
Covariance Analysis for Multi-Source Navigation
Architecture

THESIS

Tristan T. Williams

AFIT-ENG-MS-22-M-073

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-22-M-073

Covariance Analysis for Multi-Source Navigation Architecture

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Tristan T. Williams, B.S.E.E.

March 19, 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-22-M-073

Covariance Analysis for Multi-Source Navigation Architecture

THESIS

Tristan T. Williams, B.S.E.E.

Committee Membership:

Robert C. Leishman, Ph.D
Chair

Maj. J. Curro, Ph.D
Member

Randy Christiensen, Ph.D
Member

AFIT-ENG-MS-22-M-073

Abstract

Currently, analysis on navigation systems can be slow and computationally ex-

pensive using Monte Carlo approaches. Covariance analysis is a tool that can return

trade-space analysis results promptly and can be computationally cheap. Covariance

analysis tools are mostly ad-hoc or within proprietary interfaces. This is especially

true for the realm of navigation, as most covariance analysis papers deal with a single

scenario and write an ad-hoc simulator for said scenario [1, 2].

This research aims to create a covariance analysis tool in a new modular and plug-

gable navigation framework library, the Navigation Toolkit. The Navigation Toolkit

is a government-reference library that can be used out of the box with the modu-

lar and pluggable sensor fusion architecture known as pntOS. Creating a covariance

analysis tool inside a modular and pluggable navigation software package will allow

researchers to quickly obtain trade-space analysis results and easily conduct their

own covariance analysis simulations using largely the same code that is used for real

sensor fusion. Researchers will be able to leverage a large amount of sensor models,

algorithms, and filters that come prepackaged within Navigation Toolkit.

The creation of this covariance tool is explained through the analysis of two dif-

ferent navigation scenarios. Results from these different navigation scenarios are

explored to determine the benefits and drawbacks behind the sensor combinations.

A new Doppler LiDAR velocity sensor is first evaluated with a short, four hundred

second set of simulated flight data to prove the functionality of the covariance tool

and to simultaneously show the capabilities of the new sensor. The final evaluation

is conducted using 3 hours of flight data. This scenario pairs the Doppler LiDAR

velocity sensor with a high-sensitivity scalar magnetometer to understand how the

iv

combination of these two sensors may improve a navigation solution.

v

Acknowledgements

I would like to thank my advisor, Dr. Leishman for his guidance throughout this

process and encouragement along the way. I would also like to thank my committee

for their insight and time. Finally, I would like to thank my beautiful girlfriend for

all of her support and patience throughout this process.

Tristan T. Williams

vi

Table of Contents

Page

Abstract . iv

Acknowledgements . vi

List of Figures . ix

List of Tables . xi

I. Introduction . 1

1.1 Problem Background. 1
1.1.1 Trade-Space Analysis . 1
1.1.2 Position, Navigation, and Timing Operating

System (pntOS) . 2
1.2 Project Motivation . 2

1.2.1 Covariance Analysis Tool . 2
1.2.2 Case Studies . 3

1.3 Document Overview . 4

II. Background and Literature Review . 5

2.1 Kalman Filtering . 5
2.2 Extended Kalman Filtering . 9
2.3 Covariance and Monte Carlo Analyses . 11

2.3.1 Covariance Analysis . 13
2.4 Modular and Pluggable Navigation Architectures 15

2.4.1 Scorpion . 15
2.4.2 pntOS . 15
2.4.3 Navigation Toolkit . 18
2.4.4 Pinson15 Error Model . 20

2.5 Covariance Analysis Tool . 23
2.6 Related Work . 25

III. Scholarly Article: Validation of Doppler Lidar Sensor using
Covariance Analysis . 27

3.1 Abstract . 27
3.2 Introduction . 27
3.3 Background . 28

3.3.1 Trade-Space Analysis . 28
3.3.2 Monte Carlo Analysis . 29
3.3.3 Covariance Analysis . 31

3.4 Software Description . 31

vii

Page

3.4.1 Navigation Toolkit . 31
3.5 Experiment . 37

3.5.1 Results . 46
3.6 Conclusion . 47

IV. Scholarly Article: Covariance Analysis Simulation Tool
Demonstrated with Alt Nav Analysis . 48

4.1 Introduction . 48
4.2 Background . 49

4.2.1 Trade-Space Analysis . 49
4.2.2 Monte Carlo Analysis . 49
4.2.3 Covariance Analysis . 50
4.2.4 Doppler LiDAR Velocity Sensor . 53
4.2.5 Magnetic Navigation . 54

4.3 Software Description . 55
4.3.1 Navigation Toolkit . 55
4.3.2 Pinson15 StateBlock . 58
4.3.3 Magnetic Anomaly Navigation (MagNav)

Measurement Processor . 61
4.3.4 Psionic Measurement Processor . 61
4.3.5 Covariance Analysis Simulation Tool . 61

4.4 Experiment . 65
4.5 Conclusions . 78

V. Conclusions . 79

5.1 Use Case Conclusions . 79
5.2 Covariance Analysis Tool Conclusions . 79
5.3 Future Work . 80

Appendix A. Code Snippet . 81

Bibliography . 85
Acronyms . 88

viii

List of Figures

Figure Page

1 Kalman Filter Diagram . 7

2 Monte Carlo Simulation Diagram . 12

3 Sensor Diagram from pntOS [3] . 17

4 Original Scorpion Framework [4] . 19

5 Example of UI ran Straight Flight Example using
Pinson15 model. 24

6 Monte Carlo simulation for a generalized GNC problem. 30

7 Diagram of the Navigation Toolkit Framework. [4] 36

8 Flight path of truth data used in simulation. 38

9 NED position error IMU only navigation scenario 39

10 North position error full test with IMU, Baro, and
Doppler LiDAR velocity sensor . 40

11 East position error full test with IMU, Baro, and
Doppler LiDAR velocity sensor . 41

12 Down position error full test with IMU, Baro, and
Doppler LiDAR velocity sensor . 42

13 North velocity error full test with IMU, Baro, and
Doppler LiDAR velocity sensor . 43

14 East velocity error full test with IMU, Baro, and
Doppler LiDAR velocity sensor . 44

15 Down velocity error full test with IMU, Baro, and
Doppler LiDAR velocity sensor . 45

16 Monte Carlo simulation for a generalized GNC problem. 51

17 Magnetic Anomaly Definition [5] . 54

18 Navigation Toolkit Framework . 56

ix

Figure Page

19 Original Scorpion Diagram . 63

20 Covariance Tool UI . 64

21 Plot of Ottawa flight truth position data (latitude vs
longitude) . 67

22 Position Error State Covariances: Velocity And MagNav 68

23 Velocity Error State Covariances: Velocity And MagNav 69

24 Attitude Error State Covariances: Velocity And MagNav 70

25 Position Error State Covariances: Velocity And MagNav 71

26 Velocity Error State Covariances: Velocity And MagNav 72

27 Attitude Error State Covariances: Velocity And MagNav 73

28 Position Error State Covariances: Velocity And MagNav 74

29 Velocity Error State Covariances: Velocity And MagNav 75

30 Attitude Error State Covariances: Velocity And MagNav 76

31 Position Error Budgeting . 77

32 Velocity Error Budgeting . 77

x

List of Tables

Table Page

1 Variable Definitions for Pinson 15 Error Model . 21

2 Simulation initial conditions. 39

3 Table to show simulation initial conditions. 39

4 Variable Definitions for Pinson 15 Error Model . 59

5 Simulation initial conditions. 66

xi

Covariance Analysis for Multi-Source Navigation Architecture

I. Introduction

1.1 Problem Background

1.1.1 Trade-Space Analysis

The most commonly used method of trade-space analysis is the Monte Carlo

method [6]. The Monte Carlo method performs a large number of simulation runs of

a system while perturbing parameters to obtain samples to populate a distribution

of results. The average value is understood to be the most likely outcome of the

simulation. Monte Carlo analysis can require many hundreds or thousands of runs

to achieve accurate results depending on the complexity of the problem at hand.

These runs can take days to complete, depending on the complexity of the problem

being simulated and the number of parameters being varied. Covariance analysis can,

in certain circumstances and under some assumptions, provide the same statistical

results as a Monte Carlo simulation without large amounts of computation time and

in as few as one simulation run [7, 6]. Covariance analysis provides an estimate of

system uncertainties with time, given the user has the required truth model of the

system. This thesis documents the creation of an analysis tool that will aid researchers

in the quick creation and analysis of covariance analysis simulations. Then, describes

the use of the tool with two different use cases.

1

1.1.2 Position, Navigation, and Timing Operating System (pntOS)

pntOS is a pluggable Bayesian estimation application that allows a software frame-

work to generate navigation simulations and scenarios in a virtual environment. A

library exists alongside pntOS, called Navigation Toolkit, that allows for users to

utilize modular Bayesian estimators and assemble plugins that are compatible with

pntOS. The overall architecture creates an environment where users can create dif-

ferent filters, sensors, and algorithms that can be easily accessed and used in a wide

variety of applications.

1.2 Project Motivation

1.2.1 Covariance Analysis Tool

The creation of a covariance analysis tool inside of the Navigation Toolkit soft-

ware package will allow researchers to conduct covariance analysis quickly and easily,

largely with the same code that will be used for the actual navigation computations.

With the speed of technology invention today, the creation of new ways to navigate

Earth are ever-changing. One problem researchers and government offices have is the

task of sorting through many potential sensors to determine how they might best

utilize these new developments in technology. The proposed covariance analysis tool

will directly aid in this challenge. With this tool, a researcher may not need to simu-

late a single scenario thousands of times to estimate the navigation state covariance.

A single run will be required of the simulation to get the covariance bounds of the

navigation state.

A tool that researchers can use to conduct navigation covariance analysis will

speed up early stage research. Researchers given a new sensor could test in the field

or use a simulation first. The fastest way would be to build an entire simulation by

2

hand and run it thousands of times to create a best estimate of how the system would

respond. This would allow the researcher to have a better understanding of how the

sensor would contribute to a navigation solution and given different simulations, tell

many different characteristics of the new sensor. With the covariance analysis tool,

the researcher would simply have to plug in their sensor sigmas and direct the code to

the location of the truth data they wish to use for the simulation. Then in a fraction

of the time as a Monte Carlo simulation, the researcher will have the error state plots

and can determine if their new sensor or new navigation setup is what they want it

to be.

A covariance analysis can be run with a simulation flight across multiple trajec-

tories as well as different inertial measurement unit (IMU) grades to understand the

sensor’s contribution to a navigation system. With a full simulated analysis of a sen-

sor, it will be much easier for researchers and others to understand the full benefits

that a particular sensor might bring to a navigation solution. We will be conducting

a covariance analysis to aid in our understanding of new sensors and will give a brief

explanation of what covariance analysis is and how it can be used to obtain results

for new sensors, such as, the Psionic Doppler Light Detection And Ranging (LiDAR)

sensor.

1.2.2 Case Studies

This paper will conduct covariance analysis on two different sensors to demonstrate

how the proposed tool can help researchers conduct quick and efficient trade-space

analyses. These case studies will help describe how covariance analysis works and

will be beneficial for the emerging sensor technologies.

A novel Doppler LiDAR sensor was originally developed by NASA and has been

transferred to a company, Psionic, for further development and maturation. This

3

unique sensor can make highly accurate, three-dimensional velocity measurements in

the body frame of a vehicle. The company states the sensor can produce measure-

ments with covariance around 3 cm/sec at a rate in the kilohertz.

