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Abstract

Current automated aerial refueling (AAR) efforts utilize machine vision algorithms

to estimate the pose of a receiver aircraft. However, these algorithms are dependent on

several conditions such as the availability of precise 3D aircraft models; the accuracy

of the pipeline significantly degrades in the absence of high-quality information given

beforehand. We propose a deep learning architecture that estimates the 3D position

of an object based on stereoscopic imagery. We investigate the use of both machine

learning techniques and neural networks to directly regress the 3D position of the

receiver aircraft. We present a new position estimation framework that is based

on the differences between two stereoscopic images without relying on the stereo

block matching algorithm. We analyze the speed and accuracy of its predictions

and demonstrate the effectiveness of the architecture in mitigating various visual

occlusions.
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DEEP LEARNING TECHNIQUES TO ESTIMATE 3D POSITION IN

STEREOSCOPIC IMAGERY

I. Introduction

1.1 Motivation

Aerial refueling is an integral part of modern warfare, as it extends the reach

and effectiveness of airpower. First demonstrated in 1923, modern air-to-air refu-

eling involves a tanker refueling a receiver via a boom or drogue and has become

a crucial force multiplier and a critical enabler of global reach. Air-to-air refueling

involves two aircraft operating within 15 feet (4.572 meters) of one another during

the fuel transfer; maintaining aircrew proficiency comes with a substantial training

cost. An emerging area of interest is automated aerial refueling (AAR). Automating

the mid-flight refueling process opens up new capabilities for all missions, especially

for unmanned aerial vehicle (UAV) missions. The latency inherent in UAV’s current

control mechanism makes it impossible for operators to exercise the real-time fine

control necessary for air refueling. Therefore, UAV missions are limited in duration

by the amount of fuel each aircraft can hold. In addition to remarkably extending

the UAV mission capability, AAR can drastically reduce training costs.

Estimating pose from visual spectrum imagery is desirable as modern tanker air-

craft have rear-facing cameras and the visual spectrum is robust to interference or

jamming that may occur in a combat environment. Additionally, utilizing the exist-

ing technology on the receiver aircraft is desirable over technologies such as LIDAR

or radar as it does not require the installation of new technologies to the current
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tanker aircraft, and is thus cost-efficient. Convolutional neural network (CNN) mod-

els can effectively generalize to new and unseen data, and, coupled with recurrent

neural network (RNN) models they can become robust to various visual degradations

and occlusions. Accurately estimating the pose of an aircraft is a crucial step in the

world of automated aerial refueling, as the process requires precise and timely pose

estimations of the receiver aircraft relative to the tanker aircraft in order to avoid

incurring any damage to either aircraft.

1.2 Research Objectives

The focus of this research is to explore the feasibility in using both machine learn-

ing and deep learning architectures to estimate the 3D position of a receiver aircraft

using stereoscopic imagery. Current efforts rely on a pre-rendered 3D model of the re-

ceiver aircraft in order to accurately estimate its position, but this 3D model must be

given to the algorithms beforehand in order to function appropriately. Further issues

arise if the 3D model provided beforehand does not accurately reflect the 3D model

computed in the stereoscopic imagery. We seek to make our architecture independent

of any computationally expensive pre-processing methods or extraneous information

that is not inherently present in the simulated stereoscopic imagery. As real-world

data is costly to obtain, current research focuses on using the virtual world as an

estimator for the real world. If successful, our work will prove that deep learning

architectures can be made robust to a wide range of visual degradations present in

the input imagery, so that any further work is only constrained on what is able to

be simulated in the virtual world. This work will mainly be compared with current

AAR efforts utilizing the iterative closest point (ICP) algorithm which is the current

computer vision state-of-the-art. This research lays the groundwork in integrating

CNN and RNN models to accurately estimate aircraft pose in the face of various

2



visual degradations and occlusions. This research seeks to investigate the following

claims:

1. Pure machine learning models are sufficient to effectively estimate a 3D position

of an object.

2. A CNN architecture can yield better results than a pure machine learning model,

but still degrades in the face of occlusions.

3. An RNN architecture can improve upon a CNN architecture by providing extra

data based on previous locations, thus reducing the inaccuracy caused by visual

occlusions.

If successful, our system could be used as an alternative architecture for position

(and later 6D pose) estimation in the AAR field, or as a starting framework in any

field that seeks to directly regress 3D position from stereoscopic imagery using deep

learning architectures.

1.3 Thesis Overview

One fundamental principle of machine learning and deep learning is to utilize the

simplest model that is capable of learning the desired task. In order to follow this

principle, this thesis is split into three main sections. Chapter II investigates a pure

machine learning approach using support vector machines to regress the 3D position

of a pure red sphere. We find that the machine learning model can give a general

estimate, but is not accurate enough to support current AAR efforts. Chapter III

covers a deep learning approach using CNNs to estimate the 3D position of an air-

craft. We find that these models are very fast, and do nearly as well as the current

industry standard at contact locations. However, these models degrade as the receiver

aircraft moves further away from the tanker, and perform slightly worse in the face of

3



occlusions. Next, chapter IV analyzes an approach using CNNs and RNNs in order

to predict the position of an aircraft using sequences of images as input. We find

that these models are slower in their predictions, but enhance the accuracy of the

prediction both at farther ranges and in the face of visual degradation. We find that

a CNN-RNN model can provide predictions that are competitive with the current

state-of-the-art, both at contact location and at farther distances, and despite visual

occlusions. Finally, chapter V discusses the implications of this work, and provides

avenues for future research in this area.

4



II. Regression Model

This chapter covers our work in estimating 3D position of an object using ma-

chine learning regression models. In section 2.1, the background and related work of

automated aerial refueling (AAR) and machine learning methods are discussed. Our

methodology is covered in section 2.2. All relevant results are covered in section 2.3,

as well as an analysis of these results.

2.1 Background and Literature Review

2.1.1 Automated Aerial Refueling

Early work in the AAR field utilizes an extended Kalman filter which combines tra-

ditional navigation methods (global positioning systems, inertial navigation systems,

etc.) with a new stereo vision pipeline in order to predict the location of the receiver

aircraft in relation to the tanker aircraft [2]. They found that they could accurately

estimate the location of the receiver with centimeter-level accuracy. However, much

of the accuracy in the system came from the stereo camera portion. These insights

prompted a focus on the field of computer vision due to the general availability of the

visual spectrum and the existing cameras on current tanker aircraft.

The current AAR industry standard utilizes the iterative closest point (ICP) ap-

proach [3]. This approach is purely algorithmic, and thus yields consistent results. In

this pipeline, the stereo block matching algorithm is first run on stereoscopic imagery

in order to generate a sensed point cloud. The ICP algorithm serves to align this

sensed point cloud with a truth point cloud given by a 3D model of the aircraft to

estimate the pose of the receiver aircraft. This is done by first computing the center

of mass of both point clouds. Once the center of the two clouds are found, a rotation

which aligns the two point clouds can be mathematically computed. This process

5



is repeated until a local minimum is found or an iteration count is reached. The

method proposed by [3] yielded results within 10 cm of the actual location based on

Euclidean distance, and took around 180 milliseconds to complete the ICP portion

of the pipeline.

The work of [4] continues this line of research by integrating the ICP pipeline into

a virtual world. Their findings validate the virtual world as an accurate predictor of

the AAR scenario, and allowed future work with a more realistic virtual setting in

which to conduct experiments.

The boom caused significant issues with the initial ICP pipeline, as extra sensed

points would be detected on the boom, while certain parts of the aircraft would be

occluded by the boom and thus not included in the sensed point cloud. Due to the

nature of the ICP algorithm, this often caused the algorithm to converge to an in-

correct minimum where the orientation would be vastly off, and the location error

would exceed the 10 centimeter requirement to perform aerial refueling operations.

[5] uses shadow volumes to mitigate occlusions of the receiver aircraft caused by the

boom. The effects of the boom were ultimately mitigated by implementing a dis-

tance filter, then creating a shelled model of the receiver which excluded all detected

points normally occluded by the boom. This new shelled model would appropriately

converge.

In the pipelines used by [4] and [5], the sensed point cloud would be generated by

OpenCV’s stereo block matching algorithm. In order to more accurately predict the

location of the receiver aircraft with this algorithm, the highest resolution of images

is preferred. However, running the stereo block matching algorithm on the full image

at the highest resolution is very slow, and limits the overall speed of the pipeline. The

use of neural networks to accelerate the ICP pipeline by locating the aircraft was the

focus of [6]. In order to mitigate this timing bottleneck, a bounding box was applied
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around the aircraft through the use of deep learning methods. This sped up the

ICP pipeline by only running the stereo block matching algorithm at full resolution

around the bounding box. The rest of the image could be run at a lower resolution

or skipped entirely, increasing the speed at which the overall pipeline could be run.

