergeot A, Franc S, et al. (2011) The 
Diabeo software enabling individualized insulin dose adjustments combined with 
telemedicine support improves HbA1c in poorly controlled type 1 diabetic patients: 

a 6-month, randomized, open-label, parallel-group, multicenter trial (TeleDiab 1 
Study). Diabetes Care 34: 533-539. doi: 10.2337/dc10-1259. PMID: 21266648

52. Rossi MC, Nicolucci A, Lucisano G, Pellegrini F, Di Bartolo P, et al. (2013) 
Impact of the "Diabetes Interactive Diary" telemedicine system on metabolic 
control, risk of hypoglycemia, and quality of life: a randomized clinical trial in 
type 1 diabetes. Diabetes Technol Ther 15: 670-679. doi: 10.1089/dia.2013.0021. 
PMID: 23844569

53. Fernández-Caramés TM, Froiz-Míguez I, Blanco-Novoa O, Fraga-Lamas P 
(2019) Enabling the internet of mobile crowdsourcing health things: A mobile 
fog computing, blockchain and IoT based continuous glucose monitoring system 
for diabetes mellitus research and care. Sensors (Basel) 19: doi: 10.3390/
s19153319. PMID: 31357725

54. Jain SH, Powers BW, Hawkins JB, Brownstein JS (2015) The digital phenotype. 
Nat Biotechnol 33: 462-3. doi: 10.1038/nbt.3223. PMID: 25965751

This work is licensed under a Creative Commons Attribution-Non-
Commercial-ShareAlike 4.0 International License: http://cre-
ativecommons.org/licenses/by-nc-sa/4.0



metabolites

H

OH

OH

Article

Identification of Metabolic Alterations in Breast
Cancer Using Mass Spectrometry-Based
Metabolomic Analysis

Sili Fan 1, Muhammad Shahid 2, Peng Jin 2, Arash Asher 3 and Jayoung Kim 2,3,4,5,6,*
1 West Coast Metabolomics Center, University of California, Davis, CA 95616, USA; slfan@ucdavis.edu
2 Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;

muhammad.shahid@cshs.org (M.S.); Peng.Jin@cshs.org (P.J.)
3 Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;

Arash.Asher@cshs.org
4 Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
5 Department of Medicine, University of California, Los Angeles, CA 90095, USA
6 Department of Urology, Ga Cheon University College of Medicine, Incheon 461-701, Korea
* Correspondence: Jayoung.Kim@cshs.org

Received: 3 April 2020; Accepted: 21 April 2020; Published: 24 April 2020
����������
�������

Abstract: Breast cancer (BC) is a major global health issue and remains the second leading cause of
cancer-related death in women, contributing to approximately 41,760 deaths annually. BC is caused
by a combination of genetic and environmental factors. Although various molecular diagnostic
tools have been developed to improve diagnosis of BC in the clinical setting, better detection tools
for earlier diagnosis can improve survival rates. Given that altered metabolism is a characteristic
feature of BC, we aimed to understand the comparative metabolic differences between BC and
healthy controls. Metabolomics, the study of metabolism, can provide incredible insight and create
useful tools for identifying potential BC biomarkers. In this study, we applied two analytical mass
spectrometry (MS) platforms, including hydrophilic interaction chromatography (HILIC) and gas
chromatography (GC), to generate BC-associated metabolic profiles using breast tissue from BC
patients. These metabolites were further analyzed to identify differentially expressed metabolites in
BC and their associated metabolic networks. Additionally, Chemical Similarity Enrichment Analysis
(ChemRICH), MetaMapp, and Metabolite Set Enrichment Analysis (MSEA) identified significantly
enriched clusters and networks in BC tissues. Since metabolomic signatures hold significant promise
in the clinical setting, more effort should be placed on validating potential BC biomarkers based on
identifying altered metabolomes.

Keywords: biomarkers; mass spectrometry; metabolomics; breast cancer

1. Introduction

Breast cancer (BC) is the most commonly diagnosed cancer in women in the U.S. and is the second
leading cause of cancer-related death [1]. The American Cancer Society (ACS) predicts that there will
be approximately 276,480 new diagnoses of invasive BC and 48,530 new cases of carcinoma in situ
(CIS) BC in the U.S. in 2020. The ACS also estimates that 42,170 women will die from BC or BC-related
complications in 2020. Early diagnosis of BC is crucial for a better prognosis. Currently, there are
various ways of detecting BC, including breast exams and imaging techniques, such as mammography,
magnetic resonance imaging (MRI), positron-emission tomography (PET), computed tomography
(CT), and single-photo emission computed tomography (SPECT) [2]. However, these techniques have
limitations, including cost, time, and suitability for different age groups [3]. In addition to these
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diagnostic methods, there are different BC markers that are being clinically used. These include tissue
markers, such as hormone receptors, human epidermal growth factor-2, and urokinase plasminogen
activator, genetic markers, such as breast cancer 1 (BRCA1) and BRCA2, and serum markers, such as
CA 15.3 and BR 27.29 [4]. However, these markers are unable to diagnose BC in its early stages and
can be affected by variations in disease state or therapies [5]. Therefore, there is an urgent need for a
reliable rapid method of early BC detection.

Metabolomics involves studying the entire set of metabolites in a biological system, which is
reflective of cellular functions and phenotypes [6]. It is well-documented that cancer cells display
significantly altered cellular processes compared to normal cells, and these differences can be key to
identifying a wealth of information, including cancer progression and therapeutic response [7]. One of
the most established examples of cancer metabolic reprogramming is the “Warburg effect”, which
leads to increased aerobic glycolysis in cells [8]. Metabolomics is a promising approach, particularly
when it comes to BC, which is known to have complex and distinct molecular characteristics [9].
Metabolites are the ultimate results of downstream genes, RNA, and proteins, which allow for a better
understanding of the complex biological interactions underlying BC [10]. By profiling the metabolic
landscape of BC, novel molecular signatures can be identified that can not only provide early detection
but also predict therapeutic response [11].

Alterations in amino acid transporters and glutamine metabolism have recently emerged as
a field of interest in BC metabolomics [12]. Amino acids are the main molecules necessary for
protein synthesis; as a result, growing tumor cells have an increased demand for them [13]. Several
amino acid transporters, including SLC1A5, SLC6A14, and SLC7A5, were found to have varied
expression in BC tissue compared to controls based on the type of cancer (i.e., HER2+ or ER+) [14–16].
Recent studies have also looked into how amino acid radiotracers can be utilized to better image
BC [17]. One study demonstrated that both primary and metastatic sites of BC can be visualized
via PET using 11C-methionine, a radioactively labeled amino acid [18]. Another study applied the
same approach using 18F-fluciclovine, which found that uptake of the compound was 4-fold greater
in malignant BC compared to normal [19]. This suggests that metabolic alterations can be used to
diagnose BC, subtype the disease, and be applied in conjunction with other methods to more accurately
characterize it in each patient.

There are a variety of metabolomic tools that can be applied when studying BC, including
liquid chromatography-mass spectrometry (LC-MS), gas chromatography-MS (GC-MS), and nuclear
magnetic resonance (NMR). Recent studies have even utilized ex vivo proton high-resolution magic
angle spinning magnetic resonance (HR MAS MR) spectrometry on intact BC tissue samples to identify
differentially expressed metabolites (DEMs), which found characterizable differences in levels of
glycine, choline, and amino acid metabolism [20]. Based on these promising results, metabolomics is
becoming more of an appealing and opportune avenue for future BC studies.

In this study, we aimed to identify metabolomic signatures capable of differentiating BC patients
from healthy controls and to understand enriched metabolic pathways in BC. Two independent
metabolomic profiling analyses found that glutamine levels were increased in BC. Further analysis using
Chemical Similarity Enrichment Analysis (ChemRICH), MetaMapp, and Metabolite Set Enrichment
Analysis (MSEA) found interesting BC-enriched clusters and networks.

2. Materials and Methods

2.1. Ethics Statement

The Institutional Review Board (IRB) at Cedars-Sinai Medical Center (CSMC) approved this study
for metabolomics profiling and data analysis of BC samples collected through the CSMC Biobank’s
central IRB (Pro00044997). All experiments were performed in accordance with relevant guidelines
and regulations.
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2.2. GCTOF MS Analysis

Sample extraction and gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS)
analysis was performed as described in previous papers [21,22]. Briefly, tissue samples were prepared
in conical polypropylene centrifuge tubes. Then, extraction solvent (acetonitrile, isopropanol, and water
in a proportion ratio of 3:3:2) was added to the samples and homogenized for 45 s to ensure the uniform
suspension of samples. After samples were centrifuged at 1500× g for 5 min, the supernatant was
aliquoted into two 500 µL samples, one for analysis and another as backup. To process and analyse the
supernatant, the samples were evaporated in a Labconco Centrivap Cold Trap Concentrator to complete
dryness and resuspended in 500 µL of 50% acetonitrile. The samples were then centrifuged for 2 min at
14,000 rcf and the resulting supernatant was transferred to new Eppendorff tubes. This supernatant was
again evaporated to complete dryness in the Labconco Centrivap Cold Trap Concentrator. For quality
assurance, one blank negative control extraction was performed by applying the full procedure without
any true biological samples for each sequence in the sample extraction.

2.2.1. Data Acquisition

Data are acquired using the following chromatographic parameters as described with minor
modifications [23]. Restek Rtx-5Sil MS Columns (30 m length × 0.25 mm internal diameter with 0.25
µm film made of 95% dimethyl/5%diphenylpolysiloxane) were used under the optimized running
condition. The analytical GC column was protected by a 10 m long empty guard column, which was cut
into 20 cm intervals whenever the reference mixture containing quality control (QC) samples indicated
problems caused by column contaminations. This resulted in excellent retention and separation of
primary metabolite classes (amino acids, hydroxyl acids, carbohydrates, sugar acids, sterols, aromatics,
nucleosides, amines and miscellaneous compounds). Automatic liner exchanges, after each set of
10 injections, were done to reduce sample carryover for highly lipophilic compounds. The following MS
parameters were used; Leco Pegasus IV Mass Spectrometer with a unit mass resolution at 17 spectra s−1

from 80–500 Da at −70 eV ionization energy and 1800 V detector voltage with a 230 ◦C transfer line
and a 250 ◦C ion source.

2.2.2. Data Processing

After data acquisition, raw data files were preprocessed using ChromaTOF vs. 2.32. Apex masses
were reported for use in the BinBase algorithm and the resulting *.txt files containing absolute spectra
intensities were stored in a data server for further processing. The BinBase algorithm (rtx5) was used
with the following settings: validity of chromatogram (<10 peaks with intensity>107 counts/second),
unbiased retention index marker detection (MS similarity > 800, validity of intensity range for high
m/z marker ions), and retention index calculation by 5th order polynomial regression. Spectra were
cut to 5% base peak abundance and matched to database entries from most to least abundant spectra.
The filters used included: retention index window ± 2000 units (equivalent to about ± 2 s retention
time), validation of unique ions and apex masses (unique ion must be included in apex masses and
present at >3% of base peak abundance), mass spectrum similarity must fit criteria dependent on
peak purity and signal/noise ratios, and a final isomer filter. The failed spectra were placed into new
database entries when s/n >25, purity <1.0 and presence in the biological study design class was >80%.
The BinBase administration software, BinView, was also used for analysis. For each metabolite, the
number of high-confidence peak detections and the ratio of the average height of replaced values to
high-confidence peak detections were stored.

2.3. HILIC-ESI-QTOF-MS/MS Analysis

Samples extraction and hydrophilic interaction liquid chromatography-electrospray ionization
quadruple time-of-flight tandem mass spectrometry (HILIC-ESI-QTOF-MS/MS) analysis was performed
as described in previous papers [21,22].
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2.3.1. Data Acquisition

Data were acquired using the following chromatographic parameters, established as standard
procedure in the Fiehn Laboratory. Analysis was done via HILIC-QTOF-MS/MS. The Waters Acquity
UPLC BEH Amide Column (1.7 µm, 2.1 × 150 mm) and Waters Acquity and UPLC BEH Amide
VanGuard Pre-Column (1.7 µm, 5 × 2.1 mm) were used at 40 ◦C and under a 0.4 mL/min flow rate.
The injection volume was 3 µL for ESI (+), mass resolution was 10,000 for ESI (+) on an Agilent 6530
QTOF MS, and the scan range was m/z 60–1200 Da. The analytical ultra high-performance liquid
chromatography (UHPLC) column was protected by a short guard column. This chromatography
method yields excellent retention and separation of metabolite classes (biogenic amines, cationic
compounds) and good within-series retention time reproducibility.

2.3.2. Data Processing

The raw data were processed in an untargeted (qualitative) manner using mzMine 2.0 to find
peaks in up to 300 chromatograms. Alternatively, selected peaks were collated and constrained
into Agilent’s MassHunter quantification method on the accurate mass precursor ion level, using
the MS/MS information and the NIST14 / Metlin / MassBank libraries to identify metabolites with
manual confirmation of adduct ions and spectral scoring accuracy. MassHunter enables back-filling of
quantifications for peaks that were missed in the primary peak finding process, hence yielding datasets
without missing values. All metabolites were identified using the Fiehn library, which is publicly
available at: http://massbank.us.

2.4. Bioinformatics Analysis for Identification of Metabolic Marker Candidates

To identify potential metabolites as marker candidates that can discriminate BC from controls,
the following steps were applied. Data were normalized and the t-test was applied to the log2 of
the processed data. The Student’s t-test was performed to extract significant metabolites from the
normalized MS data. After false positive correction (FDR) using the Benjamini–Hochberg procedure,
none of the p-values remained significant on the chosen level of 0.05.

Significant metabolites were selected for by the volcano plot based on a fold-change threshold > 2
(or < 0.5) and t-test p-value threshold < 0.1. MetaboAnalyst version 3.0. Log transformation and
mean-centering with auto scaling was performed prior to multivariate statistical analysis. Partial least
square discriminant analysis (PLS-DA) and model evaluation with permutation strategy was then
carried out according to published protocols [23].

To further confirm potential metabolic markers in distinguishing BC from controls, a support
vector machine (SVM)-based classifier was built using MATLAB (R2014a). Tenfold cross-validation was
applied to evaluate performance. All annotated compounds were validated with authentic standards
and are MSI level 1 [24,25].

2.5. Statistical Analysis

2.5.1. Univariate Analysis

To identify significant compounds comparing BC vs. controls, the Mann–Whitney U test was
performed on each compound. Benjamini–Hochberg FDR correction was utilized to deal with the
multiple comparison problem. Fold-changes, defined as the median average of BC divided by the
median average of the control samples, were calculated. Volcano plots visualizing the univariate
analysis result for each identified metabolite with adjusted p-values less than 0.05 and fold-change
greater than 2 or less than 0.5 were identified.

http://massbank.us
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2.5.2. Multivariate Analysis

Principal component analysis (PCA) using significant compounds are shown in Figure 1B.
The 25 identified metabolites with the smallest p-values were used to construct the heatmap and
hierarchical clustering analysis. Euclidean distance and Ward’s method were used. Two supervised
learning algorithms, PLS-DA and SVM, were built. The Q2 was reported as a measure of the predictive
performance of the PLS-DA model, whereas the cross-validated area under the curve (AUC) of the
receiver operating characteristic (ROC) curve was the measure for the SVM algorithm. Permutation
tests were used as validation for performance. The variable importance in projection (VIP) scores for
compounds are reported, and VIP scores greater than 1 were considered as important.

2.6. Biological Interpretation

Chemical Similarity Enrichment Analysis for Metabolites (ChemRICH) was conducted to calculate
metabolite cluster statistics based on chemical similarities. The Kolmogorov–Smirnov test was used on
the identified clusters to evaluate whether a metabolite cluster was represented more than expected by
chance. These clusters are visualized by bubble plot, where the bubble size indicates the number of
metabolites in corresponding cluster and the color indicates the percentage of increased metabolites,
with red being 100% and blue being 0%. To visualize the metabolite changes, MetaMapp was
used. MetaMapp-encoded chemical structures of all the identified metabolites were retrieved from
the PubChem Compound Database using compound identifiers and the NCBI Batch Entrez Utility.
MetaMapp uses the Tanimoto chemical similarity co-efficient (range 0.0 to 1.0, where a high score means
high similarity between two metabolites) to calculate the similarity among the encoded structures,
which are decomposed into a substructure matrix defined by an 881 bit substructure key fingerprint
(metamapp.fiehnlab.ucdavis.edu). A Tanimoto score threshold of 0.7 was used to define the similarity
cut-off among metabolites. To calculate the metabolite cluster statistics based on the human metabolic
pathway-associated metabolite sets, over representation analysis (ORA) was also conducted.

3. Results

3.1. Characteristics of the Study Subjects

BC was clinically diagnosed by physicians at Cedars-Sinai using standard operating procedures
(SOPs). Surgical tissue samples were collected through an already established pipeline at the
Cedars-Sinai Biobank. In total, 99 deidentified breast tissue samples were obtained (59 BC tumor
tissues and 40 normal-adjacent BC tissues).

3.2. Primary Metabolomics Analyses Were Performed via ALEX-CIS-GC-TOF-MS and
HILIC-ESI-QTOF-MS/MS

To profile the BC-specific metabolomes, two independent MS platforms were used. They were the
automated liner exchange-cold injection system-gas chromatography-time-of-flight-mass spectrometry
(ALEX-CIS-GC-TOF-MS) and HILIC-ESI-QTOF-MS/MS, both of which were combined with BinBase
data processing. A total of 442 and 559 compounds were detected in the GC and HILIC platforms,
respectively. A workflow of this study is shown in Figure 1A.
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Figure 1. (A) Workflow for this study. (B) Principal component analysis (PCA) score plot visualization using 240 identified metabolites with Mann–Whitney U test
raw p-values less than 0.05 in the GC platform. (C) Partial least square–discriminant analysis (PLS-DA) score plot of cancer vs. control. PLS-DA plot shows a clear
separation of metabolites between BC patients and controls. Red: control samples; Green: BC patient samples. The model was established using three principal
components. Cumulative R2 archived 90.0%, and Q2 achieved 80.7% with permutation test p-values less than 0.05. (D) PCA score plot visualization using 180
identified metabolites with Mann–Whitney U test raw p-values less than 0.05 in the HILIC platform. (E) PLS-DA score plot on cancer vs. control. Cumulative R2
archived 86.6%, and Q2 achieved 73.3% with permutation test p-values less than 0.05. (F) Boxplot of representative metabolite (arginine) showing significant alteration
in BC patients.
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GC-TOF-MS identified 203 significant differentially expressed metabolites (DEMs), as shown in
Supplementary Table S1 (Mann–Whitney U test raw p-values less than 0.05, fold-change > 2 or <0.5).
PCA score plots visualized the results from PCA discrimination analysis (Figure 1B). PLS components
showed differentiation of the BC samples (red) from controls (blue) with good separation and dispersion;
the cumulative R2Y achieved 90.0%, and Q2 achieved 80.7% with permutation test p-values less than
0.05. (Figure 1C). Metabolomics profiling using HILIC-ESI QTOF MS/MS identified 139 compounds
(Supplementary Table S2). Both the PCA score plot (Figure 1D) and PLS components showed great
segregation of the BC group from controls. The cumulative R2Y was 86.6% and Q2 was 73.3% with
permutation test p-values less than 0.05 (Figure 1E). A representative boxplot (arginine) shows the
significantly changed compounds in BC patients compared to controls (Figure 1F).

3.3. Identification of DEMs in BC Patients

Among the 203 DEMs identified by GC-TOF-MS, only the top 25 DEMs, with fold-change > 1.20
or < 0.83 and p-values < 0.1 were selected and constructed into a heat map (Figure 2A). The heat map
exhibits the distinct patterns of metabolites between BC and controls. These 25 DEMs are presented as
log2 fold-changes against the −log10 (p) of the differential expression between BC and control samples.

Significantly altered metabolites distinguishing cancer and control samples were acquired based
on the Mann–Whitney U test p < 0.05, fold-change > 2 or < 0.5, and VIP > 1 (Figure 2B). A total
of nine example metabolites were chosen for box-whisker plots (log10 scale) to visualize differences
(Figure 2D). Outliers in these boxplots are defined as those greater than the 1.5 interquartile range
(IQR). The volcano plots highlight metabolites with FDR p-values < 0.05 and fold-change > 1.5 or < 0.5.
In total, there were 18 and 13 metabolites highlighted in the GC and HILIC platforms, respectively.

The levels of glycerol (fold-change of 3.10), glutamine (1.47), glucose-1-phosphate (1.44), benzoic
acid (1.38), palmitic acid (1.47), urea (1.40), pyrophosphate (1.76), serotonin (1.70), docosahexaenoic
acid (1.54) were significantly increased in the BC group compared to controls, with adjusted
p-values < 0.001. In contrast, levels of 2,3-bisphosphoglyceric acid (fold-change of 0.027), fructose
(0.40), lactamide (0.36), N-acetylornithine (0.34), lactic acid (0.43), maleic acid (0.60), cysteine-glycine
(0.55), glycerol-alpha-phosphate (0.41), aspartic acid (0.63), pyruvic acid (0.38), and lactulose (0.20)
were significantly decreased in the BC group compared to control, with adjusted p-values < 0.001
(Figure 2B).

A volcano plot (Figure 2C) and additional box plots (Figure 2D) show several representative
DEMs whose expression were up- or downregulated in the BC group. The significant compounds with
p-values less than 0.05 were used to conduct the PCA, with PC1 explaining 16% variance, and a PC2 of
11%. A clear separation between cancer and control samples are observed. The PLS-DA achieved a
Q2 of 73.3%, with permutation test p-value less than 0.05, indicating a good predicting performance.
The VIP score for each compound is reported in Figure 2B.

Given that different analytical instruments for metabolomics profiling each have their own
advantages and disadvantages, a smarter and innovative approach is to combine datasets across
analytical platforms for more comprehensive coverage. A total of 139 DEMs was identified by
HILIC-ESI-QTOF-MS/MS, of which the top 25 are shown in a heatmap (Figure 3A). These DEMs include
arginine (fold-change of 2.35), carnitine (1.71), cystine (1.71), betaine (1.53), urea (1.33), glutamine
(1.30), alanine (0.80), and maltose (0.20) (Figure 3B). Through an independent analysis (data not
shown), a total of 23 known metabolites were shared across two different MS platforms with identical
direction of expression changes. A volcano plot shows the representative DEMs whose expression
were significantly altered in BC compared to controls (Figure 3C). The most significant DEMs are
presented as box plots in Figure 3D. The expression levels of glutamine, citrulline, and urea were
commonly upregulated in BC regardless of the analytical platform (Figures 2 and 3).
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of metabolites showing the most significant changes in the GC platform.

Figure 2. (A) Heatmap of identified metabolites in the GC platform showing the 25 differentially expressed metabolites (DEMs) between BC and control groups
with the smallest Mann-Whitney U test p-values. Euclidean distance metric and Ward’s clustering method was used for the hierarchical clustering of samples and
compounds. (B) A table summarizing the 25 identified metabolites and their statistical values. Fold-changes are presented as median average of cancer divided by
control. False discovery rate-adjusted p-values using the Benjamini–Hochberg procedure are reported at the last column. VIP score for each compound is reported in
Figure 3B (VIP > 1 highlighted as red). (C) Volcano plot with annotated metabolites that were significantly altered in BC patients compared to controls. The red dots
represent metabolites above the threshold. The further the metabolite’s position away from the (0, 0), the more significant the metabolite is. Volcano plot visualizes
the −log10 adjusted p-values and log2 fold-changes. Metabolites with adjusted p-values less than 0.05 and a fold-change greater than 2-fold or less than 1

2 -fold are
highlighted and labeled. (D) Selected boxplots of metabolites showing the most significant changes in the GC platform.
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Figure 3. (A) Heatmap of identified metabolites in HILIC platform with the top 25 DEMs with the smallest Mann–Whitney U test p-values, comparing BC to control.
Euclidean distance metric and Ward’s clustering method was used for the hierarchical clustering of samples and compounds. (B) The 25 identified metabolites
are listed. Fold-changes are presented as the median average of cancer divided by control. False discovery rate-adjusted p-values using the Benjamini–Hochberg
procedure are reported at the last column. VIP score for each compound is reported in Figure 3B (VIP > 1 highlighted as red). (C) Volcano plot visualizes the −log10
adjusted p-values and log2 fold-changes. Metabolites with adjusted p-values less than 0.05 and fold-change greater than 2-fold or less than 0.5 fold are highlighted and
labeled. (D) Select example metabolite boxplots from the HILIC platform showing significant differences between BC and control.
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3.4. ROC Curves of SVM.

To predict the probability of a binary outcome, ROC curves of SVM were used with leave-one-out
cross-validation. SVM was applied to distinguish cancer and control using significant compounds.
To avoid the overfitting issue, the leave-one-out procedure was used when calculating the AUC of the
ROC curve. The AUC was calculated using metabolites with adjusted p-values less than 0.05 from
both the GC-TOF-MS and HILIC-ESI-QTOF-MS/MS platforms. The calculated AUCs were 1 and 0.927
for GC-TOF-MS and HILIC-ESI-QTOF-MS/MS, respectively (Figure 4). These data suggest that our
model has a strong predicting power and reflects great differentiation capability. The permutation
test returned a p-value less than 0.0001, showing that the model is validated and further guaranteed
for non-overfitting.

3.5. ChemRICH Plots of BC-Associated Metabolites

Next, we aimed to understand the biological meaning of the BC-specific metabolomes.
Since biological interpretations of metabolic regulation in metabolomic datasets can be limited due to
incomplete pathway definitions and enrichment statistics, ChemRICH, a newly developed pathway
mapping tool, was applied [22]. Instead of traditional MSEA, which is determined by pre-defined
compound cluster database, ChemRICH uses chemical ontologies and structure similarities to group
metaoblites. p-values in ChemRICH are calculated using a self-contained Kolmogorov–Smirnov (KS)
test and clusters metabolites into non-overlapping chemical groups rather than sparse biochemical
knowledge annotations [26].

The plot in Figure 5A shows the ChemRICH enrichment results with the most significantly
impacted metabolite clusters of BC-specific DEMs (p < 0.05). The most significantly altered clusters
were the trimethyl ammonium compounds (p-value = 5.1× 10−13; false discovery rate = 1.3× 10−11),
which are located on the top of the plot y-axis in Figure 5A. The cluster colors give the proportion of
increased or decreased compounds (red = increased, blue = decreased, purple = the most decreased).
Several clusters, including the saturated fatty acid (FA) cluster (stearic acid as key component),
unsaturated FA cluster (linoleic acid as key component), sugar alcohols (glycerol as key component),
and carnitine (acetylcarnitine as key component), were found to be greatly increased in BC (Figure 5B).
There were 11 metabolite clusters enriched with false discovery rate p-values less than 0.05. They include
trimethyl ammonium compounds, saturated FA, sugar acids, disaccharides, histidine, unsaturated FA,
basic amino acids, basic carnitine, sugar alcohols, diamino, and hexoses (Figure 5B).
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Figure 5. (A) ChemRICH analysis plot. Y-axis shows the most significantly altered clusters. Cluster color shows the proportion of increased or decreased metabolites
compared to control (red = increased, blue = decreased, purple = mostly decreased). Cluster size indicates the number of compounds in each cluster. Chemical
enrichment statistics were calculated by the Kolmogorov–Smirnov test. Only significantly different enrichment clusters (raw p < 0.05) are shown. (B) Statistics table for
metabolite clusters. (C) MetaMapp metabolite network visualization. Red nodes indicate increased metabolites in BC compared to control, while the blue indicates a
decrease. Node size indicates the magnitude of fold-change. Compounds are connected by KEGG reaction pair (blue line), and chemical similarity (red line).
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Next, to efficiently map and visualize the metabolomic data, MetaMapp, a tool for integrating
information from biochemical pathways and chemical and mass spectral similarity was used [23].
Metamapp is able to map all detected metabolites into network graphs using the KEGG reactant
pair database and Tanimoto chemical and National Institute of Standards and Technology (NIST)
mass spectral similarity scores. Although Cytoscape (www.cytoscape.org) has been widely used for
differential network visualizations and subnetwork identification, MetaMapp graphs in Cytoscape
show clearer metabolic modularity and complete content visualization compared to conventional
biochemical mapping approaches (http://metamapp.fiehnlab.ucdavis.edu) [27]. MetaMapp analysis
revealed that several metabolites act as key players in the BC-specific metabolome. Red nodes reflect
the metabolites found to be significantly upregulated in BC (p-value < 0.05) while those that are
downregulated are shown as blue. The node sizes correlate with fold-change. Metabolites that were
not found to be differentially regulated or “unknown” were left unlabeled for visual clarity. Red
edges denote KEGG reactant pair links. Blue edges denote Tanimoto chemical similarity with T > 700.
MetaMapp uses biochemical reaction pair information (Figure 5, blue lines) and chemical similarity
(Figure 5, red lines) to create an overview of metabolic regulation. It clearly visible that saturated and
unsaturated FAs are most upregulated, while disaccharides are the most downregulated. Oleic acid as
well as 3-(1-Pyrazolyl)-alanine are two major central metabolites linked to many other metabolites
upregulated in BC (Figure 5C).

3.6. Top 50 Metabolic Pathway-Associated DEMs Sets

Over representation analysis (ORA), as shown in Figure 6, was done to detect the impact of
pathways, depending on the number of changed metabolites, and to test if a group of compounds was
represented more than expected by chance. In the context of pathway analysis, compounds involved
in a pathway are enriched and compared by random hits as tested. Detailed results from the pathway
analysis are depicted in Figure 6A. Urea cycle, glutathione metabolism, ammonia recycling, glycine
and serine metabolism, phosphatidylethanolamine biosynthesis, arginine and proline metabolism
were found to be significant, with p-values less than 0.1 (Figure 6B).

www.cytoscape.org
http://metamapp.fiehnlab.ucdavis.edu
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Figure 6. (A) Summary plot for over representation analysis (ORA) on metabolites with Mann–Whitney U test raw p-values less than 0.05. Top 50 metabolic pathway-
associated metabolite sets are shown. (B) Five significant metabolic pathways with p-values less than 0.05.
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Figure 6. (A) Summary plot for over representation analysis (ORA) on metabolites with Mann–Whitney U test raw p-values less than 0.05. Top 50 metabolic
pathway-associated metabolite sets are shown. (B) Five significant metabolic pathways with p-values less than 0.05.



Metabolites 2020, 10, 170 15 of 19

4. Discussion

In this study, two independent analytic platforms combined with chemical similarity-based
mapping and visualization tools revealed central clusters and network models in human BC tissue
specimens. Both independent metabolomics’ profiling analyses suggested that glutamine metabolism,
phosphatidylethanolamine biosynthesis, urea cycle, and ammonia recycling were significantly
associated with BC. In addition, ChemRICH revealed trimethyl ammonium compounds, saturated
FAs, and sugar acids as being the most significantly enriched metabolite clusters (false discovery rate
adjusted p-values < 0.001) in BC compared to controls.

The data from this study showed that metabolites, including glutamine, citrulline, and urea, are
upregulated in BC. Alterations in metabolism in BC has been reported to be characteristic of highly
diverse BC. FA and glutamine [28] metabolisms are well-known in aggressive BC types, such as
triple-negative BC (TNBC), whose expression of ASCT2/SLC1A5 (alanine, serine, cysteine-preferring
transporter 2) was found to be increased. Enhanced glutamine metabolism is linked with protein
and nucleotide synthesis in cancer [29,30]. Glutamine provides biosynthesis substrates, such as
carbon and nitrogen, and acts as an energy resource through ATP biosynthesis. The inhibition of
glutaminase exhibited antitumor activity in both the in vitro and in vivo BC models [31]. The metabolic
signatures were linked to BC subtypes. The ER- subtype showed reprogrammed glutamine metabolism
compared to the ER+ subtype [32,33]. Additionally, the ER- subtype is a preferential target for
glutaminase inhibitors.

Our results showed increased citrulline in BC patients. However, the mechanisms behind this
increase in citrulline remain unclear. Citrulline is a naturally occurring non-essential amino acid
and an intermediate in the urea cycle. It is also a direct precursor of arginine, and its metabolic
activity is mainly a result of its close link with arginine metabolism. There are three parallel metabolic
transformations of citrulline, including arginine biosynthesis and the arginine–citrulline–nitric oxide
(NO) cycle [34]. Citrulline is synthesized by ornithine transcarbamylase from ornithine and metabolized
by argininosuccinate synthase in the urea cycle [35]. Alterations in the expression of urea cycle
enzymes in BC [36] have revealed a revolutionary mechanism to maximize nitrogen incorporation into
biomass [37]. The rewiring of urea cycle enzymes and the role of citrulline in cancer notes a new and
exciting era for cancer metabolic studies. Further investigation into the functions of citrulline and its
alterations is warranted and could lead to the identification of more effective therapeutic strategies
against BC.

The data from this study also suggest that oleic and linoleic acid are enriched in BC, which
is consistent with previous observations noting that changes in lipid metabolism are established
hallmarks of BC [38]. Breast epithelial cells are embedded within a fat environment, which suggests
that potential metabolites or substrates that are released during adipose lipolysis may be contributing
to cancer progression [39]. We found that arginine, glutathione and sugar metabolism, and polyamines
are altered in BC. Interestingly, arginine is involved in polyamine synthesis, which was found to
also be implicated in BC [40–42]. Free fatty acids (FFAs) are an energy source and can induce
activation of signal transduction pathways in BC cells [43]. However, the mechanisms through which
altered FFA metabolism drives relapse has not been addressed. Oleic acid is one of the most common
monounsaturated FFA in human adipocytes and other tissues [44]. Our analysis demonstrated that oleic
acid is associated with BC compared to controls. Oleic acid prompts cell proliferation and migration
in metastatic cancer through various pathways, including EGFR, AKT and NF-κB [45]. Linoleic acid
is an essential and omega-6 polyunsaturated FA, which constitutes a major component of FAs in
occidental diets. High fat diet intake has previously been shown to be associated with increased risk of
BC [46]. Linoleic acid mediates a variety of cellular processes, including expression of plasminogen
activator inhibitor-1 and cellular migration and invasion, and can induce an epithelial-to-mesenchymal
transition-like process in BC [47]. Based on our metabolic observations, it could be postulated that the
FFAs microenvironment might favor tumor progression, which provides novel potential targets for the
chemoprevention of human cancer.
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Current metabolomics biochemical knowledge/databases and mapping tools have limited coverage
of detected metabolites. In order to resolve the shortcomings of mapping approaches and data
visualization and to improve pathway analysis, we adopted ChemRICH and MetaMapp, which were
recently developed in Fiehn laboratory. In this study, to better understand the metabolic signatures
specific to BC and control groups, we performed ChemRICH and used Mann–Whitney U test p-values
and median fold-changes to identify metabolites. To evaluate whether a metabolite cluster was
represented more than expected by chance, the Kolmogorov–Smirnov test was performed on the
identified clusters.

ChemRICH identifies enriched pathways using chemical similarity from medical subject headings
and Tanimoto substructure chemical similarity coefficients. ChemRICH is useful for translating
data obtained from clinical specimens, although it does not provide information regarding enzymes
or diseases.