Magnetic anomaly navigation is a Global Positioning System (GPS)-alternative

navigation method that works by matching magnetometer measurements from a vehi-

cle’s magnetometer sensor onto a map of the Earth’s magnetic anomaly field [5]. Mag-

netic Anomaly Navigation (MagNav) is a form of navigation is a nearly unjammable

passive navigation system that works in any environment, weather conditions, or

time of day. MagNav is a method that has shown many recent promising results in

how it can aid a GPS-denied navigation scenario [5, 8, 9, 10]. MagNav could benefit

from more published simulations displaying the advantages, and we can provide this

through the use of our covariance analysis tool.

1.3 Document Overview

This work begins in Chapter II with the background of the software suite used

to create the covariance analysis tool in Chapter II. Chapter II will also describe the

use cases we will analyze in future sections using the covariance analysis tool. The

following chapters, Chapter III and Chapter IV, are individual papers that present

the two different use cases of the covariance analysis tool. Chapter Chapter III was

presented at National Aerospace and Electronics Conference (NAECON) in 2021 [11].

The next chapter, Chapter IV incorporates the Doppler LIDAR velocity sensor from

before with a MagNav sensor to demonstrate the solution the two sensors can create in

a combined navigation solution and will be submitted to the Journal of the Institute

of Navigation. Finally, Chapter V summarizes the findings and the creation of the

tool, then finishes with possible future work.

4

II. Background and Literature Review

This chapter presents the fundamental background information used to support

the software design decisions in the subsequent chapters. It is also utilized to cre-

ate an understanding of covariance analysis and other forms of trade space analysis.

Section 2.1 describes Kalman filtering and Section 2.2 explains extended Kalman fil-

tering. Section 2.3 explains covariance analysis and Monte Carlo analysis. Section 2.4

describes pntOS, the navigation architecture that the covariance analysis tool is built

within. This section also describes the models inside of pntOS that are utilized for

covariance analysis. Section 2.5 describes the covariance analysis tool and how it

was implemented into the pntOS architecture. Finally, Section 2.6 discusses related

research conducted by various other authors and how this paper contributes to the

field.

2.1 Kalman Filtering

An understanding of Kalman filtering is required to understand how we will be

estimating a simulated flight’s location with sensors. Kalman filtering is an algorithm

that uses a series of measurements observed over time with noise and creates an esti-

mate of the unknown variables. In navigation, we use the Kalman filter with sensors

providing our measurements and states like position, velocity, and attitude being

our unknown variables. The covariance analysis filter will be utilizing an extended

Kalman filter that will be desribed in the following section. The following example

will deal with a basic one-dimensional Kalman filter. A Kalman filter can be split

into 2 parts, the state update equations, and the dynamic model equations [12, 13].

We will start by defining the equation to create the Kalman gain, as this is required

5

to write the state update equation.

Kn =
Uncertainty in the Estimate

Uncertainty in the Estimate + Uncertainty in the Measurement
=

pt,t−1

pt,t−1 + rt
(1)

where pt,t−1 is the extrapolated estimate uncertainty that was calculated during

the previous filter estimation and rt is the measurement uncertainty at time t. The

Kalman gain is defined as a number between 0 and 1, and with this we can write the

state update equation as

x̂t,t = x̂t,t−1 +Kt(zt − x̂t,t−1) = (1−Kt)x̂t,t−1 +Ktzt, (2)

where x̂t,t is the state estimate updated at time-step t. The Kalman gain Kt is the

weight or accuracy assigned to the measurement. Inversely, (1−Kt) is the weight or

accuracy given to the estimate of the state. The Kalman gain effects how much the

predicted estimate x̂t,t−1 changes given the measurement just received zt. Next, the

definition of the estimate uncertainty update is

p̂t,t = (1−Kt)p̂t,t−1, (3)

which is the covariance update equation. As accuracy in the measurements increases,

the uncertainty in the filters prediction decreases. Of course, with more and more

iterations of the Kalman filter, we will increase the accuracy of the estimate until

the filter achieves a steady-state balance between the prediction widening the state

and the measurement updates shrinking them back down. The estimate uncertainty

extrapolation is created with the dynamic model equations. These equations differ

based on what one is estimating and can range from a large list of equations that are

very complex to being constant. The number of dynamic model equations is directly

related to the number of states that are being estimated. Figure 16 illustrates a

6

diagram showing the flow of a Kalman filter. We will later use a Monte Carlo method

as well as the covariance analysis to estimate how accurate the different sensor suites

are at estimating the position and other states of a simulated aircraft. The Monte

Carlo method utilizes the Kalman filter by running a large amount of the Kalman

filters estimating the same scenario, with each run being an independent sample

within the trajectory and sensors. Then, the individual Kalman filter runs are taken

and statistics of those runs can be extracted to understand the anticipated result.

Figure 1: A visualization of a basic Kalman filter. Kalman filters are used to fuse
mulitple measurements and estimate unknown variables. The fusion produces results
that are more accurate than those based on a single measurement alone.

Now that the most basic understanding of the Kalman filter is developed, we can

transition into an understanding of the Kalman filter within the realm of navigation.

7

The following will be a development of the Kalman filter as before but describing a

basic navigation solution when using a Kalman filter. This development also assumes

a state vector x, rather than a scalar

ẋ(t) = Fx(t) + Bu(t) + Gw(t), (4)

where x(t) is the system state vector at a given time, u(t) is the system input vector

at a time, and w(t) is the included white noise components vector at the same given

time. The remaining variables F , B, and G are Jacobian matrices filled with constant

coefficients. If we were using a basic discrete linear model, it would be given by

zk = Hxt + vt, (5)

with z being the given sensor measurement, H the observation model that is used to

map the given measurements to states, and v is the white noise of the sensor. t is the

the current timestamp of the system during the update of the state estimate. This is

the most basic version of a discrete linear sensor when integrated into a Kalman filter.

This model can be expanded to allow the fusion of more complex/non-linear sensors

in a navigation solution. System states of the navigation solution are estimated by

propagating the following

x̂−t+1 = Φx̂+t +Bdut (6)

P−
t+1 = ΦP+

t ΦT +Qd (7)

where x is the state estimate given by the Kalman filter, φ is the discrete state

transition matrix, and P is the state error covariance matrix that is associated with

the sensor. As Kalman filters work by propagating and updating, we can create our

8

states and covariance by a combination of the estimates from the Kalman filter and

the measurement readings from the sensors by introducing the Kalman gain below

Kk = P−
t H

T [HPtH
T +R]−1 (8)

x̂+t = x̂−t +Kk[zt −Hx̂−t] (9)

P+
t = (1−KtH)P−

t (10)

Finally, R is the sensor measurement error covariance matrix. This represents

what happens in a single iteration of the Kalman filter and this continues over all

time of the flight or simulation. Next, we will look at the Kalman Filter type that

the covariance simulation will utilize. This is known as an Extended Kalman Filter

or EKF.

2.2 Extended Kalman Filtering

Extended Kalman filters are Kalman filters that are extended to include non-

linear models for state dynamics and sensor measurement models. These models are

linearized to propagate covariance information, in the same way as the Kalman filter,

but nonlinear functions are used to propagate mean values [14]. The system dynamics

become the following:

ẋ(t) = f(x(t), u(t), t) +G(t)w(t). (11)

where f is the nonlinear function that describes how the states change with time.

The non-linear measurement model is

9

zk = h(xt, tt) + vt. (12)

where h is a nonlinear function that models the sensor measurements. Now, to

linearize the equations that are nonlinear, the states are converted by the following

model given by

δx(t) , x(t)− x̂(t), (13)

where δx(t) is the discrepancy between the true state vector and the state estimate.

Since the equations are nonlinear and we still need to propagate them forward in

time, the EKF integrates the non-linear equations over the difference in time by

x̂−t+1 =

∫ tt

tt+1

f [x(t), u(t), t]dt + x̂+t (14)

then the following linear dynamics model is

Ft =
δf

δx
|x̂+t (15)

Then, to update the estimates of the states utilizing the sensor measurements as they

come in which may be non-linear, we start by predicting the measurement using the

measurement model equation along with the most recent measurement with

ẑt = h(x̂−t , tt) (16)

and

δzt = zt = ẑt. (17)

δzt is the pre-update measurement residual that describes the difference between the

predicted value and true measurement. We can now linearize the nonlinear measure-

10

ment function h

Ht =
δh

δx
|x̂−t (18)

where H being the linearized matrix of equations. Then, the measurement update

equation can be reduced to the following:

δx̂+t = Ktδzt (19)

This final equation shows how the perturbation state is updated as the filter progresses

through time. This state starts at zero and, during each iteration of the filter, is

updated then finally reset to zero after each iteration of the Kalman filter. The

perturbation state is added to the state to produce the final, full state estimate.

2.3 Covariance and Monte Carlo Analyses

Currently, Monte Carlo analysis is a very common tool for trade-space analysis.

However, it requires hundreds, and often thousands, of simulated runs to obtain the

required results. Since the Monte Carlo method obtains its results, the statistics of

the system by averaging all the runs conducted, the more runs conducted the more

accurate the results. This leads to a considerable computational load and a lengthy

run-time. Monte Carlo analysis is used in a wide scope of scientific fields and is a ver-

satile tool for nonlinear analysis. In the specific case of a GNC system, a Monte Carlo

simulates the sensors with the given specifications, computes the covariance and error

states by generating a large amount of samples of the trajectory and measurements,

and then estimates the states and covariances. In the following Figure (Fig. 16), we

can see a flow diagram of a Monte Carlo simulation for navigation.

11

Figure 2: Monte Carlo simulation for a generalized GNC problem. This loop is
ran for each time-step in the trajectory till one has completed the simulation. This
represents a single estimate, with hundreds or thousands of these estimates being
required. Then, the statistics of the errors in the system are the final outputs. The
process noise w, continuous sensor noise η (e.g. the inertial measurement unit (IMU)),
and discrete sensor noise vk form the dynamics for the truth state x. The simulated
sensor data is defined as δz̃k, which are discrete measurements by sensors, and ỹ,
which are continuous IMU data. Finally, δx is the difference between the true state
and the estimated state. The output value is δx. The mean value obtained from
the Monte Carlo simulation is a statistical approximation of the true value. The
statistical sample can be improved by increasing the total number of Monte Carlo
runs.

12

2.3.1 Covariance Analysis

Covariance analysis can provide the covariance of the system just like a Monte

Carlo but in a single simulation run. This eliminates the computational burden

that comes with the Monte Carlo analysis. Covariance analysis has a few extra

requirements that are critical to keep in mind. Covariance analysis requires that

the navigation equations be linearized or linearly approximated. Therefore, if the

equations at hand induce many non-linearities that cannot be linearly approximated,

a Monte Carlo may be the only option. One must explicitly define the structure, the

truth model, and the design model for which the filter is based [6]. Also, all errors

must be Gaussian distributed. Since all errors must be Gaussian,the equations linear,

and our filter is being fed the truth of the system, the covariance relationships are

independent of our estimate [6]. This allows us to obtain the covariance, and thus

the distribution information, of the simulation without the estimate. The following

equations show how we arrive at the covariance without the estimate and assume a

full Kalman filter, which was defined above. Pe(t) is the covariance of the estimation

errors committed by the given filter and Pa(t) is the covariance of the augmented state.