After accelerating the stereo block matching portion of the pipeline, the use of De-

launay triangulations was used to accelerate the nearest-neighbor portion of the ICP

pipeline [7]. This work focused on parallelization of the nearest neighbor matching on

a GPU, and was able to achieve a 25x speedup using this method. As a result of this

work, the entire pipeline, which includes both the stereo block matching algorithm

and the ICP algorithm, could be completed in around 300 milliseconds if 4K images

are used, or around 90 milliseconds if 2K images are used, with the nearest neighbor

matching portion only requiring about 35 milliseconds of that time. This allows a

refresh rate of 3 to 10 estimates per second depending on the image resolution used,

allowing for timely control of the receiver aircraft.

In order to maximize accuracy, the stereo cameras need to be precisely calibrated

before the stereo block matching takes place. Poor camera calibrations lead to poor

sensed point clouds and a decrease in the accuracy of the ICP system. The use of

convolutional neural network (CNN) models to perform stereo camera calibrations

was investigated by [8]. This step is done as a pre-processing step and thus does not

slow down the overall pipeline, but increases the accuracy of the point cloud produced

by the stereo block matching algorithm.

All of these efforts have cumulatively made the ICP algorithm the foremost pose

estimator in AAR research efforts. However, the ICP algorithm makes several critical

assumptions, and performance degrades once these assumptions are not met. The

ICP algorithm assumes the existence of an accurate 3D reference model of the re-

ceiver aircraft with which to compare the sensed model generated by the stereo block
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matching algorithm. It is not adaptive to different aircraft configurations or weapons

loadouts, as different loadouts would have different reference models, which would

need to be accounted for in a real world scenario. The ICP algorithm also converges

to the closest local minimum, which creates problems in the instance of a receiver

aircraft that has significantly deviated from a traditional flight path. As the ICP

algorithm needs a fairly accurate initial position with which to improve upon, a suf-

ficiently incorrect initial guess could cause the algorithm to converge to an incorrect

local minimum and thus provide inaccurate pose estimations. Finally, the ICP algo-

rithm particularly degrades when there is an attempt to map points in the real-world

that do not exist in the model. This occurs when the stereoscopic vision system de-

tects parts of the boom or features on the receiver aircraft not present in the model.

Neglecting to filter these additional points causes ICP to improperly converge and

give poor estimates for the location of the aircraft.

2.1.2 Regression Model Related Work

Several research efforts have been performed in order to use machine learning

techniques to estimate the position and orientation of a 3D object. We discuss these

research efforts here, and comment on their applicability to our research.

The work of [9] seeks to use machine learning algorithms to estimate the pose

of a tanker from the receiver’s point of view. They achieve this by splitting their

approach into three separate algorithms, and refining each algorithm based on a

generated scenario. However, similar to ICP, they use a reference model of the tanker,

and their work seeks to estimate the pose of the tanker from the perspective of the

receiver.

In order for image data to be converted into numerical data that can be processed

by machine learning methods, the important features must first be extracted. The
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histogram of oriented gradients (HOG) technique is a powerful feature extractor that

is often used to convert image data into numerical features suited for machine learning

algorithms. The HOG technique was introduced by [10]. This technique takes images

as input data, and outputs an array of histograms of oriented gradients. The technique

begins with a cell size of one or more pixels. It then calculates the difference in pixel

values along the major axes (X- and Y-directions), and stores these in a vector. After

computing all sub-components of each cell’s vector, it simplifies the cell down to the

principal components of a vector: magnitude and direction. This process is repeated

for each possible cell in the image, and each cell is then normalized within a block

(where each block is typically a square array of cells) to correct for differences in

lighting. The normalization process is performed on many overlapping blocks, until

all cells have been normalized. The final output is a vector of numerical histograms

that can be fed into a machine learning model. This model inherently performs some

feature reduction, although the exact number of final features depends on several

hyperparameters. A visualization is shown in fig. 1.

[10] used this technique as a feature extractor in order to classify whether a human

was present in a video. Since then, this technique has been used as a powerful feature

extractor in many other scenarios. The work of [11] uses the HOG technique to

classify handwritten digits, proving it to be a powerful feature extractor. [12] uses

the technique to estimate a course orientation of a vehicle, and [13] extends the feature

extractor into the 3D domain in order to classify traffic activity in urban settings.

[14] utilizes a machine learning architecture for blob tracking through images.

They utilize a form of principal component analysis (PCA) in order to help them

create a machine learning architecture that can track an object of interest through

several video frames.

Lastly, [15] seeks to combine the use of HOG features in order to regress the 6D
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Figure 1: A visual representation of the HOG technique. Image from [1].

pose of an object. This work focuses on edge detectors paired with machine-learning

techniques in order to regress the 6D position and orientation of objects. However,

similar to ICP, their work utilizes a pre-rendered 3D model of the objects in question.

2.2 Methodology

The main focus of this work is to develop and test a method of position estimation

for the receiver aircraft that is largely independent of many limiting factors upon

which the current ICP industry standard relies. Our work seeks to reduce or eliminate

the need for pre-built models of the receiver aircraft and stereo block matching, among

others. By creating a system that is reliant only on input data, our system can be

made robust to any limiting factor that is able to be simulated in the virtual world.

We trained three different linear regression models and analyzed them on how well

they predict the position of a sphere given an array of histograms of oriented gradients.

This array of HOGs comes from the pre-processing of an image. Model performances
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are reported in terms of root mean squared error (RMSE) in section 2.3.1. The final

model was tested against a pre-separated test set to determine how well the model

generalizes to unseen data.

2.2.1 Data Generation

The data used was simulated using the AftrBurner engine developed by Dr. Scott

Nykl. This engine, first introduced in [16], is a derivative of the STEAMiE engine

as investigated in [17]. Our data is comprised of labeled images of red spheres, each

with the offset vector of the sphere relative to the camera, in meters, as labeled truth

data ({xoffset, yoffset, zoffset}). Some examples of images used for training are shown in

fig. 2. The coordinate system used is shown in fig. 3. In this coordinate system, the

camera is located at the origin and X-values increase to the aft of the tanker aircraft;

Y-values increase from right to left (as viewed from the camera, looking aft along the

X-axis), and Z-values increase with altitude.

In the data generated, xoffset values range from 20 to 44 meters in 4 meter in-

crements. Each xoffset yields a Y-Z plane, on which the sphere must be fully visible.

yoffset and zoffset values begin on the bottom-right of the visible area and sweep from

right to left then from bottom to top over 4-meter increments, at whole meter val-

ues. 229 data points were generated using this strategy. This methodology yields

a roughly uniform distribution of spheres along the yoffset and zoffset values, and a

skewed distribution among xoffset values. These distributions are shown in fig. 4.

Within the HOG technique, there are several hyperparameters that can be defined:

cell size the pixel size of the HOG cell within which gradient values are calculated

block size the number of HOG cells which are combined into one histogram

number of bins the number of bins into which the magnitudes and gradients of the

cells are placed
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(24.0, 4.0, 2.0) (32.0, 10.0, -7.0)

(40.0, -13.0, 8.0) (44.0, -16.0, -14.0)

Figure 2: Some example images used in training the machine learning models. Each
image is annotated with the truth location ({xoffset, yoffset, zoffset}) underneath.

In addition to the HOG technique hyperparameters, we tested color and grayscale

images, various values of the regularization parameter (C) when a support vector

regressor (SVR) kernel was used, and varying values for PCA. The full list of hyper-

parameters and all values tested are shown in table 1.

2.2.2 Architecture Details

For our supervised learning task, we test linear regression models and SVR models.

We explored SVR models with both linear and Gaussian radial basis function (RBF)

kernels. The output of each model is a vector denoting relative position of the sphere
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Figure 3: The coordinate system utilized. The red axis represents the X-axis, the
green axis represents the Y-axis, and the blue axis represents the Z-axis. All arrows
shown indicate the positive direction in that axis.

in relation to the camera ({x̂offset, ŷoffset, ẑoffset}). We can control how much freedom

our models have to fit to the training data with the regularization parameter, or C.

Low values of C allow the model more flexibility in fitting to the training data, but

increase the risk that the model simply over-fits to the training data and is unable to

generalize to new data. High values of C allow the model less freedom in fitting the

training data, reducing the risk of over-fitting. The disadvantage of a high value of C

is that the model generated might be too simple to fully capture the full complexity

of the data. Finally, the PCA technique reduces the dimensionality of the data by

selecting only the most impactful features of the data. The hyperparameter within

this technique represents how much of the variance in the data should be explained by

the features chosen. For example, a PCA value of 0.7 means that the most impactful

features will be sequentially selected until 70% of the initial variance in the data is

represented by the new feature set.

We used RMSE as the scoring function. RMSE represents the distance error, in
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Figure 4: The distributions of the underlying data in each axis.
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Hyperparameter Values Tested
Color Grayscale, Color
PCA 0.5, 0.7, 0.9
C (SVR models) 0.01, 1, 10, 30
Kernel (SVR models) RBF, linear

HOG Hyperparameters
Cell Size 8x8, 16x16
Number of bins 4, 5, 9
Cells per block 1, 2, 3

Table 1: This table shows all hyperparameters tested in the machine learning models.
Note that linear regression models do not use the regularization parameter (C); these
are only used in SVR models.

meters, between the predicted location and the actual location of the sphere. Finally,

in order to test various hyperparameter sets, a halving grid search was utilized, with

K-Fold cross-validation where K=5. The halving grid search technique is similar to

the grid search technique in that initially all combinations are tested, albeit with a

smaller resource pool. The search then eliminates low performing hyperparameter

combinations, and devotes more resources to the better performing combinations.