While conserving biochemical organization, the constructed MetaMapp-integrated network graph
displays the key metabolites associated with BC. Significantly upregulated metabolites are denoted as
red nodes and labeled with their respective BinBase names, while those downregulated are denoted as
blue (p-value < 0.05). The node sizes are reflective of the amount of fold-change. Metabolites that were
not differentially regulated in BC or unknown were left unlabeled for clarity. KEGG reactant pair links
are reflected as red edges. Tanimoto chemical similarity, with T > 0.7, is reflected through blue edges.
A MetaMapp-integrated network graph has several advantages. Firstly, the data are independent of
the methodology used to acquire metabolomics profiles (i.e., MS or NMR). This allows for integration
and visualization of data from different platforms. However, the only requirement is that all chemical
structures are already encoded. Secondly, genomics is not a constraining factor when using MetaMapp.
Detected metabolites can be mapped across studies or species; for instance, metabolites can be mapped
from gut microbes to compounds that stem from mammalian enzymes. Lastly, the MetaMapp layout
is dynamic and automatically updates based on the input of compound lists. As a result, MetaMapp
graphs enable higher biochemical clarity despite having larger metabolic nodes. Since MetaMapp
outputs are compatible with Cytoscape, next-generation metabolomic datasets with greater identified
metabolites and integration of genomic and proteomic data can be visualized.

However, there are several shortcomings with MetaMapp. It cannot be used to compute flux or
enzymatic reactions among metabolites. Although it is scalable to an extent, adding large numbers of
nodes can lead to blurring. This was seen when we added a higher number of unknowns based on MS
similarity. The visual clarity of MetaMapp can also decrease when statistical results are combined from
further comparisons. As a result, multiple two-way graphs are recommended for displaying more
complex biological studies.

We are aware there are some limitations in this study. First, subjects were not excluded based on
menopausal status, so it is impossible to rule out hormone-related effects on data. Second, biospecimens
were not obtained from the same patients or compared directly, although the aim of the current study
was to explore potential BC biomarkers. Thus, we do not have detail clinical information such as the
mutational status of collected tumours, which is a big limitation of this study. Further investigation
into BC patients with different molecular characteristics will provide evidence suggesting potential
prognostic and diagnostic tools for precision medicine. To further develop metabolic inhibitors as
clinical regimens with existing therapies for BC patients, it is be critical to understand the heterogeneity
in metabolism and targetable metabolic vulnerabilities in BC.

In summary, BC displays heterogeneous metabolic profiles similarly so unbiased global
metabolomics profiling can reveal overlapped metabolic vulnerabilities in different BC types.
The findings from this study provide another layer of evidence suggesting key metabolic players in BC.
This can be further developed into therapeutic strategies to hinder or delay aggressive BC progression.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/4/170/s1,
Table S1: GC-TOF-MS identified significant differentially expressed metabolites, Table S2: Metabolomics profiling
using HILIC-ESI QTOF MS/MS identified compounds.

http://www.mdpi.com/2218-1989/10/4/170/s1
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 A B S T R A C T 

Bladder cancer (BC) is the fourth most common malignant tumor in the United States. It is the second most 
common cancer of the urinary system, accounting for 7% of all new cancer cases. It is also the fifth deadliest 
cancer, accounting for 4% of all cancer-related deaths in the United States. Our efforts to reduce costs of 
BC diagnosis and improve patients’ quality of life by avoiding unnecessary invasive diagnostic tests resulted 
in findings of promising urinary biomarkers for the detection of BC. This short review article aims to provide 
the current status of non-invasive biosensor device development for detection of BC, in particular, in 
patients’ urine samples. 
 
 
                          © 2020 Jayoung Kim, Sungyong Jung. Hosting by Science Repository. All rights reserved  

Bladder Cancer 

 
Bladder cancer (BC) is the fourth most common malignant tumor in the 
United States. It is the second most common cancer of the urinary 
system, accounting for 7% of all new cancer cases. It is also the fifth 
deadliest cancer, accounting for 4% of all cancer-related deaths in the 
United States. The male to female ratio of morbidity and mortality is 
about 3:1 [1]. Risk factors are related to age, family history, and genetic 
factors, environment, diet, and lifestyle, especially smoking and 
exposure to aromatic amines [2-5]. Cigarette smoking is the single 
greatest risk factor for BC [6, 7]. Smokers are more than twice as likely 
to develop BC than non-smokers [8]. In muscle-invasive and metastatic 
bladder cancer, there is a causal relationship between tobacco exposure 
and cancer, of which the principal preventable risk factor for the muscle-
invasive disease is active and passive smoking [6, 7]. There is a well-
established relationship between schistosomiasis and squamous cell 
carcinoma of the bladder [6]. Exposure to chemotherapy and pelvic 
radiation is also considered as a risk factor for BC [6]. Other known risk 

factors include the ingestion of high levels of arsenic or significant usage 
of pain relievers containing finazepine [3, 9]. 
 
Bladder Cancer Diagnosis 

 
The most common symptom of BC is painless hematuria, which should 
be followed by physical examination, cystoscopy, urinary cytology, and 
imaging of the upper urinary tract (UUT). Both computed tomography 
(CT) and magnetic resonance imaging (MRI) may be used to detect stage 
T3b or higher BC. Studies suggest that FDG-PET/CT might have 
potential clinical use for staging metastatic BC [10, 11].  
 
Treatment for Bladder Cancer 

 
For treatments of non-muscle invasive BC (NMIBC, stage Ta-T1 and 
carcinoma in situ (CIS)), a combination of conventional surgery 
(transurethral resection of bladder tumor (TURBT)), intravesical 
chemotherapy, and immunotherapy are applied [12]. For patients with 
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high-risk diseases and those whose diseases are difficult to treat, 
cystectomy may be necessary [12].  

For the treatment of muscle-invasive BC (MIBC, stage T2 to T3 and 
CIS), the two principal treatment choices are radical cystectomy (RC) 
and TURBT, with concurrent radiation therapy using a radiosensitizer 
and systemic chemotherapy (multi-modality therapy) [6]. Standard 
treatment for patients with MIBC is radical cystectomy; however, this 
treatment only provides 5-year survival in about 50% of patients. The 
use of chemotherapy is beneficial to improving both survival and patient 
outcomes [6]. A paper published in 2005 demonstrated a significant 5% 
absolute survival benefit in favor of neoadjuvant chemotherapy (NAC) 
[13]. This study also showed that only cisplatin combined chemotherapy 
could produce significant therapeutic effects [13].  

More modern chemotherapeutic regimens, such as 
gemcitabine/cisplatin, which are effective in metastatic disease, have 
also shown efficacy in the neoadjuvant setting [14, 15]. Adjuvant 
chemotherapy (AC) after RC can be used for high-risk M0 patients, such 
as those with pT3/4 and/or lymph node–positive (N+) disease [16]. A 
retrospective study from 2009 compared the long-term outcome of 
preoperative versus no preoperative radiation therapy (RT) in clinical 
T1-3 tumors [17]. The study showed that preoperative RT could lead to 
a reduction in order to prolong progression-free survival (PFS) [17]. 
External beam radiation therapy (EBRT) may be given preoperatively 
(neoadjuvant), postoperatively (adjuvant), or as radical treatment for 
patients with muscle-infiltrating cancer with no proven metastases to 
lymph nodes or distant metastases [6]. For the patients without lymph 
node metastasis or distant metastasis, external beam radiation therapy 
(EBRT) can be given before operation (neoadjuvant), after operation 
(adjuvant) or as radical treatment [6].  

Metastatic BC is a serious disease. Before the development of effective 
chemotherapy, patients with the metastatic disease rarely had a median 
survival that exceeded 3-6 months [6]. The 5-year survival rate of 
patients with metastatic bladder cancer was previously estimated to be 
5% [18]. The current estimated 5-year survival is 10% [2]. 
Chemotherapy is still the standard treatment for metastatic bladder 
cancer; however, patients with ineffective or poorly tolerated 
chemotherapy still have poor prognosis [6]. The recent discovery of 
innovative  immunotherapies based on the programmed death ligand-1 
(PD-L1) inhibitors, such as avelumab, durvalumab, nivolumab and 
atezolizumab, are promising for patients who are considered unsuitable 
for chemotherapy [19, 20]. 

Bladder Cancer Classification 

Traditionally, BC has been classified into NMIBC or MIBC, and most 
of BC belong to transitional cell carcinoma (TCC) [21]. Recent efforts 
classifying phenotypes based on molecular characteristics reported 
several BC phenotypes. For example, there are University of North 
Carolina (UNC), MD Anderson Cancer Center (MDA), The Cancer 
Genome Atlas (TCGA), Lund University (Lund), and Broad Institute of 
Massachusetts Institute of Technology and Harvard University (Broad) 
classification. 

Biosensors for Detection of Bladder Cancers Using Urine 

Researchers’ efforts to reduce costs of BC diagnosis and improve 
patients’ quality of life by avoiding unnecessary invasive diagnostic tests 
resulted in findings of promising urinary biomarkers for the detection of 
BC such as telomerase, nuclear matrix protein 22 (NMP22), cytokeratin 
19, etc. [22]. Along with the discovery of urinary biomarkers, biosensors 
for detecting those biomarkers have been developed, which can offer low 
detection limits, a wide linear response range, good stability and, good 
reproducibility [23].  

The biosensor is a device that transforms a biological response into a 
quantifiable and processable signal. The key components of biosensors 
are a bioreceptor and a transducer. The bioreceptor is a molecule that 
specifically recognizes the analyte, such as enzyme, antibody, and 
protein, while the transducer is an element that converts the bio-
recognition event into a measurable signal, which classifies the types of 
the biosensors. The biosensors for BC diagnosis with voided urine can 
be typically categorized into two groups, an optical biosensor and an 
electrochemical biosensor. The optical biosensor emits an optical signal 
which is proportional to the concentration of a measure substance 
(analyte) whereas electrochemical biosensor converts biological event to 
an electronic signal. 

From early research, the optical biosensor has been the most commonly 
used biosensor to screen target biomarkers in urine [24-27]. Shin et al. 
developed the optical biosensor with silicon microring resonators to 
detect DNA biomarkers (fibroblast growth factor receptor 3 and Harvey 
RAS) in urine [24]. They successfully demonstrated linear wavelength 
shifts pattern in a different concentration range of target biomarkers. Due 
to the intrinsic advantage of silicon fabrication, a highly sensitive and 
specific platform was achieved for diagnosis and surveillance of BC. As 
another prominent urinary biomarker for BC diagnosis, telomerase 
activity’s detection was conducted using a fluorescence method and a 
colorimetric method on the optical biosensor [25, 27].  

Xu et al. established the label-free colorimetric optical biosensor based 
on the merits of hemin-graphene nanomaterial, such as easiness of 
synthesis, stability, and reliability. The sensor was validated its 
performance by changing colour from light blue to dark blue as 
telomerase activity increased due to chromogenic reaction. To detect 
telomerase activity, not only the optical biosensor but also the 
electrochemical biosensor can be applied with good reproducibility and 
selectivity [28]. The electrochemical biosensor was realized using 
methylene blue (MB) as a G-quadruplex binding on indium tin oxide. 
The large amount of MB bounded to G-quadruplexes under the activity 
of telomerase resulted in sharply decreasing diffusion current of MB. Ma 
et al. proved the effectiveness of the electrochemical immunosensor 
(affinity-biosensor) for detecting NMP22 on graphene oxide-
tetraethylene pentaamine and trimetallic AuPdPt nanoparticles [29]. It 
achieved high accuracy in real urine sample, showing differential pulse 
voltammetry responses of the immunosensor towards different 
concentrations of NMP22. Another transducer, a high stability indium 
gallium zinc oxide field effect transistor (IGZO-FET), was utilized to 
build the electrochemical biosensor for capturing the NMP22 [30]. The 
IGZO-FET sensor was tested with real urine samples from BC patients, 
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and it was able to detect NMP22 with high sensitivity, selectivity, and 
detection limit. 
 
Point-of-Care Detection Device for Bladder Cancer Using Urine 

 
It is widely known that screening and early diagnosis of cancer are key 
to improving the likelihood of recovery and 5-year survival. 
Consequently, many studies have been conducted to develop a point-of-
care (POC) device for BC detection, which responds fast and diagnoses 
non-invasively. The POC device should be low-cost, portable, reliable, 
and disposable. 
 
To satisfy such requirements, a lab-on-a chip (LOC) technique has been 
investigated. It is reported that Liang et al. developed an integrated 
double-filtration microfluidic LOC device, which isolates, enriches, and 
quantifies urinary extracellular vesicles to assist in screening for bladder 
cancer at the POC [31]. The device detects the multiple biomarkers of 
BC and transfers diagnostic data in the patient’s urine sample to the user 
through wireless communication using a cell phone. In addition, Geng 
et al. developed a microfluidic chip using polydimethylsiloxane (PDMS) 
to form a channel using a cast molding method, with a sliding glass 
coverslip as the substrate to detect BC biomarkers [32]. The chip 
converts different concentrations of biomarkers in urine to fluorescence 
intensity of image, which is a quantifiable signal. Chuang et al. have 
reported that an immunosensor chip as POC test device for detection of 
BC biomarker (Galectin-1 protein) realized with a photolithographically 
patterned gold microelectrode array [33]. They also designed a portable 
impedance measurement readout device for this chip, which transferred 
the data to the computer for improved monitoring.  
 
A few commercial POC diagnosis devices are approved by FDA for BC 
detection and surveillance, such as UBC rapid, NMP22 BladderChek 
and BTA-STAT. UBC rapid detects cytokeratin fragments 8 and 18 in 
the urine to diagnose BC. It takes only 10 minutes to get the result and 
has the closest sensitivity of cytology in high-grade tumors [34]. NMP22 
BladderCheck utilizes the detection of NMP22 as can be guessed from 
its name, and it takes 30 minutes to diagnose with high specificity. BTA 
Stat Test detects the presence of bladder tumor associated antigen (BTA) 
in 5 minutes. Some insists that it has higher potential in detection of early 
grade BC than cytology [35]. Much of the research has been done to 
evaluate the commercial test kit by ethnicity, case number, gender and 
so on [36-41].  
 
As of now, cytology is the only recommended guidelines internationally 
for diagnosing BC. The aforementioned commercial POC devices have 
been used in combination with cystoscopy to improve the accuracy. To 
use the commercial POC as a standalone BC diagnosis devices, there 
should be more meta-analyses with various conditions such as age, 
gender, genetic factors, environment, and lifestyle. 
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“April was death. April was hope. April was cruel.”

This was the sad title of The WaPo’s (Washington Post, 
a major American daily newspaper) cover article, published 
on May 2, 2020. In the month of April 2020, more than 2,000 
Americans died each day, and more than one out of every 
325 Americans had confirmed infections with the newly 
emergent human virus, severe acute respiratory syndrome–
coronavirus 2 (SARS-CoV-2). In the elegantly written recent 
article [1], Dr. Khae Hawn Kim at Gachon University Gil 
Medical Center described the early responses to the corona-
virus disease 2019 (COVID-19) global health crisis. The day 
he wrote the article was the same day that a 17-year-old 
South Korean adolescent died of aggravated acute respira-
tory distress syndrome without a solid test result regarding 
COVID-19. Although the result turned out to be negative, it 
was news fearful enough to alert the healthcare community. 

To respond to this pandemic, the healthcare system has 
been directly and indirectly forced to rapidly adjust to this 
new pandemic environment and reset clinical infrastructure 
for appropriate healthcare delivery, particularly regarding 
the elderly. Instead of the Standard-of-Care in-person con-
sultation, “telemedicine,” communication through telephone 
or video connection, is being utilized for outpatients not at 
high risk. Since recent scientific evidence suggests that virus 
transmission occurs through symptomatic, pre-symptomatic, 
and even asymptomatic patients, as well as environmental 
transmission, patients and healthcare providers require ex-
tensive usage of personal protective equipment as well as 
well-curated decontamination procedures of the facility and 
instruments during procedures of individual therapies and 
treatment. 

This is particularly evident in urological clinical set-
tings. High percentages of urological patients belong to aged 
populations, who are subsequently more vulnerable to severe 
COVID-19 infection. Boehm et al. [2] reported that approxi-
mately 85% of urological patients are asking for telemedi-

cal consultations to avoid various possible risk factors. Bold 
clinical protocols are urgently needed to provide contact-free 
teleurological care during and after the outbreak of the CO-
VID-19 pandemic. 

To improve our understanding on the potential impacts 
and specific epidemiology of COVID-19, the implementation 
of mobile technology for digital data collection tools, such as 
smartphone applications, should be considered to facilitate 
research activities in reducing spread of disease and in im-
proving contact-free patient care. Scientists and developers 
alike should be particularly aware that privacy is of the 
utmost importance to successfully apply the app-based data 
collection during this pandemic [3]. Patients want to be able 
to confidently trust the usage of digital health data. 

As shown in mHealthHUB (http://mhealth-hub.org/
mhealth-solutions-against-covid-19), a COVID-19 Symptom 
Tracker mobile application lead by Dr. Chan at Harvard 
Medical School and investigators at the COronavirus Pan-
demic Epidemiology (COPE) consortium is one good example 
for epidemiologic data collection to determine COVID-19 
risk factors, clinical outcomes, public health planning, and 
the associated mechanism and therapeutic options [2]. The 
clinical values of another app-based symptom tracker for 
symptom tracking and modeling were assessed by clinical 
research led by Dr. Spector at King’s College London [4] to 
determine whether loss of olfactory and gustatory functions 
is caused by COVID-19 among 2,618,862 individuals. The 
HEALTHLYNKED COVID-19 Tracker [5] and Apple’s offi-
cial COVID-19 app were developed based on the collaboration 
with the World Health Organization (WHO) and Centers for 
Disease Control and Prevention (CDC), respectively.

In The Waste Land (1922), T.S. Eliot (1888–1965) writes 
that “April is the cruelest month.” However, we know that 
his poem actually sings hope about the ending of Winter 
and the celebration of a new Spring. We do not yet know if 
we will experience another painful Spring next year, or if 
we will face a new normal all together coming out of this 
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pandemic. The preparation of teleurology training for urol-
ogy healthcare providers in our medical schools starts as 
early as the upcoming semester. The post COVID-19 era may 
significantly rely on digital data collection from Smartphone 
applications and machine learning algorithms for clinical 
trials and research activities. Are we ready for this para-
digm shift towards the telemedicine and digital health that 
lies just around the next corner? 
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To the editor,
Public health is a complicated issue. This has become particu-
larly evident during this worldwide pandemic of COVID-19. 
On May 25, 2020, Mr. George Floyd, an African American man 
residing in Minneapolis was killed in police custody. For 8 min-
utes and 46 seconds, the arresting officer had his knee pressed 
on Mr. Floyd’s neck, ultimately killing him through asphyxia-
tion. This event ignited a movement of fiery protests fueled by 
the current status of racial discrimination and socioeconomic 
and healthcare disparities in America, much of which is still 
ongoing as I write this letter on June 2, 2020.
 There is mounting evidence that suggests that minorities ex-
perience a greater incidence and worse cases of diseases com-
pared to white Americans. The root causes of these health dis-
parities have been heavily studied; racism and discrimination 
make access to healthcare resources difficult and, sometimes, 
impossible. When it comes to COVID-19, key risk factors, such 
as age, sex, and comorbidities (i.e., hypertension, diabetes, and 
cardiovascular disease), are linked to worse outcomes. Unfortu-
nately, these factors are compounded with the disparities noted 
with race and socioeconomic status. Poorer communities and 
people of color experience limited access to health education, 
hygiene management, and healthy foods. Additionally, they live 
in areas with denser populations, which makes it difficult to 
maintain appropriate social distancing, specifically regarding 
COVID-19.

What Does Research Data Tell Us So Far?

More and more studies continue to demonstrate the dispropor-
tionately negative impact that COVID-19 has on African Amer-
icans [1]. Overall, black Americans have higher rates of infec-
tion and mortality. In Chicago, where African Americans make 
up only 30% of the population, more than 50% of COVID-19 
cases and nearly 70% of deaths were African Americans [2]. In 
Louisiana, African Americans make up approximately 30% of 
the population; however, over 70.5% of COVID-19 deaths have 
been in African Americans [3]. This alarming disparity in 
numbers was similar in the state of Michigan, where African 
Americans make up only 14% of the population [4]. Recent 
data from 1,052 confirmed COVID-19 cases in Northern Cali-
fornia showed that African Americans were 2.7 times more 
likely to be hospitalized than non-Hispanic whites [5]. In Los 
Angeles County, the average death rate from COVID-19 was 
estimated to be 9 per 100,000 cases. However, when accounting 
for race, the African American population had a death rate of 
16 per 100,000. Shockingly, in denser black communities, such 
as West Rancho Dominguez, this rate shot up to 74 deaths per 
100,000 cases.
 Serious health disparities have also been noted in the Asian 
American communities, where COVID-19 has additionally 
contributed to a rise in anti-Asian sentiment, discrimination, 
and hate-related crimes [6]. Studies found a positive correlation 
between the percentage of Asian Americans and the percentage 
of incidence (r =0.185, P <0.0001) and death (r =0.211, 
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P<0.0001) from COVID-19 [7]. Data published on Wellcome 
Open Research analyzed the national health records of 16,272 
COVID-19 patients in the United Kingdom suggested that 
black and Asian patients were at higher risk of death from CO-
VID-19 compared to Caucasians.
 In early May 2020, the U.S. Food and Drug Administration 
allowed the biotechnology firm, Moderna, to initiate an 
mRNA-1273-based phase II clinical trial. Several potential 
drugs for COVID-19 treatment and vaccination are being test-
ed in numerous large clinical trials around the world. To mini-
mize the health disparity from COVID-19, these clinical trials 
must include people from all ethnic and racial groups. Other-
wise, we will see another level of repetitive health disparity is-
sues from COVID-19 in future treatments and vaccines.
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Abstract. The discovery, introduction and clinical use of prog-
nostic and diagnostic biomarkers has significantly improved 
outcomes for patients with various illnesses, including bladder 
cancer (Bc) and other bladder-related diseases, such as benign 
bladder dysfunction and interstitial cystitis (ic). Several 
sensitive and noninvasive clinically relevant biomarkers 
for Bc and ic have been identified. Metabolomic- and 
lipidomic-based biomarkers have notable clinical potential 
in improving treatment outcomes for patients with cancer; 
however, there are also some noted limitations. This review 
article provides a short and concise summary of the literature 
on metabolomic and lipidomic biomarkers for Bc and ic, 
focusing on the possible clinical utility of profiling metabolic 
alterations in Bc and ic.
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1. Bladder cancer

Bladder cancer (Bc) is the most common malignancy of 
the urinary tract. in 2018, there were ~549,000 new cases of 
Bc and 200,000 deaths related to Bc globally (1). Bc is the 
eighth most common cancer among men in the uS (2) and is 
reported to affect men more frequently than women, with a 
ratio of 3.2:0.9 (1,2). in addition, the incidence of Bc increases 
with age (3). according to the european association of 
Urology, BC can be classified into two divergent phenotypes: 
non-muscle-invasive Bc (nMiBc) and muscle-invasive 
Bc (MiBc). Furthermore, Bc can be categorized into the 
following subtypes: urothelial carcinoma, squamous epithelial 
carcinoma and adenocarcinoma (1-3). urothelial carcinomas 
account for an overwhelming 90% of worldwide Bc cases (4). 
risk factors for Bc include occupational factors, age, sex, 
race, socioeconomic status, personal health, diet and infection 
by pathogens (5-7). it is well-established that the progres-
sion of a normal cell to a cancer cell is a multistep process 
involving the accumulation of genetic alterations, referred to 
as carcinogenesis. nMiBc generally involves the mutation 
of fibroblast growth factor receptor 3 (FGFR3), giving rise to 
low-grade cancer that frequently recurs but seldom becomes 
invasive or progresses. By contrast, MiBc and carcinoma in 
situ exhibit deletions or mutations of TP53, rB transcriptional 
corepressor 1 (RB1), erb-b2 receptor tyrosine kinase 2 or 
PTEN, leading to high-grade and metastatic cancer (8). The 
emergence of high-throughput transcriptome sequencing 
techniques has assisted in the identification of versatile BC 
biomarkers, including long non-coding rnas (lncrnas), 
the aberrant expression of which can contribute to tumori-
genesis in bladder tissues (9). lncrna abhydrolase-domain 
containing 11 antisense rna 1 (aBHd11-aS1) and lncrna 
hypoxia-inducible factor 1α antisense rna 2 (HiF1a-aS2) 
have been reported to be upregulated in Bc tissues and cells, 
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and their expression levels in tissues have been shown to be 
positively associated with advanced pathological grade and 
TNM classification (10,11).

2. Recently reported molecular subtype classification of BC

Classification systems for cancer are mainly based on patho-
logical parameters, such as stage and grade. Such classification 
provides predictive prognostic information; however, for 
Bc, recurrence and progression vary widely from patient to 
patient, greatly affecting monitoring and treatment (12). The 
development of advanced techniques, such as sequencing and 
mass spectrometry (MS), and their implementation in omics, 
has provided better diagnostic and therapeutic information for 
the treatment of Bc (13-16). Molecular subtyping, which is 
based on genetic characteristics, has made particularly notable 
progress in Bc and is of increasing interest (17). The current 
molecular subtypes of Bc share various characteristics, such 
as molecular features. However, these classifications can also 
vary, with two to seven distinct subtypes (18-20). as a result 
of this diversity, molecular classifications are not feasible 
for use in the clinical setting. This also highlights the need 
for a consensus on a single set of molecular subtypes that is 
applicable to clinical use. nevertheless, the understanding 
of the biology of Bc has been substantially improved by 
key achievements in molecular classification; for example, 
associations have been identified between molecular subtypes 
and urothelial differentiation, and similarities have been noted 
between Bc subtypes and other types of cancer.

The first study into BC subtyping using molecular signa-
tures was conducted at the university of lund. This previous 
study examined the transcriptomes from 308 Bc samples, 
identifying five different subtypes: Urobasal A, genomically 
unstable, urobasal B, squamous cell carcinoma-like and 
infiltrated (2). In addition, two subtypes of high‑grade MIBC 
were identified by examining published data from 262 BC 
samples (18). The expression levels of keratin and CD44 were 
analyzed, which were found to be related to differentiation 
of the urinary epithelium. owing to similarities with expres-
sion profiles in breast cancer, these two molecular subtypes 
were named luminal-like and basal-like. case studies of 
the luminal-like subtype revealed that it had much higher 
disease‑specific and overall survival rates compared with the 
basal-like subtype, and the following transcription factors were 
enriched: FGFR3 and tubercular sclerosis 1. Specific changes 
were also noted in various pathways, including deletion muta-
tions in the RB1 pathway and amplification of cyclin D1, E2F 
transcription factor 3 and cyclin e1 (18). in 2014, the Md 
anderson cancer center analyzed mrna expression patterns 
in 73 MIBC samples using molecular signatures identified 
from breast cancer studies. This led to the identification 
of three Bc subtypes: luminal, p53-like and basal (19). in 
addition to the aforementioned studies, The cancer Genome 
atlas (TcGa) has greatly improved biological databases and 
led to the updating of subtypes. Through genetic analysis of 
129 patients with MIBC, TCGA identified four molecular BC 
subtypes: Clusters I, II, III and IV (20). This classification 
system was updated to include luminal, immune undifferenti-
ated, luminal immune and basal subtypes based on genetic 
signatures, such as uroplakins and immune infiltration. Upon 

analysis of an additional 412 MIBC cases, TCGA classification 
of BC was further updated and consolidated into five subtypes: 
luminal, luminal-infiltrated, basal-squamous, neural and 
luminal-papillary (21).

3. Interstitial cystitis

interstitial cystitis (ic) is a chronic condition of unknown 
etiology with long-term notable pelvic/suprapubic pain and 
urinary storage symptoms, such as urgency, nocturia and 
frequency (22). The advent of cystoscopy led to major findings 
in ic, including bladder glomerulations during hydrodistention 
and Hunner's lesions (23). although the epidemiology of ic 
is difficult to monitor due to its plethora of symptoms, recent 
studies have suggested an estimated prevalence of 100-300 per 
100,000 women, and the prevalence rate is ≥10‑20% lower in 
men (24,25).

ic is generally diagnosed through exclusion; however, 
several attempts have been made to define standard diagnostic 
criteria. recent guidelines set by the european Society for 
the Study of interstitial cystitis and the american urological 
association are currently being used worldwide to treat 
ic (26). although treatment options for ic are limited and 
include hydrodistention, several oral pharmaceutical drugs 
have been approved by the uS Food and drug administration, 
including pentosan polysulfate (elmiron), antihistamines, 
tricyclic antidepressants and immune modulators (27).

owing to its unknown etiology, and large variability in sites 
of occurrence and symptom severity, IC is difficult to subtype. 
However, there is still an urgent need for a well-established 
and precise subtyping system. a recent study revealed that ic 
with Hunner's lesions displayed completely different histology, 
gene expression and prognoses compared to other forms of 
IC (28). IC can also be defined as a distinct non‑inflammatory 
disorder characterized by preservation of the urothelium layer 
and symptom spread beyond the bladder without lesions (29).

4. Metabolomics and lipidomics

Metabolomics. Metabolomics is defined as the large-scale 
study of small molecules and metabolites involved in the regu-
lation of metabolic pathways and their networks. compared 
with genomics and proteomics, metabolomics is more closely 
linked to phenotypes; therefore, it can detect subtle changes in 
biological pathways under different physiological conditions 
and abnormal pathological processes. For the purposes of this 
review, we will focus on the application of metabolomics and 
lipidomics to Bc.

The aim of precision medicine is to create novel approaches 
to prevent disease and update clinical strategies to consider 
each individual's variability in terms of environment, lifestyle, 
genetics and molecular phenotypes (30). Metabolomics holds 
much promise for precision medicine and can be used to 
measure all metabolites in biological specimens (31). However, 
metabolomics presents significant analytical challenges over 
genomics and proteomics; it aims to measure molecules that 
range in polarity, from organic water-soluble acids to nonpolar 
lipids, which have disparate physical properties (32). as a 
complement to other omics techniques, metabolomics serves as 
a critical component of systems biology. Moreover, the study of 
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metabolites and molecules is closely related to phenotypes and 
can improve understanding of intracellular metabolic altera-
tions (31). The main aim of metabolomics is to identify altered 
metabolic pathways and biomarkers (33). recent developments 
in metabolomics and statistical capabilities have improved the 
ability to investigate cancer metabolism and better understand 
cancer-related changes in metabolism, such as the conversion 
of glucose into the macromolecules needed for tumor cell 
proliferation and vascularization (34-36).

Lipidomics. lipids are essential building blocks in the body 
that have several critical cellular functions and can provide 
information regarding ongoing lipid metabolism. The lipidome 
is the total lipid content in a cell (37). The emergence of lipi-
domics allows for the complete characterization of the cellular 
metabolome. lipidomics may be the potential key to numerous 
metabolic diseases and can be utilized in several research areas, 
as well as in the development of diagnostic tools, drugs and 
therapeutic strategies (38). lipidomics combined with bioin-
formatics can serve as a powerful tool for better understanding 
the biochemical mechanisms underlying lipid-related diseases 
by quantifying alterations in the levels of individual lipids, 
subclasses and molecular species, and identifying changes in 
pathways and networks (37). The emergence of metabolomics 
and lipidomics has enabled improved definition of differential 
metabolites in pathological conditions. over the past two 
decades, metabolomics and lipidomics have seen significant 
advances, facilitated by rapid developments in novel analysis 
strategies, approaches, instruments and techniques (39).

5. Emerging technologies

Current development of methodologies. The physicochemical 
properties of all metabolites add additional complexity to 
metabolomics studies. To overcome these restrictions, various 
methods have been applied to overcome this complexity and 
challenges. MS and nuclear magnetic resonance (nMr) 
are the most frequently applied analytical approaches in 
metabolomics studies.

NMR spectroscopy. nMr is a nondestructive, nonbiased, 
easily quantifiable, fast and reproducible spectroscopy 
technique based on the principle that nuclei absorb and emit 
electromagnetic signals based on changes in the external 
magnetic field. NMR has several unique advantages in metab-
olomics (40). Metabolomics profiling by NMR is a powerful 
tool that can be used to diagnose a variety of diseases. nMr 
is based on the fact that nuclei, such as 1H, 13c and 31P, have 
nuclear spins and are able to exist at different energy levels 
in a magnetic field. Thus, these nuclei can generate valuable 
and identifiable information about metabolites. 1H nMr is the 
most commonly used technique in metabolomics since 1H is 
naturally abundant in biological samples. 13c and 31P nMr are 
used less frequently but can provide additional information on 
specific metabolites (40).

MS. MS-based metabolomics offers quantitative analysis of 
metabolites, ranging from measurement of a single molecule 
to thousands, with high selectivity and sensitivity. The 
combination of MS with separation techniques reduces the 

complexity of mass spectra by separating metabolites based 
on time, providing isobar separation and delivering additional 
information regarding physicochemical properties. To calcu-
late the mass-to-charge ratio (m/z), MS acquires spectral data 
and relative intensity of the measured compounds. one poten-
tial drawback of MS-based techniques is the need for sample 
preparation, which can lead to potential loss of metabolites, 
changes in experimental conditions, discrimination of specific 
metabolite classes and other consequences (41,42).

MS can effectively analyze small molecules separated by 
techniques, such as gas chromatography (Gc), liquid chro-
matography (lc) and capillary electrophoresis. lc-MS and 
Gc-MS can provide large amounts of chemical information 
for metabolomics studies. Gc-MS uses the gaseous phase 
and achieves better metabolite separation than lc; however, 
unlike lc, Gc typically requires chemical derivatization of 
the metabolic species prior to analysis. Gc-MS is widely used 
in metabolomics studies as it can detect a wide range of intact 
metabolites with no need for chemical modification. For the 
separation of nonpolar to slightly polar molecules, traditional 
reverse-phase chromatography is used. Hydrophilic interaction 
lc is the technique of choice for separating strongly to slightly 
polar metabolites (41,42).

Advantages and disadvantages. For metabolomics studies, 
each analytical technique has its own advantages and limita-
tions. no single instrument or method can detect all metabolites 
accurately. Therefore, multiple methods and instruments are 
recommended to detect the greatest number of metabolites. 
For example, the Phenome centre Birmingham utilizes 
LC‑MS and NMR spectroscopy for metabolomic profiling and 
is able to detect a higher number of metabolites compared with 
using a single method alone (https://www.birmingham.ac.uk/
research/activity/phenome-centre/about/index.aspx). owing 
to the complexity of the metabolome, no single analytical 
method can fully discern the metabolome. nMr and MS each 
have their own strengths and weaknesses, which are described 
in previous publications (41-43).

6. Applying metabolomics and lipidomics to BC

Applying metabolomics to BC. To diagnose initial or recurrent 
Bc, two standard diagnostic procedures are used: cystoscopy 
and urine cytology. However, there are several limita-
tions (43). as a result, there is an urgent need for a noninvasive, 
highly-sensitive, specific and convenient method for Bc 
diagnosis. urine is particularly suited for diagnostic purposes 
due to its availability, easy sample collection and storage in the 
malignant bladder (42,44).