The augmented state is a the state and errors of the states augmented together. Since

all processes are assumed to be zero mean, we can define Pa(t) and Pe(t) as

Pa(t) = E{xa(t)xTa (t)}, (20)

Pe(t) = E{et(t)eTt (t)}, (21)

where et is the error committed by the filter and xa being the augmented state vector

at the given time. Propagating between samples is done by integrating

13

Ṗa(t) = Fa(t)Pa(t) + Pa(t)F
T
a (t) +Ga(t)Qt(t)G

T
a (t), (22)

with a linear system with structure defined as defined as Fa and Ga. With uncertainty

defined as Qt The measurement update can be derived as

Pa(t
+
i) = Aa(ti)Pa(t

−
i)ATa (ti) +Ka(ti)Rt(ti)K

T
a (ti), (23)

where our initial covariance is defined as

Pa(t0) =

−Pt0 0

0 P0

 (24)

we then define the follow equations

Aa(ti) =

 I 0

K(ti)Ht(ti) [I −K(ti)H(ti)]

 , Ka(ti) =

 0

K(ti)

 , (25)

Aa is required to update our covariance analysis equation and Ka being the

Kalman gain of our estimate with zeros added on top.

Finally the desired error covariance can be obtained with

Pe(t) = Ca(t)Pa(t)C
T
a (t). (26)

where

Ca(t) =

[
−Ct(t) C(t)

]
(27)

. C is the critical states or quantities we care about. If we are only interested with a

certain number of states in our system using C we can only return the ones that we

are interested in. If we are interested in all of the states C(t) = I. We end up with

14

the covariance of the state using the sensor covariance values and without having to

calculate individual estimates. This saves a large amount of computation time.

2.4 Modular and Pluggable Navigation Architectures

2.4.1 Scorpion

Scorpion is the precursor to the Bayesian estimation software we have defined

in this thesis as Position, Navigation, and Timing Operating System (pntOS) [4].

Scorpion was created at the Air Force Institute of Technology (AFIT) Autonomy

and Navigation Technology Center (ANT Center) and was initially designed to be a

support tool for academic research and was built to run on a Java Virtual Machine

(JVM). It was written primarily in Kotlin. This tool was created to be a pluggable

software architecture but had some shortfalls in the difficulty for users to create their

own functions alongside the government-owned components. Scorpion did not have

a large software architecture like its successor pntOS, which allows pntOS to create

its own stand-alone programs.

2.4.2 pntOS

pntOS is a pluggable Bayesian estimation application that allows a software frame-

work to generate navigation simulations and scenarios in a virtual environment. A

library exists alongside pntOS, called Navigation Toolkit, that allows for users to

utilize modular Bayesian estimators and assemble plugins that are compatible with

pntOS. The overall architecture creates an environment where users can create dif-

ferent filters, sensors, and algorithms that can be easily accessed and used in a wide

variety of applications. pntOS is a government-owned, fully pluggable architecture for

building navigation systems. pntOS is designed so that a system can be created from

a mixture of proprietary and government-owned components. It defines a much more

15

user-friendly architecture where users can easily create their own tools and, within

the framework, will work with any other user-created tools. pntOS is analogous to an

operating system in the sense that, like a computer operating system manages basic

computer functions like task scheduling and executing programs, pntOS manages the

basic functions in a Position Navigation and Timing (PNT) system. The majority

of the work in this thesis is conducted inside of the reference library of pre-made

filters, models, and algorithms that are able to be used to create viper plugins inside

ofpntOS known as the Navigation Toolkit. pntOS can be split into 3 main parts: the

pntOS architecture, navigation toolkit, and viper plugins.

2.4.2.1 Architecture

The main inspiration for the rework of Scorpion to create pntOS was to create

an architecture that can be operationalized. pntOS is just the architecture itself. It

creates an environment to allow various sensors, perform data fusion or filtering, and

produce a navigation solution. The goal is for the architecture to be easy to follow

and to develop inside of. This is to allow other parties to create their own software

that conforms to the pntOS architecture and have a centralized environment for all

navigation research and operationalized development.

2.4.2.2 Viper Plugins

Viper plugins are government provided pre-built reference plugins that plug into

pntOS. These are tools that can be plugged into the pntOS architecture to do var-

ious different tasks. Plugins can be many different things, such as models, sensors,

algorithms, etc. Figure 3 shows a basic sensor plugin example.

16

Figure 3: Diagram of a Basic Sensor Plugin [3]. Stateblocks and measurement pro-
cessors are used in coordination to create a full navigation simulation.

17

2.4.3 Navigation Toolkit

Navigation Toolkit is a collection of government provided prepackaged algorithms,

filters, and models within a library. These are prepackaged tools that can be utilized

in pntOS to create plugins for pntOS. A full decomposition of this can be seen in

Figure 19. For example, the simulations we will explain later in Chapter III and

Chapter IV will use the Pinson15 model and Extended Kalman Filter. Both of these

are prepackaged in the navigation toolkit. This software setup allows researchers to

easily modify sensor values, add and remove sensors, as well as swap filters. The main

three goals of this software library effort known as navigation toolkit are modular

algorithms, pluggable filters, and pluggable sensors. Now the parts of the navigation

toolkit that make up a simulation will be described below.

State Blocks A state block represents a collection of states whose propaga-

tion is not dependent on any states outside of the given state block [4]. State blocks

are a set of N states, that house the info required to propagate the states forward in

time.

Measurement Processors A measurement processor represents the rela-

tionship of a measurement to the state vector. Given a sensor measurement, the

measurement processor provides the fusion engine with a model to update the states.

Fusion Engines Finally the Fusion engine brings everything together, the

stateblock and measurement-processor, then produces the full estimates of all the

states that are required by the state blocks. The estimates are created for the past,

present, and future of the states. The fusion engine operates by the measurement

processor passing the engine the measurements then the models from the state blocks

and measurement processor go to the fusion strategy.

18

Figure 4: Diagram of the Viper Framework [4]. Stateblocks, measurement processors,
and stateblocks make up everything you need for a full navigation simulation.

19

2.4.4 Pinson15 Error Model

For the analysis, we use an out-of-the-box Pinson15Ned state block. This pin-

son15 state block updates as the filter runs and what happens inside of them will

be described in detail in their own respective sections. The measurement processor

houses a model of the sensor you have called and instructions on how the measure-

ment will be included in your used state blocks. A pinson15 is a set of 15 states

bundled together that model the errors of an Inertial Navigation System (INS) in a

moving North East Down (navigation) frame. A Pinson15 requires an initial value

for the 15 states used and we set this up with the initial sigma values of the given

sensors as well as the initial bias in the gyro and accelerometer. A Pinson15 model

can be described as the following [15]

X =

[
δpn δpe δpvert δvn δve δvd εn εe εd bax bay baz bgx bgy bgz

]T
(28)

where δp is north-east-down position errors, δv represents NED velocity errors, η

are the tilt errors about the NED axis, ba x,y,z are accelerometer time-correlated

biases, and bg x,y,z gyro time-correlated biases. The linearized dynamics model can

be expressed as



δ̇p

δ̇v

δ̇ε

ḃa

ḃg


=



Fpp Fpv Fpε 03×3 03×3

Fvp Fvv Fvε Cn
s 03×3

Fεp Fεv Fεε 03×3 Cn
s

03×3 03×3 03×3 Faa 03×3

03×3 03×3 03×3 03×3 Fgg





δp

δv

δε

ba

bg


(29)

Before we define the submatrices we will define the variables used inside of them with

the following table where the sub-matrices are defined as the following

20

Table 1: Variable Definitions for Pinson 15 Error Model

Variable Description

L Latitude
vn North Velocity
ve East Velocity
vd Down Velocity
Re Earth Radius
fn Measured Specific Force North Direction
fe Measured Specific Force East Direction
fd Measured Specific Force Down Direction
Ω Earth Rotation Rate

Fpp =


0 0 −vn

R2
e

vetanL
RecosL

0 ve
R2

ecosL

0 0 0

 (30)

Fpv =


1
Re

0 0

0 1
RecosL

0

0 0 −1

 (31)

Fpε = 03×3 (32)

Fpv =


ve(2 ∗ ΩcosL ve

Recos2L
) 0 v2etanL−vn∗vd

R2
e

2Ω(vncosL− vdsinL) + vnve
Recos2L

0 −ve(vntanL+vd)
R2

e

2ΩvesinL 0 v2n+v
2
e

R2
e

 (33)

Fvv =


vd
Re

−2(ΩsinL+ ve
Recos2L

) vn
Re

2ΩsinL+ vetanL
Re

vntanL+vd
Re

2ΩcosL+ ve
Re

−2vn
Re

−2(ΩcosL+ ve
Re

) 0

 (34)

21

Fvε =


0 −fd fe

fd 0 −fn

−fe fn 0

 (35)

Fεp =


−ΩsinL 0 −ve

R2
e

0 0 vn
R2

e

−ΩcosL− ve
Recos2L

0 vetanL
R2

e

 (36)

Fεv =


0 1

Re
0

− 1
Re

0 0

0 tanL
Re

0

 (37)

Fεε =


0 −ΩsinL+ ve

RetanL
vn
Re

ΩsinL+ vetanL
Re

0 ΩcosL+ ve
Re

−vn
Re

−ΩcosL− ve
Re

0

 (38)

where Cn
s is a direction cosine matrix, which takes a vector expressed in the body

frame and expresses that vector in the navigation frame. Faa describes the decaying

exponential terms of the first order Gauss-Markov process given by

Faa =


1
τa

0 0

0 1
τa

0

0 0 1
τa

 (39)

22

where τg is a time constant of the accelerometer time-correlated biases. Fgg is the

same, but for the time constant of the gyro time correlated biases given as

Fgg =


1
τg

0 0

0 1
τg

0

0 0 1
τg

 . (40)

2.5 Covariance Analysis Tool

The covariance analysis simulation tool will be built on over time to add more

and more different sensors, stateblocks, and ease of usability. Currently, there exists

a headless C++ version that is wrapped in python bindings and a UI version that

allows users to quickly use the tool without any knowledge of how to use pntOS and

navigation toolkit. The User Interface (UI) version is more limited as you have to

use the stateblocks, sensors, and models already added by selecting different check

boxes or drop downs as you can see an example of the UI in (Fig. 20). This helps

users that are not as accustomed to the tool or users who simply want to quickly run

a simulation and get plotted results. A user can easily run the covariance simulation

program, pick their IMU/sensors, pick the different stateblocks they wish to run,

give the path to their truth data Comma-Separated Values (CSV), and give all the

relevant sigmas/intervals for the sensors.

The simulation using the navigation toolkit takes in a CSV or zip of the truth

trajectory. CSV for the created tool UI or coded covariance simulator. A zip is used

when running the simulation with Magnetic Anomaly Navigation (MagNav). The

MagNav version of this tool is inside of viper-MagNav which is a different branch

of libviper. When using MagNav measurements we have to use a certain truth that

includes the magnetic anomaly maps. Since the simulation is taking in the truth

and creating the simulated flight we have to create our own measurements. The

23

errors in the measurements of the different sensors is created by adding noise to the

truth measurements given the sigma values passed in by the user. The filter runs

with an extended Kalman Filter (EKF), updates the state block models, and creates

simulated sensor measurements for all time intervals. Our covariance analysis as

described above has a few requirements that are easily met with the EKF. The errors

must be Gaussian and the navigation equations must be linearized.

Figure 5: Example of UI ran Straight Flight Example using Pinson15 model.