This process is repeated until the best hyperparameter combination is found.

In addition to the 10% of observations held out for the test set, we held out 10% of

all observations to support over-fitting analysis. With the remaining observations, we

applied a halving-grid search to the Cartesian product of all hyperparameter values

listed in table 1. The halving grid search generated the model that provided the

smallest cross-validation error. If the model over-fit the training data (as determined

by the the training RMSE being at least an order of magnitude smaller than the

RMSE of the model when applied to the held-out validation data), we removed the

particular set of hyperparameters that generated the model, and applied the halving-

grid search again. We repeated this process until we had a model that did not over-fit

to the training data.

Initially, in our linear regression models, we evaluated models with and without
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using the HOG technique. In testing, the grid search would select models without

HOG as the best one. We discovered these models were severely over-fitting to the

held-out data. We continued analysis exclusively with models incorporating the HOG

technique. It was not until we introduced the PCA technique that we could avoid

over-fitting and receive accurate estimates from our machine learning models.

For the SVR models, a similar process was followed. Like linear regression, the

initial models would initially skip the HOG technique and over-fit to the training

set. Once both the HOG technique and PCA were applied, the results were generally

reasonable. However, in addition to the HOG and PCA technique, the regularization

parameter (C) also had to be tuned to prevent over-fitting of the radial-basis function

model.

The halving-grid search method selected a set a of candidate models for further

analysis. We evaluated the validation and training error of the 5 best models and

chose the best model for final performance analysis against the test set. To conduct

this final analysis, we retrained the model using the full set of training data (including

the held-out data for over-fitting analysis) and evaluated its performance on the test

data. The next section compares the performance of the 5 candidate models and

analyzes the final model.

2.3 Results and Analysis

2.3.1 Results

The results of the best models generated by the methodology described in sec-

tion 2.2 are depicted in table 2.
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Technique
Validation Error (m) Training Error (m)

Linear Regression with only HOG
3.215286 1.71975e-14

SVR without HOG
1.734658 0.097682

SVR with HOG
5.461971 5.052607

SVR with HOG and PCA (Linear Kernel)
3.891731 3.655514

Linear Regression with HOG and PCA
3.379964 3.063465

SVR with HOG and PCA (RBF Kernel)
1.049932 0.566847

Table 2: This table shows the training and validation error given by the various
models tested. The comparison between them was used to prevent the use of over-
fitting models.
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Model Cell Size Block Size Bin Count PCA C Color
Linear Regression with only HOG 16x16 1x1 5 N/A N/A RGB
SVR with HOG 8x8 1x1 5 N/A 1 RGB
SVR with HOG and PCA (Linear Kernel) 8x8 1x1 5 0.7 30 Grayscale
Linear Regression with HOG and PCA 8x8 1x1 5 0.7 N/A Grayscale
SVR with HOG and PCA (RBF Kernel) 8x8 1x1 5 0.5 30 Grayscale

Table 3: This table shows the hyperparameters of the models selected by the halving grid search.
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For this task, we anticipated the Gaussian kernel SVR would yield the best perfor-

mance. We also anticipated the ŷoffset and ẑoffset values would be much more accurate

than x̂offset values, due to the nature of the HOG method and the fact that as the

sphere is moved away from the camera, the same offset distance in either the Y- or

Z-axes will yield a smaller difference in the pixels of the captured images. While

the first prediction was accurate, the second one was incorrect, as the largest errors

were observed in the yoffset predictions. One possible explanation for the increased

inaccuracy of the ŷoffset values would be the effective range of the data distribution

in each axis. Whereas the xoffset and zoffset had ranges of roughly 25 and 30 meters,

respectively, the yoffset distribution had a 40 meter range of values. With the increased

range, the models were simply incapable of extrapolating well to the extreme yoffset

values, and accuracy along this axis suffered.

The final selected model (shown as the last model in table 2 and table 3) was a

support vector regressor using a radial-basis function kernel, where both the HOG

and PCA techniques were applied to the input data. The hyperparameters used

for the pipeline were a C of 30 with respect to the support vector regressor and a

PCA value of 0.5 (indicating that features were selected until 50% of the variation in

the original training data was explained by the chosen subset of features). For the

histogram of oriented gradients technique, the best parameters were 5 orientation bins,

a cell size of 8x8 pixels, and a block size of 1 cell per block. Additionally, grayscale

images performed slightly better than color images, but this hyperparameter seemed

to provide the least difference in comparison to the other parameters.

The first several models would bypass the regularization techniques (HOG pre-

processing, high regularization parameters, etc.) and simply over-fit to the data.

These models appeared to do extremely well during training, but had poor results on

the validation set. This is because the data had too many features, and was suffering
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from the curse of dimensionality: with the large amount of features relative to the

number of data points, the models were prone to over-fitting. By using PCA to reduce

the number of features, we eliminated the over-fitting problem. Once regularized, the

pure linear regression model actually outperformed the SVR model with a linear

kernel. However, as neither the linear model nor the SVR model with the linear

kernel provided the lowest validation error of all models, they were not selected, and

the test set was not used on these models.

Once all models were investigated and the final model was selected and trained,

the test set was used to predict performance on unseen data. The final model yielded

a test RMSE of 1.145 meters, indicating that, on average, the predictions made by

the model would be within 1.145 meters of the actual location. The R2 value was also

calculated to be 0.9754. This indicates that roughly 97.54% of the variation in the

true output was captured by the model’s outputs. This indicates a successful model

that is able to generalize well to unseen data.

2.3.2 Analysis

We performed an analysis on both the training and test sets, as shown in fig. 5.

From this we see that the residuals for the x̂offset are of a different form than those of

ŷoffset and ẑoffset. However, we also see that the predictions get worse for the X values

as the distance from the camera increases (as predicted). We suspect this is due to

the skewed nature of the data in the X-axis; there is a lack of sufficient data to allow

the model to generalize at close range, which creates errors at low values of x̂offset on

the test set. This is not desirable, as during an aerial refueling scenario it is critical

that the model be accurate in the closer x̂offset positions in which the receiver aircraft

will be refueling.

We notice a similar trend in both ŷoffset and ẑoffset values in that the model predicts
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the median values very well, but performs poorly on both very high and very low

values. This would indicate that there is some non-linearity that is occurring in the

yoffset and zoffset values not being captured by the model. This makes sense, as the way

in which the size of a sphere changes in the Y- and Z- axis as projected onto the image

plane is non-linear with respect to changes in distance from the camera. One way to

mitigate this effect would be to increase C to allow the model to represent less linear

functions. However, this also produces a significant risk of over-fitting, and hence is

not preferred. Ultimately, the need to have the most accurate position predictions at

extreme values of yoffset and zoffset is less critical during an aerial refueling scenario,

and does not warrant the risk of over-fitting to correct.
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Figure 5: The errors in prediction versus actual values for the X, Y, and Z output
values.
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2.4 Future Work

In the area of machine learning, there are several avenues that could be explored in

order to enhance the overall performance of the models. The first (and most obvious)

would be to generate more data on which to train the model. However, it would also

be beneficial to generate data in a smarter manner, so that the distribution of data in

all axes is more uniform. Additionally, having a smaller sphere size would allow for a

wider variety of yoffset and zoffset values at low xoffset values. In order to better model

non-linearity, some possible future endeavors could include the testing of polynomial

kernels, the separation of models used to estimate the different output values (x̂offset,

ŷoffset, and ẑoffset), or further pre-processing that more accurately aids in regression

tasks as opposed to classification tasks.

As a sphere is vastly more simplistic than an aircraft, we consider the results

of this section to be the best-case scenario. Thus, we doubt that the statistical

machine learning models explored contain the capability to regress the position of

a receiver aircraft within 10 centimeters of its actual location. Therefore, future

chapters explore the use of higher performing, deep learning models. In the world of

vision-related tasks, CNN models have become the standard method of interpreting

spatial data. Chapter III explores these architectures, and investigates their ability

to interpret data with significantly more complexity and noise.

23



III. Convolutional Neural Networks

This section discusses the research performed with convolutional neural network

(CNN) models. We begin by discussing background and related work in section 3.1.

We then describe the methodology of this research in section 3.2. Finally, the results

of our work and an analysis of these results are presented in section 3.3.

3.1 Background and Literature Review

3.1.1 Background

A CNN is a deep learning framework comprised of convolutional layers and fully

connected layers. This concept was first explored in depth by [18], as they sought

to utilize this network model to distinguish individual handwritten digits. Since that

time, it has become the main architecture with which to analyze visual data.

The concept of binocular stereopsis is fundamental in the field of computer vision.