Both MS and nMr are used to analyze the metabolic 
profile and have become critical techniques for quantitatively 
and qualitatively measuring the metabolome. Both techniques 
allow for extensive and rapid analysis of small-molecule 
metabolites (45). Metabolomics can be useful in cancer 
research, demonstrating its potential for not only identifying 
candidate biomarkers but also elucidating the mechanisms 
underlying cancer pathogenesis. Metabolomics has already 
been applied to several cancer types with encouraging results, 
including breast, prostate, lung and liver cancer (46-50). 
Sahu et al (51) identified metabolic signatures, including those 
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for glucose, the tricarboxylic acid (Tca) cycle, lipids, amino 
acids and nucleotide pathways, by profiling the global metabo-
lome using Gc-MS and lc-MS. The results of this previous 
study revealed alterations in numerous pathways between 
normal urothelium and high-grade urothelial carcinoma at 
different stages. recently, novel analytical methods have been 
developed using reverse-phase-high performance lc coupled 
with triple quadrupole MS for quantitatively determining 
and validating previously identified BC metabolites (52,53). 
clinical validation has previously been performed using urine 
samples from 40 patients with Bc and matched controls, and 
suggested that the recovery and precision values were within 
the ranges set by Fda guidelines (52). Jin et al (53) performed 
lc-MS-based profiling of metabolites and identified 
distinctive metabolites in 138 Bc samples and 121 controls. 
This previous study identified 12 putative glycolysis- and 
β-oxidation-related markers. Multivariate regression analysis 
was then applied to confirm the association between the 
metabolic profiles and survival.

Applying lipidomics to BC. current technologies allow for 
lipidomic analysis of a wide variety of biological specimens 
derived from animal models and clinical samples (54). The 
most appropriate analytical technique is selected based on 
the characteristics of the biological sample and the chemical 
properties of the targeted lipids. nMr and MS are accepted as 
the most powerful tools for phospholipid structure identifica-
tion (55). owing to structural diversity across phospholipid 
classes, analytical methods for lipidomics are continuously 
being improved. notable progress has been made in lipid 
research by coupling MS with chromatographic separations. 
Soft ionization techniques, including matrix-assisted laser 
desorption/ionization and electrospray ionization (eSi), 
are good examples (56). dill et al (57) used desorption 
eSi-imaging MS to investigate lipid species as diagnostic 

biomarkers of human Bc compared to adjacent normal bladder 
tissue samples. The results revealed significant differences in 
the levels of glycerophosphoinositols, glycerophosphoserines, 
and fatty acids in tumor tissues compared with those in normal 
samples. our group previously used ultra-performance lc-MS 
(uPlc-MS) to identify 1,864 differentially expressed lipids 
in cisplatin-resistant Bc cells (58). another of our lipidomics 
studies on cisplatin resistance of Bc demonstrated that acyl-coa 
synthetase short chain family member 2 inhibition perturbed 
lipid metabolism, suggesting that cisplatin-resistant Bc may 
have a specific lipidomic profile (58). Previously reported 
metabolomic biomarker candidates are summarized in Table i.

7. Applying metabolomics and lipidomics to IC

Applying metabolomics to IC. chronic bladder pain is a hall-
mark of ic. Metabolomics studies can be used to analyze the 
characteristics of the disease state and identify novel approaches 
for reducing symptoms (41). Kind et al (59) performed global 
metabolomics profiling using various platforms, including 
nMr and lc-MS. utilizing urine from patients with ic, this 
previous study profiled 490 metabolites, including histidine, 
erythronic acid and tartaric acid, and identified those with the 
highest fold changes. The identified metabolites were found 
to be associated with ic, suggesting its possible clinical use 
in urinary ic diagnosis. using an MS-based metabolomics 
approach, the central clinical protocol of the Multidisciplinary 
approach to the Study of chronic Pelvic Pain (MaPP) 
research network, the Trans-MaPP epidemiology and 
Phenotyping discovered urinary biomarkers in female patients 
with ic who underwent extensive urologic and non-urologic 
phenotyping (60). Parker et al (61) used lc-MS to identify 
molecular correlates of ic from urine obtained from female 
patients. This previous study identified a novel biomarker, 
etiocholan-3α-ol-17-one sulfate (etio-S), a steroid metabolite, 

Figure 1. Biomarker discovery in the clinical setting. The field of metabolomics and lipidomics has advanced with respect to technological development. 
large-scale datasets can help provide systems-scale information regarding diseases with inputs from metabolomics- and lipidomics-based analyses, which 
provide insightful biological data. This data can lead to robust and valid individual specific biomarkers for novel disease‑specific pathways and networks. The 
application of new analytical technologies in omics studies should provide new information about promising drug therapeutics and improve understanding of 
the diseases.
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as being associated with a phenotypic subgroup of highly 
symptomatic ic. To the best of our knowledge, there are no 
reports in the literature involving the use of lipidomics to 
identify lipid compounds associated with ic.

8. Human specimens‑based metabolomics and lipidomics 
biomarkers for BC

diagnosis of Bc is dependent on several variables, including 
sensitivity and specificity of the methods, the invasiveness 
of the procedures and cost. currently, cystoscopy and urine 
cytology are the most commonly used methods; however, 
both have several critical drawbacks, the most important 
being their limitations for detecting early Bc (62). overall 
survival in Bc is highly dependent on early detection (62). 
The discovery of clinically relevant Bc biomarkers will 
provide clinical value for prognostication, stratification, 
and identification of patients at higher risk for recurrence 
and progression. it is only through these outcomes that 
better management and treatment of patients with Bc can 
be achieved (50). Zhang et al (63) compiled the results of 
previous metabolomics studies to discover Bc biomarkers 
using urine, blood, tissue and cell lines. However, there is 
still a lack of consensus surrounding the pathophysiology of 
Bc. Thus, there is a great need for noninvasive markers to 
differentially diagnose Bc (64).

BC biomarkers
Human urine. numerous studies have reported that biomarkers 
can be identified using metabolomics, and recent studies have 
identified biomarkers that are capable of detecting early BC 
and predicting response to chemotherapy or relapse (53,65-70). 
Some diagnostic biomarker studies have already compared the 
metabolic profiles of urine samples from patients with BC 
and healthy controls. using 1H nMr, Srivastava et al (65) 
revealed significant differences in the urine concentrations of 
hippurate, citrate and taurine in patients with Bc compared 
with those in healthy controls. Jin et al (53) hypothesized that 
patients with Bc could be distinguished from healthy controls 

based on metabolic profiles. This previous study revealed that 
the metabolic components of glycolysis and acylcarnitines 
were increased in MiBc compared with those in nMiBc. 
citrate levels, a key metabolite of the Tca cycle, are altered 
in Bc (66). other urinary metabolites, including citrate, succi-
nate and hippurate, have also been shown to be reduced in Bc 
compared with those in healthy controls (67,68). Shen et al (69) 
also identified three upregulated and downregulated metabo-
lites in Bc: nicotinuric acid, trehalose and aspaspGlyTrp 
were upregulated, whereas inosinic acid, ureidosuccinic acid 
and Glycysalalys were downregulated. Several other studies 
have confirmed these results (70). The major findings from 
these studies are listed in Table i.

Tissue samples. Putluri et al (71) identified lc-MS-based 
metabolomic signatures using Bc tissue samples, benign 
adjacent tissues and healthy controls. This previous study 
aimed to identify potential biomarker candidates and identify 
biology-related processes in Bc carcinogenesis. a total of 
50 metabolites with significant differences between BC and 
healthy controls were detected. Tripathi et al (72) performed 
high-resolution magic angle spinning nMr analysis of benign 
and Bc tissues. The results revealed that Bc exhibited more 
metabolic abnormalities compared with benign or healthy 
samples. These results identified 22 clearly differentiated 
metabolites. using the same tissue samples, these results were 
cross-validated via targeted Gc-MS analysis, demonstrating 
the potential of these biomarkers in clinically diagnosing 
Bc. Yang et al (73) examined 48 Bc tissue samples treated 
with gemcitabine as well as adjacent normal tissues from 12 
of those patients. Based on uPlc-Q-exactive-MS analysis, 
34 significantly altered metabolites were found to be associated 
with Bc.

Blood serum samples. Blood serum-based studies have 
established ways of distinguishing patients with Bc from 
healthy controls. cao et al (74) examined the serum profiles of 
patients with high- or low-grade Bc; in addition, patients with 
urinary calculi (hematuria) were included in the control group. 

Table i. list of metabolomic biomarkers in Bc.

First author,    Sensitivity Specificity   
year Biomarker Method Sample size (%) (%) auc notes (refs.)

Pasikanti et al, 2,5-furandicarboxylic GcxGc/ 38 Bc, 71 100 - decreased (70)
2013 acid, ribitol and ToFMS 61 controls     
  ribonic acid       
Wittmann et al,  Taurine MS 95 Bc,  - - - increased (68)
2014   345 controls     
Srivastava et al, Taurine nMr 33 Bc, - - - increased (65)
2010  spectroscopy 37 controls     
Jin et al, 2014 Glycolysis and lc-QToFMS 138 Bc,  85-91.3 85-92.5 0.93 increased (53)
 acylcarnitines  121 controls     

Bc, bladder cancer; auc, area under the curve; Gc, gas chromatography; MS, mass spectrometry; lc-MS, liquid chromatography-MS; nMr, 
nuclear magnetic resonance; GCxGC/TOFMS, two‑dimensional GC time‑of‑flight MS; LC‑QTOFMS, LC‑quadrupole time‑of‑flight MS.
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Statistical analysis revealed that the serum profiles of patients 
with Bc differed from those of healthy controls and those of 
patients with calculi. Serum metabolic profiles also allowed 
for classification of low‑ and high‑grade BC. The levels of 
isoleucine/leucine, tyrosine, phenylalanine, choline, lactate, 
glycine and citrate were also shown to be significantly lower 
in patients with Bc compared with those in healthy controls, 
whereas lipid and glucose levels were higher in patients with 
Bc. notably, additional comparisons of metabolite levels 
between patients with low- and high-grade Bc revealed that 
the levels of tyrosine, phenylalanine, lactate and glycine were 
comparatively higher in low-grade patients, whereas glucose 
levels were lower. in addition, Bansal et al (75) used blood 
serum samples from patients with low-grade and high-grade 
Bc and healthy controls. a total of six metabolites, dimethyl-
amine, malonate, lactate, glutamine, histidine and valine, were 
significantly altered in BC samples compared with those in 
controls. notably, external validation via a double-blind study 
consisting of 106 patients with suspected BC confirmed the 
utility of these metabolites for early diagnosis of Bc.

9. Human specimens‑based metabolomics markers in IC

ic can present as a long continuum of mild to severe symp-
toms. in recent years, novel metabolomic techniques have 
been applied to gain a better understanding of disease mecha-
nisms and uncover novel biomarkers (76). a previous study 
applied uPlc-MS-based metabolomics to examine urine 
samples from 10 patients with ic and 10 healthy controls. 
Phenylacetylglutamine was identified as a urinary marker of 
ic and was revealed to be elevated in the urine of patients with 
mild-to-moderate ic (77). in a separate study, Parker et al (61) 
used lc-MS to profile the metabolomes of urine samples 
from 40 patients with ic and matched controls. The results 
identified six metabolites as being closely associated with 
ic pathogenesis; one of which was etio-S. Further analysis 
demonstrated that elevated etio-S was a good predictor of 
IC, with sensitivity of 91.2%, specificity of 87.4%, and area 
under the curve of 0.92. longitudinal analysis of women 

in this cohort demonstrated that the differences in etio-S 
persisted, indicating that these changes were long-lasting.

Taking an untargeted comprehensive metabolomic 
profiling approach, Kind et al (59) performed Gc-MS 
analysis on urine specimens from patients with ic and 
healthy donors, and identified a total of 490 differentially 
expressed metabolites. Furthermore, lamale et al (78) 
used urine samples from 40 women with ic and 29 healthy 
controls collected within a 24-h time frame. They discov-
ered higher expression of three inflammatory markers, 
histamine, methylhistamine and il-6, in patients with 
ic compared with those in the controls. in our previous 
biomarker discovery study, nMr-based global metabolo-
mics analysis was applied to urine samples obtained from 
female patients with ic and matched healthy controls. The 
levels of tyramine and 2-oxoglutarate were significantly 
elevated in the ic urine specimens (76). Furthermore, in 
another of our previous studies, comprehensive solid-phase 
microextraction‑GC‑time‑of‑flight‑MS profiling combined 
with bioinformatics analysis revealed that levels of volatile 
urinary metabolites, including menthol, were significantly 
reduced in patients with ic compared with those in normal 
controls (79). Previously reported metabolomics-based ic 
biomarker candidates are presented in Table ii.

10. Conclusion

The present review aimed to understand the current develop-
ment of biomarkers for bladder diseases based on various 
bioresources. in recent years, metabolomics and lipidomics 
has been widely used to understand the clinicopathology of 
the bladder and to discover the key differentially expressed 
metabolites or lipids specifically associated with bladder 
diseases. To determine the biological implications of 
metabolomic lipidomic signatures, bioinformatics tools, 
such as network and pathway enrichment analyses have been 
applied. The present review provided an overall summary of 
the metabolomics and lipidomic-based biomarker candidates 
for ic and Bc (Fig. 1).

Table ii. list of metabolomic biomarkers in ic.

First author,     Sensitivity  Specificity    
year Biomarker Method Sample size (%) (%) auc notes (refs.)

Parker et al, etiocholan-3α-ol-1 MS 40 ic, 87.4 0.92 0.92 increased (61)
2016 7-one sulfate  40 controls     
Kind et al, erythronic acid,  Gc/MS 42 ic,  - - 0.9 increased (59)
2016 histidine and  21 controls     
 tartaric acid       
Wen et al, tyramine and nMr 43 ic,  - - - increased (76)
2015 2-oxoglutarate  21 controls     
Shahid et al, Menthol Gc-ToF-MS 10 ic, - - - decreased (79)
2018   10 controls     

ic, interstitial cystitis; auc, area under the curve; Gc, gas chromatography; MS, mass spectrometry; nMr, nuclear magnetic resonance; 
GC‑TOFMS, GC time‑of‑flight MS.
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At present, proteomic methods have successfully identified potential biomarkers of urological malignancies, such as prostate 
cancer (PC), bladder cancer (BC), and renal cell carcinoma (RCC), reflecting different numbers of key cellular processes, including 
extracellular environment modification, invasion and metastasis, chemotaxis, differentiation, metabolite transport, and apoptosis. 
The potential application of proteomics in the detection of clinical markers of urological malignancies can help improve patient 
assessment through early cancer detection, prognosis, and treatment response prediction. A variety of proteomic studies have 
already been carried out to find prognostic BC biomarkers, and a large number of potential biomarkers have been reported. It is 
worth noting that proteomics research has not been applied to the study of predictive markers; this may be due to the incompat-
ibility between the number of measured variables and the available sample size, which has become particularly evident in the 
study of therapeutic response. On the contrary, prognostic correlation is more common, which is also reflected in existing research. 
We are now entering an era of clinical proteomics. Driven by proteomic-based workflows, computing tools, and the applicability of 
cross-correlation of proteomic data, it is now feasible to use proteomic analysis to support personalized medicine. In this paper, we 
will summarize the current emerging technologies for advanced discovery, targeted proteomics, and proteomic applications in BC, 
particularly in discovery of human-based biomarkers. 
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INTRODUCTION

Bladder cancer (BC) is the fourth most common malig-
nant tumor in the United States. Traditionally, based on 
the degree of invasion in the bladder muscle wall, BC can 
be classified into either non-muscle invasive (NMIBC) or 
muscle invasive (MIBC) [1]. Based on the differing histology 

of BC, there are several types. Transitional cell carcinoma 
(TCC) accounts for about 90% of all BC [2]. Other histological 
variants found in clinical specimens include squamous, glan-
dular, plasmacytoid, sarcomatoid, micropapillary, and small 
cell carcinoma [3]. BC can also be divided pathologically into 
low-grade (LG) or high-grade (HG) tumors. LG tumors are 
usually well-differentiated, while HG tumors are poorly dif-
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ferentiated [4].

SUBTYPE CLASSIFICATION OF BLAD-
DER CANCER

Recent genome mRNA expression analysis demonstrated 
that BC can be classified into molecular subtypes. These dif-
ferent molecular subtypes of BC have distinct progression 
patterns, biological and clinical properties, and response to 
chemotherapies. There are currently five published classifi-
cation methods; these include guidelines from the Univer-
sity of North Carolina (UNC), MD Anderson Cancer Center 
(MDA), The Cancer Genome Atlas (TCGA), Lund University 
(Lund), and Broad Institute of Massachusetts Institute of 
Technology and Harvard University (Broad) (Table 1).

The classifications by UNC define two molecular sub-
types of HG BC, “luminal” and “basal”, with molecular fea-
tures reflecting different stages of urothelial differentiation 
[5]. Luminal BC expresses terminal urothelial differentiation 
markers, such as those seen in umbrella cells (uroplakin-1B 
[UPK1B], UPK2, UPK3A, and keratin-20 [KRT20]), whereas 
basal BC expresses high levels of  genes that are typical 
in urothelial basal cells (keratin-14 [KRT14], KRT5, and 
KRT5B). The UNC study created a gene signature, BASE47, 
that accurately discriminates intrinsic BC subtypes. Identi-
fied basal tumors had significantly decreased disease-specific 
and overall survival (OS). In addition, among the clinico-
pathological features available in from the Memorial Sloan 
Kettering Cancer Center dataset, only the subtypes identi-
fied by the BASE47 signature were found to be significant 
in disease-specific survival by univariate analysis. 

Kardos et al. [6] reported the discovery of a claudin-low 
molecular subtype of  high-grade BC that shares charac-
teristics with the homonymous subtype of breast cancer. 
Although there has been much work done on the molecular 
phenotyping of BC, the different emphases of different clas-
sification methods have made it difficult to consolidate a 
widely accepted classification method. As a result, the molec-

ular phenotyping of BC remains to be further studied. The 
claudin-low subtype can be considered a subpopulation of 
the basal-like subtype (UNC classification system). Claudin-
low BC tumors are rich in a variety of genetic characteris-
tics, including increased mutation rates of retinoblastoma
transcriptional corepressor 1 (RB1), E1A binding protein 
P300 (EP300), and nuclear receptor corepressor 1 (NCOR1), 
and have increased frequency of estimated glomerular fil-
tration rate (EGFR) amplification, decreased mutation rates 
of fibroblast growth factor receptor 3 (FGFR3), E74-like ETS 
transcription factor 3 (ELF3), and lysine demethylase 6A 
(KDM6A), and decreased frequency of peroxisome prolifera-
tor activated receptor gamma (PPARγ) amplification. These 
characteristics define a molecular subtype of BC with dis-
tinct molecular features and an immunological profile that 
is theoretically primed for an immunotherapeutic response. 

The classification system by MDA identified three mo-
lecular subtypes of MIBC: “basal”, “luminal”, and “P53-like” 
[7]. Basal MIBC was associated with shorter disease-specific 
and OS, presumably because these patients tend to have 
more invasive and metastatic disease at presentation. Tran-
scription factor P63 plays a central role in controlling basal 
gene signatures and preliminary data suggests that EGFR, 
signal transducer and activator of transcription 3 (STAT3), 
nuclear factor kappa-light-chain-enhancer of  activated B 
cells (NFκB), and hypoxia-inducible factor 1-alpha (Hif-1α) 
are also involved. Luminal MIBC displays active estrogen 
receptor/tripartite motif containing 24 (ER/TRIM24) path-
way gene expression and was enriched for forkhead box A1 
(FOXA1), GATA binding protein 3 (GATA3), Erb-B2 recep-
tor tyrosine kinase 2 (ERBB2), and Erb-B2 receptor tyrosine 
kinase 3 (ERBB3). Luminal MIBC contains active PPAR 
gene expression and activating FGFR3 mutations; therefore, 
PPARγ- and FGFR-3-targeted agents may be therapeutic in 
this subtype. Because luminal MIBC responds well to neo-
adjuvant chemotherapy (NAC), targeted therapies should be 
combined with conventional chemotherapy for maximum 
efficacy. The P53-like MIBC responded very poorly to NAC 

Table 1. Widely accepted classifications of BC based on molecular phenotypes 

UNC MDA Lund TCGA Broad
Basal Basal UroA Cluster I Basal
Luminal Luminal UroB Cluster II Luminal
Claudin-low P53-like GU Cluster III Luminal immune

SCCL Cluster IV Immune undifferentiated
Infiltrated

BC, bladder cancer; UNC, the University of North Carolina; MDA, MD Anderson Cancer Center; Lund, Lund University; TCGA, The Cancer Genome 
Atlas; Broad, Broad Institute of Massachusetts Institute of Technology and Harvard University; UroA, urobasal A; UroB, urobasal B; GU, genomically 
unstable; SCCL, squamous cell carcinoma like.
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and was consistently resistant to frontline neoadjuvant cis-
platin-based combination chemotherapy. Additionally, com-
parative analysis of matched gene expression profiles before 
and after chemotherapy revealed that all resistant tumors 
expressed the wild-type P53 gene expression signature. These 
results indicate that “P53-ness” may play a central role in 
BC chemoresistance.

The classification system by TCGA identified four clus-
ters (clusters I–IV) by analyzing RNA-seq data from 129 
tumors [8]. Cluster I (papillary-like) is enriched for in tumors 
with papillary morphology, FGFR3 mutations, FGFR3 copy 
number gain, and elevated FGFR3 expression. Cluster I sam-
ples also had significantly lower expression of miR-99a, miR-
100, miR-145, and miR-125b. Tumors with FGFR3 alterations 
and those that share similar cluster I expression profiles 
may respond well to inhibitors of FGFR and its downstream 
targets. Clusters I and II express high levels of GATA3 and 
FOXA1. Markers of urothelial differentiation, such as uro-
plakins, epithelial marker E-cadherin, and members of miR-
200 miRNAs, are also highly expressed in clusters I and II. 
Clusters I and II express high human epidermal growth 
factor receptor 2 (HER2) levels and an elevated estrogen 
receptor beta signaling signature, which suggests potential 
utilization of hormone therapies, such as tamoxifen or ralox-
ifene. Cluster III (basal/squamous-like) express characteristic 
epithelial lineage genes, including KRT14, KRT5, KRT6A, 
and EGFR. Many of the samples in cluster III express cyto-
keratins (KRT14 and KRT5). Integrated expression profil-
ing analysis of cluster III revealed an urothelial carcinoma 
subtype with cancer stem-cell expression features, perhaps 
providing another avenue for therapeutic targeting.

The Lund classification system defines five major uro-
thelial carcinoma subtypes: urobasal A, genomically unsta-
ble, urobasal B, squamous cell carcinoma-like (SCC-like), and 
infiltrated tumor class [9]. This was established using gene 
expression profiles from 308 tumor cases. These different 
molecular subtypes show significantly different prognoses. 

Urobasal A had the best prognosis, whereas urobasal B 
and SCC-like had the worst. The prognoses of the genomi-
cally unstable and infiltrated classes were found to be mod-
erate. Urobasal A tumors were characterized by elevated ex-
pression of FGFR3, cyclin D1 (CCND1), P63 (TP63), as well as 
expression of KRT5 in cells at the tumor–stroma interface. 
The majority of urobasal A tumors were NMIBC and of low 
pathological grade. The genomically unstable subtype was 
characterized by expression of ERBB2 and cyclin E (CCNE), 
low expression of cytokeratins, and frequent mutations of 
P53 (TP53). Genomically unstable cases represented a high-
risk group; as close to 40% were MIBC. This subtype also 

showed low phosphatase and tensin homolog (PTEN) expres-
sion. The SCC-like subtype was characterized by high ex-
pression of basal keratins, which are normally not expressed 
in the urothelium; these include KRT4, KRT6A, KRT6B, 
KRT6C, KRT14, and KRT16. SCC-like tumors also had 
markedly bad prognoses. Furthermore, this group showed a 
comparatively different proportion of female/male patients, 
reminiscent of the 1:1 proportion seen in patients diagnosed 
with bladder SCC, suggesting that females are more likely 
to develop urothelial carcinomas with a keratinized/squa-
mous phenotype. Urobasal B tumors had several similarities 
to urobasal A tumors, such as a high FGFR3 mutation fre-
quency, elevated FGFR3, CCND1, and TP63 levels, and ex-
pression of the FGFR3 gene signature. However, this group 
also showed frequent TP53 mutations and expression of 
several keratins specific for the SCC-like subtype. Addition-
ally, 50% of the cases were MIBC, including 5 out of 9 that 
were FGFR3-mutated. The infiltrated subtype demonstrated 
a pronounced immunologic and extracellular membrane 
(ECM) signal, indicating the presence of immunologic and 
myofibroblast cells. This subtype most likely represents a 
heterogeneous class of tumors; immunohistochemistry (IHC) 
revealed the presence of tumors with genomically unstable, 
urobasal B, and SCC-like protein expression patterns in this 
group.

The Broad classification system defines four different 
subtypes: luminal, immune undifferentiated, luminal im-
mune, and basal [10]. Approximately 41% of invasive BC 
cases were luminal, with high expression of  KRT20 and 
UPKs 2/1A/1B/3A as well as moderate to high expression of 
multiple pertinent transcription factors (Kruppel Like Fac-
tor 5 [KLF5], PPARγ, and grainyhead-like 5 [GRHL5]). The 
luminal subtype was enriched for in male patients, BC with 
papillary histology, and stage II tumors. A third (29%) of 
invasive BC was in the basal subtype, with high expression 
of KRT14, KRT5, KRT6A/B, and KRT16, and low expression 
of uroplakins, which is consistent with basal or undiffer-
entiated cytokeratin expression patterns. Consistent with 
prior studies, the basal subtype expressed TP63, TP73, MYC 
Proto-Oncogene, BHLH Transcription Factor (MYC), GFR, 
transglutaminase 1 (TGM1), and Sciellin (SCEL), which is 
indicative of some degree of squamous differentiation. The 
basal subtype was enriched for in female patients and tu-
mors with nonpapillary histology. The basal subtype also ex-
pressed many immune genes at intermediate and somewhat 
variable levels. These genes include cytotoxic T-lymphocyte 
associated protein 4 (CTLA4) and CD274, which encodes for 
programmed death-ligand 1 (PD-L1), suggesting that there 
may be immune cell infiltration of tumors. A smaller per-
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centage of cancers (11%) were grouped into a novel subtype 
called immune undifferentiated. These cancers showed very 
low expression of luminal markers, variable expression of 
basal cytokeratin, and relatively high expression of immune 
genes, including CTLA4 and CD274, which further suggests 
significant immune cell infiltration and possible immune 
evasion. Lastly, the luminal immune subtype group con-
stitutes about 18% of all cases and is characterized by the 
expression of luminal genes (cytokeratins and uroplakins) 
and intermediate expression of immune genes. This group 
was notably enriched for in stage N+ tumors. The luminal 
subtype was enriched for in cancers with FGFR3 muta-
tions and amplification events involving PVRL4 (nectin-4) 
and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein zeta (YWHAZ). The basal subtype was en-
riched for nuclear factor erythroid 2 like 2 (NFE2L2) muta-
tions. Both the luminal immune and immune undifferenti-
ated subtypes had high expression levels of zinc finger E-box 
binding homeobox 1 (ZEB1), ZEB2, and twist family BHLH 
transcription factor 1 (TWIST1), which is characteristic of 
epithelial-mesenchymal transition (EMT).

All classification systems discussed above are widely ac-
cepted and based on molecular phenotyping. With ongoing 
progress in BC research, additional phenotyping classifica-
tions have been proposed. Here, we want to introduce some 
of these new classification systems (Table 2).

Sjödahl et al. [11] proposed five major tumor-cell pheno-
types in advanced BC: urothelial-like, genomically unstable 
(GU), basal/SCC-like, mesenchymal-like, and small-cell/
neuroendocrine-like. Urothelial-like tumors express FGFR3 
and CCND1 and frequently demonstrate a loss of 9p21 (cy-
clin dependent kinase inhibitor 2A [CDKN2A]). GU tumors 
express forkhead box M1 (FOXM1), but not KRT5, and fre-
quently show loss of RB1. Basal/SCC-like tumors were found 
to express KRT5 and KRT14, but not FOXA1 and GATA3. 
The mesenchymal-like BC is a new subtype that shows a 
tumor-cell phenotype that starkly contrasts with previously 
defined subtypes and is biologically different from the basal/
SCC-like cases that they are clustered with. These tumor 

cells are mesenchymal-like and express typical mesenchymal 
genes, such as ZEB2 and vimentin (VIM). The consensus 
cluster, Sc/NE-like, harbors two very distinct tumor-cell phe-
notypes. Half of these tumors expressed markers that are 
typical for neuroendocrine differentiation. This part of the 
Sc/NE consensus cluster also showed an absence of PPARG, 
FOXA1, uroplakin, KRT20, and GATA3 expression.

Song et al. [12] explored large-scale genomic datasets 
encompassing NMIBC and MIBC, redefining four distinct 
molecular subtypes, aptly named classes 1–4. Class 1 is char-
acterized by decreased expression of genes involved in cell 
proliferation, signifying the less aggressive characteristics 
of class 1. Class 2 included both low-grade NMIBCs and a 
small number of MIBCs. Class 2 displayed downregulation 
of immune response pathways, such as antigen processing 
and presentation and T cell receptor signaling pathways. All 
verified human leukocyte antigen (HLA) genes, which were 
associated with clinical prognosis in cancer patients [13], ex-
hibited a specifically inhibited pattern in class 2. They also 
examined activated functions in class 2, observing increased 
expression of the oncogenes FGFR3 and CCND1 [3]. Class 3 
exhibited similar involvement of high-grade NMIBC and 
MIBC. In particular, most T1 high-grade tumors (11 out of 
16, 69%) were classified into class 3, indicating that class 3 
might be capable of detecting high-risk NMIBC with pro-
gressive disease. Class 3 displayed activation of cell cycle-
associated functions and the inhibition of genes involved in 
the Notch signaling pathway. These processes are associated 
with tumor progression [14-16]. Increased expression of cell 
cycle-related genes (E2F1, FOXM1, CCNB1, and CCNE1) [16-18] 
in class 3 was observed in both the NMIBC and MIBC cases. 
Finally, class 4, which contained the most MIBC cases, exhib-
ited clear upregulation of genes implicated in extracellular 
matrix organization along with strong activation of immune 
response. Additionally, class 4 tumors exhibited overexpres-
sion of genes associated with EMT or myofibroblasts, which 
is a shared feature with the Lund infiltrated subtype [9].

Tan et al. [19] identified six molecular subtypes with dif-
fering OS and molecular features by analyzing 2,411 urothe-

Table 2. Recently developed new classifications of bladder cancer (BC) based on molecular phenotypes

Sjödahl et al. [11] Song et al. [12] Tan et al. [19] Robertson et al. [20] Kamoun et al. [23]
Urothelial-like Class 1 Neural-like Luminal-papillary Luminal papillary
Genomically unstable Class 2 HER2-like Luminal-infiltrated Luminal nonspecified
Basal/SCC-like Class 3 Papillary-like Luminal Luminal unstable
Mesenchymal-like Class 4 Luminal-like Basal-squamous Stroma-rich
Small-cell/neuroendocrine-like Mesenchymal-like Neuronal Basal/squamous

Squamous-cell carcinoma-like Neuroendocrine-like

SCC, squamous cell carcinoma; HER2, human epidermal growth factor receptor 2.
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lial BC tumors. These subtypes are neural-like, HER2-like, 
papillary-like, luminal-like, mesenchymal-like, and squamous 
cell carcinoma-like. The neural-like subtype (median OS, 87 
mo) was prevalently MIBC and characterized by high WNT/
β-catenin signaling. HER2-like (median OS, 107.7 mo) evenly 
consisted of NMIBC and MIBC, with higher ERBB2 amplifi-
cation and signaling. Papillary-like (median OS, >135 mo), an 
NMIBC subtype enriched in urothelial differentiation genes, 
showed a high frequency of actionable FGFR3 mutations, 
amplifications, and FGFR3-TACC3 fusion. Luminal-like (me-
dian OS, 91.7 mo), which was predominantly NMIBC, had 
higher mitogen-activated protein kinase (MAPK) signaling 
and more KRAS proto-oncogene, GTPase (KRAS), and lysine 
methyltransferase 2 C/D (KMT2 C/D) mutations than other 
subtypes. Mesenchymal-like (MES; median OS, 86.6 mo) and 
SCC-like (median OS, 20.6 mo) were predominantly MIBC. 
MES is high in AXL receptor tyrosine kinase (AXL) signal-
ing, whereas SCC has elevated programmed death 1 (PD1), 
CTLA4 signaling, and macrophage M2 infiltration.

Robertson et al. [20] studied the mRNA expression of 
BC and identified five subtypes: luminal-papillary, luminal-
infiltrated, luminal, basal-squamous, and neuronal. These 
subtypes were associated with OS. Luminal-papillary tumors 
had papillary shape, low stage, and high purity. It was char-
acterized by FGFR3 mutations, fusion with Tacc3, and/or 
amplification. The risk of tumor progression and possibility 
of response to cisplatin-based NAC was very low [21]. The 
features of the luminal-infiltrated subtype included lowest 
purity, high expression of EMT, myofibroblast markers, and 
miR-200s, and moderate expression of CD274 and CTLA4. 
Simultaneously, this subtype was also characterized by wild 
type p53 [7]. These tumors were found to be possibly resistant 
to cisplatin. Several uroplakins (UPK1A, UPK2) and genes 
(krt20, snx31) had the highest gene expression levels in the 
luminal subtype tumors. The basal-squamous subtype was 
characterized by high expression of CD44, KRT5, KRT6A, 
KRT14, TGM1, DSC3, PI3, CD274, and CTLA4. The incidence 
rate of this tumor was high in females. Cisplatin-based NAC 
and immunological checkpoint therapy were both suitable 
treatments for this subtype [22]. The neuronal subtype was 
characterized by expression of  both neuroendocrine and 
neuronal genes and elevated cell cycle signals reflective of 
proliferation status. Small cell neuroendocrine cancer was 
characterized by loss of TP53 and RB1. This subtype had the 
worst survival. 

Kamoun et al. [23] identified six molecular subtypes of 
MIBC: luminal papillary, luminal non-specified, luminal un-
stable, stroma-rich, basal/squamous, and neuroendocrine-like. 
The three luminal subtypes were found to overexpress fea-

tures of urothelial differentiation, such as PPARG/GATA3/
FOXA1. The characteristics of  luminal papillary subtype 
included high expression of non-invasive TA pathway signal 
[24] and was closely related to FGFR3 transcription activity. 
Luminal papillary tumors were abundantly T2 or T3-4 tu-
mors, and the proportion of patients under 60 years old was 
much higher. The luminal non-specified subtype displayed 
elevated stromal infiltration signatures, mainly fibroblastic. 
This was the only luminal subtype associated with immune 
infiltration signals, which were mainly for B and T lympho-
cytes. Luminal non-specified tumors were abundant in Elf3 
gene mutations and was common in elderly patients. The 
luminal unstable subtype had higher cell cycle activity than 
other luminal tumors, and also contained frequent PPARG 
alterations and high-level amplification of E2F3 and SOX4. 
The stroma-rich subtype presented a moderate degree of 
urothelial differentiation. It is mainly manifested by stromal 
infiltration and overexpression of genes in smooth muscle, 
endothelial cells, fibroblasts, and myofibroblasts, and con-
tains higher levels of non-tumor cells. Immune infiltration 
was mainly seen in stroma-rich tumors (mostly T cells and 
B cell markers). The basal/squamous subtype was character-
ized by overexpression of genes related to basal cell differ-
entiation. Immune infiltration is also found in this subtype 
(mainly cytotoxic lymphocytes and natural killer cells) with 
high levels of nontumorous cells. Basal/squamous tumors 
were strongly related to STAT3 and EGFR regulon activ-
ity and HIF1A. Mutations in TP53 and RB1 were the most 
common in this subset of tumors. Basal/squamous tumors 
are more common in women, with a higher clinical stage 
and poorer prognosis. The neuroendocrine-like subtype was 
characterized by high expression of genes related to neuro-
endocrine differentiation. TP53 and RB1 inactivation was 
common, but no immune infiltration was detected in these 
tumors. Neuroendocrine-like tumor was the worst prognosis 
subtype.