If users want to create their own stateblocks, their own custom IMUs, or further

customize the tool, the terminal ran version is what they would use. By using one

the many examples libviper offers as a template. Users can easily set the values of

their own stateblocks to add custom models or can call on the custom IMU and set

their own sigma values. The ”straight flight example” view from a IDE can be seen

in appendix A. This shows where users can add their own custom IMUs, edit sigma

values, enable and disable sensors, set where the truth data for the simulation is

coming from and edit the interval at which sensors are updated.

24

2.6 Related Work

Most covariance analysis related papers take a single navigation scenario and use

covariance analysis to explain how the navigation solution is valid. An example would

be a lunar lander using covariance analysis to show the solution and the math creates

our true states for landing a rover on the moon. The covariance papers [7, 16, 17, 18]

explain the math behind the filtering to model the flight and then show the math on

how the states of the system can be modeled with a covariance analysis. These papers

focus more on the navigation problem at hand and use covariance analysis as a way to

show how a solution can be found in a simulation environment. Of course, covariance

analysis works great with space related navigation since testing these scenarios in the

real world are close to impossible or abundantly costly.

A paper by Christensen and Geller [7] proposes that given a covariance analysis

in a closed loop navigation solution will achieve similar results and is a much more

computationally cost effective solution. The authors show that given a closed-loop

guidance scenario (rocket-sled) using Monte-Carlo simulation the run time was over

26,000 hours. Given a linear covariance, you can achieve the covariance of the system

and only have a 38 hour run time. The authors go on to explain that their simulation

takes into account many aspects that would be crucial to closed loop navigation.

Such as error budgets, effect of changes to navigation/control scheme, and effect of

sensor specifications and interference levels. With these items taken into account it

can be shown that not only will linear covariance give the results you want within 3

sigma of error but also you can expect all the usual helpful data you would expect

from a full Monte Carlo run. This is one of few papers that have a goal to explain

covariance analysis with a simple example. Most papers will utilize covariance analysis

to analyze their equations and show that their navigation scenario is valid. This closed

loop navigation paper by Geller and Christensen sets out to explain what covariance

25

analysis is and how it can be a valuable trade space analysis tool that does not require

extensive computation time like that of a Monte Carlo analysis.

26

III. Scholarly Article: Validation of Doppler Lidar Sensor
using Covariance Analysis

3.1 Abstract

A novel Doppler Light Detection And Ranging (LiDAR) sensor has been developed

with the help of NASA technology transfer. This sensor can make highly accurate,

three-dimensional velocity measurements in the body frame of a vehicle. However,

the practicability of such a sensor in an inertial measurement unit (IMU)-mechanized

navigation solution is unknown. A covariance analysis can be run with a simulation

flight across multiple trajectories as well as different IMU grades to understand the

sensors accuracy and contribution to a navigation system. With a full simulated

analysis of this sensor, it is much easier for researchers and others to understand the

full benefits that a Doppler LiDAR system might bring to a navigation solution. We

conduct the analysis by way of covariance analysis as well as Monte Carlo and give

a brief explanation of what covariance analysis is and how it can be used to obtain

results for this new sensor. We define this new software tool we have created and

speak on how researchers can use it to conduct covariance analysis tests of their own.

3.2 Introduction

In this paper we document the results of analysing the navigation performance

of a newly developed Doppler LiDAR sensor using a technique known as covariance

analysis [7]. The tool used in conducting the analysis is built within a modular multi-

source navigation sensor fusion library [4]. Many papers utilize covariance analysis

for different individual analysis problems such as closed loop navigation[7], space

rendezvous[1], and lunar landers [2]. Currently, most covariance analysis research

defines a specific problem to be researched and shows the results of said experiment

27

using covariance analysis. We will be using covariance analysis to define a specific

experiment with the results of the Doppler LiDAR sensor. We also will be defining

the software package used to create this experiment and how other researchers can

utilize this software to create their own experiments.

The creation of a covariance analysis tool inside of a modular software package

will allow researchers to plug-and-play their own data and run covariance analysis

experiments of their own. Section 4.2 characterizes Monte Carlo analysis as well as

covariance analysis and gives a brief introduction to trade-space analysis. Section 4.3

defines the software package used and describes how the software package is modified

to allow the creation of covariance analysis simulations. Section 4.4 defines the specific

experiment we conducted to prove the created covariance analysis simulation works

as intended and show the capability of the sensor. Finally, section 3.6 summarizes

the contents of the effort.

3.3 Background

3.3.1 Trade-Space Analysis

The research of alternative or complementary navigation is the search for new and

more reliable or accurate ways to navigate the ever-changing environment. It comes as

no surprise that trade-space analysis is a considerable tool for alternative navigation

research. The evaluation of sensor pairings, error budgets, and disturbances are all

navigation-related trade-space analysis problems. For example, taking an IMU sensor

paired with a velocity sensor to experiment with positioning accuracy is an example of

trade-space analysis in navigation. Taking a Global Positioning System (GPS) sensor

and measuring the error that is allowed before the position solution progresses beyond

the error threshold would be a good example. How a navigation system would respond

to an interruption in GPS over a set amount of time is another trade-space analysis

28

problem. Executing tests to research sensor pairings, error budgets, and disturbances

in the real world, given the broadness of the experiment, can be extremely expensive

and time consuming. Creating simulations for trade-space experiments and running

a simulated flight is a much more practical way to conduct these experiments and

can provide potentially similar statistical data to what a real test would provide.

A covariance analysis on a simulation of an example flight with all parameters for

the given sensors set prior to the run can give you results on sensor pairings, error

budgets, and disturbances quickly and efficiently.

3.3.2 Monte Carlo Analysis

Currently, Monte Carlo analysis is the most common tool for trade-space analysis.

However, it requires hundreds, and often thousands, of simulated runs to obtain the

required results. This leads to a considerable computational load and a lengthy

run-time. Monte Carlo analysis is used in a wide scope of scientific fields and is a

versatile tool. In our specific case in a Guidance, Navigation, and Control (GNC)

system, a Monte Carlo simulates the sensors with the given specifications, computes

the covariance and error states by generating a large amount of samples of each state,

and then estimates the covariances.

In the following Figure 16 we can see a flow diagram of a Monte Carlo simulation

for navigation.

29

Figure 6: Monte Carlo simulation for a generalized GNC problem.

30

The w process noise, η continuous sensor noise, and vk discrete sensor noise form

our dynamics for the truth model to form our true state x. The simulated sensor

data is defined as δz̃k, which are discrete measurements by sensors, and ỹ, which

are continuous IMU data. Finally, δx is the difference between the true state and

estimated state. The output value is δx. The mean value we get from our Monte

Carlo simulation is a statistical approximation to the true value. You can improve

the statistical sample by increasing the total amount of Monte Carlo runs.

3.3.3 Covariance Analysis

Covariance analysis can provide similar statistical data to a Monte Carlo but

in a single simulation run. This eliminates the computational burden that comes

with the Monte Carlo analysis. Covariance analysis has a few extra requirements

that are critical to keep in mind. Covariance analysis requires that the truth model

be linearized or linearly approximated. Therefore, if the situation induces many

nonlinearities, a Monte Carlo may be the only option. One must explicitly define

the structure and uncertainties of the truth model and the design model for which

the filter is based [6]. Also, all errors must be Guassian. Since all errors must be

Guassian and the equations linear, the covariance relationships are independent of

the measurement time history [6]. We follow the covariance analysis as outlined in

[7][19][17].

3.4 Software Description

3.4.1 Navigation Toolkit

Navigation toolkit is a modular Bayesian estimation software library designed to

assist users in the creation of navigation filters. Navigation toolkit exposes an API for

developing pluggable filter components and is an operationalized version of Scorpion

31

[?]. This software setup allows researchers to easily modify sensor values, add and

remove sensor suites, as well as swap filters.

Navigation toolkit works by way of fusion engines/strategy and state blocks, a full

decomposition of this can be seen in Figure 19. The fusion engine/stategy sets up the

users filter of choice. As of now the options out of the box are an unscented Kalman

Filter and a Extended Kalman Filter. For our example as mentioned earlier, we are

going to use an EKF since this works with our covariance analysis requirements well.

Next, state blocks are a set of N states, these state blocks house the info required

to propagate the states forward in time. For our analysis we use an out of the box

Pinson15Ned state block, which is a set of 15 state blocks bundled together that

model the errors of an INS in the North East Down frame. A Pinson15 requires an

initial value for the 15 states used and we set this up with the initial sigma values of

our given sensors as well as the initial bias in the gyro and accelerometer.

Now, we have a full state block loaded and the initial conditions set. One more

item is needed for the Pinson15 to propagate our solution. Since our Inertial Nav-

igation System (INS) errors change as a function of the vehicle’s motion, we have

to give the Pinson model the approximate position, rotation, velocity, and specific

force. For our covariance analysis this is where our truth is fed in. Instead of an

”approximation” we will use the truth of the flight for this part. Every propagation

the Comma-Separated Values (CSV) will be called again to feed in the current true

position of the vehicle into the model instead of feeding in the approximate location

output by the extended Kalman Filter (EKF). With all of this we have a full simula-

tion that follows the rules of covariance analysis and will give us a accurate covariance

of the flight in a singular run.

The ease of adding, editing, and deleting different sensors, using different filters,

and utilizing different models lets us analyze this Doppler LiDAR sensor to an extent

32

unreachable before. Navigation toolkit exposes a framework that researchers can

easily write their own models or filters in and have access to other researchers created

filters/models. The creation of navigation toolkit was to allow researchers to work on

navigation simulations or build sensors in a common place where other researchers

can pull what they have done and add it to their work without having to reinvent the

wheel.

A Pinson15 model can be described as the following:

X =



δpn

δpe

δpvert

δvn

δve

δvd

εn

εe

εd

bax

bay

baz

bgx

bgy

bgz



(41)

where δp is n-e-vertical position errors, δv represents NED velocity errors, η about

the NED axis, ba x,y,z accelerometer time correlated bias, and bg x,y,z gyro time

correlated biases.

33

The linearized dynamics model can be expressed as:



δ̇p

δ̇v

δ̇ε

ḃa

ḃg


=



Fpp Fpv Fpε 03×3 03×3

Fvp Fvv Fvε Cn
s 03×3

Fεp Fεv Fεε 03×3 Cn
s

03×3 03×3 03×3 Faa 03×3

03×3 03×3 03×3 03×3 Fgg





δp

δv

δε

ba

bg


(42)

where Cn
s is a direction cosine matrix, which rotates a vector from the accelerome-

ter or and gyro sensor frame to the NED navigation frame. Faa describes the decaying

exponential terms of the first order Gauss-Markov process given by:

Faa =


1
τa

0 0

0 1
τa

0

0 0 1
τa

 (43)

where τg is a time constant of the accelerometer time correlated biases. Fgg is the

same, but for the time constant of the gyro time correlated biases given as:

Fgg =


1
τg

0 0

0 1
τg

0

0 0 1
τg

 (44)

Our simulation in navigation toolkit takes in a CSV of the flight’s truth and truth

of the filter, setting the values for the sensors such as sigmas, intervals, and picking an

IMU model. The Pinson15 model requires the initial filter uncertainty, then the model

can run the simulation propagating the EKF and outputting data. Our covariance

analysis as described above has a few requirements that are easily met with our EKF

and Pinson15 model. Our errors have to be Gaussian and our navigation equations

34

have to be linearized. Since we are using a Pinson15 error model, we can assume the

truth is zero for all time.