This concept allows for the triangulation of an object in three dimensional space given

two images and the offset between the two cameras. This process of comparing two

images and calculating the disparity is known as stereo block matching. Stereo block

matching first finds some feature in one of the two binocular images. It then performs

a search for the same feature in a predefined region of the other image. If found, the

three dimensional location of that object can be computed using the offset of the

cameras and the relative location of the object within each image. Current computer

vision efforts heavily utilize this process in order to locate a given object in three

dimensions. However, this process is often very slow and computationally intensive,

as the search algorithm bottlenecks the process while trying to find the exact pixel

where both images match.

As current automated aerial refueling (AAR) efforts investigate using two cameras
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on the same plane facing roughly the same direction, we can reasonably assume that

the aircraft will appear in both images. In addition, due to the nature of front-facing

parallel cameras, objects that are closer to the two cameras will inherently create a

larger disparity in the images than objects that are farther from the camera plane.

As such, we investigate the use of using difference images, where the left and right

binocular images are subtracted and only the differences between the images remain.

This allows us to avoid the search process entirely, which increases the rate at which

we can make predictions.

3.1.2 Related Work

The use of CNNs to estimate a 6D pose is not new; several existing networks use

a CNN architecture to estimate the 6D pose of one (or more) objects. Many utilize a

monocular camera, and several use pre-built 3D models to estimate the 6D pose of an

object. A number of these architectures predict accurate 6D poses despite occlusions.

In their work, [19] seeks to perform pose estimation using binocular imagery and

the Perspective-n-Point (PnP) algorithm. However, in order to do so, they make

alterations to the receiver unmanned aerial vehicle (UAV) being used, whereas we

seek to avoid making any modifications to the receiver aircraft.

The work of [20] uses detected 3D keypoints while utilizing pre-built models to

regress pose. [21] proposes a similar pipeline, but instead uses the PnP and random

sample consensus (RANSAC) algorithms to map predictions to pre-built 3D models

and generate object pose.

[22] uses known 3D models to build a probabilistic model, then compares ob-

servations to the probability distribution. This model was shown to be robust to

occlusions, and largely shape-agnostic in its results.

[23] proposes a method in which the separate components of 6D pose estimation
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are decoupled. The resulting network independently estimates semantic labeling, 3D

translation, and 3D rotation, then combines the individual results for the full 6D pose

estimation.

[24] proposes EfficientPose, a new architecture which seeks to create a near real-

time model by extending the EfficientDet detection architecture proposed by [25]

to estimate the 6D pose. Both EfficientDet and EfficientPose networks split the

estimation of translation and rotation into two sub-networks. Finally, [26] propose a

single-shot approach inspired by the YOLO computer vision algorithm. Their network

initially estimates 3D control points, then uses the PnP algorithm to calculate a 6D

pose. This work is unique in that only the bounding box of a known 3D model (as

opposed to the full image) is used.

[27] proposes a system in which a CNN model is used to detect key features, and

then the distance is computed by using the pixel disparities in binocular images. This

work is one of the few that performs an actual numerical measurement rather than

simple detection. However, only the distance information is obtained (as opposed to

the full 3D position).

[28] present a dataset of stereoscopic images with corresponding high-quality la-

beled depth images. The purpose of these datasets is to train neural networks to

correctly predict the depth of a stereoscopic scene at all points. While similar to our

work, we seek to accurately regress the full 3D position of a single object rather than

the depth information within a scene, and thus these datasets were not utilized.

In their work, [29] analyzes a Siamese CNN architecture for stereo image rectifi-

cation. [30] argues that the brain utilizes missing areas in binocular images as well

as similar patches, and that these regions should also be considered when performing

pose estimation from stereoscopic imagery. Traditional stereo block matching seeks

to find similar image patches, then utilize epipolar geometry to estimate depth (and
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ultimately position).

In reviewing the current state-of-the-art for 6D pose estimation using deep learn-

ing techniques, several themes emerge. First, we observe that the task of 6D pose

estimation has been proven to be solvable by these networks. However, these networks

rely heavily on 3D models. The networks we propose utilize stereoscopic cameras,

obviating the need for a 3D model of the aircraft.

3.2 Methodology

3.2.1 Data Generation

In order to effectively train a CNN, a large amount of labeled data must be gen-

erated for the network to learn how to generalize results. In order to obtain a dataset

of this size, we again utilize the AftrBurner engine to yield images of an aircraft in

various locations. For each CNN trained, an A-10 aircraft model was used as the

receiver aircraft. The receiver aircraft was simulated in random locations ranging

from 12 to 20 meters away from the cameras. The locations were also constrained

in that each image needed the aircraft to be within the field of view of the cameras,

yielding offsets of up to 8 meters in the Y-axis and 5 meters in the Z-axis. Data was

collected with a uniform X-value distribution. As the entire frustum was available to

sample, this creates a roughly Gaussian distribution in both the Y- and Z-axes. An

example of these distributions are shown in fig. 6.

Each dataset generated consists of 46,656 images. These datasets were then split

into training, validation, and test sets. Datasets used to train each CNN consisted of

30,338 images, and 5,353 images were set apart for online validation after each epoch.

An offline validation set consisting of 6,299 images was set apart in order to directly

compare models with one another. Finally, a test set of the remaining 4,666 images

was used to test how well the final selected model would perform on new, unseen
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Figure 6: An example of the data distributions in each axis for each CNN dataset.
This distribution is specifically from the full occlusion dataset, but all datasets used
the same positioning methodology and thus have extremely similar distributions.
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data.

We generated images using two cameras positioned 1 meter to the right and 1

meter to the left of the rear of the tanker ((0, 1, 0) and (0, -1, 0) in the coordinate

space defined with the rear of the tanker as the origin). Next, we took the absolute

difference of these two images. This new “difference image” is saved and is used as

the input to our CNN models. An example difference image is shown in fig. 7.

Left Image Right Image

Difference Image

Figure 7: An example difference image used in training the CNN models.

The images generated were originally 640x360 pixels. This image size was used for

the shallow networks, while all other networks used images scaled down to a 320x180
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pixel size. Using fewer pixel feature inputs to our CNN allowed us to maintain

somewhat smaller networks as depth increased, reduce data storage requirements,

and minimize network training time.

In order to ensure our models are generalizable, several different parameters were

modified as new datasets were created to ensure the model is robust to noise and

visual degradations. Among those simulated were presence of the boom, background

noise, and receiver aircraft rotational noise. By simulating these in the virtual envi-

ronment, we can add robustness to our networks while simulating real-world visual

degradations. Our datasets assume a static boom positioned in between the cameras.

When added, rotational noise was modeled with a uniform distribution from -5 to 5

degrees in all rotational axes (roll, pitch, and yaw). Background noise is added by

including satellite imagery below the receiver aircraft. An example difference image

with visual degradations is shown in fig. 8.

Additional assumptions about general aerial refueling were made during dataset

creation. We assume that the background is significantly farther from the cameras

than the receiver aircraft and boom, so that, given an ideal or fully known camera

calibration, the difference captured in the rectified stereoscopic images is minor and

only represented by a few pixels. We assume that the boom, background, and cameras

are static; these two assumptions were made in the interest of simplicity, and are not

representative of a real aerial refueling scenario. Furthermore, we assume that the

cameras are positioned in such a manner that a majority of the receiver aircraft is

visible by at least one of the cameras. This assumption also includes the case when

the left and right cameras are able to view separate regions of the aircraft, but the

majority of the aircraft is captured by at least one camera. This assumption only

breaks down when a large portion of the aircraft is occluded by the boom in both

images. We assume that the cameras exist on the same Y-Z plane as the origin, and
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Left Image Right Image

Difference Image

Figure 8: An example difference image with background noise, boom occlusion, and
rotational noise.

that they are facing directly along the X-axis. This is also not necessarily indicative

of the real world, and we leave the study of the effects that these factors have on

model accuracy to future work.

3.2.2 Architecture Details

We trained four different model architectures, and we recorded the resulting

model’s root mean squared error (RMSE) on the validation set. By using the valida-
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tion set to select the final model, we ensure no cross-contamination of training and

test sets: no data from the test set ever factored into model training or selection.

The four models tested involved custom architectures with convolutional layers

and fully-connected layers inspired by the work of [31], as that work sought to solve

a similar problem as the one we are solving. The first model, Small, was a relatively

shallow architecture with 6 convolutional layers and 4 fully connected layers before

the output. Due to the relatively small size of the network, an image size of 640x360

pixels was used in the training process. This image size caused the final model to have

447,613,795 trainable parameters, mostly in the transition between the convolutional

layers and the fully-connected layers. The next model, Medium, was a slightly deeper

network consisting of 9 convolutional layers and 6 fully connected layers. As a smaller

(320x180 pixel) image size was used, this model only has 100,353,923 trainable pa-

rameters. Next, we trained and tested a model with 9 convolutional layers and 7 fully

connected layers, Large. As the fully connected layers of this models are larger, there

are 200,763,843 trainable parameters for this model. The final model is a deep model

inspired by the concepts used in the YOLO algorithm (introduced by [32]), YOLO-

inspired. It uses 12 convolutional layers and 4 fully connected layers. However, there

are max pooling layers after the 3rd, 9th, and 12th convolutional layer, and an up-

sampling layer after the 6th convolutional layer. This allows the network to identify

the important features while ignoring much of the noise. This model uses an image

size of 320x180 pixels, and only contains 5,281,579 trainable parameters. A diagram

of this model’s convolutional layers are shown in fig. 9. A full model summary for

each architecture is provided in appendix A.