PROTEOME AND PROTEOMICS 

Proteins are effector molecules that mediate the func-
tions of  genes and their deregulation contributes to the 
pathogenesis and therapeutic resistance of many diseases, 
such as cancer and neurodegenerative disorders. They rep-
resent an enormously valuable resource for personalized 
diagnosis, prevention, monitoring, and treatment. Therefore, 
protein properties, such as abundance, post-translational 
modification, stability, localization, transportation, and inter-
action with other molecules, have been intensively studied. 
Historically, proteins were previously studied on an indi-
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vidual basis. 
In the mid-90’s, Wilkins et al. [25] coined the term “pro-

teome” to describe the “PROTein complement of a genOME”. 
Of note, proteomics is highly complementary to genomics 
and transcriptomics, which can only indirectly, and, often 
inconclusively, measure the aforementioned protein proper-
ties. Mainly owning to the rapid advancement of proteomics 
technologies, the past 25 years have witnessed an explosive 
growth of proteomics studies, reaching a staggering number 
of over 11,000 proteomics-related publications in PubMed in 
2019, alone. 

THE PROTEOME IS A COMPLEX AND 
INFORMATION-RICH RESOURCE

The human genome contains about 20,000 protein-coding 
genes. In comparison, the human proteome is much more 
complex and may contain over 6 million proteoforms (i.e., 
individual molecular forms of an expressed protein) [26]. The 
major sources of proteoform diversity include: (a) single-nu-
cleotide polymorphisms and mutations at the DNA level, (b) 
alternative splicing and RNA editing at the RNA level, and 
(c) errors in translation and post-translational modifications
(PTMs) at the protein level [27]. Among these, the biggest
contributor of proteoform diversity is PTMs. Currently, over
200 PTMs, such as phosphorylation, ubiquitination, and gly-
cosylation, have been characterized according to the UniProt
database (https://www.uniprot.org/help/post-translational_
modification). Of note, PTMs are highly important for the
regulation of protein function, activity, stability, localization, 
and interaction in both physiological and disease states.

DISCOVERY AND TARGETED PRO-
TEOMICS 

Proteomics can be broadly classified into discovery and 
targeted proteomics, which are highly complementary to 
each other. Discovery proteomics is generally used in hy-
pothesis-free and comprehensive profiling studies to identify 
novel protein complexes as well as differentially expressed, 
modified, and/or localized proteins. It is a powerful tool for 
identifying novel candidate biomarkers and therapeutic 
targets and for providing fresh biological insights. In com-
parison, targeted proteomics is generally used to quantify 
candidate proteins of interest in a much larger cohort of 
samples with higher quantification accuracy and precision. 
Currently, a typical discovery proteomics study quantifies 
thousands of proteins in tens of samples, whereas a typi-
cal targeted proteomics study quantifies tens of proteins in 
hundreds of samples. A summary of the techniques for dis-
covery and targeted proteomics is shown in Table 3.

Discovery proteomics is predominantly conducted using 
mass spectrometry (MS)-based technologies, which allows 
comprehensive analysis of  protein abundance and PTMs 
without the required generation of target-specific antibodies 
[28]. Due to technical challenges, comprehensive analysis of 
intact proteins by MS (i.e., top-down proteomics) is still in its 
infancy. Hence, the vast majority of MS-based discovery pro-
teomics studies are conducted using a bottom-up proteomics 
workflow, where proteins are extracted and digested into 
peptides by a sequence-specific enzyme (e.g., trypsin) prior to 
liquid chromatography-tandem mass spectrometry (LC-MS/
MS) analysis. The classical and preferred MS method for 
discovery proteomics is data-dependent acquisition (DDA), 
where a full spectrum of the peptides is acquired at the MS1 
level, followed by the collection of as many fragmentation 
spectra at the MS2 level as possible, all of which is done in 

Table 3. A summary of discovery and targeted proteomics technologies

Category Group Quantification technology
Typical protein 

number
Typical sample 

size
Emerging 

technology
Discovery proteomics DDA-MS Label-free (LFQ) 1,000–15,000 10s BoxCar

Metabolic labeling (SILAC)
Chemical labeling (TMT)

DIA-MS Label-free (LFQ) 1,000–5,000 10s–100s
Targeted proteomics MS-based SRM/MRM 10s 10s–100s TOMAHAQ

PRM
MS-independent Antibody-based (RPPA) 100s 100s–1,000s

Aptmer-based (SOMAscan) 1,000s 100s–1,000s

DDA, data-dependent acquisition; MS, mass spectrometry; DIA, data-independent acquisition; LFQ, label-free quantification; SILAC, stable iso-
tope labeling by amino acids in cell culture; TMT, tandem mass tag; SRM, selected reaction monitoring; MRM, multiple reaction monitoring; PRM, 
parallel reaction monitoring; RPPA, reverse-phase protein array.

https://www.uniprot.org/help/post-translational_modification
https://www.uniprot.org/help/post-translational_modification
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a cycle time of about 3 seconds. The newer and growing MS 
method for discovery proteomics is data-independent acqui-
sition (DIA), where a mixture of peptides within a relatively 
wide window (e.g., 25 m/z units at the MS1 level) is selected 
and fragmented, followed by the acquisition of fragments at 
the MS2 level. 

For peptide/protein quantitation, DDA can be coupled 
with different quantification strategies such as label-free 
quantification (LFQ), stable isotope labeling by amino acids 
in cell culture (SILAC), and isobaric tag-based quantifica-
tion, such as tandem mass tag (TMT), and isobaric tag for 
relative and absolute quantitation (iTRAQ) [29]. Of note, 
with the recent release of the TMTproTM 16plex label re-
agents (Thermo Scientific, Waltham, MA, USA), up to 16 
samples can be analyzed in a single analysis, offering high-
throughput analytical capabilities. In comparison, DIA is 
almost exclusively coupled with LFQ, where samples have to 
be analyzed one by one. Nevertheless, for multi-batch sample 
analysis, the TMT method suffers from the “missing value” 
problem, which aggravates with increasing batch numbers. 
In comparison, the DIA method is less prone to the “miss-
ing value” issue and is thus more suitable for larger sample 
sizes. However, DIA suffers from limitations such as the re-
quirement of pre-existing high-quality spectral libraries and 
the complexity of the resulting data [30].

Targeted proteomics can be performed using MS-based 
and MS-independent methods [31]. At present, the most 
widely used MS-based targeted proteomics methods include 
selected reaction monitoring (SRM) [32], also called multiple 
reaction monitoring (MRM), and parallel reaction monitor-
ing (PRM) [33]. The most popular MS-independent targeted 
proteomics methods include antibody-based reverse-phase 
protein array (RPPA) [34] and more recently aptamer-based 
SOMAscan [35].

Both SRM and PRM assays monitor transitions, i.e., 
specific pairs of mass-to-charge (m/z) values associated with 
the peptide precursor and fragment ions, over elution time 
for specific, sensitive and precise quantification of peptides. 
SRM and PRM assays are typically conducted in triple 
quadrupole mass spectrometers (e.g., QTRAP) and high-reso-
lution quadrupole-orbitrap mass spectrometers (e.g., Q Exac-
tive), respectively. The major difference between SRM and 
PRM assays is that the former requires a predefined series 
of transitions, whereas the latter selects the best transitions 
in a post-acquisition step. Generally speaking, SRM offers 
higher sensitivity, whereas PRM provides higher specificity 
and is easier to set up.

The RPPA method was first introduced in 2001 [36] and 
has since become increasingly popular in targeted proteomic 

and phosphoproteomic analysis of small amounts of clini-
cal specimens. RPPA contains hundreds of spots, of which 
each contains only one test sample. As such, each RPPA can 
contain hundreds of different samples in serial dilution. For 
protein quantification, an RPPA is probed with one single 
antibody that can be detected using fluorescent, colorimet-
ric, or chemiluminescent assays. Therefore, the robustness, 
reproducibility, and sensitivity of the RPPA measurements 
are high. RPPA has been used to analyze 166 total proteins 
and 56 phosphoproteins across nearly 8,000 patient samples 
from 31 cancer types [37].

The SOMAScan assay relies on the distinctive protein-
binding properties of  SOMAmer (slow off-rate modified 
aptamer) reagents, which consist of a short single-stranded 
DNA sequence with “protein-like” appendages that allow 
tight and specific binding to its protein target [38]. Recently, 
SOMAScan has been used measure about 5,000 proteins 
across nearly 17,000 participants with multiple different 
health states, demonstrating that protein expression pat-
terns reliably encode for many health issues [35]. 

EMERGING TECHNOLOGIES FOR AD-
VANCED DISCOVERY AND TARGETED 
PROTEOMICS

In the past few years, many exciting proteomics tech-
niques were developed to improve the LC-MS dynamic range 
(e.g., BoxCar), speed of targeted proteomics (e.g., trigger by 
offset, multiplexed, accurate mass, high-resolution, absolute 
quantification, TOMAHAQ), ion resolving capability (e.g., 
ion mobility MS), sensitivity (e.g., single cell proteomics), and 
data analysis (e.g., machine learning for MS identification), 
to name a few [39]. To be more concise, we will only summa-
rize the BoxCar and TOMAHAQ techniques.

1. BoxCar extends the dynamic range by an order 
of magnitude
The abundance of  human proteins spans a large dy-

namic range: about 7 orders of magnitude in cells and up 
to 12 orders of magnitude in plasma [40]. In comparison, the 
typical dynamic range of detection for LC-MS is 4–6 orders 
of magnitude [41]. Therefore, a fast and deep profiling of 
the proteome requires a significant improvement in the dy-
namic range of peptide sampling. Recently, the Mann group 
developed a novel data-acquisition method, termed BoxCar, 
which improves the quality of MS1 signals and the dynamic 
range by an order of magnitude [42]. BoxCar can be coupled 
with both DDA and DIA for improved proteomic profiling. 
However, similar to DIA-MS, BoxCar analysis also requires a 
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pre-existing high-quality spectral library [42].

2. TOMAHAQ increases the speed of targeted pro-
teomics analysis by an order of magnitude
SRM and PRM are predominantly coupled with label-

free analysis and, thus, lack multiplexing capabilities. Re-
cently, a novel targeted proteomics method termed TOMA-
HAQ was developed by the Gygi group [43]. By combining 
sample multiplexing with targeted proteomics, TOMAHAQ 
increases the throughput by an order of magnitude, com-
pared to SRM/PRM. Using TOMAHAQ, the Gygi group was 
able to accurately quantify 131 peptides at the speed of 90 
cell lysate samples per day [43]. Nonetheless, TOMAHAQ 
analysis requires highly expensive tribrid mass spectrom-
eters, limiting its widespread adoption in research and clini-
cal applications.

APPLYING PROTEOMICS TO BC RE-
SEARCH

1. In vitro research 
Based on the hypothesis that urinary biomarkers of BC 

are secreted from tumors, proteomic methods have been 
applied in investigating the secretome of tumor cells. Lin 
et al. [44] investigated the secretome of malignant U1 and 
pre-malignant U4 BC cells. They identified some differ-
ences, including laminin alpha-5 chain, ADP-ribosylation 
factor guanine nucleotide-exchange factor 2, and urokinase-
type plasminogen activator (u-PA). Further studies on u-PA 
found that loss was associated with malignant transforma-
tion. Makridakis et al. [45] compared the secretome from 
T24 and aggressive T24M BC cells. Several proteins were 
identified as being associated with metastatic tumor trans-
formation, including secreted protein acidic and cysteine rich 
(SPARC), tissue-type plasminogen activator (tPA), and clus-
terin. All of them were further validated by western blot 
analysis. Elevated SPARC levels in the urine of BC patients 
was found to be associated with tumor stage [46]. Addition-
ally, the biological relevance of SPARC in BC was suggested 
when blocking SPARC with specific antibodies resulted in 
reduced cell motility in vitro.

2. The clinical setting
Given that patient response rates to the drugs reach only 

25% efficiency in cancer, the demand for developing preci-
sion medicine is increasing [47]. It appears that there is no 
study demonstrating successful application of proteomics or 
other -omics technology in personalized medicine. However, 
as outlined in recently published review articles [48-50], sub-

stantial progress has been made in identifying proteomics-
derived BC biomarkers as well as putative targets for 
therapeutic intervention to support patient management 
(diagnosis, monitoring, stratification, and treatment). Uri-
nary proteome profiling can be used to support diagnosis/
monitoring and stratification of personalized diseases; while 
tissue proteomics can address personalized therapeutic inter-
vention by identifying new therapeutic targets.

3. Diagnosis and monitoring of BC
Up to now, several urinary biomarkers have been de-

scribed, including FDA-approved immunoassays, which 
detect the urinary levels of  BC-associated antigen (BTA 
stat) and nuclear matrix protein 22 (NMP22) with moderate 
performance (NMP22: 68% sensitivity, 79% specificity [51]; 
BTA stat: 61% sensitivity, 78% specificity [52]). In addition, 
several single protein biomarkers have been thoroughly 
investigated, including matrix metalloproteinases (matrix 
metalloproteinase-9 and matrix metalloproteinase-10), an-
giogenic factors (plasminogen activator inhibitor 1, vascular 
endothelial growth factor, and angiogenin), apolipoproteins 
(apolipoprotein A-I, apolipoprotein A-II, and apolipoprotein 
E), interleukin-8, and carbonic anhydrase 9, all of which are 
usually assessed through immunoassays (ELISA) [49].

MRM has been used to validate previously reported bio-
markers, including complement C4 gamma chain, apolipo-
protein A-II precursor, ceruloplasmin, and prothrombin, in a 
set of 76 BC patients and 23 disease-related controls (includ-
ing patients with urinary tract infections and hematuria) 
[53]. Theodorescu et al. [54] found that fibrinopeptide was 
capable of detecting BC in healthy controls. Schiffer et al. [55] 
found that progesterone receptor membrane component 1 
(PGRMC1), collagen type I alpha 1 chain (COL1A1), uromod-
ulin (UMOD), and collagen type III alpha 1 chain (COL3A1) 
were capable of  discriminating between muscle-invasive 
and NMIBC BC. Frantzi et al. [56] found that collagen frag-
ments, hemoglobin subunit alpha (HBA), apolipoprotein A1 
(APOA1), fibrinogen α (FIBA), β-2-microglobulin (B2M), and 
small proline-rich protein 3 (SPRR3), insulin (INS), histidine-
rich glycoprotein (HRG) could detect primary BC. Collagen 
fragments, APOA1, heparan sulfate proteoglycan 2 (HSPG2), 
ADAM metalpeptidase (ADAMTS1) with thrombolytic 
protein type 1 parent 1, ADAM metalpeptidase domain 22 
(ADAM22) was able to detect relapsed BC.

4. Identification of novel drugs/drug targets 
Although there were initially no clear reports of poten-

tial drug targets from proteomic analysis of BC, a study 
by Peng et al. [57] found that phosphoglycerate mutase 1 
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(PGAM1) was significantly upregulated in BC compared to 
adjacent normal tissues. Using shRNA to silence PGAM1 
reduced tumor growth and cell proliferation and increased 
apoptosis in vivo. 

Several recent studies highlight the potential use of 
a tissue proteomics-based approach in identifying novel 
drug targets for BC. Using high-resolution LC-MS/MS, 144 
proteins associated with BC invasion were identified [58], 
including multiple proteins previously associated with BC. 
These proteins include, but are not limited to, some annexins, 
alpha actinins, cathepsin E, hydroxyprostaglandin dehydro-
genase 15-(NAD), thymidine phosphorylase, and others. Im-
portantly, eukaryotic translation initiation factor 3 subunit 
D (EIF3D) was identified as a promising intervention target 
through computer analysis, and its functional correlation 
was investigated using in vitro and in vivo disease models. 
Specifically, it showed that stable knockdown of EIF3D us-
ing lentivirus-mediated RNA interference in a metastatic 
BC cell line (T24M) resulted in decreased cell proliferation, 
migration capacity, and colony formation. Subsequent stud-
ies in xenograft models showed reduced tumor growth. 

Xu et al. [59] performed pull-down assays using recom-
binant progranulin and protein extracts from 5637 BC cells. 
Proteomic analysis showed that the F-actin-binding protein, 
drebrin, was a novel progranulin-binding partner. Interest-
ingly, it has been shown that drebrin depletion in tumori-
genic BC cells inhibits motility, anchorage-independent 
growth, and tumor formation through the threonine kinase 
(AKT) and MAPK signaling pathways. This indicates that 
drebrin plays an important functional role in regulating 
progranulin action and may constitute a novel target for 
therapeutic intervention in BC. Chen et al. [60] particularly 
emphasized the potential significance of  nucleophosmin 
(NPM), which is a protein associated with cell proliferation, 
migration, and anti-apoptotic effects in bladder carcinogen-
esis. NPM was ubiquitously expressed in all uroepithelial 
cell lines examined, suggesting its role in the development 
of human BC. Upregulation of NPM also seemed to be dose 
and time-dependent following treatment. Since soy isofla-
vones are capable of inhibiting NPM expression in vitro, 
soybean-based foods may potentially suppress NPM-related 
tumorigenesis.

Jiang et al. [61] confirmed that peroxiredoxin-I (Prx-I), 
which has rarely been previously linked directly to BC, was 
significantly downregulated following BI-TK/GCV treat-
ment. Silencing of Prx-I significantly inhibited growth, pro-
moted apoptosis, and regulated the cell cycle in T24 BC cells. 
These findings give new insights into the treatment of BC 
and indicate Prx-I as a new therapeutic target. 

Proteome analysis has been used to study the effects 
and molecular mechanisms of novel potential drugs for BC. 
Using the 5637 urinary BC cell line, Li et al. [62] evaluated 
the effect of five heat shock protein 90 (HSP90) inhibitors 
(AUY922, ganetespib, SNX2112, AT13387, and CUDC305) 
in vitro, followed by quantitative proteome analysis at the 
global and histone post-translational modification levels. 
HSP90 inhibitors suppress cell proliferation and growth in 
a dose and time-dependent manner. LC–MS/MS analysis 
identified 518 over two-fold upregulated and 811 more than 
two-fold downregulated proteins, which were commonly de-
regulated upon treatment with AUY922 and ganetespib. 
These include proteins involved in cell cycle regulation 
(several cyclins, cyclin-dependent kinases, cullin-1, and DNA 
replication licensing factor MCM 5 (minichromosome main-
tenance complex component 5), apoptosis (BAX, caspase-14, 
calpalin-7, and apoptosis inducing factor 1), DNA damage 
repair (DNA ligase 3 and DNA repair protein XRCC1 (X-ray 
repair cross complementing 1), as well as the generation of 
reactive oxygen species (glutathione peroxydases, glutathi-
one S-transferases, and superoxide dismutase).

HUMAN SPECIMENS-BASED PRO-
TEOMICS BIOMARKERS

1. Identification of proteomic markers in human 
urine 
In hematuria patients, aurora A kinase (AURKA) can 

distinguish low-grade BC patients from normal healthy sub-
jects [63]. After adjusting for patients, clinical characteristics, 
and treatment with Bacillus Calmette-Guerin, activated 
leukocyte cell adhesion molecule (ALCAM) was positively 
correlated with tumor stage and OS [64]. Nicotinamide N-
methyltransferase was elevated in BC patients and was 
correlated with histological grade [65]. Levels of apurinic/
apyrimidinic endonuclease 1/redox factor-1 (APE/Ref-1) was 
also elevated in BC compared to normal controls and was 
correlated with grade and stage. Additionally, APE/Ref-1 has 
been shown to be significantly increased in patients with 
a history of BC recurrence [66]. The urinary cytokeratin-20 
(CK20) RT-PCR assay showed that the sensitivity of urothe-
lial BC detection was 78% to 87%, the specificity was 56% to 
80%, and the diagnostic accuracy improved with tumor pro-
gression [67]. However, its performance in low-grade tumors 
was relatively poor. Measurements of the urinary levels of 
CK8 and CK18 using the UBC Rapid Test were shown to be 
greater in high-grade BC than in low-grade BC [68].

There are a variety of markers that can potentially be 
used for BC detection. Elevated urinary levels of apolipo-
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proteins A1, A2, B, C2, C3, and E (APOA1, APOA2, APOB, 
APOC2, APOC3, and APOE) were found in BC compared to 
healthy controls [53,69]. A study showed that urinary frag-
ments of uromodulin, collagen α-1 (I), collagen α-1 (III), and 
membrane-associated progesterone receptor component 1 
could distinguish MIBC from NMIBC [55]. Other panels used 
IL-8, MMP-9/10, angiogenin (ANG), APOE, SDC-1, α1AT, PAI-
1, VEGFA, and CA9 to identify BC in urine samples. The 
advantage of these multi-urinary protein biomarkers is evi-
dent in high and low-grade diseases [70]. Some urine mark-
ers, including midkine (MDK), synuclein G, CEA cell adhe-
sion molecule 1 (CEACAM1), zinc-alpha-2-glycoprotein (ZAG2) 
[71], clusterin (CLU), and ANG, showed improved sensitivity 
and specificity in diagnosing NMIBC when used in immu-
noassays and urine cytology [72]. Levels of CK20 and insulin-
like growth factor II (IGF-II) were increased in the urine 
sediments of NMIBC patients compared to controls [73]. In-
creased urinary levels of HAI-1 and epithelial cell adhesion 
molecule (EpCAM) are prognostic biomarkers of high-risk in 
NMIBC patients [74]. Urinary survivin has been shown to 
be a potential biomarker for BC, and was further related to 
tumor stage, lymph node metastasis, and distant metastasis 
[75]. Overexpression of urinary levels of SNAIL were shown 
to be an independent prognostic factor for tumor recurrence 
in NMIBC [76]. Urinary CD44 was elevated in high-grade 
MIBC based on glycan-affinity glycoproteomics nanoplat-
forms [77].

2. Identification of proteomic markers in tissue 
samples 
Several studies have reported that the results of urine 

analysis using proteomics can be further verified at the tis-
sue level. Using two-dimensional electrophoresis (2DE), Peng 
et al. [57] found that PGAM1 was significantly upregulated 
in BC compared to adjacent tissue. In a parallel approach, 
cystatin B was found to be a prognostic biomarker at the 
tissue level; increased expression levels of the protein were 
correlated with stage, grade, recurrence, and progression [78]. 

Barboro et al. [79] studied invasive BC tissue to identify 
prognostic biomarkers. Using 2DE, they found significant 
upregulation of lamin B1 and fibrinogen beta chain and re-
duction of actin, desmin and VIM in MIBC tissue specimens 
compared to normal and non-tumor sections. They also found 
that protein p54 was correlated with vascular invasion and 
survival. Moreira et al. [80] studied the prognostic value of 
BC-associated protein (BLCAP) in 2,108 BC tissue specimens 
from archival datasets. According to the protein expression 
levels and cell localization, cancer cells could be divided into 
4 categories, and decreased staining intensity of BLCAP was 

correlated with tumor grade (p<0.0001) and stage (p<0.0001). 
Orenes-Piñero et al. [81] used protein arrays to identify se-
rum proteins that were associated with BC. Two identified 
candidate biomarkers, dynamin and clusterin, were further 
evaluated using IHC in tissue arrays. Reduced levels of CLU 
was found to be associated with MIBC, while reduced dyna-
min was associated with adverse outcomes. Chung et al. [82] 
identified 12 proteins including cofilin that were differen-
tially expressed in MIBC, compared to NMIBC.

Grau et al. [83] performed comparative proteomics on the 
human T24 BC cell line and its aggressive derivate, T24T. 
They identified cullin-3 (Cul3), a protein involved in ubiqui-
tination, as being overexpressed in T24T cells. Silencing of 
this protein reduced proliferation and migration of T24T. 
Along the same lines, the IHC expression levels of Cul3 in 
tissue microarrays were associated with tumor stage, me-
tastasis, and disease-specific survival. Srinivasan et al. [84] 
used antibody microarrays to identify proteins that were 
differentially expressed between patients with and without 
local recurrence. They identified 255 proteins and found 
that prelamin-A/C (LMNA), transcription factor AP-1 (JUN), 
and nuclease-sensitive element-binding protein 1 (YBOX1) 
were significantly upregulated; whereas L-selectin (LYAM1), 
cyclin-dependent kinase inhibitor 1 (CDN1A), and mothers 
against decapentaplegic homolog 3 (SMAD3) were signifi-
cantly downregulated. Hemdan et al. [85] studied stathmin 
1 in the context of BC and found that increased expression 
in tissue was associated with adverse outcomes. Decreased 
expression of stathmin 1 reduced growth and migration of 
T24 cells. Chen et al. [86] used laser microdissection to com-
pare the proteome of BC and adjacent non-tumorous tissue. 
The levels of 4F2 cell-surface antigen heavy chain (SLC3A2), 
stathmin (STMN1), and transgelin-2 (TAGLN2) were elevat-
ed in cancer cells. STMN1 and TAGLN2 were both found to 
be significantly increased in the urine of BC patients. Wu 
et al. [87] used IHC to identify the association of galectin-1 
overexpression (previously identified by the group) with 
BC pathology and prognosis in a set of 185 primary cases. 
Increased expression of galectin-1 was significantly associ-
ated with tumor grade, vascular invasion, nodal status, and 
significantly predicted disease specific survival.

3. Identification of proteomic markers in blood 
samples 
Compared to urinalysis, there are relatively few studies 

on blood-based BC proteomics. Bansal et al. [88] examined the 
serum of patients with low-grade and high-grade BC and 
healthy controls; they found that there were differences in 
the expression of five proteins, among which S100 calcium 
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binding protein A8 (S100A8) and S100A9 could distinguish 
low-grade and high-grade BC. The authors further confirmed 
the findings in a later study by analyzing serum samples 
from 108 patients with BC (55 before and 53 after surgery) 
and 52 healthy patients. They found that the expression of 
S100A8, S100A9, S100A4 and carbonic anhydrase-1 (CA-1) 
decreased in BC, and the expression of annexin V increased 
significantly after surgery compared to patients before [89].

Lemańska-Perek et al. [90] analyzed BC plasma samples 
and found three groups of proteins with different expression 
levels compared with normal samples. The first group were 
proteins that should not exist in normal plasma, including 
fibrinogen γ, plasma transferrin, and C3b. The second group 
of proteins had high expression in cancer plasma, including 
vitamin D binding protein, α-2-macroglobulin, pigment epi-
thelium derived factor, and binding globin. The third group 
of proteins had low expression in cancer plasma, including 
three molecular forms of immunoglobulin M (IgM).

4. Identification of proteomic markers in saliva 
samples 
Like serum, saliva is a complex mixture of proteins with 

concentrations in excess of  10 orders of  magnitude. The 
process of getting saliva is the least invasive and simplest. 
The saliva proteome is constantly changing from birth to 
adolescence, so age must be considered in the reference data 
[91]. At present, the study of salivary proteomics is mainly 
focused on oral diseases, such as oral cancer. There are also 
several reports about the relationship between salivary 
proteomics and gastric, breast, and lung cancers. However, 
there are no reports on salivary proteomics in BC. Therefore, 
the potential of proteomic BC markers in saliva samples re-
mains to be confirmed.

Proteomics markers identified in different human sam-
ples are summarized in Table 4 [53,55,57,63-90].

DIAGNOSTIC AND PROGNOSTIC VAL-
UES OF PROTEOMIC MARKERS IN BC

Many potential biomarkers from proteomic analysis 
have been reported, suggesting that proteomics can identify 
new biomarkers for diagnosis and prognosis. There are some 
FDA-approved immunoassays for diagnosing BC, including 
BTA stat and NMP22 [52]. Proteomic biomarkers can assist 
in stratifying patient prognoses in BC. There has been initial 
data indicating the substantial value of proteomic biomark-
ers and supporting the idea of using proteomics for patient 
stratification. In a study by Frantzi et al. [56], CE–MS uri-
nary profiling data was able to reflect disease progression in 

MIBC, which was indicated by the gradual changes in the 
abundance of the urinary peptides and cancer progression. 
Preliminary results support the use of urinary peptide pro-
filing as a tool for stratifying non-invasive patients.

In addition, proteomics can evaluate the biological pro-
cess behind BC, determine the molecular subtype of  BC, 
improve our understanding of BC classification and progno-
sis, and improve the diagnosis and treatment of patients. de 
Velasco et al. [92] found two different molecular groups for 
BC using proteomic data; each of which have different func-
tional characteristics and may provide new insight for the 
treatment of BC. In addition, they also defined a six-protein 
signature that can predict the prognosis of patients with 
MIBC and identified a functional node that can provide 
prognostic information, which provides a further means of 
evaluating BC.

CONCLUSIONS

Recent genomic studies to phenotype BC suggest that 
molecular subtypes of BC and their phenotypes can predict 
clinical outcomes to various therapies. However, recent find-
ings also suggest that clinical parameters outperformed 
subtypes for predicting patient outcomes [93], and molecular 
subtype-based diagnostics applied to a population-based mod-
ern cystectomy series were not able to predict cancer-specific 
survival [94]. Thus, it would be worthy to consider the rapid 
advancement of existing and emerging proteomics technolo-
gies to molecular classification based on genomics pheno-
types. 

Proteomics is expected to improve personalized medical 
treatment by better assessing disease risk, more accurately 
monitoring disease, and improving targeted treatment. Al-
though it is still in its infancy, the past few years have wit-
nessed the emergence of single-molecule proteomic technolo-
gies [95,96]. These unbiased protein sequencing approaches, 
with a dynamic range that covers the full range of protein 
concentrations in proteomes, can potentially revolutionize 
the proteomics field. The addition of proteomics profiling-
based biosignatures will provide tremendous benefit to the 
existing molecular phenotyping of BC patients in deciding 
treatment protocols, monitoring responses to therapies and 
recurrence or screening of high-risk individuals. 

For successful clinical application, prospective multi-
center based randomized trials should be considered to 
develop and assess the value of combined genomic and pro-
teomic biomarker tests with the purpose of reducing costly 
cystoscopy checks during surveillance of BC patients. We 
are very optimistic that the utility of proteomic phenotyping 
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Table 4. Proteomics markers in different samples
Sample 
source

Proteomics marker Expression Function Literature

Urine AURKA Distinguish between low-grade BC patients and normal 
patients

de Martino et al. [63]

ALCAM Positively correlate with tumor stage and OS Arnold Egloff et al. [64]
NNMT Increase Correlate with histological grade Pozzi et al. [65]
APE/Ref-1 Increase Correlate with the grade and stage of BC Choi et al. [66]
CK20 Improve diagnostic accuracy in tumor progression Mi et al. [67]
CK8 and CK18 Increase Differentiate between high-level and low-level BC Ecke et al. [68]
APOA1, APOA2, APOB, APOC2, APOC3, 

APOE
Increase BC detection Chen et al. [53,69]

Uromodulin, collagen α-1 (I),  
collagen α-1 (III), mPR

Distinguish MIBC from NMIBC51 Schiffer et al. [55]

IL-8, MMP-9/10, ANG, APOE, SDC-1, 
α1AT, PAI-1, VEGFA, CA9 

BC detection Masuda et al. [70]

MDK, synuclein G, CEACAM1, ZAG2 NMIBC detection Soukup et al. [71]
CLU and ANG NMIBC detection Shabayek et al. [72]
CK20 and IGF-II Increase NMIBC detection Salomo et al. [73]
HAI-1 and EpCAM Increase NMIBC prognosis detection Snell et al. [74]
Survivin Relate to tumor stage, lymph node metastasis, and distant 

metastasis
Yang et al. [75]

Snail Increase Prognostic factor for tumor recurrence in NMIBC Santi et al. [76] 
CD44 Increase High-grade MIBC detection Azevedo et al. [77]
STMN1 and TAGLN2 Increase BC detection Chen et al. [86]

Tissue PGAM1 Increase BC detection Peng et al. [57]
Cystatin B Increase Correlated with stage and grade, recurrence and progres-

sion
Feldman et al. [78]

Lamin B1 and fibrinogen beta chain Increase Identify prognostic Barboro et al. [79]
Actin, desmin and vimentin Decrease Identify prognostic Barboro et al. [79]
p54 Correlate with vascular invasion and survival Barboro et al. [79]
BLCAP Decrease Correlate with tumor grade and stage Moreira et al. [80]
Clusterin Decrease Associate with muscle invasive bladder cancer Orenes-Piñero et al. [81]
Dynamin Decrease Associated with adverse outcomes Orenes-Piñero et al. [81]
Cofilin Increase BC detection Chung et al. [82]
Cul3 Increase Associate with tumor stage, metastasis and  

disease-specific survival
Grau et al. [83]

LMNA, JUN, YBOX1 Decrease Identify local recurrence Srinivasan et al. [84]
Stathmin 1 Increase Associate with adverse outcomes Hemdan et al.  [85]
SLC3A2, STMN1 and TAGLN2 Increase BC detection Chen et al. [86]
Galectin-1 Increase Associate with tumor grade, vascular invasion, nodal sta-

tus, and significantly predicted disease specific survival
Wu et al. [87]

Blood S100A8, S100A9, S100A4, CA-1 and an-
nexin V

Decrease Distinguish low-grade and high-grade bladder cancer from 
healthy people

Bansal et al. [88,89] 

Fibrinogen γ, plasma transferrin and C3b Not exist in 
normal 
plasma

BC detection Lemańska-Perek et al. [90]

DBP, α2M, PEDF and binding globin Increase BC detection Lemańska-Perek et al. [90]
Three molecular forms of IgM Decrease BC detection Lemańska-Perek et al. [90] 

α1AT, alpha-1-antitrypsin; α2M, α2-macroglobulin; ALCAM, activated leukocyte cell adhesion molecule; ANG, angiogenin; APO, apolipoproteins; 
APR/ReF-1, apurinic/apyrimidinic endonuclease 1/redox effector factor-1; AURKA, aurora A kinase; BLCAP, BC-associated protein; CA, carbonic an-
hydrase; CEACAM1, CEA cell adhesion molecule 1; CK, cytokeratin; CLU, clusterin; Cul3, cullin-3; DBP, vitamin D binding protein; EpCAM, epithelial 
cell adhesion molecule; HAI-1, hepatocyte growth factor activator inhibitor type 1; IGF-II, insulin-like growth factor II; IgM, immunoglobulin M; IL, 
interleukin; JUN, transcription factor AP-1; LMNA, prelamin-A/C; MDK, midkine; MMP, matrix metalloproteinases; mPR, membrane progesterone 
receptors; NNMT, nicotinamide N-methyltransferase; PAI-1, plasminogen activator inhibitor-1; PEDF, pigment epithelium-derived factor; PGAM1, 
phosphoglycerate mutase 1; S100A, S100 calcium binding protein A; SDC-1, syndecan 1; SLC3A2, 4F2 cell-surface antigen heavy chain; STMN1, 
stathmin 1; TAGLN2, transgelin-2; VEGFA, vascular endothelial growth factor A; YBOX1, nuclease-sensitive element-binding protein 1; ZAG2, Zinc-
alpha-2-glycoprotein.
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combined with genomic phenotyping will play an increas-
ingly important role in research and clinical management in 
conjunction with standard diagnostic procedures and act as 
an additional supplement to clinical judgment.
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Abstract
The COVID-19 pandemic has caused a global health threat. 
This disease has brought about huge changes in the priori-
ties of medical and surgical procedures. This short review 
article summarizes several test methods for COVID-19 that 
are currently being used or under development. This paper 
also introduces the corresponding changes in the diagnosis 
and treatment of urological diseases during the COVID-19 
pandemic. We further discuss the potential impacts of the 
pandemic on urology, including the outpatient setting, clin-
ical work, teaching, and research. © 2020 S. Karger AG, Basel

Introduction

Coronaviruses are enveloped, positive-sense, and sin-
gle-stranded RNA viruses that can be subdivided into 4 
different classes, i.e., α, β, γ, and δ. In recent years, sev-

eral coronaviruses have caused epidemics in various re-
gions of the world (in 2002–2003 there was the SARS-Cov 
epidemic in China and in 2012 there was the MERS-CoV 
epidemic in Saudi Arabia). The appearance of the new 
viral SARS-CoV-2 (COVID-19) strain in 2019 that origi-
nated in the Chinese region of Wuhan started a global 
pandemic, afflicting over a million people and causing 
over 50,000 deaths [1]. COVID-19 belongs to the 
β-coronavirus family, and it is thought to have originated 
in bats. There is a noted similarity between the genomic 
sequence of human COVID-19 and that of HKU9-1 in 
bats; however, the intermediate host between bats and 
humans has yet to be identified. COVID-19 is highly con-
tagious and it has 3 main routes for transmission, i.e., per-
son-to-person contact, aerosol, and touch. In addition to 
infecting the respiratory system, the virus also infects the 
blood, digestive, and urinary systems. As a result, the 
presence of the virus has been detected in fecal, blood, 
and urine samples. COVID-19 can cause a variety of 
symptoms, such as fever, dry cough, shortness of breath, 
loss of appetite, and fatigue. Furthermore, hidden trans-
mission can occur from asymptomatic individuals. The 
incubation period for COVID-19 ranges between 2 and 
14 days.
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How will life change during and after the COVID-19 
pandemic from the point of view of a urologist? In this 
short article, we will discuss the COVID-19 pandemic 
and its effects on the field of urology. 