35

Figure 7: Diagram of the Navigation Toolkit Framework. [4]

36

3.5 Experiment

A novel Doppler LiDAR sensor has been developed with the help of NASA tech-

nology transfer. This sensor can make highly accurate, three-dimensional velocity

measurements in the body frame of a vehicle. However, the practicability of such a

sensor in an IMU-mechanized navigation solution is unknown. A covariance analysis

is run with a simulation flight across multiple trajectories as well as different IMU

grades to understand the sensors accuracy and potential contributions to a navigation

system.

The vendor of the Doppler LiDAR sensor has provided us with error characteris-

tics based on testing the sensor in the field. The navigation toolkit software package

uses measurement processors to feed the measurement data into the model and fil-

ter. We will be using three measurement processors (velocity, baro, and position).

These measurement processors simply need to be initialized and given the measure-

ment covariance, and interval of data collects. Our values used for the measurement

covariance and intervals as well as any other required parameters can be found in

Table 5. The truth data used for this analysis is a CSV containing timing, latitude,

longitude, height, and velocity in the body frame. The flight itself is a figure eight

shown in Figure 8.

The simulation was conducted using the covariance analysis as well as running a

Monte Carlo simulation of a thousand samples. For a baseline, first a simulation was

run using covariance analysis with only a navigation IMU sensor and a tactical IMU

sensor. This shows the positioning error bounds with just an IMU and it compares it

to that of the full LiDAR sensor simulation. The full simulation using a baro sensor,

the Doppler LiDAR sensor, and a navigation grade IMU.

37

Figure 8: Flight path of truth data used in simulation.

38

Table 2: Simulation initial conditions.

Doppler LiDAR Simulation Parameters Data Value

IMU Grade Navigation Grade HG9900 Model
Doppler LiDAR Sigma 3 cm/s

Doppler LiDAR Interval 1 Hz
Baro Sigma 1 m/s

Baro Interval 1 Hz
Pinson 15 Initial POS 0.0, 0.0, 0.0 m
Pinson 15 Initial VEL .0003, .0003, .0003 m/s
Pinson 15 Initial Baro 0.0002, 0.0002, 0.0002

Pinson 15 Initial Accel Bias 0.0002, 0.0002, 0.0002
Pinson 15 Initial Gyro Bias 1.45e-08, 1.45e-08, 1.45e-08

Table 3: Table to show simulation initial conditions.

(a) North (b) East

(c) Down

Figure 9: NED Position Error with both a Navigation Grade IMU (Yellow) and
Tactical Grade IMU (Blue) using covariance analysis. These plots were meant to
verify that the basic covariance analysis was working as intended. This was confirmed
since my navigation grade IMU out-preformed my tactical IMU.

39

East position error IMU only navigation scenario]East Position Error with both

a Navigation Grade IMU (Yellow) and Tactical Grade IMU (Blue) using covariance

analysis. These plots were meant to verify that the basic covariance analysis was work-

ing as intended. This was confirmed since my navigation grade IMU out-preformed

my tactical IMU.

Figure 10: North Position Error with both covariance analysis, Monte Carlo, and in-
dividual Monte Carlo runs in gray. This shows sub-meter accuracy using the Doppler
LiDAR velocity sensor. This shows this sensor to be very promising in a navigation
scenario.

40

Figure 11: East Position Error with both covariance analysis, Monte Carlo, and indi-
vidual Monte Carlo runs in gray. This shows sub-meter accuracy using the Doppler
LiDAR velocity sensor. This shows this sensor to be very promising in a navigation
scenario.

41

Figure 12: Down Position Error with both covariance analysis, Monte Carlo, and in-
dividual Monte Carlo runs in gray. This shows sub-meter accuracy using the Doppler
LiDAR velocity sensor. This shows this sensor to be very promising in a navigation
scenario.

42

Figure 13: North Velocity Error with both covariance analysis, Monte Carlo, and
individual Monte Carlo runs in gray. This shows the 3 cm results in velocity since we
are measuring it directly.

43

Figure 14: East Velocity Error with both covariance analysis, Monte Carlo, and
individual Monte Carlo runs in gray. This shows the 3 cm results in velocity since we
are measuring it directly

44

Figure 15: Down Velocity Error with both covariance analysis, Monte Carlo, and
individual Monte Carlo runs in gray. This shows the 3 cm results in velocity since we
are measuring it directly

45

3.5.1 Results

From the data collected we can see the Doppler LiDAR sensor’s capabilities. Not

only are the velocity measurements accurate, but the accuracy allows the navigation

solution to keep a tight position solution for the period of time used. From the initial

tactical IMU and navigation grade IMU analysis results, we can see even with the

navigation grade IMU we are getting an error of approximately hundred and fifty

meters in the north, east, and down direction after the six and a half minute analysis.

The difference between the error of the navigation grade IMU only and the error

results with the Doppler LiDAR sensor shows how significantly it can affect these

measurements. With the Doppler LiDAR sensor having approximately 0.05 meters of

error in the north, east, and down direction after the six and a half minute analysis

had run and the IMU only having a large hundred and fifty meter error.

Further research will be done using a longer data set to see the length a position

solution can be held with small error before it exponentially grows. This analysis

shows that in our 6.5 minute flight positioning can be held to a high standard using

the vendor Doppler LiDAR sensor. The results from this preliminary analysis lead us

to interest in further research with this new sensor and gives researchers insight into

the position/velocity accuracy this sensor can provide.

From our full analysis plots with the covariance analysis as well as the Monte

Carlo, we can see that our 3 Sigma standard deviation for each lines up. This works

as a sanity check to make sure our covariance analysis is working as expected and

achieving the same results as a Monte Carlo analysis of the same data. This shows

that the covariance analysis software is working as intended, and we can pursue further

work using this software.

46

3.6 Conclusion

We have described a LiDAR sensor that with sufficient analysis may lead to a

excellent position solution for a short duration. We gave a brief intro to covariance

analysis as well as a description of the software developed and used for the analysis.

We finished with the data we obtained from the covariance analysis and an analysis

of the results. We hope that with longer truth solutions, we can learn more about the

capabilities of this sensor and explore more sensor combinations and flight scenarios.

Trade-space analysis like this LiDAR sensor analysis is vital to exploration into new

sensors and forms of navigation. With a thoroughly detailed and easy to use software

package, researchers will be able to conduct this type of research with ease and be able

to take advantage of the low cost covariance analysis simulation brings in the realm

of time and monetarily. With more sensors added to the software framework over

time and an ever-growing amount of developers/users, the versatility of the software

framework will only grow.

47

IV. Scholarly Article: Covariance Analysis Simulation Tool
Demonstrated with Alt Nav Analysis

4.1 Introduction

The evaluation of different sensor pairings, error budgets, and different distur-

bances are vital analyses that need to be accomplished with alternative navigation.

Executing tests in the real-world can be extremely expensive and time consuming.

Creating simulations for these experiment parameters and running a simulated flight

is much more practical and can provide similar, insightful data. In contrast to com-

putationally expensive Monte Carlo analyses, Covariance Analysis can provide dis-

tribution information in one simulation run. Many papers utilize covariance analysis

for different individual analysis problems such as closed loop navigation [16], space

rendezvous [20], and lunar landers [2]. Currently, most covariance analysis research

defines a specific problem to be researched and shows the results of said experiment

using covariance analysis. This is great in helping the reader know how covariance

analysis works as well as helping the reader know the pros and cons of the specific

problem. This does not, however, give the reader the tools to run their own covariance

analysis and set them up to be able to do their own research.

In this paper, we document the creation of a covariance analysis tool utilizing

a new modular multi-source navigation sensor fusion library Navigation Toolkit[4].

The demonstration of the utility of the covariance analysis tool is done by analyz-

ing the navigation performance of fusing a Magnetic Anomaly Navigation (MagNav)

navigation solution [5] with a new Doppler Light Detection And Ranging (LiDAR)

velocity sensor(CITE or Footnote). The covariance analysis of these two sensors helps

to quantify the potential accuracy and practically in a full navigation solution. This

paper was created for the reader to get an idea on how to use this new covariance

48

analysis tool. Also, the reader will get a concept on how these two new navigation

sensors can provide a GPS-alternative navigation solution and can be a game changer

in the world of navigation.

Section 4.2 characterizes Monte Carlo analysis as well as covariance analysis and

gives a brief introduction to trade-space analysis. Section 4.3 defines the software

package used and describes how the software package is modified to allow the cre-

ation of covariance analysis simulations. It also describes the different ways users

can operate the covariance analysis simulation tool. Section 4.4 defines the specific

experiments conducted to prove the created covariance analysis simulation works as

intended and shows the capability of the sensor. Finally, section 4.5 summarizes the

contents of the effort.

4.2 Background

4.2.1 Trade-Space Analysis

The evaluation of different sensor pairings, error budgets, and different distur-

bances are vital analyses that need to be accomplished with alternative navigation.

Executing these tests in the real-world, especially given the broadness of the exper-

iments required, can be extremely expensive and time consuming. Creating sim-

ulations for these experiment parameters and running a simulation is much more

practical and can provide the same data. A covariance analysis ran on a simulation

with all parameters for the given sensors set prior to the run can give these required

results quickly and efficiently.

4.2.2 Monte Carlo Analysis

Currently, Monte Carlo analysis is an extremely common tool for trade-space

analysis and for good reason. Monte Carlo can work with nonlinear and non-Gaussian

49

problems and provide complex statistical results. However, it requires hundreds, and

often thousands, of simulated runs to obtain the required results. This leads to a

considerable computational load and a lengthy run-time. Monte Carlo analysis is

used in a wide scope of scientific fields and is a versatile tool.

In this specific case in a Guidance, Navigation, and Control (GNC) system, a

Monte Carlo simulates the sensors with given specifications, computes the covariance

and error states by generating a large amount of samples of each state, and then

estimates the covariances.

In the following Figure (Fig. 16) you can see a flow diagram of a Monte Carlo

simulation for navigation.

4.2.3 Covariance Analysis

Covariance analysis can provide similar statistical data as a Monte Carlo but in a

single simulation run. This eliminates the computational burden that comes with the

Monte Carlo analysis. Covariance analysis has a few extra requirements that are crit-

ical to keep in mind. Covariance analysis requires that the truth model be linearized.

Therefore, if the situation induces many non-linearities, a Monte Carlo may be the

only option. One must explicitly define the structure and uncertainties of the truth

model and the design model for which the filter is based [6]. Also, all errors must

be Gaussian distributed. Since all errors must be Gaussian and the equations linear,

the covariance relationships are independent of the specific measurement time history

[6]. This allows us to obtain the covariance, and thus the distribution information, of

the simulation without the estimate. The following equations show how we arrive at

the covariance without the estimate, the following equations assume a full Extended

Kalman Filter which was defined above. Maybeck defines a full Monte Carlo analysis

then defines the changes in the equations to arrive at covariance analysis [6]. Pe(t) is

50

Figure 16: Monte Carlo simulation for a generalized GNC problem. This loop is
ran for each time-step in the trajectory till one has completed the simulation. This
represents a single estimate, with hundreds or thousands of these estimates being
required. Then, the statistics of the errors in the system are the final outputs. The
process noise w, continuous sensor noise η (e.g. the inertial measurement unit (IMU)),
and discrete sensor noise vk form the dynamics for the truth state x. The simulated
sensor data is defined as δz̃k, which are discrete measurements by sensors, and ỹ,
which are continuous IMU data. Finally, δx is the difference between the true state
and the estimated state. The output value is δx. The mean value obtained from
the Monte Carlo simulation is a statistical approximation of the true value. The
statistical sample can be improved by increasing the total number of Monte Carlo
runs.