A leaky rectified linear unit (ReLU) activation function was used in all models.

This activation function differs from the normal ReLU function in that the leaky ReLU

maintains a small negative slope when the neuron is inactive, rather than having a
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Figure 9: A visual representation of the convolutional layers in the YOLO-inspired
architecture.

slope of zero. This prevents neurons from “dying” during training as a result of having

no way to reactivate after deactivating within the normal ReLU paradigm.

All models were trained for a maximum of 100 epochs. However, models that

did not improve in validation accuracy (provided by the online validation set) for

20 epochs were stopped early. This prevents a model from simply overfitting to the

training set rather than generalizing to the data as a whole.

Model training was conducted in an environment where multiple GPU units were

available. In general, two Nvidia V100 GPUs were used to train each model. Training

time varied based on the model and image size, but generally took around 400 to 600

seconds (7-10 minutes) per epoch, yielding an overall training time of up to 17 hours

per model. The model size also varied on architecture, but ranged from 40 MB for
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the smallest architecture (YOLO-inspired) to 3.33 GB for the largest architecture

(shallow network with a larger image size). A smaller network size allows the code

to be deployable in an environment where storage and computational resources are

limited.

3.3 Results and Analysis

3.3.1 Results

We find that for all datasets, the YOLO-inspired architecture is the best perform-

ing architecture. A breakdown of the validation RMSE as compared to the dataset

and architecture is given in table 4.

Degradations Present in Dataset Small Medium Large YOLO
Background 6.866 cm 5.64 cm 5.10 cm 3.50 cm
Background and Rotations 14.30 cm 11.68 cm 9.47 cm 6.16 cm
Background, Rotations, and Boom 14.93 cm 10.53 cm 10.21 cm 8.39 cm

Table 4: This table shows the validation error given by the various network architec-
tures tested on the different datasets. The best model for each dataset are highlighted
in bold. All numbers represent centimeters of RMSE on the offline validation set.

Once the best overall model was selected for each dataset, we used the test set

to determine how well the model was able to generalize to completely unseen data.

Doing this after the model was chosen ensured that the test set performance did not

factor into our model decision at all. The results of the best model on the test set is

given in table 5.

A plot of the residuals vs the true X, Y, and Z values for the best model on the

full occlusion (background, rotational, and boom noise present) dataset is shown in

fig. 10. We see that the model performs better in all three axes when the aircraft is

closer to the receiver than when it is farther away. This is expected: as we are using

very small images (320x180 pixels), when the object moves away from the cameras two
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Dataset RMSE (cm)
Background 3.56
Background and Rotations 6.28
Background, Rotations, and Boom 8.36

Table 5: This table shows the error given by the best network architectures on the
test sets. In each case, the model tested was the YOLO-inspired architecture, as
these architectures had the lowest validation errors.

similar positions will begin to map to the same pixel location and network accuracy

will decrease. In addition, as we are utilizing difference images, the disparity between

the two images will also decrease as an object moves further away from the camera.

Since the disparity between the images is what is being given to the network, a

smaller disparity will inherently give less accuracy as the aircraft begins to fade into

the background noise.

Overall, we find that a CNN architecture can accurately estimate the position

within an average of 10 centimeters when the receiver aircraft is near the contact

position (roughly 12-20 meters away from the receiver), and that outlier predictions

are still within a meter in each axis. We find that various visual degradations, such

as background noise, rotational noise in the receiver aircraft, and the presence of

the boom degrade the performance of the architecture, but not significantly enough

that the prediction is invalid (especially if the model is made robust to the visual

degradation within the simulated dataset).

In the case of the full occlusion dataset (where all visual degradations were

present), we see the network accurately predicting the location within a meter along

all axes despite all three occlusions being present in the dataset. The average error in

prediction is roughly 8.36 cm on the test set, which is close to, but not quite strictly

better than, the current industry standard iterative closest point (ICP) performance

despite the presence of numerous occlusions and visual degradations.

In addition to accuracy, the architecture must run sufficiently quickly to provide
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Figure 10: A graph of the errors in prediction of the CNN model as opposed to the
true values along all axes.
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a near real-time estimate for the position of the aircraft in order to be useful in

AAR applications. As the models are simply a series of matrix transformations, once

trained they are able to run in near constant time. The full occlusion model takes

only 12.397 milliseconds to generate its prediction. The run-time of each model is

given in table 6. Furthermore, the only preprocessing that the model requires is to

scale the stereoscopic imagery down to an image size of 640x360 pixels and take the

absolute difference between the left and right images.

Model Runtime (ms)
Small 13.720
Medium 13.886
Large 12.435
YOLO-inspired 12.397

Table 6: This table shows the runtimes of the different architectures in order to
calculate a numerical prediction from an image. All times shown are in milliseconds.

3.3.2 Analysis

Shown in fig. 11 is a graph of the RMSE of the online validation set as the model

was training. In this graph, we see that the performance on the training set gradually

decreases as the model learns the optimal parameters. We also see the error in the

validation set slowly decrease over time, but remain higher than that of the training

set. This is expected of a deep learning architecture, as the model can only fit to the

instances that it has seen. The fact that the validation loss retains a decreasing trend

is indicative that the model has not completely over-fit to the training data at the

expense of losing generalizability. Further, the fact that the performance on the test

set is near the performance on the validation set (as shown in table 4 and table 5)

for each model further proves the fact that the models are able to generalize to new

data without a significant loss of accuracy.

Overall, we find that a pure CNN model can yield fairly accurate results in the

37



Figure 11: A graph of the training and online validation RMSE (in meters) captured
as the model trained.

instance that the receiver aircraft is near the contact position relative to the tanker

aircraft (12-20 meters away). This architecture is dependent only on input images

in order to make a prediction, and can provide a position estimation in very little

time. Further, we find that by modelling a type of visual degradation in the virtual

world while creating a dataset, the CNN architecture can be made inherently robust

to that degradation (at the cost of some accuracy overall). In chapter IV, we explore

the idea of recurrent neural network (RNN) architectures in order to further improve

the accuracy of the model, as well as the range at which we can accurately predict

the receiver aircraft’s position.
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IV. Recurrent Neural Networks

The focus of this chapter is to detail all work performed relating to recurrent

neural network (RNN) models. The background and related work for RNN models

is discussed in section 4.1. We discuss the methodology used in our research in

section 4.2. Lastly, section 4.3 discusses the results of our work, and provides an

analysis of these results.

4.1 Background and Literature Review

4.1.1 Background

RNNs are a class of networks that excel in handling temporal data. These networks

function by passing information back in time via a feedback loop as a state, then

combine the previous state with new information when predicting an output. This

structure allows the networks to learn complex temporal patterns present in data

and make predictions based on these patterns. With the resurgence in deep learning

research, the RNN framework has become the prominent deep learning framework

with which to analyze sequential data.

Long short-term memory (LSTM) cells are an advancement to the recurrent deep

learning field introduced by [33]. These cells function similarly to a standard RNN cell,

but rather than simply receiving a state from the previous iteration of the sequence,

these cells use two cell state inputs in addition to the current iteration’s input. This

allows the network to better learn long-term dependencies in the data while still

allowing short-term dependencies and current iteration data to influence the output.

In the domain of aerial refueling, there are several key assumptions which compel

us to investigate the effectiveness of RNNs. We can reasonably assume that the

current position of a receiver aircraft is highly correlated with previous positions,
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especially as the frequency of input images increases. Further, we can assume that

there are physical laws that constrain the movement of the receiver aircraft that

prevent it from moving a significant distance in a relatively short amount of time.

By utilizing previous receiver aircraft positions, our architecture is able to estimate

higher order equations of motion, and use these equations to more accurately predict

the current position of the receiver aircraft. This also helps mitigate various factors

that occlude significant portions of the receiver aircraft, such as the boom or the field

of view of the cameras.

4.1.2 Related Work

As convolutional neural network (CNN) architectures excel in interpreting spatial

data and RNN frameworks excel in handling temporal data, several research efforts

exist which utilize both CNNs and RNNs to perform some task on a video sample or

series of sequential images. The work of [34] combines the two frameworks in order

to label the action sequence that occurs in a video clip. The work of [35] combines

the two architectures in an unsupervised attempt to generate intermediate images in

a given video sequence.

The work of [36] uses a combination of CNNs, RNNs, and deep Q-learning in order

to play Atari games. Of note is that in this research, the models were able to predict

future frames even with a lack of current input data, which helped in their analysis

of which action to choose.