Discussion

COVID-19 Examination
Common Test Methods
The general structure of coronaviruses includes spike 

glycoproteins, membrane proteins, nucleoproteins, and 
genomic RNA [2]. To detect the novel SARS-CoV-2, nu-
cleic acid testing is the main technique for laboratory di-
agnoses [3]. Sample sources include sputum, throat 
swabs, and lower respiratory system secretions. Other 
methods, such as virus antigen or serological antibody 
testing, are valuable assays for detecting infection. The 
main sample source for these tests is blood. As with other 
emerging viruses, the development of methods was only 
able to begin after identification of the viral genome. 

Real-time reverse transcription-polymerase chain re-
action (RT-PCR) has become the standard method for 
diagnosing COVID-19 due to its specificity, sensitivity, 
and simplicity. Zhang et al. [4] used RT-PCR to detect 
COVID-19 from throat and rectal swab samples from pa-
tients. The virus was detected in both types of samples. 
Throat swabs are suggested to be more applicable in the 
early stages of infection, while rectal swabs are better for 
detecting late-stage infections [4].

Unfortunately, RT-PCR detection kits have many lim-
itations, such as long turnaround times, complex opera-
tional procedures, expensive equipment, technical per-
sonnel requirements, false negatives, and so on [2]. As a 
result, these limitations make RT-PCR unsuitable for rap-
id and simple diagnosis and screening of patients [5, 6]. 
On the other hand, the COVID-19 IgG-IgM combined 
antibody test can generate results within 15 min and it can 
determine whether the viral infection occurred recently. 
It is easy to use, has a high sensitivity, and does not require 
additional equipment [4]. This rapid detection method 
has great potential benefits for the mass screening of CO-
VID-19 infections [7, 8].

The COVID-19 IgG-IgM combined antibody test kit 
detects antibodies in the blood that are produced by the 
body’s immune system for a prolonged period of time af-
ter infection. However, further studies of IgG-IgM tests 
are needed in order to validate that it provides a high 
enough specificity and sensitivity to be widely used [9]. 
RT-PCR has more benefits when diagnosing patients ini-

tially, while IgG-IgM is very useful in monitoring con-
firmed patients or identifying late-stage patients for the 
prevention of spread. As of May 17, 2020, there were 75 
different COVID-19 test kit products that were Emergen-
cy Use Authorization (EUA) approved [9]. 

Table 1 shows a list of clinically evaluated test kits ap-
proved by EUA with results from positive percent agree-
ment and negative percent agreement.

Routine Blood Test for COVID-19
COVID-19 can cause serological abnormalities. Some 

studies have shown that the levels of lymphocytes, plate-
lets, hemoglobin, and albumin in COVID-19 patients are 
decreased while levels of glucose, lactate dehydrogenase, 
interleukin-6, serum ferritin, C-reactive protein, ESR, al-
anine aminotransferase, aspartate aminotransferase, cre-
atine kinase, D-dimer, and serum procalcitonin are in-
creased [10, 11]. However, these routine serological ex-
aminations can only indicate infection and have poor 
specificity, which means that they cannot be used to con-
firm any diagnoses of COVID-19. 

Expression of ACE2 and TMPRSS2 in the Urinary 
System and COVID-19
The human angiotensin-converting enzyme 2 (ACE2) 

gene is located on chromosome Xp22 and includes 18 ex-
ons [12]. Functioning as a typical zinc metallopeptidase, 
the ACE2 protein contains 805 amino acids and is a type 
I integral membrane glycoprotein containing a single cat-
alytic domain. In the renin-angiotensin system, ACE2 de-
grades angiotensin II, which is potent in vasoconstriction, 
proinflammation, and pro-fibrosis, converting it into 
Ang (1–7) which contributes to vasodilation, antiprolif-
eration, and apoptosis. Besides its systemic effects on 
blood pressure regulation, ACE2 also regulates amino 
acid absorption in the kidneys and gut and modulates the 
expression of amino acid transporters. 

COVID-19 has a specific spike protein 3-D structure 
that is characterized by a strong binding affinity to ACE2 
receptors [13]. As a result, human cells that express ACE2 
may act as target cells for COVID-19. Since COVID-19 
must bind with ACE2 first before entering the human host 
cells, the distribution and expression of ACE2 may be crit-
ical for the target organ of infection [14]. It is known that 
ACE2 is enriched in the heart, kidneys, and testes, and it 
is also broadly distributed in the lungs, liver, intestine, and 
brain [15]. Therefore, COVID-19 mainly infects the respi-
ratory system. In addition to respiratory symptoms, the 
common complications found in patients infected with 
COVID-19 include acute cardiac and kidney injuries. 
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The transmembrane serine proteinase 2 (TMPRSS2) 
gene was first identified on human chromosome 21 in 
1997 [16]. The full-length cDNA encodes a predicted 492 
amino acid protein, which is anchored to the plasma 
membrane and belongs to the TTSPs family (type II 
transmembrane serine proteases). In humans, TMPRSS2 
is mainly expressed on prostate, pancreatic, and colon 
cells, but it can also be found in lung, liver, and kidney 
cells [17]. The entry of SARS-CoV-2 into host cells de-
pends on the serine protease activity of TMPRSS283-87. 
Cells overexpressing TMPRSS2 are susceptible to SARS-
CoV-2 infection [18]. The process by which SARS-CoV-2 
enters the host cell can be divided into 2 steps. In the first 
step the viral hemagglutinin protein attaches to ACE-2, 
and in the second step the hemagglutinin is cleaved to 
activate the internalization of the virus. This second step 
depends on the expression of TMPRSS2 [19]. 

Fecal/Urine/Semen Test for COVID-19
COVID-19 is primarily transmitted through the respi-

ratory tract [19]. However, ACE2 expression patterns 
across different tissue types suggest the possibility of ex-
trarespiratory viral transmission through bodily fluids 
[20]. The current focus has been placed mainly on viral 
clearance from respiratory secretions and little is known 
about the possible concurrent presence and clearance 
through bodily fluids. 

At present, the virus is mainly detected by nasopha-
ryngeal/oropharyngeal swabs. In addition to nasopha-
ryngeal/oropharyngeal swabs, the presence of COVID-19 
RNA has also been reported in fecal, urine, and blood 
samples. Feces appear to contain a high percentage of vi-
ral RNA, and the percentage of patients with viral RNA 
in urine and blood appears to be low. However, some 
studies have been contradictory; no COVID-19 RNA was 
found in the urine of infected patients [21]. 

Although this represents pertinent information relat-
ed to reproductive medicine, the presence of COVID-19 

in semen has not been investigated [21]. There have been 
few studies investigating the presence of SARS-CoV-2 in 
semen, and no solid reports on virus presence in semen 
are available. The small studies that have been done have 
found no viruses in semen. The sample sources came 
from patients with acute infection and convalescence, as 
well as testicular biopsies from deceased patients [21, 22]. 
Moreover, a recent paper published in August 2020 
showed no COVID-19 viral transmission during sexual 
contact or assisted reproductive techniques [23]. Only 
one study detected the presence of SARS-CoV-2 in se-
men; however, the sample size was small and the possibil-
ity that the virus came from urine could not be ruled out 
[24]. The virus may persist in the prostate or urethra and 
be carried away by semen during ejaculation. Moreover, 
patients with severe COVID-19 infection may have con-
taminated specimens when collecting semen. So far, there 
has been no report of SARS-CoV-2 RNA in the expressed 
prostatic secretions of COVID-19 patients [25].

Gender and COVID-19
So far, most countries with available data have report-

ed that men with COVID-19 have a greater severity of 
illness and a higher mortality rate than women across all 
age groups [26]. Possible reasons for this disparity in-
clude gender-related differences in ACE2 receptors, im-
mune function, sex hormones, hygiene, habits, etc. [27]. 
In previous cases of pathogenic coronaviruses, this differ-
ence between men and women also existed. In the 2002–
2003 SARS outbreak and the 2012 MERS outbreak, the 
mortality rate was comparatively higher in men [28].

The relationship between COVID-19 and ACE2 has 
been described before. Studies have shown that men have 
more ACE2 receptors than women and they have a great-
er expression of ACE2 in the lungs and heart, which may 
explain why men tend to have more serious disease [29]. 
Differences in immune defense abilities may also lead to 
differences in COVID-19 outcomes between men and 

Table 1. EAU-approved COVID-19 test kits

Test kit Detection type Manufacturer PPA (%)/NPA (%)

Xpert Xpress SARS-CoV-2 test RT-PCR Cepheid 98.3/100 [105]

ePlex SARS-CoV-2 RT-PCR GenMark Diagnostics 91.4/100 [105]
94.4/100 [106]

AllplexTM 2019-nCoV RT-PCR Seegene 100/94 [107]

Anti-SARS-CoV-2 rapid test IgG-IgM AutoBio 88.15/99.04 [108]
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women. Compared to males, females usually produce 
more robust innate and adaptive immune responses and 
respond more strongly to most invading pathogens [30].

Sex hormones play a role in regulating the immune 
system and they can cause differences in immune re-
sponse between men and women. Generally speaking, 
testosterone has an immunosuppressive effect, while es-
trogen tends to enhance the immune response [31]. En-
dogenous testosterone makes men more likely to have 
more serious complications related to SARS-CoV-2 in-
fection. On the other hand, SARS-CoV-2 infection can 
lead to hypogonadism in men, and the reduction of an-
drogens may cause serious complications [32]. Given that 
estrogen activates the immune system, higher estrogen 
levels can potentially have a protective effect [33]. Studies 
have shown that exogenous estrogen therapy can elimi-
nate inflammation and reduce virus titers, thus improv-
ing survival [34]. The differences in hygiene and habits 
provide another explanation for the gender-related dif-
ferences in SARS-CoV-2 infection. Studies have shown 
that women wash their hands more frequently than men 
[35], and men wear masks less than women [36]. These 
factors may explain the noted differences in COVID-19 
rates and mortality between the sexes.

The higher smoking rate among men may also be re-
sponsible for gender-related differences in COVID-19 
mortality. Smokers seem to have a higher risk of respira-
tory infections. A study found that the expression of 
ACE2 in Asian smokers is significantly higher than that 
in nonsmokers [37]. However, the current literature does 
not support smoking as a predisposing factor for SARS-
CoV-2 infection. Gender differences are also reflected in 
men’s underutilization of medical services and participa-
tion in unhealthy habits, such as alcohol use and smoking. 
These behaviors can cause a high blood pressure, cardio-
vascular disease, and other comorbidities associated with 
increased mortality from SARS-CoV-2. Because cells 
overexpressing TMPRSS2 are susceptible to SARS-CoV-2 
infection, and the expression of TMPRSS2 is regulated by 
androgen/androgen receptor (AR) signals, the expres-
sions of AR and TMPRSS2 are significantly positively 
correlated [38]. This may be a reason why there are more 
male patients than female patients [19].

Assisted Reproductive Technology and COVID-19
In light of the current COVID-19 pandemic and the 

uncertainty of its impact on pregnant women, the Society 
of Human Reproduction published recommendations 
for the management of patients undergoing infertility 
treatment through assisted reproductive technology 

(ART) [39]. ART includes intrauterine insemination, in 
vitro fertilization (IVF) injection, ovum collection, im-
plantation, transplantation, and tracking. This process 
could expose infertile individuals to COVID-19 infection 
[40]. In addition to the risk of infection, the World Health 
Organization (WHO) published data showing that preg-
nant women with COVID-19 are at greater risk of serious 
complications [41]. There are no clear answers as to 
whether there is a risk of vertical transmission of CO-
VID-19 from mother to fetus. At present, no such cases 
have been reported. In a case in China, newborns were 
infected with the SARS-CoV-2 virus 36 h after birth [42]. 
However, it is unclear whether this was due to vertical 
transmission between mother and child [42].

At present, most reports indicate that the symptoms of 
pregnant women infected with COVID-19 are similar to 
those of others, and there is no evidence showing that 
pregnant women or fetuses are at a higher risk [43]. How-
ever, considering the initial data and the lack of compre-
hensive understanding of the pathogenesis of SARS-
CoV-2 during pregnancy, most human reproduction so-
cieties have proposed postponing embryo transfer and 
delay of new treatment cycles.

The European Society of Human Reproduction and 
Embryology (ESHRE) issued a statement regarding CO-
VID-19 and pregnancies on March 14, 2020. So far, only 
a few cases of COVID-19 infection during pregnancy 
have been reported. Therefore, there is not enough infor-
mation available about the potential impact of COVID-19 
infection in the early stages of pregnancy. Additionally, 
drug treatment for severe COVID-19 cases may include 
drugs that are dangerous or prohibited for use during 
pregnancy. The ESHRE recommends that all patients 
considering or planning to receive ART treatment, re-
gardless of whether they are diagnosed with or suspected 
to have COVID-19 infection, should avoid pregnancy at 
this time and consider delaying pregnancy by freezing oo-
cytes or embryos to delay embryo transfer [44]. 

In the latest guidelines updated in October 2020, the 
ESHRE divides the guidelines for ART services during a 
viral pandemic into 2 core steps. The first step is to assess 
the impact of the current pandemic based on epidemio-
logical factors. The second step is to take corresponding 
measures based on this assessment [45]. See Table 2 for 
specific guidelines.

On March 17, 2020, the American Society for Repro-
ductive Medicine (ASRM) released a new document ti-
tled “Patient Management and Clinical Recommenda-
tions during the Coronavirus (COVID-19) Pandemic” 
[46]. The main recommendations are as follows: 
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• Suspend the start of new treatment cycles, including 
ovulation induction, intrauterine insemination, IVF, 
retrieval and frozen-embryo transfer, and nonemer-
gency gamete cryopreservation.

• Strongly consider canceling all embryo transfers, 
whether fresh or frozen.

• Continue to care for patients who are currently “in cy-
cle” or in need of emergency stimulation and cryo-
preservation.

• Suspend the selection of surgery and nonemergency 
diagnostic procedures.

• Minimize interpersonal interaction and increase the 
utilization of telemedicine. 
In June 2020, the ASRM published the fifth update of 

patient management and clinical recommendations dur-
ing the viral pandemic [47]. For details, please refer to 
Table 3.

However, each organization has also stressed that 
treatment should be carried out in certain cases, such as 
those in which women are required to retain fertility due 

to tumor causes and in cases where delayed treatment 
may be more harmful than continued treatment (i.e., pa-
tients with a low ovarian reserve).

During the pandemic, the IVF department should 
encourage male patients to collect semen samples at 
home and send them to the laboratory. However, semen 
samples must also be considered as potential sources of 
infection during this process. Assessment of the pres-
ence of SARS-CoV-2 in semen is particularly important 
for semen cryopreservation because storage in liquid ni-
trogen retains the pathogenic properties of the virus 
[48]. Therefore, it is necessary to conduct large-scale 
studies on currently infected patients to confirm or ex-
clude the risk of male gametes. These risks need to be 
assessed for cryopreservation in liquid nitrogen or ART. 
It should be noted that a vast majority of published re-
ports so far suggest that there is no SARS-CoV-2 in se-
men. Only 1 article mentioned the presence of the virus 
in semen, but the report itself has some questionable fac-
tors. 

Table 2. ESHRE guidance for safe ART services during the third phase of the COVID-19 pandemic

14-day COVID-19 case 
notification rate per 
100,000

Impact on ART 
services

Recommended mitigation measures

Reported cases, n Insignificant – Continue as per routine
– Follow regional and country-specific guidance

<20 Minor – Triage recommended for all patients
– SARS-CoV-2 testing for triage-positive patients
– Follow regional and country-specific guidance

20.0–59.9 Moderate – Routine triage for patients and staff and SARS-CoV-2 testing for triage-positive patients/staff
– Routine implementation of the code of conduct for staff and patients
– Follow regional and country-specific guidance

60.0–119.9 Major – Routine triage for patients and staff, and SARS-CoV-2 testing for triage-positive patients/staff
– Routine implementation of the code of conduct for staff and patients
– Remote consultation and counselling (telemedicine)
– Reduction of visits to the ART clinic
– Routine use of PPE for staff
– Face mask recommended for patients
– No accompanying persons allowed
– Follow regional and country-specific guidance

≥120.0 Critical – Routine implementation of the code of conduct for staff and patients
– SARS-CoV-2 testing of all patients and staff
– Remote medical advice and counselling (telemedicine)
– Reduced clinic visits
– Staff: routine use of PPE
– Patients: face masks recommended
– No accompanying persons allowed
– Laboratory: freeze-all policy to be considered
– Follow regional and country-specific guidance
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The ASRM and the ESHRE provide differing opinions 
on whether to perform SARS-CoV-2 testing on patients 
and providers [49]. The ASRM points out that, based on 
existing evidence, nucleic acid amplification testing-
based testing should be considered before reproductive 
surgery or other aerosol-generating procedures. Howev-
er, for antibody testing, ASRM believes that antibody test-
ing should not be used in the decision-making of patients 
or providers, and it should not change compliance with 
personal protective equipment (PPE) guidelines. On the 
other hand, ESHRE relies more on serological testing. It 
is recommended that, if either party develops symptoms 
within 2 weeks before ovarian stimulation, the SARS-
CoV-2 IgM/IgG test can be used to decide to continue or 
postpone treatment until it is negative or negative. ASRM 
believes that the detection of SARS-CoV-2 antibodies is 
currently not part of the routine workflow of infertile pa-
tients, but the ESHRE believes this is critical.

In addition to COVID-19 infection from the provider, 
semen samples can become a potential source of infection. 
There may also be a 1-way infection. Four main areas of 
potential 2-way infection have been identified, i.e., pa-
tient-staff, staff-staff, staff-cell, and cell-cell. The results of 
a failure modes and effect analysis conducted by a multi-

disciplinary IVF team showed that, except for cell-cell 
contamination, which is considered extremely unlikely, 
patient-employee, employee-employee, and employee-
cell interaction periods are estimated to have a moderate 
to high infection risk [50]. Therefore, routine SARS-
CoV-2 tests for patients and providers are necessary.

Because SARS-CoV-2 is an enveloped RNA virus, it 
can maintain its viability even at low temperatures, which 
can lead to cross-contamination between samples [51]. In 
assessing potential cross-contamination during cryo-
preservation and storage, the single recorded case of cross-
contamination in tissue samples was hepatitis B in bone 
marrow, which was transmitted to the recipient [52]. The 
only known cross-contamination of tissues stored in IVF 
was experimental. Bielanski et al. [53] found that liquid 
nitrogen intentionally contaminated with bovine viral di-
arrhea virus spread to 21.3% of nearby open storage de-
vices. However, all sealed straws and freezing tubes were 
not contaminated. In another similar study, mouse em-
bryos were stored with murine virus vials and no cross-
contamination was observed even after a year in storage 
[54]. These studies have shown that the risk of cross-con-
tamination in liquid nitrogen is indeed negligible, espe-
cially when samples are stored and sealed properly.

Table 3. ASRM patient management and clinical recommendations during the coronavirus (COVID-19) pandemic: 5th update

Third-party reproduction Do not start a cycle where the intended parents and the pregnant carrier do not live in the same 
country.

Fertility services for  
healthcare workers

Take routine precautions; there is no data to support the need for medical staff to avoid infertility 
treatment or pregnancy.

Having partners present  
when providing care

The number of people in the ward must be limited, and partners are encouraged to use telephone or 
video methods to participate in the escort.

Travel restrictions Where feasible, avoid using public transportation; if there is an emergency trip, you need to know the 
new infection rate in the local area and destination; self-isolation should continue to be practiced as 
much as possible.

Resumption of reproductive 
surgery

Reproductive surgery can be resumed in areas where the prevalence of the disease should be low 
(<l2%). Before any surgery that requires anesthesia, the patient should be checked for COVID-19 
symptoms. Preoperative SARS-CoV-2 virus detection should also be strongly considered. If the virus 
test is positive, the patient needs to be rechecked for negativity before scheduling surgery.

Aerosol-generating  
procedures

If aerosol-generating procedures must be performed urgently during the operation, except for the 
anesthesiologist and the technical or circulatory nurse, the operation team should consider leaving 
the room immediately. Staff can wear appropriate, fully enhanced PPE. These precautions should be 
taken regardless of whether the patient has a negative preoperative test result, is asymptomatic, or has 
no test result at all.

IVF cycles During the oocyte retrieval process, all patients should wear medical-grade surgical masks. Any 
planned embryo transfer should be delayed until the patient is SARS-CoV-2 negative.

Urgent surgical procedures Staff should use enhanced respiratory PPE.
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Due to the COVID-19 pandemic, medical institutions 
worldwide recommend performing surgical operations 
for only high-priority or emergency cases. Low priority 
cases, such as diagnostic semen analysis, sperm banks, 
elective surgery for sperm retrieval, and related fertility 
procedures, have been delayed for 6 months or longer and 
pose no increased health risks to individuals [55]. How-
ever, this pandemic may last longer than expected – po-
tentially years. During this period, the average age of 
women trying to conceive will increase and ovarian re-
serve indicators will worsen. Contrastingly, male infertil-
ity is usually related to progressive testicular damage, 
such as varicocele. The adverse effects of delayed future 
ART treatments are a growing concern. With the suspen-
sion of treatments, patients feel more anxious and fearful 
of impairments in possible future pregnancies [56].

Studies have shown that patients with reduced ovarian 
reserves starting IVF treatment up to 180 days after the 
first visit will not have their pregnancies affected [57]. For 
high-risk patients with a poor response to ovarian stimu-
lation, this observation still applies. Providers and pa-
tients should rest assured that, if short-term treatment 
needs to be delayed for medical, logistical, or economic 
reasons, the treatment results will not be affected [58]. 
When treating varicocele, surgery is not the only method. 
Only when progressive testicular growth retardation and/
or semen quality is severely impaired should clinical var-
icocele surgery be performed to maintain fertility [59].

Recently, 27 experts from 15 different countries ex-
pressed that postponing andrology services and male in-
fertility treatments during the pandemic may permanent-
ly damage the chances of having children for “time-sen-
sitive” patients [60]. This can have devastating 
psychological effects. The birth window for time-sensi-
tive patients is short and any delay can be impactful. Such 
patients can be grouped into the following categories:
• Those with cancer and/or undergoing chemotherapy, 

radiotherapy, or immunosuppressive therapy 
• Old age (> 50 years)
• Those with severe male infertility (e.g., men with azo-

ospermia/cryptospermia undergoing medical or post-
surgical treatment to improve sperm quantity/quality)

• Those with inflammatory and systemic autoimmune 
diseases. 
For such patients, the provision of andrology services 

cannot be regarded as a low priority [56]. Therefore, some 
experts believe that ART treatment can be carried out if 
the patient is considered high priority and has signed in-
formed consent, agreeing to receive treatment and freez-
ing procedures during a pandemic.

Urological Diseases and COVID-19
Guidelines Office of the European Association of 
Urology
The European Association of Urology (EAU) estab-

lished a rapid reaction group after the virus outbreak to 
develop adaptive guidelines to deal with various situa-
tions and priorities. They divided urological diseases and 
conditions into the following 4 priority levels [55]:
• Low priority: clinical harm very unlikely if postponed 

for 6 months
• Intermediate priority: clinical harm possible, but un-

likely, if postponed for 3–4 months
• High priority: clinical harm very likely if postponed for 

> 6 weeks
• Emergency: life-threatening situation – cannot be 

postponed for > 24 h.
Evidence from Wuhan shows that the mortality rate of 

asymptomatic patients who tested positive for COVID-19 
after surgery was 20% [61]. Therefore, in the process of 
treating patients, doctors should choose the appropriate 
treatment plan according to the priority level. The latest 
guidelines provide some suggestions; for instance, sur-
gery can be performed on high-priority and emergency 
patients during the COVID-19 pandemic, but surgery is 
not recommended for intermediate-priority patients. 
Next, we will introduce specific treatment plans for sev-
eral common diseases in urology during the COVID-19 
pandemic.

Kidney Injury 
Since ACE2 is expressed in kidney cells, changes in the 

kidney due to COVID-19 need to have a point of focus 
[17]. Renal functioning needs to be monitored regularly, 
especially in patients with elevated plasma creatinine lev-
els. In the event of early signs of acute kidney injury 
(AKI), interventions, such as continuous renal replace-
ment therapy, should be implemented to protect renal 
functioning as early as possible. A study by Pei et al. [62] 
observed that COVID-19 patients have a high frequency 
of renal abnormalities, including 75.4% of patients with 
renal involvement, 65.8% with proteinuria, and 41.7% 
with hematuria.

The risk factors and causes of AKI in COVID-19 pa-
tients are diverse. The severity of pneumonia is the most 
important factor in the development of AKI in COV-
ID-19 patients. The basic pathophysiology of patients 
with pneumonia is severe acute respiratory distress syn-
drome, which has been identified as an independent risk 
factor related to AKI [63]. This data indicates that it is 
necessary to provide in-depth support and careful moni-
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toring of COVID-19 patients with severe pneumonia to 
improve their complications. However, in a study of 116 
COVID-19 hospitalized patients, Wang et al. [64] found 
that all patients without chronic kidney disease showed 
no obvious abnormality of renal function, and none of 
these patients showed AKI. Patients with chronic kidney 
disease who underwent CRRT were stable, without exac-
erbation of chronic kidney disease throughout the course 
of treatment of COVID-19. 

Renal Cancer
The current COVID-19 pandemic is forcing medical 

staff to adapt their clinical practice, especially for the 
management of life-threatening diseases, such as malig-
nant urological tumors. It is important to weigh the risk 
of contamination related to treatment and the risk of de-
laying treatment. 

The CCAFU recommendations for the treatment of 
renal cancer during the COVID-19 pandemic are as fol-
lows [65]:
• Small T1a tumors, cystic tumors (Bosniak III and IV), 

and T1b tumors: surgery should be postponed under 
supervision 

• CT2 tumors: surgery can be postponed under quar-
terly supervision 

• T3 tumors, thrombus of the renal vein, vena cava 
thrombus, macroscopic lymphadenopathy without 
other secondary lesions, signs of locoregional inva-
sion, and symptomatic tumors (pain, hematuria), for 
which no endoscopic or vascular treatment is possible: 
surgery must be maintained as a priority 

• Indications of cytoreductive nephrectomy: favor ac-
cording to the prognostic stage, monitoring, or medi-
cal treatment 

• Metastatic renal cancer with a good prognosis: favor a 
tyrosine kinase inhibitor by encouraging telephone 
follow-up or teleconsultations 

• Metastatic renal cancer with a poor or intermediate 
prognosis: the benefits of current standard treatments 
based on a ipilimumab-nivolumab combination must 
be weighed against the risk of severe toxicity in the 
context of reduced access to an intensive care unit. The 
use of sunitinib by default is suboptimal but can be 
discussed in this context. Patients who have an inter-
mediate prognosis with a low tumor load and are as-
ymptomatic can be treated with tyrosine kinase inhib-
itor. For patients with a poor prognosis and in poor 
general condition (PS ≥2), exclusive palliative treat-
ment may be preferred.

Bladder Cancer 
Patients with high-risk non-muscle-invasive bladder 

cancer need to be revisited to receive Calmette-Guérin 
Bacillus (BCG) intravesical instillation to reduce progres-
sion and recurrence after transurethral resection of the 
bladder [66]. It has been reported that nearly 30% of pa-
tients over 65 years of age may develop acute respiratory 
distress syndrome after infection with COVID-19 [66]. 
Most patients with non-muscle-invasive bladder cancer 
have a higher risk of severe forms of COVID-19 and may 
need to enter the intensive care unit for invasive ventila-
tion because the median age of these patients is greater 
than 70 years [67]. 

In confirmed COVID-19 cases, due to the lack of data 
on the tolerance of intravesical BCG, the recommended 
and cautious approach is to delay additional instillation 
of BCG. Based on the infection status of COVID-19, it is 
recommended to delay the installation of BCG for at least 
3 weeks after initial symptoms appear to improve. When 
dealing with side effects related to intravesical BCG infu-
sion, attention should be paid to persistent fever by isolat-
ing and testing for COVID-19 [11]. Additionally, al-
though side effects should be specifically treated ac-
cording to current EAU guidelines, nonsteroidal anti- 
inflammatory drugs should only be used in patients with 
no COVID-19 infection because these drugs may lead to 
a higher risk of hospitalization and intensive care unit ad-
mission [66].

Prostate Cancer
Surgery is recognized as the gold-standard treatment 

for several malignancies, including prostate cancer (PCa). 
With all healthcare systems and resources focused on 
controlling and treating COVID-19, oncologic surgery 
has been reduced worldwide. Surgery is associated with a 
higher overall and cancer-specific survival compared to 
radiation therapy alone. Apart from the theoretical ad-
vantage of radiation therapy in eliminating local micro-
metastases, clinical evidence shows that a real multimod-
al approach is best for patients choosing to undergo radi-
cal prostatectomy [68]. Delay in the detection or treatment 
of PCa can lead to impaired functional outcomes and 
higher rates of biochemical recurrence [69]. 

Surgery should only be performed in sterile COVID-
19-free facilities; otherwise, according to reports from 
Wuhan, postoperative mortality can reach 20% [61]. Un-
fortunately, the preservation of such facilities is impos-
sible. According to the Italian experience, both asymp-
tomatic caregivers and patients can be a source of infec-
tion, causing further spread within the hospital [70]. To 
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maintain a truly COVID-19-free facility, preoperative 
isolation and laboratory testing are needed to ensure that 
staff and patients have no infections.

Recently, studies have pointed out that there may be a 
potential link between PCa and COVID-19 [71]. A study 
showed that PCa patients who received androgen depri-
vation therapy had a 4-fold risk of SARS-CoV-2 infection 
than those who did not receive androgen deprivation 
therapy [71]. So far, there are 2 main genes related to the 
entry of the COVID-19 virus into host alveolar epithelial 
cells, i.e., ACE2 and TMPRSS2. The expression of TM-
PRSS2 is regulated by androgen/AR signaling. In primary 
and metastatic castration-resistant PCa, the expressions 
of AR and TMPRSS2 were significantly positively corre-
lated [72]. These findings indicate that more androgens 
may mean an increased expression of TMPRSS2, which 
may increase the susceptibility to SARS-CoV-2. Interest-
ingly, a recent study showed that ACE2 expression is 
higher in men and may be regulated by androgen/AR sig-
naling [73]. Therefore, androgen deprivation therapy can 
have a potential curative effect on COVID-19.

Effects on the Testes
The testes may be affected by COVID-19. A study re-

ported that 19% of COVID-19 men suffer from scrotal 
discomfort, suggesting viral orchitis [74]. Orchitis has not 
been confirmed as a possible complication of SARS-
CoV-2 infection. The virus may not directly infect the 
testes, but it may trigger a secondary autoimmune re-
sponse that can cause autoimmune orchitis. COVID-19 
is related to abnormal blood clotting, so orchitis could 
also be the result of segmental vasculitis. A recent study 
provided insight into impaired male gonadal function af-
ter COVID-19 infection [75]. That study showed that the 
testosterone-to-luteinizing hormone ratio in 81 patients 
with COVID-19 was dramatically decreased in compari-
son to 100 age-matched healthy counterparts [76]. The 
serum testosterone-to-luteinizing hormone ratio could 
be a potential marker of impairment of reproductive 
health caused by COVID-19. Another study also con-
firmed that the serum LH level of patients with CO-
VID-19 was significantly higher than that of healthy men 
with normal fertility, while the ratio of serum testosterone 
to luteinizing hormone was significantly decreased, which 
is indicative of subclinical hypogonadism [77].

Effects of the COVID-19 Pandemic on Urologists
Outpatient Care
Due to the increased spread of the pandemic over time, 

in-person visits in the outpatient setting have decreased 

or even been canceled. The latest EAU guidelines recom-
mend the implementation of telemedicine during this 
time [55]. The development of telemedicine has been a 
pragmatic approach to reducing the risk of further trans-
mission. Nonemergency patients, such as those with fol-
low-up tumors, benign conditions (such as moderate 
lower urinary tract symptom and prostate enlargement), 
and urinary tract infections, can be given a consultation 
over the telephone. Clinical priority should be given to 
patients with a suspected relapse or new malignant tu-
mors, severe lower urinary tract syndromes, or potential 
obstructive/purulent urinary tract stones and those need-
ing an immediate postoperative examination [78]. 