51

the covariance of the true estimation errors committed by the given filter and Pe(t)

is the covariance of the augmented state. Since all processes are assumed to be zero

mean, we can define Pa(t) and Pe(t) as

Pa(t) = E{xa(t)xTa (t)}, (45)

Pe(t) = E{et(t)eTt (t)}, (46)

where et is the error committed by the filter and xa being the augmented state vector

at the given time. Propagating between samples is done by integrating

Ṗa(t) = Fa(t)Pa(t) + Pa(t)F
T
a (t) +Ga(t)Qt(t)G

T
a (t), (47)

with a linear system with structure defined as defined as Fa and Ga. With uncertainty

defined as Qt The measurement update can be derived as

Pa(t
+
i) = Aa(ti)Pa(t

−
i)ATa (ti) +Ka(ti)Rt(ti)K

T
a (ti), (48)

where our initial covariance is defined as

Pa(t0) =

−Pt0 0

0 P0

 (49)

we then define the follow equations

Aa(ti) =

 I 0

K(ti)Ht(ti) [I −K(ti)H(ti)]

 , Ka(ti) =

 0

K(ti)

 , (50)

Aa is required to update our covariance analysis equation and Ka being the

Kalman gain of our estimate with zeros added on top.

52

Finally the desired error covariance can be obtained with

Pe(t) = Ca(t)Pa(t)C
T
a (t). (51)

where

Ca(t) =

[
−Ct(t) C(t)

]
(52)

. C is the critical states or quantities we care about. If we are only interested with a

certain number of states in our system using C we can only return the ones that we

are interested in. If we are interested in all of the states C(t) = I. We end up with

the covariance of the state using the sensor covariance values and without having to

calculate individual estimates. This saves a large amount of computation time.

4.2.4 Doppler LiDAR Velocity Sensor

A novel Doppler LiDAR sensor was originally developed by NASA and has been

transferred to a company, Psionic, for further development and maturation. This sen-

sor can make highly accurate, three-dimensional velocity measurements in the body

frame of a vehicle. However, the practicability of such a sensor in an IMU-mechanized

navigation solution is unknown. A covariance analysis is ran with a simulation flight

across multiple trajectories as well as different IMU grades to understand the sensors

accuracy and potential contributions to a navigation system. The company states

the sensor can produce measurements with covariance around 3 cm/sec at a rate in

the kilohertz.

53

4.2.5 Magnetic Navigation

Magnetic anomaly navigation is a Global Positioning System (GPS)-alternative

navigation system that works by matching magnetometer measurements from a sensor

to maps of the Earth’s magnetic anomaly field [5]. Commonly called MagNav, this

form of navigation is a nearly unjammable passive navigation system that works in any

environment, day or night, as long as you have a map of the area. The magnetic field

of Earth is the combination of many different sources. What the sensor measurements

are actually measuring and matching to is denoted in Figure 19. Subtracting out the

core field to get the projection of the crustal field (anomaly) on the core field.

Figure 17: Magnetic Anomaly Definition [5]

MagNav is a well-documented form of alternative navigation that has been used in

real-world flight tests and achieved eye-opening results [5, 8, 9, 10]. For example, 59

meter DRMS errors at 300 meters above ground and 111 meters DRMS errors at 1.5

kilometers above ground were achieved during a Test Pilot School (TPS) demonstra-

tion on an F-16 with sensors mounted in a RASCAL pod [8]. The main component

that increases error in the MagNav sensor measurements is sensor/platform calibra-

tion. This is due to the induced magnetic field of the aircraft. The first goal is to

place the MagNav sensor in a good position, e.g. as far away from sources of ferrous

metal as possible. This is an error source we do not have to worry about since it will

not be present in a simulation environment. Next, the magnetic sources in the aircraft

can be removed by creating a calibration profile of the aircraft. This calibration will

be explained more in depth when the full experiment parameters are defined.

54

Using covariance analysis with a large amount of test data and real magnetic

anomaly maps, we can document the likely results of a navigation solution that in-

cludes a MagNav sensor. Conducting a covariance analysis will allow us to analyze

a MagNav aided navigation solution and conduct different trade-space analysis tech-

niques to continue to show the benefits of a MagNav aided navigation solution.

4.3 Software Description

A full description of Navigation Toolkit inside of Position, Navigation, and Timing

Operating System (pntOS).

4.3.1 Navigation Toolkit

Navigation Toolkit is a Government-owned, modular Bayesian estimation software

library designed to assist users in the creation of navigation filters. Nav Toolkit is

being actively developed to build Viper plugins that are the government instantiation

of the new pluggable pntOS software [3, 21]. All of this software hails from open-

source Bayesian estimation software developed originally at the ANT Center called

Scorpion[4]. This software setup allows researchers to easily modify sensor values,

add and remove sensor suites, as well as swap filters with minimal changes to code.

Navigation Toolkit works by way of fusion engines/strategy, state blocks and

measurement processors; a full decomposition of this can be seen in Figure 19. The

fusion engine/strategy sets up the users filter of choice. As of now the options out

of the box are an unscented Kalman Filter, an Extended Kalman Filter, and Rao-

Blackwellized Particle Filter. For the example in this paper, we will use an extended

Kalman Filter (EKF) since this works with the covariance analysis requirements well.

Stateblocks State blocks are a set of N states, these state blocks house the

info required to propagate the states forward in time. For the analysis, the stateblock

55

to use is an out of the box Pinson15Ned state block. This pinson15 stateblock update

as the filter runs and what happens inside of them will be described in detail in their

own respective sections. The measurement processor houses a model of the sensor

you have called and instructions on how the measurement will be included in your

used state blocks. A decomposition of a stateblock can be seen in Figure 18.

Figure 18: Diagram of the Navigation Toolkit Framework [4]. This diagram shows a
generic stateblock. Displays how the user inputs the amount of states and gives the
stateblock a label. The filter inputs estimates and the stateblock generates dynamics.
Depending on the measurement processors, they will take the info generated from the
stateblock and update.

Measurement Processors Given a sensor measurement, the measurement

processor provides the fusion engine with a model to update the states. Given a set

56

of observations that contain information about the state estimates, the measurement

processor produces the model which relate the two.

Fusion Engines Finally the Fusion engine is what is called and puts every-

thing together, the stateblock, measurement-processor as well as the raw measure-

ments from the included sensors and produces the full estimates of all the states that

are required by the stateblocks. The estimates are created for the past, present, and

future of the states. It works by the measurement processor passing the engine the

measurements then the models from the stateblocks and measurement processor go

to the fusion strategy.

The ease of adding, editing, and deleting different sensors, using different filters,

and utilizing different models lets us analyze the new Doppler LiDAR sensor to an

extent unreachable before. pntOS exposes a framework that researchers can easily

write their own models or filters in and have access to other researchers created

filters/models. The creation of Viper was to allow researchers to work on navigation

simulations or build sensors in a common place where other researchers can pull what

they have done and add it to their work without having to reinvent the wheel.

One more item is needed for to propagate the simulation in a Covariance Analysis.

We must have a nominal trajectory with time, about which to compute the covariance.

This must be supplied, since we do not propagate a mean solution. In addition, we

require the truth values for all of the stateblocks about this nominal trajectory. For

example, for the Pinson-15, we require the true errors in position, rotation, velocity,

and Inertial Navigation System (INS) biases with time. Trajectory information must

be specified as position, velocity and attitude with time. These should be 6 degree of

freedom trajectories to receive the highest performance.

The tool described below uses an out-of-the-box Pinson15Ned state block. The

stateblock updates as the filter runs and what they do will be described in its own

57

section below. Also, the measurement processors we are using will be explained in

depth below.

4.3.2 Pinson15 StateBlock

A pinson15 is a set of 15 state blocks bundled together that model the errors of

an INS in a moving North East Down (navigation) frame. A Pinson15 requires an

initial value for the 15 states used and we set this up with the initial sigma values of

the given sensors as well as the initial bias in the gyro and accelerometer. A Pinson15

model can be described as the following [15]

X =

[
δpn δpe δpvert δvn δve δvd εn εe εd bax bay baz bgx bgy bgz

]T
(53)

where δp is n-e-vertical position errors, δv represents NED velocity errors, η are the

tilt errors about the NED axis, ba x,y,z are accelerometer time-correlated biases, and

bg x,y,z gyro time-correlated biases. The linearized dynamics model can be expressed

as 

δ̇p

δ̇v

δ̇ε

ḃa

ḃg


=



Fpp Fpv Fpε 03×3 03×3

Fvp Fvv Fvε Cn
s 03×3

Fεp Fεv Fεε 03×3 Cn
s

03×3 03×3 03×3 Faa 03×3

03×3 03×3 03×3 03×3 Fgg





δp

δv

δε

ba

bg


(54)

Before we define the submatrices we will define the variables used inside of them with

the following table where the sub-matrices are defined as the following

Fpp =


0 0 −vn

R2
e

vetanL
RecosL

0 ve
R2

ecosL

0 0 0

 (55)

58

Table 4: Variable Definitions for Pinson 15 Error Model

Variable Description

L Latitude
vn North Velocity
ve East Velocity
vd Down Velocity
Re Earth Radius
fn Measured Specific Force North Direction
fe Measured Specific Force East Direction
fd Measured Specific Force Down Direction
Ω Earth Rotation Rate

Fpv =


1
Re

0 0

0 1
RecosL

0

0 0 −1

 (56)

Fpε = 03×3 (57)

Fpv =


ve(2 ∗ ΩcosL ve

Recos2L
) 0 v2etanL−vn∗vd

R2
e

2Ω(vncosL− vdsinL) + vnve
Recos2L

0 −ve(vntanL+vd)
R2

e

2ΩvesinL 0 v2n+v
2
e

R2
e

 (58)

Fvv =


vd
Re

−2(ΩsinL+ ve
Recos2L

) vn
Re

2ΩsinL+ vetanL
Re

vntanL+vd
Re

2ΩcosL+ ve
Re

−2vn
Re

−2(ΩcosL+ ve
Re

) 0

 (59)

Fvε =


0 −fd fe

fd 0 −fn

−fe fn 0

 (60)

59

Fεp =


−ΩsinL 0 −ve

R2
e

0 0 vn
R2

e

−ΩcosL− ve
Recos2L

0 vetanL
R2

e

 (61)

Fεv =


0 1

Re
0

− 1
Re

0 0

0 tanL
Re

0

 (62)

Fεε =


0 −ΩsinL+ ve

RetanL
vn
Re

ΩsinL+ vetanL
Re

0 ΩcosL+ ve
Re

−vn
Re

−ΩcosL− ve
Re

0

 (63)

where Cn
s is a direction cosine matrix, which takes a vector expressed in the body

frame and expresses that vector in the navigation frame. Faa describes the decaying

exponential terms of the first order Gauss-Markov process given by

Faa =


1
τa

0 0

0 1
τa

0

0 0 1
τa

 (64)

where τg is a time constant of the accelerometer time-correlated biases. Fgg is the

same, but for the time constant of the gyro time correlated biases given as

Fgg =


1
τg

0 0

0 1
τg

0

0 0 1
τg

 . (65)

60

4.3.3 MagNav Measurement Processor

MagNav measurement processor utilizes the magnetic anomaly map provided in

the trajectory to create estimates sensor measurements. By taking the trajectory from

the magnetic anomaly map and using the input sigma value for the magnetometer we

create simulated measurements for the navigation solution to use. A full derivation of

how the magnetic anomaly maps are used to create position estimates can be found

in papers by Canciani, McNeil, and Bonifaz [9, 10, 5, 8].