In their research, [37] shows that both adaptive filters and neural networks have

the ability to mitigate occlusions when detecting a moving object. They test both

recursive filters and simple neural networks made only of multilayer perceptrons.

They conclude that neural networks are the preferred method moving forward due

to their adaptibility to noisy data. This work is continued in [38], where they verify

40



that their methods extend to stereoscopic imagery.

RNNs have also been shown to aid in the mitigation of occlusions. The work of

[39] uses an RNN network to track occluded people in sequential images. This is

performed by utilizing the known trajectory of the person both before and after the

occlusion, and estimating if the two trajectories align. Their work shows the ability

to track an object that is fully occluded in some frames, although the focus is mainly

on object detection rather than precise position regression.

The research performed by [40] creates a deep learning architecture called an

interaction network that is able to learn the physical dynamics of systems, given

the knowledge that each observed object in the system interacts in some manner.

[41] continues this work by combining CNNs, RNNs, and interaction networks in an

architecture called a visual interaction network. This framework extends the previous

work in that the architecture can infer the dynamics of the specific systems after three

sequential images, and predict the future states of these systems.

The work of [42] seeks to estimate the effects of Newtonian physics in a 3D scene.

Their work shows that a CNN-RNN architecture is able to learn long-term depen-

dencies, and can understand a 3D scene well enough to predict the future scene given

a force annotated on the image. However, the force and the physics equations are

provided to the model rather than inferred directly by the model.

[43] shows that RNN networks are able to sufficiently learn spatio-temporal rela-

tions in a graphical context. Finally, [44] performs similar work to ours in that they

attempt to predict the future states in a system without first learning the underlying

physics of the system. However, their focus relies primarily on long-term estimations

rather than utilizing previous information to enhance a single (current) prediction.
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4.2 Methodology

As the RNN is a deep learning temporal analysis technique, we extended the range

of analysis from a receiver positioned 12-20 meters behind the tanker as used in the

previous chapter to a receiver positioned 12-50 meters to better assess the ability for

a deep learning model to estimate the position of a receiver aircraft in motion. This

distance range also provides a better comparison with iterative closest point (ICP)

work. Our deep learning models consisted of CNN layers followed by RNN layers.

In this section, we describe our development of CNN-RNN models to estimate the

receiver aircraft position.

Our CNN-RNN architectures reuse the CNN architectures from the previous chap-

ter as shown in table 7 to analyze the spatial image data before processing those

features through the RNN layers. As the models developed in the chapter III uti-

lized data from the 12-20 meter range, section 4.2.1 describes how we generated CNN

layers for our CNN-RNN models.

As an RNN is a temporal analysis tool, the data inputs to an RNN model are

typically a temporal data sequence. Section 4.2.2 describes how we generated image

sequence data across the 12-50 meter range to train, validate, and test our candidate

CNN-RNN architectures.

For the purposes of analyzing the effectiveness of RNNs at estimating receiver po-

sition, we created three architecture variants. In the first architecture, Transfer-train,

we initialized the CNN layers with the best CNN model and allowed the weights of all

layers to change throughout the training process. The second architecture, Transfer-

static, also used the best CNN model, but the weights of the CNN layers were kept

fixed throughout the training process. Third, our Full-train architecture utilizes CNN

layers that were initialized randomly and learned throughout the training process. We

used a new YOLO-inspired architecture for the CNN portion of the Full-train CNN-
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RNN model. We describe these architectures in more detail in section 4.2.3.

To provide a basis of comparison between the CNN models developed in chap-

ter III and the CNN-RNN models developed in this chapter, we also used a 12-20

meter dataset to assess the effectiveness of an RNN at improving receiver aircraft po-

sition estimates. We provide this analysis, along with the analysis of the CNN-RNN

performance at the extended 12-50 meter range in section 4.3.

4.2.1 CNN Development

In order to accelerate training of CNN-RNN models, we experimented with pre-

trained CNN layers. This section describes how we created those layers.

As the CNN models of the previous chapter were created using a dataset of receiver

positions 12-20 meters behind the tanker, we created a new dataset for training CNNs

containing difference images of a receiver aircraft positioned 12-50 meters in the X-

direction (behind the tanker and aft of the camera). As we sought to ensure the

aircraft was visible in each shot, this translated to a range of Y (horizontal) offsets

from -30 to 30 meters at maximum distance and a range of Z (vertical) offsets from

-25 to 25 meters. These distributions are shown in fig. 12. All other parameters for

this dataset mirror those of the CNN datasets: 46,656 images split into four main

partitions (30,338 for training, 5,353 for online validation, 6,299 for validation after

training, and 6,299 for testing generalizability). We used this dataset to pre-train

the CNN-layers of in the Transfer-static and Transfer-train CNN-RNN models. The

images used to train the CNNs used in the models trained on the 12-50 meter dataset

consisted of both the background noise and boom occlusion. However, for the models

trained on the 12-20 meter dataset, we used the CNN models trained in the previous

chapter using just background noise (no boom occlusion).
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Figure 12: The data distributions in each axis for the training set of the 12-50 meter
CNN dataset.

44



4.2.2 Data Generation

For the CNN-RNN dataset, we created temporally sequenced data with a series

of 4 difference images for each observation. The objective of the CNN-RNN model is

to predict the X, Y, and Z position of the aircraft in the fourth image using nothing

other than the sequence of 4 difference images. The sequence of images begins with

the receiver aircraft in an initial position. The receiver aircraft is then initialized with

an initial velocity and acceleration. This velocity and acceleration is applied to the

aircraft’s initial position to generate a sequence of 4 images. As it is unlikely that a

receiver aircraft would accelerate horizontally in a real scenario, acceleration in the

Y-axis was not simulated. An example sequence is shown in fig. 13.

To ensure that the final position of the aircraft used for prediction remained

in-frame, we randomly generated observations by first selecting an aircraft position

Pω = (xω, yω, zω) that ensured that the majority of the aircraft (at least parts of both

wings and the body) were in view. Then, to determine an initial aircraft position

P0 = (x0, y0, z0), we moved the receiver aircraft backwards 13 meters from Pω so that

P0 = (xω + 13, yω, zω) = (x0, y0, z0). This adjustment ensured that the final position

of the aircraft after several seconds would remain in frame in cases of initial positions

near the frame edges, or cases in which the random parameters created significant

movement over the image sequence.

The initial velocity vector v0 was a randomly selected vector in the range ([−0.25,

−1.0], [0.025, 0.1], [0.0625, 0.25]) meters per second. The aircraft acceleration a0 re-

mained constant throughout the 4 image sequence. We applied zero acceleration

along the Y axis, but the acceleration vector along the other axes was selected from a

normal distribution θ = (µ, σ) having a mean of µ and standard deviation of σ. The

distribution of initial acceleration vectors along the X axis was θx = (0.0, 0.4) and

along the Z axis was θz = (0.0, 0.1).

45



Each observation for the CNN-RNN model was a four difference-image sequence,

where the first difference image was captured at the receiver aircraft’s initial position

P0. The second and subsequent positions were calculated using the equation Pt =

a0t
2 + v0t + P0, where t = {1, 2, 3}. Difference images were captured at each value

of t, and the series of four images was stored as an observation in the 12-50 meter

dataset.

We repeated this process to generate the 12-20 meter dataset, with a few changes.

First, we constrained X values of Pω to a range of [12, 15]. We then selected a P0 by

moving the aircraft backwards only 3 meters instead of 13, so that P0 = (xω+3, yω, zω).

Finally, we changed the frame rate to 4 images per second instead of 1 image per

second (t = {0.25, 0.5, 0.75}). These changes were necessary to ensure that the final

position of the aircraft remained in view. The changes had a consequent effect that

the difference in initial position and final position of an aircraft was greater in the 12-

50 meter dataset than in the 12-20 meter dataset, and the distance travelled between

frames was greater in the 12-50 meter dataset than in the 12-20 meter dataset.

The distribution of final positions of receiver aircraft in the 12-50 meter dataset

is provided in fig. 14, and the distribution of final position in the 12-20 meter dataset

is in fig. 15. In both datasets, the distribution of final positions was approximately

normal in all axes. In the 12-50 meter dataset, the X-values ranged from 12 to 45

meters and the Y- and Z-values were in the range [−8, 8] meters. In the 12-20 meter

dataset, the X-values ranged from 12-20 meters, the Y-values ranged from -4 to 4

meters, and the Z-values ranged from -2.5 to 2.5 meters. Note that while the initial

velocity was always positive, the initial acceleration could be negative, resulting in

some aircraft actually moving backwards relative to the tanker throughout the image

sequence.

In order to sufficiently train the CNN-RNN model, even more data had to be
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generated than was created for the pure CNN models. For our models, the datasets

used consists of 15,625 instances, each consisting of 4 difference-image sequences. We

divided these into a training set (11,952 instances), validation set (2,110), and a test

set (1,563). As each instance contained four images, the training set had 47,808 images

(more than were in the entirety of any CNN dataset), the validation set contained

8,440 images, and the test sets contained 6,252 images, for a combined 62,500 images

total. Both the 12-50 meter dataset and the 12-20 meter dataset had 62,500 images.