If a face-to-face interview is needed, both the provider 
and the patient need to wear masks and maintain social 
distancing [79]. Patients should also answer questions 
about their COVID-19-related exposure history or symp-
toms [80]. Patients with a positive screening are referred 
to isolated treatment. In the case of a negative screening, 
clinicians and patients must be provided with infection 
control procedures throughout the length of care.

Due to technological improvements and cost reduc-
tions as well as the widespread popularity of high-speed 
internet and smartphones, patients can quickly deploy 
telemedicine consultation from home [81]. The benefits 
of telemedicine include convenience, access to care from 
a distance, and lower medical costs. At the same time, it 
can reduce contact with patients and potential infection. 
Providers in quarantine or isolation can also continue to 
work [82]. One of the main disadvantages of telemedicine 
is that consumers lack awareness of its use, services, and 
costs. In addition, the lack of physical contact between 
patients and doctors also poses challenges when conduct-
ing remote physical examinations. Most countries lack a 
regulatory framework to authorize, integrate, and reim-
burse telemedicine care for all patients, especially in 
emergencies and outbreak situations [83].

When it comes to face-to-face medical consultations, 
the effects of facial coverings by masks can have a signifi-
cant negative impact on patients [84]. The “distance” ef-
fect produced by maintaining social distancing requires a 
louder voice for communication, which in turn may harm 
patient privacy and reduce patient satisfaction [85].

Urological Surgery
Most benign urological surgeries, including surgeries 

for incontinence, benign prostatic hyperplasia, recon-
struction, infertility, erectile dysfunction, and genitouri-
nary prolapse [86], should be postponed until the pan-
demic is over.
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Ficarra et al. [86] and Stensland et al. [87] proposed 
excellent recommendations for urological practice dur-
ing the COVID-19 pandemic. With regard to urinary 
tract obstruction or infection, ureteral stents or neph-
rostomy tubes under local anesthesia should be firstly 
considered. If this is not possible, stents under general 
anesthesia should be the next option. Acute urinary re-
tention can be managed through insertion of a urethral 
or suprapubic catheter under local anesthesia. In cases 
of clot retention due to bladder cancer or PCa, a cysto-
scopic evacuation should be considered and transure-
thral hemostasis of the tumor should be done to avoid 
the need for blood transfusions. Additionally, interven-
tions should only be considered for pediatric urological 
emergencies, such as acute torsion (implement scrotal 
exploration and orchidopexy) and genitourinary ob-
struction (consider a Foley catheter and a suprapubic 
tube). In patients with a genitourinary trauma, surgical 
exploration is recommended only in hemodynamically 
unstable patients [87]; otherwise, procedures that can be 
performed with local anesthesia may be used. Lastly, the 
authors recommend immediate intervention for pa-
tients with refractory priapism (consider shunting), a 
scrotal abscess or Fournier gangrene (consider drainage 
and debridement, respectively), and an infected artifi-
cial urethral sphincter or penile prosthesis (removal of 
the infected device) [86, 87].

Aerosol transmission of COVID-19 cannot be ignored 
because it can survive in the environment for 3 h [88]. 
Because of this, it is recommended to use the lowest intra-
abdominal pressure on the pneumoperitoneum during 
robotic or laparoscopic surgery to reduce the risk of med-
ical staff aerosol infection. Zheng et al. [89] recommend 
using lower power settings on electrocautery since ultra-
sonic scalpels or electrical devices may produce a large 
amount of surgical smoke. Additionally, adequate and 
complete deflation of the pneumoperitoneum may re-
duce the risk of infection. All console surgeons should 
wear goggles or sealed sunshades and carefully disinfect 
the console’s head support between shells. Furthermore, 
it is recommended that endoscopic procedures and ure-
thral catheterization be performed with caution, and sur-
geons should be completely protected against infection if 
the patient has suspected or confirmed COVID-19 [86].

In the latest EAU guidelines [55], there is some guid-
ance on preoperative management, general surgery, and 
surgery for COVID-positive patients during the COVID 
pandemic. For example, in the preoperative stage, pa-
tients with clinical symptoms and/or those who have 
been in contact with COVID-19-positive individuals 

should receive a preoperative COVID-19 test. For pa-
tients without any clinical symptoms and no history of 
contact with COVID-19-positive patients, it is recom-
mended that they undergo a COVID-19 test within 48 h 
before surgery. In general, medical staff should use com-
plete PPE regardless of the patient’s COVID-19 status. 
Patients also need to wear a full set of PPE if they are 
found to be positive for COVID-19. The operation should 
be performed by experienced surgeons and all unneces-
sary personnel should remain outside the operating 
room. Electrocautery devices should be used on reduced 
power settings to decrease the generation of surgical 
smoke. Flushing fluid should be collected through a 
closed system during the urological procedure. Elderly 
patients with comorbidities, even in high-priority cases, 
should be carefully considered for surgery. If a surgical 
patient is diagnosed with COVID-19, a special operating 
room must be prepared.

Organ Transplantation in Urology
Patients with end-stage kidney disease are at a higher 

risk of contracting infectious diseases due to their intrin-
sic fragility caused by their defective immune system [90]. 
Although there is no evidence that COVID-19 is trans-
mitted through organ donations, this cannot be ignored 
because the virus has been detected in approximately 15% 
of patients [91]. The Transplant Association recommends 
COVID-19 testing of donors suspected of having the vi-
rus, coming from endemic areas, or having a history of 
possible contact [92]. Special care should be given solid 
organ transplant recipients as they are usually under 
chronic immunosuppression, which puts them at a high-
er risk of COVID-19 infection. On the other hand, the 
safety of the transplantation team is another concern; 
they can be exposed to transplant recipients who may po-
tentially harbor higher viral loads than that of normal 
contact [91]. Therefore, the transplantation team must be 
cautious in areas with widespread community diffusion 
of COVID-19. In such situations, the US Organ Procure-
ment and Transplantation Network suggests following 
CDC recommendations when evaluating suspected CO-
VID-19 patients (mask the patient, place the patient in an 
isolation room, medical personnel must take airborne 
and contact precautions when contacting the patient, and 
inform the local authorities about the case) [93].

Training for Urologists
The COVID-19 pandemic has influenced residency 

training programs and medical graduate education. Most 
clinical rounds are canceled in many countries. Medical 
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training programs and teaching activities have switched 
to online platforms. For instance, in Singapore, interhos-
pital staff movement among hospitals has been put on 
hold, while residents training in other hospitals will stay 
there indefinitely [94]. However, efforts are being made 
to ensure that these actions do not harm the long-term 
needs of medical trainees. Attention must be focused on 
how the COVID-19 pandemic and its effects, including 
the suspension of all nonemergency elective procedures, 
delay of inpatient examinations, and cessation of clinical 
rounds, may have a stressful impact on residents and stu-
dents [95].

Clinical and Lab-Based Urological Research
During the first stages of the COVID-19 outbreak, 

many researchers focused on researching the treatment 
and prevention of the virus. Currently, there are no ap-
proved therapies or vaccines. Several national and inter-
national research groups are working collaboratively on 
a variety of preventative and therapeutic interventions. 
Some potential antiviral drugs, including nucleoside ana-
logs, chloroquine, and protease inhibitors, are being ur-
gently administered to patients with COVID-19 [3]. 

Favipiravir (T-705) is a guanine analog. A recent 
study suggested that favipiravir is a potential candidate 
for treating COVID-19, showing effective antiviral ac-
tivities in Vero E6 cells [96]. Remdesivir (GS-5734) is an 
adenine analog. Remdesivir has emerged as the most 
promising candidate for the treatment of COVID-19 in-
fection [96]. Both lopinavir and ritonavir are protease 
inhibitors and have been reported to have antiviral ac-
tivities against SARS and MERS [97, 98]. For treatment 
of COVID-19, clinical trials (ChiCTR2000029539) have 
been initiated to test the antiviral activity of these prote-
ase inhibitors in patients [99]. However, the antiviral ef-
ficacy of HIV protease inhibitors in coronavirus prote-
ases is controversial.

Vaccines are the most effective strategy for preventing 
infectious diseases because they are more cost-effective 
than treatments and can reduce morbidity and mortality 
without long-lasting effects. However, there are still no 
approved vaccines for human coronaviruses. Research 
groups around the world are accelerating the develop-
ment of COVID-19 vaccines using various approaches, 
including vaccination based on subunit, DNA, and 
mRNA [100].

Clover Biopharmaceuticals is conducting preclinical 
testing of a recombinant subunit vaccine based on the tri-
meric S protein (S-Trimer) of SARS-CoV-2 [101]. The 
University of Queensland is developing subunit vaccines 

using the “molecular clamp,” a transformative technolo-
gy [102]. Inovio Pharmaceuticals, in collaboration with 
Beijing Advaccine Biotechnology, has started preclinical 
trials for a DNA vaccine (INO-4800) against SARS-
CoV-2 [103]. Moderna, Inc., has started phase I clinical 
trials for mRNA-1273, an mRNA vaccine, encoding the 
viral spike (S) protein of SARS-CoV-2 [104]. 

Conclusions

The COVID-19 pandemic is the biggest modern chal-
lenge facing the global healthcare system. After the pan-
demic, how will COVID-19 transform urological practice 
and research? Due to the limited supply of ventilators, 
manpower, and hospital resources, there is an urgent 
need to establish a new set of systems to meet demands in 
emergencies, such as replacing traditional outpatient ser-
vices with telemedicine, reducing the number of nonnec-
essary operations, and implementing network teaching. 
In relation to urology, it is necessary to strengthen the 
safety training of medical staff. Since exposure to patients 
and bodily fluids presents potential increased risks of vi-
ral transmission, medical staff must be adequately pro-
tected. The concern of renal damage in patients from CO-
VID-19 also requires much attention. Lastly, it is impera-
tive to channel international resources into high-quality 
clinical trials with robust scientific rationale and vigorous 
statistical rigor to overcome this pandemic.
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Abstract: Cancer-related cognitive impairment (CRCI) is a significant comorbidity for cancer patients
and survivors. Physical activity (PA) has been found to be a strong gene modulator that can induce
structural and functional changes in the brain. PA and exercise reduce the risk of cancer development
and progression and has been shown to help in overcoming post-treatment syndromes. Exercise plays
a role in controlling cancer progression through direct effects on cancer metabolism. In this review,
we highlight several priorities for improving studies on CRCI in patients and its underlying potential
metabolic mechanisms.

Keywords: cancer-related cognitive impairment; therapeutic exercise intervention; metabolism;
metabolomics profiling

1. Introduction

From the total global population, 13% are adults 60 years or older, which accounts for approximately
962 million people. This group is predicted to steadily increase in population to 1.4 billion, 2.1 billion,
and 3.1 billion by 2030, 2050, and 2100, respectively [1]. Patients with cognitive impairment (CI)
make up a large number of adults in the 60 years or older population. These patients may experience
difficulties in daily functioning, decision-making, and treatment adherence; thereby, leading to reduced
quality of life (QoL) and decreased survival [2,3]. In an effort to maintain independence in older
adults, focusing on cognitive function is a novel target of concern, since the origins of cognitive decline
may be reversible or even treatable. As a result, understanding cognitive decline in older adults is a
growing field of interest. CI can also lead to increases in caregiver burdens. Prevention of CI in cancer
patients is especially important for older patients, since there have been notable increases in long-term
survival due to new treatments and a resulting growing number of people living with cancer as a
chronic condition. The spectrum of cognitive decline between normal cognitive and mild cognitive
impairment (MCI) to dementia in older adults can range from natural cognitive decline due to age
to atypical cognitive impairment [1]. The prevalence rate in the group of adults older than 60 MCI
showed increasing with age and lower levels of education which is approximately 6.7% to 25.2%, and is
more prevalent in men [4,5].

2. CI in Cancer Patients

Cancer and treatments for it, including chemotherapy, hormone therapy, and radiation therapy,
can have harmful effects on mental processes [6,7]. Previous studies reported a higher incidence of
cognitive dysfunction among cancer patients compared to healthy matched controls. Up to 85% of
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cancer patients receiving treatment have been found to report mild to severe cognitive complaints,
which can last months to even years after finishing treatment [8]. Cancer-related CI (CRCI) can be
classified as subtle, moderate, or severe based on neuropsychological testing. CRCI is the most frequent
complication reported by breast cancer patients [9]. Cognitive complaints have been reported by
more than 50% of breast cancer patients following chemotherapy; however, only 15%–25% of these
patients have shown objective cognitive decline [10]. Demographic and other health factors, such as
age, race, socioeconomic status, education, menopausal status, and body mass index, are also known
to affect cognition in adults [11,12]. Since difficulties in cognitive function have a negative impact
on QoL (autonomy, work balance, relationships, and self-image), there is an urgent need for more
pronounced CRCI management in patients. This has fueled studies on potentially implementing
cognitive rehabilitation for cancer patients [13]. In light of the prevalence and associated individual
burden of CRCI, there is a clear need for strategies to manage CRCI. Currently, there are no established
treatment options to reduce CRCI risk or diminish its severity [14,15]. Furthermore, advancements in
hormone therapy, targeted therapy, and immunotherapy have resulted in greater survival rates for
cancer patients, but at the cost of increased potential cognitive impacts [16].

The precise mechanisms underlying the pathophysiology of CRCI are unclear. Demographic
factors, including age, race, socioeconomic status, and education, as well as menopausal status,
health status, and body mass index, are also known to affect cognition in adults. In light of the
prevalence and associated individual burden of CRCI, there is a clear need for strategies to manage
CRCI. Currently, no established treatment options exist to reduce the risk of CRCI or diminish its
severity. Campbell et al., performed a systematic analysis of 29 randomized controlled trials (RCTs) to
better understand the relationship of exercise with CRCI. In 12 of these trials (41%) (Cohen d range:
0.24–1.14), they found that exercise had a significant effect on self-reported cognitive function during
and after chemotherapy. These 12 trials used the EORTC QLQ-C30 exam for cognitive functioning.
In 10 other trials (34%), neuropsychological testing was used to evaluate cognitive functioning;
however, only 3 of these trials in breast cancer reported significant benefits from exercise (Cohen d
range: 0.41–1.47) [17].

Another study by Witlox et al. found that physical exercise had positive effects in healthy older
adults and those with mild cognitive impairment. They recruited 180 breast cancer patients with
cognitive issues 2–4 years after their diagnosis with cancer and randomized them (1:1) into two groups;
exercise intervention and control. The exercise intervention group underwent a 6-month course of
twice weekly 1 h supervised aerobic and strength-training exercises with twice weekly 1 h power
walking. They concluded that physical exercise improves cognitive functioning for breast cancer
survivors [18].

To better understand CRCI’s pathophysiology and the direct impact of different cancer treatments,
animal models have been developed [19].

3. Biological Drivers of CRCI

Evidence from clinical and pre-clinical research suggests that many mechanisms play a role
in the development of CRCI, including inflammation [20,21]. Inflammation is an important
mechanism underlying cognitive impairment, especially in the elderly. Accumulating evidence
has linked inflammation to cognitive decline and the risk of dementia [22]. Chemotherapy-induced
pro-inflammatory cytokines levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α),
and IL-10 in cancer patients have been related to possible CI [23,24]. A large multicentered cohort
study conducted in Singapore found that among proinflammatory plasma cytokines—including
IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, interferon-γ,
and TNF-α—elevated IL-1β and IL-6 were associated with greater self-reported cognitive impairments
(p = 0.018 and 0.001, respectively) [25]. However, the effects of cytokines in post-chemotherapy
cognitive impairment remains in controversy; other studies have published conflicting results about
the relationship between cytokine concentration and cognition [26,27]. Nonsteroidal anti-inflammatory
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drugs (NSAIDs) have often been administered as a preventative measure against Alzheimer’s
disease (AD). The mechanism of action is believed to be through blockage of cyclo-oxygenase
isoforms (e.g., COX-1 and COX-2). NSAIDs have neurotoxic and neuroprotective effects with diverse
impacts on mechanisms that may influence cognitive impairment, including inflammation, release of
neurotransmitters, synaptic plasticity, cerebral ischemia, and functioning of cerebral endothelial and
smooth muscle [28].

Oxidative stress and its associated damage in the age-dependent cognitive loss has been previously
highlighted [29]. Chemotherapy-induced oxidative stress-mediated TNF-α triggers inducible nitric
oxide synthase (iNOS) production [30]. Apolipoprotein A-I (ApoA1) is possibly one of the key factors
in oxidative stress and pro-inflammatory cytokine mediated CRCI. Oxidation and down-regulated
expression of ApoA1 were found in a number of neurodegenerative diseases with cognitive deficits,
such as Alzheimer’s and Parkinson’s Diseases [31]. Administration of vitamin E ameliorated memory
deficit. Vitamin E-deficient rats showed decreased learning as well as memory retention ability,
whereas younger rats supplemented with vitamin E displayed accelerated learning and capabilities.
This could be that learning ability declined gradually with age due to chronic exposure to oxidative
stress [32]. The association of DNA damage with aging is well-studied [33]. DNA lesions are
accumulated in the brain during AD. Elevations in γH2AX, a well-established marker of double-strand
breaks (DSB) [34], were detected in 11 of 13 AD brains in the astrocytes of the hippocampus and cerebral
cortex [35]. Studies on two independent cohorts (n = 13 and n = 23) found significant increases of
γH2AX in the astrocytes and neurons of the hippocampus and frontal cortex of AD brains; this increase
was found in brains with MCI as well [36]. Other factors include reduced synaptic plasticity, altered
growth factor levels, and impaired hippocampal neurogenesis [37–39].

4. The Interrelationship between CRCI and Alterations in Metabolism

In addition to powering live systems, metabolism is a complex phenomenon that is tightly linked to
signaling pathways, post-translational modifications, and gene expression. In general, metabolism acts
as a cellular rheostat [40]. Metabolism supports a variety of normal cell functions, including breakdown
of carbohydrates, fats, and amino acids to generate energy and biosynthetic precursors needed for
growth [41]. The fundamental features of metabolism are reprogrammed in cancer cells to support
their aberrant growth and proliferation. This change in functioning is likely the result of genomic
alterations (i.e., mutations in oncogenes and tumor suppressor genes), tumor microenvironment
(compromised nutrients and oxygen availability), and other factors [42]. Metabolic alterations are a
hallmark of cancer [43]. These changes favor rapidly dividing cells, inhibit the prevention of tumor
initiation, and attenuates proliferation and metastasis [44]. In order to better understand cancer-specific
metabolism, a systemic application of analytical techniques that can assess metabolic levels is needed.

Metabolomics combines high-throughput analysis with bioinformatics and aims to
comprehensively analyze all metabolites in a given biological sample. Over the past 20 years,
incredible advancements have been made in metabolomics. This has propelled its evolution into
becoming a powerful tool in medicine and science, especially in the study of disease-related biomarkers,
toxicology, and molecular mechanisms. Metabolomics can also provide greater detailed information
regarding human biochemistry [45,46]. Metabolomics is commonly applied to discover diagnostic,
prognostic, or therapeutic biomarkers [47]. For instance, early metabolomic experiments in breast
cancer patients lead to the identification of positive associations between choline, glycine, and lactate
with tumor grade and size [48]. Similar work has now been done in ovarian [49], prostate [50],
and various other cancers. Since the efforts of metabolomics-based biomarker discovery have been well
summarized in previously published review papers as described above, we will not further discuss the
topic in this article.

Since its first observation 90 years ago by Dr. Otto Warburg, one of the hallmarks in cancer biology
is the metabolic reprogramming such as high rates of aerobic glycolysis [51–54]. Cancer-associated
metabolic alteration has been reported in many types of cancers. Amino acids, such as arginine, proline,
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glutamine, and creatine, play important roles as substrates and protein synthesis in cancer cells and they
have been widely studied in cancer metabolism. Specific metabolic pathways altered by cancer have
also been reported, which provide therapeutical strategies. Metabolic reprogramming is considered
for regimens an exploited for cancer therapy. Amino acid depletion therapies are being tested
against several cancer types [55,56]. For example, metformin, an inhibitory drug of mitochondrial
metabolism, has been suggested to have a synergistic effect when used with chemotherapies by
inhibiting proliferation of cancer cells [57,58].

Doxorubicin (DOX) is a widely used antitumor agent for the treatment of a series of cancer types.
However, DOX shows cytotoxicity to noncancer cells such as heart, skeletal muscle, liver, and kidney
cells, leading to adverse effect. Recently, exercise is reported to show a beneficial adaptation to reduce
the DOX-induced cellular toxicity [59]. However, the mechanisms underlying the exercise-induced
protection against DOX cytotoxicity are not clear. Exercise has another benefit, reducing cognitive
impairment. Brain-derived neurotrophic factor (BDNF), a key mediator of cognitive impairment
in Alzheimer’s dementia. A recent finding suggested that exercise-induced expression of BDNF,
suggesting the potential mechanism of exercise benefit to increase cognitive function [60].

Prior studies have also provided essential information on the occurrence and association of
metabolic alterations and cognitive impairment in humans. However, they have not established the
molecular mechanisms behind these relationships, nor the therapeutic window that would allow for
treatment before irreversible damage occurs in both systemic functionality and cognitive skills.

Different lifestyle factors are involved in the arise of diseases which may also lead increasing the
risk of developing AD. Lifestyle factors are increasingly being recognized for their role in figuring
out cognitive impairment, or the lack thereof, with age. Participation in recreational physical activity
(PA) has been shown to be inversely related to the prevalence of age-related cognitive decline and
dementia [61]. Independent studies have repeatedly shown that PA reduces cognitive decline in older
age groups [62]. Similarly, several studies have also shown that due to the limited use of diet or diet
restraint is resulted with the maintenance of cognitive function later in life [63].

Omega-3 fatty acids and antioxidants are specific dietary components which preserves cognitive
function. Daily intake of these components works well for the eighth decade of life [64]. Glucose and
insulin metabolism are key metabolic pathways and represents a metabolic spectrum with clinical
thresholds for prediabetes and diabetes mellitus. Further increases in fasting glucose, with concomitant
impairment of both glucose and insulin metabolism, are hallmarks of type 2 diabetes. Obesity is a known
significant risk factor of AD progression for both prediabetes and diabetes [63]. Possible mechanisms
underlying metabolic reserves in MCI and AD involve direct roles for insulin [65], insulin-like growth
factors [66], and neurotrophic factors [67], as well as pathological changes in glucose metabolism and
protein glycosylation [68]. Other components of the hormonal milieu include adipocyte cytokine
leptin [69].

5. Role of Exercise in CRCI

According to the World Health Organization’s definition, any bodily movement that involved
skeletal muscles by utilizing energy is called PA; whereas, well planned, structured, repetitive,
and intentional movement known as exercise, which is a subcategory of PA. Most observational studies
assess PA rather than exercise. Based on multiple meta-analyses, physical exercise is known to be
crucial for maintaining general health [70,71]. Exercise helps maintain body weight and reduces stress.
People who regularly exercise are less likely to smoke tobacco or overeat. Moreover, exercise directly
targets the primary aspects of health, including heart function, cholesterol, triglycerides, blood pressure,
and brain function. It has been shown that regular exercise leads to enhanced maximal oxygen uptake
and increases the mean lifespan of laboratory animals and humans [72]. Exercise is known to impact
almost every system in the body. Benefits include improved cardiovascular health, greater bone
mineral density (BMD), and decreased risk of cancer, stroke, diabetes, and cognitive impairment.
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Exercise is an established safe and effective therapy for managing numerous adverse effects of
cancer treatment, including fatigue, psychological distress, functional decline, and detrimental body
composition changes [73]. Accumulating evidence on the positive role of exercise on improving
cognitive function in healthy older adults and those with mild cognitive impairment or more severe
neurocognitive impairment (i.e., AD, stroke) has sparked significant interest in the potential use
of exercise as an effective management strategy for CRCI [74–76]. A variety of evidence supports
the conclusion that exercise link to cancer which could lower the risk of different cancers including
colon, breast, kidney, endometrial, bladder, esophageal, and stomach cancers, with moderate evidence
for lung cancer. The Physical Activity Guidelines Advisory Committee determined and vigorously
appreciated the conclusion [77].

Unfortunately, due to limited preclinical studies and testing of the antitumor activity of exercise
is restricted. So far, only 53 studies were reported in vivo preclinical testing to assess the activity of
various exercise paradigms on tumor incidence, growth, or metastasis; 35 of these studies positively
reported that exercise inhibited cancer growth or progression [78]. More recently, higher-quality studies
have demonstrated that paradigms of PA showed a link between exercise and epinephrine, and IL-6 to
NK cell mobilization and redistribution; both of which ultimately control tumor growth [79].

Benefits of exercise were particularly noted on self-reported cognitive function in women with
breast cancer [80]. RCTs have suggested that people should adopt PA and exercise to alleviate the
negative impacts of aging on cognitive function. Through a meta-analysis, Heyn P. et al. found that PA
and exercise had positive effects on cognition among those with cognitive decline [80].

6. The Effects of Exercise on Cancer Metabolism and Its Associated Signaling Pathways

The role of PA and exercise in the whole process of cancer from prevention to post-treatment
has been extensively studied [70,81]. There is ample evidence suggesting regular PA to be related to
a reduced risk for various forms of cancer [82]. Exercising at varying intensities has been found to
have remarkable effects on physiologic and gene expression adaptations in mammals [83]. The role of
exercise has surprisingly received little to no attention in high-risk individuals. However, recently,
a larger number of groups are investigating the effects of PA and exercise on cancer; a field now called
“exercise-oncology” [84]. In cancer patients, exercise is now well-documented to be a tolerable adjunct
therapy associated with significant benefits across a wide range of symptoms [85].

Intratumoral signaling networks are highly modifiable and modulated by numerous extrinsic
factors [86]. Vulczak et al. demonstrated that the mitochondrial activity of tumor cells in animals
that exercised was lower in comparison to the tumor cells of sedentary animals, with a significant
decrease in the electron transport chain capacity (E). This demonstrates lower respiratory capacity
independent of mitochondrial content, measured by citrate synthase (CS) activity [87]. Kynurenine
(KYN), a catabolite of the amino acid tryptophan (TRP), was found to be associated with progression
and poor clinical outcome in numerous cancer types [88]. Zimmer et al. and his team investigated
the influence of resistance exercise on the KYN pathway in breast cancer patients. They showed the
potential exercise-induced modulation of KYN pathway metabolites in the serum and urine of healthy
women and breast cancer patients undergoing radiotherapy [89]. The Akt/mTOR pathway is central
for controlling growth and protein synthesis and plays a pivotal role in the muscular response to
resistance training [90]. Thompson et al. reviewed several preclinical studies highlighting how the
Akt/mTOR pathway is differentially regulated with exercise in many tumor types [91].

7. Conclusions

In conclusion, current evidence suggests that physical exercise shows much promise in improving
cognitive impairment among cancer patients and survivors. Exercise also shows much influence on
cancer incidence, lowers the risk of recurrence, and secures longer higher quality life for patients.
Most of cancer patients expressed their preferences in the therapeutic potential of exercise over
chemotherapeutics; this strategy may potentially alter disease pathogenesis and symptoms without the
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adverse effects of conventional pharmacological agents. The positive effects of exercise are evident in
large epidemiological studies, as well as controlled laboratory studies. Moreover, exercise inhibits tumor
growth across cancers and at all stages of tumor development. Given these findings, future research
needs to consider the type of measurements used to measure CRCI, which will further improve
patient care and lead to the development of targeted therapies, preventative strategies, and cognitive
rehabilitation treatment.
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Introduction

On March 11, 2020, severe acute respiratory syndrome-
coronavirus-2 (SARS-Cov-2), which causes the COVID-19 
infection, was officially declared as a pandemic by the 
World Health Organization (WHO). As of June 1, 2020, 
more than 6.26 million people have been infected and more 
than 380,000 lives have been lost worldwide. The mortality 
rate of COVID-19 differs across countries, possibly due 

to differences in testing capacity, demographics, and 
other factors (1). Because COVID-19 can spread through 
asymptomatic patients, the number of confirmed cases is 
also in continual flux (2).

The U.S. reported its first confirmed COVID-19 case 
in the state of Washington. This individual had previously 
traveled to Wuhan, China in early January 2020 (3). 
Gradual increases in confirmed cases slowly rose in the U.S., 
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with the first COVID-19 death reported on February 29, 
2020. Even with efforts to reduce spread, such as closing 
schools and preventing gatherings, the U.S. eventually 
had the most confirmed cases of COVID-19 globally, with 
140,000 in March 29, 2020 (4). As of June 1, 2020, there are 
more than 1.79 million confirmed cases in the U.S., which 
accounts for almost a third of cases worldwide (5).

Fortunately, although there are consistently newly 
confirmed cases daily, the rate appears to be declining in 
some parts of the U.S. (5) However, most public health 
experts anticipate a second wave in the fall of 2020 (6-8). 
Since there are currently no effective therapies or vaccines 
available, the only way to prevent or mitigate a second wave 
is to take necessary precautions, such as social distancing 
and frequent hand-washing (9). The goal of this review 
paper is to provide an overview of trending diagnostic 
kits and smartphone applications against COVID-19. To 
this end, we searched databases and literatures available 
using keywords such as COVID-19, diagnostic kits, and 
smartphone applications. This narrative review article 
will summarize presently available methods for mitigating 
spread. Since South Korea is an established outstanding 
example of a country managing the COVID-19 pandemic 
well, the diagnostic kits and applications being widely used 
in that country will also be discussed.

The authors present the following article in accordance 
with the Narrative Review reporting checklist (available at 
http://dx.doi.org/10.21037/tau-20-1042).

COVID-19 diagnostic tests

To cope with the COVID-19 pandemic, diagnostic test kits 
are being evolved rapidly all over the world. Diagnostic tests 
can be categorized based on the analytes being measured, 
such as molecules or antibody. A molecular test detects 
certain genes, proteins, or molecules in a sample while an 
antibody test searches for virus-matched antibodies in the 
blood.

In relation to COVID-19, most molecular diagnostic 
tests look for the COVID-19 N gene or RdRP gene; 
whereas diagnostic antibody tests look for IgG or IgM 
antibodies (10-13). Figure 1 shows the levels of analytes over 
time in samples from COVID-19-positive patients after 
infection. Once SARS-CoV-2 enters the human body, only 
the viral ribonucleic acid (RNA) can be detected for the 
first several days after infection. The viral load continues 
to increase until day 5 or 6. Around day 7, the viral RNA 
load starts to decrease; however, detection can be done until 
day 13 or 14 (14). The IgM antibody response is normally 
elicited 5 days after the initial onset of symptoms and hits 
peak levels around day 9. It is detectable until days 14–21. 
The IgG antibody rises after 14 days and generally peaks 
around or after clinical recovery, which 28–35 days after 
infection (15,16).

Based on the characteristics of the detected target, 
different COVID-19 tests kits have optimal periods of 
use. Molecular tests, which detect viral RNA directly, can 
diagnose COVID-19 within the early stages of the disease, 
before symptoms and antibodies form; thereby, making 
it ideal as a primary diagnostic tool (17,18). On the other 
hand, antibody tests can be used as a subsidiary diagnostic 
tool and is ideal for research purposes; it can be used to 
track potential asymptomatic patients and discover new 
findings behind immunity against SARS-CoV-2 (19). 
Diagnostic tests start with the collection of samples, such as 
blood or swabs collected from the throat. The presence of 
target analytes is then tested for in the samples and attained 
data is analyzed to determine whether or not the person is 
positive for COVID-19.

Molecular test

Molecular diagnostic tests usually utilize reverse transcription 

Figure 1 Changes in analyte levels following COVID-19 infection. 
Infection with SARS-CoV-2 leads to a building increase in viral 
mRNA, which peaks around 5-7 days after infection. This mRNA 
load begins to decrease after but is detectable up until day 14. As 
the viral mRNA starts to taper off, the patient’s body begins to 
produce antibodies against the virus. The IgM antibody starts to 
build 5 days after the onset of symptoms and peaks around 9 days  
after infection. The IgG antibody is produced 14 days after 
infection and continues to build for a prolonged period of time, 
approximately 35 days. SARS-CoV-2, severe acute respiratory 
syndrome-coronavirus-2.
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polymerase chain reaction (RT-PCR) or reverse transcription 
loop-mediated isothermal amplification (RT-LAMP). RT-
PCR takes around 90–120 minutes to complete, while RT-
LAMP can be done in 30 minutes. Successful detection 
of SARS-CoV-2 in these two methods depends on the 
design of primers that bind specifically to the viral RNA 
and its fragments. Most molecular diagnostic tests for 
COVID-19 use the RT-PCR technique. Figure 2 shows an 
example workflow for a RT-PCR COVID-19 diagnostic 
test. The first step involves collecting sputum or bronchial 
fluid samples from the upper or lower respiratory tract  
(Figure 2A). Upper respiratory sources are preferred due 
to its ease. As of April 29, 2020, the Centers for Disease 
Control and Prevention (CDC) recommends collecting 
samples from the nasopharynx (NP) rather than the 
oropharynx (OP) (20). It is extremely important to collect 

samples as instructed by trained professionals in order to 
avoid false results (21).

With the collected sample, RNA is extracted using 
guanidinium thiocyanate-phenol-chloroform. After 
extraction, the sample is ready for RT-PCR, which detects 
specific SARS-CoV-2 mRNA (Figure 2B). RT synthesizes 
complementary deoxyribonucleic acid (cDNA) from 
RNA, while PCR amplifies the target cDNA. RT must 
be performed together (one-step) or before (two-step) 
PCR. From the amplification process, a fluorescent signal 
is emitted from sequence-specific probes or fluorescent 
dye, which can then be quantified using electronics or the 
naked eye. RT-PCR is the gold standard for detecting 
COVID-19 due to its high accuracy. However, the 
sensitivity of kits varies depending on the manufacturer and 
instruments used. Low sensitivity can lead to false negatives. 

Figure 2 Example workflow for a one-step RT-PCR COVID-19 diagnostic test. (A) Collection of the sample from either the nasopharynx 
(upper respiratory) or oropharynx (lower respiratory) using a cotton swab. (B) Overview of RT-PCR. The mRNA is extracted from the 
sample and a primer attaches to the sequence of interest with reverse transcriptase. Sequence-specific probes that are conjugated with either 
fluorescence or color attaches and this process is amplified, leading to a detectable signal. (C) Analysis of results. A threshold for the signal 
intensity is established and if the fluorescence passes that threshold, then the patient is considered positive for COVID-19. RT-PCR, reverse 
transcription polymerase chain reaction.
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Additionally, training must be given in order to ensure that 
samples are collected and processed properly, which can 
make RT-PCR very labor-intensive. Furthermore, RT-PCR 
requires expensive equipment for proper processing (22,23)  
(Figure 2C).

Antibody test

Also known as a serological test, antibody detection is 
another test type to determine COVID-19 infection. 
This test can show whether a person is currently infected 
or has been infected. Unlike, RT-PCR, antibody type 
tests are currently not approved for use as a diagnostic 
tool but only for research. The antibody test has two 
process types, cassette-based and lab-based. The cassette-
based assay includes either a lateral flow assay (LFA) or 
chemiluminescence immunoassay (CLIA) while the lab-
based has an enzyme linked immunoabsorbent assay 
(ELISA), microsphere immunoassay (MIA), etc. LFA, the 
most common cassette-based assay, takes 10–30 minutes 
to complete and examines the presence of antibodies in 
serum. ELISA, on the other hand, is the most common 
lab-based assay, takes 2–5 hours to complete, and provides 
quantification of antibodies. Lab-based tests have several 
advantages over cassette-based systems because they 
utilize sensitive laboratory instruments and controlled test 
environments. However, cassette-based tests have their own 
advantages as well, including ease, quick response times, 
and cost-efficiency (24,25).