4.3.4 Psionic Measurement Processor

The Doppler LiDAR measurement processor is only a basic velocity sensor inside

of navigation toolkit. By changing the velocity sensor sigma and update rate to

that of the Doppler LiDAR sensor, we can simulate it in the covariance analysis.

The company states the sensor can produce measurements with covariance around 3

cm/sec at a rate in the kilohertz.

4.3.5 Covariance Analysis Simulation Tool

The covariance analysis tool is a simulation that utilizes pntOS to simulate nav-

igation scenarios. The user will input the required info and it will output plots of

error state covariance using the pinson15 error model. pntOS gives the ability to

utilize premade filters like the EKF and models like the pinson15. pntOS will allow

for the use of many different models and filters if the user wishes to use one they

made themselves or any of the pre-made ones in navigation toolkit.

The simulation in Navigation Toolkit takes in a zip of the flight’s truth. The filter

runs with an EKF, updates the three state block models, and creates simulated sensor

measurements for all time intervals. The covariance analysis as described above has

a few requirements that are easily met with the EKF. The errors must be Gaussian

61

and the navigation equations must be linearized. Since we are using a Pinson15 error

model, we can assume the truth is zero for all time.

This simulation tool will be built on over time to add more and more different

sensors, stateblocks, and ease of usability for the User Interface (UI) version of the

tool. Currently, there exists a terminal tool, built in C++, that is wrapped in python

bindings and a UI version that allows users to quickly use the tool without any

technical training with the tool itself. The UI version is more limited as one must

use the stateblocks, sensors, and models already added by selecting different check

boxes or drop downs. These can be seen in a UI depicted in Figure 20. This helps

users that are not as accustomed to the tool or users who simply want to quickly

run a simulation and get results. A user can easily run the covariance simulation

program, pick their IMU/sensors, pick the different stateblocks they wish to run, give

the path to their trajectory Comma-Separated Values (CSV), and give all the relevant

sigmas/intervals for the sensors.

If users want to create their own stateblocks, their own custom IMUs, or further

customize the tool, the terminal version is what they would use. By using one the

many examples navigation toolkit offers as a template. Users can easily set the values

of their own stateblocks to add custom models or can call on the custom IMU and

set their own sigma values. The ”straight flight example” view from a IDE can be

seen in the appendix A. This shows where users can add their own custom IMUs, edit

sigma values, enable and disable sensors, set where the trajectory for the simulation

is coming from and edit the interval at which sensors are updated.

62

Figure 19: Diagram of the Navigation Toolkit Framework [4]. This diagram shows
how the framework of pntOS works and how all 3 main components (filter, state-
block, and measurement processor) work together to create a navigation simulation
environment.

63

Figure 20: Example of UI ran example. Users can use this to quickly input values
for sensor sigmas, truth path, and even run a Monte Carlo on top of their covariance
analysis if they so choose. This allows researchers to quickly run covariance analysis
without learning pntOS.

64

4.4 Experiment

A nominal trajectory of an airplane flying over the Ottawa area is used for the

analysis. A visual of this trajectory can be seen in Figure 21. A large, highly accurate

magnetic anomaly map exists under the region covered by the trajectory. The base

set of sensors include a GPS, a HG9900 IMU, and an altimeter. These sensors will

be used in all simulations and the sigmas of these sensors will be defined in Table 5.

These quality sensors contribute well in testing the newly created covariance analysis

simulation tool and in researching the combinations of MagNav (using a magnetome-

ter) and the Doppler LiDAR velocity sensors. We have simulations that will include

both the magnetometer and Doppler LiDAR sensor, ones with a magnetometer and

without the Doppler LiDAR sensor, and finally a navigation solution with the base

set of sensors without the MagNav and Doppler LiDAR sensor. All simulations will

start with 50 minutes of GPS data, then a GPS outage will occur for the remainder

of the simulation.

The first simulation group (Figures 22 23 24) is two scenarios with 3500 seconds

of the simulation including GPS, then a GPS outage for the rest of the run. The

next figures are of the Ottawa Flight Simulation including a Doppler LiDAR velocity

sensor as well as a MagNav magnetometer solution.

65

Table 5: Simulation initial conditions.

Simulation

Parameters

Data Value

IMU Grade Navigation Grade HG9900 Model

Doppler LiDAR

Sigma

3 cm/s

Doppler LiDAR

Interval

1 Hz

Baro Sigma 1 m/s

Baro Interval 1 Hz

Pinson 15 Initial

POS

1.0, 1.0, 1.0 m

Pinson 15 Initial

VEL

.0003, .0003, .0003 m/s

Pinson 15 Initial

Baro

0.0002, 0.0002, 0.0002

Pinson 15 Initial

Accel Bias

0.0002, 0.0002, 0.0002

Pinson 15 Initial

Gyro Bias

1.45e-08, 1.45e-08, 1.45e-08

GPS Interval 1 Hz

GPS Sigma 10 m

Magnetometer

Sigma

10 nanotesla

66

From these figures we can see that with this navigation solution and a loss of

GPS the navigation solution can keep sub 5 meter positioning accuracy for the entire

duration of the flight. This is a significant difference than if the velocity sensor is

not included which will be presented in the next set of plots (Figure 25 26 27) . The

next plots will be a basic navigation solution without the Doppler LiDAR sensor and

without the magnetometer (Figure 28 29 32) . The error in position can be seen to

increase 10 times from the plots that included only MagNav.

Figure 21: Plot of Ottawa flight truth position data (latitude vs longitude)

Covariance analysis can conduct error budgets to determine individual contribu-

tions to total error by different states[6]. Since the simulation uses a Pinson15 error

67

Figure 22: The position error state covariances are shown for the full simulation that
includes the INS trajectory, velocity measurement update and MagNav measurement
updates. Note that the 3-σ positions never exceed 6 meters in North, East or Down.
These are remarkable results that beg to be investigated using hardware flight tests.

model, one can turn off error sources in position, velocity, and attitude. Then, en-

able them one at a time to determine which sources are producing different amounts

of error to the total system. It can be determined from the individual error plots

which sensors are contributing the most error and what improvements to the system

would create the most improvement in the solution. Using the Pinson15 with our

MagNav test a basic demonstration of error budgeting using covariance analysis can

be conducted. The results from these error budgets can be seen below.

68

Figure 23: The velocity error state covariances are shown for the full simulation that
includes the INS trajectory, velocity measurement update and MagNav measurement
updates. As we expect, the velocity measurement stays within 3 centimeters per
second, since we are measuring it directly.

69

Figure 24: The attitude error state covariances are shown for the full simulation that
includes the INS trajectory, velocity measurement update and MagNav measurement
updates. Utilizing an HG9900 IMU.

70

Figure 25: The position error state covariances are shown for the full simulation that
includes the INS trajectory, MagNav measurement updates but excluding the Doppler
LiDAR velocity sensor. 3-σ position error state covariance stays around 100± meters

71

Figure 26: The velocity error state covariances are shown for the full simulation that
includes the INS trajectory, MagNav measurement updates but excluding the Doppler
LiDAR velocity sensor. 3-σ velocity error state covariance stays small, around .5±
meters per second.

72

Figure 27: The attitude error state covariances are shown for the full simulation that
includes the INS trajectory, MagNav measurement updates but excluding the Doppler
LiDAR velocity sensor. Utilizing an HG9900 IMU.

73

Figure 28: The position error state covariances are shown for the full simulation that
includes the INS trajectory, excluding both the MagNav measurement updates and
excluding the Doppler LiDAR velocity sensor. 3-σ position error state covariance
stays around 1000± meters. This shows that with MagNav only, we cut the position
error state covariance by ten times.

74

Figure 29: The velocity error state covariances are shown for the full simulation that
includes the INS trajectory, excluding both the MagNav measurement updates and
excluding the Doppler LiDAR velocity sensor. 3-σ velocity error state covariance
stays small, around .5± meters per second.

75

Figure 30: The attitude error state covariances are shown for the full simulation that
includes the INS trajectory, excluding both the MagNav measurement updates and
excluding the Doppler LiDAR velocity sensor. Utilizing an HG9900 IMU.

76

Figure 31: Error budgeting with positioning states. It can be concluded that a
better positioning solution from our MagNav sensor will impact our overall positioning
solution more than any other improvement.

Figure 32: Error budgeting with velocity states. It can be concluded that a better
velocity solution from our IMU sensor will impact our overall velocity solution more
than any other improvement. The differences in these errors are very small and
our velocity measurement accuracy is already very impressive so these improvements
would be small in scale.

77

4.5 Conclusions

We have described a simulation environment that allowed the analysis of a GPS-

alternative sensors and navigation solutions. We gave a brief intro to covariance

analysis and Monte Carlo analysis. Then a description of the software developed and

tool created to conduct covariance analysis. We finished with the data we obtained

from the covariance analysis and an analysis of the results. We hope now with this

tool and analysis performed we can give researchers an easy tool to use for trade-

space analysis for navigation solutions. We also hope that we have helped outline the

benefits and practicality of a magnetometer sensor. How a magnetometer sensor can

aid in the positioning accuracy of an aircraft and also how it can act as a passive GPS-

alternative when GPS may be unavailable. Trade-space analysis like this magnetic

anomaly analysis is vital to exploration into new sensors and forms of navigation.

With a thoroughly detailed and easy to use software package, researchers will be

able to conduct this type of research with ease and be able to take advantage of the

low cost covariance analysis simulation brings in the realm of time and monetarily.

With more sensors added to the software framework over time and an ever-growing

amount of developers/users, the versatility of the software framework will only grow.

The effects of GPS drop outs in navigation solutions that included neither MagNav

or Doppler LiDAR, only MagNav, then finally both MagNav and Doppler LiDAR

were explored. We found that without MagNav nor Doppler LiDAR the loss of the

GPS positioning solution led to a 1000± meter error state covariance. Then, with

MagNav added the simulation had a 100± meter positioning state error. Finally,

with MagNav and the Doppler LiDAR velocity sensor kept a steady 2.5± meter error

state covariance. This shows the great positioning solution that the fusion of Doppler

LiDAR and MagNav can possibly bring in a navigation solution.

78

V. Conclusions

This final chapter discusses the future work on the covariance analysis tool. This

chapter will also bring together the conclusions of the two individual papers in Chap-

ter III and Chapter IV.

5.1 Use Case Conclusions

From the results discussed at the end of Chapter III and Chapter IV we have shown

the possibilities of an accurate positioning solution when utilizing the Doppler Light

Detection And Ranging (LiDAR) velocity sensor. In Chapter III we documented the

results of a small test with the Doppler LiDAR velocity sensor that displayed sub-

meter positioning solution over the 400 second simulation. Also, when coupled with

Magnetic Anomaly Navigation (MagNav), we have shown how the Doppler LiDAR

and MagNav can keep a very accurate positioning solution without GPS. The effects

of GPS drop outs in navigation solutions that included neither MagNav or Doppler

LiDAR, only MagNav, then finally both MagNav and Doppler LiDAR were explored.