The only degradations we introduced in the RNN datasets were the background

noise and the boom; we did not simulate rotational noise for RNN training. All

underlying assumptions of the CNN datasets are also present in the RNN datasets. In

addition, we assume that the movement of the receiver aircraft is simple enough to be

modeled by a second order polynomial in each axis; this assumption is not necessarily

indicative of the real world; however, for short periods of time, it accurately reflects

aircraft movement.

4.2.3 Architecture Details

As discussed, we designed three CNN-RNN models. Each model consists of a

series of CNN layers followed by a series of RNN layers. The input to the CNN layers

is the sequence of 4 difference-images. The output of the CNN layers is a prediction of

the receiver’s X, Y, and Z position of in each frame. The RNN layers consist of three

independent networks which each attempt to predict the aircraft position along one

of the coordinate axes. In other words, the CNN’s predictions for the X values are

fed into one RNN, the Y values are fed into another, and the Z values are fed into the

third. The results of the three independent sub-network RNNs are then concatenated

to provide a single position prediction for the receiver position in the fourth frame.

The CNN layers mirror the CNN architecture discussed in chapter III. For each
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RNN sub-network, we use a single layer LSTM with 2,048 hidden units. A visualiza-

tion of our network architecture is depicted in fig. 16.

We chose this architecture because of the successful results of [36]. The indepen-

dent RNN sub-networks allowed each RNN to learn an independent movement along

each axis. This allows the overall CNN-RNN models to accurately predict the receiver

location given a variety of complex movement patterns made by the receiver aircraft.

We incorporated this basic CNN-RNN architecture in each of the models, Transfer-

train, Transfer-static, Full-train. The CNN layers used in the Transfer-train and

Transfer-static were selected from the best performing models as evaluated on the

validation dataset. We used a YOLO-inspired CNN in the Full-train model. We

generated each of these three models on both the 12-20 meter and the 12-50 meter

datasets.

After selecting the best CNN model, each CNN-RNN model was trained for 100

epochs. To prevent wasted training time, we established early stopping criteria if the

training loss did not decrease by a pre-determined amount for 20 epochs.

In the following section, we discuss the results and analyze the models we created.
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Figure 13: An example of an image sequence used during training. Note that the
only position annotated is the position of the receiver aircraft in the final image.
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Figure 14: The data distributions in each axis for the training set of the 12-50 meter
CNN-RNN dataset.
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Figure 15: The data distributions in each axis for the training set of the 12-20 meter
CNN-RNN dataset.
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Figure 16: A visual depiction of the final CNN-RNN model architecture used to
predict the location of the receiver aircraft. The CNN layers are encapsulated in the
TimeDistributed layers.
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4.3 Results and Analysis

4.3.1 Results

We found that the best performing CNN architecture on the 12-50 meter dataset

is the medium-sized architecture. The model achieved a test root mean squared error

(RMSE) of 32.54 centimeters. Effectively, this means that the CNN layers could, on

average, accurately predict the aircraft’s position within 33 centimeters of its position

throughout the 12-50 meter range. The performance of each model architecture tested

on the 12-50 meter dataset are shown in table 7. Based on these results, we chose

the Medium CNN to train the CNN-RNN model on the 12-50 meter dataset.

The best performing CNN architecture on the 12-20 meter dataset, the YOLO-

inspired architecture, was reused from the previous chapter, and it had a test RMSE

3.56 centimeters. See table 5 for the performance of each of the CNN models evaluated

on the 12-20 meter dataset.

The models trained on the 12-50 meter dataset using a Medium CNN architecture

had 150,740,882 parameters. In the Transfer-train model, all of these are trainable. In

the Transfer-static model, only the weights leading into the RNN layer are trainable,

reducing the number of trainable parameters to 50,386,959. In the Full-train model,

we used another YOLO-inspired CNN architecture. This architecture is similar to

the YOLO-inspired architecture used to train CNN models, but an increased stride

in the deeper convolutional layers vastly decreased the number of parameters within

the CNN portion. Overall, the Full-train CNN-RNN architecture contains 50,435,898

parameters, all of which are initialized with random values and are trainable.

The models trained on the 12-20 meter dataset using the YOLO-inspired CNN

architecture had 55,668,538 parameters in the case of Transfer-train and Transfer-

static. The Full-train architecture contains 50,435,898 parameters. In the Transfer-

train and Full-train models, all of the parameters are trainable, but they are initialized
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to trained values in the former model and random values in the latter model. In

Transfer-static, only 50,386,959 of these parameters are trainable.

Model RMSE (cm)
Small 37.41
Medium 34.15
Large 36.40
YOLO-inspired 34.31

Table 7: This table shows the validation error given by the various CNN architectures
tested on the 12-50 meter distance dataset. The best performing model and RMSE
is highlighted in bold.

Turning now to the performance of the complete CNN-RNN model trained on the

12-50 meter dataset, we report the error of each trained model when applied to the

validation dataset in table 8. We note that the Transfer-train model out-performs

the the other models with a validation error of 6.19 centimeters. When we applied

this model to the test dataset, it accurately predicted the receiver position within

6.69 centimeters, on average, over the 12-50 meter range.

We report the performance of the trained CNN-RNN models on the 12-20 me-

ter datasets in table 9. As in the models trained on the 12-50 meter dataset, the

Transfer-train model out performs the other models, accurately predicting the air-

craft’s position an average of 1.61 centimeters of its true position over the 12-20 meter

range when applied to the validation dataset. The performance on the test dataset

demonstrates this model has found a general solution, with an average error of 1.43

centimeters. See table 10 for a summary of test performance of the best model trained

on each dataset.

We find that in all cases, the CNN-RNN model improved upon the results yielded

by the pure CNN model. Overall, the best performing model architecture on both

datasets was the transfer-learning architecture where all parameters were trainable.

A direct comparison of CNN and CNN-RNN models is shown in table 10.

54



Model RMSE (cm)
Transfer-train 6.19
Transfer-static 24.78
Full-train 11.17

Table 8: This table shows the validation error given by the various CNN-RNN archi-
tectures tested on the 12-50 meter CNN-RNN dataset. The best performing model
and RMSE is highlighted in bold.

Model RMSE (cm)
Transfer-train 1.61
Transfer-static 55.33
Full-train 3.17

Table 9: This table shows the validation error given by the various CNN-RNN archi-
tectures tested on the 12-20 meter distance dataset. The best performing model and
RMSE is highlighted in bold.

4.3.2 Analysis

Comparing the results of the CNN layers, the performance of the models trained

on the 12-50 meter dataset is much worse than the models trained on the 12-20 meter

dataset. We provide a residual error analysis of the best 12-50 meter modelMedium in

fig. 17. Refer to fig. 10 for a residual error analysis of the 12-20 meter models. In the

12-50 meter dataset, we see that the accuracy along the X-axis degrades significantly

with distance from the tanker aircraft, with errors in excess of 2 meters at a distance

of 50 meters. Errors along the Y- and Z-axes are also greater near the bounds of the

range than at the center. However, this model performs comparably with the 12-20

meter CNN models near contact location. The residuals of this area specifically are

shown in fig. 18.

Recall that in our data generation process, only aircraft that were near the max-

imum distance aft of the tanker could be near the extremes of the Y- and Z-axis

ranges. Thus, we suspect that the underlying position that results in large error pre-

dictions along the X-axis is also generating large errors along the Y- and Z-axes as
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Dataset CNN model CNN-RNN model
12-50 meters 32.54 cm 6.69 cm
12-20 meters 3.56 cm 1.43 cm

Table 10: This table shows the comparison between the best-performing CNN models
and the best performing CNN-RNN models on the two distance distributions. All
numbers reported are centimeters of RMSE on the test set.

well. We suspect there are three causes for these errors near the extreme aft of the

range of data. First, the farther the receiver aircraft is from the cameras, the smaller

the features are that are being detected. Second, as an object moves farther from

the camera, each pixel represents a larger area of the real-world aircraft. Third, the

relative size of an image of an aircraft at 50 meters and at the extreme edges of the

Y- and Z-axes (near the corners of the image) will have the same size and shape as an

aircraft that is much closer to the tanker and nearer to the X-axis. Consequently, a

CNN might not effectively distinguish the position of two aircraft that have a similar

size and shape in the image.