The principle behind LFA is simple: antigen-antibody 
binding affinity (26). Figure 3 explains the basic procedure 
of a LFA-based COVID-19 diagnostic test kit. First, fluid 
sample is applied to a sample pad. This then migrates to the 
conjugate release pad, which contains antigens for either 
SARS-CoV-2 or control antibodies. These antigens are 
conjugated to colored or fluorescent particles for indication. 
Once the fluid reaches the conjugate release pad, if present, 
IgG and IgM antibodies from the fluid bind to the SARS-
CoV-2 antigen conjugates. Then, the fluid moves to the 
test line, which has antibodies for target detection. If the 
migrating fluid contains the target antibodies, color or 
fluorescence develops to indicate the results, as shown in 
Figure 3 (right). The control line is used to verify proper 
fluid flow and contains anti-rabbit IgG antigens to capture 
the rabbit IgG conjugate antibodies from the release pad. If 
the control line does not show positive, the results should 
not be trusted. The results of the LFA test kit should be 
analyzed as indicated from the supplier (16).

Diagnostic kits widely used in the U.S.

On January 31, 2020, the Secretary of Health and Human 
Services (HHS) declared a public health emergency 
recognizing the potential threat of SARS-CoV-2. The 
Federal Drug Administration (FDA) issued an emergency 
use authorization (EUA) to enable emergency use of 
the CDC 2019-nCoV Real-Time RT-PCR Diagnostic 
Panel, which was the first U.S. diagnostic kit. The FDA 
immediately issued a guidance policy specific to COVID-19 
diagnostic kits on February 29, 2020 (27,28).

To be authorized for use by the FDA under EUA 
condit ions,  the performance of  test  kits  must  be  
verified (29). For molecular tests, analytical performance 
(limit of detection, reactivity/inclusivity results, specificity/
exclusivity, etc.) and clinical performance should be clearly 
stated. The performance of antibody tests can be defined 
with sensitivity (PPA) and specificity (NPA). Currently, 
all FDA EUA issued molecular tests have more than 95% 
accuracy above the limit of detection. Present antibody tests 
show around 90% PPA and NPA (20). So far, more than 
17,612,125 tests have been conducted and approximately 
9.8% of total tests have been confirmed positive for 
COVID-19 in the U.S. (5). As of June 1, 2020, the FDA has 
approved 86 COVID-19 diagnostic kits (Table 1) (29).

Diagnostic kits widely used in South Korea

On January 20, 2020, the same day that the U.S. reported 
its first COVID-19 case, South Korea confirmed their own 
first COVID-19 patient. Within 2 weeks, South Korea 
approved its first diagnostic kit, the PowerCheckTM2019-
nCoV. In order to be authorized for use, COVID-19 
diagnostic kits in South Korea must have defined limit of 
blank (LDB), limit of detection, limit of quantification 
(LoQ), strain reactivity, cross-reactivity, repeatability, cross-
contamination, and clinical performance (30). As of June 
1st, 2020, 6 molecular type tests have been approved for 
domestic use (Table 2). All of the approved diagnostic test 
kits have more than 90% accuracy (31). So far, South Korea 
has conducted 921,391 tests, of which 1.2% have been 
confirmed to be positive for COVID-19 (5).

Diagnostic kits widely used in China

SARS-CoV-2 has caused a great concern for public health 
and governance. The WHO held a meeting on January 
30, 2020 to declare the outbreak of coronavirus in China 
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as a public health emergency of international concern. 
After the outbreak of the virus, the Chinese government 
issued a series of effective anti-epidemic measures, and 
the international community recognized that China has 
made great progress in effectively responding epidemics. 
As a result, there are many lessons to be learned from the 
experiences of epidemic control in China. For example, 
many Chinese medical and biotechnology companies 
immediately funneled resources into developing COVID-19 
test kits. Initially, test results could be generated within 6 
hours; however, now the shortest tests can be done within 
15 minutes. This has been incredibly useful for screening, 
early diagnosis, treatment, and post-treatment analysis.

As of March 27, 2020, the National Medical Products 
Administration (NMPA), which is the Chinese governmental 
agency responsible for regulating drugs and medical devices, 

has approved 15 nucleic acid reagent test kits and 8 antibody 
reagent test kits. See Table 3 for details.

Tracing person-to-person contact: current usage 
of smartphone applications

COVID-19 is a respiratory illness, which makes it highly 
contagious. SARS-CoV-2 can be transferred from person 
to person mainly through respiratory droplets. One of the 
biggest challenges to slowing down the spread of COVID-19 
is the prevalence of asymptomatic patients who are unaware 
that they are carriers. As a result, enforcing isolation of 
COVID-19 patients and recommending self-quarantine 
for those who may have been in contact for 14 days  
is required (32). Contact tracing plays an essential role in 
determining who should be isolated or quarantined (33).  

Figure 3 Example of an LFA-based COVID-19 diagnostic test (A) Inside structure of LFA-based COVID-19 diagnostic test Kit (left). 
Unused test kit result (right). The kit detects the antibodies (IgG, IgM) derived from COVID-19 in the sample. (B) Antigen-antibody 
binding affinity of test kit with COVID-19 Positive patient’s sample (left). Test kit result of COVID-19 positive patient (right). LFA, lateral 
flow assay.
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Table 1 List of U.S. COVID-19 diagnostic kits approved by the FDA under EUA

No. Product name Company name Instruction for use

1 1copy COVID-19 qPCR Multi Kit (PCR) 1 drop Inc. https://www.fda.gov/media/137935/download

2 ID NOW COVID-19 (Near) Abbott Diagnostics 
Scarborough, Inc.

https://www.fda.gov/media/136525/download

3 SARS-CoV-2 IgG assay (CLIA) Abbott Laboratories Inc. https://www.fda.gov/media/137383/download

4 Abbott RealTime SARS-CoV-2 assay (PCR) Abbott Molecular https://www.fda.gov/media/136258/download

5 Alinity m SARS-CoV-2 assay (PCR) Abbott Molecular Inc. https://www.fda.gov/media/137979/download

6 RealStar SARS-CoV02 RT-PCR Kits 
U.S. (PCR)

Altona Diagnostics GmbH https://www.fda.gov/media/137252/download

7 Linea COVID-19 Assay Kit (PCR) Applied DNA Sciences, Inc. https://www.fda.gov/media/138059/download

8 Assurance SARS-CoV-2 Panel (PCR) Assurance Scientific Laboratories https://www.fda.gov/media/138154/download

9 iAMP COVID-19 Detection Kit (LAMP) Atila BioSystems, Inc. https://www.fda.gov/media/136870/download

10 Anti-SARS-CoV-2 Rapid Test (LFA) Autobio Diagnostics Co. Ltd. https://www.fda.gov/media/137367/download

11 AvellinoCoV2 test (PCR) Avellino Lab USA, Inc. https://www.fda.gov/media/136453/download

12 BD SARS-CoV-2Reagents for BD MAX 
System (PCR)

Becton, Dickinson & Company https://www.fda.gov/media/136816/download

13 BioGX SARS-CoV-2 Reagents for BD MAX 
System (PCR)

Becton, Dickinson & Company (BD) https://www.fda.gov/media/136653/download

14 Real-Time Fluorescent RT-PCR Kit for 
Detecting SARS-CoV-2 (PCR)

BGI Genomics Co. Ltd https://www.fda.gov/media/136472/download

15 BioCore 2019-nCoV Real Time PCR 
Kit (PCR)

BioCore Co., Ltd. https://www.fda.gov/media/138290/download

16 BioFire COVID-19 Test (PCR) BioFire Defense, LLC https://www.fda.gov/media/136353/download

17 BioFire Respiratory Panel 2.1 (RP2.1) (PCR) BioFire Diagnostics, LLC https://www.fda.gov/media/137583/download

18 SARS-COV-2 R-GENE (PCR) BioMérieux SA https://www.fda.gov/media/137742/download

19 Platelia SARS-CoV-2 Total Ab assay (EIA) Bio-Rad Laboratories, Inc https://www.fda.gov/media/137493/download

20 Bio-Rad SARS-CoV-2 ddPCR Test (ddPCR) Bio-Rad Laboratories, Inc https://www.fda.gov/media/137579/download

21 qSARS-CoV-2 IgG/IgM Rapid Test (LFA) Cellex Inc. https://www.fda.gov/media/136625/download

22 CDC 2019-nCoV Real-Time RT-PCR 
Diagnostic Panel (CDC) (PCR)

Centers for Disease Control and 
Prevention's (CDC)

https://www.fda.gov/media/134922/download

23 Xpert Xpress SARS-CoV-2 test (POC-PCR) Cepheid https://www.fda.gov/media/136314/download

24 DPP COVID-19 IgM/IgG System (LFA) Chembio Diagnostic System, Inc https://www.fda.gov/media/136963/download

25 Logix Smart Coronavirus Disease 2019 
(COVID-19) Kit (PCR)

Co-Diagnostics, Inc. https://www.fda.gov/media/136687/download

26 Hymon SARS-CoV-2 Test Kit (PCR) dba SpectronRx https://www.fda.gov/media/138345/download

27 QuantiVirus SARS-CoV-2 Test kit (PCR) DiaCarta, Inc https://www.fda.gov/media/136809/download

28 LIAISON SARS-CoV-2 S1/S2 IgG DiaSorin Inc. https://www.fda.gov/media/137359/download

29 Simplexa COVID-19 Direct assay (PCR) DiaSorin Molecular LLC https://www.fda.gov/media/136286/download

30 Anti-SARS-CoV-2 ELISA (IgG) (ELISA) EUROIMMUN US Inc. https://www.fda.gov/media/137609/download

Table 1 (continued)

https://www.fda.gov/media/137934/download
https://www.fda.gov/media/136522/download
https://www.fda.gov/media/137384/download
https://www.fda.gov/media/136255/download
https://www.fda.gov/media/137980/download
https://www.fda.gov/media/137257/download
https://www.fda.gov/media/137257/download
https://www.fda.gov/media/138060/download
https://www.fda.gov/media/138151/download
https://www.fda.gov/media/136872/download
https://www.fda.gov/media/137364/download
https://www.fda.gov/media/136450/download
https://www.fda.gov/media/136813/download
https://www.fda.gov/media/136813/download
https://www.fda.gov/media/136650/download
https://www.fda.gov/media/136650/download
https://www.fda.gov/media/136473/download
https://www.fda.gov/media/136473/download
https://www.fda.gov/media/138292/download
https://www.fda.gov/media/138292/download
https://www.fda.gov/media/136356/download
https://www.fda.gov/media/137580/download
https://www.fda.gov/media/137743/download
https://www.fda.gov/media/137494/download
https://www.fda.gov/media/137576/download
https://www.fda.gov/media/136622/download
https://www.fda.gov/media/134919/download
https://www.fda.gov/media/134919/download
https://www.fda.gov/media/136316/download
https://www.fda.gov/media/136965/download
https://www.fda.gov/media/136684/download
https://www.fda.gov/media/136684/download
https://www.fda.gov/media/138343/download
https://www.fda.gov/media/136806/download
https://www.fda.gov/media/137356/download
https://www.fda.gov/media/136288/download
https://www.fda.gov/media/137606/download
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Table 1 (continued)

No. Product name Company name Instruction for use

31 Everlywell COVID-19 Test Home Collection 
Kit (PCR)

Everlywell, Inc. https://www.fda.gov/media/138146/download

32 FTD SARS-CoV-2 (PCR) Fast Track Diagnostics Luxembourg 
S.á.r.l. (a Siemens Healthineers 
Company)

https://www.fda.gov/media/137690/download

33 Fosun COVID-19 RT-PCR Detection  
Kit (PCR)

Fosun Pharma USA Inc. https://www.fda.gov/media/137120/download

34 Fulgent COVID-19 by RT-PCR Test (PCR) Fulgent Therapeutics, LLC https://www.fda.gov/media/138150/download

35 NeoPlex COVID-19 Detection Kit (PCR) GeneMatrix, Inc. https://www.fda.gov/media/138100/download

36 ePlex SARS-CoV-2 Test (PCR) GenMark Diagnostics, Inc. https://www.fda.gov/media/136282/download

37 GS™ COVID-19 RT-PCR KIT (PCR) GenoSensor, LLC https://www.fda.gov/media/137093/download

38 Gnomegen COVID-19 RT-Digital PCR 
Detection Kit (PCR)

Gnomegen LLC https://www.fda.gov/media/136738/download

39 Gnomegen COVID-19-RT-qPCR Detection 
Kit (PCR)

Gnomegen LLC https://www.fda.gov/media/137895/download

40 Gravity Diagnostics COVID-19 Assay (PCR) Gravity Diagnostics, LLC https://www.fda.gov/media/138530/download

41 COVID-19 IgG/IgM Rapid Test Cassette 
(Whole Blood/Serum/Plasma) (LFA)

Healgen Scientific LLC https://www.fda.gov/media/138438/download

42 Panther Fusion SARS-CoV-2 Assay (PCR) Hologic, Inc. https://www.fda.gov/media/136156/download

43 Aptima SARS-CoV-2 assay (PCR) Hologic, Inc. https://www.fda.gov/media/138096/download

44 Smart Detect SARS-CoV-2 rRT-PCR  
Kit (PCR)

InBios International, Inc https://www.fda.gov/media/136786/download

45 COV-19 IDx assay (PCR) Ipsum Diagnostics, LLC https://www.fda.gov/media/136621/download

46 Curative-Korva SARS-Cov-2 Assay (PCR) KorvaLabs Inc. https://www.fda.gov/media/137089/download

47 LabGun COVID-19 RT-PCR Kit (PCR) LabGenomics Co., Ltd. https://www.fda.gov/media/137483/download

48 COVID-19 RT-PCR Test (PCR) Laboratory Corporation of America 
(LabCorp)

https://www.fda.gov/media/136151/download

49 ARIES SARS-CoV-2 Assay (PCR) Luminex Corporation https://www.fda.gov/media/136693/download

50 NxTAG CoV Extended Panel Assay (PCR) Luminex Molecular Diagnostics, Inc. https://www.fda.gov/media/136500/download

51 SARS-CoV-2 Fluorescent PCR Kit (PCR) Maccura Biotechnology (USA) LLC https://www.fda.gov/media/137026/download

52 Accula SARS-Cov-2 Test (PCR) Mesa Biotech Inc. https://www.fda.gov/media/136355/download

53 COVID-19 ELISA IgG Antibody Test (ELSIA) Mount Sinai Laboratory https://www.fda.gov/media/137029/download

54 NeuMoDx SARS-CoV-2 Assay (PCR) NeuMoDx Molecular, Inc. https://www.fda.gov/media/136565/download

55 OPTI SARS-CoV-2 RT PCR Test (PCR) OPTI Medical Systems, Inc. https://www.fda.gov/media/137739/download

56 VITROS Immunodiagnostic Products Anti-
SARS-CoV-2 Total Reagent Pack (CLIA)

Ortho Clinical Diagnostics, Inc. https://www.fda.gov/media/136967/download

57 VITROS Immunodiagnostic Products Anti-
SARS-CoV-2 IgG Reagent Pack (CLIA)

Ortho-Clinical Diagnostics, Inc. https://www.fda.gov/media/137363/download

Table 1 (continued)

https://www.fda.gov/media/138144/download
https://www.fda.gov/media/138144/download
https://www.fda.gov/media/137687/download
https://www.fda.gov/media/137117/download
https://www.fda.gov/media/137117/download
https://www.fda.gov/media/138147/download
https://www.fda.gov/media/138101/download
https://www.fda.gov/media/136283/download
https://www.fda.gov/media/137090/download
https://www.fda.gov/media/136735/download
https://www.fda.gov/media/136735/download
https://www.fda.gov/media/137892/download
https://www.fda.gov/media/137892/download
https://www.fda.gov/media/138532/download
https://www.fda.gov/media/138435/download
https://www.fda.gov/media/138435/download
https://www.fda.gov/media/136153/download
https://www.fda.gov/media/138097/download
https://www.fda.gov/media/136787/download
https://www.fda.gov/media/136787/download
https://www.fda.gov/media/136618/download
https://www.fda.gov/media/137088/download
https://www.fda.gov/media/137484/download
https://www.fda.gov/media/136148/download
https://www.fda.gov/media/136694/download
https://www.fda.gov/media/136497/download
https://www.fda.gov/media/137023/download
https://www.fda.gov/media/136345/download
https://www.fda.gov/media/137032/download
https://www.fda.gov/media/136566/download
https://www.fda.gov/media/137737/download
https://www.fda.gov/media/136966/download
https://www.fda.gov/media/136966/download
https://www.fda.gov/media/137360/download
https://www.fda.gov/media/137360/download
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Table 1 (continued)

No. Product name Company name Instruction for use

58 GeneFinder COVID-19 Plus RealAmp 
Kit (PCR)

OSANG Healthcare https://www.fda.gov/media/137116/download

59 P23 Labs TaqPath SARS-CoV-2 
Assay (PCR)

P23 Labs, LLC https://www.fda.gov/media/138297/download

60 PerkinElmer New Coronavirus Nucleic Acid 
Detection Kit (PCR)

PerkinElmer, Inc. https://www.fda.gov/media/138297/download

61 Primerdesign Ltd COVID-19 genesig Real-
Time PCR assay (PCR)

Primerdesign Ltd. https://www.fda.gov/media/136823/download

62 LetsGetChecked Coronavirus (COVID-19) 
Test (PCR)

PrivaPath Diagnostics, Inc. https://www.fda.gov/media/138406/download

63 QIAstat-Dx Respiratory SARS-CoV-2 
Panel (PCR)

QIAGEN GmbH https://www.fda.gov/media/136571/download

64 Quest SARS-CoV-2 rRT-PCR (PCR) Quest Diagnostics Infectious 
Disease, Inc.

https://www.fda.gov/media/136231/download

65 Lyra SARS-CoV-2 Assay (PCR) Quidel Corporation https://www.fda.gov/media/136820/download

66 Sofia SARS Antigen FIA (FIA) Quidel Corporation https://www.fda.gov/media/137885/download

67 Lyra Direct SARS-CoV-2 Assay (PCR) Quidel Corporation https://www.fda.gov/media/138178/download

68 Rheonix COVID-19 MDx Assay (PCR) Rheonix, Inc. https://www.fda.gov/media/137489/download

69 Elecsys Anti-SARS-CoV-2 Roche Diagnostics https://www.fda.gov/media/137605/download

70 cobas SARS-CoV-2 (PCR) Roche Molecular Systems, Inc. 
(RMS)

https://www.fda.gov/media/136049/download

71 Rutgers Clinical Genomics Laboratory 
TaqPath SARS-CoV-2-Assay (PCR)

Rutgers Clinical Genomics 
Laboratory at RUCDR Infinite 
Biologics - Rutgers University

https://www.fda.gov/media/137774/download

72 Novel Coronavirus (2019-nCoV) Nucleic 
Acid Diagnostic Kit (PCR-Fluorescence 
Probing)

Sansure BioTech Inc. https://www.fda.gov/media/137651/download

73 ScienCell SARS-CoV-2 Coronavirus Real-
time RT-PCR (RT-qPCR) Detection Kit

ScienCell Research Laboratories https://www.fda.gov/media/136691/download

74 STANDARD M nCoV Real-Time Detection 
Kit (PCR)

SD Biosensor, Inc. https://www.fda.gov/media/137302/download

75 U-TOP COVID-19 Detection Kit (PCR) SEASUN BIOMATERIALS https://www.fda.gov/media/137425/download

76 AQ-TOP COVID-19 Rapid Detection 
Kit (PCR)

Seasun Biomaterials, Inc. https://www.fda.gov/media/138307/download

77 Allplex 2019-nCoV Assay (PCR) Seegene, Inc. https://www.fda.gov/media/137178/download

78 Sherlock CRISPR SARS-CoV-2 Kit 
(CRISPR)

Sherlock BioSciences, Inc. https://www.fda.gov/media/137746/download

79 Atellica IM SARS-CoV-2 Total (COV2T) Siemens Healthcare Diagnostics Inc. https://www.fda.gov/media/138442/download

80 ADVIA Centaur SARS-CoV-2 Total (COV2T) Siemens Healthcare Diagnostics Inc. https://www.fda.gov/media/138446/download

Table 1 (continued)

https://www.fda.gov/media/137113/download
https://www.fda.gov/media/137113/download
https://www.fda.gov/media/138295/download
https://www.fda.gov/media/138295/download
https://www.fda.gov/media/136407/download
https://www.fda.gov/media/136407/download
https://www.fda.gov/media/136306/download
https://www.fda.gov/media/136306/download
https://www.fda.gov/media/138405/download
https://www.fda.gov/media/138405/download
https://www.fda.gov/media/136569/download
https://www.fda.gov/media/136569/download
https://www.fda.gov/media/136228/download
https://www.fda.gov/media/136224/download
https://www.fda.gov/media/137886/download
https://www.fda.gov/media/138179/download
https://www.fda.gov/media/137490/download
https://www.fda.gov/media/137602/download
https://www.fda.gov/media/136049/download
https://www.fda.gov/media/137773/download
https://www.fda.gov/media/137773/download
https://www.fda.gov/media/137652/download
https://www.fda.gov/media/137652/download
https://www.fda.gov/media/137652/download
https://www.fda.gov/media/136688/download
https://www.fda.gov/media/136688/download
https://www.fda.gov/media/137303/download
https://www.fda.gov/media/137303/download
https://www.fda.gov/media/137420/download
https://www.fda.gov/media/138300/download
https://www.fda.gov/media/138300/download
https://www.fda.gov/media/137179/download
https://www.fda.gov/media/137747/download
https://www.fda.gov/media/138439/download
https://www.fda.gov/media/138443/download
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This enables public health officials to quickly identify 
people who may have had exposure to COVID-19 and 
allows them to act accordingly.

South Korea’s policy for tracing

Realizing the importance of contact tracing, South Korea 
implemented a smart city platform for contact tracing on 
March 26, 2020. This same approach was not successfully 
applied to other Western countries due to potential privacy 
issues. This smart city platform is a state of the art “system 
of systems” that integrates multiple high technologies, 
including information and communications, big data, and 
artificial intelligence, to solve burdens for high quality life 
in many different fields.

Once a COVID-19-postive patient is identified, the 
screening center reports the case to the Korea Centers for 
Disease Control and Prevention (KCDC). The KCDC then 
registers the patient on a contact tracing system linked to 

the smart city data hub. Once the patient is registered, the 
system contacts the National Police Agency for the patient’s 
information and requests to the Credit Finance Association 
(CREFIA). If the CREFIA approves, the hub requests the 
patient’s epidemiological information from cellular service 
providers and credit card companies. Through this, the 
KCDC can collect all pertinent information regarding 
the patient within 10 minutes. The KCDC releases the 
information to the public after verification of the patient 
from the smart city data hub and alerts others who may have 
been in contact with the patient. People who receive an 
alert must be tested regardless of symptom manifestation. 
The patient information available to the public includes any 
public transportation that he or she took, locations visited, 
and time frames. This data is available for 14 days.

Meanwhile, in the U.S., once a COVID-19 patient is 
identified, trained public health staff manually conduct 
contact tracing by interrogating the patient directly. With 
the attained information, health officials then alert those 

Table 1 (continued)

No. Product name Company name Instruction for use

81 DiaPlexQ Novel Coronavirus (2019-nCoV) 
Detection Kit (PCR)

SolGent Co., Ltd. https://www.fda.gov/media/138303/download

82 TaqPath COVID-19 Combo Kit (PCR) Thermo Fisher Scientific, Inc. https://www.fda.gov/media/136112/download

83 PhoenixDx 2019-CoV (PCR) Trax Management Services Inc. https://www.fda.gov/media/137153/download

84 New York SARS-CoV Microsphere 
Immunoassay for Antibody Detection (MIA)

Wadsworth Center, New York State 
Department of Health

https://www.fda.gov/media/137541/download

85 New York SARS-CoV-2 Real-time  
Reverse Transcriptase (RT)-PCR Diagnostic 
Panel (PCR)

Wadsworth Center, New York State 
Department of Public Health’s (CDC)

https://www.fda.gov/media/135847/download

86 Quick SARS-CoV-2rRT-PCR Kit (PCR) Zymo Research Corporation https://www.fda.gov/media/137780/download

FDA, Federal Drug Administration; EUA, emergency use authorization.

Table 2 List of COVID-19 diagnostic kits approved for use in South Korea

No. Product name Company name Company website Issued date

1 PowerCheckTM2019-nCoV (PCR) Kogene biotech http://www.kogene.co.kr/eng/ 02/04/2020

2 AllplexTM2019-nCoVAssay (PCR) Seegene http://www.seegene.com/ 02/12/2020

3 DiaPlexQTMNovel Coronavirus (2019-nCov) Detection kit (PCR) Solgent Co. http://www.solgent.com/english 02/27/2020

4 STANDARD M nCoV Detection kit (PCR) SDBiosensor http://sdbiosensor.com/xe/ 02/27/2020

5 Real-Q 2019-nCoV Detection Kit (PCR) Biosewoom http://www.biosewoom.com/ 03/13/2020

6 BioCore 2019-nCoV Real Time PCRKit (PCR) Bio-core http://www.bio-core.com/ 05/11/2020

https://www.fda.gov/media/138306/download
https://www.fda.gov/media/138306/download
https://www.fda.gov/media/136113/download
https://www.fda.gov/media/137150/download
https://www.fda.gov/media/137540/download
https://www.fda.gov/media/137540/download
https://www.fda.gov/media/135661/download
https://www.fda.gov/media/135661/download
https://www.fda.gov/media/135661/download
https://www.fda.gov/media/137781/download
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Table 3 List of emergency NMPA-approved COVID-19 testing kits in China

No. Product name company name Company website Registration No.

1 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (fluorometric PCR)

Shanghai ZJ Bio-Tech 
Co., Ltd.

www.liferiverbiotech.com/ CFDA:20203400057

2 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (fluorometric PCR)

Shanghai GeneoDx 
Biotech Co., LTD

www.geneodx.com/ CFDA:20203400058

3 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (combinatorial 
probe-anchor synthesis sequencing)

BGI Biotechnology 
(Wuhan) Co., LTD

en.genomics.cn/ CFDA:20203400059

4 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (fluorometric PCR)

BGI Biotechnology 
(Wuhan) Co., LTD

en.genomics.cn/ CFDA:20203400060

5 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (fluorometric PCR)

Da An Gene Co., Ltd of 
Sun Yat-Sen University

en.daangene.com/ CFDA:20203400063

6 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (fluorometric PCR)

Sansure Biotechnology 
Co., Ltd

eng.sansure.com.cn/ CFDA:20203400064

7 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (fluorometric PCR)

Shanghai BioGerm 
Medical Biotechnology 
Co., Ltd

www.bio-germ.com/ CFDA:20203400065

8 Antibody test kit for the novel coronavirus 
2019-nCoV (colloidal gold method)

Guangzhou Wondfo 
Biotech Co., Ltd

en.wondfo.com.cn/ CFDA:20203400176

9 Antibody test kit for the novel coronavirus 
2019-nCoV (colloidal gold method)

Innovita (Tangshan) 
Biological Technology 
Co., Ltd

www.innovita.com.cn/index.html CFDA:20203400177

10 Nucleic acid reagent test kit for six 
respiratory viruses (constant temperature 
amplification chip)

Chengdu CapitalBioPro 
Co., Ltd

www.capitalbio.com/ CFDA:20203400178

11 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (fluorometric PCR)

Beijing Applied 
Biological Technologies 
Co., Ltd

www.x-abt.com/en/ CFDA:20203400179

12 IgM antibody test kit for the novel 
coronavirus 2019-nCoV (magnetic particle-
based chemiluminescence immunoassay)

Bioscience (Chongqing) 
Diagnostic Technology 
Co., Ltd

www.bioscience-cq.com/ CFDA:20203400182

13 IgG antibody test kit for the novel coronavirus 
2019-nCoV (magnetic particle-based 
chemiluminescence immunoassay)

Bioscience (Chongqing) 
Diagnostic Technology 
Co., Ltd

www.bioscience-cq.com/ CFDA:20203400183

14 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (fluorometric PCR)

Maccura Biotechnology 
Co., Ltd.

www.maccura.com/en/ CFDA:20203400184

15 Antibody test kit for the novel coronavirus 
2019-nCoV (chemiluminescence 
microparticle immunoassay)

Xiamen innoDx Biotech 
Co., Ltd

www.innodx.com CFDA:20203400198

16 IgM antibody test kit for the novel coronavirus 
2019-nCoV (colloidal gold method)

Guangdong Hecin 
Scientific Co., Ltd

www.hecin-scientific.cn CFDA:20203400199

17 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (fluorometric PCR)

Wuhan EasyDiagnosis 
Biomedicine Co., Ltd

www.mdeasydiagnosis.com/en/ CFDA:20203400212

Table 3 (continued)

http://www.liferiverbiotech.com/
http://www.geneodx.com/
https://en.genomics.cn/
https://en.genomics.cn/
http://en.daangene.com/
http://eng.sansure.com.cn/
http://www.bio-germ.com/
https://en.wondfo.com.cn/
http://www.innovita.com.cn/index.html
http://www.capitalbio.com/
http://www.x-abt.com/en/
http://www.bioscience-cq.com/
http://www.bioscience-cq.com/
https://www.maccura.com/en/
http://www.innodx.com/
http://www.mdeasydiagnosis.com/en/
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who may have had potential exposure. The substantial 
differences in contact tracing between the U.S. and South 
Korea arises from the levels of information disclosure and 
privacy.

Smartphone applications for preventing the spread of 
COVID-19

A multitude of researchers and companies are now striving 
to develop supplemental tools for preventing the spread 
of COVID-19. There has especially been a deluge of 
smartphone applications on the market due to its usefulness, 
affordability, and accessibility (Table 4). Smartphone 
applications derived from contact tracing or information 
sourcing has received particular attention (34,35). As 
mentioned previously, there are noted differences in tracing 
or tracking between countries due to privacy laws and 
attitudes.

In the U.S., tracing applications function mainly to 
alert exposure to SARS-CoV-2. One such application is 
Healthy Together by Twenty Holding Inc. The applications 
use Bluetooth signals and GPS location data to collect a 
list of people that the user has had encounters with (per 
the user’s consent). If the user meets other users within 

a certain range, the Bluetooth signal allows each user to 
share their encrypted serial number. GPS data is collected 
to understand transmission zones. If any of the users 
get diagnosed with COVID-19, other users who have 
encountered the patient will be alerted of the possible 
exposure with details such as the time and date. This 
mechanism can protect users’ privacy while alerting others 
at risk.

Because the KCDC is  a lready implementing a 
comprehensive tracing program, there are no applications 
with similar functionality in South Korea. Instead, there 
are other types of tracking applications on the market. The 
main function of these is alerting people when they are near 
COVID-19 patients using data attained from the KCDC. 
By informing users of potential risk, these applications can 
reduce infection rates. Additionally, the Korean Ministry 
of the Interior and Safety recently started operating an 
application called the Self-Quarantine Safety Protection 
App. This is a mandatory installation for anyone entering 
South Korea. It collects the users’ personal information, 
symptoms, and GPS location in real-time and shares the 
data with the KCDC. Contact tracing applications are not 
the only informative utilities against spread. There are 
multiple applications that inform accurate and necessary 

Table 3 (continued)

No. Product name company name Company website Registration No.

18 IgM/IgG antibody test kit for the novel 
coronavirus 2019-nCoV (colloidal gold 
method)

Nanjing Vazyme 
Biotech Co., Ltd

www.vazymemedical.com CFDA:20203400239

19 IgM/IgG antibody test kit for the novel 
coronavirus 2019-nCoV (colloidal gold 
method)

Zhuhai Livzon 
Diagnostics Co., Ltd

www.livzondiagnostics.com/en-us/ CFDA:20203400240

20 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (Fluorescent 
Isothermal Amplification)

Hangzhou Ustar 
Biotechnology Co., Ltd

www.bioustar.com/en/index.aspx CFDA:20203400241

21 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (Hybrid capture 
immunofluorescence assay)

Anbio (Xiamen) 
Biotechnology Co., Ltd

www.anbio.com/en/ CFDA:20203400298

22 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (fluorometric PCR)

Shanghai Fosun Long 
March Medical Science 
Co., Ltd

en.lm-diagnostics.com.cn/ CFDA:20203400299

23 Nucleic acid reagent test kit for the novel 
coronavirus 2019-nCoV (RNA capture probe 
method)

Shanghai Rendu 
Biotechnology Co., Ltd

www.rdbio.com/ CFDA:20203400300

NMPA, the National Medical Products Administration.

http://www.vazymemedical.com/
http://www.livzondiagnostics.com/en-us/
http://www.bioustar.com/en/index.aspx
http://www.baidu.com/link?url=MPOjqw8NGw1WC9EVHs2rgIleOaqZOqg4nt3W9XutclRMiVblyYB1P2k4i5FJxWcgOYOxQMbxu9sUgq0CQZCava
http://www.baidu.com/link?url=MPOjqw8NGw1WC9EVHs2rgIleOaqZOqg4nt3W9XutclRMiVblyYB1P2k4i5FJxWcgOYOxQMbxu9sUgq0CQZCava
http://www.baidu.com/link?url=MPOjqw8NGw1WC9EVHs2rgIleOaqZOqg4nt3W9XutclRMiVblyYB1P2k4i5FJxWcgOYOxQMbxu9sUgq0CQZCava
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Table 4 Smartphone applications used in South Korea and the United States

Purpose of 
application

Country Application name Manufacturer Characteristic

Composite South Korea Corona doctor University 
students

Tracking, news, statistics, guideline, screening center 
location information are provided

Corona 100 cine HANDASOFT 
Corp.

Tracking, news, statistics, screening center location, public 
mask availability information are provided

Corona map Unknown Tracking, statistics, guideline, screening center location 
information are provided

Corona compass Unknown Tracking, statistics, screening site, public mask information 
availability are provided

Corona now Middle school 
students

News, statistics, screening site, public mask availability 
information are included

United States Healthy together Twenty Holdings, 
Inc.

Tracking, self-diagnosis, guideline, screening center location 
information are provided. Daily checkup function is possible

NJ COVID 19 NJ PBA News, screening site information are provided. (Only for New 
Jersey)

Tracking/tracing South Korea Where is Corona? Unknow Specific date when confirmed patient tested is shown

Coback Plus TINA3D Once user is near the traced place, push alarm is given 
to user

News feed South Korea Corona News Unknown News from ‘Naver’ which is one of major portal sites in South 
Korea are provided

United States CoronaFacts Trusted 
Medical LLC

Preference of COVID-19 news source can be set

Statistics South Korea Corona World Unknown Global statistics is displayed

Corona virus 
infection current 
situation

Unknown The national statistics are shown on the map

United States HEALTHYNKED 
COVID-19 Tracker

HealthLynked 
Corp.