We found that without MagNav nor Doppler LiDAR the loss of the GPS positioning

solution led to a 1000± meter error state covariance. Then, with MagNav added the

simulation had a 100± meter positioning state error. Finally, with MagNav and the

Doppler LiDAR velocity sensor kept a steady 2.5± meter error state covariance. This

shows the great positioning solution that the fusion of Doppler LiDAR and MagNav

can possibly bring in a navigation solution.

5.2 Covariance Analysis Tool Conclusions

The covariance analysis tool has shown through these use cases that it can pro-

duce results quickly and works well inside of the Position, Navigation, and Timing

79

Operating System (pntOS) framework. By documenting the GUI version of the tool

alongside the code version readers and users can now conduct covariance analysis

easily on navigation scenarios. This tool will allow researchers to quickly determine

the effectiveness of difference sensors and determine which sensors affect a navigation

solution more than others. The ease of exchanging sensors, by utilizing the pntOs

framework, will allow researchers to determine which contribute the largest difference

in covariance.

5.3 Future Work

This covariance tool utilizes an open-loop covariance analysis that is the most basic

version of a covariance analysis. The covariance tool inside of the PntOS framework

is limited in the amount of filters, algorithms, and models found inside the navigation

toolkit. The expansion of the amount of filters, algorithms, and models is something

that is always being worked on. Also, as we cited earlier, covariance analysis can

be expanded to a closed-loop covariance analysis [7]. This allows analysis of hosted

payloads and a much wider array of different navigation simulations.

80

Appendix A. Code Snippet

Shows where a user would input their own data when using the headless version

of the covariance analysis tool.

1 constexpr auto VELO_ENABLED = true;

2 constexpr auto POS_ENABLED = false;

3 constexpr auto BARO_ENABLED = true;

4

5 //saves the output plot data into a CSV

6 constexpr auto OUTPUT_CSV_COVARIANCE = true;

7 // */ libviper/build is home directory this is will

the output will save by default

8 constexpr auto OUTPUT_CSV_PATH = "output.csv";

9 /**path to truth to be used in simulation , default

structure is 09,k7time , lat , long , alt , vN, vE ,

vD , R, P, Y

10 you can change this structure inside of "parseCSV"

however you want , you will just have to also

modify "data_to_Navsolution"

11 to account for your changes so the navsolution

builds correctly

12 */

13 constexpr auto PATH_TO_TRUTH = "/home/antuser/

libviper/examples/TruthwRPY.csv";

14

15

16 // Turn feedback on/off

81

17 constexpr auto FEEDBACK_ENABLED = false;

18

19 // Some convenient constants (in seconds)

20 constexpr auto MINUTE = 60.0;

21

22 // If the source is enabled , choose the measurement

sigma in meters

23 constexpr auto VELO_SIGMA = .003;

24 constexpr auto POS_SIGMA = 1.0;

25 constexpr auto BARO_SIGMA = 1.0;

26

27 // If the source is enabled , this is the interval (

sec) at which we receive measurements

28 // (NOTE: needs to be a multiple of DT)

29 constexpr auto VELO_INTERVAL = 1;

30 constexpr auto POS_INTERVAL = 1 * MINUTE;

31 constexpr auto BARO_INTERVAL = 1;

32

33 // Choose interval to apply feedback

34 constexpr auto FEEDBACK_INTERVAL = 1 * MINUTE;

35

36 // How often we propagate our solution

37 constexpr auto DT = 1;

38

39 // Number of states in pinson block

40 constexpr auto NUM_STATES = 15;

82

41

42 // Choose INS model for the Pinson state

block

43

44 // Navigation Grade

45 auto model = viper:: filtering :: hg9900_model

();

46

47 // tactical grade

48 //auto model = viper:: filtering ::

hg1700_model ();

49

50 // Custom Model

51 // auto model = viper :: filtering :: ImuModel{

zeros (3) + 3e-3, // accel_random_walk_sigma

52 //

zeros (3) + 3e-5, //

gyro_random_walk_sigma

53 //

zeros (3) + 1e-2, // accel_bias_sigma

54 //

zeros (3) + 3600, // accel_bias_tau

55 //

zeros (3) + 5e-6, // gyro_bias_sigma

56 //

zeros (3) + 3600}; // gyro_bias_tau

83

57

58 }

84

Bibliography

1. F. Landis Markley and J. Russell Carpenter. Generalized linear covariance anal-

ysis. Journal of the Astronautical Sciences, 57(1-2):233–260, 2009.

2. Paul J. Huxel and Babak E. Cohanim. Small lunar lander/hopper navigation

analysis using linear covariance. IEEE Aerospace Conference Proceedings, pages

1–6, 2010.

3. Kyle Kauffman. pntos: Modular open software approach for real-time sensor

fusion. JNC 2021, 2021.

4. Kyle Kauffman, Daniel Marietta, John Raquet, Daniel Carson, Robert C. Leish-

man, Aaron Canciani, Adam Schofield, and Michael Caporellie. Scorpion: A

Modular Sensor Fusion Approach for Complementary Navigation Sensors. 2020

IEEE/ION Position, Location and Navigation Symposium, PLANS 2020, pages

156–167, 2020.

5. Aaron Joseph Canciani and Christopher J. Brennan. An Analysis of the Benefits

and Difficulties of Aerial Magnetic Vector Navigation. IEEE Transactions on

Aerospace and Electronic Systems, 56(6):4161–4176, 2020.

6. Peter Maybeck. Stochastic Models, Estimation and Control: Volume 1. Academic

Press, 111 Fifth Ave, New York, 10003, 1979.

7. Randall S. Christensen and David K. Geller. Closed-loop linear covariance

analysis for hosted payloads. Journal of Guidance, Control, and Dynamics,

41(10):2133–2143, 2018.

85

8. Aaron J. Canciani. Magnetic Navigation on an F-16 Aircraft using Online Cal-

ibration. IEEE Transactions on Aerospace and Electronic Systems, pages 1–15,

2021.

9. Jonnathan Bonifaz. Magnetic navigation using online calibration filter analysis,

2022.

10. Alex McNeil. Magnetic anomaly absolute positioning for hypersonic aircraft,

2022.

11. Robert C. Leishman and Tristan Williams. Validation of doppler lidar sensor

using covariance analysis. NAECON’21, 2021.

12. Peter S Maybeck. The kalman filter: An introduction to concepts. In Autonomous

robot vehicles, pages 194–204. Springer, 1990.

13. Rudolph Emil Kalman. A new approach to linear filtering and prediction prob-

lems. 1960.

14. Peter Maybeck. Stochastic Models, Estimation and Control: Volume 2. Academic

Press, 111 Fifth Ave, New York, 10003, 1979.

15. David Titterton, John L Weston, and John Weston. Strapdown inertial navigation

technology, volume 17. IET, 2004.

16. Randall S. Christensen and David Geller. Linear covariance techniques for closed-

loop guidance navigation and control system design and analysis. Proceedings of

the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineer-

ing, 228(1):44–65, 2014.

17. Randall Christensen and Robert C Leishman. Air Force Institute of Technology

Real-Time Path Planning in Constrained , Uncertain Environments A key enabler

86

of autonomous vehicles is the ability to plan the path of the vehicle to accomplish

mission Air Force Institute of Technology. 2019.

18. Eric W. Schoon, David Melamed, Ronald L. Breiger, Eunsung Yoon, and Christo-

pher Kleps. Precluding rare outcomes by predicting their absence. PLoS ONE,

14(10):1–14, 2019.

19. David K. Geller. Linear covariance techniques for orbital rendezvous analysis and

autonomous onboard mission planning. Collection of Technical Papers - AIAA

Guidance, Navigation, and Control Conference, 1(August):424–444, 2005.

20. Adam Sievers, Renato Zanetti, and David C. Woffinden. Multiple event triggers in

linear covariance analysis for spacecraft rendezvous. AIAA/AAS Astrodynamics

Specialist Conference 2010, pages 1–34, 2010.

21. Kyle Kauffman. Modular open systems approach (mosa) to pnt systems and plug

and play sensors: Modular gps independent sensors (mogis) project operational

system demonstration. JNC 2019, 2019.

87

Acronyms

AFIT Air Force Institute of Technology. 15

ANT Center Autonomy and Navigation Technology Center. 15

CSV Comma-Separated Values. 23, 32, 37, 62

EKF extended Kalman Filter. 24, 32, 55, 61

GNC Guidance, Navigation, and Control. 29, 50

GPS Global Positioning System. 4, 28, 54, 65, 67

IMU inertial measurement unit. 3, 12, 23, 24, 27, 28, 37, 46, 51, 53, 62, 65

INS Inertial Navigation System. 20, 32, 57, 58

JVM Java Virtual Machine. 15

LiDAR Light Detection And Ranging. 3, 4, 27, 28, 32, 37, 46, 47, 48, 53, 57, 61,

65, 67, 79

MagNav Magnetic Anomaly Navigation. viii, 4, 23, 48, 54, 55, 61, 65, 67, 79

NAECON National Aerospace and Electronics Conference. 4

PNT Position Navigation and Timing. 16

pntOS Position, Navigation, and Timing Operating System. vii, 2, 15, 16, 18, 23,

55, 57, 61, 79

UI User Interface. 23, 62

88

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2022 Master’s Thesis Sept 2020 — Mar 2022

Covariance Analysis for Multi-Source Navigation Architecture

Tristan T. Williams

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-22-M-073

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Currently, analysis on navigation systems can be slow and computationally expensive using Monte Carlo approaches.
Covariance analysis is a tool that can return trade space analysis results promptly and can be computationally
reasonable. This research aims to create a covariance analysis tool in a new navigation framework architecture, PntOS.
The creation of this covariance tool is explained in coordination with the tool being used in a few different navigation
scenarios with the results. These scenarios include a Doppler LiDAR velocity sensor and magnetic anomaly navigation.

covariance analysis, Monte Carlo analysis, pntOS

U U U UU 101

Tristan T. Williams, AFIT/ENG

(937) 694-9110; tristan.williams.ctr@afit.edu

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Problem Background
	Trade-Space Analysis
	pntOS

	Project Motivation
	Covariance Analysis Tool
	Case Studies

	Document Overview

	Background and Literature Review
	Kalman Filtering
	Extended Kalman Filtering
	Covariance and Monte Carlo Analyses
	Covariance Analysis

	Modular and Pluggable Navigation Architectures
	Scorpion
	pntOS
	Navigation Toolkit
	Pinson15 Error Model

	Covariance Analysis Tool
	Related Work

	Scholarly Article: Validation of Doppler Lidar Sensor using Covariance Analysis
	Abstract
	Introduction
	Background
	Trade-Space Analysis
	Monte Carlo Analysis
	Covariance Analysis

	Software Description
	Navigation Toolkit

	Experiment
	Results

	Conclusion

	Scholarly Article: Covariance Analysis Simulation Tool Demonstrated with Alt Nav Analysis
	Introduction
	Background
	Trade-Space Analysis
	Monte Carlo Analysis
	Covariance Analysis
	Doppler LiDAR Velocity Sensor
	Magnetic Navigation

	Software Description
	Navigation Toolkit
	Pinson15 StateBlock
	MagNav Measurement Processor
	Psionic Measurement Processor
	Covariance Analysis Simulation Tool

	Experiment
	Conclusions

	Conclusions
	Use Case Conclusions
	Covariance Analysis Tool Conclusions
	Future Work

	Code Snippet
	Bibliography
	Acronyms