RNNs significantly improve the performance of the models, as demonstrated in

the residual analysis shown in fig. 19. In these graphs, we report the predicted po-

sition error of the best CNN-RNN model (Transfer-train with Medium CNN layers)

trained on the 12-50 meter dataset. These graphs demonstrate that errors mainly

fall within 1 meter in all axes, with some outliers. The CNN-RNN model provides a

significantly improved position estimate than the CNN model without the temporal

analysis provided by the RNN. We also see that the CNN-RNN model has a fairly

consistent error along the entire range for all axes, as opposed to functioning signif-

icantly worse at larger distances. This is due to the smoothing nature of the LSTM

cells: if the receiver aircraft begins moving away from the tanker, the RNN can use

the trajectory information from the previous locations to better predict where the

receiver aircraft will be. We still see a subtle trend of increasing error at the edges
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Figure 17: A graph of the errors in prediction of the CNN model on the 12-50 meter
CNN test set as opposed to the true values along all axes. All values are in meters.
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Figure 18: A graph of the errors in prediction of the CNN model on the 12-50 meter
CNN test set at the 12-20 meter range. This shows us how well the 12-50 meter CNN
model performs near contact location. All values are in meters.

of the full range of values in each axis, but this trend is very slight and noticeably

smaller than the errors presented by the CNN models. This indicates that the errors
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caused by certain aircraft positions yielding similar image sizes but vastly different

X, Y, and Z positions can be overcome with a sequence of images processed through

a CNN-RNN model. Further analysis shows that the model is most accurate along

the Z-axis and least accurate along the X-axis. We also see in the CNN-RNN model

that the axes become less codependent: an incorrect prediction along one axis is less

correlated with incorrect predictions along the other axes.

Turning to the 12-20 meter dataset, a graph of the errors of the best perform-

ing CNN-RNN architecture (Transfer-train with YOLO-inspired CNN layers) on the

12-20 meter dataset is shown in fig. 20. We find that a CNN-RNN architecture can

provide accurate position estimates in all axes near contact location, with most pre-

dictions accurate within 10 centimeters of their respective axis. We again find that

the Z-axis is the best axis in terms of accuracy, but also find that the X- and Y-axes

are roughly equal in their relative accuracies. Finally, we see a very subtle trend of

increased inaccuracy near the extremes of all axes.

Of note is the performance of the Transfer-static model on the 12-20 meter dataset.

This model performs significantly worse than any other model on either dataset (see

table 9 which shows an RMSE error of over 55 centimeters, an order of magnitude

greater than the position error of the other models). As the CNN model used in the

transfer training was not trained with any boom occlusion, and the CNN layers were

frozen throughout training, the mitigation of this occlusion needed to come strictly

from training the LSTM sub-networks. This leads us to conclude that the LSTM

sub-networks alone are not sufficient to handle significant visual degradation (such as

the boom) independent of the CNN sub-network. However, once the CNN portion of

the model was allowed to adjust to the visual degradation (as in Transfer-train), we

saw a significant increase in accuracy.

We also observe that the best CNN-RNN network, Transfer-train, outperformed
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Figure 19: A graph of the errors in prediction of the CNN-RNN model on the 12-50
meter CNN-RNN dataset as opposed to the true values along all axes. All values are
in meters.
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Full-train. Moreover, Transfer-train met the early termination criteria at 93 epochs,

which means that it had not reduced the error by a predetermined amount over 5

epochs. In contrast, the Full-train terminated after 75 epochs. This indicates a

success for transfer learning. By transferring the learned weights, Transfer-train was

able to find a more optimal model than Full-train could with random initialization.

The timing for the CNN-RNN models, however, is significantly slower than the

pure CNN models. The CNN-RNN networks took over 300 milliseconds to make a

prediction whereas the CNN required only 12 milliseconds. While this is a 2,500%

slowdown, one factor to note is that the model was required to perform an estimation

for every image it received. In a deployed model, the architecture would simply

remember the previous estimates as opposed to recalculating them every time a new

image was received. Additionally, all four images have to be read into memory while

making a prediction, then deleted afterwards, whereas the pure CNN model only

performs this operation once. While the architecture is still larger and therefore

slower than a pure CNN model, the 2,500% slowdown is the upper limit on the

amount of time this architecture would take to make a prediction. Overall, we’d

expect the actual performance in a deployed model to be approximately a quarter of

our performance, or around 75 milliseconds.
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Figure 20: A graph of the errors in prediction of the CNN-RNN model on the 12-20
meter dataset as opposed to the true values along all axes. All values are in meters.

62



V. Conclusions

In this thesis, we investigated the use of both machine learning and deep learning

models for an accurate and timely 3D position estimation. We find that while statisti-

cal machine learning models provide some promise, they ultimately are insufficient at

estimating 3D position to the accuracy needed to perform automated aerial refueling

(AAR), and the more powerful deep learning models are needed.

We then analyze the effectiveness of convolutional neural network (CNN) archi-

tectures at estimating a 3D position utilizing only a difference image between stereo-

scopic cameras. We seek to utilize these models in order to reduce the need for the

pre-processing steps required in current AAR efforts, as deep learning methods have

been shown to be robust to noisy data. We find these results to be satisfactory at close

range, while also running in very low amounts of time and with very little required

pre-processing.

Finally, we investigate the usage of recurrent neural network (RNN) networks to

aid in the mitigation of occlusions and to extend the accuracy of CNN models over a

wider range. We find that an RNN architecture can vastly improve the accuracy of

the prediction, but this comes at the expense of prediction speed. This research lays

the foundation for a new avenue in AAR efforts that takes only images as input, and

utilizes the intrinsic properties of neural networks to provide a robust solution to the

pose estimation problem in the face of object occlusions.

5.1 Future Work

As we have demonstrated the feasibility of deep learning architecture to accurately

estimate receiver aircraft position with only input images, and with visual occlusions,

there are several avenues which would build upon this work and ultimately prove
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useful to AAR as a whole. These are briefly discussed here.

Early research sought to estimate orientation (roll, pitch, and yaw) in addition

to position for the full 6D pose estimation. However, we did not pursue orientation

prediction analysis, as the orientation of a receiver aircraft in the refueling envelope

tends to remain close to straight and level (0 degrees of offset in each rotational

axis). Further, orientation estimation significantly increased the scope of data needed

to train a successful model, and caused a decrease in the accuracy of the position

estimation. Future work may be performed to use deep learning architectures to

estimate orientation, but it is our recommendation to keep a separate orientation

network rather than directly regressing position and orientation within the same

network.

Further research could be done to test the applicability of a single network to

predict multiple aircraft types, such as an F-15 or a C-5, or future work could involve

a classifier that identifies the receiver aircraft and intelligently selects the appropriate

pose prediction network. As this research assumed a completely ideal camera struc-

ture, future work could involve testing the robustness of the architectures to minor

noise in camera orientations or different intrinsic camera calibrations.

We generated all of our data in a virtual world. Further research is required to

validate the applicability of networks trained on simulated imagery into real-world

scenarios. If the virtual worlds are found to be highly transferable to real-world

scenarios, it allows extensive work to be performed with essentially unlimited amounts

of simulated data. These networks can then be deployed to real-world scenarios where

large-scale data collection is prohibitive in some manner.

We suspect that the nature of the small image size is advantageous in generalizing

virtually generated data into real-world scenarios. As our images are scaled down to

only 320x180 pixel images, much of the finer details are lost. Similarly, should a real-
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world image be scaled down significantly in size, much of the finer details would be lost

as well. We hypothesize that there is more similarity between low-resolution images

of virtually generated scenes and real-world scenes than high-resolution images of the

same scenes. However, further testing would be necessary to verify this as fact in

order to confirm that training models in a virtual environment for use in a real-world

environment is a viable strategy.

Another avenue of research to be explored is that of different aircraft configura-

tions. We suspect that a deep learning architecture like those we propose will be

inherently robust to different aircraft configurations, as these models learn by find-

ing a generalized solution to the task they are given. Since the key features of an

aircraft stay consistent across separate configurations, the models will simply learn

to utilize the consistent features of each aircraft to calculate a position estimate, and

the accuracy will not considerably decrease.

In addition to the visual degradation tested in this research, further research

could be performed in order to ensure the architectures are robust to an array of

adverse visibility conditions. Apart from those we tested, it is common for aerial

refueling to occur despite glint, glare, fog, and low-light conditions, among other visual

impediments. Future research could be performed by simulating these conditions in

the virtual world to ensure the models are made robust to them.

The final step in AAR is to automate the control of the boom. The models

we propose could substantially aid in this process by providing accurate position

estimations to the pipeline. Nevertheless, substantial future work is required in order

to achieve fine control of the boom, as this step is crucial in ensuring neither aircraft

is damaged during the refueling process.

Ultimately, we find the use of neural networks to directly regress 3D position is

largely unexplored, but may provide an alternative solution that mitigates many of
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the issues plaguing modern AAR methods. Further, this work is applicable in other

fields which also seek to estimate 3D position from stereoscopic imagery.
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Appendix A. CNN Model Architectures

Figure 21: The shallow Small architecture used in CNN research.
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Figure 22: The convolutional layers of theMedium architecture used in CNN research.
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Figure 23: The dense layers of the Medium architecture used in CNN research.
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Figure 24: The convolutional layers of the Large architecture used in CNN research.
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Figure 25: The dense layers of the Large architecture used in CNN research.
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Figure 26: The convolutional layers of the YOLO-inspired architecture used in CNN
research.
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Figure 27: The dense layers of the YOLO-inspired architecture used in CNN research.
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