An anonymous chat room is provided

Guideline United States COVID Coach US Department of  
Veterans Affairs

The app helps managing mental health

Screening 
center location 
Information

South Korea Corona 
Screening Site

Unknown Connects to KCDC

United States Apollo COVID-19 Gauss Surgical, 
Inc.

QR code including result of self COVID-19 assessment is 
given. The QR code can be used at screening center to 
minimize exposure during screening

Public mask 
availability 
information

South Korea Coronapin DBL User can search a specific seller

Mask Map Unknown 3D map is provided

Mask Alerts App Unknown Recommended route to chosen seller is provided

Self-quarantine 
control

South Korea Self-Quarantine 
safety protection

Government Installation is mandatory to people who entered South Korea

Table 4 (continued)
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information to users, such as statistics, new guidelines, 
screening center locations, news updates, and face mask 
availability. For instance, in South Korea, there is a 
smartphone application for where face masks are available 
to purchase. This is specifically possible in South Korea 
because the government has allocated face masks to be sold 
only in assigned pharmacies.

Prospectives/future directions

When it comes to testing for COVID-19, most diagnostic 
tests take either a molecular or antibody approach. 
Within each of these, there subsets of tests that are 
ideal for different patients, time frames, and needs. As a 
result, it is essential that diagnostic test kits are utilized 
accordingly. For instance, mRNA-based testing kits are 
best utilized during the earlier stages of the infection while 
antibody tests are ideal for longer time frames after. These 
considerations must be made particularly for asymptomatic 
patients who may either have an active infection or recently 
fought off the virus. Contact tracing is another key element 
for preventing further spread of SARS-CoV-2. The South 
Korean government has taken an immensely precautious 
approach with much success; however, there are some 
issues with privacy that can arise. In the U.S., smartphone 
applications are not as widely popular and entail mostly on 
exposure alerts.

The COVID-19 pandemic has tested the preparedness 
and response of each nation. These lessons are critical for 
moving forward and are necessary to address for potential 
future public health events. Advancements in science and 
technology has made diagnostic testing readily available; 

however, the logistics, regulation, and distribution of such 
tests can be improved. Integration of smart technology in 
everyday life has also raised interesting prospects for future 
use in public health, but its tradeoff with privacy remains 
controversial. As nations continue onto the next steps of the 
pandemic, testing and tracing needs to evolve and adapt to 
meet changing demands as well.
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Purpose of 
application

Country Application name Manufacturer Characteristic

Self-diagnosis South Korea Corona Self-
diagnosis

Unknown Questions based on self-diagnosis for staff are given

United States Apple COVID-19 Apple | CDC The application is available in 34 languages

1-Check COVID University of 
Nebraska

User can share the result of self-diagnosis

Symptom 
research

United States COVID Symptom 
Study

Zoe Global 
Limited

Health advice is provided

How We Feel The How We Feel  
Project, Inc.

It tells user how many people have symptoms near the user
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Abstract 

Objectives: Bisphosphonates (BPs) are powerful inhibitors of osteoclastogenesis and are used to 
prevent osteoporotic bone loss and reduce the risk of osteoporotic fracture in patients suffering from 
postmenopausal osteoporosis. Patients with breast cancer or gynecological malignancies being treated 
with BPs or those receiving bone-targeted therapy for metastatic prostate cancer are at increased risk of 
bisphosphonate-related osteonecrosis of the jaw (BRONJ). Although BPs markedly ameliorate 
osteoporosis, their adverse effects largely limit the clinical application of these drugs. This study focused 
on providing a deeper understanding of one of the most popular BPs, the alendronate (ALN)-induced 
perturbation of the bone proteome and microenvironmental pathophysiology. 
Methods: To understand the molecular mechanisms underlying ALN-induced side-effects, an unbiased 
and global proteomics approach combined with big data bioinformatics was applied. This was followed by 
biochemical and functional analyses to determine the clinicopathological mechanisms affected by ALN. 
Results: The findings from this proteomics study suggest that the RIPK3/Wnt/GSK3/β-catenin signaling 
pathway is significantly perturbed upon ALN treatment, resulting in abnormal angiogenesis, inflammation, 
anabolism, remodeling, and mineralization in bone cells in an in vitro cell culture system. 
Conclusion: Our investigation into potential key signaling mechanisms in response to ALN provides a 
rational basis for suppressing BP-induced adverse effect and presents various therapeutic strategies. 

Key words: Osteonecrosis of the jaw; bisphosphonate; GSK signaling; clinical cone beam computed tomography; bone mineral 
density; proteomics; biomarker 

Introduction 
Bone tissue undergoes continuous cycles of bone 

resorption by osteoclasts and bone formation by 
osteoblasts, which were orchestrated by osteocytes[1]. 
Bone tissue is also highly vascularized providing O2, 
nutrients, and precursor cells for bone remodeling 
and serving as routes for blood and immune cells into 
bone tissue. Regulatory interactions between cells of 
these hematopoietic, immune, and skeletal (bone) 
systems closely regulate bone remodeling and repair 
processes via secreted factors such as VEGF, M-CSF, 

RANKL, Wnt3a, and Osteoprotegerin, etc. and their 
cell surface receptors.  

Several key signal pathway has been shown to 
play pivotal roles in bone remodeling/repair 
processes, enhancing osteoblast differentiation and 
angiogenesis and modulating immune cell 
functions[2]. Specifically, Wnt pathway activation via 
GSK3 inactivation leads to osteoblast differentiation 
and stimulates bone anabolism while GSK3 
gain-of-function promotes osteogenesis of adipose- 
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derived stromal cells, making GSK3 as a possible 
therapeutic target for bone diseases [3-5]. Mice 
expressing constitutively active GSK3β (GSK3β S9A) 
mutant, exhibited a marked increase in osteogenesis, 
whereas ones with catalytically inactive GSK3β 
(GSK3β K85A) showed decreased osteogenic 
differentiation by regulating β-catenin[5]. Wnt/ 
GSK3/β-catenin pathway also plays important roles 
in angiogenesis and vasculogenesis, supporting 
wound healing and regeneration of oral mucosa and 
jaw tissue [6]. Wnt signaling activation by Wnt1, 
VEGF, or CHIR99021 (GSK3β inhibitor) enhanced, 
while its inactivation by JW67 (targeting 
APC/GSK3/β-catenin complex) or β-catenin kinase 
dead form suppressed, vascular differentiation of 
mesenchymal stem cells (MSCs) derived from dental 
pulp [7]. GSK3β regulates β-catenin level in 
endothelial cells. Expression of β-catenin in HUVEC 
cells increases VEGF-A and -C level and induces 
capillary formation [8].  

Bisphosphonates (BPs) have been suggested to 
modulate the proliferation and differentiation rates of 
osteoblasts and trigger survival signaling leading to 
bone homeostasis and antiresorptive effect [9-11]. 
First approved by the FDA in 1995, alendronate 
(ALN) is currently one of the most used BPs in the 
medical field[12]. ALN has been used successfully for 
the treatment of osteoporosis [13]. Several pieces of 
evidence indicate that there is a strong association 
between ALN and lower risk of bone metastases in 
postmenopausal women with early breast cancer [14, 
15].  Cancer patients undergoing BPs-based 
treatments are at a 10-fold greater risk of developing 
bisphosphonate-related osteonecrosis of the jaw 
(BRONJ) [16], which is suggested to be a result of 
osteoclast inhibition and apoptosis[17]. Due to the 
prevalent usage of BPs in many bone-related diseases, 
more understanding on underlying mechanisms of 
adverse effect caused by BPs is crucial in providing 
better care and improving patient quality of life [18]. 
In oncology patients, incidence of BRONJ has been 
estimated to be as high as 18.6%[19], and risk of 
developing BRONJ increases with longer duration or 
higher dosages of BPs-based therapy[20]. 

This study sought to understand the 
pathogenesis of BP-associated adverse effects by 
looking into proteome perturbation and potential 
molecular biomarkers and mechanisms using an in 
vitro cell culture system. 

Materials and Methods 
Reagents and cell culture 

Several cell lines, including MG-63, SCC-9, 
SCC-15, and HUVEC cells, were obtained from the 

American Type Culture Collection (ATCC) 
(Manassas, VA). Culture condition, antibodies and 
reagents used for this study are available in 
Supplementary Materials. 

Quantitative proteomics 
Sample preparation methods for this study are 

available in Supplementary Materials. For protein 
quantification and statistical analysis, mapDIA was 
used. Data was analyzed based on the established 
workflows previously described [21, 22]. Briefly, 
peptides were identified using the openSWATH 
workflow [23], searched against the pan human 
library [24] with decoy sequences appended for false 
discovery rate calculation using the pyprophet 
algorithm [25]. Peptides with no greater than 5% 
identified false discovery rate (FDR) across all 
samples were compiled into the final experimental 
results using the TRIC alignment algorithm [26]. 
Following removal of non-proteotypic peptides (e.g., 
sequences matching more than one gene product from 
the Pan Human Library), the final aligned results 
were analyzed using mapDIA to select only 
high-quality performing fragments for quantification 
and to compile fragment level data into peptide and 
protein level abundance estimates [27]. The mapDIA 
software was also used to perform pairwise 
comparisons between ALN and control groups, 
including adjustment for multiple testing effects to 
produce a comparison FDR, which filtered proteins 
with significant or non-significant differential 
abundance in response to ALN treatment. The MS 
proteomics data has been deposited to the 
PRIDE repository with the dataset identifier, 
PXD024585.  

Identification of differentially expressed 
proteins (DEPs) 

Proteins with more than 3 nonredundant 
peptides in each sample were selected. Further 
selection of proteins detected in at least 2 samples in 
the same group was performed for statistical testing. 
A median difference test and Welch’s t-test were 
performed separately, and the resulting two p-values 
were combined to compute adjusted p-values using 
Stouffer’s method. The DEPs were identified based on 
an adjusted p-values<0.05 and absolute log2 
fold-change (FC) ≧0.58. 

VEGF ELISA assay 
To determine vascular endothelial growth factor 

(VEGF-A) levels of conditioned medium from MG-63 
cells incubated with ALN, supernatants from cell 
cultures were analyzed using the Human VEGF 
Quantikine ELISA Kit (R&D Systems, Minneapolis, 
Mass).  
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Cytokine array 
Cell lysates and conditioned media from RAW 

264.7 macrophages were collected and analyzed using 
a cytokine array, per standard provided protocols 
(R&D Systems, Minneapolis, MN, USA). ImageJ was 
used to measure the signal intensities. 

Mineralization assay using Alizarin Red-S 
staining 

The formation of calcium phosphate was 
quantified in MG-63 bone cells via Alizarin Red-S 
mineralization assay. Optical density was detected at 
an absorbance of 562 nm. 

Statistical analysis  
Most of the experiments were repeated at least 

six (6) times with independent treatments, while all 
the cases were repeated at least three times. Each of 
the experiments did not show significantly different 
results across replications.  Statistical analyses were 
conducted using GraphPad Prism, version 7.03 
(GraphPad Software Inc., La Jolla, CA). Mean values 
from technical replicates were used for statistical 
analyses, and all data were presented as the mean ± 
standard deviation (SD). A one-way analysis of 
variance (ANOVA) or Student’s t-test was conducted 
to compare the groups of data. Differences were 
considered statistically significant when P < 0.05.   

Results 
Comprehensive analysis with large unbiased 
global proteomic assays suggested perturbed 
proteins in response to BP in bone cells 

Mass spectrometry (MS) has several important 
attributes that make it amenable to providing 
reproducible and accurate assays for proteins and 
metabolites. It provides a scalable number of analytes 
quantified in a single assay and absolute 
quantification, which leads to a standardized path 
from assay development to validation of new 
candidate biomarkers applicable in any clinical 
chemistry laboratory. To understand the molecular 
mechanisms underlying specific diseases, an unbiased 
and global omics approach combined with big data 
analysis using bioinformatics is critical.  

As described in the Materials and Methods, a 
proteomics approach was implemented (Fig 1A). The 
top 10 most abundant protein classes are shown in Fig 
1B. Global proteomics analysis identified a highly 
confident and comprehensive list of perturbed 
proteins in MG-63 bone cells treated with ALN. 
Protein quantification and statistical analysis using 
mapDIA identified perturbed proteins in MG-63 cells 
treated with 10 µM ALN. A total of 2,865 proteins 

with UniProtKB IDs were identified. Further analysis 
with the PANTHER Protein Classification Tool 
revealed that the most abundant top 10 proteins 
classes included extracellular matrix, metabolite 
interconversion, nucleic acid metabolism, protein 
modification, translational regulation, cytoskeletal, 
transporter, protein-binding activity modulator, 
membrane traffic, and scaffold/adaptor[28]. To 
identify DEPs, the integrated hypothesis testing 
method was applied. Briefly, the median difference 
test and Welch’s t-test was performed on high 
confidence proteins, which in the case of this 
experiment, were proteins detected with more than 3 
non-redundant peptides encompassing at least 2 
samples in the same group. The median test p-value 
and Welch’s t-test p-value were then combined to 
adjust for multiple testing errors. Finally, 27 up- and 
31 downregulated DEPs were selected for based on 
adjusted p-values < 0.05 and log2 FC ≧0.58. 
Significant expression was assessed using a volcano 
plot (Fig 1C and Fig 1D) and heatmap (Fig 1E). The 
DEPs are listed in Table 1. 

Angiogenesis alteration in response to ALN 
treatment 

When verifying proteins associated with 
angiogenesis-related Gene Ontology Biological 
Processes (GOBPs), several proteins were identified, 
including ETS proto-oncogene 1 (ETS1) (log2 FC, 
1.1566), integrin subunit alpha 5 (ITGA5) (log2 FC, 
0.6102), and milk fat globule-EGF factor 8 (MFGE8) 
(log2 FC, -0.7468) (Table 1). To further investigate 
these findings, the effects of ALN on several 
well-known angiogenic factors were investigated. 
Secretion of VEGF-A, a potent angiogenic factor, was 
examined in bone cells after stimulation with ALN. 
Consistent with similarly designed work from 
previous trials [29], treatment of MG-63 cells with 
ALN led to a statistically significant but modest 
decrease (approximately 30%) of VEGF secretion into 
the conditioned medium compared to control (Fig 
2A). Furthermore, HUVEC stimulation in the 
collected culture medium also exhibited modest but 
meaningful suppression of proliferation (Fig 2B). 
Collectively, the reduction of VEGF secretion and 
HUVEC proliferation by ALN strongly implies 
angiogenic signals to vessel cells from bone cells. This 
finding suggests the potential microenvironment- 
level regulation of bone remodeling in ONJ. For 
proteomics profiling, necrotic and apoptotic 
conditions were avoided to fully investigate the 
effects of ALN on bone cells. Additional analysis 
confirmed that there was no induced cell death with 
ALN treatment in MG-63 cells.  Cell viability and 
proliferation rates, which were determined using 
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MTT (Fig 2C) and crystal violet staining assays (Fig 2D), showed no cytotoxicity.  
 

Table 1. List of differentially expressed proteins (DEPs) with corresponding statistics. 

Uniprot ID Gene Symbol Full Name Log2 FC 
(ALN/ 
Ctrl) 

Median 
P-Value 

T Test P- 
Value 

Adj. P 

Q86VN1 VPS36 Vacuolar protein-sorting-associated protein 36  2.3697 0.0191 0.3002 0.0332 
Q9BXR6 CFHR5 Complement factor H-related protein 5  1.5412 0.0306 0.0824 0.0106 
Q8N350 CBARP Voltage-dependent calcium channel beta subunit-associated 

regulatory protein 
1.23 0.0776 0.0415 0.0129 

P48163 ME1 NADP-dependent malic enzyme  1.2145 0.1359 0.0149 0.0103 
Q9ULH7 MRTFB Myocardin-related transcription factor B  1.1752 0.1301 0.0877 0.0397 
P14921 ETS1 Protein C-ets-1  1.1566 0.1653 0.0497 0.0319 
Q9H0V9 LMAN2L VIP36-like protein  1.1446 0.013 0.1852 0.0136 
Q15427 SF3B4 Splicing factor 3B subunit 4  1.0902 0.3234 0.0296 0.0487 
Q9H223 EHD4 EH domain-containing protein 4  0.8995 0.113 0.1213 0.0463 
Q07021 C1QBP Complement component 1 Q subcomponent-binding protein, 

mitochondrial  
0.8848 0.1071 0.1049 0.0388 

Q9UJW2 TINAG Tubulointerstitial nephritis antigen  0.8833 0.0976 0.1428 0.0474 
P56192 MARS1 Methionine--tRNA ligase, cytoplasmic  0.8772 0.0039 0.1283 0.0037 
P08579 SNRPB2 U2 small nuclear ribonucleoprotein B  0.8721 0.0322 0.2438 0.0361 
Q9H4B7 TUBB1 Tubulin beta-1 chain 0.8644 0.0467 0.0944 0.0172 
Q9H2H8 PPIL3 Peptidyl-prolyl cis-trans isomerase-like 3 (PPIase)  0.8257 0.1129 0.1055 0.0408 
P00439 PAH Phenylalanine-4-hydroxylase (PAH)  0.8024 0.0475 0.1114 0.0206 
Q5JTZ9 AARS2 Alanine--tRNA ligase, mitochondrial  0.7071 0.0877 0.0325 0.0118 
Q9UKN8 GTF3C4 General transcription factor 3C polypeptide 4  0.6861 0.0038 0.1761 0.0055 
Q92747 ARPC1A Actin-related protein 2/3 complex subunit 1A (SOP2-like 

protein) 
0.6813 0.1877 0.0156 0.0158 

P99999 CYCS Cytochrome c 0.664 0.0456 0.1572 0.0283 
Q7Z2W4 ZC3HAV1 Zinc finger CCCH-type antiviral protein 1 0.6468 0.1397 0.0465 0.0254 
Q9Y5M8 SRPRB Signal recognition particle receptor subunit beta  0.645 0.0983 0.1459 0.0486 
P62191 PSMC1 26S proteasome regulatory subunit 4  0.6447 0.1717 0.0328 0.0243 
P43251 BTD Biotinidase (Biotinase)  0.6273 0.1495 0.0734 0.0392 
P08648 ITGA5 Integrin alpha-5  0.6102 0.0891 0.1285 0.0398 
Q07955 SRSF1 Serine/arginine-rich splicing factor 1  0.6084 0.0123 0.0315 0.0018 
P18754 RCC1 Regulator of chromosome condensation  0.5984 0.1047 0.008 0.0048 
P62140 PPP1CB Serine/threonine-protein phosphatase PP1-beta catalytic 

subunit  
-0.6001 0.1545 0.0111 0.0097 

Q9NX40 OCIAD1 OCIA domain-containing protein 1  -0.601 0.0912 0.1301 0.041 
Q14244 MAP7 Microtubule-associated protein 7 -0.6115 0.0198 0.1806 0.0178 
Q9Y572 RIPK3 Receptor-interacting serine/threonine-protein kinase 3  -0.6157 0.0717 0.0554 0.0153 
Q06187 BTK Bruton tyrosine kinase -0.6434 0.2767 0.0165 0.027 
Q8IW35 CEP97 Centrosomal protein of 97 kDa  -0.6669 0.0989 0.1153 0.0394 
Q969G5 CAVIN3 Caveolae-associated protein 3  -0.6891 0.0308 0.0337 0.0045 
O96033 MOCS2 Molybdopterin synthase sulfur carrier subunit  -0.6914 0.0731 0.0987 0.0262 
P13798 APEH Acyl-peptide hydrolase -0.6929 0.0508 0.239 0.0485 
Q9H3H3 C11orf68 UPF0696 protein C11orf68  -0.7029 0.0819 0.1651 0.0471 
Q08431 MFGE8 Milk fat globule-EGF factor 8 -0.7468 0.1464 0.0932 0.0466 
Q9NYJ8 TAB2 TGF-beta-activated kinase 1  -0.7572 0.1619 0.0095 0.0092 
O95218 ZRANB2 Zinc finger Ran-binding domain-containing protein 2  -0.8387 0.1273 0.054 0.0261 
Q93074 MED12 Mediator of RNA polymerase II transcription subunit 12  -0.91 0.0239 0.2422 0.0291 
Q15047 SETDB1 Histone-lysine N-methyltransferase SETDB1  -0.9105 0.2702 0.0382 0.0459 
P33241 LSP1 Lymphocyte-specific protein 1  -0.9375 0.0021 0.242 0.0058 
Q9H3M7 TXNIP Thioredoxin-interacting protein  -0.9387 0.0348 0.086 0.0123 
P22307 SCP2 Sterol carrier protein X -1.0061 0.1877 0.0682 0.0465 
Q96A49 SYAP1 Synapse-associated protein 1  -1.0203 0.0638 0.0634 0.0155 
Q5T1M5 FKBP15 FK506-binding protein 15  -1.0953 0.0796 0.135 0.0379 
Q9NR77 PXMP2 Peroxisomal membrane protein 2  -1.1041 0.397 0.0075 0.0284 
Q6P4R8 NFRKB Nuclear factor related to kappa-B-binding protein  -1.131 0.0431 0.1973 0.0347 
A6ND91 ASPDH Aspartate dehydrogenase domain-containing protein -1.2357 0.0503 0.2253 0.0451 
Q9Y320 TMX2 Thioredoxin-related transmembrane protein 2  -1.3223 0.1468 0.0342 0.0211 
Q9BRK0 REEP2 Receptor expression-enhancing protein 2 -1.3431 0.0303 0.0738 0.0094 
Q9UHK6 AMACR Alpha-methylacyl-CoA racemase  -1.3986 0.0022 0.2013 0.0046 
P49407 ARRB1 Beta-arrestin-1 (Arrestin beta-1)  -1.4064 0.1261 0.016 0.01 
Q92630 DYRK2 Dual specificity tyrosine-phosphorylation-regulated kinase 2  -1.4443 0.0139 0.0418 0.0027 
Q9BRU9 UTP23 rRNA-processing protein UTP23 homolog -1.8162 0.0833 0.0247 0.009 
O14617 AP3D1 AP-3 complex subunit delta-1  -1.9901 0.0471 0.0127 0.0029 
Q9C073 FAM117A Protein FAM117A (C/EBP-induced protein) -3.5266 0.0051 0.308 0.015 
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Figure 1. Proteomics profiling revealing alendronate (ALN)-induced protein alteration in the global proteome of MG-63 bone cells. (A) Experimental mass 
spectrometry (MS) workflow for this study. (B) Top 10 most abundant protein classes. (C) Volcano plot shows DEPs. (D) Heatmap depicts the differential expression patterns 
of proteins in response to ALN. Red and blue dots represent upregulated and downregulated proteins, respectively. Per row z-score of protein intensity is calculated. Each dot 
represents one protein. Proteins used are identical with those in the volcano plot. Experiments were done in triplicate.  

 
Figure 2. Angiogenic pathways may be upregulated by ALN treatment. (A) Secretion of VEGF in MG-63 bone cells treated with ALN. Effect of ALN treatment on the 
secreted VEGF levels into conditioned medium by MG-63 cells. Values (mean and standard deviation (SD)) are expressed as fold-changes compared to untreated cells (Ctrl, 
control). (B) Proliferation of HUVEC in the collected media of MG-63 cells. **p < 0.001, compared to control (Student’s t-test). (C-D) No apoptosis was observed within the 
treatment period of 6 h. (C). Cell viability of MG-63 cells. MTT assay revealed no viability changes by ALN treatment. (D) Crystal violet staining assay showed no cell mass 
changes in response to varying concentration of ALN for 6 days. Experiments were done 6 times. Representative images were shown. 
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Figure 3. The RIPK3/arrestin/GSK3β/ β-catenin/VEGF pathway is altered by ALN treatment. (A-B). Quantification results showed that arrestin β and RIPK3 are 
significantly suppressed with ALN treatment. (A) Data from proteomics profiling. DEP levels obtained from proteomics analysis are shown in Table 1. (B) Western blot analysis 
to measure the expression levels of arrestin β and RIPK3 proteins in the presence or absence of ALN. β-actin was used as the loading control. (C) ALN-induced phosphorylation 
of GSK3β (S9) and β-catenin (S45) led to stabilization of β-catenin in MG-63 cells. (D) Comparison of phosphorylation of GSK3β and expression of β-catenin, arrestin β, and 
RIPK3 in MG-63, SCC-15, and SCC-9 cells after treatment with ALN. (E) Effects of several BPs (ZLN and CLN) on β-catenin, arrestin β, and RIPK3 in MG-63 cells. After 
stimulation with 10 µM of ALN, ZLN, or CLN at various times, cells were harvested for protein extraction and western blot analysis. Representative western blot images were 
selected after experiments were repeated 6 times.  

 

Receptor-interacting protein kinase 3 (RIPK3), 
a necroptosis factor, is altered in the 
ALN-treated proteome 

Among the DEPs regulated by ANL treatment, 
proteins involved in angiogenesis, inflammation, and 
necrosis were of particular interest due to their 
relevance in ONJ. Proteomics profiling revealed 
downregulation of RIPK3 in MG63 cells treated with 
ANL (Fig 3A). RIPK3 has recently been reported as a 
mediator of necroptosis, programmed non-apoptotic 
cell death, and necroinflammation in response to 
immune signaling and cytokines, such as TNF-α [30]. 
The inhibition of RIPK3 activity suppressed 
Enterococcus faecalis infection-induced cell death in 
MG-63 cells[31]. RIPK3 expression is inhibited by 
hypoxia, which contributes to angiogenesis [32]. Loss 
of RIPK3 leads to the activation of the Wnt/β-catenin 
signaling pathway in the ripk3-/- colon cancer mouse 
model, and enhances inflammation, immune cell 
infiltration, and angiogenesis [33]. 

Western blot analysis was able to validate that 
the protein expression levels of arrestin β1 (ARRB1) 
was significantly diminished by ALN treatment (Fig 
3B), which was consistent with proteomics analysis. 
Given that ARRB1 is reported as a necessary 

component for Wnt/β-catenin signaling and as a 
regulator of GSK-3β activation/inactivation [34], the 
effects of ALN and ARRB1 on the Wnt/GSK3/β- 
catenin signaling cascades were another point of 
interest. Proteomics profiling and biochemical 
analysis revealed the downregulation of RIPK3 and 
ARRB1 by ALN treatment, which suggests that the 
effects of ALN on MG-63 cells are likely to be 
mediated by the Wnt/GSK3/β-catenin signaling 
pathway. 

The glycogen synthase kinase 3 (GSK3) 
network is an ALN regulatory signaling 
pathway 

To understand the activation of signaling 
cascades in response to BP treatment in bone cells, the 
phosphorylation of important signaling proteins in 
MG-63 cells treated with ALN was assessed. The 
involvement of Wnt/GSK3/β-catenin signaling 
aberration was first determined, and the downstream 
secreted effectors of the Wnt pathway were evaluated 
as a part of the ALN signaling pathway.  

Based on previous findings in literature, the 
Wnt/GSK3/β-catenin pathway has been shown to 
play a pivotal role in bone remodeling/repair 
processes, enhancement of osteoblast differentiation, 
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angiogenesis, and modulation of immune cell 
functions[2]. This evaluation further suggests that the 
Wnt/GSK3/β-catenin pathway may play a key role in 
the biological effects of response to ALN treatment in 
MG-63 cells.  

After treatment with ALN at varying incubation 
times (0, 20, 30, 60, 90, and 120 min), the 
phospohorylation status of a series of crucial signaling 
molecules was evaluated using western blot analysis. 
The phospohorylation of GSK-3β (S9) increased with 
ALN treatment (Fig 3C). GSK-3, a serine/threonine 
protein kinase that phosphorylates and inactivates 
glycogen synthase, is a key downstream regulator of 
the PI3K/Akt pathway. GSK-3 signaling is inactivated 
by phosphorylation of Ser9 in GSK-3β. Since the 
phospohorylation of GSK-3β (S9) increased, this 
suggests that ALN treatment inactivates GSK-3 
signaling in MG-63 cells.  

As an important downstream effector of the Wnt 
signaling pathway, β-catenin is phosphorylated at S45 
by a complex of axin and casein kinase I (CKI), which 
initiates the β-catenin phosphorylation–degradation 
cascade [35]. While the phospohorylation of GSK-3β 
(S9) increased with ALN treatment, phosphorylation 
of β-catenin (S45) and EGFR (Y1068) decreased (Fig 
3C). The decreased phosphorylation of β-catenin may 
increase protein stability and protein expression (Fig 

3B). Increased phosphorylation of GSK-3β (S9) was 
consistently observed in other cells, including SCC-9 
and SCC-15, with ALN, zoledronic acid (ZLN), or 
clodronate (CLN) treatment (Fig 3D and Fig 3E). 
These results suggest that ANL suppresses ARRB1, 
inactivates GSK-3β, and stabilizes β-catenin. The 
RIPK3/arrestin/Wnt/GSK/β-catenin network may 
be a potential molecular regulatory network whose 
activation is altered upon ALN therapy. 

Cytokine production and secretion in RAW 
264.7 macrophages may be enhanced by ALN 
treatment 

To test the effects of ALN on the immune system, 
a commercially available cytokine array was used to 
screen for potentially stimulated cytokines. RAW 
264.7 macrophages were incubated with ALN both 
with and without the presence of lipopolysaccharides 
(LPS) (100 ng/ml) for 24 h. As shown in figure 4A, the 
production of tumor necrosis factor alpha (TNF-α) 
was stimulated by LPS and the levels of TNF-α were 
significantly increased with ALN. Western blot 
analysis also supported these findings (Fig 4B). The 
secretion of IL-6 also greatly increased with ALN (Fig 
4C). However, there were no dramatic additional 
effects across other cytokines. 

 

 
Figure 4. Pro-inflammatory cytokines are produced and secreted in response to ALN treatment in RAW 264.7 macrophage cells. (A-B) Cytokine array was 
conducted as described in Materials and Methods. Production of TNF-α (A) and secretion of IL-6 (B) increased with ALN treatment. (C) Western blot analysis for further 
validation. ***p < 0.001 and **p < 0.001, compared to control (Student’s t-test). Representative images are shown. (D) ALN treatment impaired homeostasis in bone 
mineralization. Quantification of mineral deposition by Alizarin Red-S staining shown as a graph. Data represent average±SD (n= 6). Statistical analysis was compared between 
ALN and vehicle only (ctrl) (p-value<0.05). 
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Abnormalities in calcium phosphate formation 
in bone cells and bone mineral density (BMD) 
distribution in ONJ-associated osteonecrosis  

ALN is regularly used to help osteoporosis 
patients with bone mineralization loss. To test the 
effects of ANL on the quantification of mineral 
deposition, Alizarin Red-S staining assays were used 
to further assess mineralization levels after treatment. 
MG-63 cells were incubated with ALN or vehicle 
control (0, 1, 5, 10, and 25 µM) for 2 days. Incubation 
of cells with ALN led to a marked increase in 
mineralization (to ~1.6 fold) compared to controls (Fig 
4D). 

Discussion 
Our proteomics profiling revealed the 

downregulation of RIPK3 in response to ALN 
treatment in MG-63 bone cells. RIPK3 has been 
reported to play a fundamental role in inhibiting 
inflammation and mediating necroptosis and 
necroinflammation through the RIPK3-MLKL (mixed 
lineage kinase domain-like protein) pathway [30]. 
Inhibitors of RIPK3 and MLKL suppressed cell death 
from Enterococcus faecalis infection in MG-63 cells[31]. 
Although not encompassed in the current study, the 
role, and mechanisms of RIPK3 and its downstream 
signaling cascades in ALN-induced bone biology are 
under further investigation by our group. In addition, 
this study showed that the presence of ALN enhanced 
production or secretion of inflammatory cytokines in 
LPS-activated macrophage cells. A previous study 
found that ZLN, a potent BP, stimulated and 
increased inflammatory osteoclastic mediators [36]. 
Furthermore, ZLN was found to suppress 
proliferation and migration of vascular endothelial 
cells [37]. Expression of VEGF receptor 2 in vascular 
endothelial cells was also reported in response to 
treatment with ZLN[38]. In our experimental system, 
we observed modest decreases in VEGF secretion in 
response to ALN treatment.  

The experimental data further suggested the 
potential role of the Wnt/GSK3/β-catenin signaling 
pathway in the BP-perturbated proteome and its 
effects on bone homeostasis. This study demonstrated 
that the Wnt/GSK3/β-catenin signaling pathways 
may play a fundamental role in bone metabolism, 
homeostasis, and remodeling. Multifaceted roles of 
GSK3 under each cellular context have been reported. 
In cytotoxic T lymphocytes (CTL), GSK3 inhibition 
blocks programmed cell death protein-1 (PD-1) 
transcription; thereby, enhancing CTL functioning 
[39]. GSK3 is a serine/threonine kinase that regulates 
Wnt/β-catenin, PI3K/PTEN/AKT, RAS/RAF/ 
MAPK, hedgehog, Notch, and other signaling 

pathways and has been implicated in multiple 
diseases [40, 41]. Phosphorylation of GSK-3α/β at 
multiple serine and threonine sites inactivates the 
kinase, while Tyr279/216 phosphorylation (pY) 
activates the kinase. GSK3 is reported to have both 
tumor promoting (glioblastoma, pancreatic, ovarian, 
and blood cancers) and tumor suppressive (breast and 
skin cancers) roles[42]. GSK3 stabilizes anti-apoptotic 
Bcl2, Bcl2L12A, c-Myb, Mcl-1, and VEGF, promoting 
tumors. On the other hand, GSK3 phosphorylates and 
destabilizes β-catenin leading to the downregulation 
of c-Myc and cyclin D1. GSK3 also phosphorylates 
T286 on cyclin D1, leading to its nuclear export and 
degradation[43]. Consistent with this study, previous 
findings have suggested an important role for the 
Wnt/GSK-3 signaling pathway in osteogenesis; 
inhibition of Wnt/GSK-3 activity induced osteoblast 
differentiation and significantly increased BMD in an 
ovariectomized rat model [44]. 

Experimental observation from this study 
suggests that a systematic overview of changes in the 
microenvironmental landscape is important for 
understanding ALN-induced pathophysiology in 
bone cells (Fig 4E). Treatment with ALN also leads to 
alterations in bone mineralization, which may further 
impair bone biology. In ONJ patients, our previous 
studies quantifying bone density and mineralization 
found that cone-beam computed tomography (CBCT) 
and micro-computed tomography image-based 
histomorphometric evaluation may be an efficient 
method to check bone health[45]. Abnormal BMD 
distribution in ONJ-associated osteonecrosis was 
observed by clinical CBCT imaging[46]. It would be 
worthwhile to determine if the patterns and severity 
of abnormal mineralization densities within jaw-bone 
biopsy samples can be implemented in ONJ patient 
care.  

Collectively, the main innovative deliverables 
from this study are expected to lead to a better 
understanding of the mechanisms underlying 
ALN-induced pathological effects on bone and 
immune cells. The findings in this paper are 
promising but have several limitations; (1) the effects 
of BPs on osteoblast function are throughout the 
skeleton, and (2) ALN targets osteoclasts, not 
osteoblasts. In conjunction with standard diagnostic 
procedures, the more mechanistic data related to the 
adverse effects of ALN can also act as an applicable 
supplement for clinical judgment. 

Supplementary Material  
Supplementary methods.  
http://www.medsci.org/v18p3261s1.pdf  
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